Sample records for attitude controlling system

  1. Seasat-A attitude control system

    NASA Technical Reports Server (NTRS)

    Weiss, R.; Rodden, J. J.; Hendricks, R. J.

    1977-01-01

    The Seasat-A attitude control system controls the attitude of the satellite system during injection into final circular orbit after Atlas boost, during orbit adjust and trim phases, and throughout the 3-year mission. Ascent and injection guidance and attitude control are provided by the Agena spacecraft with a gyrocompassed mass expulsion system. On-orbit attitude control functions are performed by a system that has its functional roots in the gravity-gradient momentum bias technology. The paper discusses hardware, control laws, and simulation results.

  2. Noise screen for attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)

    2002-01-01

    An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.

  3. Adaptive mass expulsion attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Carrou, Stephane (Inventor)

    2001-01-01

    An attitude control system and method operative with a thruster controls the attitude of a vehicle carrying the thruster, wherein the thruster has a valve enabling the formation of pulses of expelled gas from a source of compressed gas. Data of the attitude of the vehicle is gathered, wherein the vehicle is located within a force field tending to orient the vehicle in a first attitude different from a desired attitude. The attitude data is evaluated to determine a pattern of values of attitude of the vehicle in response to the gas pulses of the thruster and in response to the force field. The system and the method maintain the attitude within a predetermined band of values of attitude which includes the desired attitude. Computation circuitry establishes an optimal duration of each of the gas pulses based on the pattern of values of attitude, the optimal duration providing for a minimal number of opening and closure operations of the valve. The thruster is operated to provide gas pulses having the optimal duration.

  4. Steady-state simulation program for attitude control propulsion systems

    NASA Technical Reports Server (NTRS)

    Heinmiller, P. J.

    1973-01-01

    The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.

  5. Nonlinear feedback model attitude control using CCD in magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Lin, CHIN-E.; Hou, Ann-San

    1994-01-01

    A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.

  6. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  7. A spacecraft integrated power/attitude control system

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.; Jacobs, K. L.

    1974-01-01

    A study to determine the viability and application of a system capable of performing the dual function of power storage/generation and attitude control has been conducted. Results from the study indicate that an integrated power/attitude control system (IPACS) can satisfy future mission requirements while providing significant savings in weight, volume, and cost over conventional systems. A failure-mode configuration of an IPACS was applied to a shuttle-launched RAM free-flyer and simulated using make-do hardware linked to a hybrid computer. Data from the simulation runs indicate that control interactions resulting from heavy power demands have minimal effect on system control effectiveness. The system was shown to be capable of meeting the stringent pointing requirements of 1 arc-second while operating under the influence of an orbital disturbance environment and during periods of momentum variations imposed by energy transfer requirements.

  8. Research on Design of MUH Attitude Stability Augmentation Control System

    NASA Astrophysics Data System (ADS)

    Fan, Shigang

    2017-09-01

    Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.

  9. Adaptive control applied to Space Station attitude control system

    NASA Technical Reports Server (NTRS)

    Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John

    1992-01-01

    This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.

  10. The MK VI - A second generation attitude control system

    NASA Astrophysics Data System (ADS)

    Meredith, P. J.

    1986-10-01

    The MK VI, a new multipurpose attitude control system for the exoatmospheric attitude control of sounding rocket payloads, is described. The system employs reprogrammable microcomputer memory for storage of basic control logic and for specific mission event control data. The paper includes descriptions of MK VI specifications and configuration; sensor characteristics; the electronic, analog, and digital sections; the pneumatic system; ground equipment; the system operation; and software. A review of the MK VI performance for the Comet Halley flight is presented. Block diagrams are included.

  11. Inflight redesign of the IUE attitude control system

    NASA Technical Reports Server (NTRS)

    Femiano, M. D.

    1986-01-01

    The one- and two-gyro system designs of the International Ultraviolet Explorer (IUE) attitude control system (ACS) are examined. The inertial reference assembly that provides the primary attitude reference for IUE consists of six rate sensors which are single-axis rate integrating gyros. The gyros operate in a pulse rebalanced mode that produces an output pulse for 0.01 arcsec of motion about the input axis. The functions of the fine error sensor, fine sun sensor (FSS), the IUE reaction wheels, the onboard computer, and the hold/slew algorithm are described. The use of the hold/slew algorithm to compute the control voltage for the ACS based on the Kalman filter is studied. A two-gyro system was incorporated into IUE following gyro failure. The procedures for establishing attitude control with the two-gyro design based on the FSS is analyzed. The performance of the two-gyro system is evaluated; it is observed that the pitch and yaw gyro control is 0.24 arcsec and the control is sufficient to permit extended periods of observation.

  12. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  13. MSFC Skylab attitude and pointing control system mission evaluation

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.

    1974-01-01

    The results of detailed performance analyses of the attitude and pointing control system in-orbit hardware and software on Skylab are reported. Performance is compared with requirements, test results, and prelaunch predictions. A brief history of the altitude and pointing control system evolution leading to the launch configuration is presented. The report states that the attitude and pointing system satisfied all requirements.

  14. A system for spacecraft attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Shaughnessy, J. D.

    1974-01-01

    A conceptual design for a double-gimbal reaction-wheel energy-wheel device which has three-axis attitude control and electrical energy storage capability is given. A mathematical model for the three-axis gyroscope (TAG) was developed, and a system of multiple units is proposed for attitude control and energy storage for a class of spacecraft. Control laws were derived to provide the required attitude-control torques and energy transfer while minimizing functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed differences. A control law is also presented for a magnetic torquer desaturation system. A computer simulation of a three-TAG system for an orbiting telescope was used to evaluate the concept. The results of the study indicate that all control and power requirements can be satisfied by using the TAG concept.

  15. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  16. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1982-01-01

    A hybrid multilevel linear quadratic regulator (ML-LQR) approach was developed and applied to the attitude control of models of the rotational dynamics of a prototype flexible spacecraft and of a typical space platform. Three axis rigid body flexible suspension models were developed for both the spacecraft and the space platform utilizing augmented body methods. Models of the spacecraft with hybrid ML-LQR attitude control and with LQR attitude control were simulated and their response with the two different types of control were compared.

  17. Spacecraft attitude control using a smart control system

    NASA Technical Reports Server (NTRS)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment

  18. Attitude Control System Design for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  19. MAP Attitude Control System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; Campbell, C. E.; Ericsson-Jackson, A. J.; Markley, F. L.; ODonnell, J. R., Jr.

    1997-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point to suppress potential instrument disturbances. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used. MAP requires a propulsion system to reach L(sub 2), to unload system momentum, and to perform stationkeeping maneuvers once at L(sub 2). A minimum hardware, power and thermal safe control mode must also be provided. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.8 arc-minutes. The short development time and tight budgets require a new way of designing, simulating, and analyzing the Attitude Control System (ACS). This paper presents the design and analysis of the control system to meet these requirements.

  20. Attitude control system conceptual design for the GOES-N spacecraft series

    NASA Technical Reports Server (NTRS)

    Markley, F. L.; Bauer, F. H.; Deily, J. J.; Femiano, M. D.

    1991-01-01

    The attitude determination sensing and processing of the system are considered, and inertial reference units, star trackers, and beacons and landmarks are discussed as well as an extended Kalman filter and expected attitude-determination performance. The baseline controller is overviewed, and a spacecraft motion compensation (SMC) algorithm, disturbance environment, and SMC performance expectations are covered. Detailed simulation results are presented, and emphasis is placed on dynamic models, attitude estimation and control, and SMC disturbance accommmodation. It is shown that the attitude control system employing gyro/star tracker sensing and active three-axis control with reaction wheels is capable of maintaining attitude errors of 1.7 microrad or less on all axes in the absence of attitude disturbances, and that the sensor line-of-sight pointing errors can be reduced to 0.1 microrad by SMC.

  1. Skylab thruster attitude control system

    NASA Technical Reports Server (NTRS)

    Wilmer, G. E., Jr.

    1974-01-01

    Preflight activities and the Skylab mission support effort for the thruster attitude control system (TACS) are documented. The preflight activities include a description of problems and their solutions encountered in the development, qualification, and flight checkout test programs. Mission support effort is presented as it relates to system performance assessment, real-time problem solving, flight anomalies, and the daily system evaluation. Finally, the detailed flight evaluation is presented for each phase of the mission using system telemetry data. Data assert that the TACS met or exceeded design requirements and fulfilled its assigned mission objectives.

  2. Design study for LANDSAT D attitude control system

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.

    1976-01-01

    A design and performance evaluation is presented for the LANDSAT D attitude control system (ACS). Control and configuration of the gimballed Ku-band antenna system for communication with the tracking and data relay satellite (TDRS). Control of the solar array drive considered part of the ACS is also addressed.

  3. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  4. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  5. The Microwave Anisotropy Probe (MAP) Attitude Control System

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  6. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.

  7. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    NASA Technical Reports Server (NTRS)

    Azzolini, John D.; Mcglew, David E.

    1990-01-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  8. Wheel configurations for combined energy storage and attitude control systems

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1985-01-01

    Integrated power and attitude control system (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. This paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. Emphasis is given to the selection of the wheel configuration to perform the combined functions. A component design concept is developed to establish the system performance capability. A system-level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible but offers substantial savings in mass and life-cycle cost.

  9. X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes

    NASA Technical Reports Server (NTRS)

    Hall, Charles E.; Gallaher, Michael W.; Hendrix, Neal D.

    1998-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Systems Dynamics Laboratory, Guidance and Control Systems Division is designing under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control system for the X-33 experimental vehicle. Ascent flight control begins at liftoff and ends at linear aerospike main engine cutoff (NECO) while Transition and Entry flight control begins at MECO and concludes at the terminal area energy management (TAEM) interface. TAEM occurs at approximately Mach 3.0. This task includes not only the design of the vehicle attitude control systems but also the development of requirements for attitude control system components and subsystems. The X-33 attitude control system design is challenged by a short design cycle, the design environment (Mach 0 to about Mach 15), and the X-33 incremental test philosophy. The X-33 design-to-launch cycle of less than 3 years requires a concurrent design approach while the test philosophy requires design adaptation to vehicle variations that are a function of Mach number and mission profile. The flight attitude control system must deal with the mixing of aerosurfaces, reaction control thrusters, and linear aerospike engine control effectors and handle parasitic effects such as vehicle flexibility and propellant sloshing from the uniquely shaped propellant tanks. The attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems.

  10. Anti-sway control of tethered satellite systems using attitude control of the main satellite

    NASA Astrophysics Data System (ADS)

    Yousefian, Peyman; Salarieh, Hassan

    2015-06-01

    In this study a new method is introduced to suppress libration of a tethered satellite system (TSS). It benefits from coupling between satellites and tether libration dynamics. The control concept uses the main satellite attitude maneuvers to suppress librational motion of the tether, and the main satellite's actuators for attitude control are used as the only actuation in the system. The study considers planar motion of a two body TSS system in a circular orbit and it is assumed that the tether's motion will not change it. Governing dynamic equations of motion are derived using the extended Lagrange method. Controllability of the system around the equilibrium state is studied and a linear LQG controller is designed to regulate libration of the system. Tether tension and satellite attitude are assumed as only measurable outputs of the system. The Extended Kalman Filter (EKF) is used to estimate states of the system to be used as feedback to the controller. The designed controller and observer are implemented to the nonlinear plant and simulations demonstrate that the controller lead to reduction of the tether libration propoerly. By the way, because the controller is linear, it is applicable only at low amplitudes in the vicinity of equilibrium point. To reach global stability, a nonlinear controller is demanded.

  11. Flight performance of Skylab attitude and pointing control system

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.; Kennel, H. F.; Rupp, C. C.; Seltzer, S. M.

    1975-01-01

    The Skylab attitude and pointing control system (APCS) requirements are briefly reviewed and the way in which they became altered during the prelaunch phase of development is noted. The actual flight mission (including mission alterations during flight) is described. The serious hardware failures that occurred, beginning during ascent through the atmosphere, also are described. The APCS's ability to overcome these failures and meet mission changes are presented. The large around-the-clock support effort on the ground is discussed. Salient design points and software flexibility that should afford pertinent experience for future spacecraft attitude and pointing control system designs are included.

  12. Attitude control system design using a flywheel suspended by two gimbals

    NASA Astrophysics Data System (ADS)

    Peres, R. W.; Ricci, M. C.

    2015-10-01

    This work presents the attitude control system design procedures for a three axis stabilized satellite in geostationary orbit, which contains a flywheel suspended by two gimbals. The use of a flywheel with two DOFs is an interesting option because with only one device it's possible to control the torques about vehicle's three axes; through the wheel speed control and gyrotorquing phenomenon with two DOFs. If the wheel size and speed are determined properly it's possible to cancel cyclic torques using gas jets only periodically to cancel secular disturbance torques. The system, based on a flywheel, takes only one pitch/roll (earth) sensor to maintain precise attitude, unlike mass expulsion based control systems, which uses propellants continuously, beyond roll, pitch and yaw sensors. It is considered the satellite is in nominal orbit and, therefore, that the attitude's acquisition phase has already elapsed. Control laws and system parameters are determined in order to cancel the solar pressure radiation disturbance torque and the torque due to misalignment of the thrusters. Stability is analyzed and step and cyclic responses are obtained.

  13. A preliminary 6 DOF attitude and translation control system design for Starprobe

    NASA Technical Reports Server (NTRS)

    Mak, P.; Mettler, E.; Vijayarahgavan, A.

    1981-01-01

    The extreme thermal environment near perihelion and the high-accuracy gravitational science experiments impose unique design requirements on various subsystems of Starprobe. This paper examines some of these requirements and their impact on the preliminary design of a six-degree-of-freedom attitude and translational control system. Attention is given to design considerations, the baseline attitude/translational control system, system modeling, and simulation studies.

  14. The Attitude Control System for the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  15. Integrated Power and Attitude Control System (IPACS) technology developments

    NASA Technical Reports Server (NTRS)

    Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch

    1990-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.

  16. Spacecraft attitude and velocity control system

    NASA Technical Reports Server (NTRS)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  17. Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury

    2017-04-01

    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.

  18. TRMM On Orbit Attitude Control System Performance

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.

  19. Laboratory Control System's Effects on Student Achievement and Attitudes

    ERIC Educational Resources Information Center

    Cicek, Fatma Gozalan; Taspinar, Mehmet

    2016-01-01

    Problem Statement: The current study investigates whether the learning environment designed based on the laboratory control system affects the academic achievement, the attitude toward the learning-teaching process and the retention of the students in computer education. Purpose of Study: The study aims to identify the laboratory control system…

  20. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Technical Reports Server (NTRS)

    Mcewen, Rob

    1994-01-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  1. MAP Attitude Control System Design and Flight Performance

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; ODonnell, J. R.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used that will cover the entire celestial sphere in six months. The spin rate should be an order of magnitude higher than the precession rate, and each rate should be tightly controlled. The sunline angle should be 22.5 +/- 0.25 deg. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.3 arc-minutes RSS three axes. In addition, the spacecraft must be able to acquire and hold the sunline at initial acquisition, and in the event of a failure. Finally. the spacecraft must be able to slew to the proper burn orientations and to the proper off-sunline attitude to start the compound spin. The design and flight performance of the Attitude Control System on MAP that meets these requirements will be discussed.

  2. Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, Peoman G.

    1997-01-01

    The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction

  3. An integrated power/attitude control system /IPACS/ for space vehicle application

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Keckler, C. R.

    1973-01-01

    An integrated power and attitude control system (IPACS) concept with potential application to a broad class of space missions is discussed. The concept involves the storage and supply on demand of electrical energy in rotating flywheels while simultaneously providing control torques by controlled precession of the flywheels. The system is thus an alternative to the storage batteries used on present spacecraft while providing similar capability for attitude control as that represented by a control moment gyroscope (CMG) system. Potential IPACS configurations discussed include single- and double-rotor double-gimbal IPACS units. Typical sets of control laws which would manage the momentum and energy exchange between the IPACS and a typical space vehicle are discussed. Discussion of a simulation of a typical potential IPACS configuration and candidate mission concerned with pointing capability, power supply and demand flow, and discussion of the interactions between stabilization and control requirements and power flow requirements are presented.

  4. Low cost attitude control system scanwheel development

    NASA Astrophysics Data System (ADS)

    Bialke, William; Selby, Vaughn

    1991-03-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  5. Low cost attitude control system scanwheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William; Selby, Vaughn

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  6. The Design of an Adaptive Attitude Control System

    DTIC Science & Technology

    1992-09-01

    spacecraft to reorient itself by rotating about the eigenaxis will be executing an optimal maneuver . [Ref. 9: pp. 375-3761 2. Quaternion Feedback Regulator...34% The below program will simulate the CER Control System for Large "% Angle (Slewing) Motion. The Control Law is a Quaternion Feedback "% Regulator...Equipment/Retriever (CER) during autonomous attitude hold and large angle or slewing maneuvers . The CER is a proposed space robot that deploys from

  7. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    NASA Astrophysics Data System (ADS)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  8. ATTDES: An Expert System for Satellite Attitude Determination and Control. 2

    NASA Technical Reports Server (NTRS)

    Mackison, Donald L.; Gifford, Kevin

    1996-01-01

    The design, analysis, and flight operations of satellite attitude determintion and attitude control systems require extensive mathematical formulations, optimization studies, and computer simulation. This is best done by an analyst with extensive education and experience. The development of programs such as ATTDES permit the use of advanced techniques by those with less experience. Typical tasks include the mission analysis to select stabilization and damping schemes, attitude determination sensors and algorithms, and control system designs to meet program requirements. ATTDES is a system that includes all of these activities, including high fidelity orbit environment models that can be used for preliminary analysis, parameter selection, stabilization schemes, the development of estimators covariance analyses, and optimization, and can support ongoing orbit activities. The modification of existing simulations to model new configurations for these purposes can be an expensive, time consuming activity that becomes a pacing item in the development and operation of such new systems. The use of an integrated tool such as ATTDES significantly reduces the effort and time required for these tasks.

  9. An Artificial Neural Network Control System for Spacecraft Attitude Stabilization

    DTIC Science & Technology

    1990-06-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California ’-DTIC 0 ELECT f NMARO 5 191 N S, U, THESIS B . AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR...NO. NO. NO ACCESSION NO 11. TITLE (Include Security Classification) AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR SPACECRAFT ATTITUDE STABILIZATION...obsolete a U.S. G v pi.. iim n P.. oiice! toog-eo.5s43 i Approved for public release; distribution is unlimited. AN ARTIFICIAL NEURAL NETWORK CONTROL

  10. Attitude Control Propulsion Components, Volume 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Effort was made to include as much engineering information on each component as possible, consistent with usefulness and catalog size limitations. The contents of this catalog contain components which were qualified for use with spacecraft monopropellant hydrazine and inert gas attitude control systems. Thrust ranges up to 44.5 N (10.0 lbf) for hydrazine and inert gas sytems were considered. Additionally, some components qualified for uses other than spacecraft attitude control are included because they are suitable for use in attitude controls systems.

  11. Low cost attitude control system reaction wheel development

    NASA Astrophysics Data System (ADS)

    Bialke, William

    1991-03-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of a low power and low cost Reaction Wheel Assembly was initiated. The details of the versatile design resulting from this effort are addressed. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  12. Low cost attitude control system reaction wheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of a low power and low cost Reaction Wheel Assembly was initiated. The details of the versatile design resulting from this effort are addressed. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  13. Large scale static tests of a tilt-nacelle V/STOL propulsion/attitude control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of a combined V/STOL propulsion and aircraft attitude control system was subjected to large scale engine tests. The tilt nacelle/attitude control vane package consisted of the T55 powered Hamilton Standard Q-Fan demonstrator. Vane forces, moments, thermal and acoustic characteristics as well as the effects on propulsion system performance were measured under conditions simulating hover in and out of ground effect.

  14. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2015-01-01

    Principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters is presented. Both the vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has three main aspects: It summarizes key RCS control System design principles from the Space Shuttle and Space Station programs, it demonstrates a new approach to develop a linear model of a phase plane control system using describing functions, and applies each of these to the initial development of the NASA's next generation of upper stage vehicles. Topics addressed include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and automaneuver logic.

  15. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  16. Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.

    2018-07-01

    The paper deals with a dynamically symmetric satellite in a circular near-Earth orbit. The satellite is equipped with an electrodynamic attitude control system based on Lorentz and magnetic torque properties. The programmed satellite attitude motion is such that the satellite slowly rotates around the axis of its dynamical symmetry. Unlike previous publications, we consider more complex and practically more important case where the axis is fixed in the orbital frame in an inclined position with respect to the local vertical axis. The satellite stabilization in the programmed attitude motion is studied. The gravitational disturbing torque acting on the satellite attitude dynamics is taken into account since it is the largest disturbing torque. The novelty of the proposed approach is based on the usage of electrodynamic attitude control system. With the aid of original construction of a Lyapunov function, new conditions under which electrodynamic control solves the problem are obtained. Sufficient conditions for asymptotic stability of the programmed motion are found in terms of inequalities for the values of control parameters. The results of a numerical simulation are presented to demonstrate the effectiveness of the proposed approach.

  17. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  18. Robust momentum management and attitude control system for the Space Station

    NASA Technical Reports Server (NTRS)

    Rhee, Ihnseok; Speyer, Jason L.

    1992-01-01

    A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very accurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.

  19. Autonomous spacecraft attitude control using magnetic torquing only

    NASA Technical Reports Server (NTRS)

    Musser, Keith L.; Ebert, Ward L.

    1989-01-01

    Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.

  20. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.

  1. Sustainer electric propulsion system application for spacecraft attitude control

    NASA Astrophysics Data System (ADS)

    Obukhov, V. A.; Pokryshkin, A. I.; Popov, G. A.; Yashina, N. V.

    2010-07-01

    Application of electric propulsion system (EPS) requires spacecraft (SC) equipping with large solar panels (SP) for the power supply to electric propulsions. This makes the problem of EPS-equipped SC control at the insertion stage more difficult to solve than in the case of SC equipped with chemical engines, because in addition to the SC attitude control associated with the mission there appears necessity in keeping SP orientation to Sun that is necessary for generation of electric power sufficient for the operation of service systems, purpose-oriented equipment, and EPS. The theoretical study of the control problem is the most interesting for a non-coplanar transfer from high elliptic orbit (HEO) to geostationary orbit (GSO).

  2. Attitude Determination and Control Systems

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Eterno, John

    2010-01-01

    The importance of accurately pointing spacecraft to our daily lives is pervasive, yet somehow escapes the notice of most people. In this section, we will summarize the processes and technologies used in designing and operating spacecraft pointing (i.e. attitude) systems.

  3. Event-triggered attitude control of spacecraft

    NASA Astrophysics Data System (ADS)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  4. MSFC Skylab Orbital Workshop, volume 2. [design and development of electrical systems and attitude control system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the Skylab Orbital Workshop are discussed. The subjects considered are: (1) thrust attitude control system, (2) solar array system, (3) electrical power distribution system, (4) communication and data acquisition system, (5) illumination system, and (6) caution and warning system.

  5. An active attitude control system for a drag sail satellite

    NASA Astrophysics Data System (ADS)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  6. The Software Design for the Wide-Field Infrared Explorer Attitude Control System

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom

    1998-01-01

    The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel

  7. Attitude and articulation control system testing for Project Galileo

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. D.

    1981-01-01

    A type of facility required to integrate and test a complex autonomous spacecraft subsystem is presented, using the attitude and articulation control subsystem (AACS) of Project Galileo as an example. The equipment created for testing the AACS at both the subsystem and spacecraft system levels is described, including a description of the support equipment (SE) architecture in its two main configurations, closed loop simulation techniques, the user interface to the SE, and plans for the use of the facility beyond the test period. This system is capable of providing a flight-like functional environment through the use of accurate real-time models and carefully chosen points of interaction, and flexible control capability and high visibility to the test operator.

  8. A robust momentum management and attitude control system for the space station

    NASA Technical Reports Server (NTRS)

    Speyer, J. L.; Rhee, Ihnseok

    1991-01-01

    A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very assurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.

  9. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    NASA Astrophysics Data System (ADS)

    Viswanathan, Sasi Prabhakaran

    how they lead to CMG singularities, are described. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of ASCMGs, are provided. Control schemes for agile and precise attitude maneuvers using ASCMG cluster in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented for both constant speed and variable speed modes. A Geometric Variational Integrator (GVI) that preserves the geometry of the state space and the conserved norm of the total angular momentum is constructed for numerical simulation and microcontroller implementation of the control scheme. The GVI is obtained by discretizing the Lagrangian of the rnultibody systems, in which the rigid body attitude is globally represented on the Lie group of rigid body rotations. Hardware and software architecture of a novel spacecraft Attitude Determination and Control System (ADCS) based on commercial smartphones and a bare minimum hardware prototype of an ASCMG using low cost COTS components is also described. A lightweight, dynamics model-free Variational Attitude Estimator (VAE) suitable for smartphone implementation is employed for attitude determination and the attitude control is performed by ASCMG actuators. The VAE scheme presented here is implemented and validated onboard an Unmanned Aerial Vehicle (UAV) platform and the real time performance is analyzed. On-board sensing, data acquisition, data uplink/downlink, state estimation and real-time feedback control objectives can be performed using this novel spacecraft ADCS. The mechatronics realization of the attitude determination through variational attitude estimation scheme and control implementation using ASCMG actuators are presented here. Experimental results of the attitude estimation (filtering) scheme using smartphone sensors as an Inertial Measurement Unit (IMU) on the Hardware In the Loop (HIL) simulator testbed are given. These

  10. The Implementation of Satellite Attitude Control System Software Using Object Oriented Design

    NASA Technical Reports Server (NTRS)

    Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek

    1998-01-01

    NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.

  11. Energy management and attitude control for spacecraft

    NASA Astrophysics Data System (ADS)

    Costic, Bret Thomas

    2001-07-01

    This PhD dissertation describes the design and implementation of various control strategies centered around spacecraft applications: (i) an attitude control system for spacecraft, (ii) flywheels used for combined attitude and energy tracking, and (iii) an adaptive autobalancing control algorithm. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these three primary chapters can be found in chapter one. The main problem addressed in the second chapter is the quaternion-based, attitude tracking control of rigid spacecraft without angular velocity measurements and in the presence of an unknown inertia matrix. As a stepping-stone, an adaptive, full-state feedback controller that compensates for parametric uncertainty while ensuring asymptotic attitude tracking errors is designed. The adaptive, full-state feedback controller is then redesigned such that the need for angular velocity measurements is eliminated. The proposed adaptive, output feedback controller ensures asymptotic attitude tracking. This work uses a four-parameter representation of the spacecraft attitude that does not exhibit singular orientations as in the case of the previous three-parameter representation-based results. To the best of my knowledge, this represents the first solution to the adaptive, output feedback, attitude tracking control problem for the quaternion representation. Simulation results are included to illustrate the performance of the proposed output feedback control strategy. The third chapter is devoted to the use of multiple flywheels that integrate the energy storage and attitude control functions in space vehicles. This concept, which is referred to as an Integrated Energy Management and Attitude Control (IEMAC) system, reduces the space vehicle bus mass, volume, cost, and maintenance requirements while maintaining or improving the space vehicle performance. To this end, two nonlinear IEMAC strategies

  12. Attitude control challenges for earth orbiters of the 1980's

    NASA Technical Reports Server (NTRS)

    Hibbard, W.

    1980-01-01

    Experience gained in designing attitude control systems for orbiting spacecraft of the late 1980's is related. Implications for satellite attitude control design of the guidance capabilities, rendezvous and recovery requirements, use of multiple-use spacecraft and the development of large spacecraft associated with the advent of the Space Shuttle are considered. Attention is then given to satellite attitude control requirements posed by the Tracking and Data Relay Satellite System, the Global Positioning System, the NASA End-to-End Data System, and Shuttle-associated subsatellites. The anticipated completion and launch of the Space Telescope, which will provide one of the first experiences with the new generation of attitude control, is also pointed out.

  13. Attitude dynamics and control of a spacecraft using shifting mass distribution

    NASA Astrophysics Data System (ADS)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  14. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  15. Hardware and software implementation of a low power attitude control and determination system for cubesats

    NASA Astrophysics Data System (ADS)

    Frey, Jesse

    In recent years there has been a growing interest in smaller satellites. Smaller satellites are cheaper to build and launch than larger satellites. One form factor, the CubeSat, is especially popular with universities and is a 10~cm cube. Being smaller means that the mass and power budgets are tighter and as such new ways must be developed to cope with these constraints. Traditional attitude control systems often use reaction wheels with gas thrusters which present challenges on a CubeSat. Many CubeSats use magnetic attitude control which uses the Earth's magnetic field to torque the satellite into the proper orientation. Magnetic attitude control systems fall into two main categories: active and passive. Active control is often achieved by running current through a coil to produce a dipole moment, while passive control uses the dipole moment from permanent magnets that consume no power. This thesis describes a system that uses twelve hard magnetic torquers along with a magnetometer. The torquers only consume current when their dipole moment is flipped, thereby significantly reducing power requirements compared with traditional active control. The main focus of this thesis is on the design, testing and fabrication of CubeSat hardware and software in preparation for launch.

  16. A Voyager attitude control perspective on fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. D.; Litty, E. C.

    1981-01-01

    In current spacecraft design, a trend can be observed to achieve greater fault tolerance through the application of on-board software dedicated to detecting and isolating failures. Whether fault tolerance through software can meet the desired objectives depends on very careful consideration and control of the system in which the software is imbedded. The considered investigation has the objective to provide some of the insight needed for the required analysis of the system. A description is given of the techniques which have been developed in this connection during the development of the Voyager spacecraft. The Voyager Galileo Attitude and Articulation Control Subsystem (AACS) fault tolerant design is discussed to emphasize basic lessons learned from this experience. The central driver of hardware redundancy implementation on Voyager was known as the 'single point failure criterion'.

  17. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  18. Development of a coupled expert system for the spacecraft attitude control problem

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G.; Schaffer, J.; Hsieh, B.-J.; Padalkar, S.; Rodriguezmoscoso, J.; Vinz, F.; Fernandez, K.

    1987-01-01

    A majority of the current expert systems focus on the symbolic-oriented logic and inference mechanisms of artificial intelligence (AI). Common rule-based systems employ empirical associations and are not well suited to deal with problems often arising in engineering. Described is a prototype expert system which combines both symbolic and numeric computing. The expert system's configuration is presented and its application to a spacecraft attitude control problem is discussed.

  19. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  20. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  1. Attitude control study for a large flexible spacecraft using a Solar Electric Propulsion System (SEPS)

    NASA Technical Reports Server (NTRS)

    Tolivar, A. F.; Key, R. W.

    1980-01-01

    The attitude control performance of the solar electric propulsion system (SEPS) was evaluated. A thrust vector control system for powered flight control was examined along with a gas jet reaction control system, and a reaction wheel system, both of which have been proposed for nonpowered flight control. Comprehensive computer simulations of each control system were made and evaluated using a 30 mode spacecraft model. Results obtained indicate that thrust vector control and reaction wheel systems offer acceptable smooth proportional control. The gas jet control system is shown to be risky for a flexible structure such as SEPS, and is therefore, not recommended as a primary control method.

  2. A spacecraft attitude and articulation control system design for the Comet Halley intercept mission

    NASA Technical Reports Server (NTRS)

    Key, R. W.

    1981-01-01

    An attitude and articulation control system design for the Comet Halley 1986 intercept mission is presented. A spacecraft dynamics model consisting of five hinge-connected rigid bodies is used to analyze the spacecraft attitude and articulation control system performance. Inertial and optical information are combined to generate scan platform pointing commands. The comprehensive spacecraft model has been developed into a digital computer simulation program, which provides performance characteristics and insight pertaining to the control and dynamics of a Halley Intercept spacecraft. It is shown that scan platform pointing error has a maximum value of 1.8 milliradians during the four minute closest approach interval. It is also shown that the jitter or scan platform pointing rate error would have a maximum value of 2.5 milliradians/second for the nominal 1000 km closest approach distance trajectory and associated environment model.

  3. Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Hall, Christopher; Berry, Matthew; Hy-Young, Kim

    2003-01-01

    Small satellites tend to be power-limited, so that actuators used to control the orbit and attitude must compete with each other as well as with other subsystems for limited electrical power. The Virginia Tech nanosatellite project, HokieSat, must use its limited power resources to operate pulsed-plasma thrusters for orbit control and magnetic torque coils for attitude control, while also providing power to a GPS receiver, a crosslink transceiver, and other subsystems. The orbit and attitude control strategies were developed independently. The attitude control system is based on an application of Linear Quadratic Regulator (LQR) to an averaged system of equations, whereas the orbit control is based on orbit element feedback. In this paper we describe the strategy for integrating these two control systems and present simulation results to verify the strategy.

  4. An approach to the design and implementation of spacecraft attitude control systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Mangus, David J.

    1998-01-01

    Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.

  5. An Approach to the Design and Implementation of Spacecraft Attitude Control Systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Mangus, David J.

    1998-01-01

    Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and .what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.

  6. Attitude control system of the Delfi-n3Xt satellite

    NASA Astrophysics Data System (ADS)

    Reijneveld, J.; Choukroun, D.

    2013-12-01

    This work is concerned with the development of the attitude control algorithms that will be implemented on board of the Delfi-n3xt nanosatellite, which is to be launched in 2013. One of the mission objectives is to demonstrate Sun pointing and three axis stabilization. The attitude control modes and the associated algorithms are described. The control authority is shared between three body-mounted magnetorquers (MTQ) and three orthogonal reaction wheels. The attitude information is retrieved from Sun vector measurements, Earth magnetic field measurements, and gyro measurements. The design of the control is achieved as a trade between simplicity and performance. Stabilization and Sun pointing are achieved via the successive application of the classical Bdot control law and a quaternion feedback control. For the purpose of Sun pointing, a simple quaternion estimation scheme is implemented based on geometric arguments, where the need for a costly optimal filtering algorithm is alleviated, and a single line of sight (LoS) measurement is required - here the Sun vector. Beyond the three-axis Sun pointing mode, spinning Sun pointing modes are also described and used as demonstration modes. The three-axis Sun pointing mode requires reaction wheels and magnetic control while the spinning control modes are implemented with magnetic control only. In addition, a simple scheme for angular rates estimation using Sun vector and Earth magnetic measurements is tested in the case of gyro failures. The various control modes performances are illustrated via extensive simulations over several orbits time spans. The simulated models of the dynamical space environment, of the attitude hardware, and the onboard controller logic are using realistic assumptions. All control modes satisfy the minimal Sun pointing requirements allowed for power generation.

  7. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    NASA Astrophysics Data System (ADS)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  8. Predicted torque equilibrium attitude utilization for Space Station attitude control

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Heck, Michael L.; Robertson, Brent P.

    1990-01-01

    An approximate knowledge of the torque equilibrium attitude (TEA) is shown to improve the performance of a control moment gyroscope (CMG) momentum management/attitude control law for Space Station Freedom. The linearized equations of motion are used in conjunction with a state transformation to obtain a control law which uses full state feedback and the predicted TEA to minimize both attitude excursions and CMG peak and secular momentum. The TEA can be computationally determined either by observing the steady state attitude of a 'controlled' spacecraft using arbitrary initial attitude, or by simulating a fixed attitude spacecraft flying in desired orbit subject to realistic environmental disturbance models.

  9. Linearizing feedforward/feedback attitude control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  10. Study of a Satellite Attitude Control System Using Integrating Gyros as Torque Sources

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    This report considers the use of single-degree-of-freedom integrating gyros as torque sources for precise control of satellite attitude. Some general design criteria are derived and applied to the specific example of the Orbiting Astronomical Observatory. The results of the analytical design are compared with the results of an analog computer study and also with experimental results from a low-friction platform. The steady-state and transient behavior of the system, as determined by the analysis, by the analog study, and by the experimental platform agreed quite well. The results of this study show that systems using integrating gyros for precise satellite attitude control can be designed to have a reasonably rapid and well-damped transient response, as well as very small steady-state errors. Furthermore, it is shown that the gyros act as rate sensors, as well as torque sources, so that no rate stabilization networks are required, and when no error sensor is available, the vehicle is still rate stabilized. Hence, it is shown that a major advantage of a gyro control system is that when the target is occulted, an alternate reference is not required.

  11. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots made simulated instrument flight evaluations in light-to-moderate turbulence. They were favorably impressed with the system, particularly with the elimination of control force transients that accompanied configuration changes. For ride quality, quantitative data showed that the attitude command control system resulted in all cases of airplane motion being removed from the uncomfortable ride region.

  12. High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization

    DTIC Science & Technology

    1992-05-01

    High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization A Thesis Presented by Louis Joseph PoehIman, Captain, USAF B.S., U.S. Air...High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization by Louis Joseph Poehlman, Captain, USAF Submitted to the Department of...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback

  13. Application of the concept of dynamic trim control and nonlinear system inverses to automatic control of a vertical attitude takeoff and landing aircraft

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.

    1981-01-01

    A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.

  14. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  15. Attitude orientation control for a spinning satellite

    NASA Astrophysics Data System (ADS)

    Frost, Gerald

    The Department of the Air Force, Headquarters Space Systems Division, and the National Aeronautics and Space Administration (NASA) are currently involved in litigation with Hughes Aircraft Company over the alledged infringement of the 'Williams patent,' which describes a method for attitude control of a spin-stabilized vehicle. Summarized here is pre-1960 RAND work on this subject and information obtained from RAND personnel knowledgeable on this subject. It was concluded that there is no RAND documentation that directly parallels the 'Williams patent' concept. Also, the TIROS II magnetic torque attitude control method is reviewed. The TIROS II meteorological satellite, launched on November 23, 1960, incorporated a magnetic actuation system for spin axis orientation control. The activation system was ground controlled to orient the satellite spin axis to obtain the desired pointing direction for optical and infrared sensor subsystems.

  16. Integrated Attitude Control Strategy for the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; Price, Hoppy; San Martin, Miguel

    2014-01-01

    A deep-space mission has been proposed to redirect an asteroid to a distant retrograde orbit around the moon using a robotic vehicle, the Asteroid Redirect Vehicle (ARV). In this orbit, astronauts will rendezvous with the ARV using the Orion spacecraft. The integrated attitude control concept that Orion will use for approach and docking and for mated operations will be described. Details of the ARV's attitude control system and its associated constraints for redirecting the asteroid to the distant retrograde orbit around the moon will be provided. Once Orion is docked to the ARV, an overall description of the mated stack attitude during all phases of the mission will be presented using a coordinate system that was developed for this mission. Next, the thermal and power constraints of both the ARV and Orion will be discussed as well as how they are used to define the optimal integrated stack attitude. Lastly, the lighting and communications constraints necessary for the crew's extravehicular activity planned to retrieve samples from the asteroid will be examined. Similarly, the joint attitude control strategy that employs both the Orion and the ARV attitude control assets prior, during, and after each extravehicular activity will also be thoroughly discussed.

  17. Attitude control system for a lightweight flapping wing MAV.

    PubMed

    Tijmons, Sjoerd; Karásek, Matěj; de Croon, G C H E

    2018-03-14

    Robust attitude control is an essential aspect of research on autonomous flight of flapping wing Micro Air Vehicles. The mechanical solutions by which the necessary control moments are realised come at the price of extra weight and possible loss of aerodynamic efficiency. Stable flight of these vehicles has been shown by several designs using a conventional tail, but also by tailless designs that use active control of the wings. In this study a control mechanism is proposed that provides active control over the wings. The mechanism improves vehicle stability and agility by generation of control moments for roll, pitch and yaw. Its effectiveness is demonstrated by static measurements around all the three axes. Flight test results confirm that the attitude of the test vehicle, including a tail, can be successfully controlled in slow forward flight conditions. Furthermore, the flight envelope is extended with robust hovering and the ability to reverse the flight direction using a small turn space. This capability is very important for autonomous flight capabilities such as obstacle avoidance. Finally, it is demonstrated that the proposed control mechanism allows for tailless hovering flight. © 2018 IOP Publishing Ltd.

  18. Pulsed plasma thrusters for small spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Myers, Roger M.

    1996-01-01

    Pulsed Plasma Thrusters (PPTS) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation, and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Research Center (LERC) currently has a contracted flight PPT system development program in place with Olin Aerospace with a delivery date of October 1997. The PPT systems in this study are based upon the work being done under the NASA LERC program. Analysis of the use of PPTs for ACS showed that the replacement of the standard momentum wheels and torque rods with a PPT system to perform the attitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75% with no increase in required power level over comparable wheel-based systems, though rapid slewing power requirements may present an issue.

  19. X-33 Attitude Control Using the XRS-2200 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Hall, Charles E.; Panossian, Hagop V.

    1999-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Structures and Dynamics Laboratory, Guidance and Control Systems Division is designing, under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control systems for the X-33 experimental vehicle. Test flights, while suborbital, will achieve sufficient altitudes and Mach numbers to test Single Stage To Orbit, Reusable Launch Vehicle technologies. Ascent flight control phase, the focus of this paper, begins at liftoff and ends at linear aerospike main engine cutoff (MECO). The X-33 attitude control system design is confronted by a myriad of design challenges: a short design cycle, the X-33 incremental test philosophy, the concurrent design philosophy chosen for the X-33 program, and the fact that the attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems. Additionally, however, and of special interest, the use of the linear aerospike engine is a departure from the gimbaled engines traditionally used for thrust vector control (TVC) in launch vehicles and poses certain design challenges. This paper discusses the unique problem of designing the X-33 attitude control system with the linear aerospike engine, requirements development, modeling and analyses that verify the design.

  20. Mission management, planning, and cost: PULSE Attitude And Control Systems (AACS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Pluto unmanned long-range scientific explorer (PULSE) is a probe that will do a flyby of Pluto. It is a low weight, relatively low costing vehicle which utilizes mostly off-the-shelf hardware, but not materials or techniques that will be available after 1999. A design, fabrication, and cost analysis is presented. PULSE will be launched within the first decade of the twenty-first century. The topics include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion systems; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  1. Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

  2. Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study

    NASA Astrophysics Data System (ADS)

    1991-02-01

    A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

  3. Tracking and data relay satellite fault isolation and correction using PACES: Power and attitude control expert system

    NASA Technical Reports Server (NTRS)

    Erikson, Carol-Lee; Hooker, Peggy

    1989-01-01

    The Power and Attitude Control Expert System (PACES) is an object oriented and rule based expert system which provides spacecraft engineers with assistance in isolating and correcting problems within the Power and Attitude Control Subsystems of the Tracking and Data Relay Satellites (TDRS). PACES is designed to act in a consultant role. It will not interface to telemetry data, thus preserving full operator control over spacecraft operations. The spacecraft engineer will input requested information. This information will include telemetry data, action being performed, problem characteristics, spectral characteristics, and judgments of spacecraft functioning. Questions are answered either by clicking on appropriate responses (for text), or entering numeric values. A context sensitive help facility allows access to additional information when the user has difficulty understanding a question or deciding on an answer. The major functionality of PACES is to act as a knowledge rich system which includes block diagrams, text, and graphics, linked using hypermedia techniques. This allows easy movement among pieces of the knowledge. Considerable documentation of the spacecraft Power and Attitude Control Subsystems is embedded within PACES. The development phase of TDRSS expert system technology is intended to provide NASA with the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking and Data Relay Satellite Program.

  4. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  5. Velocity-free attitude coordinated tracking control for spacecraft formation flying.

    PubMed

    Hu, Qinglei; Zhang, Jian; Zhang, Youmin

    2018-02-01

    This article investigates the velocity-free attitude coordinated tracking control scheme for a group of spacecraft with the assumption that the angular velocities of the formation members are not available in control feedback. Initially, an angular velocity observer is constructed based on each individual's attitude quarternion. Then, the distributed attitude coordinated control law is designed by using the observed states, in which adaptive control method is adopted to handle the external disturbances. Stability of the overall closed-loop system is analyzed theoretically, which shows the system trajectory converges to a small set around origin with fast convergence rate. Numerical simulations are performed to demonstrate fast convergence and improved tracking performance of the proposed control strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Design development of the Apollo command and service module thrust vector attitude control systems

    NASA Technical Reports Server (NTRS)

    Peters, W. H.

    1978-01-01

    Development of the Apollo thrust vector control digital autopilot (TVC DAP) was summarized. This is the control system that provided pitch and yaw attitude control during velocity change maneuvers using the main rocket engine on the Apollo service module. A list of ten primary functional requirements for this control system are presented, each being subordinate to a more general requirement appearing earlier on the list. Development process functions were then identified and the essential information flow paths were explored. This provided some visibility into the particular NASA/contractor interface, as well as relationships between the many individual activities.

  7. Sensor fault detection and recovery in satellite attitude control

    NASA Astrophysics Data System (ADS)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  8. 42: An Open-Source Simulation Tool for Study and Design of Spacecraft Attitude Control Systems

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric

    2018-01-01

    Simulation is an important tool in the analysis and design of spacecraft attitude control systems. The speaker will discuss the simulation tool, called simply 42, that he has developed over the years to support his own work as an engineer in the Attitude Control Systems Engineering Branch at NASA Goddard Space Flight Center. 42 was intended from the outset to be high-fidelity and powerful, but also fast and easy to use. 42 is publicly available as open source since 2014. The speaker will describe some of 42's models and features, and discuss its applicability to studies ranging from early concept studies through the design cycle, integration, and operations. He will outline 42's architecture and share some thoughts on simulation development as a long-term project.

  9. Application Number 3: Using Tethers for Attitude Control

    NASA Technical Reports Server (NTRS)

    Muller, R. M.

    1985-01-01

    Past application of the gravity gradient concept to satellite attitude control produced attitude stabilities of from 1 to 10 degrees. The satellite members were rigigly interconnected and any motion in one part of the satellite would cause motion in all members. This experience has restricted gravity gradient stabilization to applications that need attitude stability no better than 1 degree. A gravity gradient technique that combines the flexible tether with an active control that will allow control stability much better than 1 degree is proposed. This could give gravity gradient stabilization much broader application. In fact, for a large structure like a space station, it may become the preferred method. Two possible ways of demonstrating the techniques using the Tethered Satellite System (TSS) tether to control the attitude of the shuttle are proposed. Then a possible space station tether configuration is shown that could be used to control the initial station. It is then shown how the technique can be extended to the control of space stations of virtually any size.

  10. The Galileo Attitude and Articulation Control System - A radiation-hard, high precision, state-of-the-art control system

    NASA Technical Reports Server (NTRS)

    Rhoads Stephenson, R.

    1986-01-01

    The Galileo Mission and Spacecraft design impose tight requirements on the Attitude and Articulation Control System (AACS). These requirements, coupled with the flexible spacecraft, the need for autonomy, and a severe radiation environment, pose a great challenge for the AACS designer. The resulting design and implementation are described, along with the discovery and solution of the Single-Event Upset problem. The status of the testing of the AACS in the Integration and Test Laboratory as well as at the spacecraft level is summarized.

  11. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  12. Satellite Attitude Control Utilizing the Earth's Magnetic Field

    NASA Technical Reports Server (NTRS)

    White, John S.; Shigemoto, Fred H.; Bourquin, Kent

    1961-01-01

    A study was conducted to determine the feasibility of a satellite attitude fine-control system using the interaction of the earth's magnetic field with current-carrying coils to produce torque. The approximate intensity of the earth's magnetic field was determined as a function of the satellite coordinates. Components of the magnetic field were found to vary essentially sinusoidally at approximately twice orbital frequency. Amplitude and distortion of the sinusoidal components were a function of satellite orbit. Two systems for two-axis attitude control evolved from this study, one using three coils and the other using two coils. The torques developed by the two systems differ only when the component of magnetic field along the tracking line is zero. For this case the two-coil system develops no torque whereas the three-coil system develops some effective torque which allows partial control. The equations which describe the three-coil system are complex in comparison to those of the two-coil system and require the measurement of all three components of the magnetic field as compared with only one for the two-coil case. Intermittent three-axis torquing can also be achieved. This torquing can be used for coarse attitude control, or for dumping the stored momentum of inertia reaction wheels. Such a system has the advantage of requiring no fuel aboard the satellite. For any of these magnetic torquing schemes the power required to produce the magnetic moment and the weight of the coil seem reasonable.

  13. Attitude tracking control of flexible spacecraft with large amplitude slosh

    NASA Astrophysics Data System (ADS)

    Deng, Mingle; Yue, Baozeng

    2017-12-01

    This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.

  14. Spacecraft attitude control for a solar electric geosynchronous transfer mission

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.; Regetz, J. D., Jr.

    1975-01-01

    A study of the Attitude Control System (ACS) is made for a solar electric propulsion geosynchronous transfer mission. The basic mission considered is spacecraft injection into a low altitude, inclined orbit followed by low thrust orbit changing to achieve geosynchronous orbit. Because of the extended thrusting time, the mission performance is a strong function of the attitude control system. Two attitude control system design options for an example mission evolve from consideration of the spacecraft configuration, the environmental disturbances, and the probable ACS modes of operation. The impact of these design options on other spacecraft subsystems is discussed. The factors which must be considered in determining the ACS actuation and sensing subsystems are discussed. The effects of the actuation and sensing subsystems on the mission performance are also considered.

  15. Enceladus Plume Density Modeling and Reconstruction for Cassini Attitude Control System

    NASA Technical Reports Server (NTRS)

    Sarani, Siamak

    2010-01-01

    In 2005, Cassini detected jets composed mostly of water, spouting from a set of nearly parallel rifts in the crust of Enceladus, an icy moon of Saturn. During an Enceladus flyby, either reaction wheels or attitude control thrusters on the Cassini spacecraft are used to overcome the external torque imparted on Cassini due to Enceladus plume or jets, as well as to slew the spacecraft in order to meet the pointing needs of the on-board science instruments. If the estimated imparted torque is larger than it can be controlled by the reaction wheel control system, thrusters are used to control the spacecraft. Having an engineering model that can predict and simulate the external torque imparted on Cassini spacecraft due to the plume density during all projected low-altitude Enceladus flybys is important. Equally important is being able to reconstruct the plume density after each flyby in order to calibrate the model. This paper describes an engineering model of the Enceladus plume density, as a function of the flyby altitude, developed for the Cassini Attitude and Articulation Control Subsystem, and novel methodologies that use guidance, navigation, and control data to estimate the external torque imparted on the spacecraft due to the Enceladus plume and jets. The plume density is determined accordingly. The methodologies described have already been used to reconstruct the plume density for three low-altitude Enceladus flybys of Cassini in 2008 and will continue to be used on all remaining low-altitude Enceladus flybys in Cassini's extended missions.

  16. Attitude Control Working Group report

    NASA Technical Reports Server (NTRS)

    Reid, Daniel F.; Studer, Phillip A.

    1986-01-01

    The goals were to establish the Attitude Control System (ACS) requirements, constraints, technology assessment, technology shortfalls, expected in the year 2000. These were based upon all missions, military and civil, for LEO and GEO. The critical ACS technology issues were identified and ACS programs developed to address these critical issues.

  17. Attitude output feedback control for rigid spacecraft with finite-time convergence.

    PubMed

    Hu, Qinglei; Niu, Guanglin

    2017-09-01

    The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Attitude and vibration control of a large flexible space-based antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1982-01-01

    Control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space-based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear-quadratic-Gaussian control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise.

  19. ATS-6 engineering performance report. Volume 2: Orbit and attitude controls

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.

  20. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2011-01-01

    We have learned it is conceivable that the Neutral Mass Spectrometer on board the Lunarr Atmosphere Dust Environment Explorer (LADEE) could measure gases from surface-reflected Attitude Control System (ACS) thruster plume. At minimum altitude, the measurement would be maximized, and gravitational influence minimized ("short" time-of-flight (TOF) situation) Could use to verify aspects of thruster plume modeling Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface Observe evolution of various model characteristics as measured by NMS Species magnitudes, TOF measurements, angular distribution, species separation effects

  1. Vega roll and attitude control system algorithms trade-off study

    NASA Astrophysics Data System (ADS)

    Paulino, N.; Cuciniello, G.; Cruciani, I.; Corraro, F.; Spallotta, D.; Nebula, F.

    2013-12-01

    This paper describes the trade-off study for the selection of the most suitable algorithms for the Roll and Attitude Control System (RACS) within the FPS-A program, aimed at developing the new Flight Program Software of VEGA Launcher. Two algorithms were analyzed: Switching Lines (SL) and Quaternion Feedback Regulation. Using a development simulation tool that models two critical flight phases (Long Coasting Phase (LCP) and Payload Release (PLR) Phase), both algorithms were assessed with Monte Carlo batch simulations for both of the phases. The statistical outcomes of the results demonstrate a 100 percent success rate for Quaternion Feedback Regulation, and support the choice of this method.

  2. Comparison of thruster configurations in attitude control systems. M.S. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Drinkard, D. M., Jr.; White, L. R.; Chakravarthi, K. R.

    1973-01-01

    Several aspects concerning reaction control jet systems as used to govern the attitude of a spacecraft were considered. A thruster configuration currently in use was compared to several new configurations developed in this study. The method of determining the error signals which control the firing of the thrusters was also investigated. The current error determination procedure is explained and a new method is presented. Both of these procedures are applied to each of the thruster configurations which are developed and comparisons of the two methods are made.

  3. Stellar tracking attitude reference system

    NASA Technical Reports Server (NTRS)

    Klestadt, B.

    1974-01-01

    A satellite precision attitude control system was designed, based on the use of STARS as the principal sensing system. The entire system was analyzed and simulated in detail, considering the nonideal properties of the control and sensing components and realistic spacecraft mass properties. Experimental results were used to improve the star tracker noise model. The results of the simulation indicate that STARS performs in general as predicted in a realistic application and should be a strong contender in most precision earth pointing applications.

  4. Experiments study on attitude coupling control method for flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  5. Single Axis Attitude Control and DC Bus Regulation with Two Flywheels

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E.; Jansen, Ralph H.; Kenny, Barbara; Dever, Timothy P.

    2002-01-01

    A computer simulation of a flywheel energy storage single axis attitude control system is described. The simulation models hardware which will be experimentally tested in the future. This hardware consists of two counter rotating flywheels mounted to an air table. The air table allows one axis of rotational motion. An inertia DC bus coordinator is set forth that allows the two control problems, bus regulation and attitude control, to be separated. Simulation results are presented with a previously derived flywheel bus regulator and a simple PID attitude controller.

  6. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  7. Hardware Simulations of Spacecraft Attitude Synchronization Using Lyapunov-Based Controllers

    NASA Astrophysics Data System (ADS)

    Jung, Juno; Park, Sang-Young; Eun, Youngho; Kim, Sung-Woo; Park, Chandeok

    2018-04-01

    In the near future, space missions with multiple spacecraft are expected to replace traditional missions with a single large spacecraft. These spacecraft formation flying missions generally require precise knowledge of relative position and attitude between neighboring agents. In this study, among the several challenging issues, we focus on the technique to control spacecraft attitude synchronization in formation. We develop a number of nonlinear control schemes based on the Lyapunov stability theorem and considering special situations: full-state feedback control, full-state feedback control with unknown inertia parameters, and output feedback control without angular velocity measurements. All the proposed controllers offer absolute and relative control using reaction wheel assembly for both regulator and tracking problems. In addition to the numerical simulations, an air-bearing-based hardware-in-the-loop (HIL) system is used to verify the proposed control laws in real-time hardware environments. The pointing errors converge to 0.5{°} with numerical simulations and to 2{°} using the HIL system. Consequently, both numerical and hardware simulations confirm the performance of the spacecraft attitude synchronization algorithms developed in this study.

  8. Attitude control/momentum management and payload pointing in advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    The design and evaluation of an attitude control/momentum management system for highly asymmetric spacecraft configurations are presented. The preliminary development and application of a nonlinear control system design methodology for tracking control of uncertain systems, such as spacecraft payload pointing systems are also presented. Control issues relevant to both linear and nonlinear rigid-body spacecraft dynamics are addressed, whereas any structural flexibilities are not taken into consideration. Results from the first task indicate that certain commonly used simplifications in the equations of motions result in unstable attitude control systems, when used for highly asymmetric spacecraft configurations. An approach is suggested circumventing this problem. Additionally, even though preliminary results from the second task are encouraging, the proposed nonlinear control system design method requires further investigation prior to its application and use as an effective payload pointing system design technique.

  9. Low drag attitude control for Skylab orbital lifetime extension

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1981-01-01

    In the fall of 1977 it was determined that Skylab had started to tumble and that the original orbit lifetime predictions were much too optimistic. A decision had to be made whether to accept an early uncontrolled reentry with its inherent risks or try to attempt to control Skylab to a lower drag attitude in the hope that there was enough time to develop a Teleoperator Retrieval System, bring it up on the Space Shuttle and then decide whether to boost Skylab to a higher longer life orbit or to reenter it in a controlled fashion. The end-on-velocity (EOVV) control method is documented, which was successfully applied for about half a year to keep Skylab in a low drag attitude with the aid of the control moment gyros and a minimal expenditure of attitude control gas.

  10. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Calhourn, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  11. Attitude control compensator for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    An attitude control loop for a spacecraft uses a proportional-integral-derivative (PID) controller for control about an axis. The spacecraft body has at least a primary mechanical resonance. The attitude sensors are collocated, or both on the rigid portion of the spacecraft. The flexure attributable to the resonance may result in instability of the system. A compensator for the control loop has an amplitude response which includes a component which rolls off beginning at frequencies below the resonance, and which also includes a component having a notch at a notch frequency somewhat below the resonant frequency. The phase response of the compensator tends toward zero at low frequencies, and tends toward -180.degree. as frequency increases toward the notch frequency. At frequencies above the notch frequency, the phase decreases from +180.degree., becoming more negative, and tending toward -90.degree. at frequencies far above the resonance frequency. Near the resonance frequency, the compensator phase is near zero.

  12. A solenoid failure detection system for cold gas attitude control jet valves

    NASA Technical Reports Server (NTRS)

    Johnston, P. A.

    1970-01-01

    The development of a solenoid valve failure detection system is described. The technique requires the addition of a radioactive gas to the propellant of a cold gas jet attitude control system. Solenoid failure is detected with an avalanche radiation detector located in the jet nozzle which senses the radiation emitted by the leaking radioactive gas. Measurements of carbon monoxide leakage rates through a Mariner type solenoid valve are presented as a function of gas activity and detector configuration. A cylindrical avalanche detector with a factor of 40 improvement in leak sensitivity is proposed for flight systems because it allows the quantity of radioactive gas that must be added to the propellant to be reduced to a practical level.

  13. Acquisition and cruise sensing for attitude control

    NASA Technical Reports Server (NTRS)

    Pace, G. D., Jr.; Schmidt, L. F.

    1977-01-01

    Modified wideangle analog cruise sun sensor coupled with changes in optic attitude correction capabilities, eliminate need of acquisition and sun gate sensors, making on-course navigation of spacecraft flying interplanetary missions less risky and costly. Operational characteristics potentially make system applicable to guidance and control of solar energy collection systems.

  14. Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network

    NASA Astrophysics Data System (ADS)

    Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan

    2015-01-01

    This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

  15. A novel single thruster control strategy for spacecraft attitude stabilization

    NASA Astrophysics Data System (ADS)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  16. Attitude coordination of multi-HUG formation based on multibody system theory

    NASA Astrophysics Data System (ADS)

    Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin

    2017-04-01

    Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.

  17. Pulsed Plasma Thrusters for Small Spacecraft Attitude Control

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Myers, Roger M.

    1996-01-01

    Pulsed plasma thrusters (PPT's) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft configuration to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Reserach Center (LeRC) currently has a contracted flight PPT system development program in place with Olin Aerospace and a delivery date of October 1997. The PPT system in this study are based upon the work being done under the NASA LeRC program. Analysis of the use of PPT's for ACS showed that the replacement of the standard momentum wheels and torque rods systems with a PTT system to perform the altitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75 percent with no increase in required power level over comparable wheel-based systems.

  18. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    NASA Technical Reports Server (NTRS)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  19. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  20. The Galileo attitude and articulation control system - A radiation-hard, high precision, state-of-the-art control system

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1985-01-01

    The Galileo mission and spacecraft, consisting of a Jupiter-orbiter and an atmospheric entry probe, are discussed. Components will include: magnetometers and plasma-wave antennas on a boom, high-gain antenna, probe vehicle, two different bus electronics packages, and a radioisotope thermoelectric generator. Instruments, investigators and objectives are tabulated for both probe science and orbiter science investigations. Requirements in the design of the attitude and articulation control system are very stringent because of the complex dynamics, flexible body effects, the need for autonomy, and the severe radiation environment in the Jupiter nighborhood. Galileo was intended to be ready for launch via Space Shuttle in May of 1986.

  1. Some optimal considerations in attitude control systems. [evaluation of value of relative weighting between time and fuel for relay control law

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1973-01-01

    The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.

  2. Voyager Saturn encounter attitude and articulation control experience

    NASA Technical Reports Server (NTRS)

    Carlisle, G.; Hill, M.

    1981-01-01

    The Voyager attitude and articulation control system is designed for a three-axis stabilized spacecraft; it uses a biasable sun sensor and a Canopus Star Tracker (CST) for celestial control, as well as a dry inertial reference unit, comprised of three dual-axis dry gryos, for inertial control. A series of complex maneuvers was required during the first of two Voyager spacecraft encounters with Saturn (November 13, 1980); these maneuvers involved rotating the spacecraft simultaneously about two or three axes while maintaining accurate pointing of the scan platform. Titan and Saturn earth occulation experiments and a ring scattering experiment are described. Target motion compensation and the effects of celestial sensor interference are also considered. Failure of the CST, which required an extensive reevaluation of the star reference and attitude control mode strategy, is discussed. Results analyzed thus far show that the system performed with high accuracy, gathering data deeper into Saturn's atmosphere than on any previous planetary encounter.

  3. Attitude ground support system for the solar maximum mission spacecraft

    NASA Technical Reports Server (NTRS)

    Nair, G.

    1980-01-01

    The SMM attitude ground support system (AGSS) supports the acquisition of spacecraft roll attitude reference, performs the in-flight calibration of the attitude sensor complement, supports onboard control autonomy via onboard computer data base updates, and monitors onboard computer (OBC) performance. Initial roll attitude acquisition is accomplished by obtaining a coarse 3 axis attitude estimate from magnetometer and Sun sensor data and subsequently refining it by processing data from the fixed head star trackers. In-flight calibration of the attitude sensor complement is achieved by processing data from a series of slew maneuvers designed to maximize the observability and accuracy of the appropriate alignments and biases. To ensure autonomy of spacecraft operation, the AGSS selects guide stars and computes sensor occultation information for uplink to the OBC. The onboard attitude control performance is monitored on the ground through periodic attitude determination and processing of OBC data in downlink telemetry. In general, the control performance has met mission requirements. However, software and hardware problems have resulted in sporadic attitude reference losses.

  4. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    NASA Technical Reports Server (NTRS)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  5. Remote Spacecraft Attitude Control by Coulomb Charging

    NASA Astrophysics Data System (ADS)

    Stevenson, Daan

    The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to

  6. NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Kunz, Nans

    2014-01-01

    At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.

  7. Simultaneous calibrations of Voyager celestial and inertial attitude control systems in flight

    NASA Technical Reports Server (NTRS)

    Jahanshahi, M. H.

    1982-01-01

    A mathematical description of the data reduction technique used to simultaneously calibrate the Voyager celestial and inertial attitude control subsystems is given. It is shown that knowledge of the spacecraft limit cycle motion, as measured by the celestial and the inertial sensors, is adequate to result in the estimates of a selected number of errors which adversely affect the spacecraft attitude knowledge.

  8. Attitude Dynamics and Control of Solar Sails

    NASA Astrophysics Data System (ADS)

    Sperber, Evan

    Solar sails are space vehicles that rely on solar radiation pressure in order to generate forces for thrust and attitude control torques. They exhibit characteristics such as large moments of inertia, fragility of various system components, and long mission durations that make attitude control a particularly difficult engineering problem. Thrust vector control (TVC) is a family of sailcraft attitude control techniques that is on a short list of strategies thought to be suitable for the primary attitude control of solar sails. Every sailcraft TVC device functions by manipulating the relative locations of the composite mass center (cm) of the sailcraft and the center of pressure (cp) of at least one of its reflectors. Relative displacement of these two points results in body torques that can be used to steer the sailcraft. This dissertation presents a strategy for the large-angle reorientation of a sailcraft using TVC. Two forms of TVC, namely the panel and ballast mass translation methods are well represented in the literature, while rigorous studies regarding a third form, gimballed mass rotation, are conspicuously absent. The gimballed mass method is physically realized by placing a ballast mass, commonly the sailcraft's scientific payload, at the tip of a gimballed boom that has its base fixed at some point on the sailcraft. A TVC algorithm will then strategically manipulate the payload boom's gimbal angles, thereby changing the projection of the sailcraft cm in the plane of the sail. This research demonstrates effective three-axis attitude control of a model sailcraft using numerical simulation of its nonlinear equations of motion. The particular TVC algorithm developed herein involves two phases---the first phase selects appropriate gimbal rates with the objective that the sailcraft be placed in the neighborhood of its target orientation. It was discovered, however that concomitantly minimizing attitude error as well as residual body rate was not possible using

  9. Dual-spin attitude control for outer planet missions

    NASA Technical Reports Server (NTRS)

    Ward, R. S.; Tauke, G. J.

    1977-01-01

    The applicability of dual-spin technology to a Jupiter orbiter with probe mission was investigated. Basic mission and system level attitude control requirements were established and preliminary mechanization and control concepts developed. A comprehensive 18-degree-of-freedom digital simulation was utilized extensively to establish control laws, study dynamic interactions, and determined key sensitivities. Fundamental system/subsystem constraints were identified, and the applicability of dual-spin technology to a Jupiter orbiter with probe mission was validated.

  10. MICROSCOPE mission: drag-free and attitude control system expertise activities toward the scientific team

    NASA Astrophysics Data System (ADS)

    Delavault, Stéphanie; Prieur, Pascal; Liénart, Thomas; Robert, Alain; Guidotti, Pierre-Yves

    2018-04-01

    Microscope is a CNES-ESA-ONERA-CNRS-OCA-DLR-ZARM mission dedicated to the test of the Equivalence Principle with an improved accuracy of 10-15. The 300 kg drag-free microsatellite was launched on April 25th 2016 into a 710 km dawndusk sun-synchronous orbit for a 2-year mission. To comply with stringent requirements, the drag-free and attitude control system (DFACS) involves the scientific accelerometer as main sensor and a set of 8 cold gas proportional thrusters. Once in mission mode, within the CNES drag-free expertise center (CECT) the DFACS team provides several services to the system and to the scientific mission center: cold gas monitoring and management, `Attitude' ancillary data, DFACS expertise ancillary data. For this purpose, expertise tools have been implemented in the CECT, using the flexibility and efficiency of Matlab™ utilities. This paper presents the role of the CECT within the mission and details the expertise activities of the DFACS team illustrated with some typical in flight results.

  11. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  12. Adaptive attitude control and momentum management for large-angle spacecraft maneuvers

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Sunkel, John W.

    1992-01-01

    The fully coupled equations of motion are systematically linearized around an equilibrium point of a gravity gradient stabilized spacecraft, controlled by momentum exchange devices. These equations are then used for attitude control system design of an early Space Station Freedom flight configuration, demonstrating the errors caused by the improper approximation of the spacecraft dynamics. A full state feedback controller, incorporating gain-scheduled adaptation of the attitude gains, is developed for use during spacecraft on-orbit assembly or operations characterized by significant mass properties variations. The feasibility of the gain adaptation is demonstrated via a Space Station Freedom assembly sequence case study. The attitude controller stability robustness and transient performance during gain adaptation appear satisfactory.

  13. Improved ITOS attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1971-01-01

    The ITOS with an improved attitude control system is described. A Hall generator brushless dc torque motor will replace the brush dc torque motor on ITOS-I and ITOS-A (NOAA-1). The four attitude horizon sensors will be replaced with two CO2 sensors for better horizon definition. An earth horizon splitting technique will be used to keep the earth facing side of the satellite toward earth even if the desired circular orbit is not achieved. The external appearance of the pitch control subsystem differs from TIROS-M (ITOS-1) and ITOS-A (NOAA-1) in that two instead of one pitch control electronics (PCE) boxes are used. Two instead of four horizon sensors will be used and one instead of two mirrors will be used for sensor scanning. The brushless motor will eliminate the requirement for brushes, strain gages and the telemetry for the brush wear. A single rotating flywheel, supported by a single bearing provides the gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminates the requirement for expendable propellants which would limit satellite life in orbit.

  14. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.

    PubMed

    He, ZeFang; Zhao, Long

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.

  15. SPS attitude control and stationkeeping: Requirements and tradeoffs

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1980-01-01

    The dominant control requirements of solar power satellites change appreciably relative to small contemporary spacecraft. Trade studies and analyses illustrated preferred control approaches. It was found that the geosynchronous equatorial orbit is preferred over the alternative orbits considered, that the solar pressure orbit perturbation dominates stationkeeping propulsion requirements and that a combined AC and SK system using ion electric propulsion can satisfy the attitude control requirements. It was also found that control system/structural dynamic interaction stability can be obtained through frequency separation with reasonable structural dynamic requirements and simplify spacecraft design.

  16. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  17. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  18. High speed reaction wheels for satellite attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  19. Robust adaptive relative position and attitude control for spacecraft autonomous proximity.

    PubMed

    Sun, Liang; Huo, Wei; Jiao, Zongxia

    2016-07-01

    This paper provides new results of the dynamical modeling and controller designing for autonomous close proximity phase during rendezvous and docking in the presence of kinematic couplings and model uncertainties. A globally defined relative motion mechanical model for close proximity operations is introduced firstly. Then, in spite of the kinematic couplings and thrust misalignment between relative rotation and relative translation, robust adaptive relative position and relative attitude controllers are designed successively. Finally, stability of the overall system is proved that the relative position and relative attitude are uniformly ultimately bounded, and the size of the ultimate bound can be regulated small enough by control system parameters. Performance of the controlled overall system is demonstrated via a representative numerical example. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  1. Finite-time fault tolerant attitude stabilization control for rigid spacecraft.

    PubMed

    Huo, Xing; Hu, Qinglei; Xiao, Bing

    2014-03-01

    A sliding mode based finite-time control scheme is presented to address the problem of attitude stabilization for rigid spacecraft in the presence of actuator fault and external disturbances. More specifically, a nonlinear observer is first proposed to reconstruct the amplitude of actuator faults and external disturbances. It is proved that precise reconstruction with zero observer error is achieved in finite time. Then, together with the system states, the reconstructed information is used to synthesize a nonsingular terminal sliding mode attitude controller. The attitude and the angular velocity are asymptotically governed to zero with finite-time convergence. A numerical example is presented to demonstrate the effectiveness of the proposed scheme. © 2013 Published by ISA on behalf of ISA.

  2. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  3. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters

    PubMed Central

    He, ZeFang

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879

  4. An investigation of quasi-inertial attitude control for a solar power satellite

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Wang, S. J.

    1982-01-01

    An efficient means, a quasi-inertial attitude mode, is developed for maintaining the normal solar orientation of a space satellite for power collection in a synchronous orbit. Formulae are presented which establish the basic parametric properties for ideal quasi-inertial attitude and phasing. An active control system is necessary to compensate for the energy loss since energy dissipation in widely oscillating flexible bodies produces an instability of the quasi-inertial attitude in the sense that the spacecraft will tumble at the orbit rate. A fixed terminal time and state optimal control problem is formulated and an algorithm for determining the optimal control as a means for the periodical attitude and phase compensation is developed. The vehicle orientation affected by internal disturbance (structural flexibility) and external disturbances (e.g., drag forces) is maintained by a specialized controller design.

  5. Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System

    NASA Technical Reports Server (NTRS)

    Ward, David K.; Andrews, Stephen F.; McComas, David C.; ODonnell, James R., Jr.

    1999-01-01

    Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared.

  6. Spacecraft methods and structures with enhanced attitude control that facilitates gyroscope substitutions

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Kurland, Jeffrey A. (Inventor); Dawson, Alec M. (Inventor); Wu, Yeong-Wei A. (Inventor); Uetrecht, David S. (Inventor)

    2004-01-01

    Methods and structures are provided that enhance attitude control during gyroscope substitutions by insuring that a spacecraft's attitude control system does not drive its absolute-attitude sensors out of their capture ranges. In a method embodiment, an operational process-noise covariance Q of a Kalman filter is temporarily replaced with a substantially greater interim process-noise covariance Q. This replacement increases the weight given to the most recent attitude measurements and hastens the reduction of attitude errors and gyroscope bias errors. The error effect of the substituted gyroscopes is reduced and the absolute-attitude sensors are not driven out of their capture range. In another method embodiment, this replacement is preceded by the temporary replacement of an operational measurement-noise variance R with a substantially larger interim measurement-noise variance R to reduce transients during the gyroscope substitutions.

  7. A Novel Attitude Determination System Aided by Polarization Sensor

    PubMed Central

    Zhi, Wei; Chu, Jinkui; Li, Jinshan; Wang, Yinlong

    2018-01-01

    This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF) with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV) flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle. PMID:29315256

  8. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    NASA Astrophysics Data System (ADS)

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  9. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, M. S.

    2010-01-01

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cu cm. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  10. Solar Sail Attitude Control Performance Comparison

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff J.; Lawrence, Dale A.

    2005-01-01

    Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.

  11. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1992-08-01

    Innovative techniques of using 'Artificial Neural Networks' (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using Control Moment Gyros (CMGs) are investigated. The first technique uses a feedforward ANN with multilayer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second techique uses a single layer feedforward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  12. Chaos as the hub of systems dynamics. The part I-The attitude control of spacecraft by involving in the heteroclinic chaos

    NASA Astrophysics Data System (ADS)

    Doroshin, Anton V.

    2018-06-01

    In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.

  13. Autonomous control system reconfiguration for spacecraft with non-redundant actuators

    NASA Astrophysics Data System (ADS)

    Grossman, Walter

    1995-05-01

    The Small Satellite Technology Initiative (SSTI) 'CLARK' spacecraft is required to be single-failure tolerant, i.e., no failure of any single component or subsystem shall result in complete mission loss. Fault tolerance is usually achieved by implementing redundant subsystems. Fault tolerant systems are therefore heavier and cost more to build and launch than non-redundent, non fault-tolerant spacecraft. The SSTI CLARK satellite Attitude Determination and Control System (ADACS) achieves single-fault tolerance without redundancy. The attitude determination system system uses a Kalman Filter which is inherently robust to loss of any single attitude sensor. The attitude control system uses three orthogonal reaction wheels for attitude control and three magnetic dipoles for momentum control. The nominal six-actuator control system functions by projecting the attitude correction torque onto the reaction wheels while a slower momentum management outer loop removes the excess momentum in the direction normal to the local B field. The actuators are not redundant so the nominal control law cannot be implemented in the event of a loss of a single actuator (dipole or reaction wheel). The spacecraft dynamical state (attitude, angular rate, and momentum) is controllable from any five-element subset of the six actuators. With loss of an actuator the instantaneous control authority may not span R(3) but the controllability gramian integral(limits between t,0) Phi(t, tau)B(tau )B(prime)(tau) Phi(prime)(t, tau)d tau retains full rank. Upon detection of an actuator failure the control torque is decomposed onto the remaining active axes. The attitude control torque is effected and the over-orbit momentum is controlled. The resulting control system performance approaches that of the nominal system.

  14. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  15. Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls

    NASA Technical Reports Server (NTRS)

    Reyhanoglu, Mahmut; Mcclamroch, N. Harris

    1993-01-01

    An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.

  16. Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  17. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  18. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woronowicz, M. S.

    2011-05-20

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm{sup 3}. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may bemore » possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.« less

  19. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  20. A study of attitude control concepts for precision-pointing non-rigid spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1975-01-01

    Attitude control concepts for use onboard structurally nonrigid spacecraft that must be pointed with great precision are examined. The task of determining the eigenproperties of a system of linear time-invariant equations (in terms of hybrid coordinates) representing the attitude motion of a flexible spacecraft is discussed. Literal characteristics are developed for the associated eigenvalues and eigenvectors of the system. A method is presented for determining the poles and zeros of the transfer function describing the attitude dynamics of a flexible spacecraft characterized by hybrid coordinate equations. Alterations are made to linear regulator and observer theory to accommodate modeling errors. The results show that a model error vector, which evolves from an error system, can be added to a reduced system model, estimated by an observer, and used by the control law to render the system less sensitive to uncertain magnitudes and phase relations of truncated modes and external disturbance effects. A hybrid coordinate formulation using the provided assumed mode shapes, rather than incorporating the usual finite element approach is provided.

  1. In-orbit performance of the ITOS improved attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.

  2. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels

    NASA Astrophysics Data System (ADS)

    Ran, Dechao; Chen, Xiaoqian; de Ruiter, Anton; Xiao, Bing

    2018-04-01

    This study presents an adaptive second-order sliding control scheme to solve the attitude fault tolerant control problem of spacecraft subject to system uncertainties, external disturbances and reaction wheel faults. A novel fast terminal sliding mode is preliminarily designed to guarantee that finite-time convergence of the attitude errors can be achieved globally. Based on this novel sliding mode, an adaptive second-order observer is then designed to reconstruct the system uncertainties and the actuator faults. One feature of the proposed observer is that the design of the observer does not necessitate any priori information of the upper bounds of the system uncertainties and the actuator faults. In view of the reconstructed information supplied by the designed observer, a second-order sliding mode controller is developed to accomplish attitude maneuvers with great robustness and precise tracking accuracy. Theoretical stability analysis proves that the designed fault tolerant control scheme can achieve finite-time stability of the closed-loop system, even in the presence of reaction wheel faults and system uncertainties. Numerical simulations are also presented to demonstrate the effectiveness and superiority of the proposed control scheme over existing methodologies.

  3. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1995-01-01

    Innovative techniques of using "artificial neural networks" (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using control moment gyros (CMGs) are investigated. The first technique uses a feed-forward ANN with multi-layer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second technique uses a single layer feed-forward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  4. Mariner Mars 1971 attitude control subsystem

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1974-01-01

    The Mariner Mars 1971 attitude control subsystem (ACS) is discussed. It is comprised of a sun sensor set, a Canopus tracker, an inertial reference unit, two cold gas reaction control assemblies, two rocket engine gimbal actuators, and an attitude control electronics unit. The subsystem has the following eight operating modes: (1) launch, (2) sun acquisition, (3) roll search, (4) celestial cruise, (5) all-axes inertial, (6) roll inertial, (7) commanded turn, and (8) thrust vector control. In the celestial cruise mode, the position control is held to plus or minus 0.25 deg. Commanded turn rates are plus or minus 0.18 deg/s. The attitude control logic in conjunction with command inputs from other spacecraft subsystems establishes the ACS operating mode. The logic utilizes Sun and Canopus acquisition signals generated within the ACS to perform automatic mode switching so that dependence of ground control is minimized when operating in the sun acquisition, roll search, and celestial cruise modes. The total ACS weight is 65.7 lb, and includes 5.4 lb of nitrogen gas. Total power requirements vary from 9 W for the celestial cruise mode to 54 W for the commanded turn mode.

  5. Attitude control fault protection - The Voyager experience

    NASA Technical Reports Server (NTRS)

    Litty, E. C.

    1980-01-01

    The length of the Voyager mission and the communication delay caused by the distances involved made fault protection a necessary part of the Voyager Attitude and Articulation Control Subsystem (AACS) design. An overview of the Voyager attitude control fault protection is given and flight experiences relating to fault protection are provided.

  6. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  7. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  8. Attitude control/momentum management of the Space Station Freedom for large angle torque-equilibrium-attitude configurations

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Sunkel, John W.

    1990-01-01

    An attitude-control and momentum-management (ACMM) system for the Space Station in a large-angle torque-equilibrium-attitude (TEA) configuration is developed analytically and demonstrated by means of numerical simulations. The equations of motion for a rigid-body Space Station model are outlined; linearized equations for an arbitrary TEA (resulting from misalignment of control and body axes) are derived; the general requirements for an ACMM are summarized; and a pole-placement linear-quadratic regulator solution based on scheduled gains is proposed. Results are presented in graphs for (1) simulations based on configuration MB3 (showing the importance of accounting for the cross-inertia terms in the TEA estimate) and (2) simulations of a stepwise change from configuration MB3 to the 'assembly complete' stage over 130 orbits (indicating that the present ACCM scheme maintains sufficient control over slowly varying Space Station dynamics).

  9. Multivariable control theory applied to hierarchial attitude control for planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Russell, D. W.

    1972-01-01

    Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included.

  10. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Sanneman, Paul; Hunt, Teresa; Blackman, Kathie; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic Propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 micro N-s) at low average power (less than 1 to 100 W). EO-1 has a single PPT that can produce torque in either the positive or negative pitch direction. For the PPT in-flight experiment, the pitch reaction wheel will be replaced by the PPT during nominal EO-1 nadir pointing. A PPT specific proportional-integral-derivative (PID) control algorithm was developed for the experiment. High fidelity simulations of the spacecraft attitude control capability using the PPT were conducted. The simulations, which showed PPT control performance within acceptable mission limits, will be used as the benchmark for on-orbit performance. The flight validation will demonstrate the ability of the PPT to provide precision pointing resolution. response and stability as an attitude control actuator.

  11. Pushing the Limits of Cubesat Attitude Control: A Ground Demonstration

    NASA Technical Reports Server (NTRS)

    Sanders, Devon S.; Heater, Daniel L.; Peeples, Steven R.; Sules. James K.; Huang, Po-Hao Adam

    2013-01-01

    A cubesat attitude control system (ACS) was designed at the NASA Marshall Space Flight Center (MSFC) to provide sub-degree pointing capabilities using low cost, COTS attitude sensors, COTS miniature reaction wheels, and a developmental micro-propulsion system. The ACS sensors and actuators were integrated onto a 3D-printed plastic 3U cubesat breadboard (10 cm x 10 cm x 30 cm) with a custom designed instrument board and typical cubesat COTS hardware for the electrical, power, and data handling and processing systems. In addition to the cubesat development, a low-cost air bearing was designed and 3D printed in order to float the cubesat in the test environment. Systems integration and verification were performed at the MSFC Small Projects Rapid Integration & Test Environment laboratory. Using a combination of both the miniature reaction wheels and the micro-propulsion system, the open and closed loop control capabilities of the ACS were tested in the Flight Robotics Laboratory. The testing demonstrated the desired sub-degree pointing capability of the ACS and also revealed the challenges of creating a relevant environment for development testin

  12. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    PubMed

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  13. Voyager 2 Saturn encounter attitude and articulation control experience

    NASA Technical Reports Server (NTRS)

    Hill, M.

    1982-01-01

    A description is given of the Voyager Attitude and Articulation Control System (AACS). The complex series of maneuvers required for Voyager 2 during the near encounter period to obtain fields and particle data, track the limb of Saturn during the earth occultation period, and reflect the RF beam off the Saturnian ring system are discussed. It is noted that some of these maneuvers involved rotating the spacecraft simultaneously about multiple axes while maintaining accurate pointing of the scan platform, a first for interplanetary missions. Also described are two anomalies experienced by the AACS during the near encounter period. The first was the significant roll attitude error that occurred shortly after all axis inertial control and that continued to grow until celestial reacquisition. The second was that the scan platform slewing in the azimuth axis stopped midway through the near encounter. These anomalies are analyzed, and their effect on future missions is assessed.

  14. Attractive manifold-based adaptive solar attitude control of satellites in elliptic orbits

    NASA Astrophysics Data System (ADS)

    Lee, Keum W.; Singh, Sahjendra N.

    2011-01-01

    The paper presents a novel noncertainty-equivalent adaptive (NCEA) control system for the pitch attitude control of satellites in elliptic orbits using solar radiation pressure (SRP). The satellite is equipped with two identical solar flaps to produce control moments. The adaptive law is based on the attractive manifold design using filtered signals for synthesis, which is a modification of the immersion and invariance (I&I) method. The control system has a modular controller-estimator structure and has separate tunable gains. A special feature of this NCEA law is that the trajectories of the satellite converge to a manifold in an extended state space, and the adaptive law recovers the performance of a deterministic controller. This recovery of performance cannot be obtained with certainty-equivalent adaptive (CEA) laws. Simulation results are presented which show that the NCEA law accomplishes precise attitude control of the satellite in an elliptic orbit, despite large parameter uncertainties.

  15. Model predictive and reallocation problem for CubeSat fault recovery and attitude control

    NASA Astrophysics Data System (ADS)

    Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina

    2018-01-01

    In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.

  16. SSS-A attitude control prelaunch analysis and operations plan

    NASA Technical Reports Server (NTRS)

    Werking, R. D.; Beck, J.; Gardner, D.; Moyer, P.; Plett, M.

    1971-01-01

    A description of the attitude control support being supplied by the Mission and Data Operations Directorate is presented. Descriptions of the computer programs being used to support the mission for attitude determination, prediction, control, and definitive attitude processing are included. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  17. Discussions on attitude determination and control system for micro/nano/pico-satellites considering survivability based on Hodoyoshi-3 and 4 experiences

    NASA Astrophysics Data System (ADS)

    Nakasuka, Shinichi; Miyata, Kikuko; Tsuruda, Yoshihiro; Aoyanagi, Yoshihide; Matsumoto, Takeshi

    2018-04-01

    The recent advancement of micro/nano/pico-satellites technologies encourages many universities to develop three axis stabilized satellites. As three axis stabilization is high level technology requiring the proper functioning of various sensors, actuators and control software, many early satellites failed in their initial operation phase because of shortage of solar power generation or inability to realize the initial step of missions because of unexpected attitude control system performance. These results come from failure to design the satellite attitude determination and control system (ADCS) appropriately and not considering "satellite survivability." ADCS should be designed such that even if some sensors or actuators cannot work as expected, the satellite can survive and carry out some of its missions, even if not full. This paper discusses how to realize ADCS while taking satellite survivability into account, based on our experiences of design and in-orbit operations of Hodoyoshi-3 and 4 satellites launched in 2014, which suffered from various component anomalies but could complete their missions.

  18. Hierarchical control of ride height system for electronically controlled air suspension based on variable structure and fuzzy control theory

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Zhou, Kongkang; Zou, Nannan; Jiang, Hong; Cui, Xiaoli

    2015-09-01

    The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.

  19. Thrust vectoring of broad ion beams for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Collett, C. R.; King, H. J.

    1973-01-01

    Thrust vectoring is shown to increase the attractiveness of ion thrusters for satellite control applications. Incorporating beam deflection into ion thrusters makes it possible to achieve attitude control without adding any thrusters. Two beam vectoring systems are described that can provide up to 10-deg beam deflection in any azimuth. Both systems have been subjected to extended life tests on a 5-cm thruster which resulted in projected life times of from 7500 to 20,000 hours.

  20. Attitude Determination and Control System Design for a 6U Cube Sat for Proximity Operations and Rendezvous

    DTIC Science & Technology

    2014-08-04

    Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6U Cube Sat class satellite equipped with a warm gas propulsion system... mission . The ARAPAIMA (Application for Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6 U CubeSat class satellite...attitude determination and control subsystem (ADCS) (or a proximity operation and imaging satellite mission . The ARAP AI MA (Application for

  1. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Sindlinger, R. S.

    1977-01-01

    A 3-axis active attitude control system with only one rotating part was developed using a momentum wheel with magnetic gimballing capability as a torque actuator for all three body axes. A brief description of magnetic bearing technology is given. It is concluded that based on this technology an integrated energy storage/attitude control system with one air of counterrotating rings could reduce the complexity and weight of conventional systems.

  2. System and method for correcting attitude estimation

    NASA Technical Reports Server (NTRS)

    Josselson, Robert H. (Inventor)

    2010-01-01

    A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.

  3. Scout fourth stage attitude and velocity control (AVC) system feasibility study

    NASA Technical Reports Server (NTRS)

    Byars, L. B.

    1975-01-01

    The feasibility of incorporating a guidance system in the Scout fourth stage to achieve a significant improvement in expected payload delivery accuracy is studied. The technical investigations included the determination of the AVC equipment performance requirements, establishment of qualification and acceptance test levels, generation of layouts illustrating design approaches for the upper D and payload transition sections to incorporate the hardware, and the preparation of a vendor bid package. Correction concepts, utilizing inertial velocity and attitude, were identified and evaluated. Fourth stage attitude adjustments as determined from inertial velocity variation through the first three stages and a final velocity correction based upon the measured in-plane component errors at injection were employed. Results show radical reductions in apogee-perigee deviations.

  4. Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter

    2004-01-01

    The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.

  5. A summary of the mechanical design, testing and performance of the IMP-H and J attitude control systems

    NASA Technical Reports Server (NTRS)

    Metzger, J. R.

    1974-01-01

    The main aspects of the attitude control system used on both the IMP-H and J spacecraft are presented. The mechanical configuration is described. Information on all the specific components comprising the flight system is provided. The acceptance and qualification testing of both individual components and the installed system are summarized. Functional information regarding the operation and performance in relation to the orbiting spacecraft and its mission is included. Related topics which are discussed are: (1) safety requirements, (2) servicing procedures, (3) anomalous behavior, and (4) pyrotechnic devices.

  6. Long-term stability of GOES-8 and -9 attitude control

    NASA Astrophysics Data System (ADS)

    Carr, James L.

    1996-10-01

    An independent audit of the in-orbit behavior of the GOES-8 and GOES-9 satellites has been conducted for the NASA/GSFC. This audit utilized star and landmark observations from the GOES imager to determine long-term histories for spacecraft attitude, orbital position, and instrument internal misalignments. The paper presents results from this audit. Long-term drifts are found in the attitude histories, whereas the misalignment histories are shown to be diurnally stable. The GOES image navigation and registration system is designed to compensate for instrument internal misalignments, and both the diurnally repeatable and drift components of the attitude. Correlations between GOES-8 and GOES-9 long-term roll and pitch drifts implicate the Earth sensor as the origin of these observed drifts. This results clearly demonstrates the enhanced registration stability to be obtained with stellar inertial attitude determination replacing or supplementing Earth sensor control on future GOES missions.

  7. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters

    NASA Astrophysics Data System (ADS)

    Knapp, Roger G.; Adams, Neil J.

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  8. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters

    NASA Astrophysics Data System (ADS)

    Knapp, Roger Glenn

    1993-05-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  9. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    NASA Technical Reports Server (NTRS)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  10. Wheel speed management control system for spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  11. A New Approach to Attitude Stability and Control for Low Airspeed Vehicles

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.

    2004-01-01

    This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.

  12. Techniques for monitoring and controlling yaw attitude of a GPS satellite

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M. (Inventor); Bar-Sever, Yoaz (Inventor); Zumberge, James (Inventor); Bertiger, William I. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor); Hurst, Kenneth (Inventor); Blewitt, Geoff (Inventor); Yunck, Thomas (Inventor); Thornton, Catherine (Inventor)

    2001-01-01

    Techniques for monitoring and controlling yawing of a GPS satellite in an orbit that has an eclipsing portion out of the sunlight based on the orbital conditions of the GPS satellite. In one embodiment, a constant yaw bias is generated in the attitude control system of the GPS satellite to control the yawing of the GPS satellite when it is in the shadow of the earth.

  13. On-orbit experience with the HEAO attitude control subsystem

    NASA Technical Reports Server (NTRS)

    Hoffman, D. P.; Berkery, E. A.

    1978-01-01

    The first satellite (HEAO-1) in the High Energy Astronomy Observatory Program series was launched successfully on Aug. 12, 1977. To date it has completed over nine months of orbital operation in a science data gathering mode. During this period all attitude control modes have been exercised and all primary mission objectives have been achieved. This paper highlights the characteristics of the attitude control subsystem design and compares the predicted performance with the actual flight operations experience. Environmental disturbance modeling, component hardware/software characteristics, and overall attitude control performance are reviewed and are found to compare very well with the prelaunch analytical predictions. Brief comments are also included regarding the operations aspects of the attitude control subsystem. The experience in this regard demonstrates the effectiveness of the design flexibility afforded by the presence of a general purpose digital processor in the subsystem flight hardware implementation.

  14. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  15. Precision tethered satellite attitude control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.

    1990-01-01

    Tethered spacecraft possess unique dynamic characteristics which make them advantageous for certain classes of experiments. One use for which tethers are particularly well suited is to provide an isolated platform for spaceborne observatories. The advantages of tethering a pointing platform 1 or 2 km from a space shuttle or space station are that, compared to placing the observatory on the parent spacecraft, vibrational disturbances are attenuated and contamination is eliminated. In practice, all satellites have some requirement on the attitude control of the spacecraft, and tethered satellites are no exception. It has previously been shown that conventional means of performing attitude control for tethered satellites are insufficient for any mission with pointing requirements more stringent than about 1 deg. This is due mainly to the relatively large force applied by the tether to the spacecraft. A particularly effective method of implementing attitude control for tethered satellites is to use this tether tension force to generate control torques by moving the tether attach point relative to the subsatellite center of mass. A demonstration of this attitude control technique on an astrophysical pointing platform has been proposed for a space shuttle flight test project and is referred to as the Kinetic Isolation Tether Experiment (KITE).

  16. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  17. Attitude dynamics and control of a spacecraft like a robotic manipulator when implementing on-orbit servicing

    NASA Astrophysics Data System (ADS)

    Da Fonseca, Ijar M.; Goes, Luiz C. S.; Seito, Narumi; da Silva Duarte, Mayara K.; de Oliveira, Élcio Jeronimo

    2017-08-01

    In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.

  18. A conceptual design for the attitude control and determination system for the Magnetosphere Imager spacecraft

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Carrington, C. K.

    1995-01-01

    This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.

  19. Mariner Mars 1971 attitude control subsystem flight performance

    NASA Technical Reports Server (NTRS)

    Schumacher, L.

    1973-01-01

    The flight performance of the Mariner 71 attitude control subsystem is discussed. Each phase of the mission is delineated and the attitude control subsystem is evaluated within the observed operational environment. Performance anomalies are introduced and discussed within the context of general performance. Problems such as the sun sensor interface incompatibility, gas valve leaks, and scan platform dynamic coupling effects are given analytical considerations.

  20. Magsat attitude dynamics and control: Some observations and explanations

    NASA Technical Reports Server (NTRS)

    Stengle, T. H.

    1980-01-01

    Before its reentry 7 months after launch, Magsat transmitted an abundance of valuable data for mapping the Earth's magnetic field. As an added benefit, a wealth of attitude data for study by spacecraft dynamicists was also collected. Because of its unique configuration, Magsat presented new control problems. With its aerodynamic trim boom, attitude control was given an added dimension. Minimization of attitude drift, which could be mapped in relative detail, became the goal. Momentum control, which was accomplished by pitching the spacecraft in order to balance aerodynamic and gravity gradient torques, was seldom difficult to achieve. Several interesting phenomena observed as part of this activity included occasional momentum wheel instability and a rough correlation between solar flux and the pitch angle required to maintain acceptable momentum. An overview is presented of the attitude behavior of Magsat and some of the control problems encountered. Plausible explanations for some of this behavior are offered. Some of the control philosophy used during the mission is examined and aerodynamic trimming operations are summarized.

  1. In-orbit performance of the LISA Pathfinder drag-free and attitude control system

    NASA Astrophysics Data System (ADS)

    Schleicher, A.; Ziegler, T.; Schubert, R.; Brandt, N.; Bergner, P.; Johann, U.; Fichter, W.; Grzymisch, J.

    2018-04-01

    LISA Pathfinder is a technology demonstrator mission that was funded by the European Space Agency and that was launched on December 3, 2015. LISA Pathfinder has been conducting experiments to demonstrate key technologies for the gravitational wave observatory LISA in its operational orbit at the L1 Lagrange point of the Earth-Sun system until final switch off on July 18, 2017. These key technologies include the inertial sensors, the optical metrology system, a set of µ-propulsion cold gas thrusters and in particular the high performance drag-free and attitude control system (DFACS) that controls the spacecraft in 15 degrees of freedom during its science phase. The main goal of the DFACS is to shield the two test masses inside the inertial sensors from all external disturbances to achieve a residual differential acceleration between the two test masses of less than 3 × 10-14 m/s2/√Hz over the frequency bandwidth of 1-30 mHz. This paper focuses on two important aspects of the DFACS that has been in use on LISA Pathfinder: the DFACS Accelerometer mode and the main DFACS Science mode. The Accelerometer mode is used to capture the test masses after release into free flight from the mechanical grabbing mechanism. The main DFACS Science Mode is used for the actual drag-free science operation. The DFACS control system has very strong interfaces with the LISA Technology Package payload which is a key aspect to master the design, development, and analysis of the DFACS. Linear as well as non-linear control methods are applied. The paper provides pre-flight predictions for the performance of both control modes and compares these predictions to the performance that is currently achieved in-orbit. Some results are also discussed for the mode transitions up to science mode, but the focus of the paper is on the Accelerometer mode performance and on the performance of the Science mode in steady state. Based on the achieved results, some lessons learnt are formulated to extend

  2. Attitude motion of a non-attitude-controlled cylindrical satellite

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. K.

    1988-01-01

    In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.

  3. An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Hadaegh, Fred Y.; Rahman, Zahidul H.; Shields, Joel F.; Singh, Gurkipal; Wette, Matthew R.

    2004-01-01

    The Terrestrial Planet Finder formation flying Interferometer (TPF-I) will be a five-spacecraft, precision formation operating near the second Sun-Earth Lagrange point. As part of technology development for TPF-I, a formation and attitude control system (FACS) is being developed that achieves the precision and functionality needed for the TPF-I formation and that will be demonstrated in a distributed, real-time simulation environment. In this paper we present an overview of FACS and discuss in detail its formation estimation, guidance and control architectures and algorithms. Since FACS is currently being integrated into a high-fidelity simulation environment, component simulations demonstrating algorithm performance are presented.

  4. An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Hadaegh, Fred Y.; Rahman, Zahidul H.; Shields, Joel F.; Singh, Gurkipal

    2004-01-01

    The Terrestrial Planet Finder formation flying Interferometer (TPF-I) will be a five-spacecraft, precision formation operating near a Sun-Earth Lagrange point. As part of technology development for TPF-I, a formation and attitude control system (FACS) is being developed that achieves the precision and functionality associated with the TPF-I formation. This FACS will be demonstrated in a distributed, real-time simulation environment. In this paper we present an overview of the FACS and discuss in detail its constituent formation estimation, guidance and control architectures and algorithms. Since the FACS is currently being integrated into a high-fidelity simulation environment, component simulations demonstrating algorithm performance are presented.

  5. Alternative Attitude Commanding and Control for Precise Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2004-01-01

    A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.

  6. International Space Station Attitude Control and Energy Storage Experiment: Effects of Flywheel Torque

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1999-01-01

    The Attitude Control and Energy Storage Experiment is currently under development for the International Space Station; two counter-rotating flywheels will be levitated with magnetic bearings and placed in vacuum housings. The primary objective of the experiment is to store and discharge energy, in combination with existing batteries, into the electrical power system. The secondary objective is to use the flywheels to exert torque on the Station; a simple torque profile has been designed so that the Station's Control Moment Gyroscopes will be assisted in maintaining torque equilibrium attitude. Two energy storage contingencies could result in the inadvertent application of torque by the flywheels to the Station: an emergency shutdown of one flywheel rotor while the other remains spinning, and energy storage with only one rotor instead of the counterrotating pair. Analysis of these two contingencies shows that attitude control and the microgravity environment will not be adversely affected.

  7. Development of the functional simulator for the Galileo attitude and articulation control system

    NASA Technical Reports Server (NTRS)

    Namiri, M. K.

    1983-01-01

    A simulation program for verifying and checking the performance of the Galileo Spacecraft's Attitude and Articulation Control Subsystem's (AACS) flight software is discussed. The program, which is called Functional Simulator (FUNSIM), provides a simple method of interfacing user-supplied mathematical models coded in FORTRAN which describes spacecraft dynamics, sensors, and actuators; this is done with the AACS flight software, coded in HAL/S (High-level Advanced Language/Shuttle). It is thus able to simulate the AACS flight software accurately to the HAL/S statement level in the environment of a mainframe computer system. FUNSIM also has a command and data subsystem (CDS) simulator. It is noted that the input/output data and timing are simulated with the same precision as the flight microprocessor. FUNSIM uses a variable stepsize numerical integration algorithm complete with individual error bound control on the state variable to solve the equations of motion. The program has been designed to provide both line printer and matrix dot plotting of the variables requested in the run section and to provide error diagnostics.

  8. IMP-J attitude control prelaunch analysis and operations plan

    NASA Technical Reports Server (NTRS)

    Hooper, H. L.; Mckendrew, J. B.; Repass, G. D.

    1973-01-01

    A description of the attitude control support being supplied for the Explorer 50 mission is given. Included in the document are descriptions of the computer programs being used to support attitude determination, prediction, and control for the mission and descriptions of the operating procedures that will be used to accomplish mission objectives.

  9. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  10. Electronic dietary recording system improves nutrition knowledge, eating attitudes and habitual physical activity: a randomised controlled trial.

    PubMed

    Chung, Louisa Ming Yan; Law, Queenie Pui Sze; Fong, Shirley Siu Ming; Chung, Joanne Wai Yee

    2014-08-01

    This study's objective was to investigate whether use of an electronic dietary recording system improves nutrition knowledge, eating attitudes and habitual physical activity levels compared to use of a food diary and no self-monitoring. Sixty adults aged 20-60 with a body mass index ≥25 were recruited and randomly assigned to one of three groups: a group using an electronic system (EG), a group using a food diary (FD) and a control group using nothing (CG) to record food intake. All participants took part in three 60-90 nutrition seminars and completed three questionnaires on general nutrition knowledge, habitual physical activity levels and eating attitudes at the beginning and end of the 12-week study. The pre- and post-test scores for each questionnaire were analysed using a paired sample t-test. Significant improvements in the domain of 'dietary recommendations' were found in the EG (p=0.009) and FD groups (p=0.046). Great improvements were found in 'sources of nutrients', 'choosing everyday foods' and 'diet-disease relationships' in EG and FD groups. EG group showed greater improvement in the work index and sport index. An electronic dietary recording system may improve eating and exercise behaviour in a self-monitoring process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Radar Attitude Sensing System (RASS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The initial design and fabrication efforts for a radar attitude sensing system (RASS) are covered. The design and fabrication of the RASS system is being undertaken in two phases, 1B1 and 1B2. The RASS system as configured under phase 1B1 contains the solid state transmitter and local oscillator, the antenna system, the receiving system, and the altitude electronics. RASS employs a pseudo-random coded cw signal and receiver correlation techniques to measure range. The antenna is a planar, phased array, monopulse type, whose beam is electronically steerable using diode phase shifters. The beam steering computer and attitude sensing circuitry are to be included in Phase 1B2 of the program.

  12. Attitude Determination and Control System (ADCS) and Maintenance and Diagnostic System (MDS): A maintenance and diagnostic system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Toms, David; Hadden, George D.; Harrington, Jim

    1990-01-01

    The Maintenance and Diagnostic System (MDS) that is being developed at Honeywell to enhance the Fault Detection Isolation and Recovery system (FDIR) for the Attitude Determination and Control System on Space Station Freedom is described. The MDS demonstrates ways that AI-based techniques can be used to improve the maintainability and safety of the Station by helping to resolve fault anomalies that cannot be fully determined by built-in-test, by providing predictive maintenance capabilities, and by providing expert maintenance assistance. The MDS will address the problems associated with reasoning about dynamic, continuous information versus only about static data, the concerns of porting software based on AI techniques to embedded targets, and the difficulties associated with real-time response. An initial prototype was built of the MDS. The prototype executes on Sun and IBM PS/2 hardware and is implemented in the Common Lisp; further work will evaluate its functionality and develop mechanisms to port the code to Ada.

  13. Electrospray Thrusters for Attitude Control of a 1-U CubeSat

    NASA Astrophysics Data System (ADS)

    Timilsina, Navin

    With a rapid increase in the interest in use of nanosatellites in the past decade, finding a precise and low-power-consuming attitude control system for these satellites has been a real challenge. In this thesis, it is intended to design and test an electrospray thruster system that could perform the attitude control of a 1-unit CubeSat. Firstly, an experimental setup is built to calculate the conductivity of different liquids that could be used as propellants for the CubeSat. Secondly, a Time-Of-Flight experiment is performed to find out the thrust and specific impulse given by these liquids and hence selecting the optimum propellant. On the other hand, a colloidal thruster system for a 1-U CubeSat is designed in Solidworks and fabricated using Lathe and CNC Milling Machine. Afterwards, passive propellant feeding is tested in this thruster system. Finally, the electronic circuit and wireless control system necessary to remotely control the CubeSat is designed and the final testing is performed. Among the propellants studied, Ethyl ammonium nitrate (EAN) was selected as the best propellant for the CubeSat. Theoretical design and fabrication of the thruster system was performed successfully and so was the passive propellant feeding test. The satellite was assembled for the final experiment but unfortunately the microcontroller broke down during the first test and no promising results were found out. However, after proving that one thruster works with passive feeding, it could be said that the ACS testing would have worked if we had performed vacuum compatibility tests for other components beforehand.

  14. In-flight results of adaptive attitude control law for a microsatellite

    NASA Astrophysics Data System (ADS)

    Pittet, C.; Luzi, A. R.; Peaucelle, D.; Biannic, J.-M.; Mignot, J.

    2015-06-01

    Because satellites usually do not experience large changes of mass, center of gravity or inertia in orbit, linear time invariant (LTI) controllers have been widely used to control their attitude. But, as the pointing requirements become more stringent and the satellite's structure more complex with large steerable and/or deployable appendices and flexible modes occurring in the control bandwidth, one unique LTI controller is no longer sufficient. One solution consists in designing several LTI controllers, one for each set point, but the switching between them is difficult to tune and validate. Another interesting solution is to use adaptive controllers, which could present at least two advantages: first, as the controller automatically and continuously adapts to the set point without changing the structure, no switching logic is needed in the software; second, performance and stability of the closed-loop system can be assessed directly on the whole flight domain. To evaluate the real benefits of adaptive control for satellites, in terms of design, validation and performances, CNES selected it as end-of-life experiment on PICARD microsatellite. This paper describes the design, validation and in-flight results of the new adaptive attitude control law, compared to nominal control law.

  15. Space station dynamics, attitude control and momentum management

    NASA Technical Reports Server (NTRS)

    Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi

    1989-01-01

    The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.

  16. Method and apparatus for rate integration supplement for attitude referencing with quaternion differencing

    NASA Technical Reports Server (NTRS)

    Rodden, John James (Inventor); Price, Xenophon (Inventor); Carrou, Stephane (Inventor); Stevens, Homer Darling (Inventor)

    2002-01-01

    A control system for providing attitude control in spacecraft. The control system comprising a primary attitude reference system, a secondary attitude reference system, and a hyper-complex number differencing system. The hyper-complex number differencing system is connectable to the primary attitude reference system and the secondary attitude reference system.

  17. Attitude control for on-orbit servicing spacecraft using hybrid actuator

    NASA Astrophysics Data System (ADS)

    Wu, Yunhua; Han, Feng; Zheng, Mohong; He, Mengjie; Chen, Zhiming; Hua, Bing; Wang, Feng

    2018-03-01

    On-orbit servicing is one of the research hotspots of space missions. A small satellite equipped with multiple robotic manipulators is expected to carry out device replacement task for target large spacecraft. Attitude hyperstable control of a small satellite platform under rotations of the manipulators is a challenging problem. A hybrid momentum exchanging actuator consists of Control Moment Gyro (CMG) and Reaction Wheel (RW) is proposed to tackle the above issue, due to its huge amount of momentum storage capacity of the CMG and high control accuracy of the RW, in which the CMG produces large command torque while the RW offers additional control degrees. The constructed dynamic model of the servicing satellite advises that it's feasible for attitude hyperstable control of the platform with arbitrary manipulators through compensating the disturbance generated by rapid rotation of the manipulators. Then, null motion between the CMG and RW is exploited to drive the system to the expected target with favorable performance, and to overcome the CMG inherent geometric singularity and RW saturation. Simulations with different initial situations, including CMG hyperbolic and elliptic singularities and RW saturation, are executed. Compared to the scenarios where the CMG or RW fails stabilizing the platform, large control torque, precise control effect and escape of singularity are guaranteed by the introduced hybrid actuator, CMGRW (CMGRW refers to the hybrid momentum exchanging devices in this paper, consisting of 4 CMGs in classical pyramid cluster and 3 RWs in an orthogonal group (specific description can been found in Section 4)). The feasible performance of the satellite, CMG and RW under large disturbance demonstrates that the control architecture proposed is capable of attitude control for on-orbit servicing satellite with multiple robotic manipulators.

  18. Fault tolerant programmable digital attitude control electronics study

    NASA Technical Reports Server (NTRS)

    Sorensen, A. A.

    1974-01-01

    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation.

  19. Tethered satellite system dynamics and control

    NASA Technical Reports Server (NTRS)

    Musetti, B.; Cibrario, B.; Bussolino, L.; Bodley, C. S.; Flanders, H. A.; Mowery, D. K.; Tomlin, D. D.

    1990-01-01

    The first tethered satellite system, scheduled for launch in May 1991, is reviewed. The system dynamics, dynamics control, and dynamics simulations are discussed. Particular attention is given to in-plane and out-of-plane librations; tether oscillation modes; orbiter and sub-satellite dynamics; deployer control system; the sub-satellite attitude measurement and control system; the Aeritalia Dynamics Model; the Martin-Marietta and NASA-MSFC Dynamics Model; and simulation results.

  20. Attitude and Configuration Control of Flexible Multi-Body Spacecraft

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Ki; Cochran, John E., Jr.

    2002-06-01

    Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

  1. Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.

    2003-01-01

    A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.

  2. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    NASA Technical Reports Server (NTRS)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  3. Precision Pointing Control System (PPCS) system design and analysis. [for gimbaled experiment platforms

    NASA Technical Reports Server (NTRS)

    Frew, A. M.; Eisenhut, D. F.; Farrenkopf, R. L.; Gates, R. F.; Iwens, R. P.; Kirby, D. K.; Mann, R. J.; Spencer, D. J.; Tsou, H. S.; Zaremba, J. G.

    1972-01-01

    The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target.

  4. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  5. Global finite-time attitude consensus tracking control for a group of rigid spacecraft

    NASA Astrophysics Data System (ADS)

    Li, Penghua

    2017-10-01

    The problem of finite-time attitude consensus for multiple rigid spacecraft with a leader-follower architecture is investigated in this paper. To achieve the finite-time attitude consensus, at the first step, a distributed finite-time convergent observer is proposed for each follower to estimate the leader's attitude in a finite time. Then based on the terminal sliding mode control method, a new finite-time attitude tracking controller is designed such that the leader's attitude can be tracked in a finite time. Finally, a finite-time observer-based distributed control strategy is proposed. It is shown that the attitude consensus can be achieved in a finite time under the proposed controller. Simulation results are given to show the effectiveness of the proposed method.

  6. Speed-constrained three-axes attitude control using kinematic steering

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Piggott, Scott

    2018-06-01

    Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

  7. Attitude Control Propulsion Components, Volume 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude control propulsion components are described, including hydrazine thrusters, hydrazine thruster and cold gas jet valves, and pressure and temperature transducers. Component-ordered data are presented in tabular form; the manufacturer and specific space program are included.

  8. Robust attitude control design for spacecraft under assigned velocity and control constraints.

    PubMed

    Hu, Qinglei; Li, Bo; Zhang, Youmin

    2013-07-01

    A novel robust nonlinear control design under the constraints of assigned velocity and actuator torque is investigated for attitude stabilization of a rigid spacecraft. More specifically, a nonlinear feedback control is firstly developed by explicitly taking into account the constraints on individual angular velocity components as well as external disturbances. Considering further the actuator misalignments and magnitude deviation, a modified robust least-squares based control allocator is employed to deal with the problem of distributing the previously designed three-axis moments over the available actuators, in which the focus of this control allocation is to find the optimal control vector of actuators by minimizing the worst-case residual error using programming algorithms. The attitude control performance using the controller structure is evaluated through a numerical example. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Optical tools and techniques for aligning solar payloads with the SPARCS control system. [Solar Pointing Aerobee Rocket Control System

    NASA Technical Reports Server (NTRS)

    Thomas, N. L.; Chisel, D. M.

    1976-01-01

    The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.

  10. The Relationship of Pupil Control Ideology to Students' Rights Attitudes.

    ERIC Educational Resources Information Center

    Jones, Lynn

    As a result of increased court intervention in favor of students' rights, a review of a sample of teachers concerning their attitudes about student control was examined. Taking into consideration the teachers' attitudes concerning student rights, the Pupil Control Ideology test and the Students' Rights Acceptance Scale were used as measurement…

  11. Cassini at Saturn Proximal Orbits - Attitude Control Challenges

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2013-01-01

    The Cassini mission at Saturn will come to an end in the spring and summer of 2017 with a series of 22 orbits that will dip inside the rings of Saturn. These are called proximal orbits and will conclude with spacecraft disposal into the atmosphere of the ringed world on September 15, 2017. These unique orbits that cross the ring plane only a few thousand kilometers above the cloud tops of the planet present new attitude control challenges for the Cassini operations team. Crossing the ring plane so close to the inner edge of the rings means that the Cassini orientation during the crossing will be tailored to protect the sensitive electronics bus of the spacecraft. This orientation will put the sun sensors at some extra risk so this paper discusses how the team prepares for dust hazards. Periapsis is so close to the planet that spacecraft controllability with RCS thrusters needs to be evaluated because of the predicted atmospheric torque near closest approach to Saturn. Radiation during the ring plane crossings will likely trigger single event transients in some attitude control sensors. This paper discusses how the attitude control team deals with radiation hazards. The angular size and unique geometry of the rings and Saturn near periapsis means that star identification will be interrupted and this paper discusses how the safe mode attitude is selected to best deal with these large bright bodies during the proximal orbits.

  12. Vision and dual IMU integrated attitude measurement system

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Lu, Huang

    2018-01-01

    To determination relative attitude between two space objects on a rocking base, an integrated system based on vision and dual IMU (inertial determination unit) is built up. The determination system fuses the attitude information of vision with the angular determinations of dual IMU by extended Kalman filter (EKF) to obtain the relative attitude. One IMU (master) is attached to the measured motion object and the other (slave) to the rocking base. As the determination output of inertial sensor is relative to inertial frame, thus angular rate of the master IMU includes not only motion of the measured object relative to inertial frame but also the rocking base relative to inertial frame, where the latter can be seen as redundant harmful movement information for relative attitude determination between the measured object and the rocking base. The slave IMU here assists to remove the motion information of rocking base relative to inertial frame from the master IMU. The proposed integrated attitude determination system is tested on practical experimental platform. And experiment results with superior precision and reliability show the feasibility and effectiveness of the proposed attitude determination system.

  13. LQG/LTR optimal attitude control of small flexible spacecraft using free-free boundary conditions

    NASA Astrophysics Data System (ADS)

    Fulton, Joseph M.

    Due to the volume and power limitations of a small satellite, careful consideration must be taken while designing an attitude control system for 3-axis stabilization. Placing redundancy in the system proves difficult and utilizing power hungry, high accuracy, active actuators is not a viable option. Thus, it is customary to find dependable, passive actuators used in conjunction with small scale active control components. This document describes the application of Elastic Memory Composite materials in the construction of a flexible spacecraft appendage, such as a gravity gradient boom. Assumed modes methods are used with Finite Element Modeling information to obtain the equations of motion for the system while assuming free-free boundary conditions. A discussion is provided to illustrate how cantilever mode shapes are not always the best assumption when modeling small flexible spacecraft. A key point of interest is first resonant modes may be needed in the system design plant in spite of these modes being greater than one order of magnitude in frequency when compared to the crossover frequency of the controller. LQG/LTR optimal control techniques are implemented to compute attitude control gains while controller robustness considerations determine appropriate reduced order controllers and which flexible modes to include in the design model. Key satellite designer concerns in the areas of computer processor sizing, material uncertainty impacts on the system model, and system performance variations resulting from appendage length modifications are addressed.

  14. On-board Attitude Determination System (OADS). [for advanced spacecraft missions

    NASA Technical Reports Server (NTRS)

    Carney, P.; Milillo, M.; Tate, V.; Wilson, J.; Yong, K.

    1978-01-01

    The requirements, capabilities and system design for an on-board attitude determination system (OADS) to be flown on advanced spacecraft missions were determined. Based upon the OADS requirements and system performance evaluation, a preliminary on-board attitude determination system is proposed. The proposed OADS system consists of one NASA Standard IRU (DRIRU-2) as the primary attitude determination sensor, two improved NASA Standard star tracker (SST) for periodic update of attitude information, a GPS receiver to provide on-board space vehicle position and velocity vector information, and a multiple microcomputer system for data processing and attitude determination functions. The functional block diagram of the proposed OADS system is shown. The computational requirements are evaluated based upon this proposed OADS system.

  15. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  16. A Weight Comparison of Several Attitude Controls for Satellites

    NASA Technical Reports Server (NTRS)

    Adams, James J.; Chilton, Robert G.

    1959-01-01

    A brief theoretical study has been made for the purpose for estimating and comparing the weight of three different types of controls that can be used to change the attitude of a satellite. The three types of controls are jet reaction, inertia wheel, and a magnetic bar which interacts with the magnetic field of the earth. An idealized task which imposed severe requirements on the angular motion of the satellite was used as the basis for comparison. The results showed that a control for one axis can be devised which will weigh less than 1 percent of the total weight of the satellite. The inertia-wheel system offers weight-saving possibilities if a large number of cycles of operation are required, whereas the jet system would be preferred if a limited number of cycles are required. The magnetic-bar control requires such a large magnet that it is impractical for the example application but might be of value for supplying small trimming moments about certain axes.

  17. Integration and Testing of the Lunar Reconnaissance Orbiter Attitude Control System

    NASA Technical Reports Server (NTRS)

    Simpson, Jim; Badgley, Jason; McCaughey, Ken; Brown, Kristen; Calhoun, Philip; Davis, Edward; Garrick, Joseph; Gill, Nathaniel; Hsu, Oscar; Jones, Noble; hide

    2010-01-01

    Throughout the Lunar Reconnaissance Orbiter (LRO) Integration and Testing (I&T) phase of the project, the Attitude Control System (ACS) team completed numerous tests on each hardware component in ever more flight like environments. The ACS utilizes a select group of attitude sensors and actuators. This paper chronicles the evolutionary steps taken to verify each component was constantly ready for flight as well as providing invaluable trending experience with the actual hardware. The paper includes a discussion of each ACS hardware component, lessons learned of the various stages of I&T, a discussion of the challenges that are unique to the LRO project, as well as a discussion of work for future missions to consider as part of their I&T plan. LRO ACS sensors were carefully installed, tested, and maintained over the 18 month I&T and prelaunch timeline. Care was taken with the optics of the Adcole Coarse Sun Sensors (CSS) to ensure their critical role in the Safe Hold mode was fulfilled. The use of new CSS stimulators provided the means of testing each CSS sensor independently, in ambient and vacuum conditions as well as over a wide range of thermal temperatures. Extreme bright light sources were also used to test the CSS in ambient conditions. The integration of the two SELEX Galileo Star Trackers was carefully planned and executed. Optical ground support equipment was designed and used often to check the performance of the star trackers throughout I&T in ambient and thermal/vacuum conditions. A late discovery of potential contamination of the star tracker light shades is discussed in this paper. This paper reviews how each time the spacecraft was at a new location and orientation, the Honeywell Miniature Inertial Measurement Unit (MIMU) was checked for data output validity. This gyro compassing test was performed at several key testing points in the timeline as well as several times while LRO was on the launch pad. Sensor alignment tests were completed several

  18. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.

    PubMed

    Zou, An-Min; Kumar, Krishna Dev

    2012-07-01

    This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.

  19. Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.

  20. Attitude Control Performance of IRVE-3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  1. Ares I Flight Control System Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedrossian, Nazareth; Hall, Charles; Ryan, Stephen; Jackson, Mark

    2010-01-01

    The Ares I launch vehicle represents a challenging flex-body structural environment for flight control system design. This paper presents a design methodology for employing numerical optimization to develop the Ares I flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares I time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time launch control systems in the presence of parametric uncertainty. Flex filters in the flight control system are designed to minimize the flex components in the error signals before they are sent to the attitude controller. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constraints minimizes performance degradation caused by the addition of the flex filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The flight control system designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC 6DOF nonlinear time domain simulation.

  2. Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Yue, Baozeng; Zhao, Liangyu

    2018-02-01

    A liquid-filled flexible spacecraft is essentially a time-variant fully-coupled system, whose dynamics characteristics are closely associated with its motion features. This paper focuses on the mathematical modelling and attitude control of the spacecraft coupled with fuel sloshing dynamics and flexible solar panels vibration. The slosh motion is represented by a spherical pendulum, whose motion description method is improved by using split variable operation. Benefiting from this improvement, the nonlinear lateral sloshing and the rotary sloshing as well as the rigid motion of a liquid respect to the spacecraft can be approximately described. The assumed modes discretization method has been adopted to approximate the elastic displacements of the attached panels, and the coupled dynamics is derived by using the Lagrangian formulation. A variable substitution method is proposed to obtain the apparently-uncoupled mathematical model of the rigid-flexible-liquid spacecraft. After linearization, this model can be directly used for designing Lyapunov output-feedback attitude controller (OFAC). With only torque actuators, and attitude and rate sensors installed, this kind of attitude controller, as simulation results show, is capable of not only bringing the spacecraft to the desired orientation, but also suppressing the effect of flex and slosh on the attitude motion of the spacecraft.

  3. Magnetic attitude control torque generation of a gravity gradient stabilized satellite

    NASA Astrophysics Data System (ADS)

    Suhadis, N. M.; Salleh, M. B.; Rajendran, P.

    2018-05-01

    Magnetic torquer is used to generate a magnetic dipole moment onboard satellites whereby a control torque for attitude control purposes is generated when it couples with the geomagnetic field. This technique has been considered very attractive for satellites operated in Low Earth Orbit (LEO) as the strength of the geomagnetic field is relatively high below the altitude of 1000 km. This paper presents the algorithm used to generate required magnetic dipole moment by 3 magnetic torquers mounted onboard a gravity gradient stabilized satellite operated at an altitude of 540 km with nadir pointing mission. As the geomagnetic field cannot be altered and its magnitude and direction vary with respect to the orbit altitude and inclination, a comparison study of attitude control torque generation performance with various orbit inclination is performed where the structured control algorithm is simulated for 13°, 33° and 53° orbit inclinations to see how the variation of the satellite orbit affects the satellite's attitude control torque generation. Results from simulation show that the higher orbit inclination generates optimum magnetic attitude control torque for accurate nadir pointing mission.

  4. Attitude Determination Error Analysis System (ADEAS) mathematical specifications document

    NASA Technical Reports Server (NTRS)

    Nicholson, Mark; Markley, F.; Seidewitz, E.

    1988-01-01

    The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.

  5. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  6. Determination of the implementation of the 3-axis attitude motion simulator digital position controller

    NASA Technical Reports Server (NTRS)

    Magana, Mario E.

    1989-01-01

    The digital position controller implemented in the control computer of the 3-axis attitude motion simulator is mathematically reconstructed and documented, since the information supplied with the executable code of this controller was insufficient to make substantial modifications to it. Also developed were methodologies to introduce changes in the controller which do not require rewriting the software. Finally, recommendations are made on possible improvement to the control system performance.

  7. Spherical gyroscopic moment stabilizer for attitude control of microsatellites

    NASA Astrophysics Data System (ADS)

    Keshtkar, Sajjad; Moreno, Jaime A.; Kojima, Hirohisa; Uchiyama, Kenji; Nohmi, Masahiro; Takaya, Keisuke

    2018-02-01

    This paper presents a new and improved concept of recently proposed two-degrees of freedom spherical stabilizer for triaxial orientation of microsatellites. The analytical analysis of the advantages of the proposed mechanism over the existing inertial attitude control devices are introduced. The extended equations of motion of the stabilizing satellite including the spherical gyroscope, for control law design and numerical simulations, are studied in detail. A new control algorithm based on continuous high-order sliding mode algorithms, for managing the torque produced by the stabilizer and therefore the attitude control of the satellite in the presence of perturbations/uncertainties, is presented. Some numerical simulations are carried out to prove the performance of the proposed mechanism and control laws.

  8. Precise attitude control of the Stanford relativity satellite.

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Debra, D. B.

    1973-01-01

    A satellite being designed by the Stanford University to measure (with extremely high precision) the effect of General Relativity is described. Specifically, the satellite will measure two relativistic precessions predicted by the theory: the geodetic effect (6.9 arcsec/yr), due solely to motion about the earth, and the motional effect (0.05 arcsec/yr), due to rotation of the earth. The gyro design requirements, including the requirement for precise attitude control and a dynamic model for attitude control synthesis, are discussed. Closed loop simulation of the satellite's natural dynamics on an analog computer is described.

  9. Students' Attitudes towards Control Methods in Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Hintze, Hanne; And Others

    1988-01-01

    Describes study designed to investigate dental students' attitudes toward computer-assisted teaching as applied in programs for oral radiology in Denmark. Programs using personal computers and slide projectors with varying degrees of learner and teacher control are described, and differences in attitudes between male and female students are…

  10. A linear quadratic tracker for Control Moment Gyro based attitude control of the Space Station

    NASA Technical Reports Server (NTRS)

    Kaidy, J. T.

    1986-01-01

    The paper discusses a design for an attitude control system for the Space Station which produces fast response, with minimal overshoot and cross-coupling with the use of Control Moment Gyros (CMG). The rigid body equations of motion are linearized and discretized and a Linear Quadratic Regulator (LQR) design and analysis study is performed. The resulting design is then modified such that integral and differential terms are added to the state equations to enhance response characteristics. Methods for reduction of computation time through channelization are discussed as well as the reduction of initial torque requirements.

  11. Design and Analysis of Morpheus Lander Flight Control System

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  12. Autonomous Attitude Determination System (AADS). Volume 1: System description

    NASA Technical Reports Server (NTRS)

    Saralkar, K.; Frenkel, Y.; Klitsch, G.; Liu, K. S.; Lefferts, E.; Tasaki, K.; Snow, F.; Garrahan, J.

    1982-01-01

    Information necessary to understand the Autonomous Attitude Determination System (AADS) is presented. Topics include AADS requirements, program structure, algorithms, and system generation and execution.

  13. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem.

    PubMed

    Talebi, H A; Khorasani, K; Tafazoli, S

    2009-01-01

    This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.

  14. Pitch attitude, flight path, and airspeed control during approach and landing of a powered lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1972-01-01

    Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.

  15. Study of Systems Using Inertia Wheels for Precise Attitude Control of a Satellite

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    Systems using inertia wheels are evaluated in this report to determine their suitability for precise attitude control of a satellite and to select superior system configurations. Various possible inertia wheel system configurations are first discussed in a general manner. Three of these systems which appear more promising than the others are analyzed in detail, using the Orbiting Astronomical Observatory as an example. The three systems differ from each other only by the method of damping, which is provided by either a rate gyro, an error-rate network, or a tachometer in series with a high-pass filter. An analytical investigation which consists of a generalized linear analysis, a nonlinear analysis using the switching-time method, and an analog computer study shows that all three systems are theoretically capable of producing adequate response and also of maintaining the required pointing accuracy for the Orbiting Astronomical Observatory of plus or minus 0.1 second of arc. Practical considerations and an experimental investigation show, however, that the system which uses an error-rate network to provide damping is superior to the other two systems. The system which uses a rate gyro is shown to be inferior because the threshold level causes a significant amount of limit-cycle operation, and the system which uses a tachometer with a filter is shown to be inferior because a device with the required dynamic range of operation does not appear to be available. The experimental laboratory apparatus used to investigate the dynamic performance of the systems is described, and experimental results are included to show that under laboratory conditions with relatively large extraneous disturbances, a dynamic tracking error of less than plus or minus 0.5 second of arc was obtained.

  16. Attitude Determination and Control Systems

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Eterno, John

    2011-01-01

    designing and operating spacecraft pointing (i.e. attitude) systems.

  17. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2010-01-01

    This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of 1.2 x 12 Earth radii in the first phase and 1.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two

  18. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2011-01-01

    This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of l.2xl2 Earth radii in the first phase and l.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two radial

  19. RECOGNIZING FARMERS' ATTITUDES AND IMPLEMENTING NONPOINT SOURCE POLLUTION CONTROL POLICIES

    EPA Science Inventory

    This report examines the role of farmer attitudes and corresponding communication activities in the implementation of nonpoint source water pollution control programs. The report begins with an examination of the basis for and function of attitudes in influencing behavior. The ro...

  20. AE-C attitude determination and control prelaunch analysis and operations plan

    NASA Technical Reports Server (NTRS)

    Werking, R. D.; Headrick, R. D.; Manders, C. F.; Woolley, R. D.

    1973-01-01

    A description of attitude control support being supplied by the Mission and Data Operations Directorate is presented. Included are descriptions of the computer programs being used to support the missions for attitude determination, prediction, and control. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  1. Dynamics and Control of Attitude, Power, and Momentum for a Spacecraft Using Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Seywald, Hans; Bose, David M.

    2003-01-01

    Several laws are designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as an integrated set of actuators for attitude control. General, nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as a means of compensating for damping exerted by rotor bearings. Two flywheel steering laws are developed such that torque commanded by an attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude, and illustrate the benefits of kinetic energy error feedback. Control laws for attitude hold are also developed, and used to show the amount of propellant that can be saved when flywheels assist the CMGs. Nonlinear control laws for large-angle slew maneuvers perform well, but excessive momentum is required to reorient a vehicle like the International Space Station.

  2. Attitudes of women from five European countries regarding tobacco control policies.

    PubMed

    Dresler, Carolyn; Wei, Mei; Heck, Julia E; Allwright, Shane; Haglund, Margaretha; Sanchez, Sara; Kralikova, Eva; Stücker, Isabelle; Tamang, Elizabeth; Gritz, Ellen R; Hashibe, Mia

    2013-03-01

    Tobacco-related cancers and, in particular, lung cancer still represents a substantial public health epidemic across Europe as a result of high rates of smoking prevalence. Countries in Europe have proposed and implemented tobacco control policies to reduce smoking prevalence, with some countries being more progressive than others. The aim of this study was to examine factors that influenced women's attitudes across five European countries relative to comprehensive smokefree laws in their countries. A cross-sectional landline telephone survey on attitudes towards tobacco control laws was conducted in five European countries: France, Ireland, Italy, the Czech Republic, and Sweden. Attitudinal scores were determined for each respondent relative to questions about smokefree laws. Logistic regression models were used to obtain odds ratios with 95% confidence intervals. A total of 5000 women were interviewed (1000 women from each country). The majority of women, regardless of smoking history, objected to smoking in public buses, enclosed shopping centers, hospitals, and other indoor work places. More women who had quit smoking believed that new tobacco control laws would prompt cessation - as compared with women who still smoked. In general, there is very high support for national smokefree laws that cover bars, restaurants, and public transport systems. As such laws are implemented, attitudes do change, as demonstrated by the differences between countries such as Ireland and the Czech Republic. Implementing comprehensive smokefree laws will gain high approval and will be associated with prompting people to quit.

  3. [Development of knowledge, attitude and practice questionnaire on prevention and control of occupational diseases].

    PubMed

    Gao, Yuan; Feng, Yuchao; Wang, Min; Su, Yiwei; Li, Yanhua; Wang, Zhi; Tang, Shihao

    2015-04-01

    To develop the knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for occupational groups, and to provide a convenient and effective tool for the survey of knowledge, attitude, and behavior on the prevention and control of occupational diseases in occupational groups and the evaluation of intervention effect. The initial questionnaire which was evaluated by the experts was used to carry out a pre-survey in Guangzhou, China. The survey results were statistically analyzed by t test, identification index method, correlation analysis, and Cronbach's a coefficient method. And then the questionnaire was further modified, and the content of the questionnaire was determined finally. After modification, there were 18 items on knowledge, 16 items on attitude, and 12 items on behavior in the "Knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for enterprise managers"; there were 19 items on knowledge, 10 items on attitude, and 11 items on behavior in the "Knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for workers". The knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for occupational groups is developed successfully, and it is a convenient and effective tool for the survey of knowledge, attitude, and behavior on the prevention and control of occupational diseases in occupational groups and the evaluation of intervention effect.

  4. Directional and Attitude Stability Control Kit

    DTIC Science & Technology

    2014-07-01

    Pre-MRAP Vehicle Rollover Stats1 7/6/2014 DASK - Directional and Attitude Stability Control Kit 7 1: Joint Military Vehicle Working Group Army... contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so...Control Kit 3 8/14/2012 9 Statement of Problem Studied • We address the problem of maneuver-induced rollovers of ground vehicles in theatre. A bolt

  5. Information fusion based optimal control for large civil aircraft system.

    PubMed

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Affectionless control by the same-sex parents increases dysfunctional attitudes about achievement.

    PubMed

    Otani, Koichi; Suzuki, Akihito; Matsumoto, Yoshihiko; Sadahiro, Ryoichi; Enokido, Masanori

    2014-08-01

    The affectionless control parenting has been associated with depression in recipients. The aim of this study was to examine the effect of this parenting style on dysfunctional attitudes predisposing to depression. The subjects were 666 Japanese volunteers. Perceived parental rearing was evaluated by the Parental Bonding Instrument, which has the care and protection subscales. Parental rearing was classified into four types, i.e., optimal parenting (high care/low protection), affectionate constraint (high care/high protection), neglectful parenting (low care/low protection), and affectionless control (low care/high protection). Dysfunctional attitudes were evaluated by the 24-item Dysfunctional Attitude Scale, which has the achievement, dependency and self-control subscales. Males with paternal affectionless control had higher achievement scores than those with paternal optimal parenting (P=.016). Similarly, females with maternal affectionless control had higher achievement scores than those with maternal optimal parenting (P=.016). The present study suggests that affectionless control by the same-sex parents increases dysfunctional attitudes about achievement. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Galileo attitude and articulation control subsystem closed loop testing

    NASA Technical Reports Server (NTRS)

    Lembeck, M. F.; Pignatano, N. D.

    1983-01-01

    In order to ensure the reliable operation of the Attitude and Articulation Control Subsystem (AACS) which will guide the Galileo spacecraft on its two and one-half year journey to Jupiter, the AACS is being rigorously tested. The primary objectives of the test program are the verification of the AACS's form, fit, and function, especially with regard to subsystem external interfaces and the functional operation of the flight software. Attention is presently given to the Galileo Closed Loop Test System, which simulates the dynamic and 'visual' flight environment for AACS components in the laboratory.

  8. Youth Attitudes towards Tobacco Control Laws: The Influence of Smoking Status and Grade in School

    ERIC Educational Resources Information Center

    Williams, Terrinieka T.; Jason, Leonard A.; Pokorny, Steven B.

    2008-01-01

    This study examined adolescent attitudes towards tobacco control laws. An exploratory factor analysis, using surveys from over 9,000 students, identified the following three factors: (1) youth attitudes towards the efficacy of tobacco control laws, (2) youth attitudes towards tobacco possession laws and (3) youth attitudes towards tobacco sales…

  9. The Association Between Implicit and Explicit Attitudes Toward Smoking and Support for Tobacco Control Measures

    PubMed Central

    Chassin, Laurie; Presson, Clark C.

    2013-01-01

    Introduction: This study examined the association between implicit and explicit attitudes toward smoking and support for tobacco control policies. Methods: Participants were from an ongoing longitudinal study of the natural history of smoking who also completed a web-based assessment of implicit attitudes toward smoking (N = 1,337). Multiple regression was used to test the association between covariates (sex, age, educational attainment, parent status, and smoking status), implicit attitude toward smoking, and explicit attitude toward smoking and support for tobacco control policies. The moderating effect of the covariates on the relation between attitudes and support for policies was also tested. Results: Females, those with higher educational attainment, parents, and nonsmokers expressed more support for tobacco control policy measures. For nonsmokers, only explicit attitude was significantly associated with support for policies. For smokers, both explicit and implicit attitudes were significantly associated with support. The effect of explicit attitude was stronger for those with lower educational attainment. Conclusions: Both explicit and implicit smoking attitudes are important for building support for tobacco control policies, particularly among smokers. More research is needed on how to influence explicit and implicit attitudes to inform policy advocacy campaigns. PMID:22581941

  10. The association between implicit and explicit attitudes toward smoking and support for tobacco control measures.

    PubMed

    Macy, Jonathan T; Chassin, Laurie; Presson, Clark C

    2013-01-01

    This study examined the association between implicit and explicit attitudes toward smoking and support for tobacco control policies. Participants were from an ongoing longitudinal study of the natural history of smoking who also completed a web-based assessment of implicit attitudes toward smoking (N = 1,337). Multiple regression was used to test the association between covariates (sex, age, educational attainment, parent status, and smoking status), implicit attitude toward smoking, and explicit attitude toward smoking and support for tobacco control policies. The moderating effect of the covariates on the relation between attitudes and support for policies was also tested. Females, those with higher educational attainment, parents, and nonsmokers expressed more support for tobacco control policy measures. For nonsmokers, only explicit attitude was significantly associated with support for policies. For smokers, both explicit and implicit attitudes were significantly associated with support. The effect of explicit attitude was stronger for those with lower educational attainment. Both explicit and implicit smoking attitudes are important for building support for tobacco control policies, particularly among smokers. More research is needed on how to influence explicit and implicit attitudes to inform policy advocacy campaigns.

  11. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    NASA Technical Reports Server (NTRS)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  12. Attitude and Translation Control of a Solar Sail Vehicle

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2008-01-01

    A report discusses the ability to control the attitude and translation degrees-of-freedom of a solar sail vehicle by changing its center of gravity. A movement of the spacecraft s center of mass causes solar-pressure force to apply a torque to the vehicle. At the compact core of the solar-sail vehicle lies the spacecraft bus which is a large fraction of the total vehicle mass. In this concept, the bus is attached to the spacecraft by two single degree-of-freedom linear tracks. This allows relative movement of the bus in the sail plane. At the null position, the resulting solar pressure applies no torque to the vehicle. But any deviation of the bus from the null creates an offset between the spacecraft center of mass and center of solar radiation pressure, resulting in a solar-pressure torque on the vehicle which changes the vehicle attitude. Two of the three vehicle degrees of freedom can be actively controlled in this manner. The third, the roll about the sunline, requires a low-authority vane/propulsive subsystem. Translation control of the vehicle is achieved by directing the solar-pressure-induced force in the proper inertial direction. This requires attitude control. Attitude and translation degrees-of-freedom are therefore coupled. A guidance law is proposed, which allows the vehicle to stationkeep at an appropriate point on the inertially-rotating Sun-Earth line. Power requirements for moving the bus are minimal. Extensive software simulations have been performed to demonstrate the feasibility of this concept.

  13. Distributed attitude synchronization of formation flying via consensus-based virtual structure

    NASA Astrophysics Data System (ADS)

    Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen

    2011-06-01

    This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.

  14. Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer.

    PubMed

    Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun

    2018-06-01

    This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Flex Dynamics Avoidance Control of the NEA Scout Solar Sail Spacecraft's Reaction Control System

    NASA Technical Reports Server (NTRS)

    Heaton Andrew; Stiltner, Brandon; Diedrich, Benjamin; Becker, Christopher; Orphee, Juan

    2017-01-01

    The Attitude Control System (ACS) is developed for a Near Earth Asteroid (NEA) Scout mission using a solar sail. The NEA-Scout spacecraft is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The solar sail spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Adjustable Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. Because the sail is a flexible structure, care must be taken in designing a control system to avoid exciting the structural modes of the sail. This is especially true for the RCS, which uses pulse actuated, cold-gas jets to control the spacecraft's attitude. While the reaction wheels can be commanded smoothly, the RCS jets are simple on-off actuators. Long duration firing of the RCS jets - firings greater than one second - can be thought of as step inputs to the spacecraft's torque. On the other hand, short duration firings - pulses on the order of 0.1 seconds - can be thought of as impulses in the spacecraft's torque. These types of inputs will excite the structural modes of the spacecraft, causing the sail to oscillate. Sail oscillations are undesirable for many reasons. Mainly, these oscillations will feed into the spacecraft attitude sensors and pointing accuracy, and long term oscillations may be undesirable over the lifetime of the solar sail. In order to limit the sail oscillations, an RCS control scheme is being developed to minimize sail excitations. Specifically, an input shaping scheme similar to the method described in Reference 1 will be employed. A detailed description of the RCS control scheme will

  16. Self-tuning control of attitude and momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.

    1992-01-01

    This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.

  17. A COTS-Based Attitude Dependent Contact Scheduling System

    NASA Technical Reports Server (NTRS)

    DeGumbia, Jonathan D.; Stezelberger, Shane T.; Woodard, Mark

    2006-01-01

    The mission architecture of the Gamma-ray Large Area Space Telescope (GLAST) requires a sophisticated ground system component for scheduling the downlink of science data. Contacts between the ````````````````` satellite and the Tracking and Data Relay Satellite System (TDRSS) are restricted by the limited field-of-view of the science data downlink antenna. In addition, contacts must be scheduled when permitted by the satellite s complex and non-repeating attitude profile. Complicating the matter further, the long lead-time required to schedule TDRSS services, combined with the short duration of the downlink contact opportunities, mandates accurate GLAST orbit and attitude modeling. These circumstances require the development of a scheduling system that is capable of predictively and accurately modeling not only the orbital position of GLAST but also its attitude. This paper details the methods used in the design of a Commercial Off The Shelf (COTS)-based attitude-dependent. TDRSS contact Scheduling system that meets the unique scheduling requirements of the GLAST mission, and it suggests a COTS-based scheduling approach to support future missions. The scheduling system applies filtering and smoothing algorithms to telemetered GPS data to produce high-accuracy predictive GLAST orbit ephemerides. Next, bus pointing commands from the GLAST Science Support Center are used to model the complexities of the two dynamic science gathering attitude modes. Attitude-dependent view periods are then generated between GLAST and each of the supporting TDRSs. Numerous scheduling constraints are then applied to account for various mission specific resource limitations. Next, an optimization engine is used to produce an optimized TDRSS contact schedule request which is sent to TDRSS scheduling for confirmation. Lastly, the confirmed TDRSS contact schedule is rectified with an updated ephemeris and adjusted bus pointing commands to produce a final science downlink contact schedule.

  18. Integrated inertial stellar attitude sensor

    NASA Technical Reports Server (NTRS)

    Brady, Tye M. (Inventor); Kourepenis, Anthony S. (Inventor); Wyman, Jr., William F. (Inventor)

    2007-01-01

    An integrated inertial stellar attitude sensor for an aerospace vehicle includes a star camera system, a gyroscope system, a controller system for synchronously integrating an output of said star camera system and an output of said gyroscope system into a stream of data, and a flight computer responsive to said stream of data for determining from the star camera system output and the gyroscope system output the attitude of the aerospace vehicle.

  19. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    NASA Technical Reports Server (NTRS)

    Zhou, Zhiqiang

    2012-01-01

    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  20. Visual attitude propagation for small satellites

    NASA Astrophysics Data System (ADS)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  1. Semi-globally input-to-state stable controller design for flexible spacecraft attitude stabilization under bounded disturbances

    NASA Astrophysics Data System (ADS)

    Hu, Qinglei

    2010-02-01

    Semi-globally input-to-state stable (ISS) control law is derived for flexible spacecraft attitude maneuvers in the presence of parameter uncertainties and external disturbances. The modified rodrigues parameters (MRP) are used as the kinematic variables since they are nonsingular for all possible rotations. This novel simple control is a proportional-plus-derivative (PD) type controller plus a sign function through a special Lyapunov function construction involving the sum of quadratic terms in the angular velocities, kinematic parameters, modal variables and the cross state weighting. A sufficient condition under which this nonlinear PD-type control law can render the system semi-globally input-to-state stable is provided such that the closed-loop system is robust with respect to any disturbance within a quantifiable restriction on the amplitude, as well as the set of initial conditions, if the control gains are designed appropriately. In addition to detailed derivations of the new controllers design and a rigorous sketch of all the associated stability and attitude convergence proofs, extensive simulation studies have been conducted to validate the design and the results are presented to highlight the ensuring closed-loop performance benefits when compared with the conventional control schemes.

  2. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  3. Experimental study on line-of-sight (LOS) attitude control using control moment gyros under micro-gravity environment

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Hiraiwa, Kana; Yoshimura, Yasuhiro

    2018-02-01

    This paper presents the results of line-of-sight (LOS) attitude control using control moment gyros under a micro-gravity environment generated by parabolic flight. The W-Z parameters are used to describe the spacecraft attitude. In order to stabilize the current LOS to the target LOS, backstepping-based feedback control is considered using the W-Z parameters. Numerical simulations and experiments under a micro-gravity environment are carried out, and their results are compared in order to validate the proposed control methods.

  4. Magellan attitude control mission operations

    NASA Technical Reports Server (NTRS)

    Dukes, Eileen M.

    1993-01-01

    From the Martin Marietta Astronautics Group base in Denver, Colorado, spacecraft engineers have been operating the Magellan spacecraft for the past three and one half years, along with the Jet Propulsion Laboratory, for NASA. The spacecraft team in Denver is responsible for the health of the vehicle, from command generation to evaluation of engineering telemetry. Operation of the spacecraft's Attitude and Articulation Control Subsystem (AACS) has specifically posed several in-flight challenges. This system must provide accurate pointing of the spacecraft throughout each 3.2 hour orbit which typically consists of 5 - 9 discrete maneuvers. Preparation of bi-weekly command sequences, monitoring execution, and trending of subsystem performance is of paramount importance, but in-flight anomalies have also demanded the attention of AACS engineers. Anomalies are often very interesting and challenging aspects of a project, and the Magellan mission was no exception. From the first unsuccessful attempts to perform a starscan, to spacecraft safing events, much has been experienced to add to the `lessons learned' from this mission. Many of Magellan's in-flight experiences, anomalies, and their resolutions are highlighted in this paper.

  5. Magellan attitude control mission operations

    NASA Astrophysics Data System (ADS)

    Dukes, Eileen M.

    From the Martin Marietta Astronautics Group base in Denver, Colorado, spacecraft engineers have been operating the Magellan spacecraft for the past three and one half years, along with the Jet Propulsion Laboratory, for NASA. The spacecraft team in Denver is responsible for the health of the vehicle, from command generation to evaluation of engineering telemetry. Operation of the spacecraft's Attitude and Articulation Control Subsystem (AACS) has specifically posed several in-flight challenges. This system must provide accurate pointing of the spacecraft throughout each 3.2 hour orbit which typically consists of 5 - 9 discrete maneuvers. Preparation of bi-weekly command sequences, monitoring execution, and trending of subsystem performance is of paramount importance, but in-flight anomalies have also demanded the attention of AACS engineers. Anomalies are often very interesting and challenging aspects of a project, and the Magellan mission was no exception. From the first unsuccessful attempts to perform a starscan, to spacecraft safing events, much has been experienced to add to the `lessons learned' from this mission. Many of Magellan's in-flight experiences, anomalies, and their resolutions are highlighted in this paper.

  6. A description of the thruster attitude control simulation and its application to the HEAO-C study

    NASA Technical Reports Server (NTRS)

    Brandon, L. B.

    1971-01-01

    During the design and evaluation of a reaction control system (RCS), it is desirable to have a digital computer program simulating vehicle dynamics, disturbance torques, control torques, and RCS logic. The thruster attitude control simulation (TACS) is just such a computer program. The TACS is a relatively sophisticated digital computer program that includes all the major parameters involved in the attitude control of a vehicle using an RCS for control. It includes the effects of gravity gradient torques and HEAO-C aerodynamic torques so that realistic runs can be made in the areas of fuel consumption and engine actuation rates. Also, the program is general enough that any engine configuration and logic scheme can be implemented in a reasonable amount of time. The results of the application of the TACS in the HEAO-C study are included.

  7. Application of square-root filtering for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Schmidt, S. F.; Goka, T.

    1978-01-01

    Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.

  8. The ATS-F interferometer - A precision wide field-of-view attitude sensor. [solid state system design

    NASA Technical Reports Server (NTRS)

    Teichman, M. A.; Marek, F. L.; Browning, J. J.; Parr, A. K.

    1974-01-01

    An RF phase interferometer has been integrated into the ATS-F spacecraft attitude control system. Laboratory measurements indicate that the interferometer is capable of determining spacecraft attitude in pitch and roll to an accuracy of 0.18 deg over a field-of-view of plus or minus 12.5 deg about the spacecraft normal axis with an angular resolution of 0.004 deg. The system is completely solid state, weighs 17 pounds, and consumes 12.5 W of DC power.

  9. Weight Control: Attitudes of Dieters and Change Agents.

    ERIC Educational Resources Information Center

    Parham, Ellen S.; And Others

    1991-01-01

    Survey explores attitudes toward weight loss/weight control among 2 groups of change agents--40 dietitians and 42 fitness instructors--and among 96 people trying to lose weight. Significant differences were found in terms of importance in weight control of diet, drugs, exercise, religion, and will power; in importance of being of normal weight;…

  10. Enceladus plume density from Cassini spacecraft attitude control data

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Burk, Thomas A.

    2018-01-01

    The plumes of Enceladus are of interest both as a geophysical phenomenon, and as an astrobiological opportunity for sampling internal material. Here we report measurements of the total mass density (gas plus dust, a combination not reported before except in the engineering literature) deduced from telemetry of Cassini's Attitude and Articulation Control System (AACS), as the spacecraft's thrusters or reaction wheels worked to maintain the desired attitude in the presence of drag torques during close flybys. The drag torque shows good agreement with the water vapor density measured by other instruments during the E5 encounter, but indicates a rather higher mass density on other passes (E3, E14), possibly indicating variations in gas composition and/or gas:dust ratio. The spacecraft appears to have intercepted about 0.2 g of material, on flyby E21 in October 2015 indicating a peak mass density of ∼5.5 × 10-11 kg m-3, the highest of all the flybys measured (E3, E5, E7, E9, E14, E21).

  11. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  12. Seasat. Volume 4: Attitude determination

    NASA Technical Reports Server (NTRS)

    Treder, A. J.

    1980-01-01

    The Seasat project was a feasibility demonstration of the use of orbital remote sensing for global ocean observation. The satellite was launched in June 1978 and was operated successfully until October 1978. A massive electrical failure occurred in the power system, terminating the mission prematurely. The actual implementation of the Seasat Attitude Determination system and the contents of the attitude data files generated by that system are documented. The deviations from plan caused by the anomalous Sun interference with horizon sensors, inflight calibration of Sun sensor head 2 alignment and horizon sensor biomass, estimation of yaw interpolation parameters, Sun and horizon sensor error sources, and yaw interpolation accuracy are included. Examples are given of flight attitude data from all modes of the Orbital Attitude Control System, of the ground processing effects on attitude data, and of cold cloud effects on pitch, and roll data.

  13. Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)

    2002-01-01

    In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.

  14. Backup Attitude Control Algorithms for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael

    1999-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and

  15. A view finder control system for an earth observation satellite

    NASA Astrophysics Data System (ADS)

    Steyn, H.

    2004-11-01

    A real time TV view finder is used on-board a low earth orbiting (LEO) satellite to manually select targets for imaging from a ground station within the communication footprint of the satellite. The attitude control system on the satellite is used to steer the satellite using commands from the groundstation and a television camera onboard the satellite will then downlink a television signal in real time to a monitor screen in the ground station. The operator in the feedback loop will be able to manually steer the boresight of the satellite's main imager towards interested target areas e.g. to avoid clouds or correct for any attitude pointing errors. Due to a substantial delay (in the order of a second) in the view finding feedback loop and the narrow field of view of the main imager, the operator has to be assisted by the onboard attitude control system to stabilise and track the target area visible on the monitor screen. This paper will present the extended Kalman filter used to estimate the satellite's attitude angles using quaternions and the bias vector component of the 3-axis inertial rate sensors (gyros). Absolute attitude sensors (i.e. sun, horizon and magnetic) are used to supply the measurement vectors to correct the filter states during the view finder manoeuvres. The target tracking and rate steering reaction wheel controllers to accurately point and stabilise the satellite will be presented. The reference generator for the satellite to target attitude and rate vectors as used by the reaction wheel controllers will be derived.

  16. Analysis and experiments for delay compensation in attitude control of flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Sabatini, Marco; Palmerini, Giovanni B.; Leonangeli, Nazareno; Gasbarri, Paolo

    2014-11-01

    Space vehicles are often characterized by highly flexible appendages, with low natural frequencies which can generate coupling phenomena during orbital maneuvering. The stability and delay margins of the controlled system are deeply affected by the presence of bodies with different elastic properties, assembled to form a complex multibody system. As a consequence, unstable behavior can arise. In this paper the problem is first faced from a numerical point of view, developing accurate multibody mathematical models, as well as relevant navigation and control algorithms. One of the main causes of instability is identified with the unavoidable presence of time delays in the GNC loop. A strategy to compensate for these delays is elaborated and tested using the simulation tool, and finally validated by means of a free floating platform, replicating the flexible spacecraft attitude dynamics (single axis rotation). The platform is equipped with thrusters commanded according to the on-off modulation of the Linear Quadratic Regulator (LQR) control law. The LQR is based on the estimate of the full state vector, i.e. including both rigid - attitude - and elastic variables, that is possible thanks to the on line measurement of the flexible displacements, realized by processing the images acquired by a dedicated camera. The accurate mathematical model of the system and the rigid and elastic measurements enable a prediction of the state, so that the control is evaluated taking the predicted state relevant to a delayed time into account. Both the simulations and the experimental campaign demonstrate that by compensating in this way the time delay, the instability is eliminated, and the maneuver is performed accurately.

  17. Inverse free steering law for small satellite attitude control and power tracking with VSCMGs

    NASA Astrophysics Data System (ADS)

    Malik, M. S. I.; Asghar, Sajjad

    2014-01-01

    Recent developments in integrated power and attitude control systems (IPACSs) for small satellite, has opened a new dimension to more complex and demanding space missions. This paper presents a new inverse free steering approach for integrated power and attitude control systems using variable-speed single gimbal control moment gyroscope. The proposed inverse free steering law computes the VSCMG steering commands (gimbal rates and wheel accelerations) such that error signal (difference in command and output) in feedback loop is driven to zero. H∞ norm optimization approach is employed to synthesize the static matrix elements of steering law for a static state of VSCMG. Later these matrix elements are suitably made dynamic in order for the adaptation. In order to improve the performance of proposed steering law while passing through a singular state of CMG cluster (no torque output), the matrix element of steering law is suitably modified. Therefore, this steering law is capable of escaping internal singularities and using the full momentum capacity of CMG cluster. Finally, two numerical examples for a satellite in a low earth orbit are simulated to test the proposed steering law.

  18. Satellite recovery - Attitude dynamics of the targets

    NASA Technical Reports Server (NTRS)

    Cochran, J. E., Jr.; Lahr, B. S.

    1986-01-01

    The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.

  19. Propulsion Options for Primary Thrust and Attitude Control of Microspacecraft

    NASA Technical Reports Server (NTRS)

    deGroot, W. A.

    1998-01-01

    Order of magnitude decreases in the size of scientific satellites and spacecraft could provide concurrent decreases in mission costs because of lower launch and fabrication costs. Although many subsystems are amenable to dramatic size reductions, miniaturization of the propulsion subsystems is not straightforward. There are a range of requirements for both primary and attitude control propulsion, dictated by mission requirements, satellite size, and power restrictions. Many of the established propulsion technologies can not currently be applied to microspacecraft. Because of this, micro-electromechanical systems (MEMS) fabrication technology is being explored as a path for miniaturization.

  20. Space construction base control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  1. Attitude control of the LACE satellite: A gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Ivory, J. E.; Campion, R. E.; Bakeris, D. F.

    1993-01-01

    The Low-power Atmospheric Compensation Experiment (LACE) satellite was launched in February 1990 by the Naval Research Laboratory. The spacecraft's pitch and roll are maintained with a gravity gradient boom and a magnetic damper. There are two other booms with much smaller tip masses, one in the velocity direction (lead boom) of variable length and the other in the opposite direction (balance boom) also of variable length. In addition, the system uses a momentum wheel with its axis perpendicular to the plane of the orbit to control yaw and keep these booms in the orbital plane. The primary LACE experiment requires that the lead boom be moved to lengths varying from 4.6 m to 45.7 m. This and other onboard experiments require that the spacecraft attitude remain within tight constraints while operating. The problem confronting the satellite operators was to move the lead boom without inducing a net spacecraft attitude disturbance. A description of a method used to change the length of the lead boom while minimizing the disturbance to the attitude of the spacecraft is given. Deadbeating to dampen pitch oscillations has also been accomplished by maneuvering either the lead or balance boom and is discussed.

  2. Integration of a Motion Capture System into a Spacecraft Simulator for Real-Time Attitude Control

    DTIC Science & Technology

    2016-08-16

    Attitude Control* Benjamin L. Reifler University at Buffalo, Buffalo, New York 1st Lt Dylan R. Penn Air Force Research Laboratory, Kirtland Air Force...author was an intern at the Air Force Research Laboratory ( AFRL ) Space Vehicles Directorate. 1 DISTRIBUTION A. Approved for public release: distribution...expertise on this project. I would also like to thank the AFRL Scholars program for the opportunity to participate in this research. References [1

  3. Position and attitude tracking control for a quadrotor UAV.

    PubMed

    Xiong, Jing-Jing; Zheng, En-Hui

    2014-05-01

    A synthesis control method is proposed to perform the position and attitude tracking control of the dynamical model of a small quadrotor unmanned aerial vehicle (UAV), where the dynamical model is underactuated, highly-coupled and nonlinear. Firstly, the dynamical model is divided into a fully actuated subsystem and an underactuated subsystem. Secondly, a controller of the fully actuated subsystem is designed through a novel robust terminal sliding mode control (TSMC) algorithm, which is utilized to guarantee all state variables converge to their desired values in short time, the convergence time is so small that the state variables are acted as time invariants in the underactuated subsystem, and, a controller of the underactuated subsystem is designed via sliding mode control (SMC), in addition, the stabilities of the subsystems are demonstrated by Lyapunov theory, respectively. Lastly, in order to demonstrate the robustness of the proposed control method, the aerodynamic forces and moments and air drag taken as external disturbances are taken into account, the obtained simulation results show that the synthesis control method has good performance in terms of position and attitude tracking when faced with external disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Internal-External Locus of Control and Attitude Toward Disability.

    ERIC Educational Resources Information Center

    MacDonald, A. P.

    The relationship between internal-external locus of control and attitude and reaction toward disability is discussed. Apart from examining the relevant research literature, findings are presented which support the hypothesis that those non-disabled who have external control orientations are more threatened by physical disabilities (vis., internal…

  5. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.

    PubMed

    An-Min Zou; Kumar, K D; Zeng-Guang Hou; Xi Liu

    2011-08-01

    A finite-time attitude tracking control scheme is proposed for spacecraft using terminal sliding mode and Chebyshev neural network (NN) (CNN). The four-parameter representations (quaternion) are used to describe the spacecraft attitude for global representation without singularities. The attitude state (i.e., attitude and velocity) error dynamics is transformed to a double integrator dynamics with a constraint on the spacecraft attitude. With consideration of this constraint, a novel terminal sliding manifold is proposed for the spacecraft. In order to guarantee that the output of the NN used in the controller is bounded by the corresponding bound of the approximated unknown function, a switch function is applied to generate a switching between the adaptive NN control and the robust controller. Meanwhile, a CNN, whose basis functions are implemented using only desired signals, is introduced to approximate the desired nonlinear function and bounded external disturbances online, and the robust term based on the hyperbolic tangent function is applied to counteract NN approximation errors in the adaptive neural control scheme. Most importantly, the finite-time stability in both the reaching phase and the sliding phase can be guaranteed by a Lyapunov-based approach. Finally, numerical simulations on the attitude tracking control of spacecraft in the presence of an unknown mass moment of inertia matrix, bounded external disturbances, and control input constraints are presented to demonstrate the performance of the proposed controller.

  6. Obstetricians' attitudes, subjective norms, perceived controls, and intentions on antibiotic prophylaxis in caesarean section.

    PubMed

    Liabsuetrakul, Tippawan; Chongsuvivatwong, Virasakdi; Lumbiganon, Pisake; Lindmark, Gunilla

    2003-11-01

    Over 10% of current births in all countries of the world are delivered by caesarean section. Single-dose ampicillin or cefazolin administered after cord clamping has been proven to be effective for the prevention of post-caesarean infections as indicated in many randomised trials and reviews in the Cochrane Library. This study aimed to determine three determinants of behavioural intention using the theory of planned behaviour: attitudes, subjective norms, and perceived controls. Intentions were examined for five aspects of the use of antibiotic prophylaxis, namely whether or not antibiotics were used, used in all caesarean sections, after rather than before cord clamping, whether ampicillin/cefazolin or broader-spectrum antibiotics were used, and whether single or multiple doses were given. Fifty obstetricians selected from university, regional, and general hospitals in southern Thailand, were surveyed using a questionnaire and in-depth interview. Their intentions to use a single dose and to use in all cases were low, and this was related to negative attitudes and reference groups who did not approve of the single dose. The negative attitude was based on scepticism concerning the applicability of well-equipped trials from the developed world and fear of consequences of post-caesarean infections. Norms carried over from residency training had more long-term influence in their practice than newer information from books or journals. Perceived external controls on their practice were less predictive of intentions. Intentions were only partly predictive of behaviour. Changing attitudes, introducing evidence-based information into residency training and strengthening control systems in the hospital are essential to improve intentions.

  7. System of Attitudes in Parents of Young People Having Sensory Disorders

    ERIC Educational Resources Information Center

    Posokhova, Svetlana; Konovalova, Natalia; Sorokin, Victor; Demyanov, Yuri; Kolosova, Tatyana; Didenko, Elena

    2016-01-01

    The objective of the research was to identify the system of attitudes in parents of young people having sensory disorders. The survey covered parents of children aged 17 and older having hearing disorders, visual disorders, and no sensory disorders. The parents' system of attitudes united the attitude of the parents to themselves, to the child and…

  8. Auto Code Generation for Simulink-Based Attitude Determination Control System

    NASA Technical Reports Server (NTRS)

    MolinaFraticelli, Jose Carlos

    2012-01-01

    This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.

  9. A vector autopilot system. [aircraft attitude determination with three-axis magnetometer

    NASA Technical Reports Server (NTRS)

    Pietila, R.; Dunn, W. R., Jr.

    1976-01-01

    Current technology has evolved low cost, highly reliable solid state vector magnetometers with excellent angular resolution. This paper discusses the role of a three-axis magnetometer as a new instrument for aircraft attitude determination. Using flight data acquired by an instrumented aircraft, attitude is calculated using the earth's magnetic field vector and compared to measured attitudes. The magnetic field alone is not adequate to resolve all attitude variations and the need for a second reference angle or vector is discussed. A system combining the functions of heading determination and attitude measurement is presented to show that both functions can be implemented with essentially the same component count required to measure heading alone. It is concluded that with the correlation achieved in calculated and measured attitude there is a potential application of vector magnetometry in attitude measurement systems.

  10. Attitudes toward the large-scale implementation of an incident reporting system.

    PubMed

    Braithwaite, Jeffrey; Westbrook, Mary; Travaglia, Joanne

    2008-06-01

    An electronic Incident Information Management System implemented system-wide by the Department of Health, New South Wales, Australia was evaluated. We hypothesized that health professionals (i) would support the system via utilization and favourable attitudes and (ii) that their usage and attitudes would vary according to profession with nurses being most, and doctors least, favourably disposed. An online, anonymous questionnaire survey of 2185 health practitioners. Undertaking system training, satisfaction with training, reporting incidents, incident reporting rates since system introduction and attitude questions focusing on use, security and evaluation of the system and workplace safety cultures. The first hypothesis received partial support. The majority of respondents had undertaken training and rated it highly. Most had reported incidents and maintained their previous reporting levels. Most attitudes regarding using the system and its security were favourable. Mixed attitudes were held about workplace safety cultures and the value of the system. Deficiencies in quality of reporting, feedback on incident reports and resources to analyse incident data were problems identified. The second hypothesis was confirmed. Nurses were most, and doctors least, likely to undertake training, report incidents and express favourable attitudes. Allied health responses were intermediate to those of the other professions. The system implementation was relatively successful, but more so with some professions. Problems identified indicated that expectations as to the goals achievable in the short term were optimistic, but these are amenable to planned interventions.

  11. A Dynamic Attitude Measurement System Based on LINS

    PubMed Central

    Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun

    2014-01-01

    A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802

  12. Using Science Activities To Internalize Locus of Control and Influence Attitudes towards Science.

    ERIC Educational Resources Information Center

    Rowland, Paul McD.

    This study investigated the relationships between science activities that emphasize cause-and-effect and a learner's locus of control. Pretests included the Nowicki-Strickland Abbreviated Scale 7-12 to measure locus of control, and a modification of the Test of Science Related Attitudes to measure attitudes toward science. The findings suggest…

  13. Highly miniaturized FEEP propulsion system (NanoFEEP) for attitude and orbit control of CubeSats

    NASA Astrophysics Data System (ADS)

    Bock, Daniel; Tajmar, Martin

    2018-03-01

    A highly miniaturized Field Emission Electric Propulsion (FEEP) system is currently under development at TU Dresden, called NanoFEEP [1]. The highly miniaturized thruster heads are very compact and have a volume of less than 3 cm3 and a weight of less than 6 g each. One thruster is able to generate continuous thrust of up to 8 μN with short term peaks of up to 22 μN. The very compact design and low power consumption (heating power demand between 50 and 150 mW) are achieved by using Gallium as metal propellant with its low melting point of approximately 30 °C. This makes it possible to implement an electric propulsion system consisting of four thruster heads, two neutralizers and the necessary electronics on a 1U CubeSat with its strong limitation in space, weight and available power. Even formation flying of 1U CubeSats using an electric propulsion system is possible with this system, which is shown by the example of a currently planned cooperation project between Wuerzburg University, Zentrum fuer Telematik and TU Dresden. It is planned to use the NanoFEEP electric propulsion system on the UWE (University Wuerzburg Experimental) 1U CubeSat platform [2] to demonstrate orbit and two axis attitude control with our electric propulsion system NanoFEEP. We present the latest performance characteristics of the NanoFEEP thrusters and the highly miniaturized electronics. Additionally, the concept and the current status of a novel cold neutralizer chip using Carbon Nano Tubes (CNTs) is presented.

  14. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Technical Reports Server (NTRS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  15. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    NASA Technical Reports Server (NTRS)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  16. The accuracy of dynamic attitude propagation

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Chu, D.; Woodard, M.

    1990-01-01

    Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.

  17. Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Croom, Christopher A.; Tolson, Robert H.

    1994-01-01

    Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.

  18. Application of GPS attitude determination to gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lightsey, E. G.; Cohen, Clark E.; Parkinson, Bradford W.

    1993-01-01

    Recent advances in the Global Positioning System (GPS) technology have initiated a new era in aerospace navigation and control. GPS receivers have become increasingly compact and affordable, and new developments have made attitude determination using subcentimeter positioning among two or more antennas feasible for real-time applications. GPS-based attitude control systems will become highly portable packages which provide time, navigation, and attitude information of sufficient accuracy for many aerospace needs. A typical spacecraft application of GPS attitude determination is a gravity gradient stabilized satellite in low Earth orbit that employs a GPS receiver and four body mounted patch antennas. The coupled, linearized equations of motion enable complete position and attitude information to be extracted from only two antennas. A discussion of the various error sources for spaceborne GPS attitude measurement systems is included. Attitude determination of better than 0.3 degrees is possible for 1 meter antenna separation. Suggestions are provided to improve the accuracy of the attitude solution.

  19. Space construction base control system

    NASA Technical Reports Server (NTRS)

    Kaczynski, R. F.

    1979-01-01

    Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.

  20. Experimental evaluation of HJB optimal controllers for the attitude dynamics of a multirotor aerial vehicle.

    PubMed

    Prado, Igor Afonso Acampora; Pereira, Mateus de Freitas Virgílio; de Castro, Davi Ferreira; Dos Santos, Davi Antônio; Balthazar, Jose Manoel

    2018-06-01

    The present paper is concerned with the design and experimental evaluation of optimal control laws for the nonlinear attitude dynamics of a multirotor aerial vehicle. Three design methods based on Hamilton-Jacobi-Bellman equation are taken into account. The first one is a linear control with guarantee of stability for nonlinear systems. The second and third are a nonlinear suboptimal control techniques. These techniques are based on an optimal control design approach that takes into account the nonlinearities present in the vehicle dynamics. The stability Proof of the closed-loop system is presented. The performance of the control system designed is evaluated via simulations and also via an experimental scheme using the Quanser 3-DOF Hover. The experiments show the effectiveness of the linear control method over the nonlinear strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2011-01-01

    This paper presents an overview of the attitude ground system (AGS) currently under development for the Magnetospheric Multiscale (MMS) mission. The primary responsibilities for the MMS AGS are definitive attitude determination, validation of the onboard attitude filter, and computation of certain parameters needed to improve maneuver performance. For these purposes, the ground support utilities include attitude and rate estimation for validation of the onboard estimates, sensor calibration, inertia tensor calibration, accelerometer bias estimation, center of mass estimation, and production of a definitive attitude history for use by the science teams. Much of the AGS functionality already exists in utilities used at NASA's Goddard Space Flight Center with support heritage from many other missions, but new utilities are being created specifically for the MMS mission, such as for the inertia tensor, accelerometer bias, and center of mass estimation. Algorithms and test results for all the major AGS subsystems are presented here.

  2. System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    NASA Technical Reports Server (NTRS)

    Neil, A. L.

    1973-01-01

    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.

  3. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    NASA Technical Reports Server (NTRS)

    Zhou, Zhiqiang

    2010-01-01

    The accuracy of spacecraft attitude control using magnetic actuators only is low and on the order of 0.4-5 degrees. The key reason is that the magnetic torque is two-dimensional and it is only in the plane perpendicular to the magnetic field vector. In this paper novel attitude control algorithms using the combination of magnetic actuators with Reaction Wheel Assembles (RWAs) or other types of actuators, such as thrusters, are presented. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for Nadir pointing, pitch and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude control accuracy is comparable with RWAs based attitude control. The algorithms are also useful for the RWAs based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode and the control accuracy can be maintained.

  4. Attitude determination with three-axis accelerometer for emergency atmospheric entry

    NASA Technical Reports Server (NTRS)

    Garcia-Llama, Eduardo (Inventor)

    2012-01-01

    Two algorithms are disclosed that, with the use of a 3-axis accelerometer, will be able to determine the angles of attack, sideslip and roll of a capsule-type spacecraft prior to entry (at very high altitudes, where the atmospheric density is still very low) and during entry. The invention relates to emergency situations in which no reliable attitude and attitude rate are available. Provided that the spacecraft would not attempt a guided entry without reliable attitude information, the objective of the entry system in such case would be to attempt a safe ballistic entry. A ballistic entry requires three controlled phases to be executed in sequence: First, cancel initial rates in case the spacecraft is tumbling; second, maneuver the capsule to a heat-shield-forward attitude, preferably to the trim attitude, to counteract the heat rate and heat load build up; and third, impart a ballistic bank or roll rate to null the average lift vector in order to prevent prolonged lift down situations. Being able to know the attitude, hence the attitude rate, will allow the control system (nominal or backup, automatic or manual) to cancel any initial angular rates. Also, since a heat-shield forward attitude and the trim attitude can be specified in terms of the angles of attack and sideslip, being able to determine the current attitude in terms of these angles will allow the control system to maneuver the vehicle to the desired attitude. Finally, being able to determine the roll angle will allow for the control of the roll ballistic rate during entry.

  5. Three-Axis Attitude Control of Solar Sails Utilising Reflectivity Control Devices

    NASA Astrophysics Data System (ADS)

    Theodorou, Theodoros

    Solar sails are spacecraft that utilise the Solar Radiation Pressure, the force generated by impinging photons, to propel themselves. Conventional actuators are not suitable for controlling the attitude of solar sails therefore specific attitude control methods have been devised to tackle this. One of these methods is to change the centre of pressure with respect to the center of mass thus creating a torque. Reflectivity Control Devices (RCDs) have been proposed and successfully used to change the centre of pressure. Current methods that utilise RCDs have control authority over two axis only with no ability to control the torque about the normal of the sail surface. This thesis extends the state of the art and demonstrates 3-axis control by generating arbitrary torque vectors within a convex polyhedron. Two different RCD materials are considered, transmission and diffusion technologies both compatible with the proposed concept. A number of metrics have been developed which facilitate the comparison of different sail configurations. One of these metics is the sun map which is a graphic representation of the sun angles for which control authority is maintained. An iterative design process is presented which makes use of the metrics developed and aids in the design of a sail which meets the mission requirements and constraints. Moreover, the effects of different parameters on the performance of the proposed control concept are discussed. For example it is shown that by alternating the angle between the edge and middle RCDs the control authority increases. The concept's scalability has been investigated and a hybrid control scheme has been devised which makes use of both RCDs and reaction wheels. The RCDs are complemented by the reaction wheels to achieve higher slew rates while in turn the RCDs desaturate the reaction wheels. Finally, a number of simulations are conducted to verify the validity of the proposed concept.

  6. A computer simulation of Skylab dynamics and attitude control for performance verification and operational support

    NASA Technical Reports Server (NTRS)

    Buchanan, H.; Nixon, D.; Joyce, R.

    1974-01-01

    A simulation of the Skylab attitude and pointing control system (APCS) is outlined and discussed. Implementation is via a large hybrid computer and includes those factors affecting system momentum management, propellant consumption, and overall vehicle performance. The important features of the flight system are discussed; the mathematical models necessary for this treatment are outlined; and the decisions involved in implementation are discussed. A brief summary of the goals and capabilities of this tool is also included.

  7. Study of tethered satellite active attitude control

    NASA Technical Reports Server (NTRS)

    Colombo, G.

    1982-01-01

    Existing software was adapted for the study of tethered subsatellite rotational dynamics, an analytic solution for a stable configuration of a tethered subsatellite was developed, the analytic and numerical integrator (computer) solutions for this "test case' was compared in a two mass tether model program (DUMBEL), the existing multiple mass tether model (SKYHOOK) was modified to include subsatellite rotational dynamics, the analytic "test case,' was verified, and the use of the SKYHOOK rotational dynamics capability with a computer run showing the effect of a single off axis thruster on the behavior of the subsatellite was demonstrated. Subroutines for specific attitude control systems are developed and applied to the study of the behavior of the tethered subsatellite under realistic on orbit conditions. The effect of all tether "inputs,' including pendular oscillations, air drag, and electrodynamic interactions, on the dynamic behavior of the tether are included.

  8. Rover Attitude and Pointing System Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  9. Prediction-based sampled-data H∞ controller design for attitude stabilisation of a rigid spacecraft with disturbances

    NASA Astrophysics Data System (ADS)

    Zhu, Baolong; Zhang, Zhiping; Zhou, Ding; Ma, Jie; Li, Shunli

    2017-08-01

    This paper investigates the H∞ control problem of the attitude stabilisation of a rigid spacecraft with external disturbances using prediction-based sampled-data control strategy. Aiming to achieve a 'virtual' closed-loop system, a type of parameterised sampled-data controller is designed by introducing a prediction mechanism. The resultant closed-loop system is equivalent to a hybrid system featured by a continuous-time and an impulsive differential system. By using a time-varying Lyapunov functional, a generalised bounded real lemma (GBRL) is first established for a kind of impulsive differential system. Based on this GBRL and Lyapunov functional approach, a sufficient condition is derived to guarantee the closed-loop system to be asymptotically stable and to achieve a prescribed H∞ performance. In addition, the controller parameter tuning is cast into a convex optimisation problem. Simulation and comparative results are provided to illustrate the effectiveness of the developed control scheme.

  10. Breast-feeding initiation in low-income women: Role of attitudes, support, and perceived control.

    PubMed

    Khoury, Amal J; Moazzem, S Wakerul; Jarjoura, Chad M; Carothers, Cathy; Hinton, Agnes

    2005-01-01

    Despite the documented health and emotional benefits of breast-feeding to women and children, breast-feeding rates are low among subgroups of women. In this study, we examine factors associated with breast-feeding initiation in low-income women, including Theory of Planned Behavior measures of attitude, support, and perceived control, as well as sociodemographic characteristics. A mail survey, with telephone follow-up, of 733 postpartum Medicaid beneficiaries in Mississippi was conducted in 2000. The breast-feeding initiation rate in this population was 38%. Women who were older, white, non-Hispanic, college-educated, married, not certified for the Supplemental Nutrition Program for Women, Infants, and Children, and not working full-time were more likely to breast-feed than formula-feed at hospital discharge. Attitudes regarding benefits and barriers to breast-feeding, as well as health care system and social support, were associated with breast-feeding initiation at the multivariate level. Adding the health care system support variables to the regression model, and specifically support from lactation specialists and hospital nurses, explained the association between breast-feeding initiation and women's perceived control over the time and social constraints barriers to breast-feeding. The findings support the need for health care system interventions, family interventions, and public health education campaigns to promote breast-feeding in low-income women.

  11. Inertial attitude control of a bat-like morphing-wing air vehicle.

    PubMed

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  12. Implicit attitudes towards homosexuality: reliability, validity, and controllability of the IAT.

    PubMed

    Banse, R; Seise, J; Zerbes, N

    2001-01-01

    Two experiments were conducted to investigate the psychometric properties of an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) that was adapted to measure implicit attitudes towards homosexuality. In a first experiment, the validity of the Homosexuality-IAT was tested using a known group approach. Implicit and explicit attitudes were assessed in heterosexual and homosexual men and women (N = 101). The results provided compelling evidence for the convergent and discriminant validity of the Homosexuality-IAT as a measure of implicit attitudes. No evidence was found for two alternative explanations of IAT effects (familiarity with stimulus material and stereotype knowledge). The internal consistency of IAT scores was satisfactory (alpha s > .80), but retest correlations were lower. In a second experiment (N = 79) it was shown that uninformed participants were able to fake positive explicit but not implicit attitudes. Discrepancies between implicit and explicit attitudes towards homosexuality could be partially accounted for by individual differences in the motivation to control prejudiced behavior, thus providing independent evidence for the validity of the implicit attitude measure. Neither explicit nor implicit attitudes could be changed by persuasive messages. The results of both experiments are interpreted as evidence for a single construct account of implicit and explicit attitudes towards homosexuality.

  13. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters. M.S. Thesis - M.I.T., 1993

    NASA Technical Reports Server (NTRS)

    Knapp, Roger Glenn

    1993-01-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  14. Attitude estimation of earth orbiting satellites by decomposed linear recursive filters

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1975-01-01

    Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.

  15. Design Considerations for Attitude State Awareness and Prevention of Entry into Unusual Attitudes

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle K. E.; Prinzel, Lawrence J., III; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel; Verstynen, Harry; Hubbs, Clay; Wilkerson, James

    2017-01-01

    Loss of control - inflight (LOC-I) has historically represented the largest category of commercial aviation fatal accidents. A review of the worldwide transport airplane accidents (2001-2010) evinced that loss of attitude or energy state awareness was responsible for a large majority of the LOC-I events. A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that flight crew loss of attitude awareness or energy state awareness due to lack of external visual reference cues was a significant causal factor in 17 of the 18 reviewed flights. CAST recommended that "Virtual Day-Visual Meteorological Condition" (Virtual Day-VMC) displays be developed to provide the visual cues necessary to prevent loss-of-control resulting from flight crew spatial disorientation and loss of energy state awareness. Synthetic vision or equivalent systems (SVS) were identified for a design "safety enhancement" (SE-200). Part of this SE involves the conduct of research for developing minimum aviation system performance standards (MASPS) for these flight deck display technologies to aid flight crew attitude and energy state awareness similar to that of a virtual day-VMC-like environment. This paper will describe a novel experimental approach to evaluating a flight crew's ability to maintain attitude awareness and to prevent entry into unusual attitudes across several SVS optical flow design considerations. Flight crews were subjected to compound-event scenarios designed to elicit channelized attention and startle/surprise within the crew. These high-fidelity scenarios, designed from real-world events, enable evaluation of the efficacy of SVS at improving flight crew attitude awareness to reduce the occurrence of LOC-I incidents in commercial flight operations.

  16. A case study in nonlinear dynamics and control of articulated spacecraft: The Space Station Freedom with a mobile remote manipulator system

    NASA Technical Reports Server (NTRS)

    Bennett, William H.; Kwatny, Harry G.; Lavigna, Chris; Blankenship, Gilmer

    1994-01-01

    The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.

  17. Systems of attitudes towards production in the pork industry. A cross-national study.

    PubMed

    Sørensen, Bjarne Taulo; Barcellos, Marcia Dutra de; Olsen, Nina Veflen; Verbeke, Wim; Scholderer, Joachim

    2012-12-01

    Existing research on public attitudes towards agricultural production systems is largely descriptive, abstracting from the processes through which members of the general public generate their evaluations of such systems. The present paper adopts a systems perspective on such evaluations, understanding them as embedded into a wider attitude system that consists of attitudes towards objects of different abstraction levels, ranging from personal value orientations over general socio-political attitudes to evaluations of specific characteristics of agricultural production systems. It is assumed that evaluative affect propagates through the system in such a way that the system becomes evaluatively consistent and operates as a schema for the generation of evaluative judgments. In the empirical part of the paper, the causal structure of an attitude system from which people derive their evaluations of pork production systems was modelled. The analysis was based on data from a cross-national survey involving 1931 participants from Belgium, Denmark, Germany and Poland. The survey questionnaire contained measures of personal value orientations and attitudes towards environment and nature, industrial food production, food and the environment, technological progress, animal welfare, local employment and local economy. In addition, the survey included a conjoint task by which participants' evaluations of the importance of production system attributes were measured. The data were analysed by means of causal search algorithms and structural equation models. The results suggest that evaluative judgments of the importance of pork production system attributes are generated in a schematic manner, driven by personal value orientations. The effect of personal value orientations was strong and largely unmediated by attitudes of an intermediate level of generality, suggesting that the dependent variables in the particular attitude system that was modelled here can be understood as value

  18. Touchless attitude correction for satellite with constant magnetic moment

    NASA Astrophysics Data System (ADS)

    Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan

    2017-09-01

    Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.

  19. The control of satellites with microgravity constraints: The COMET Control System

    NASA Astrophysics Data System (ADS)

    Grossman, Walter; Freesland, Douglas

    1994-05-01

    The COMET attitude determination and control system, using inverse dynamics and a novel torque distribution/momentum management technique, has shown great flexibility, performance, and robustness. Three-axis control with two wheels is an inherent consequence of inverse dynamics control which allows for reduction in spacecraft weight and cost, or alternatively, provides a simple means of failure-redundancy for three-wheel spacecraft. The control system, without modification, has continued to perform well in spite of large changes in spacecraft mass properties and mission orbit altitude that have occurred during development. This flexibility has obviated imposition of early stringent ADACS design constraints and has greatly reduced commonly incurred ADACS modification costs and delay associated with program maturation.

  20. The control of satellites with microgravity constraints: The COMET Control System

    NASA Technical Reports Server (NTRS)

    Grossman, Walter; Freesland, Douglas

    1994-01-01

    The COMET attitude determination and control system, using inverse dynamics and a novel torque distribution/momentum management technique, has shown great flexibility, performance, and robustness. Three-axis control with two wheels is an inherent consequence of inverse dynamics control which allows for reduction in spacecraft weight and cost, or alternatively, provides a simple means of failure-redundancy for three-wheel spacecraft. The control system, without modification, has continued to perform well in spite of large changes in spacecraft mass properties and mission orbit altitude that have occurred during development. This flexibility has obviated imposition of early stringent ADACS design constraints and has greatly reduced commonly incurred ADACS modification costs and delay associated with program maturation.

  1. Fast spacecraft adaptive attitude tracking control through immersion and invariance design

    NASA Astrophysics Data System (ADS)

    Wen, Haowei; Yue, Xiaokui; Li, Peng; Yuan, Jianping

    2017-10-01

    This paper presents a novel non-certainty-equivalence adaptive control method for the attitude tracking control problem of spacecraft with inertia uncertainties. The proposed immersion and invariance (I&I) based adaptation law provides a more direct and flexible approach to circumvent the limitations of the basic I&I method without employing any filter signal. By virtue of the adaptation high-gain equivalence property derived from the proposed adaptive method, the closed-loop adaptive system with a low adaptation gain could recover the high adaptation gain performance of the filter-based I&I method, and the resulting control torque demands during the initial transient has been significantly reduced. A special feature of this method is that the convergence of the parameter estimation error has been observably improved by utilizing an adaptation gain matrix instead of a single adaptation gain value. Numerical simulations are presented to highlight the various benefits of the proposed method compared with the certainty-equivalence-based control method and filter-based I&I control schemes.

  2. Attitude Dynamics, Stability, and Control of a Heliogyro Solar Sail

    NASA Astrophysics Data System (ADS)

    Pimienta-Penalver, Adonis Reinier

    A heliogyro solar sail concept, dubbed `HELIOS', is proposed as an alternative to deep space missions without the need for on-board propellant. Although this type of solar sail has existed in concept for several decades, and some previous studies have investigated certain aspects of its operation, a significant amount of research is still needed to analyze the dynamic and control characteristics of the structure under the projected range of orbital conditions. This work presents an improvement upon the existing discrete-mass models of the heliogyro blade, and the extension of its application from a single membrane blade to a fully-coupled approximation of the dynamics of the HELIOS system with multiple spinning membrane blades around a central hub. The incorporation of structural stiffness and external forcing effects into the model is demonstrated to add a further degree of fidelity in simulating the stability properties of the system. Additionally, the approximated dynamics of multiple-blade heliogyro structures are examined under the effect of solar radiation pressure. Lastly, this study evaluates a control algorithm at each blade root to impose structural integrity and attitude control by coordinating well-known helicopter blade pitching profiles.

  3. Apollo experience report: Guidance and control systems - Digital autopilot design development

    NASA Technical Reports Server (NTRS)

    Peters, W. H.; Cox, K. J.

    1973-01-01

    The development of the Apollo digital autopilots (the primary attitude control systems that were used for all phases of the lunar landing mission) is summarized. This report includes design requirements, design constraints, and design philosophy. The development-process functions and the essential information flow paths are identified. Specific problem areas that existed during the development are included. A discussion is also presented on the benefits inherent in mechanizing attitude-controller logic and dynamic compensation in a digital computer.

  4. Integrated orbit and attitude hardware-in-the-loop simulations for autonomous satellite formation flying

    NASA Astrophysics Data System (ADS)

    Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok

    2013-12-01

    Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.

  5. Negative eating attitudes and behaviors among adolescents: The role of parental control and perceived peer support.

    PubMed

    Pace, Ugo; D'Urso, Giulio; Zappulla, Carla

    2018-02-01

    In the present study, we examined from a longitudinal perspective the relationship between parental (both maternal and paternal) psychological control, perceived peer support, and negative eating attitudes and behaviors, focusing on the moderating role that perceived peer support may play in the relationship between parental psychological control in early adolescence and negative eating attitudes and behaviors in late adolescence. In Wave 1, participants were 507 adolescents (249 boys and 258 girls) aged from 14 to 15 years (M = 14.76; SD = 0.63). Three years later (Wave 2), the same adolescents participated again in the study (M = 17.88 years; SD = 0.57). Regression analyses displayed that paternal, but not maternal, achievement-oriented psychological control during early adolescence positively predicted negative eating attitudes and behaviors in late adolescence, whereas perceived peer support negatively predicted negative eating attitudes and behaviors. Results also showed a moderator effect of perceived peer support in the relationship between father's psychological control and negative eating attitudes and behaviors, such that at higher levels of paternal achievement-oriented psychological control, negative eating attitudes and behaviors tended to be higher when perceived peer support was low and to be lower when perceived peer support was high. Copyright © 2017. Published by Elsevier Ltd.

  6. Implicit and Explicit Attitudes Predict Smoking Cessation: Moderating Effects of Experienced Failure to Control Smoking and Plans to Quit

    PubMed Central

    Chassin, Laurie; Presson, Clark C.; Sherman, Steven J.; Seo, Dong-Chul; Macy, Jon

    2010-01-01

    The current study tested implicit and explicit attitudes as prospective predictors of smoking cessation in a Midwestern community sample of smokers. Results showed that the effects of attitudes significantly varied with levels of experienced failure to control smoking and plans to quit. Explicit attitudes significantly predicted later cessation among those with low (but not high or average) levels of experienced failure to control smoking. Conversely, however, implicit attitudes significantly predicted later cessation among those with high levels of experienced failure to control smoking, but only if they had a plan to quit. Because smoking cessation involves both controlled and automatic processes, interventions may need to consider attitude change interventions that focus on both implicit and explicit attitudes. PMID:21198227

  7. Attitude Control of Nanosatellites by Paddle Motion Using Elastic Hinges Actuated by Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Iai, Masafumi; Durali, Mohammad; Hatsuzawa, Takeshi

    Recent research has been extending the applications of small satellites called microsatellites, nanosatellites, or picosatellites. To further improve capability of those satellites, a lightweight, active attitude-control mechanism is needed. This paper proposes a concept of inertial orientation control, an attitude control method using movable solar arrays. This method is made suitable for nanosatellites by the use of shape memory alloy (SMA)-actuated elastic hinges and a simple maneuver generation algorithm. The combination of SMA and an elastic hinge allows the hinge to remain lightweight and free of frictional or rolling contacts. Changes in the shrinking and stretching speeds of the SMA were measured in a vacuum chamber. The proposed algorithm constructs a maneuver to achieve arbitrary attitude change by repeating simple maneuvers called unit maneuvers. Provided with three types of unit maneuvers, each degree of freedom of the satellite can be controlled independently. Such construction requires only simple calculations, making it a practical algorithm for a nanosatellite with limited computational capability. In addition, power generation variation caused by maneuvers was analyzed to confirm that a maneuver from any initial attitude to an attitude facing the sun was justifiable in terms of the power budget.

  8. Maternal and Paternal Psychological Control as Moderators of the Link between Peer Attitudes and Adolescents' Risky Sexual Behavior

    ERIC Educational Resources Information Center

    Oudekerk, Barbara A.; Allen, Joseph P.; Hafen, Christopher A.; Hessel, Elenda T.; Szwedo, David E.; Spilker, Ann

    2014-01-01

    Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual…

  9. Attitude control analysis of tethered de-orbiting

    NASA Astrophysics Data System (ADS)

    Peters, T. V.; Briz Valero, José Francisco; Escorial Olmos, Diego; Lappas, V.; Jakowski, P.; Gray, I.; Tsourdos, A.; Schaub, H.; Biesbroek, R.

    2018-05-01

    The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision.

  10. [Knowledge, attitude and practice on schistosomiasis control of chronic schistosomiasis patients in Poyang Lake area, Nanchang City].

    PubMed

    Guo-Hua, Peng; Zhu-Hua, Hu; Wei, Hua; Ke, Qian; Xiao-Gang, Li; Zhi-Shu, Zhang; Zhi-Gang, Chen; Xiao-Wu, Feng

    2017-06-26

    To understand the present situation of the chronic schistosomiasis patients' knowledge, attitude and practice on schistosomiasis control in Nanchang City. The knowledge, attitude and values on schistosomiasis control of 523 chronic schistosomiasis patients in Nanchang County, Jinxian County and Xinjian District in the Poyang Lake District were investigated with questionnaires. And the accuracy rates of the knowledge, attitude and practice among the patient groups of different counties, genders, age groups, occupations and educational levels were analyzed. The accuracy rates of the knowledge, attitude and practice of patients on schistosomiasis control were 95.76%, 82.80%, and 81.73% in Nanchang County; 91.37%, 93.32%, and 76.48% in Jinxian County; 88.25%, 67.56%, and 49.40% in Xinjian District. In the accuracy rates of knowledge, attitude and practice, the differences among the three counties (districts) were statistically significant ( χ 2 = 57.511-301.378, all P < 0.05) . The accuracy rates of chronic schistosomiasis patients' attitude and practice on schistosomiasis control in Nanchang City remain low. Therefore, the intensity of attitude and practice intervention should be strengthened in the Poyang Lake District in order to enhance the self-protection awareness of the patients.

  11. Robust high-precision attitude control for flexible spacecraft with improved mixed H2/H∞ control strategy under poles assignment constraint

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Ye, Dong; Shi, Keke; Sun, Zhaowei

    2017-07-01

    A novel improved mixed H2/H∞ control technique combined with poles assignment theory is presented to achieve attitude stabilization and vibration suppression simultaneously for flexible spacecraft in this paper. The flexible spacecraft dynamics system is described and transformed into corresponding state space form. Based on linear matrix inequalities (LMIs) scheme and poles assignment theory, the improved mixed H2/H∞ controller does not restrict the equivalence of the two Lyapunov variables involved in H2 and H∞ performance, which can reduce conservatives compared with traditional mixed H2/H∞ controller. Moreover, it can eliminate the coupling of Lyapunov matrix variables and system matrices by introducing slack variable that provides additional degree of freedom. Several simulations are performed to demonstrate the effectiveness and feasibility of the proposed method in this paper.

  12. Interior and exterior ballistics coupled optimization with constraints of attitude control and mechanical-thermal conditions

    NASA Astrophysics Data System (ADS)

    Liang, Xin-xin; Zhang, Nai-min; Zhang, Yan

    2016-07-01

    For solid launch vehicle performance promotion, a modeling method of interior and exterior ballistics associated optimization with constraints of attitude control and mechanical-thermal condition is proposed. Firstly, the interior and external ballistic models of the solid launch vehicle are established, and the attitude control model of the high wind area and the stage of the separation is presented, and the load calculation model of the drag reduction device is presented, and thermal condition calculation model of flight is presented. Secondly, the optimization model is established to optimize the range, which has internal and external ballistic design parameters as variables selected by sensitivity analysis, and has attitude control and mechanical-thermal conditions as constraints. Finally, the method is applied to the optimal design of a three stage solid launch vehicle simulation with differential evolution algorithm. Simulation results are shown that range capability is improved by 10.8%, and both attitude control and mechanical-thermal conditions are satisfied.

  13. Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat

    NASA Technical Reports Server (NTRS)

    Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas

    2016-01-01

    This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.

  14. The OGO attitude control subsystem redesign as a result of OGO 3 experience. Volume 1: System analysis and design studies

    NASA Technical Reports Server (NTRS)

    Mckenna, K. J.

    1967-01-01

    An oscillation in the OGO-3 roll control channel, resulting from the EP-5 and EP-6 boom motion coupling into the control channel and causing loss of attitude control, is investigated. The study includes (1) an analysis of the OGO-3 and OGO-2 flight data to determine the nature and extent of the roll oscillation phenomena, (2) design analysis of the complete attitude control subsystem (ACS) to evolve changes which would prevent recurrences of the coupled ACS boom oscillation observed on OGO-3, and (3) analog simulations to verify the performance of the design changes selected. Portions of OGO-3 and OGO-2 flight data are illustrated and the major flexible body oscillation are identified. A model of the major flexible appendage dynamics is developed and is shown analytically and through analog simulations to reproduce the OGO-3 oscillation phenomena. The design changes which were found necessary are: a reversal delay logic for the roll reaction wheels, widening of the solar array dead zone from 0.5 to 1.0 deg, and modification of the OPEP control loop to include a filter and stabilizing feedback loops.

  15. Implicit and explicit attitudes predict smoking cessation: moderating effects of experienced failure to control smoking and plans to quit.

    PubMed

    Chassin, Laurie; Presson, Clark C; Sherman, Steven J; Seo, Dong-Chul; Macy, Jonathan T

    2010-12-01

    The current study tested implicit and explicit attitudes as prospective predictors of smoking cessation in a Midwestern community sample of smokers. Results showed that the effects of attitudes significantly varied with levels of experienced failure to control smoking and plans to quit. Explicit attitudes significantly predicted later cessation among those with low (but not high or average) levels of experienced failure to control smoking. Conversely, however, implicit attitudes significantly predicted later cessation among those with high levels of experienced failure to control smoking, but only if they had a plan to quit. Because smoking cessation involves both controlled and automatic processes, interventions may need to consider attitude change interventions that focus on both implicit and explicit attitudes. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  16. Maternal and Paternal Psychological Control as Moderators of the Link between Peer Attitudes and Adolescents' Risky Sexual Behavior.

    PubMed

    Oudekerk, Barbara A; Allen, Joseph P; Hafen, Christopher A; Hessel, Elenda T; Szwedo, David E; Spilker, Ann

    2014-05-01

    Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual behavior. Peer acceptance of early sex predicted greater risky sexual behaviors, but only for teens whose mothers engaged in high levels of psychological control. Paternal psychological control demonstrated the same moderating effect for girls; for boys, however, high levels of paternal control predicted risky sex regardless of peer attitudes. Results are consistent with the theory that peer influences do not replace parental influences with regard to adolescent sexual behavior; rather, parental practices continue to serve an important role either directly forecasting sexual behavior or moderating the link between peer attitudes and sexual behavior.

  17. Maternal and Paternal Psychological Control as Moderators of the Link between Peer Attitudes and Adolescents’ Risky Sexual Behavior

    PubMed Central

    Oudekerk, Barbara A.; Allen, Joseph P.; Hafen, Christopher A.; Hessel, Elenda T.; Szwedo, David E.; Spilker, Ann

    2013-01-01

    Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual behavior. Peer acceptance of early sex predicted greater risky sexual behaviors, but only for teens whose mothers engaged in high levels of psychological control. Paternal psychological control demonstrated the same moderating effect for girls; for boys, however, high levels of paternal control predicted risky sex regardless of peer attitudes. Results are consistent with the theory that peer influences do not replace parental influences with regard to adolescent sexual behavior; rather, parental practices continue to serve an important role either directly forecasting sexual behavior or moderating the link between peer attitudes and sexual behavior. PMID:25328265

  18. Fault tolerant attitude sensing and force feedback control for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Jagadish, Chirag

    Two aspects of an unmanned aerial vehicle are studied in this work. One is fault tolerant attitude determination and the other is to provide force feedback to the joy-stick of the UAV so as to prevent faulty inputs from the pilot. Determination of attitude plays an important role in control of aerial vehicles. One way of defining the attitude is through Euler angles. These angles can be determined based on the measurements of the projections of the gravity and earth magnetic fields on the three body axes of the vehicle. Attitude determination in unmanned aerial vehicles poses additional challenges due to limitations of space, payload, power and cost. Therefore it provides for almost no room for any bulky sensors or extra sensor hardware for backup and as such leaves no room for sensor fault issues either. In the face of these limitations, this study proposes a fault tolerant computing of Euler angles by utilizing multiple different computation methods, with each method utilizing a different subset of the available sensor measurement data. Twenty-five such methods have been presented in this document. The capability of computing the Euler angles in multiple ways provides a diversified redundancy required for fault tolerance. The proposed approach can identify certain sets of sensor failures and even separate the reference fields from the disturbances. A bank-to-turn maneuver of the NASA GTM UAV is used to demonstrate the fault tolerance provided by the proposed method as well as to demonstrate the method of determining the correct Euler angles despite interferences by inertial acceleration disturbances. Attitude computation is essential for stability. But as of today most UAVs are commanded remotely by human pilots. While basic stability control is entrusted to machine or the on-board automatic controller, overall guidance is usually with humans. It is therefore the pilot who sets the command/references through a joy-stick. While this is a good compromise between

  19. Eating on impulse: Implicit attitudes, self-regulatory resources, and trait self-control as determinants of food consumption.

    PubMed

    Wang, Yan; Wang, Lei; Cui, Xianghua; Fang, Yuan; Chen, Qianqiu; Wang, Ya; Qiang, Yao

    2015-12-01

    Self-regulatory resources and trait self-control have been found to moderate the impulse-behavior relationship. The current study investigated whether the interaction of self-regulatory resources and trait self-control moderates the association between implicit attitudes and food consumption. One hundred twenty female participants were randomly assigned to either a depletion condition in which their self-regulatory resources were reduced or a no-depletion condition. Participants' implicit attitudes for chocolate were measured with the Single Category Implicit Association Test and self-report measures of trait self-control were collected. The dependent variable was chocolate consumption in an ostensible taste and rate task. Implicit attitudes predicted chocolate consumption in depleted participants but not in non-depleted participants. However, this predictive power of implicit attitudes on eating in depleted condition disappeared in participants with high trait self-control. Thus, trait self-control and self-regulatory resources interact to moderate the prediction of implicit attitude on eating behavior. Results suggest that high trait self-control buffers the effect of self-regulatory depletion on impulsive eating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Attitude Ground System (AGS) For The Magnetospheric Multi-Scale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission is a Solar-Terrestrial Probe mission consisting of four identically instrumented spin-stabilized spacecraft flying in an adjustable pyramid-like formation around the Earth. The formation of the MMS spacecraft allows for three-dimensional study of the phenomenon of magnetic reconnection, which is the primary objective of the mission. The MMS spacecraft were launched early on March 13, 2015 GMT. Due to the challenging and very constricted attitude and orbit requirements for performing the science, as well as the need to maintain the spacecraft formation, multiple ground functionalities were designed to support the mission. These functionalities were incorporated into a ground system known as the Attitude Ground System (AGS). Various AGS configurations have been used widely to support a variety of three-axis-stabilized and spin-stabilized spacecraft missions within the NASA Goddard Space Flight Center (GSFC). The original MMS operational concept required the AGS to perform highly accurate predictions of the effects of environmental disturbances on the spacecraft orientation and to plan the attitude maneuvers necessary to stay within the science attitude tolerance. The orbit adjustment requirements for formation control drove the need also to perform calibrations that have never been done before in support of NASA GSFC missions. The MMS mission required support analysts to provide fast and accurately calibrated values of the inertia tensor, center of mass, and accelerometer bias for each MMS spacecraft. During early design of the AGS functionalities, a Kalman filter for estimating the attitude, body rates, center of mass, and accelerometer bias, using only star tracker and accelerometer measurements, was heavily analyzed. A set of six distinct filters was evaluated and considered for estimating the spacecraft attitude and body rates using star tracker data only. Four of the six filters are closely related and were compared

  1. A movable-mass attitude stabilization system for cable-connected artificial-g space stations

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Hardison, T. L.

    1974-01-01

    The development of an active, momentum-exchange system to be used for attitude stabilization of a class of cable-connected artificial-g space stations is studied. A system which employs a single movable control mass is examined for the control of a space station which has the physical appearance of two cylinders connected axially by cables. The dynamic model for the space station includes its aggregate rigid body rotation and relative torsional rotation between the bodies. A zero torsional stiffness design (one cable) and a maximum torsional stiffness design (eight cables) are examined in various stages of deployment, for selected spin velocities ranging from 4 rpm upwards. A linear, time-invariant, feed-back control system is employed, with gains calculated via a root-specification procedure. The movable mass controller provides critical wobble-damping capability for the crew quarters for all configurations and spin velocity.

  2. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units.

    PubMed

    Lee, Sang Cheol; Hong, Sung Kyung

    2016-12-11

    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  3. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    PubMed Central

    Lee, Sang Cheol; Hong, Sung Kyung

    2016-01-01

    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter. PMID:27973429

  4. Orion Launch Abort Vehicle Attitude Control Motor Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  5. Attitudes and opinions of nursing and medical staff regarding the supply and storage of medicinal products before and after the installation of a drawer-based automated stock-control system.

    PubMed

    Ardern-Jones, Joanne; Hughes, Donald K; Rowe, Philip H; Mottram, David R; Green, Christopher F

    2009-04-01

    This study assessed the attitudes of Emergency Department (ED) staff regarding the introduction of an automated stock-control system. The objectives were to determine attitudes to stock control and replenishment, speed of access to the system, ease of use and the potential for future uses of the system. The study was carried out in the Countess of Chester Hospital NHS Foundation Trust (COCH) ED, which is attended by over 65,000 patients each year. All 68 ED staff were sent pre-piloted, semi-structured questionnaires and reminders, before and after automation of medicines stock control. Pre-implementation, 35 staff (66.1% of respondents) reported that problems occurred with access to medicine storage keys 'very frequently' or 'frequently'. Twenty-eight (52.8%) respondents 'agreed' or 'strongly agreed' that medicines were quickly accessed, which rose to 41 (77%) post-automation (P < 0.001). Improvement was reported in stock replenishment and storage of stock injections and oral medicines, but there were mixed opinions regarding storage of bulk fluids and refrigerated items. Twenty-seven (51.9%) staff reported access to the system within 1 min and 17 (32.7%) staff reported access within 1-2 min. The majority of staff found the system 'easy' or 'very easy' to use and there was a non-significant relationship between previous use of information technology and acceptance of the system. From a staff satisfaction perspective, automation improved medicines storage, security and stock control, and addressed the problem of searching for keys to storage areas. Concerns over familiarity with computers, queuing, speed of access and an improved audit trail do not appear to have been issues, when compared with the previous manual storage of medicines.

  6. Simulation comparison of a decoupled longitudinal control system and a velocity vector control wheel steering system during landings in wind shear

    NASA Technical Reports Server (NTRS)

    Kimball, G., Jr.

    1980-01-01

    A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.

  7. Three-axis attitude control by two-step rotations using only magnetic torquers in a low Earth orbit near the magnetic equator

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Otsuki, Kensuke; Sugawara, Yoshiki; Saisutjarit, Phongsatorn; Nakasuka, Shinichi

    2016-11-01

    This study proposes a novel method for three-axis attitude control using only magnetic torquers (MTQs). Previously, MTQs have been utilized for attitude control in many low Earth orbit satellites. Although MTQs are useful for achieving attitude control at low cost and high reliability without the need for propellant, these electromagnetic coils cannot be used to generate an attitude control torque about the geomagnetic field vector. Thus, conventional attitude control methods using MTQs assume the magnetic field changes in an orbital period so that the satellite can generate a required attitude control torque after waiting for a change in the magnetic field direction. However, in a near magnetic equatorial orbit, the magnetic field does not change in an inertial reference frame. Thus, satellites cannot generate a required attitude control torque in a single orbital period with only MTQs. This study proposes a method for achieving a rotation about the geomagnetic field vector by generating a torque that is perpendicular to it. First, this study shows that the three-axis attitude control using only MTQs is feasible with a two-step rotation. Then, the study proposes a method for controlling the attitude with the two-step rotation using a PD controller. Finally, the proposed method is assessed by examining the results of numerical simulations.

  8. Development of helicopter attitude axes controlled hover flight without pilot assistance and vehicle crashes

    NASA Astrophysics Data System (ADS)

    Simon, Miguel

    In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and

  9. Design study for LANDSAT-D attitude control system

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.; Mayo, R. A.; Nakano, H.

    1977-01-01

    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse.

  10. Is Racial Attitude Change a Function of Locus of Control?

    ERIC Educational Resources Information Center

    Sharma, Vijay

    1977-01-01

    This study explores the relationship between counselors' locus of control and the degree of change on racial attitudes followed by a structured awareness program and counseling experience on racial and multi-ethnic cultures. (Author)

  11. Aerial cooperative transporting and assembling control using multiple quadrotor-manipulator systems

    NASA Astrophysics Data System (ADS)

    Qi, Yuhua; Wang, Jianan; Shan, Jiayuan

    2018-02-01

    In this paper, a fully distributed control scheme for aerial cooperative transporting and assembling is proposed using multiple quadrotor-manipulator systems with each quadrotor equipped with a robotic manipulator. First, the kinematic and dynamic models of a quadrotor with multi-Degree of Freedom (DOF) robotic manipulator are established together using Euler-Lagrange equations. Based on the aggregated dynamic model, the control scheme consisting of position controller, attitude controller and manipulator controller is presented. Regarding cooperative transporting and assembling, multiple quadrotor-manipulator systems should be able to form a desired formation without collision among quadrotors from any initial position. The desired formation is achieved by the distributed position controller and attitude controller, while the collision avoidance is guaranteed by an artificial potential function method. Then, the transporting and assembling tasks request the manipulators to reach the desired angles cooperatively, which is achieved by the distributed manipulator controller. The overall stability of the closed-loop system is proven by a Lyapunov method and Matrosov's theorem. In the end, the proposed control scheme is simplified for the real application and then validated by two formation flying missions of four quadrotors with 2-DOF manipulators.

  12. Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    TayyebTaher, M.; Esmaeilzadeh, S. Majid

    2017-07-01

    This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.

  13. Aircraft attitude measurement using a vector magnetometer

    NASA Technical Reports Server (NTRS)

    Peitila, R.; Dunn, W. R., Jr.

    1977-01-01

    The feasibility of a vector magnetometer system was investigated by developing a technique to determine attitude given magnetic field components. Sample calculations are then made using the earth's magnetic field data acquired during actual flight conditions. Results of these calculations are compared graphically with measured attitude data acquired simultaneously with the magnetic data. The role and possible implementation of various reference angles are discussed along with other pertinent considerations. Finally, it is concluded that the earth's magnetic field as measured by modern vector magnetometers can play a significant role in attitude control systems.

  14. Attitudes towards the Infection Prevention and Control Nurse: an interview study.

    PubMed

    Ward, Deborah J

    2012-07-01

    A study was undertaken involving nursing students and nurse mentors to investigate the experiences and learning needs of nursing students in relation to infection prevention. One of the objectives was to consider the views of both nursing students and mentors towards the Infection Prevention and Control Nurse (IPCN) as an important staff member in infection prevention and control. Infection prevention and control is a national and international priority but compliance with precautions can be low. One reason for this is staff attitudes. Infection Prevention and Control Nurses have an important role to play in the management of patient care through clinical staff and it is therefore important that they are seen as approachable and effective in their role. Using a qualitative approach, data were obtained through semistructured interviews with 31 nursing students and 32 nurse mentors. Interviews were recorded, transcribed and analysed using framework analysis. Three themes emerged: attitudes towards the IPCN, effects of the presence of the IPCN and preferred qualities in IPCNs. Areas for future research are identified and recommendations made to address areas where attitudes may affect both clinical practice and the education of nursing students in clinical placements. Nurse specialists or practitioners, who are often seen within a management role, need to consider how they work with clinical staff in order to foster more collaborative relationships. © 2012 Blackwell Publishing Ltd.

  15. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    NASA Astrophysics Data System (ADS)

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  16. Weight Control Beliefs, Body Shape Attitudes, and Physical Activity among Adolescents

    ERIC Educational Resources Information Center

    Martin, Scott B.; Rhea, Deborah J.; Greenleaf, Christy A.; Judd, Doryce E.; Chambliss, Heather O.

    2011-01-01

    Background: Relatively little is known about how perceived weight controllability influences important psychological health factors among adolescents. Thus, the purpose of this study is to explore adolescents' weight controllability beliefs and how those beliefs influence weight-related attitudes and behaviors. Methods: Adolescents (N = 369, mean…

  17. LQG/LTR Optimal Attitude Control of Small Flexible Spacecraft Using Free-Free Boundary Conditions

    DTIC Science & Technology

    2006-08-03

    particular on attitude control of flex- ible space structures. Croopnick et al .[50] present a literature survey in the areas of attitude control...modeling and control of space structures is compiled by Nurre et al .[161]. One important thing to note from the surveys listed above is the 21 focus on the...papers surveyed by Croopnick et al . in 1979, by Meirovitch in 1979, Balas in 1982, and Nurre et al . in 1984. The focus of the papers included in all

  18. Dynamic Control System Mode Performance of the Space Technology-7 Disturbance Reduction System

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Hsu, Oscar; Maghami, Peiman

    2017-01-01

    The Space Technology-7 (ST-7) Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft, launched on December 3, 2015. DRS consists of three primary components: Colloidal MicroNewton Thrusters (CMNTs), an Integrated Avionics Unit (IAU), and flight-software implementing the Command and Data Handling (C&DH) and Dynamic Control System (DCS) algorithms. The CMNTs were designed to provide thrust from 5 to 30 micro Newton, with thrust controllability and resolution of 0.1 micro Newton and thrust noise of 0.1 micro Newton/(square root of (Hz)) in the measurement band from 1-30 mHz. The IAU hosts the C&DH and DCS flight software, as well as interfaces with both the CMNT electronics and the LISA Pathfinder spacecraft. When in control, the DCS uses star tracker attitude data and capacitive or optically-measured position and attitude information from LISA Pathfinder and the LISA Technology Package (LTP) to control the attitude and position of the spacecraft and the two test masses inside the LTP. After completion of the nominal ESA LISA Pathfinder mission, the DRS experiment was commissioned followed by its nominal mission. DRS operations extended over the next five months, interspersed with station keeping, anomaly resolution, and periods where control was handed back to LISA Pathfinder for them to conduct further experiments. The primary DRS mission ended on December 6, 2016, with the experiment meeting all of its Level 1 requirements. The DCS, developed at the NASA Goddard Space Flight Center, consists of five spacecraft control modes and six test mass control modes, combined into six 'DRS Mission Modes'. Attitude Control and Zero-G were primarily used to control the spacecraft during initial handover and during many of the CMNT characterization experiments. The other Mission Modes, Drag Free Low Force, 18-DOF Transitional, and 18-DOF, were used to provide drag-free control of the spacecraft about the test

  19. Perceived difficulty in the theory of planned behaviour: perceived behavioural control or affective attitude?

    PubMed

    Kraft, Pål; Rise, Jostein; Sutton, Stephen; Røysamb, Espen

    2005-09-01

    A study was conducted to explore (a) the dimensional structure of perceived behavioural control (PBC), (b) the conceptual basis of perceived difficulty items, and (c) how PBC components and instrumental and affective attitudes, respectively, relate to intention and behaviour. The material stemmed from a two-wave study of Norwegian graduate students (N = 227 for the prediction of intention and N = 110 for the prediction of behaviour). Data were analysed using confirmatory factor analysis (CFA) and multiple regression by the application of structural equation modelling (SEM). CFA suggested that PBC could be conceived of as consisting of three separate but interrelated factors (perceived control, perceived confidence and perceived difficulty), or as two separate but interrelated factors representing self-efficacy (measured by perceived difficulty and perceived confidence or by just perceived confidence) and perceived control. However, the perceived difficulty items also overlapped substantially with affective attitude. Perceived confidence was a strong predictor of exercise intention but not of recycling intention. Perceived control, however, was a strong predictor of recycling intention but not exercise intention. Affective attitudes but not instrumental attitudes were identified as substantial predictors of intentions. The findings suggest that at least under some circumstances it may be inadequate to measure PBC by means of perceived difficulty. One possible consequence may be that the role of PBC as a predictor of intention is somewhat overestimated, whereas the role of (affective) attitude may be similarly underestimated.

  20. 76 FR 50810 - Seventh Meeting: RTCA Special Committee 219: Attitude and Heading Reference System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... Committee 219: Attitude and Heading Reference System AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 219 meeting: Attitude and Heading Reference System. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 219: Attitude...

  1. On the generalization of attitude accessibility after repeated attitude expression

    PubMed Central

    Spruyt, Adriaan; Fazio, Russell H.; Hermans, Dirk

    2016-01-01

    Abstract The more accessible an attitude is, the stronger is its influence on information processing and behavior. Accessibility can be increased through attitude rehearsal, but it remains unknown whether attitude rehearsal also affects the accessibility of related attitudes. To investigate this hypothesis, participants in an experimental condition repeatedly expressed their attitudes towards exemplars of several semantic categories during an evaluative categorization task. Participants in a control condition performed a non‐evaluative task with the same exemplars and evaluated unrelated attitude objects. After a 30‐minute interval, participants in the experimental condition were faster than controls to evaluate not only the original exemplars but also novel exemplars of the same categories. This finding suggests that the effect of attitude rehearsal on accessibility generalizes to attitudes towards untrained but semantically related attitude objects. © 2016 The Authors. European Journal of Social Psychology published by John Wiley & Sons, Ltd. PMID:28701803

  2. Factors Associated with Health Care Professionals' Attitude Toward the Presumed Consent System.

    PubMed

    Tumin, Makmor; Tafran, Khaled; Satar, NurulHuda Mohd; Peng, Ng Kok; Manikam, Rishya; Yoong, Tang Li; Chan, Chong Mei

    2018-05-16

    This paper explores health care professionals' potential attitude toward organ donation if the presumed consent system were to be implemented in Malaysia, as well as factors associated with this attitude. We used self-administered questionnaires to investigate the attitude of 382 health care professionals from the University of Malaya Medical Center between January and February 2014. The responses were analyzed using logistic regression. Of the 382 respondents, 175 (45.8%) stated that they would officially object to organ donation if the presumed consent system were to be implemented, whereas the remaining 207 (54.2%) stated that they would not object. The logistic regression showed that health care professionals from the Malay ethnic group were more likely to object than those from Chinese (adjusted odds ratio of 0.342; P = .001) and Indian and other (adjusted odds ratio of 0.341; P = .003) ethnic groups. Health care professionals earning 3000 Malaysian Ringgit or below were more likely to object than those earning above 3000 Malaysian Ringgit (adjusted odds ratio of 1.919; P = .006). Moreover, respondents who were initially unwilling to donate organs, regardless of the donation system, were more likely to object under the presumed consent system than those who were initially willing to donate (adjusted odds ratio of 2.765; P < .001). Health care professionals in Malaysia have a relatively negative attitude toward the presumed consent system, which does not encourage the implementation of this system in the country at present. To pave the way for a successful implementation of the presumed consent system, efforts should be initiated to enhance the attitude of health care professionals toward this system. In particular, these efforts should at most target the health care professionals who are Malay, earn a low income, and have a negative default attitude toward deceased donation.

  3. Positioning and tracking control system analysis for mobile free space optical network

    NASA Astrophysics Data System (ADS)

    Li, Yushan; Refai, Hazem; Sluss, , James J., Jr.; Verma, Pramode; LoPresti, Peter

    2005-08-01

    Free Space Optical (FSO) communication has evolved to be applied to the mobile network, because it can provide up to 2.5Gbps or higher data rate wireless communication. One of the key challenges with FSO systems is to maintain the Line of Sight (LOS) between transmitter and receiver. In this paper, the feasibility and performance of applying the FSO technology to the mobile network is explored, and the design plan of the attitude positioning and tracking control system of the FSO transceiver is investigated. First, the system architecture is introduced, the requirements for the control system are analyzed, the involved reference frames and frame transformation are presented. Second, the control system bandwidth is used to evaluate the system performance in controlling a positioning system consisting of a gimbal and a steering mirror, some definitions to describe the positioning accuracy and tracking capacity are given. The attitude control of a FSO transceiver is split into 2 similar channels: pitch and yaw. Using an equivalent linear control system model, the simulations are carried out, with and without the presence of uncertainties that includes GPS data errors and sensor measurement errors. Finally, based on the simulation results in the pitch channel, the quantitative evaluation on the performance of the control system is given, including positioning accuracy, tracking capability and uncertainty tolerance.

  4. Attitudes toward Nutrition, Locus of Control and Smoking Behavior.

    ERIC Educational Resources Information Center

    Corfield, V. Kilian; And Others

    Research has shown that many behaviors previously thought to be purely psychological in origin do, in fact, have a physiological basis. To examine the relationship of smoking behavior to locus of control, and to attitudes toward, knowledge about, and behavior with respect to nutrition, 116 Canadian undergraduate students completed the Nutrition…

  5. Evaluating a Control System Architecture Based on a Formally Derived AOCS Model

    NASA Astrophysics Data System (ADS)

    Ilic, Dubravka; Latvala, Timo; Varpaaniemi, Kimmo; Vaisanen, Pauli; Troubitsyna, Elena; Laibinis, Linas

    2010-08-01

    Attitude & Orbit Control System (AOCS) refers to a wider class of control systems which are used to determine and control the attitude of the spacecraft while in orbit, based on the information obtained from various sensors. In this paper, we propose an approach to evaluate a typical (yet somewhat simplified) AOCS architecture using formal development - based on the Event-B method. As a starting point, an Ada specification of the AOCS is translated into a formal specification and further refined to incorporate all the details of its original source code specification. This way we are able not only to evaluate the Ada specification by expressing and verifying specific system properties in our formal models, but also to determine how well the chosen modelling framework copes with the level of detail required for an actual implementation and code generation from the derived models.

  6. On the attitude control and flight result of winged reentry test vehicle

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hinada, Motoki

    The Institute of Space and Astronautical Science (ISAS) has been studying the unmanned winged space vehicle HIMES (HIghly Maneuverable Engineering Space vehicle) for a decade and successfully carried out sub-sonic Gliding Flight Experiments several years ago, which was followed by Reentry Flight Experiment, utilizing so called 'Rockoon' method, in September of 1988, which failed due to the unexpected burst of the balloon. ISAS conducted it again making use of refined 'Rockoon' scheme in February of 1992. In spite of its small bulk property, it was equipped with not only a reaction control system (RCS) but a surface control system (SCS) capability as well, which enabled it to make a successful flight under both vacuum and atmospheric circumstances. The highest Mach number exceeded 3.5 and the highest altitude was a bit lower to 67 km. Switching from reaction control to surface control was one of the essential engineering interests in the flight like this. Supersonic autonomous flight control with high angle of attack was also what should be established through this, since in general it inevitably carries inherent lateral instability. A flight test this time revealed those features and characteristics quite well. This paper deals with the attitude control strategy with three-axis Motion Simulation Test as well as the flight results.

  7. attitude control design for the solar polar orbit radio telesope

    NASA Astrophysics Data System (ADS)

    Gao, D.; Zheng, J.

    This paper studies the attitude dynamics and control of the Solar Polar Orbit Radio Telescope SPORT The SPORT which consists of one parent satellite and eight tethered satellites runs around the Sun in a polar orbit The parent satellite locates at the mass center of the constellation and tethered satellites which are tied with the parent satellite through a non-electric rope rotate around the parent satellite It is also supposed that the parent satellite and all tethered satellites are in a plane when the constellation works begin figure htbp centerline includegraphics width 3 85in height 2 38in 75271331 6a6eb71057 doc1 eps label fig1 end figure Fig 1 the SPORT constellation Firstly this paper gives the dynamic equations of the tethered satellite and the parent satellite From the dynamic characteristic of the tethered satellite we then find that the roll axis is coupled with the yaw axis The control torque of the roll axis can control the yaw angle But the control torque of the roll axis and pitch axis provided by the tether is very small it can not meet the accuracy requirement of the yaw angle In order to improve the attitude pointing accuracy of the tethered satellite a gradient pole is set in the negative orientation of the yaw axis The gradient pole can improve not only the attitude accuracy of roll angle and pitch angle but also that of the yaw angle indirectly As to the dynamic characteristic of the parent satellite the roll axis is coupled with the pitch axis due to the spinning angular velocity At the same

  8. Gravity compensation in a Strapdown Inertial Navigation System to improve the attitude accuracy

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Jun; Wang, Xingshu; Yang, Shuai

    2017-10-01

    Attitude errors in a strapdown inertial navigation system due to gravity disturbances and system noises can be relatively large, although they are bound within the Schuler and the Earth rotation period. The principal objective of the investigation is to determine to what extent accurate gravity data can improve the attitude accuracy. The way the gravity disturbances affect the attitude were analyzed and compared with system noises by the analytic solution and simulation. The gravity disturbances affect the attitude accuracy by introducing the initial attitude error and the equivalent accelerometer bias. With the development of the high precision inertial devices and the application of the rotation modulation technology, the gravity disturbance cannot be neglected anymore. The gravity compensation was performed using the EGM2008 and simulations with and without accurate gravity compensation under varying navigation conditions were carried out. The results show that the gravity compensation improves the horizontal components of attitude accuracy evidently while the yaw angle is badly affected by the uncompensated gyro bias in vertical channel.

  9. What's New is What's Old: Use of Bode's Integral Theorem (circa 1945) to Provide Insight for 21st Century Spacecraft Attitude Control System Design Tuning

    NASA Technical Reports Server (NTRS)

    Ruth, Mike; Lebsock, Ken; Dennehy, Neil

    2010-01-01

    This paper revisits the Bode integral theorem, first described in 1945 for feedback amplifier design, in the context of modern satellite Attitude Control System (ACS) design tasks. Use of Bode's Integral clarifies in an elegant way the connection between open-loop stability margins and closed-loop bandwidth. More importantly it shows that there is a very strong tradeoff between disturbance rejection below the satellite controller design bandwidth, and disturbance amplification in the 'penalty region' just above the design bandwidth. This information has been successfully used to re-tune the control designs for several NASA science-mission satellites. The Appendix of this paper contains a complete summary of the relevant integral conservation theorems for stable, unstable, and non-minimum- phase plants.

  10. Smoking behaviours and attitudes toward tobacco control among assistant environmental health officer trainees.

    PubMed

    Tee, G H; Gurpreet, K; Hairi, N N; Zarihah, Z; Fadzilah, K

    2013-12-01

    Assistant environmental health officers (AEHO) are health care providers (HCPs) who act as enforcers, educators and trusted role models for the public. This is the first study to explore smoking behaviour and attitudes toward tobacco control among future HCPs. Almost 30% of AEHO trainees did not know the role of AEHOs in counselling smokers to stop smoking, but 91% agreed they should not smoke before advising others not to do so. The majority agreed that tobacco control regulations may be used as a means of reducing the prevalence of smoking. Future AEHOs had positive attitudes toward tobacco regulations but lacked understanding of their responsibility in tobacco control measures.

  11. A PC-based magnetometer-only attitude and rate determination system for gyroless spacecraft

    NASA Technical Reports Server (NTRS)

    Challa, M.; Natanson, G.; Deutschmann, J.; Galal, K.

    1995-01-01

    This paper describes a prototype PC-based system that uses measurements from a three-axis magnetometer (TAM) to estimate the state (three-axis attitude and rates) of a spacecraft given no a priori information other than the mass properties. The system uses two algorithms that estimate the spacecraft's state - a deterministic magnetic-field only algorithm and a Kalman filter for gyroless spacecraft. The algorithms are combined by invoking the deterministic algorithm to generate the spacecraft state at epoch using a small batch of data and then using this deterministic epoch solution as the initial condition for the Kalman filter during the production run. System input comprises processed data that includes TAM and reference magnetic field data. Additional information, such as control system data and measurements from line-of-sight sensors, can be input to the system if available. Test results are presented using in-flight data from two three-axis stabilized spacecraft: Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) (gyroless, Sun-pointing) and Earth Radiation Budget Satellite (ERBS) (gyro-based, Earth-pointing). The results show that, using as little as 700 s of data, the system is capable of accuracies of 1.5 deg in attitude and 0.01 deg/s in rates; i.e., within SAMPEX mission requirements.

  12. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  13. 18-Degree-of-Freedom Controller Design for the ST7 Disturbance Reduction System

    NASA Technical Reports Server (NTRS)

    Markley, F. L.; Maghami, P. G.; Houghton, M. B.; Hsu, O. C.

    2003-01-01

    This paper presents the overall design and analysis process of the spacecraft controller being developed at NASA's Goddard Space Flight Center to close the loop between the GRS and the micro-newton colloidal thrusters. The essential dynamics of the ST7-DRS are captured in a simulation including eighteen rigid-body dynamic degrees of freedom: three translations and three rotations for the spacecraft and for each test mass. The ST7 DRS comprises three control systems: the attitude control system (ACS) to maintain a sun-pointing attitude; the drag free control (DFC) to center the spacecraft about the test masses; and the test mass suspension control. This paper summarizes the control design and analysis of the ST7-DRS 18-DOF model, and is an extension of previous analyses employing a 7-DOF planar model of ST-7.

  14. Attitudes toward placebo-controlled clinical trials among depressed patients in Japan.

    PubMed

    Sugawara, Norio; Ishioka, Masamichi; Tsuchimine, Shoko; Tsuruga, Koji; Sato, Yasushi; Tarakita, Natsumi; Furukori, Hanako; Kudo, Shuhei; Tomita, Tetsu; Nakagami, Taku; Yasui-Furukori, Norio

    2018-01-01

    Placebo-controlled clinical trials are the standard in the design of clinical studies for the licensing of new drugs. Medical and ethical concerns regarding placebo use still exist in clinical trials of depressed patients. The aim of this study was to investigate the attitudes toward placebo-controlled clinical trials and to assess factors related to the willingness to participate in such trials among depressed patients in Japan. A total of 206 depressed patients aged 49.5 ± 15.7 years (mean ± SD) who were admitted to three psychiatric hospitals were recruited for a cross-sectional study from June 2015 to March 2016. After a thorough explanation of the placebo, the study participants completed a brief 14-item questionnaire developed to evaluate patients' attitudes regarding possible participation in placebo-controlled clinical trials. The Quick Inventory of Depressive Symptomatology was also administered to assess depressive symptoms. The results indicated that 47% of the patients would be willing to participate in a placebo-controlled clinical trial. Expectations for the improvement of disease, desire to receive more medical care, encouragement by family or friends, and desire to support the development of new drugs were associated with the willingness to participate in such trials, whereas a belief that additional time would be required for medical examinations and fear of exacerbation of symptoms due to placebo use were associated with non-participation. Patients were asked about possible participation in placebo-controlled clinical trials. Less than half of the respondents were willing to participate in placebo-controlled clinical trials. Attitudes toward participation in a placebo-controlled clinical trial need to be considered when deciding whether to conduct such a trial. Copyright © 2017. Published by Elsevier B.V.

  15. Solar Anomalous and Magnetospheric Particle Explorer attitude control electronics box design and performance

    NASA Technical Reports Server (NTRS)

    Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.

    1993-01-01

    The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.

  16. Generalized Beliefs and Attitudes: Locus of Control and Science Attitudes in High School and College Students.

    ERIC Educational Resources Information Center

    Stuessy, Carol L.; Rowland, Paul McD.

    Locus of control, a generalized belief about causality in one's personal life, was identified as a potential variable impinging upon the acquisition of science-related attitudes in classes of high school students from 10th grade biology, and 11th and 12th grade chemistry, and of college elementary education majors. Correlations of the…

  17. Computer program for post-flight evaluation of the control surface response for an attitude controlled missile

    NASA Technical Reports Server (NTRS)

    Knauber, R. N.

    1982-01-01

    A FORTRAN IV coded computer program is presented for post-flight analysis of a missile's control surface response. It includes preprocessing of digitized telemetry data for time lags, biases, non-linear calibration changes and filtering. Measurements include autopilot attitude rate and displacement gyro output and four control surface deflections. Simple first order lags are assumed for the pitch, yaw and roll axes of control. Each actuator is also assumed to be represented by a first order lag. Mixing of pitch, yaw and roll commands to four control surfaces is assumed. A pseudo-inverse technique is used to obtain the pitch, yaw and roll components from the four measured deflections. This program has been used for over 10 years on the NASA/SCOUT launch vehicle for post-flight analysis and was helpful in detecting incipient actuator stall due to excessive hinge moments. The program is currently set up for a CDC CYBER 175 computer system. It requires 34K words of memory and contains 675 cards. A sample problem presented herein including the optional plotting requires eleven (11) seconds of central processor time.

  18. Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.; Likins, P. W.

    1974-01-01

    Several computer subroutines are designed to provide the solution to minimum-dimension sets of discrete-coordinate equations of motion for systems consisting of an arbitrary number of hinge-connected rigid bodies assembled in a tree topology. In particular, these routines may be applied to: (1) the case of completely unrestricted hinge rotations, (2) the totally linearized case (all system rotations are small), and (3) the mixed, or partially linearized, case. The use of the programs in each case is demonstrated using a five-body spacecraft and attitude control system configuration. The ability of the subroutines to accommodate prescribed motions of system bodies is also demonstrated. Complete listings and user instructions are included for these routines (written in FORTRAN V) which are intended as multi- and general-purpose tools in the simulation of spacecraft and other complex electromechanical systems.

  19. Magellan attitude and articulation control subsystem closed loop testing

    NASA Technical Reports Server (NTRS)

    Olschansky, David G.

    1987-01-01

    In the spring of 1989, the Magellan spacecraft will embark on a two-year mission to map the surface of the planet Venus. Guiding it there will be the Attitude and Articulation Control Subsystem (AACS). To ensure reliable operations the AACS is being put through a rigorous test program at Martin Marietta Denver Aerospace. Before Magellan ever leaves the Space Shuttle bay from which it is to be launched, its components will have flown a simulated spaceflight in a ground-based lab. The primary objectives of the test program are to verify form, fit, and function of the AACS, particularly subsystem external interfaces and functional operation of the flight software. This paper discusses the Magellan Closed Loop Test Systems which makes realistic tests possible by simulating the dynamic and 'visual' flight environment for AACS components in the lab.

  20. Attitude control system testing on SCOLE

    NASA Technical Reports Server (NTRS)

    Shenhar, J.; Sparks, D., Jr.; Williams, J. P.; Montgomery, R. C.

    1988-01-01

    This paper presents implementation of two control policies on SCOLE (Space Control Laboratory Experiment), a laboratory apparatus representing an offset-feed antenna attached to the Space Shuttle by a flexible mast. In the first case, the flexible mast was restrained by cables, permitting modeling of SCOLE as a rigid-body. Starting from an arbitrary state, SCOLE was maneuvered to a specified terminal state using rigid-body minimum-time control law. In the second case, the so called single step optimal control (SSOC) theory is applied to suppress vibrations of the flexible mast mounted as a cantilever beam. Based on the SSOC theory, two parameter optimization algorithms were developed.

  1. Skin penetration operators' knowledge and attitudes towards infection control.

    PubMed

    Oberdorfer, Aurmporn; Wiggers, John H; Considine, Robyn J; Bowman, Jenny; Cockburn, Jill

    2003-01-01

    To assess the knowledge and attitudes of owners/managers of commercial skin-penetration premises regarding infection control. A telephone survey was conducted with a randomly selected sample of 874 owners/managers. Participants appeared to lack knowledge of essential infection-control practices. Less than 39% correctly identified recommended disinfection procedures, and between 12% to 67% were not aware of inappropriate sterlization procedures. Almost all participants accepted the need for guidelines. Half acknowledged a need to improve their infection-control compliance, and most accepted having their premises regularly checked by the councils. There is a considerable opportunity to increase infection-control compliance among skin-penetration operators.

  2. 76 FR 80447 - Eighth Meeting: RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Committee 219: Attitude and Heading Reference Systems (AHRS) AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 219: Attitude and... eighth meeting of RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS). DATES: The...

  3. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  4. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Sindlinger, R. S.

    1977-01-01

    Magnetic bearings used for the suspension of momentum wheels provide conclusive advantages: the low friction torques and the absence of abrasion allow the realization of lightweight high speed wheels with high angular momentum and energy storage capacity and virtually unlimited lifetime. The use of actively controlled bearings provides a magnetic gimballing capability by applying the external signals to the two servo loops controlling the rotational degrees of freedom. Thus, an attitude control system can be realized by using only one rotating mass for 3-axis active satellite stabilization.

  5. Analysis of the Command and Control Segment (CCS) attitude estimation algorithm

    NASA Technical Reports Server (NTRS)

    Stockwell, Catherine

    1993-01-01

    This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.

  6. Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation

    PubMed Central

    Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang

    2014-01-01

    This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition. PMID:25268911

  7. The role of tobacco-specific media exposure, knowledge, and smoking status on selected attitudes toward tobacco control.

    PubMed

    Blake, Kelly D; Viswanath, K; Blendon, Robert J; Vallone, Donna

    2010-02-01

    In August 2007, the President's Cancer Panel urged the leadership of the nation to "summon the political will to address the public health crisis caused by tobacco use" (President's Cancer Panel, N, 2007, Promoting healthy lifestyles: Policy, program, and personal recommendations for reducing cancer risk. http://deainfo.nci.nih.gov/advisory/pcp/pcp07rpt/pcp07rpt.pdf). While some research has examined predictors of public support for tobacco control measures, little research has examined modifiable factors that may influence public attitudes toward tobacco control. We used the American Legacy Foundation's 2003 American Smoking and Health Survey 2 to examine the contribution of smoking status, knowledge of the negative effects of tobacco, and tobacco-specific media exposure (antitobacco messages, news coverage of tobacco issues, and protobacco advertising) on U.S. adults' attitudes toward tobacco control. In addition, we assessed whether smoking status moderates the relationship between tobacco-specific media exposure and policy attitudes. Weighted multivariable logistic regression models were employed. Results suggest that knowledge of the negative effects of tobacco and smoking status are associated with attitudes toward tobacco control and that exposure to tobacco-specific information in the media plays a role only in some instances. We found no evidence of effect modification by smoking status on the impact of exposure to tobacco-specific media on attitudes toward tobacco control. Understanding the impact of readily modifiable factors that shape policy attitudes is essential if we are to target outreach and education in a way that is likely to sway public support for tobacco control.

  8. Smoking behaviors and attitudes during adolescence prospectively predict support for tobacco control policies in adulthood.

    PubMed

    Macy, Jonathan T; Chassin, Laurie; Presson, Clark C

    2012-07-01

    Several cross-sectional studies have examined factors associated with support for tobacco control policies. The current study utilized a longitudinal design to test smoking status and attitude toward smoking measured in adolescence as prospective predictors of support for tobacco control policies measured in adulthood. Participants (N = 4,834) were from a longitudinal study of a Midwestern community-based sample. Hierarchical multiple regression analyses tested adolescent smoking status and attitude toward smoking as prospective predictors (after controlling for sociodemographic factors, adult smoking status, and adult attitude toward smoking) of support for regulation of smoking in public places, discussion of the dangers of smoking in public schools, prohibiting smoking in bars, eliminating smoking on television and in movies, prohibiting smoking in restaurants, and increasing taxes on cigarettes. Participants who smoked during adolescence demonstrated more support for discussion of the dangers of smoking in public schools and less support for increasing taxes on cigarettes but only among those who smoked as adults. Those with more positive attitudes toward smoking during adolescence demonstrated less support as adults for prohibiting smoking in bars and eliminating smoking on television and in movies. Moreover, a significant interaction indicated that those with more positive attitudes toward smoking as adolescents demonstrated less support as adults for prohibiting smoking in restaurants, but only if they became parents as adults. This study's findings suggest that interventions designed to deter adolescent smoking may have future benefits in increasing support for tobacco control policies.

  9. Cold Gas Reaction Control System for the Near Earth Asteroid Scout CubeSat

    NASA Technical Reports Server (NTRS)

    Stiltner, Brandon C.; Diedrich, Ben; Becker, Chris; Bertaska, Ivan; Heaton, Andrew; Orphee, Juan

    2017-01-01

    This paper describes the Attitude Control System (ACS) for the Near Earth Asteroid (NEA) Scout cubesat with particular focus on the Reaction Control System (RCS). NEA Scout is a 6-Unit cubesat with an 86-square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2019. The spacecraft will rendezvous with an asteroid after a two year journey, and will conduct science imagery. The ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. The RCS performs a number of critical functions during NEA Scout’s mission. These requirements are described and the performance for achieving these requirements is shown. Moreover, NEA Scout employs a solar sail for long-duration propulsion. Solar sails are large, flexible structures that typically have low bending-mode frequencies. This paper demonstrates a robust performance while avoiding excitation of the sail’s structural modes.

  10. Cold Gas Reaction Control System for the Near Earth Asteroid Scout CubeSat

    NASA Technical Reports Server (NTRS)

    Stiltner, Brandon C.; Diedrich, Ben; Orphee, Juan; Heaton, Andrew; Becker, Chris; Bertaska, Ivan

    2017-01-01

    This paper describes the Attitude Control System (ACS) for the Near Earth Asteroid (NEA) Scout cubesat with particular focus on the Reaction Control System (RCS). NEA Scout is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with an asteroid after a two year journey, and will conduct science imagery. The ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. The RCS performs a number of critical functions during NEA Scout's mission. These requirements are described and the performance for achieving these requirements is shown. Moreover, NEA Scout employs a solar sail for long-duration propulsion. Solar sails are large, flexible structures that typically have low bending-mode frequencies. This paper demonstrates a robust performance while avoiding excitation of the sail's structural modes.

  11. Feasibility study of scanning celestial Attitude System (SCADS) for Earth Resources Technology Satellite (ERTS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The feasibility of using the Scanning Celestial Attitude Determination System (SCADS) during Earth Resources Technology Satellite (ERTS) missions to compute an accurate spacecraft attitude by use of stellar measurements is considered. The spacecraft is local-vertical-stabilized. A heuristic discussion of the SCADS concept is first given. Two concepts are introduced: a passive system which contains no moving parts, and an active system in which the reticle is caused to rotate about the sensor's axis. A quite complete development of the equations of attitude motions is then given. These equations are used to generate the true attitude which in turn is used to compute the transit times of detectable stars and to determine the errors associated with the SCADS attitude. A more complete discussion of the analytical foundation of SCADS concept and its use for the geometries particular to this study, as well as salient design parameters for the passive and active systems are included.

  12. Magnetic bearing reaction wheel. [for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Sabnis, A.; Schmitt, F.; Smith, L.

    1976-01-01

    The results of a program for the development, fabrication and functional test of an engineering model magnetically suspended reaction wheel are described. The reaction wheel develops an angular momentum of + or - 0.5 foot-pound-second and is intended for eventual application in the attitude control of long-life interplanetary and orbiting spacecraft. A description of the wheel design and its major performance characteristics is presented. Recommendations for flight prototype development are made.

  13. Solar Dynamics Observatory Guidance, Navigation, and Control System Overview

    NASA Technical Reports Server (NTRS)

    Morgenstern, Wendy M.; Bourkland, Kristin L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; O'Donnell, James R., Jr.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was designed and built at the Goddard Space Flight Center, launched from Cape Canaveral on February 11, 2010, and reached its final geosynchronous science orbit on March 16, 2010. The purpose of SDO is to observe the Sun and continuously relay data to a dedicated ground station. SDO remains Sun-pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system (ACS) is a single-fault tolerant design. Its fully redundant attitude sensor complement includes sixteen coarse Sun sensors (CSSs), a digital Sun sensor (DSS), three two-axis inertial reference units (IRUs), and two star trackers (STs). The ACS also makes use of the four guide telescopes included as a part of one of the science instruments. Attitude actuation is performed using four reaction wheels assemblies (RWAs) and eight thrusters, with a single main engine used to provide velocity-change thrust for orbit raising. The attitude control software has five nominal control modes, three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. This paper details the final overall design of the SDO guidance, navigation, and control (GN&C) system and how it was used in practice during SDO launch, commissioning, and nominal operations. This overview will include the ACS control modes, attitude determination and sensor calibration, the high gain antenna (HGA) calibration, and jitter mitigation operation. The Solar Dynamics Observatory mission is part of the NASA Living With a Star program, which seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft carries three Sun

  14. Exploring the Teachers' Attitudes towards Inclusive Education System: A Study of Indian Teachers

    ERIC Educational Resources Information Center

    Kumar, Anil

    2016-01-01

    This article explores the attitudes of university and school teachers towards inclusive education system. One hundred teachers having equal number of male and female population was included in the study. Participants were administered an attitude scale namely--Attitudes toward Inclusive Education Scale (ATIE), developed by Wilczenski (1992) to…

  15. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  16. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    NASA Technical Reports Server (NTRS)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  17. Magneto-Hydro-Dynamics Liquid Wheel Actuator for Spacecraft Attitude Control

    DTIC Science & Technology

    2017-01-26

    not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)   02-02-2017...Spacecraft Attitude Control 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0387 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Fabio Curti 5d... control with liquid flywheel is presented. The main characteristic of this new concept of reaction wheel is that a conductive liquid rather than a solid

  18. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  19. Fuzzy attitude control for a nanosatellite in leo orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  20. A low cost LST pointing control system

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.; Nurre, G. S.; Seltzer, S. M.; Shelton, H. L.

    1975-01-01

    Vigorous efforts to reduce costs, coupled with changes in LST guidelines, took place in the Fall of 1974. These events made a new design of the LST and its Pointing and Attitude Control System possible. The major design changes are summarized as: an annular Support Systems Module; removal of image motion compensation; reaction wheels instead of CMG's; a magnetic torquer system to also perform the emergency and backup functions, eliminating the previously required mass expulsion system. Preliminary analysis indicates the Low Cost LST concept can meet the newly defined requirements and results in a significantly reduced development cost.

  1. Integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control for Lead-Wing close formation systems

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Jiang, Bin; Zhang, Ke

    2018-03-01

    This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.

  2. Measuring Critical Care Providers' Attitudes About Controlled Donation After Circulatory Death.

    PubMed

    Rodrigue, James R; Luskin, Richard; Nelson, Helen; Glazier, Alexandra; Henderson, Galen V; Delmonico, Francis L

    2018-06-01

    Unfavorable attitudes and insufficient knowledge about donation after cardiac death among critical care providers can have important consequences for the appropriate identification of potential donors, consistent implementation of donation after cardiac death policies, and relative strength of support for this type of donation. The lack of reliable and valid assessment measures has hampered research to capture providers' attitudes. Design and Research Aims: Using stakeholder engagement and an iterative process, we developed a questionnaire to measure attitudes of donation after cardiac death in critical care providers (n = 112) and examined its psychometric properties. Exploratory factor analysis, internal consistency, and validity analyses were conducted to examine the measure. A 34-item questionnaire consisting of 4 factors (Personal Comfort, Process Satisfaction, Family Comfort, and System Trust) provided the most parsimonious fit. Internal consistency was acceptable for each of the subscales and the total questionnaire (Cronbach α > .70). A strong association between more favorable attitudes overall and knowledge ( r = .43, P < .001) provides evidence of convergent validity. Multivariable regression analyses showed that white race ( P = .002) and more experience with donation after cardiac death ( P < .001) were significant predictors of more favorable attitudes. Study findings support the utility, reliability, and validity of a questionnaire for measuring attitudes in critical care providers and for isolating targets for additional education on donation after cardiac death.

  3. Controlled comparison of attitudes of psychiatrists, general practitioners, homosexual doctors and homosexual men to male homosexuality.

    PubMed Central

    Bhugra, D; King, M

    1989-01-01

    A controlled analysis of the attitudes of doctors and homosexual men to male homosexuality is reported. Not surprisingly the homosexual men held the most liberal attitudes which served as a yard-stick against which the doctors' attitudes could be assessed. The implications of these data, collected before the AIDS era, are discussed in terms of the current needs of homosexual patients. PMID:2810298

  4. Smoking Behaviors and Attitudes During Adolescence Prospectively Predict Support for Tobacco Control Policies in Adulthood

    PubMed Central

    Chassin, Laurie; Presson, Clark C.

    2012-01-01

    Introduction: Several cross-sectional studies have examined factors associated with support for tobacco control policies. The current study utilized a longitudinal design to test smoking status and attitude toward smoking measured in adolescence as prospective predictors of support for tobacco control policies measured in adulthood. Methods: Participants (N = 4,834) were from a longitudinal study of a Midwestern community-based sample. Hierarchical multiple regression analyses tested adolescent smoking status and attitude toward smoking as prospective predictors (after controlling for sociodemographic factors, adult smoking status, and adult attitude toward smoking) of support for regulation of smoking in public places, discussion of the dangers of smoking in public schools, prohibiting smoking in bars, eliminating smoking on television and in movies, prohibiting smoking in restaurants, and increasing taxes on cigarettes. Results: Participants who smoked during adolescence demonstrated more support for discussion of the dangers of smoking in public schools and less support for increasing taxes on cigarettes but only among those who smoked as adults. Those with more positive attitudes toward smoking during adolescence demonstrated less support as adults for prohibiting smoking in bars and eliminating smoking on television and in movies. Moreover, a significant interaction indicated that those with more positive attitudes toward smoking as adolescents demonstrated less support as adults for prohibiting smoking in restaurants, but only if they became parents as adults. Conclusions: This study’s findings suggest that interventions designed to deter adolescent smoking may have future benefits in increasing support for tobacco control policies. PMID:22193576

  5. A study on the attitude of use the mobile clinic registration system in Taiwan.

    PubMed

    Lai, Yi-Horng; Huang, Fen-Fen; Yang, Hsieh-Hua

    2015-01-01

    Mobile apps provide diverse services and various convenient functions. This study applied the modified technology acceptance model (MTAM) in information systems research to the use of the mobile hospital registration system in Taiwan. The MTAM posits that perceived ease of use and perceived usefulness of technology influence users' attitudes toward using technology. Research studies using MTAM have determined information technology experience as a factor in predicting attitude. The objective of this present study is to test the validity of the MTAM model when it is being applied to the mobile registration system. The data was collected from 501 patients in a Taiwan's medical center. Path analysis results have shown that TAM is an applicable model in examining factors influencing users' attitudes of using the mobile registration system. It can be found that the perceived usefulness and the perceived ease of use are positively associated with users' attitudes toward using the mobile registration system, and they can improve users' attitudes of using it. In addition, the perceived ease of use is positively associated with the perceived usefulness. As for the personal prior experience, the information technology experience is positively associated with perceived usefulness and the perceived ease of use.

  6. International Space Station Attitude Motion Associated With Flywheel Energy Storage

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1999-01-01

    Flywheels can exert torque that alters the Station's attitude motion, either intentionally or unintentionally. A design is presented for a once planned experiment to contribute torque for Station attitude control, while storing or discharging energy. Two contingencies are studied: the abrupt stop of one rotor while another rotor continues to spin at high speed, and energy storage performed with one rotor instead of a counter rotating pair. Finally, the possible advantages to attitude control offered by a system of ninety-six flywheels are discussed.

  7. Nurses' attitudes toward the use of the bar-coding medication administration system.

    PubMed

    Marini, Sana Daya; Hasman, Arie; Huijer, Huda Abu-Saad; Dimassi, Hani

    2010-01-01

    This study determines nurses' attitudes toward bar-coding medication administration system use. Some of the factors underlying the successful use of bar-coding medication administration systems that are viewed as a connotative indicator of users' attitudes were used to gather data that describe the attitudinal basis for system adoption and use decisions in terms of subjective satisfaction. Only 67 nurses in the United States had the chance to respond to the e-questionnaire posted on the CARING list server for the months of June and July 2007. Participants rated their satisfaction with bar-coding medication administration system use based on system functionality, usability, and its positive/negative impact on the nursing practice. Results showed, to some extent, positive attitude, but the image profile draws attention to nurses' concerns for improving certain system characteristics. The high bar-coding medication administration system skills revealed a more negative perception of the system by the nursing staff. The reasons underlying dissatisfaction with bar-coding medication administration use by skillful users are an important source of knowledge that can be helpful for system development as well as system deployment. As a result, strengthening bar-coding medication administration system usability by magnifying its ability to eliminate medication errors and the contributing factors, maximizing system functionality by ascertaining its power as an extra eye in the medication administration process, and impacting the clinical nursing practice positively by being helpful to nurses, speeding up the medication administration process, and being user-friendly can offer a congenial settings for establishing positive attitude toward system use, which in turn leads to successful bar-coding medication administration system use.

  8. Performance of ground attitude determination procedures for HEAO-1

    NASA Technical Reports Server (NTRS)

    Fallon, L., III; Sturch, C. R.

    1978-01-01

    Ground attitude support for HEAO 1 provided at GSFC by the HEAO 1 Attitude Ground Support System (AGSS) is described. Information telemetered from Sun sensors, gyroscopes, star trackers, and an onboard computer are used by the AGSS to compute updates to the onboard attitude reference and gyro calibration parameters. The onboard computer utilizes these updates in providing continuous attitudes (accurate to 0.25degree) for use in the observatory's attitude control procedures. The relationship between HEAO 1 onboard and ground processing, the procedures used by the AGSS in computing attitude and gyro calibration updates, and the performance of these procedures in the HEAO 1 postlaunch environment is discussed.

  9. Attitude Accuracy Study for the Earth Observing System (EOS) AM-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Lesikar, James D., II; Garrick, Joseph C.

    1996-01-01

    Earth Observing System (EOS) spacecraft will take measurements of the Earth's clouds, oceans, atmosphere, land, and radiation balance. These EOS spacecraft are part of the National Aeronautics and Space Administration's Mission to Planet Earth, and consist of several series of satellites, with each series specializing in a particular class of observations. This paper focuses on the EOS AM-1 spacecraft, which is the first of three satellites constituting the EOS AM series (morning equatorial crossing) and the initial spacecraft of the EOS program. EOS AM-1 has a stringent onboard attitude knowledge requirement, of 36/41/44 arc seconds (3 sigma) in yaw/roll/pitch, respectively. During normal mission operations, attitude is determined onboard using an extended Kalman sequential filter via measurements from two charge coupled device (CCD) star trackers, one Fine Sun Sensor, and an Inertial Rate Unit. The attitude determination error analysis system (ADEAS) was used to model the spacecraft and mission profile, and in a worst case scenario with only one star tracker in operation, the attitude uncertainty was 9.7/ll.5/12.2 arc seconds (3 sigma) in yaw/roll/pitch. The quoted result assumed the spacecraft was in nominal attitude, using only the 1-rotation per orbit motion of the spacecraft about the pitch axis for calibration of the gyro biases. Deviations from the nominal attitude would show greater attitude uncertainties, unless calibration maneuvers which roll and/or yaw the spacecraft have been performed. This permits computation of the gyro misalignments, and the attitude knowledge requirement would remain satisfied.

  10. Attitudes towards smoking and tobacco control among pre-clinical medical students in Malaysia.

    PubMed

    Tee, G H; Hairi, N N; Hairi, F

    2012-08-01

    Physicians should play a leading role in combatting smoking; information on attitudes of future physicians towards tobacco control measures in a middle-income developing country is limited. Of 310 future physicians surveyed in a medical school in Malaysia, 50% disagreed that it was a doctor's duty to advise smokers to stop smoking; 76.8% agreed that physicians should not smoke before advising others not to smoke; and 75% agreed to the ideas of restricting the sale of cigarettes to minors, making all public places smoke-free and banning advertising of tobacco-related merchandise. Future physicians had positive attitudes towards tobacco regulations but had not grasped their responsibilities in tobacco control measures.

  11. A new model for yaw attitude of Global Positioning System satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Y. E.

    1995-01-01

    Proper modeling of the Global Positioning System (GPS) satellite yaw attitude is important in high-precision applications. A new model for the GPS satellite yaw attitude is introduced that constitutes a significant improvement over the previously available model in terms of efficiency, flexibility, and portability. The model is described in detail, and implementation issues, including the proper estimation strategy, are addressed. The performance of the new model is analyzed, and an error budget is presented. This is the first self-contained description of the GPS yaw attitude model.

  12. The roles of users personal characteristics and organisational support in the attitude towards using ERP systems in a Spanish public hospital.

    PubMed

    Escobar-Rodriguez, Tomas; Bartual-Sopena, Lourdes

    Enterprise resources planning (ERP) systems enable central and integrative control over all processes throughout an organisation by ensuring one data entry point and the use of a common database. T his paper analyses the attitude of healthcare personnel towards the use of an ERP system in a Spanish public hospital, identifying influencing factors. This research is based on a regression analysis of latent variables using the optimisation technique of partial least squares. We propose a research model including possible relationships among different constructs using the technology acceptance model. Our results show that the personal characteristics of potential users are key factors in explaining attitude towards using ERP systems.

  13. A tool to assess knowledge, attitude and behavior of Indonesian health care workers regarding infection control.

    PubMed

    Duerink, D O; Hadi, U; Lestari, E S; Roeshadi, Djoko; Wahyono, Hendro; Nagelkerke, N J D; Van der Meulen, R G; Van den Broek, P J

    2013-07-01

    to investigate knowledge, attitude and behaviour toward infection control in two teaching hospitals on the island of Java by means of a questionnaire and to evaluate the use of the questionnaire as a tool. we investigated knowledge, attitude and behaviour toward infection control in two teaching hospitals on the island of Java by means of a questionnaire to identify problem areas, barriers and facilitators. The target was to include at least 50% of all health care workers (physicians, nurses, assistant nurses and infection control nurses) in each hospital, department and profession. Differences between demographic variables and scores for individual questions and groups of questions were compared using the chi-square statistic and analysis of variance and Spearman's rho was used to test for correlations between knowledge, attitude, self-reported behaviour and perceived obstacles. more than half of the health care workers of the participating departments completed the questionnaire. Of the 1036 respondents (44% nurses, 37% physicians and 19% assistant nurses), 34% were vaccinated against hepatitis B, 77% had experienced needle stick accidents and 93% had been instructed about infection control. The mean of the correct answers to the knowledge questions was 44%; of the answers to the attitude questions 67% were in agreement with the correct attitude; obstacles to compliance with infection control guidelines were perceived in 30% of the questions and the mean self-reported compliance was 63%. Safe handling of sharps, hand hygiene and the use of personal protective equipment were identified as the most important aspects for interventions. Significant positive correlations were found between knowledge, attitude, self-reported behaviour and perceived obstacles. the questionnaire in conjunction with site visits and interviews was a valuable strategy to identify trouble spots in the hospitals and to determine barriers to facilitators of change that should be taken into

  14. Statistical Control Paradigm for Aerospace Structures Under Impulsive Disturbances

    DTIC Science & Technology

    2006-08-03

    attitude control system with an innovative and robust statistical controller design shows significant promise for use in attitude hold mode operation...indicate that the existing attitude control system with an innovative and robust statistical controller design shows significant promise for use in...and three thrusters are for use in controlling the attitude of the satellite. Then the angular momentum of the satellite with three thrusters and a

  15. Techniques for extreme attitude suspension of a wind tunnel model in a magnetic suspension and balance system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Parker, David Huw

    1989-01-01

    Although small scale magnetic suspension and balance systems (MSBSs) for wind tunnel use have been in existence for many years, they have not found general application in the production testing of flight vehicles. One reason for this is thought to lie in the relatively limited range of attitudes over which a wind tunnel model may be suspended. Modifications to a small MSBS to permit the suspension and control of axisymmetric models over angles of attack from less than zero to over ninety degrees are reported. Previous work has shown that existing arrangement of ten electromagnets was unable to generate one of the force components needed for control at extreme attitudes. Examination of possible solutions resulted in a simple alteration to rectify this deficiency. To generate the feedback signals to control the suspended model, an optical position sensing system using collimated laser beams and photodiode arrays was installed and tested. An analytical basis was developed for distributing the demands for force and moment needed for model stabilization amonge the electromagnets over the full attitude range. This was implemented by an MSBS control program able to continually adjust the distribution for the instantaneous incidence in accordance with prescheduled data. Results presented demonstrate rotations of models from zero to ninety degrees at rates up to ninety degrees per second, with pitching rates rising to several hundred degrees per second in response to step-change demands. A study of a design for a large MSBS suggests that such a system could be given the capability to control a model in six degrees of freedom over an unlimited angle of attack range.

  16. Improvement of helicopter attitude stability by active control of the conventional swash plate

    NASA Technical Reports Server (NTRS)

    Ham, Norman D.

    1993-01-01

    The Final Report on improvement of helicopter attitude stability by active control of the conventional swash plate covering the period from Nov. 1986 to Dec. 1993 is presented. A paper on the history, principles, and applications of helicopter individual-blade-control is included.

  17. A comparison between HMLP and HRBF for attitude control.

    PubMed

    Fortuna, L; Muscato, G; Xibilia, M G

    2001-01-01

    In this paper the problem of controlling the attitude of a rigid body, such as a Spacecraft, in three-dimensional space is approached by introducing two new control strategies developed in hypercomplex algebra. The proposed approaches are based on two parallel controllers, both derived in quaternion algebra. The first is a feedback controller of the proportional derivative (PD) type, while the second is a feedforward controller, which is implemented either by means of a hypercomplex multilayer perceptron (HMLP) neural network or by means of a hypercomplex radial basis function (HRBF) neural network. Several simulations show the performance of the two approaches. The results are also compared with a classical PD controller and with an adaptive controller, showing the improvements obtained by using neural networks, especially when an external disturbance acts on the rigid body. In particular the HMLP network gave better results when considering trajectories not presented during the learning phase.

  18. Assessing landowners' attitudes toward wild hogs and support for control options.

    PubMed

    Caplenor, Carlotta A; Poudyal, Neelam C; Muller, Lisa I; Yoest, Chuck

    2017-10-01

    Wild hogs (Sus scrofa) are an invasive species with destructive habits, particularly rooting and wallowing, which can directly impact agricultural crops, pasture land, and water quality. Considering wild hogs are widely dispersed across the landscape, they are extremely difficult to control. Disagreements can arise among different stakeholders over whether and how their populations should be managed. The purpose of this article was to examine Tennessee, United States landowners' attitudes toward wild hogs, to compare acceptability of control methods, and to evaluate factors significantly influencing public support for regulations to control wild hogs. Logistic regression was employed to analyze data collected from a statewide survey of rural landowners in the fall of 2015. Landowners had overwhelmingly negative attitudes towards wild hogs, and were concerned about their impact on the natural environment and rural economy. Although landowners showed support for controlling wild hogs, levels of acceptability for management options varied. Respondents favored active management and supported education and incentive-based control programs to control wild hogs. Cognitive concepts such as social and personal norms and awareness of consequences, as well as demographic characteristics, significantly predicted landowners' support for state regulations to control wild hogs in Tennessee. Findings increase our understanding of the human dimensions of wild hog management and that of other similarly invasive animals, and may guide resource managers in designing effective and socially acceptable management strategies to control wild hog populations in Tennessee and elsewhere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. It All Depends on Your Attitude.

    ERIC Educational Resources Information Center

    Kastner, Bernice

    1992-01-01

    Presents six learning exercises that introduce students to the mathematics used to control and track spacecraft attitude. Describes the geocentric system used for Earthbound location and navigation, the celestial sphere, the spacecraft-based celestial system, time-dependent angles, observer-fixed coordinate axes, and spacecraft rotational axes.…

  20. System for star catalog equalization to enhance attitude determination

    NASA Technical Reports Server (NTRS)

    Liu, Yong (Inventor); Wu, Yeong-Wei Andy (Inventor); Li, Rongsheng (Inventor)

    2001-01-01

    An apparatus for star catalog equalization to enhance attitude determination includes a star tracker, a star catalog and a controller. The star tracker is used to sense the positions of stars and generate signals corresponding to the positions of the stars as seen in its field of view. The star catalog contains star location data that is stored using a primary and multiple secondary arrays sorted by both declination (DEC) and right ascension (RA), respectively. The star location data stored in the star catalog is predetermined by calculating a plurality of desired star locations, associating one of a plurality of stars with each of the plurality of desired star locations based upon a neighborhood association angle to generate an associated plurality of star locations: If an artificial star gap occurs during association, then the neighborhood association angle for reassociation is increased. The controller uses the star catalog to determine which stars to select to provide star measurement residuals for correcting gyroscope bias and spacecraft attitude.

  1. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  2. Automation effects in a multiloop manual control system

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Mcnally, B. D.

    1986-01-01

    An experimental and analytical study was undertaken to investigate human interaction with a simple multiloop manual control system in which the human's activity was systematically varied by changing the level of automation. The system simulated was the longitudinal dynamics of a hovering helicopter. The automation-systems-stabilized vehicle responses from attitude to velocity to position and also provided for display automation in the form of a flight director. The control-loop structure resulting from the task definition can be considered a simple stereotype of a hierarchical control system. The experimental study was complemented by an analytical modeling effort which utilized simple crossover models of the human operator. It was shown that such models can be extended to the description of multiloop tasks involving preview and precognitive human operator behavior. The existence of time optimal manual control behavior was established for these tasks and the role which internal models may play in establishing human-machine performance was discussed.

  3. Health care workers' knowledge, attitudes and practices on tuberculosis infection control, Nepal.

    PubMed

    Shrestha, Anita; Bhattarai, Dipesh; Thapa, Barsha; Basel, Prem; Wagle, Rajendra Raj

    2017-11-17

    Infection control remains a key challenge for Tuberculosis (TB) control program with an increased risk of TB transmission among health care workers (HCWs), especially in settings with inadequate TB infection control measures. Poor knowledge among HCWs and inadequate infection control practices may lead to the increased risk of nosocomial TB transmission. An institution-based cross-sectional survey was conducted in 28 health facilities providing TB services in the Kathmandu Valley, Nepal. A total of 190 HCWs were assessed for the knowledge, attitudes and practices on TB infection control using a structured questionnaire. The level of knowledge on TB infection control among almost half (45.8%) of the HCWs was poor, and was much poorer among administration and lower level staff. The knowledge level was significantly associated with educational status, and TB training and/or orientation received. The majority (73.2%) of HCWs had positive attitude towards TB infection control. Sixty-five percent of HCWs were found to be concerned about being infected with TB. Use of respirators among the HCWs was limited and triage of TB suspects was also lacking. Overall knowledge and practices of HCWs on TB infection control were not satisfactory. Effective infection control measures including regular skill-based training and/or orientation for all categories of HCWs can improve infection control practices in health facilities.

  4. Effects of the implementation of the web-based patient support system on staff's attitudes towards computers and IT use: a randomised controlled trial.

    PubMed

    Koivunen, Marita; Välimäki, Maritta; Patel, Anita; Knapp, Martin; Hätönen, Heli; Kuosmanen, Lauri; Pitkänen, Anneli; Anttila, Minna; Katajisto, Jouko

    2010-09-01

    Utilisation of information technology (IT) in the treatment of people with severe mental health problems is an unknown area in Europe. Use of IT and guiding patients to relevant sources of health information requires that nursing staff have positive attitudes toward computers and accept IT use as a part of daily practises. The aim of the study was to assess the effects of the implementation of a web-based patient support system on staff's attitudes towards computers and IT use on psychiatric wards. Hundred and forty-nine nurses in two psychiatric hospitals in Finland were randomised to two groups to deliver patient education for patients with schizophrenia and psychosis with a web-based system (n = 76) or leaflets (n = 73). After baseline nurses were followed-up for 18 months after the introduction of the system. The primary outcome was nurses' motivation to utilise computers, and the secondary outcomes were nurses' beliefs in and satisfaction with computers, and use of computer and internet. There were no statistically significant differences between study groups in attitudes towards computers (motivation p = 0.936, beliefs p = 0.270, satisfaction p = 0.462) and internet use (p = 0.276). However, nurses' general computer use (p = 0.029) increased more in the leaflet group than in the IT intervention group. We can conclude that IT has promise as an alternative method in patient education, as the implementation of the web-based patient support system in daily basis did not have a negative effect on nurses' attitudes towards IT. © 2010 The Authors. Journal compilation © 2010 Nordic College of Caring Science.

  5. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  6. Optimal spacecraft attitude control using collocation and nonlinear programming

    NASA Astrophysics Data System (ADS)

    Herman, A. L.; Conway, B. A.

    1992-10-01

    Direct collocation with nonlinear programming (DCNLP) is employed to find the optimal open-loop control histories for detumbling a disabled satellite. The controls are torques and forces applied to the docking arm and joint and torques applied about the body axes of the OMV. Solutions are obtained for cases in which various constraints are placed on the controls and in which the number of controls is reduced or increased from that considered in Conway and Widhalm (1986). DCLNP works well when applied to the optimal control problem of satellite attitude control. The formulation is straightforward and produces good results in a relatively small amount of time on a Cray X/MP with no a priori information about the optimal solution. The addition of joint acceleration to the controls significantly reduces the control magnitudes and optimal cost. In all cases, the torques and acclerations are modest and the optimal cost is very modest.

  7. Knowledge, Attitude, Practice, and Status of Infection Control among Iranian Dentists and Dental Students: A Systematic Review

    PubMed Central

    Moradi Khanghahi, Behnam; Jamali, Zahra; Pournaghi Azar, Fatemeh; Naghavi Behzad, Mohammad; Azami-Aghdash, Saber

    2013-01-01

    Background and aims Infection control is an important issue in dentistry, and the dentists are primarily responsible for observing the relevant procedures. Therefore, the present study evaluated knowledge, attitude, practice, and status of infection control among Iranian dentists through systematic review of published results. Materials and methods In this systematic review, the required data was collected searching for keywords including infection, infection control, behavior, performance, practice, attitude, knowledge, dent*, prevention, Iran* and their Persian equivalents in PubMed, Science Direct, Iranmedex, SID, Medlib, and Magiran databases with a time limit of 1985 to 2012. Out of 698 articles, 15 completely related articles were finally considered and the rest were excluded due to lake of relev-ance to the study goals. The required data were extracted and summarized in an Extraction Table and were analyzed ma-nually. Results Evaluating the results of studies indicated inappropriate knowledge, attitude, and practice regarding infection control among Iranian dentists and dental students. Using personal protection devices and observing measures required for infection control were not in accordance with global standards. Conclusion The knowledge, attitudes, and practice of infection control in Iranian dental settings were found to be inadequate. Therefore, dentists should be educated more on the subject and special programs should be in place to monitor the dental settings for observing infection control standards. PMID:23875081

  8. Active control strategy for the running attitude of high-speed train under strong crosswind condition

    NASA Astrophysics Data System (ADS)

    Li, Decang; Meng, Jianjun; Bai, Huan; Xu, Ruxun

    2018-07-01

    This paper focuses on the safety of high-speed trains under strong crosswind conditions. A new active control strategy is proposed based on the adaptive predictive control theory. The new control strategy aims at adjusting the attitudes of a train by controlling the new-type intelligent giant magnetostrictive actuator (GMA). It combined adaptive control with dynamic matrix control; parameters of predictive controller was real-time adjusted by online distinguishing to enhance the robustness of the control algorithm. On this basis, a correction control algorithm is also designed to regulate the parameters of predictive controller based on the step response of a controlled objective. Finally, the simulation results show that the proposed control strategy can adjust the running attitudes of high-speed trains under strong crosswind conditions; they also indicate that the new active control strategy is effective and applicable in improving the safety performance of a train based on a host-target computer technology provided by Matlab/Simulink.

  9. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  10. [Knowledge, attitude and practice related to schistosomiasis control among rural residents in Wanjiang River region after a flood].

    PubMed

    Huan, Liu; Ai-Xia, Wang; Yuan-Zhen, Li; Ming-Ming, Zhou

    2017-02-22

    To investigate the status of knowledge, attitude and behavior of schistosomiasis control of rural residents in Wanjiang River region after a flood, so as to provide the reference for targeted health education. The multistage sampling was applied to select the respondents in rural residents in Wanjiang River region, and the self-designed questionnaire was used to investigate the current situation of knowledge, attitude and behavior of schistosomiasis prevention and control of the rural residents. The total awareness rate of knowledge about the prevention and control of schistosomiasis was 47.92%. The age, education, family income, relatives and friends with medical background, and health education significantly influenced the awareness rate ( χ 2 = 12.76, 89.19, 18.19, 50.83 and 92.60 respectively, all P < 0.05). The accuracy rates of attitude and behavior in schistosomiasis control were 62.89% and 52.37% respectively. The awareness rate of knowledge about the prevention and control of schistosomiasis, and the accuracy rates of attitude and behavior in schistosomiasis control of the rural residents in Wanjiang River region are all inefficient, and therefore, the targeted health education should be strengthened to decrease the risk of schistosomiasis transmission.

  11. Testing of the on-board attitude determination and control algorithms for SAMPEX

    NASA Technical Reports Server (NTRS)

    Mccullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.

    1993-01-01

    Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.

  12. Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Sullivan, Wendy I.

    1994-01-01

    The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.

  13. Attitudes Toward Obese Persons and Weight Locus of Control in Chinese Nurses: A Cross-sectional Survey.

    PubMed

    Wang, Yan; Ding, Ye; Song, Daoping; Zhu, Daqiao; Wang, Jianrong

    2016-01-01

    Obese individuals frequently experience weight-related bias or discrimination-even in healthcare settings. Although obesity bias has been associated with several demographic factors, little is known about the association of weight locus of control with bias against overweight persons or about weight bias among Chinese health professionals. The aim of the study was to examine attitudes toward obese patients in a sample of Chinese registered nurses (RNs) and the relationship between weight bias and nurses' weight locus of control. RNs working in nine community health service centers across Shanghai, China, answered three self-report questionnaires: The Attitudes Toward Obese Persons Scale (ATOP), the External Weight Locus of Control Subscale (eWLOC) from the Dieting Belief Scale, and a sociodemographic profile. Hierarchical, stepwise, multiple regression was used to predict ATOP scores. From among 385 invited, a total of 297 RNs took part in the study (77.1% response rate). Participants scored an average of 71.04 on the ATOP, indicating slightly positive attitudes toward obese persons, and 30.08 on the eWLOC, indicating a belief in the uncontrollability of body weight. Using hierarchical, stepwise, multiple regression, two predictors of ATOP scores were statistically significant (eWLOC scores and status as a specialist rather than generalist nurse), but explained variance was low. Chinese RNs seemed to have relatively neutral or even slightly positive attitudes toward obese persons. Those nurses who believed that obesity was beyond the individual's control or worked in specialties were more likely to have positive attitudes toward obese people. Improved understanding of the comprehensive etiology of obesity is needed.

  14. The Magsat three axis arc second precision attitude transfer system

    NASA Technical Reports Server (NTRS)

    Schenkel, F. W.; Heins, R. J.

    1981-01-01

    The Magsat Attitude Transfer System (ATS), which provides attitude alteration in pitch, yaw, and roll is described. A remote vector magnetometer extends from Magsat on a 20 ft boom, requiring vector orientation by reference to coordinate axes determined by a set of star mapping cameras. The ATS was designed to perform in a solar illuminated environment by using an optically narrow bandwidth with synchronous demodulation at 9300 A. The pitch/yaw optical design, the electrooptics, and signal and switching diagrams are provided. Simple mirrors with no moving parts are placed on the magnetometer to reflect a collimated beam from the ATS for attitude indication, which is accurate to one part in 96. Alignment was completed within 24 hr after launch.

  15. Improving Primary Teachers' Attitudes toward Science by Attitude-Focused Professional Development

    ERIC Educational Resources Information Center

    van Aalderen-Smeets, Sandra I.; van der Molen, Juliette H. Walma

    2015-01-01

    This article provides a description of a novel, attitude-focused, professional development intervention, and presents the results of an experimental pretest-posttest control group study investigating the effects of this intervention on primary teachers' personal attitudes toward science, attitudes toward teaching science, and their science…

  16. Health literacy and parent attitudes about weight control for children.

    PubMed

    Liechty, Janet M; Saltzman, Jaclyn A; Musaad, Salma M

    2015-08-01

    The purpose of this study was to examine associations between parental health literacy and parent attitudes about weight control strategies for young children. Parental low health literacy has been associated with poor child health outcomes, yet little is known about its relationship to child weight control and weight-related health information-seeking preferences. Data were drawn from the STRONG Kids Study, a Midwest panel survey among parents of preschool aged children (n = 497). Parents endorsed an average of 4.3 (SD =2.8) weight loss strategies, 53% endorsed all three recommended weight loss strategies for children, and fewer than 1% of parents endorsed any unsafe strategies. Parents were most likely to seek child weight loss information from healthcare professionals but those with low (vs. adequate) health literacy were significantly less likely to use the Internet or books and more likely to use minister/clergy as sources. Poisson and logistic regressions showed that higher health literacy was associated with endorsement of more strategies overall, more recommended strategies, and greater odds of endorsing each specific recommended strategy for child weight control, after adjusting for parent age, education, race/ethnicity, income, marital status, weight concern, and child BMI percentile. Findings suggest that health literacy impacts parental views about child weight loss strategies and health information-seeking preferences. Pediatric weight loss advice to parents should include assessment of parent attitudes and prior knowledge about child weight control and facilitate parent access to reliable sources of evidence-informed child weight control information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Case-based e-learning to improve the attitude of medical students towards occupational health, a randomised controlled trial.

    PubMed

    Smits, P B A; de Graaf, L; Radon, K; de Boer, A G; Bos, N R; van Dijk, F J H; Verbeek, J H A M

    2012-04-01

    Undergraduate medical teaching in occupational health (OH) is a challenge in universities around the world. Case-based e-learning with an attractive clinical context could improve the attitude of medical students towards OH. The study question is whether case-based e-learning for medical students is more effective in improving knowledge, satisfaction and a positive attitude towards OH than non-case-based textbook learning. Participants, 141 second year medical students, were randomised to either case-based e-learning or text-based learning. Outcome measures were knowledge, satisfaction and attitude towards OH, measured at baseline, directly after the intervention, after 1 week and at 3-month follow-up. Of the 141 participants, 130 (92%) completed the questionnaires at short-term follow-up and 41 (29%) at 3-month follow-up. At short-term follow-up, intervention and control groups did not show a significant difference in knowledge nor satisfaction but attitude towards OH was significantly more negative in the intervention group (F=4.041, p=0.047). At 3-month follow-up, there were no significant differences between intervention and control groups for knowledge, satisfaction and attitude. We found a significant decrease in favourable attitude during the internship in the experimental group compared with the control group. There were no significant differences in knowledge or satisfaction between case-based e-learning and text-based learning. The attitude towards OH should be further investigated as an outcome of educational programmes.

  18. Impact and change of attitudes toward Internet interventions within a randomized controlled trial on individuals with depression symptoms.

    PubMed

    Schröder, Johanna; Berger, Thomas; Meyer, Björn; Lutz, Wolfgang; Späth, Christina; Michel, Pia; Rose, Matthias; Hautzinger, Martin; Hohagen, Fritz; Klein, Jan Philipp; Moritz, Steffen

    2018-05-01

    Most individuals with depression do not receive adequate treatment. Internet interventions may help to bridge this gap. Research on attitudes toward Internet interventions might facilitate the dissemination of such interventions by identifying factors that help or hinder uptake and implementation, and by clarifying who is likely to benefit. This study examined whether attitudes toward Internet interventions moderate the effects of a depression-focused Internet intervention, and how attitudes change over the course of treatment among those who do or do not benefit. We recruited 1,004 adults with mild-to-moderate depression symptoms and investigated how attitudes toward Internet interventions are associated with the efficacy of the program deprexis, and how attitudes in the intervention group change from pre to post over a 3 months intervention period, compared to a control group (care as usual). This study consists of a subgroup analysis of the randomized controlled EVIDENT trial. Positive initial attitudes toward Internet interventions were associated with greater efficacy (η 2 p  = .014) independent of usage time, whereas a negative attitude (perceived lack of personal contact) was associated with reduced efficacy (η 2 p  = .012). Users' attitudes changed during the trial, and both the magnitude and direction of attitude change were associated with the efficacy of the program over time (η 2 p  = .030). Internet interventions may be the most beneficial for individuals with positive attitudes toward them. Informing potential users about evidence-based Internet interventions might instill positive attitudes and thereby optimize the benefits such interventions can provide. Assessing attitudes prior to treatment might help identify suitable users. © 2018 Wiley Periodicals, Inc.

  19. Interaction of feel system and flight control system dynamics on lateral flying qualities

    NASA Technical Reports Server (NTRS)

    Bailey, R. E.; Knotts, L. H.

    1990-01-01

    An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.

  20. Predicting healthcare employees' participation in an office redesign program: attitudes, norms and behavioral control.

    PubMed

    Mohr, David C; VanDeusen Lukas, Carol; Meterko, Mark

    2008-11-02

    The study examined the extent to which components based on a modified version of the theory of planned behavior explained employee participation in a new clinical office program designed to reduce patient waiting times in primary care clinics. We regressed extent of employee participation on attitudes about the program, group norms, and perceived behavioral control along with individual and clinic characteristics using a hierarchical linear mixed model. Perceived group norms were one of the best predictors of employee participation. Attitudes about the program were also significant, but to a lesser degree. Behavioral control, however, was not a significant predictor. Respondents with at least one year of clinic tenure, or who were team leaders, first line supervisor, or managers had greater participation rates. Analysis at the clinic level indicated clinics with scores in the highest quartile clinic scores on group norms, attitudes, and behavioral control scores were significantly higher on levels of overall participation than clinics in the lowest quartile. Findings suggest that establishing strong norms and values may influence employee participation in a change program in a group setting. Supervisory level was also significant with greater responsibility being associated with greater participation.

  1. The effects of educating mothers and girls on the girls' attitudes toward puberty health: a randomized controlled trial.

    PubMed

    Afsari, Atousa; Mirghafourvand, Mojgan; Valizadeh, Sousan; Abbasnezhadeh, Massomeh; Galshi, Mina; Fatahi, Samira

    2017-04-01

    The attitude of a girl toward her menstruation and puberty has a considerable impact on her role during motherhood, social adjustment, and future marital life. This study was conducted in 2014 with the aim of comparing the effects of educating mothers and girls on the attitudes of adolescent girls of Tabriz City, Iran, towards puberty health. This randomized control clinical trial was conducted on 364 adolescent girls who experienced menstruation. Twelve schools were selected randomly among 107 secondary schools for girls. One-third of the students of each school were selected randomly using a table of random numbers and socio-demographic and each participant was asked to answer the attitude questionnaires. The schools were randomly allocated to the groups of mother's education, girl's education, and no-intervention. The attitude questionnaire was filled out by the participants again 2 months after intervention. The general linear model, in which the baseline values were controlled, was employed to compare the scores of the three groups after the intervention. No significant differences were observed among the three groups in terms of the attitude score before intervention (p>0.05). Attitude score improvement after intervention in the girl's education group was significantly higher than the one of both mother's education (adjusted mean difference [AMD]: 1.8; [95% confidence interval (CI): 0.4-1.3]) and no-intervention groups (AMD: 1.3; [95% CI: 0.0-2.6]) by controlling the attitude score before intervention. Based on the findings, it is more effective to educate girls directly about puberty health to improve adolescent girls' attitudes than educating mothers and asking them to transfer information to the girls. Nevertheless, studies with longer training period and follow-up are proposed to determine the effects of educating girls (through their mothers) on their attitudes about puberty health.

  2. Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, F. Landis

    1997-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  3. Solar particle induced upsets in the TDRS-1 attitude control system RAM during the October 1989 solar particle events

    NASA Astrophysics Data System (ADS)

    Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard, T. L.

    1995-10-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAR I unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEUs calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEUs by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEUs.

  4. Dynamics and offset control of tethered space-tug system

    NASA Astrophysics Data System (ADS)

    Zhang, Jingrui; Yang, Keying; Qi, Rui

    2018-01-01

    Tethered space-tug system is regarded as one of the most promising active debris removal technologies to effectively decrease the steep increasing population of space debris. In order to suppress the spin of space debris, single-tethered space-tug system is employed by regulating the tether. Unfortunately, this system is underactuated as tether length is the only input, and there are two control objectives: the spinning debris and the vibration of tether. Thus, it may suffer great oscillations and result in failure in space debris removal. This paper presents the study of attitude stabilization of the single-tethered space-tug system using not only tether length but also the offset of tether attachment point to suppress the spin of debris, so as to accomplish the space debris removal mission. Firstly, a precise 3D mathematical model in which the debris and tug are both treated as rigid bodies is developed to study the dynamical evolution of the tethered space-tug system. The relative motion equation of the system is described using Lagrange method. Secondly, the dynamic characteristic of the system is analyzed and an offset control law is designed to stabilize the spin of debris by exploiting the variation of tether offset and the regulation of tether length. Besides, an estimation formula is proposed to evaluate the capability of tether for suppressing spinning debris. Finally, the effectiveness of attitude stabilization by the utilization of the proposed scheme is demonstrated via numerical case studies.

  5. An analysis of control reversal errors during unusual attitude recoveries using helmet-mounted display symbology.

    PubMed

    Liggett, Kristen K; Gallimore, Jennie J

    2002-02-01

    Spatial disorientation (SD) refers to pilots' inability to accurately interpret the attitude of their aircraft with respect to Earth. Unfortunately, SD statistics have held constant for the past few decades, through the transition from the head-down attitude indicator (Al) to the head-up display (HUD) as the attitude instrument. The newest attitude-indicating device to find its way into military cockpits is the helmet-mounted display (HMD). HMDs were initially introduced into the cockpit to enhance target location and weapon-pointing, but there is currently an effort to make HMDs attitude reference displays so pilots need not go head-down to obtain attitude information. However, unintuitive information or inappropriate implementation of on-boresight attitude symbology on the HMD may contribute to the SD problem. The occurrence of control reversal errors (CREs) during unusual attitude recovery tasks when using an HMD to provide attitude information was investigated. The effect of such errors was evaluated in terms of altitude changes during recovery and time to recover. There were 12 pilot-subjects who completed 8 unusual attitude recovery tasks. Results showed that CREs did occur, and there was a significant negative effect of these errors on absolute altitude change, but not on total recovery time. Results failed to show a decrease in the number of CREs occurring when using the HMD as compared with data from other studies that used an Al or a HUD. Results suggest that new HMD attitude symbology needs to be designed to help reduce CREs and, perhaps, SD incidences.

  6. Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process

    NASA Technical Reports Server (NTRS)

    McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.

    1999-01-01

    This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.

  7. Orbiting Geophysical Observatory Attitude Control Subsystem Design Survey. NASA/ERC Design Criteria Program, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Mc Kenna, K. J.; Schmeichel, H.

    1968-01-01

    This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.

  8. A Nonlinear Spacecraft Attitude Controller and Observer with an Unknown Constant Gyro Bias and Gyro Noise

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Sanner, Robert M.

    2001-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro bias observer for the case of constant gyro bias, in the presence of gyro noise. The observer bias estimates converge exponentially to a mean square bound determined by the standard deviation of the gyro noise. The resulting coupled, closed loop dynamics are proven to be globally stable, with asymptotic tracking which is also mean square bounded. A simulation of the proposed observer-controller design is given for a rigid spacecraft tracking a specified, time-varying attitude sequence to illustrate the theoretical claims.

  9. Closed Loop Software Control of the MIDEX Power System

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Hernandez-Pellerano, Amri; Wismer, Margaret

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  10. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  11. Enhancing computer self-efficacy and attitudes in multi-ethnic older adults: a randomised controlled study

    PubMed Central

    Laganà, Luciana; Oliver, Taylor; Ainsworth, Andrew; Edwards, Marc

    2014-01-01

    Several studies have documented the health-related benefits of older adults' use of computer technology, but before they can be realised, older individuals must be positively inclined and confident in their ability to engage in computer-based environments. To facilitate the assessment of computer technology attitudes, one aim of the longitudinal study reported in this paper was to test and refine a new 22-item measure of computer technology attitudes designed specifically for older adults, as none such were available.1 Another aim was to replicate, on a much larger scale, the successful findings of a preliminary study that tested a computer technology training programme for older adults (Laganà 2008). Ninety-six older men and women, mainly from non-European-American backgrounds, were randomly assigned to the waitlist/control or the experimental group. The same six-week one-on-one training was administered to the control subjects at the completion of their post-test. The revised (17-item) version of the Older Adults' Computer Technology Attitudes Scale (OACTAS) showed strong reliability: the results of a factor analysis were robust, and two analyses of covariance demonstrated that the training programme induced significant changes in attitudes and self-efficacy. Such results encourage the recruitment of older persons into training programmes aimed at increasing computer technology attitudes and self-efficacy. PMID:25512679

  12. Novel approach to improve the attitude update rate of a star tracker.

    PubMed

    Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong

    2018-03-05

    The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.

  13. Perception of Locus of Control as a Predictor of Attitude Toward Students' Evaluation of University Faculty. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Kohler, Emmett T.; Christal, Melodie E.

    Student and faculty attitudes about faculty evaluation and the relationship of the attitudes to the concept of locus of control were investigated. Student respondents consisted of 172 males and 256 females, and 108 faculty responses were received. The measure of locus of control closely resembles the Rotter Internal-External Control Scale. Student…

  14. Attitude Ground System (AGS) for the Magnetospheric Multi-Scale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak

    2015-01-01

    MMS Overview Recall from Conrads presentation earlier today MMS launch: March 13, 2015 on an Atlas V from Space Launch Complex 40, Cape Canaveral, Florida MMS Observatory Separation: five minute intervals spinning at 3 rpm approximately 1.5 hours after launch MMS Science Goals: study magnetospheric plasma physics and understand the processes that cause power grids, communication disruptions and Aurora formation Mission: 4 identical spacecraft in tetrahedral formation with variable size1.2 x 12 RE in Phase 1, with apogee on dayside to observe bow shock1.2 x 25 RE in Phase 2, with apogee on night side to observe magneto tail Challenges Tight attitude control box, orbit and formation maintenance requirements Maneuvers on thrusters every two weeks Delta-H Spin axis direction and spin rate maintenance Delta-V Orbit and Formation maintenance Mission phase transitions AGS support Smart targeting prediction of Spin-Axis attitude in the presence of environmental torques to stay within the science attitude Determination of the spacecraft attitude and spin rate (sensitive to knowledge of inertia tensor)Calibrations to improve attitude determination results and improve orbit maneuvers Mass properties (Center of Mass, and inertia tensor for nutation and coning) Accelerometer bias (sensitive to the accuracy of the rate estimates) Sensor alignments.

  15. A Flight Control Approach for Small Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Bevacqoa, Tim; Adams, Tony; Zhu. J. Jim; Rao, P. Prabhakara

    2004-01-01

    Flight control of small crew return vehicles during atmospheric reentry will be an important technology in any human space flight mission undertaken in the future. The control system presented in this paper is applicable to small crew return vehicles in which reaction control system (RCS) thrusters are the only actuators available for attitude control. The control system consists of two modules: (i) the attitude controller using the trajectory linearization control (TLC) technique, and (ii) the reaction control system (RCS) control allocation module using a dynamic table-lookup technique. This paper describes the design and implementation of the TLC attitude control and the dynamic table-lookup RCS control allocation for nonimal flight along with design verification test results.

  16. ESTADIUS: A High Motion "One Arcsec" Daytime Attitude Estimation System for Stratospheric Applications

    NASA Astrophysics Data System (ADS)

    Montel, J.; Andre, Y.; Mirc, F.; Etcheto, P.; Evrard, J.; Bray, N.; Saccoccio, M.; Tomasini, L.; Perot, E.

    2015-09-01

    ESTADIUS is an autonomous, accurate and daytime attitude estimation system, for stratospheric balloons that require a high level of attitude measurement and stability. The system has been developed by CNES. ESTADIUS is based on star sensor an pyrometer data fusion within an extended Kalman filter. The star sensor is composed of a 16 MPixels visible-CCD camera and a large aperture camera lens (focal length of 135mm, aperture f/1.8, 10ºx15º field of view or FOV) which provides very accurate stars measurements due to very low pixel angular size. This also allows detecting stars against a bright sky background. The pyrometer is a 0.01º/h performance class Fiber Optic Gyroscope (FOG). The system is adapted to work down to an altitude of ~25km, even under high cinematic conditions. Key elements of ESTADIUS are: daytime conditions use (as well as night time), autonomy (automatic recognition of constellations), high angular rate robustness (a few deg/s thanks to the high performance of attitude propagation), stray-light robustness (thanks to a high performance baffle), high accuracy (<1", 1σ). Four stratospheric qualification flights were very successfully performed in 2010/2011 and 2013/2014 in Kiruna (Sweden) and Timmins (Canada). ESTADIUS will allow long stratospheric flights with a unique attitude estimation system avoiding the restriction of night/day conditions at launch. The first operational flight of ESTADIUS will be in 2015 for the PILOT scientific missions (led by IRAP and CNES in France). Further balloon missions such as CIDRE will use the system ESTADIUS is probably the first autonomous, large FOV, daytime stellar attitude measurement system. This paper details the technical features and in-flight results.

  17. Control torque generation of a CMG-based small satellite with MTGAC system: a trade-off study

    NASA Astrophysics Data System (ADS)

    Salleh, M. B.; Suhadis, N. M.; Rajendran, P.; Mazlan, N. M.

    2018-05-01

    In this paper, the gimbal angle compensation method using magnetic control law has been adopted for a small satellite operating in low earth orbit under disturbance toques influence. Three light weight magnetic torquers have been used to generate the magnetic compensation torque to bring diverge gimbals at preferable angle. The magnetic control torque required to compensate the gimbal angle is based on the gimbal error rate which depends on the gimbal angle converging time. A simulation study has been performed without and with the MTGAC system to investigate the amount of generated control torque as a trade-off between the power consumption, attitude control performance and CMG dynamic performance. Numerical simulations show that the satellite with the MTGAC system generates more control torques which leads to the additional power requirement but in return results in a favorable attitude control performance and gimbal angle management.

  18. Attitude controls for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Pauli, F. A.

    1971-01-01

    Systems consist of single duct system with two sets of reaction control nozzles, one linked mechanically to pilot's controls, and other set driven by electric servomotors commanded by preselected combinations of electrical signals.

  19. Imaging X-Ray Polarimetry Explorer Mission Attitude Determination and Control Concept

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff; Deininger, William D.; Kalinowski, William C.; Boysen, Mary; Bygott, Kyle; Guy, Larry; Pentz, Christina; Seckar, Chris; Valdez, John; Wedmore, Jeffrey; hide

    2018-01-01

    The goal of the Imaging X-Ray Polarimetry Explorer (IXPE) Mission is to expand understanding of high-energy astrophysical processes and sources, in support of NASA's first science objective in Astrophysics: "Discover how the universe works." X-ray polarimetry is the focus of the IXPE science mission. Polarimetry uniquely probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. The IXPE Observatory consists of Spacecraft and Payload modules. The Payload includes three polarization sensitive, X-ray detector units (DU), each paired with its corresponding grazing incidence mirror module assemblies (MMA). A deployable boom provides the correct separation (focal length) between the DUs and MMAs. These Payload elements are supported by the IXPE Spacecraft. A star tracker is mounted directly with the deployed Payload to minimize alignment errors between the star tracker line of sight (LoS) and Payload LoS. Stringent pointing requirements coupled with a flexible structure and a non-collocated attitude sensor-actuator configuration requires a thorough analysis of control-structure interactions. A non-minimum phase notch filter supports robust control loop stability margins. This paper summarizes the IXPE mission science objectives and Observatory concepts, and then it describes IXPE attitude determination and control implementation. IXPE LoS pointing accuracy, control loop stability, and angular momentum management are discussed.

  20. A Feasibility Study on the Control of a Generic Air Vehicle Using Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Moerder, Daniel D.

    2006-01-01

    This paper examines feasibility and performance issues in using Control Moment Gyroscopes (CMGs) to control the attitude of a fixed-wing aircraft. The paper describes a control system structure that permits allocating control authority and bandwidth between a CMG system and conventional aerodynamic control surfaces to stabilize a vehicle with neutral aerodynamic stability. A simulation study explores the interplay between aerodynamic and CMG effects, and indicates desirable physical characteristics for a CMG system to be used for aircraft attitude control.