Science.gov

Sample records for au nanoparticles immobilized

  1. Development of stable pollution free TiO2/Au nanoparticle immobilized green photo catalyst for degradation of methyl orange.

    PubMed

    Murugan, Eagambaram; Rangasamy, Rajmohan

    2011-02-01

    Two types of heterogeneous nanoparticle immobilized photocatalysts viz., PSP4VP-TiO2 and PSP4VP-TiO2-Au were synthesized by immobilization of TiO2 and TiO2-Au nanoparticles individually onto the insoluble cross-linked poly(styrene)-co-poly(4-vinylpyridine) as a common matrix. These two different green photocatalysts were characterized by FT-IR, SEM, HRTEM and EDS analyses and proves that the respective nanoparticles were found to immobilize onto the matrix. The photocatalytic efficiency of these catalysts was examined using degradation of methyl orange as a model reaction and found they are excellent in UV and sunlight. The stability and recycle/reusability of the catalysts were also observed to be good. PMID:21485879

  2. Preparation of Au Nanoparticles Immobilized Cross-Linked Poly(4-vinylpyridine) Nanofibers and Their Catalytic Application for the Reduction of 4-Nitrophenol.

    PubMed

    Qin, Qi-Hu; Na, Hui; Zhang, Chunyu; Yu, Qizhou; Zhang, Xue-Quan; Zhang, He-Xin

    2015-05-01

    Catalytic nanofibers are prepared by the immobilization of Au nanoparticles (AuNPs) onto the surface of cross-linked electrospun poly(4-vinylpyridine) (P4VP) nanofibers. The crosslinking of the P4VP nanofibers by 1,4-diiodobutane via quaternization reaction greatly enhances the stability of the nanofibers against the solvent dissolution, which can then be used as promising platform for the immobilization of catalytic metal nanoparticles. The AuNPs immobilized cross-linked P4VP nanofibers have shown a good catalytic activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). PMID:26505022

  3. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.

    PubMed

    Gu, Xiaojun; Lu, Zhang-Hui; Jiang, Hai-Long; Akita, Tomoki; Xu, Qiang

    2011-08-10

    Bimetallic Au-Pd nanoparticles (NPs) were successfully immobilized in the metal-organic frameworks (MOFs) MIL-101 and ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) using a simple liquid impregnation method. The resulting composites, Au-Pd/MIL-101 and Au-Pd/ED-MIL-101, represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage. Au-Pd NPs with strong bimetallic synergistic effects have a much higher catalytic activity and a higher tolerance with respect to CO poisoning than monometallic Au and Pd counterparts. PMID:21761819

  4. Fabrication of quantum dot/silica core-shell particles immobilizing Au nanoparticles and their dual imaging functions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshio; Matsudo, Hiromu; Li, Ting-ting; Shibuya, Kyosuke; Kubota, Yohsuke; Oikawa, Takahiro; Nakagawa, Tomohiko; Gonda, Kohsuke

    2016-03-01

    The present work proposes preparation methods for quantum dot/silica (QD/SiO2) core-shell particles that immobilize Au nanoparticles (QD/SiO2/Au). A colloid solution of QD/SiO2 core-shell particles with an average size of 47.0 ± 6.1 nm was prepared by a sol-gel reaction of tetraethyl orthosilicate in the presence of the QDs with an average size of 10.3 ± 2.1 nm. A colloid solution of Au nanoparticles with an average size of 17.9 ± 1.3 nm was prepared by reducing Au3+ ions with sodium citrate in water at 80 °C. Introduction of amino groups to QD/SiO2 particle surfaces was performed using (3-aminopropyl)-triethoxysilane (QD/SiO2-NH2). The QD/SiO2/Au particles were fabricated by mixing the Au particle colloid solution and the QD/SiO2-NH2 particle colloid solution. Values of radiant efficiency and computed tomography for the QD/SiO2/Au particle colloid solution were 2.23 × 107 (p/s/cm2/sr)/(μW/cm2) at a QD concentration of 8 × 10-7 M and 1180 ± 314 Hounsfield units and an Au concentration of 5.4 × 10-2 M. The QD/SiO2/Au particle colloid solution was injected into a mouse chest wall. Fluorescence emitted from the colloid solution could be detected on the skin covering the chest wall. The colloid solution could also be X-ray-imaged in the chest wall. Consequently, the QD/SiO2/Au particle colloid solution was found to have dual functions, i.e., fluorescence emission and X-ray absorption in vivo, which makes the colloid solution suitable to function as a contrast agent for dual imaging processes.

  5. Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H2O2 and nitrite biosensor

    NASA Astrophysics Data System (ADS)

    Vilian, A. T. Ezhil; Veeramani, Vediyappan; Chen, Shen-Ming; Madhu, Rajesh; Kwak, Cheol Hwan; Huh, Yun Suk; Han, Young-Kyu

    2015-12-01

    A novel composite film was designed for use as a highly selective mediator-free amperometric biosensor, and a method was created for accomplishing direct electrochemistry of myoglobin on a multi-walled carbon nanotube and tyramine-modified composite decorated with Au nanoparticles on a glassy carbon electrode. The ultraviolet-visible and electrochemical impedance spectroscopy results showed that myoglobin retained its native conformation in the interaction with Au-PTy-f-MWCNT. The surface coverage of Mb-heme-Fe(II)/(III) immobilized on Au-PTy-f-MWCNT and the heterogeneous electron-transfer rate constant were 2.12 × 10-9 mol cm-2 and 4.86 s-1, respectively, indicating a higher loading capacity of the nanocomposite for direct electron transfer of Mb onto the electrode surface. The proposed Mb/Au-PTy-f-MWCNT biofilm exhibited excellent electrocatalytic behavior toward the reduction of H2O2 and the oxidation of nitrite with linear ranges of 2 to 5000 μM and 1 to 8000 μM and lower detection limits of 0.01 μM and 0.002 μM, respectively. An apparent Michaelis-Menten constant of 0.12 mM indicated that the Mb immobilized on the Au-PTy-f-MWCNT film retained its native activity. This biosensor can be successfully applied to detect H2O2 and nitrite in disinfectant cream, eye drops, pickle juice, and milk samples.

  6. Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H2O2 and nitrite biosensor

    PubMed Central

    Vilian, A. T. Ezhil; Veeramani, Vediyappan; Chen, Shen-Ming; Madhu, Rajesh; Kwak, Cheol Hwan; Huh, Yun Suk; Han, Young-Kyu

    2015-01-01

    A novel composite film was designed for use as a highly selective mediator-free amperometric biosensor, and a method was created for accomplishing direct electrochemistry of myoglobin on a multi-walled carbon nanotube and tyramine-modified composite decorated with Au nanoparticles on a glassy carbon electrode. The ultraviolet-visible and electrochemical impedance spectroscopy results showed that myoglobin retained its native conformation in the interaction with Au-PTy-f-MWCNT. The surface coverage of Mb-heme-Fe(II)/(III) immobilized on Au-PTy-f-MWCNT and the heterogeneous electron-transfer rate constant were 2.12 × 10−9 mol cm−2 and 4.86 s−1, respectively, indicating a higher loading capacity of the nanocomposite for direct electron transfer of Mb onto the electrode surface. The proposed Mb/Au-PTy-f-MWCNT biofilm exhibited excellent electrocatalytic behavior toward the reduction of H2O2 and the oxidation of nitrite with linear ranges of 2 to 5000 μM and 1 to 8000 μM and lower detection limits of 0.01 μM and 0.002 μM, respectively. An apparent Michaelis-Menten constant of 0.12 mM indicated that the Mb immobilized on the Au-PTy-f-MWCNT film retained its native activity. This biosensor can be successfully applied to detect H2O2 and nitrite in disinfectant cream, eye drops, pickle juice, and milk samples. PMID:26672985

  7. Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase onto Au seeds decorated on core Fe₃O₄ nanoparticles.

    PubMed

    Samphao, Anchalee; Butmee, Preeyanut; Jitcharoen, Juthamas; Švorc, Ľubomír; Raber, Georg; Kalcher, Kurt

    2015-09-01

    An amperometric biosensor based on chemisorption of glucose oxidase (GOx) on Au seeds decorated on magnetic core Fe3O4 nanoparticles (Fe3O4@Au) and their immobilization on screen-printed carbon electrode bulk-modified with manganese oxide (SPCE{MnO2}) was designed for the determination of glucose. The Fe3O4@Au/GOx modified SPCE{MnO2} was used in a flow-injection analysis (FIA) arrangement. The experimental conditions were investigated in amperometric mode with the following optimized parameters: flow rate 1.7 mL min(-1), applied potential +0.38 V, phosphate buffer solution (PBS; 0.1 mol L(-1), pH 7.0) as carrier and 3.89 unit mm(-2) enzyme glucose oxidase loading on the active surface of the SPCE. The designed biosensor in FIA arrangement yielded a linear dynamic range for glucose from 0.2 to 9.0 mmol L(-1) with a sensitivity of 2.52 µA mM(-1) cm(-2), a detection limit of 0.1 mmol L(-1) and a quantification limit of 0.3 mmol L(-1). Moreover, a good repeatability of 2.8% (number of measurements n=10) and a sufficient reproducibility of 4.0% (number of sensors n=3) were achieved. It was found that the studied system Fe3O4@Au facilitated not only a simpler enzyme immobilization but also provided wider linear range. The practical application of the proposed biosensor for FIA quantification of glucose was tested in glucose sirup samples, honeys and energy drinks with the results in good accordance with those obtained by an optical glucose meter and with the contents declared by the producers. PMID:26003689

  8. Immobilization of bovine catalase onto magnetic nanoparticles.

    PubMed

    Doğaç, Yasemin İspirli; Teke, Mustafa

    2013-01-01

    The scope of this study is to achieve carrier-bound immobilization of catalase onto magnetic particles (Fe₃O₄ and Fe₂O₃NiO₂ · H₂O) to specify the optimum conditions of immobilization. Removal of H2O2 and the properties of immobilized sets were also investigated. To that end, adsorption and then cross-linking methods onto magnetic particles were performed. The optimum immobilization conditions were found for catalase: immobilization time (15 min for Fe₃O₄; 10 min for Fe2O₃NiO₂ · H₂O), the initial enzyme concentration (1 mg/mL), amount of magnetic particles (25 mg), and glutaraldehyde concentration (3%). The activity reaction conditions (optimum temperature, optimum pH, pH stability, thermal stability, operational stability, and reusability) were characterized. Also kinetic parameters were calculated by Lineweaver-Burk plots. The optimum pH values were found to be 7.0, 7.0, and 8.0 for free enzyme, Fe₃O₄-immobilized catalases, and Fe₂O₃NiO₂ · H₂O-immobilized catalases, respectively. All immobilized catalase systems displayed the optimum temperature between 25 and 35°C. Reusability studies showed that Fe₃O₄-immobilized catalase can be used 11 times with 50% loss in original activity, while Fe2O₃NiO₂ · H₂O-immobilized catalase lost 67% of activity after the same number of uses. Furthermore, immobilized catalase systems exhibited improved thermal and pH stability. The results transparently indicate that it is possible to have binding between enzyme and magnetic nanoparticles. PMID:23876136

  9. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  10. Immobilization of Polymeric Luminophor on Nanoparticles Surface

    NASA Astrophysics Data System (ADS)

    Bolbukh, Yuliia; Podkoscielna, Beata; Lipke, Agnieszka; Bartnicki, Andrzej; Gawdzik, Barbara; Tertykh, Valentin

    2016-04-01

    Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

  11. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    SciTech Connect

    Villa, Alberto; Prati, Laura; Su, Dangshen; Wang, Di; Veith, Gabriel M

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  12. Immobilization of Polymeric Luminophor on Nanoparticles Surface.

    PubMed

    Bolbukh, Yuliia; Podkoscielna, Beata; Lipke, Agnieszka; Bartnicki, Andrzej; Gawdzik, Barbara; Tertykh, Valentin

    2016-12-01

    Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor. PMID:27090657

  13. Collision-spike Sputtering of Au Nanoparticles.

    PubMed

    Sandoval, Luis; Urbassek, Herbert M

    2015-12-01

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; the remainder is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering. PMID:26245857

  14. Collision-spike sputtering of Au nanoparticles

    SciTech Connect

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For this specific case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31% of the impact energy remains in the nanoparticles after impact; the remainder is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80% of that of free nanoparticles due to the suppression of forward sputtering.

  15. Collision-spike sputtering of Au nanoparticles

    DOE PAGESBeta

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For this specific case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31% of the impact energy remains in the nanoparticles after impact; the remaindermore » is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80% of that of free nanoparticles due to the suppression of forward sputtering.« less

  16. Mimetic biomembrane-AuNPs-graphene hybrid as matrix for enzyme immobilization and bioelectrocatalysis study.

    PubMed

    Wang, Tianshu; Liu, Jiyang; Ren, Jiangtao; Wang, Jin; Wang, Erkang

    2015-10-01

    A hybrid composite constructed of phospholipids bilayer membrane, gold nanoparticles and graphene was prepared and used as matrices for microperoxidase-11 (MP11) immobilization. The direct electrochemistry and corresponding bioelectrocatalysis of the enzyme electrode was further investigated. Phospholipid bilayer membrane protected gold nanoparticles (AuNPs) were assembled on polyelectrolyte functionalized graphene sheets through electrostatic attraction to form a hybrid bionanocomposite. Owing to the biocompatible microenvironment provided by the mimetic biomembrane, microperoxidase-11 entrapped in this matrix well retained its native structure and exhibited high bioactivity. Moreover, the AuNPs-graphene assemblies could efficiently promote the direct electron transfer between the immobilized MP11 and the substrate electrode. The as-prepared enzyme electrode presented good direct electrochemistry and electrocatalytic responses to the reduction of hydrogen peroxide (H2O2). The resulting H2O2 biosensor showed a wide linear range (2.0×10(-5)-2.8×10(-4) M), a low detection limit (2.6×10(-6) M), good reproducibility and stability. Furthermore, this sensor was used for real-time detection of H2O2 dynamically released from the tumor cells MCF-7 in response to a pro-inflammatory stimulant. PMID:26078181

  17. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    NASA Astrophysics Data System (ADS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au-FA nanoparticles.

  18. Application of magnetic nanoparticles in smart enzyme immobilization.

    PubMed

    Vaghari, Hamideh; Jafarizadeh-Malmiri, Hoda; Mohammadlou, Mojgan; Berenjian, Aydin; Anarjan, Navideh; Jafari, Nahideh; Nasiri, Shahin

    2016-02-01

    Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research. PMID:26472272

  19. Acetylcholinesterase immobilized onto PEI-coated silica nanoparticles.

    PubMed

    Tumturk, Hayrettin; Yüksekdag, Hazer

    2016-01-01

    Polyethyleneimine (PEI) coated-silica nanoparticles were prepared by the Stöber method. The formation and the structure of the nanoparticles were characterized by ATR-FT-IR spectroscopy and transmission electron microscopy (TEM). TEM images of the silica and PEI-coated nanoparticles revealed that they were well dispersed and that there was no agglomeration. The acetylcholineesterase enzyme was immobilized onto these nanoparticles. The effects of pH and temperature on the storage stability of the free and immobilized enzyme were investigated. The optimum pHs for free and immobilized enzymes were determined as 7.0 and 8.0, respectively. The optimum temperatures for free and immobilized enzymes were found to be 30.0 and 35.0°C, respectively. The maximum reaction rate (Vmax) and the Michaelis-Menten constant (Km) were investigated for the free and immobilized enzyme. The storage stability of acetylcholinesterase was increased when immobilized onto the novel PEI-coated silica nanoparticles. The reuse numbers of immobilized enzyme were also studied. These hybrid nanoparticles are desirable as carriers for biomedical applications. PMID:25365355

  20. Influence of Surfactant Bilayers and Substrate Immobilization on the Refractive Index Sensitivity of Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahjamali, Mohammad; Large, Nicolas; Martinsson, Erik; Zaraee, Negin; Schatz, George; Aili, Daniel; Mirkin, Chad

    2015-03-01

    Shape-controlled synthesis of gold nanoparticles (AuNPs) generally involves the use of surfactants to regulate the nucleation growth process and to obtain colloidally stable AuNPs. The surfactants adsorb on the NP surface making further functionalization difficult and therefore limit their practical use in many applications such as bio- and molecular sensing, surface-enhanced spectrosopies, and NP assembly. Herein, we report on how cetyltrimethylammonium (CTAX, X =Cl-, Br-) , a common surfactant used in anisotropic AuNPs synthesis, affectsthe nanoparticle sensitivity to local dielectric environment changes and limitsrefractometric plasmonic sensing. We experimentally and theoretically show that the CTAX bilayer significantly reduces the refractive index (RI) sensitivity of anisotropic AuNPs such as flat and concave nanocubes, nanorods, and nanoprisms. We show that the RI sensitivity can be improvedby up to 40% by removing the CTAXfrom immobilized AuNPs using oxygen plasma treatment. The substrate effect on the RI sensitivity caused by NP immobilization isalso investigated. The strategy presented herein is a simple andeffective method to improvethe RI sensitivity of CTAX-stabilized AuNPs, thus increasing their potential in nanoplasmonic sensingand in biomedical applications.

  1. Au nanoparticles films used in biological sensing

    NASA Astrophysics Data System (ADS)

    Rosales Pérez, M.; Delgado Macuil, R.; Rojas López, M.; Gayou, V. L.; Sánchez Ramírez, J. F.

    2009-05-01

    Lactobacillus para paracasei are used commonly as functional food and probiotic substances. In this work Au nanoparticles self-assembled films were used for Lactobacillus para paracasei determination at five different concentrations. Functionalized substrates were immersed in a colloidal solution for one and a half hour at room temperature and dried at room temperature during four hours. After that, drops of Lactobacillus para paracasei in aqueous solution were put into the Au nanoparticles film and let dry at room temperature for another two hours. Infrared spectroscopy in attenuated total reflectance sampling mode was used to observe generation peaks due to substrate silanization, enhancement of Si-O band intensity due to the Au colloids added to silanized substrate and also to observe the enhancement of Lactobacillus para paracasei infrared intensity of the characteristic frequencies at 1650, 1534 and 1450 cm-1 due to surface enhancement infrared absorption.

  2. Immobilized Polymer Layers on Spherical Nanoparticles

    SciTech Connect

    Harton, S.; Kumar, S; Yang, H; Koga, T; Hicks, K; Lee, H; Mijovic, J; Liu, M; Vallery, R; Gidley, D

    2010-01-01

    Polymer properties, such as their mechanical strength, barrier properties, and dielectric response, can be dramatically improved by the addition of nanoparticles. This improvement is thought to be because the surface area per unit mass of particles increases with decreasing particle size, R, as 1/R. This favorable effect has to be reconciled with the expectation that at small enough R the nanoparticles must behave akin to a solvent and cause a deterioration of properties. How does this transition in behavior from large solutes to the solvent limit occur? We conjecture that for small enough particles the layer of polymer affected by the particles ('bound' polymer layer) must be much smaller than that for large particles: the favorable effect of increasing particle surface area can thus be overcome and lead to the small solvent limit with unfavorable mechanical properties, for example. To substantiate this picture requires that we measure and compare the 'bound polymer layer' formed on nanoparticles with those near large particles with equivalent chemistry. We have implemented a novel strategy to obtain uniform nanoparticle dispersion in polymers, a problem for many previous works. Then, by combining theory and a suite of experimental techniques, including differential scanning calorimetry and positron annihilation lifetime spectroscopy, we show that the immobilized poly(2-vinylpyridine) layer near 15 nm diameter silica particles ({approx}1 nm) is considerably thinner than that at flat silica surfaces ({approx}4 to 5 nm), which is the limit of an infinitely large particle. We have also determined that the changes in the polymer's glass-transition temperature due to the presence of this strongly interacting surface are very small in both well-dispersed nanocomposites and thin films (<100 nm). Similarly, the polymer's fragility, as determined by dielectric spectroscopy, is also found to be little affected in the nanocomposites relative to the pure polymer. While a

  3. Preparation of well-dispersed gold/magnetite nanoparticles embedded on cellulose nanocrystals for efficient immobilization of papain enzyme.

    PubMed

    Mahmoud, Khaled A; Lam, Edmond; Hrapovic, Sabahudin; Luong, John H T

    2013-06-12

    A nanocomposite consisting of magnetite nanoparticles (Fe3O4NPs) and Au nanoparticles (AuNPs) embedded on cellulose nanocrystals (CNCs) was used as a magnetic support for the covalent conjugation of papain and facilitated recovery of this immobilized enzyme. Fe3O4NPs (10-20 nm in diameter) and AuNPs (3-7 nm in diameter) were stable and well-dispersed on the CNC surface. Energy-dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used to evaluate the surface composition and structure of CNC/Fe3O4NPs/AuNPs. The nanocomposite was successfully used for the immobilization and separation of papain from the reaction mixture. The optimal enzyme loading was 186 mg protein/g CNC/Fe3O4NPs/AuNPs, significantly higher than the value reported in the literature. The activity of immobilized papain was studied by electrochemical detection of its specific binding to the Thc-Fca-Gly-Gly-Tyr-Arg inhibitory sequence bound to an Au electrode. The immobilized enzyme retained 95% of its initial activity after 35 days of storage at 4 °C, compared to 41% for its free form counterpart. PMID:23676842

  4. Purification, immobilization, and characterization of nattokinase on PHB nanoparticles.

    PubMed

    Deepak, Venkataraman; Pandian, Suresh babu Ram Kumar; Kalishwaralal, Kalimuthu; Gurunathan, Sangiliyandi

    2009-12-01

    In this study, nattokinase was purified from Bacillus subtilis using ion exchange chromatography and immobilized upon polyhydroxybutyrate (PHB) nanoparticles. A novel strain isolated from industrial dairy waste was found to synthesize polyhydroxyalkanoates (PHA) and the strain was identified as Brevibacterium casei SRKP2. PHA granules were extracted from 48 h culture and the FT-IR analysis characterized them as PHB, a natural biopolymer from B. casei. Nanoprecipitation by solvent displacement technique was used to synthesize PHB nanoparticles. PHB nanoparticles were characterized using transmission electron microscopy and particle size ranged from 100-125 nm. Immobilization of nattokinase upon PHB nanoparticles resulted in a 20% increase in the enzyme activity. Immobilization also contributed to the enhanced stability of the enzyme. Moreover, the activity was completely retained on storage at 4 degrees C for 25 days. The method has proven to be highly simple and can be implemented to other enzymes also. PMID:19608412

  5. Click Chemistry Immobilization of Antibodies on Polymer Coated Gold Nanoparticles.

    PubMed

    Finetti, Chiara; Sola, Laura; Pezzullo, Margherita; Prosperi, Davide; Colombo, Miriam; Riva, Benedetta; Avvakumova, Svetlana; Morasso, Carlo; Picciolini, Silvia; Chiari, Marcella

    2016-07-26

    The goal of this work is to develop an innovative approach for the coating of gold nanoparticles (AuNPs) with a synthetic functional copolymer. This stable coating with a thickness of few nanometers provides, at the same time, stabilization and functionalization of the particles. The polymeric coating consists of a backbone of polydimethylacrylamide (DMA) functionalized with an alkyne monomer that allows the binding of azido modified molecules by Cu(I)-catalyzed azide/alkyne 1,3-dipolar cycloaddition (CuAAC, click chemistry). The thin polymer layer on the surface stabilizes the colloidal suspension whereas the alkyne functions pending from the backbone are available for the reaction with azido-modified proteins. The reactivity of the coating is demonstrated by immobilizing an azido modified anti-mouse IgG antibody on the particle surface. This approach for the covalent binding of antibody to a gold-NPs is applied to the development of gold labels in biosensing techniques. PMID:27367748

  6. Characterization of protein-immobilized polystyrene nanoparticles using impedance spectroscopy.

    PubMed

    Park, Soo-In; Lee, Sang-Yup

    2014-10-01

    A novel approach for characterization of non-conductive protein-immobilized nanoparticles using AC impedance spectroscopy combined with conductive atomic force microscopy was examined. As AC impedance spectroscopy can provide information on diverse electrical properties such as capacitance and inductance, it is applicable to the characterization of non-conductive substances. Several non-conductive protein-immobilized polystyrene nanoparticles were analyzed using AC impedance spectroscopy, and their impedance spectra were used as markers for nanoparticle identification. Analyses of impedance signals using an electrical circuit model established that the capacitance and inductance of each nanoparticle changed with the adsorbed protein and that impedance spectral differences were characteristic properties of the proteins. From this study, AC impedance spectroscopy was shown to be a useful tool for characterization of non-conductive nanoparticles and is expected to be applicable to the development of sensors for nanomaterials. PMID:25942903

  7. (Au/PANA/PVAc) nanofibers as a novel composite matrix for albumin and streptavidin immobilization.

    PubMed

    Golshaei, Rana; Guler, Zeliha; Sarac, Sezai A

    2016-03-01

    A novel electrospun nanofiber mat (Au/PANA/PVAc) consists of (Gold/Poly Anthranilic acid) (Au/PANA) core/shell nanostructures as a support material for protein immobilization that was developed and characterized by electrochemical impedance spectroscopy. In the core/shells, PANA served carboxyl groups (-COOH) for covalent protein immobilization and Au enhanced the electrochemical properties by acting as tiny conduction centers to facilitate electron transfer. Covalent immobilization of albumin and streptavidin as model proteins onto the (Au/PANA/PVAc) nanofibers was carried out by using 1-ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxyl succinimide (NHS) activation. PVAc nanofibers were compared with Au/PANA/PVAc nanofibers before and after protein immobilization. The successful covalent binding of both albumin and streptavidin onto (Au/PANA/PVAc) nanofibers was confirmed by FTIR-ATR, Electron Microscopy/Energy-Dispersive X-ray Spectroscopy SEM/EDX and Electrochemical impedance spectroscopy (EIS). The nanofibers became resistive due to protein immobilization and the higher charge transfer resistance was observed after higher amount of protein was immobilized. PMID:26706530

  8. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles.

    PubMed

    Shabnam, Nisha; Pardha-Saradhi, P

    2013-01-01

    In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant) and Spinacia oleracea (a terrestrial plant) turned Au³⁺ solutions purple in presence of light of 600 µmol m⁻² s⁻¹ photon flux density (PFD) and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au³⁺ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au³⁺ to Au⁰ which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5-20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m⁻² s⁻¹. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au³⁺ to Au⁰ to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles. PMID:23976990

  9. Au-nanoparticles grafted on plasma treated PE

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.

    2010-03-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  10. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Maciel, J. C.; D. Mercês, A. A.; Cabrera, M.; Shigeyosi, W. T.; de Souza, S. D.; Olzon-Dionysio, M.; Fabris, J. D.; Cardoso, C. A.; Neri, D. F. M.; C. Silva, M. P.; Carvalho, L. B.

    2016-12-01

    It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe 3+ ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ˜15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and 57Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite ( γFe2O3). The coated magnetic nanoparticles (sample labeled "mPANI") presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample "mPANIG-Trypsin"). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 ∘C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

  11. Optimizing immobilization of avidin on surface-modified magnetic nanoparticles: characterization and application of protein-immobilized nanoparticles.

    PubMed

    Yang, Tao; Sun, Shuguo; Ma, Meihu; Lin, Qinlu; Zhang, Lin; Li, Yan; Luo, Feijun

    2015-10-01

    A simple optimization method of immobilization of avidin on magnetic nanoparticles (MNPs)' surface was proposed in this study. The avidin-immobilized MNPs were then developed and used to immobilize a model enzyme [Horseradish peroxidase (HRP)]. The loading capacity (LC) and activity of avidin-immobilized MNPs were optimized through selecting the most appropriate nanoparticle's size and shape, glutaraldehyde concentration, cross-linking reaction time, ultrasonic processing time, and initial concentration of avidin. The LC under optimized conditions was 63.37 ± 1.29 mg avidin/g MNPs, and the immobilized protein was still able to maintain its high biological activity of 10.86 ± 0.13 U/mg (biotin-binding activity of nature avidin was 14.1 U/mg) and better thermal stability compared to free avidin. A highly reusable, stable, and easily recovered immobilized HRP was obtained using MNPs as carriers. The immobilized HRP was reused repeatedly more than 9 times and retained more than 65 % of its original activity. PMID:26224655

  12. Prolonged reorganization of thiol-capped Au nanoparticles layered structures

    NASA Astrophysics Data System (ADS)

    Kundu, Sarathi; Das, Kaushik; Konovalov, Oleg

    2013-09-01

    Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001) substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.

  13. Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles.

    PubMed

    Villalonga, Reynaldo; Díez, Paula; Sánchez, Alfredo; Aznar, Elena; Martínez-Máñez, Ramón; Pingarrón, José M

    2013-06-10

    Novel Janus nanoparticles with Au and mesoporous silica faces on opposite sides were prepared using a Pickering emulsion template with paraffin wax as the oil phase. These anisotropic colloids were employed as integrated sensing-actuating nanomachines for enzyme-controlled stimuli-responsive cargo delivery. As a proof of concept, we demonstrated the successful use of the Janus colloids for controlled delivery of tris(2,2'-bipyridyl) ruthenium(II) chloride from the mesoporous silica face, which was grafted with pH-sensitive gatelike scaffoldings. The release was mediated by the on-demand catalytic decomposition of urea by urease, which was covalently immobilized on the Au face. PMID:23649789

  14. Novel functionalized fluorescent polymeric nanoparticles for immobilization of biomolecules

    NASA Astrophysics Data System (ADS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, C. K. V. Zainul; Singh, Harpal

    2013-07-01

    Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties. Particles with 1% SLS (S1) showed good dispersion stability and fluorescence intensity and were chosen as ideal candidates for further immobilization studies. Steady state fluorescence studies showed 10 times higher fluorescence intensity of S1 nanoparticles than that of pyrene solution in solvent-toluene at the same concentration. Environmental factors such as pH, ionic strength and time were found to have no effect on fluorescence intensity of FPNPs. Surface β-di-ketone groups were utilized for the covalent immobilization of enzyme conjugated antibodies without any activation or pre-treatment of nanoparticles.Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable

  15. Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes.

    PubMed

    Gu, Sasa; Lu, Yan; Kaiser, Julian; Albrecht, Martin; Ballauff, Matthias

    2015-11-14

    We present a detailed study of the catalytic activity of Au/Pd nanoalloys with Au : Pd molar ratio 75 : 25 synthesized using spherical polyelectrolyte brushes (SPB) as carrier system. The reduction of 4-nitrophenol (Nip) by sodium borohydride (BH4(-)) has been used as a model reaction. This reaction proceeds in two steps: 4-nitrophenol is first reduced to 4-hydroxylaminophenol which in a second step is reduced to the final product 4-aminophenol. Both steps of the reaction proceed on the surface of the nanoparticles (Langmuir-Hinshelwood-mechanism). We use this model to analyze the experimental data obtained by catalysis with the Au/Pd-nanoalloys. Good agreements between theory and experiments were found up to 30% conversion of Nip. The kinetic parameters were compared with the data derived from neat Au and Pd nanoparticles immobilized in the same SPB carrier system. The addition of 25% molar ratio of Pd to the nanoalloys increases the reaction rate of the first step nearly 10 times compared with that of SPB-Au and 60 times compared with that of SPB-Pd. Analysis of the nanoalloy by high-resolution transmission electron microscopy suggests that the surface defects of the nanoalloys play an important role for the enhanced catalytic activity. PMID:25790094

  16. Affinity-Driven Immobilization of Proteins to Hematite Nanoparticles.

    PubMed

    Zare-Eelanjegh, Elaheh; Bora, Debajeet K; Rupper, Patrick; Schrantz, Krisztina; Thöny-Meyer, Linda; Maniura-Weber, Katharina; Richter, Michael; Faccio, Greta

    2016-08-10

    Functional nanoparticles are valuable materials for energy production, bioelectronics, and diagnostic devices. The combination of biomolecules with nanosized material produces a new hybrid material with properties that can exceed the ones of the single components. Hematite is a widely available material that has found application in various sectors such as in sensing and solar energy production. We report a single-step immobilization process based on affinity and achieved by genetically engineering the protein of interest to carry a hematite-binding peptide. Fabricated hematite nanoparticles were then investigated for the immobilization of the two biomolecules C-phycocyanin (CPC) and laccase from Bacillus pumilus (LACC) under mild conditions. Genetic engineering of biomolecules with a hematite-affinity peptide led to a higher extent of protein immobilization and enhanced the catalytic activity of the enzyme. PMID:27429157

  17. Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing.

    PubMed

    Kamra, Tripta; Chaudhary, Shilpi; Xu, Changgang; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2016-01-01

    One challenging task in building (bio)chemical sensors is the efficient and stable immobilization of receptor on a suitable transducer. Herein, we report a method for covalent immobilization of molecularly imprinted core-shell nanoparticles for construction of robust chemical sensors. The imprinted nanoparticles with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model Au transducer surface is first functionalized with a self-assembled monolayer of 11-mercaptoundecanoic acid. The 11-mercaptoundecanoic acid is activated by treatment with carbodiimide/N-hydroxysuccinimide and then reacted with the core-shell nanoparticles to form amide bonds. We have characterized the process by studying the treated surfaces after each preparation step using atomic force microscopy, scanning electron microscopy, fluorescence microscopy, contact angle measurements and X-ray photoelectron spectroscopy. The microscopy results show the successful immobilization of the imprinted nanoparticles on the surface. The photoelectron spectroscopy results further confirm the success of each functionalization step. Further, the amino groups on the MIP surface were activated by electrostatically adsorbing negatively charged Au colloids. The functionalized surface was shown to be active for surface enhanced Raman scattering detection of propranolol. The particle immobilization and surface enhanced Raman scattering approach described here has a general applicability for constructing chemical sensors in different formats. PMID:26397901

  18. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase

    NASA Astrophysics Data System (ADS)

    Konwarh, Rocktotpal; Karak, Niranjan; Rai, Sudhir Kumar; Mukherjee, Ashis Kumar

    2009-06-01

    Nanotechnology holds the prospect for avant-garde changes to improve the performance of materials in various sectors. The domain of enzyme biotechnology is no exception. Immobilization of industrially important enzymes onto nanomaterials, with improved performance, would pave the way to myriad application-based commercialization. Keratinase produced by Bacillus subtilis was immobilized onto poly(ethylene glycol)-supported Fe3O4 superparamagnetic nanoparticles. The optimization process showed that the highest enzyme activity was noted when immobilized onto cyanamide-activated PEG-assisted MNP prepared under conditions of 25 °C and pH 7.2 of the reaction mixture before addition of H2O2 (3% w/w), 2% (w/v) PEG6000 and 0.062:1 molar ratio of PEG to FeCl2·4H2O. Further statistical optimization using response surface methodology yielded an R2 value that could explain more than 94% of the sample variations. Along with the magnetization studies, the immobilization of the enzyme onto the PEG-assisted MNP was characterized by UV, XRD, FTIR and TEM. The immobilization process had resulted in an almost fourfold increase in the enzyme activity over the free enzyme. Furthermore, the immobilized enzyme exhibited a significant thermostability, storage stability and recyclability. The leather-industry-oriented application of the immobilized enzyme was tested for the dehairing of goat-skin.

  19. Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application

    NASA Astrophysics Data System (ADS)

    Yang, Minho; Choi, Bong Gill; Park, Tae Jung; Heo, Nam Su; Hong, Won Hi; Lee, Sang Yup

    2011-07-01

    The effective and strong immobilization of enzymes on solid surfaces is required for current biological applications, such as microchips, biofuel cells, and biosensors. Gold-binding polypeptide (GBP), a genetically designed peptide, possesses unique and specific interactions with a gold surface, resulting in improved enzyme stability and activity. Herein we demonstrated an immobilization method for biosensor applications through site-specific interactions between GBP-fused organophosphorus hydrolase (GBP-OPH) and gold nanoparticle-coated chemically modified graphene (Au-CMG), showing enhanced sensing capability. A flow injection biosensor was fabricated by using GBP-OPH/Au-CMG to detect paraoxons, a model pesticide, showing higher sensitivity, lower detection limit and better operating stability compared that of OPH/Au-CMG. This strategy, which integrates biotic and abiotic moieties through site-specific interactions, has a great potential for use in biosensing and bioconversion process.The effective and strong immobilization of enzymes on solid surfaces is required for current biological applications, such as microchips, biofuel cells, and biosensors. Gold-binding polypeptide (GBP), a genetically designed peptide, possesses unique and specific interactions with a gold surface, resulting in improved enzyme stability and activity. Herein we demonstrated an immobilization method for biosensor applications through site-specific interactions between GBP-fused organophosphorus hydrolase (GBP-OPH) and gold nanoparticle-coated chemically modified graphene (Au-CMG), showing enhanced sensing capability. A flow injection biosensor was fabricated by using GBP-OPH/Au-CMG to detect paraoxons, a model pesticide, showing higher sensitivity, lower detection limit and better operating stability compared that of OPH/Au-CMG. This strategy, which integrates biotic and abiotic moieties through site-specific interactions, has a great potential for use in biosensing and bioconversion

  20. Using light to covalently immobilize and pattern nanoparticles onto surfaces.

    PubMed

    Park, Ellane J; Wagenaar, Tina; Zhang, Siyan; Link, A James; Prud'homme, Robert K; Koberstein, Jeffrey T; Turro, Nicholas J

    2012-07-24

    There is considerable current interest in developing methods to integrate nanoparticles into optical, electronic, and biological systems due to their unique size-dependent properties and controllable shape. We report herein a versatile new approach for covalent immobilization of nanoparticles onto substrates modified with photoactive, phthalimide-functional, self-assembled monolayers. Upon illumination with UV radiation, the phthalimide group abstracts a hydrogen atom from a neighboring organic molecule, leading to radical-based photografting reactions. The approach is potentially "universal" since virtually any polymeric or organic-inorganic hybrid nanoparticle can be covalently immobilized in this fashion. Because grafting is confined to illuminated regions that undergo photoexcitation, masking provides a simple and direct method for nanoparticle patterning. To illustrate the technique, nanoparticles formed from diblock copolymers of poly(styrene-b-polyethylene oxide) and laden with Hostasol Red dye are photografted and patterned onto glass and silicon substrates modified with photoactive phthalimide-silane self-assembled monolayers. Atomic force microscopy and X-ray photoelectron spectroscopy are applied to characterize the grafted nanoparticle films while confocal fluorescence microscopy is used to image patterned nanoparticle deposition. PMID:22746532

  1. Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica.

    PubMed

    Huang, Xin; Wang, Yanpin; Liao, Xuepin; Shi, Bi

    2010-11-15

    Tannin is well known to be an inexpensive and ubiquitous natural biomass, which has high chelating affinity towards many metal ions. In this study, bayberry tannin (BT) was immobilized on mesoporous silica matrix to prepare a novel adsorbent, which was subsequently used for the adsorptive recovery of Au(3+) from aqueous solutions. It was found that bayberry tannin-immobilized mesoporous silica (BT-SiO(2)) was able to effectively recover Au(3+) from acidic solutions (pH 2.0). The equilibrium adsorption capacity of Au(3+) on BT-SiO(2) was high up to 642.0 mg/g at 323 K. Due to its mesoporous structure, BT-SiO(2) exhibited an extremely fast adsorption rate to Au(3+) as compared with other tannin gel adsorbent. The presence of other coexisting metal ions, such as Pb(2+), Ni(2+), Cu(2+) and Zn(2+), did not decrease the adsorption capacity of Au(3+) on BT-SiO(2), and BT-SiO(2) had almost no adsorption capacity to these coexisting metal ions, which suggested the high adsorption selectivity of BT-SiO(2) to Au(3+). Additionally, about 73% of adsorbed Au(3+) can be desorbed using aqua regia, and the Au(3+) solution was concentrated about 18.0 times as compared with the original solution. Consequently, the outstanding characteristics of BT-SiO(2) provide the possibility of effective recovery and concentration of Au(3+) from diluted solutions. PMID:20728986

  2. Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection.

    PubMed

    Hardiansyah, Andri; Chen, An-Yu; Liao, Hung-Liang; Yang, Ming-Chien; Liu, Ting-Yu; Chan, Tzu-Yi; Tsou, Hui-Ming; Kuo, Chih-Yu; Wang, Juen-Kai; Wang, Yuh-Lin

    2015-12-01

    In this study, multifunctional hybrid nanoparticles composed of iron platinum (FePt), silica (SiO2), and gold nanoparticles (AuNPs) had been developed for surface-enhanced Raman scattering (SERS) application. Core-shell structure of SiO2 and FePt nanoparticles (FePt@SiO2) was fabricated through sol-gel process and then immobilized gold nanoparticles onto the surface of FePt@SiO2, which displays huge Raman enhancement effect and magnetic separation capability. The resulting core-shell nanoparticles were subject to evaluation by transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential measurement, and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that the particle size of resultant nanoparticles displayed spherical structure with the size ~30 nm and further proved the successful immobilization of Au onto the surface of FePt@SiO2. Zeta potential measurement exhibited the successful reaction between FePt@SiO2 and AuNPs. The rapid SERS detection and identification of small biomolecules (adenine) and microorganisms (gram-positive bacteria, Staphylococcus aureus) was conducted through Raman spectroscopy. In summary, the novel core-shell magnetic nanoparticles could be anticipated to apply in the rapid magnetic separation under the external magnetic field due to the core of the FePt superparamagnetic nanoparticles and label-free SERS bio-sensing of biomolecules and bacteria. PMID:26489855

  3. Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chen, An-Yu; Liao, Hung-Liang; Yang, Ming-Chien; Liu, Ting-Yu; Chan, Tzu-Yi; Tsou, Hui-Ming; Kuo, Chih-Yu; Wang, Juen-Kai; Wang, Yuh-Lin

    2015-10-01

    In this study, multifunctional hybrid nanoparticles composed of iron platinum (FePt), silica (SiO2), and gold nanoparticles (AuNPs) had been developed for surface-enhanced Raman scattering (SERS) application. Core-shell structure of SiO2 and FePt nanoparticles (FePt@SiO2) was fabricated through sol-gel process and then immobilized gold nanoparticles onto the surface of FePt@SiO2, which displays huge Raman enhancement effect and magnetic separation capability. The resulting core-shell nanoparticles were subject to evaluation by transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential measurement, and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that the particle size of resultant nanoparticles displayed spherical structure with the size ~30 nm and further proved the successful immobilization of Au onto the surface of FePt@SiO2. Zeta potential measurement exhibited the successful reaction between FePt@SiO2 and AuNPs. The rapid SERS detection and identification of small biomolecules (adenine) and microorganisms (gram-positive bacteria, Staphylococcus aureus) was conducted through Raman spectroscopy. In summary, the novel core-shell magnetic nanoparticles could be anticipated to apply in the rapid magnetic separation under the external magnetic field due to the core of the FePt superparamagnetic nanoparticles and label-free SERS bio-sensing of biomolecules and bacteria.

  4. Graphene quantum dots/Au hybrid nanoparticles as electrocatalyst for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Jiang, Linqin; Zhang, Weilong; Guan, Xiangfeng

    2015-11-01

    Graphene quantum dots/Au hybrid nanoparticles (denoted as GQDs-Au) were prepared by heating HAuCl4 with GQDs, and they showed higher electrocatalytic activity for hydrogen evolution reaction than that of pure Au nanoparticles.

  5. Immobilization of Ag-deposited Au nanoprisms by thiol-coupling and oil-coating methods

    NASA Astrophysics Data System (ADS)

    Noda, Yuta; Hayakawa, Tomokatsu

    2016-01-01

    We have demonstrated the immobilization of Ag-deposited Au (Au@Ag) nanoprisms on glass substrates by two different methods: self-assembly on a thiol-modified glass (thiol-coupling method) and evaporation of the Au@Ag nanoprism colloidal solution in silicone oil (oil-coating method). In the thiol-coupling method, the Au@Ag nanoprisms were well dispersed and accumulated on the substrates as single or stacked layers. On the other hand, the oil-coating method allowed Au@Ag nanoprisms to accumulate as multilayers without excessive agglomeration. The multilayers of Au@Ag nanoprisms were subjected to surface-enhanced Raman scattering (SERS), and a very low concentration (2.1 × 10-5 M) of rhodamine 6G molecules was sensitively detected.

  6. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces.

    PubMed

    Brinson, Bruce E; Lassiter, J Britt; Levin, Carly S; Bardhan, Rizia; Mirin, Nikolay; Halas, Naomi J

    2008-12-16

    The growth of a continuous, uniform Au layer on a dielectric nanoparticle is the critical step in the synthesis of nanoparticles such as nanoshells or nanorice, giving rise to their unique geometry-dependent plasmon resonant properties. Here, we report a novel, streamlined method for Au layer metallization on prepared nanoparticle surfaces using carbon monoxide as the reducing agent. This approach consistently yields plasmonic nanoparticles with highly regular shell layers and is immune to variations in precursor or reagent preparation. Single particle spectroscopy combined with scanning electron microscopy reveal that thinner, more uniform shell layers with correspondingly red-shifted optical resonances are achievable with this approach. PMID:19360963

  7. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance.

    PubMed

    Zhu, Qi-Long; Li, Jun; Xu, Qiang

    2013-07-17

    AuNi alloy nanoparticles were successfully immobilized to MIL-101 with size and location control for the first time by double solvents method (DSM) combined with a liquid-phase concentration-controlled reduction strategy. When an overwhelming reduction approach was employed, the uniform 3D distribution of the ultrafine AuNi nanoparticles (NPs) encapsulated in the pores of MIL-101 was achieved, as demonstrated by TEM and electron tomographic measurements, which brings light to new opportunities in the fabrication of ultrafine non-noble metal-based NPs throughout the interior pores of MOFs. The ultrafine AuNi alloy NPs inside the mesoporous MIL-101 exerted exceedingly high activity for hydrogen generation from the catalytic hydrolysis of ammonia borane. PMID:23805877

  8. Au, Ge and AuGe Nanoparticles Fabricated by Laser Ablation

    SciTech Connect

    Musaev, O.R.; Sutter, E.; Wrobel, J.M.; Kruger, M.B.

    2012-02-01

    A eutectic AuGe target immersed in distilled water was ablated by pulsed ultraviolet laser light. The structure of the ablated material was investigated by high-resolution transmission electron microscopy (HRTEM). The images show formation of nanowire structures of AuGe up to 100 nm in length, with widths of 5-10 nm. These nanostructures have Ge content significantly lower than the target material. Electron diffraction demonstrates that they crystallize in the {alpha}-AuGe structure. For comparison, laser ablation of pure Au and pure Ge targets was also performed under the same conditions. HRTEM shows that Ge forms spherical nanoparticles with a characteristic size of {approx}30 nm. Au forms spherical nanoparticles with diameters of {approx}10 nm. Similar to AuGe, it also forms chainlike structures with substantially lower aspect ratio.

  9. The effect of Au amount on size uniformity of self-assembled Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, S.-H.; Wang, D.-C.; Chen, G.-Y.; Chen, K.-Y.

    2008-03-01

    The self-assembled fabrication of nanostructure, a dreaming approach in the area of fabrication engineering, is the ultimate goal of this research. A finding was proved through previous research that the size of the self-assembled gold nanoparticles could be controlled with the mole ratio between AuCl4- and thiol. In this study, the moles of Au were fixed, only the moles of thiol were adjusted. Five different mole ratios of Au/S with their effect on size uniformity were investigated. The mole ratios were 1:1/16, 1:1/8, 1:1, 1:8, 1:16, respectively. The size distributions of the gold nanoparticles were analyzed by Mac-View analysis software. HR-TEM was used to derive images of self-assembled gold nanoparticles. The result reached was also the higher the mole ratio between AuCl4- and thiol the bigger the self-assembled gold nanoparticles. Under the condition of moles of Au fixed, the most homogeneous nanoparticles in size distribution derived with the mole ratio of 1:1/8 between AuCl4- and thiol. The obtained nanoparticles could be used, for example, in uniform surface nanofabrication, leading to the fabrication of ordered array of quantum dots.

  10. Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles.

    PubMed

    Yin, Yongguang; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2014-01-01

    Naturally occurring Au nanoparticles (AuNPs) have been widely observed in ore deposits, coal, soil, and environmental water. Identifying the source of these naturally occurring AuNPs could be helpful for not only the discovery of Au deposits through advanced exploration methods, but also the elucidation of the biogeochemical cycle and environmental toxicity of ionic Au and engineered AuNPs. Here, we investigated the effect of natural/simulated sunlight and heating on the reduction of ionic Au by ubiquitous dissolved organic matter (DOM) in river water. The reductive process probed by X-ray photoelectron spectroscopy revealed that phenolic, alcoholic, and aldehyde groups in DOM act as reductive sites. Long-time exposure with thermal and photoirradiation induced the further fusion and growth of AuNPs to branched Au nanostructure as precipitation. The formation processes and kinetics of AuNPs were further investigated using humic acid (HA) as the DOM model, with comprehensive characterizing methods. We have observed that HA can reduce ionic Au(III) complex (as chloride or hydroxyl complex) to elemental Au nanoparticles under sunlight or heating. In this process, nearly all of the Au(III) could be reduced to AuNPs, in which HA serves as not only the reductive agent, but also the coating agent to stabilize and disperse AuNPs. The size and stability of AuNPs were highly dependent on the concentration ratio of Au(III) to HA. These results imply that, besides biological processes, this thermal or photochemical reduction process is another possible source of naturally occurring AuNPs in natural environments, which possibly has critical impacts on the transport and transformation of Au and engineered AuNPs. PMID:24471802

  11. a High-Performance Glucose Biosensor Based on Zno Nanorod Arrays Modified with AU Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Gong; Lei, Yang; Yan, Xiaoqin

    2012-08-01

    An amperometric glucose biosensor based on vertically aligned ZnO nanorod (NR) arrays modified with Au nanoparticles (NPs) was constructed in a channel-limited way. Au NPs with diameters in the range of 8-10 nm have been successfully synthesized by photoreduction method and were uniformly loaded onto the surface of ZnO NRs that was hydrothermally deposited on the Fluorine doped SnO2 conductive glass (FTO) via electrostatic self-assembly technique. The morphology and structure of Au/ZnO NR arrays were characterized by field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectrum analyzer (XPS). The electrocatalytic properties of glucose oxidase (GOD)- immobilized Au/ZnO NR arrays were evaluated by amperometry. Compared with the biosensor based on ZnO NR arrays, the resulting Au/ZnO NR arrays modified biosensor exhibited an expanded linear range from 3 μM to 3 mM with the detection limit of 30 nM and a smaller Michaelis-Menten constant of 0.7836 mM. All these results suggest that the Au NPs can greatly improve the biosensing properties of ZnO NR arrays and therefore Au/ZnO NR arrays provide a promising material for the biosensor designs and other biological applications.

  12. Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Arsalani, S.; Neishaboorynejad, T.

    2014-05-01

    This work demonstrates a simple method for synthesizing gold-silver bimetallic nanoparticles (Ag@Au BNPs). Ag@Au BNPs on the carbon thin film are prepared by co-deposition of RF-sputtering and RF-PECVD using acetylene gas and gold-silver target. X-ray diffraction analysis indicates that Au and Ag NPs with FCC crystal structure are formed in our samples. From AFM image and data, average particles size of gold and silver are estimated to be about 5 and 8 nm, respectively. XRD profile and localized surface plasmon resonance (LSPR) spectroscopy indicate that Ag NPs in Ag@Au BNPs composite have a more chemical activity with respect to bare Ag NPs. Biosensor application of Ag@Au BNPs without probe immobilization is introduced too. The change in LSPR absorption peak of Ag@Au BNPs in presence of DNA primer decamer (ten-deoxycytosine) at fM concentrations is investigated. The LSPR absorption peak of Au NPs has a blue shift and the LSPR absorption peak of Ag NPs has a red shift by addition of DNA primer and under DNA exposure up to 1 h. Our sample shows a good response to low concentration of DNA and has a short response time. Both of these are prerequisite for applying this sample as LSPR biosensor chip.

  13. Enzymatic deposition of Au nanoparticles on the designed electrode surface and its application in glucose detection.

    PubMed

    Zhang, Hongfang; Liu, Ruixiao; Sheng, Qinglin; Zheng, Jianbin

    2011-02-01

    This paper reported the enzymatic deposition of Au nanoparticles (AuNPs) on the designed 3-mercapto-propionic acid/glucose oxidase/chitosan (MPA/GOD/Chit) modified glassy carbon electrode and its application in glucose detection. Chit served as GOD immobilization matrix and interacted with MPA through electrostatic attraction. AuNPs, without nano-seeds presented on the electrode surface, was produced through the glucose oxidase catalyzed oxidation of glucose. The mechanism of production of AuNPs was confirmed to be that enzymatic reaction products H(2)O(2) in the solution reduce gold complex to AuNPs. The characterizations of the electrode modified after each assembly step was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy showed the average particle size of the AuNPs is 40nm with a narrow particle size distribution. The content of AuNPs on the electrode surfaces was measured by differential pulse stripping voltammetry. The electrochemical signals on voltammogram showed a linear increase with the glucose concentration in the range of 0.010-0.12mM with a detection limit of 4μM. This provided a method to the determination of glucose. PMID:21115279

  14. Co-immobilization of gold nanoparticles with glucose oxidase to improve bioelectrocatalytic glucose oxidation

    NASA Astrophysics Data System (ADS)

    Aquino Neto, Sidney; Milton, Ross D.; Crepaldi, Laís B.; Hickey, David P.; de Andrade, Adalgisa R.; Minteer, Shelley D.

    2015-07-01

    Recently, there has been much effort in developing metal nanoparticle catalysts for fuel oxidation, as well as the development of enzymatic bioelectrocatalysts for fuel oxidation. However, there has been little study of the synergy of hybrid electrocatalytic systems. We report the preparation of hybrid bioanodes based on Au nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) co-immobilized with glucose oxidase (GOx). Mediated electron transfer was achieved by two strategies: ferrocene entrapped within polypyrrole and a ferrocene-modified linear poly(ethylenimine) (Fc-LPEI) redox polymer. Electrochemical characterization of the Au nanoparticles supported on MWCNTs indicate that this catalyst exhibits an electrocatalytic response for glucose even in acidic conditions. Using the redox polymer Fc-LPEI as the mediator, voltammetric and amperometric data demonstrated that these bioanodes can efficiently achieve mediated electron transfer and also indicated higher catalytic currents with the hybrid bioelectrode. From the amperometry, the maximum current density (Jmax) achieved with the hybrid bioelectrode was 615 ± 39 μA cm-2, whereas the bioanode employing GOx only achieved a Jmax of 409 ± 26 μA cm-2. Biofuel cell tests are consistent with the electrochemical characterization, thus confirming that the addition of the metallic species into the bioanode structure can improve fuel oxidation and consequently, improve the power generated by the system.

  15. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.

    PubMed

    Philip, Daizy

    2009-07-15

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size approximately 15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (111) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications. PMID:19324587

  16. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2009-07-01

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size ˜15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (1 1 1) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications.

  17. Fully Crystalline Faceted Fe-Au Core-Shell Nanoparticles.

    PubMed

    Langlois, C; Benzo, P; Arenal, R; Benoit, M; Nicolai, J; Combe, N; Ponchet, A; Casanove, M J

    2015-08-12

    Fe-Au core-shell nanoparticles displaying an original polyhedral morphology have been successfully synthesized through a physical route. Analyses using transmission electron microscopy show that the Au shell forms truncated pyramids epitaxially grown on the (100) facets of the iron cubic core. The evolution of the elastic energy and strain field in the nanoparticles as a function of their geometry and composition is calculated using the finite-element method. The stability of the remarkable centered core-shell morphology experimentally observed is attributed to the weak elastic energy resulting from the low misfit at the Fe/Au (100) interface compared to the surface energy contribution. PMID:26146846

  18. Immobilization of recombinant vault nanoparticles on solid substrates.

    PubMed

    Xia, Yun; Ramgopal, Yamini; Li, Hai; Shang, Lei; Srinivas, Parisa; Kickhoefer, Valerie A; Rome, Leonard H; Preiser, Peter R; Boey, Freddy; Zhang, Hua; Venkatraman, Subbu S

    2010-03-23

    Native vaults are nanoscale particles found abundantly in the cytoplasm of most eukaryotic cells. They have a capsule-like structure with a thin shell surrounding a "hollow" interior compartment. Recombinant vault particles were found to self-assemble following expression of the major vault protein (MVP) in a baculovirus expression system, and these particles are virtually identical to native vaults. Such particles have been recently studied as potential delivery vehicles. In this study, we focus on immobilization of vault particles on a solid substrate, such as glass, as a first step to study their interactions with cells. To this end, we first engineered the recombinant vaults by fusing two different tags to the C-terminus of MVP, a 3 amino acid RGD peptide and a 12 amino acid RGD-strep-tag peptide. We have demonstrated two strategies for immobilizing vaults on solid substrates. The barrel-and-cap structure of vault particles was observed for the first time, by atomic force microscopy (AFM), in a dry condition. This work proved the feasibility of immobilizing vault nanoparticles on a material surface, and the possibility of using vault nanoparticles as localized and sustainable drug carriers as well as a biocompatible surface moiety. PMID:20146454

  19. Spin Polarization and Quantum Spins in Au Nanoparticles

    PubMed Central

    Li, Chi-Yen; Karna, Sunil K.; Wang, Chin-Wei; Li, Wen-Hsien

    2013-01-01

    The present study focuses on investigating the magnetic properties and the critical particle size for developing sizable spontaneous magnetic moment of bare Au nanoparticles. Seven sets of bare Au nanoparticle assemblies, with diameters from 3.5 to 17.5 nm, were fabricated with the gas condensation method. Line profiles of the X-ray diffraction peaks were used to determine the mean particle diameters and size distributions of the nanoparticle assemblies. The magnetization curves M(Ha) reveal Langevin field profiles. Magnetic hysteresis was clearly revealed in the low field regime even at 300 K. Contributions to the magnetization from different size particles in the nanoparticle assemblies were considered when analyzing the M(Ha) curves. The results show that the maximum particle moment will appear in 2.4 nm Au particles. A similar result of the maximum saturation magnetization appearing in 2.3 nm Au particles is also concluded through analysis of the dependency of the saturation magnetization MP on particle size. The MP(d) curve departs significantly from the 1/d dependence, but can be described by a log-normal function. Magnetization can be barely detected for Au particles larger than 27 nm. Magnetic field induced Zeeman magnetization from the quantum confined Kubo gap opening appears in Au nanoparticles smaller than 9.5 nm in diameter. PMID:23989607

  20. Electronic and chemical properties of supported Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Lim, Dong Chan; Lopez-Salido, Ignacio; Dietsche, Rainer; Bubek, Moritz; Kim, Young Dok

    2006-11-01

    Oxidation and reduction behaviors of Au nanoparticles with different sizes on highly ordered pyrolytic graphite (HOPG) and silica were studied using X-ray photoelectron spectroscopy (XPS). For Au nanoparticles smaller than ˜6 nm in diameter, we found a novel oxygen species formed in Au nanoparticles, which is absent in larger particles and Au bulk crystals. This new oxygen species is attributed to the subsurface oxygen: for a complete understanding of the structures of catalytically active Au, the new oxygen species should be taken into account. In this context, it is worth mentioning that the subsurface oxygen species has been suggested to play an important role in heterogeneous catalysis. With decreasing Au particle size, a positive core level shift can be observed, which can be mostly attributed to the final state effects. Increase of the number of undercoordinated atoms with decreasing particle size is evidenced by a reduced splitting between 5d 3/2 and 5d 5/2 states and a band narrowing. Our results on electronic structures of Au nanoparticles on silica are compared to those on other substrates such as zirconia and titania to shed light onto the metal-support interactions.

  1. Magnetic order of Au nanoparticle with clean surface

    NASA Astrophysics Data System (ADS)

    Sato, Ryuju; Ishikawa, Soichiro; Sato, Hiroyuki; Sato, Tetsuya

    2015-11-01

    Au nanoparticles, which are kept in vacuum after the preparation by gas evaporation method, show ferromagnetism even in 1.7 nm in diameter. The intrinsic magnetism is examined by detecting the disappearance of spontaneous magnetization in Au bulk prepared by heating the nanoparticles without exposure to the air. The temperature dependence of spontaneous magnetization is not monotonic and the increase in magnetization is observed after Au nanoparticles are exposed to the air. The magnetic behavior can be interpreted by the ferrimagnetic-like core-shell structure with shell thickness of 0.16±0.01 nm and magnetic moment of (1.5±0.1)×10-2 μB/Au atom, respectively.

  2. Reliable methods for silica coating of Au nanoparticles.

    PubMed

    Pastoriza-Santos, Isabel; Liz-Marzán, Luis M

    2013-01-01

    The inherent properties of silica, such as optical transparency, high biocompatibility, chemical and colloidal stability, controllable porosity, and easy surface modification, provide silica materials with a tremendous potential in biomedicine. Therefore, the coating of Au nanoparticles with silica largely contributes to enhance the important applications of metal nanoparticles in biomedicine. We describe in this chapter a number of reliable strategies that have been reported for silica coating of different types of Au nanoparticles. All descriptions are based on tested protocols and are expected to provide a reference for scientists with an interest in this field. PMID:23918330

  3. Designed synthesis of aptamer-immobilized magnetic mesoporous silica/Au nanocomposites for highly selective enrichment and detection of insulin.

    PubMed

    Xiong, Ya; Deng, Chunhui; Zhang, Xiangmin; Yang, Pengyuan

    2015-04-29

    We designed and synthesized aptamer-immobilized magnetic mesoporous silica/Au nanocomposites (MMANs) for highly selective detection of unlabeled insulin in complex biological media using MALDI-TOF MS. The aptamer was easily anchored onto the gold nanoparticles in the mesochannels of MMANs with high capacity for highly efficient and specific enrichment of insulin. With the benefit from the size-exclusion effect of the mesoporous silica shell with a narrow pore size distribution (∼2.9 nm), insulin could be selectively detected despite interference from seven untargeted proteins with different size dimensions. This method exhibited an excellent response for insulin in the range 2-1000 ng mL(-1). Moreover, good recoveries in the detection of insulin in 20-fold diluted human serum were achieved. We anticipate that this novel method could be extended to other biomarkers of interest and potentially applied in disease diagnostics. PMID:25854412

  4. Detection of glucose using immobilized bienzyme on cyclic bisureas-gold nanoparticle conjugate.

    PubMed

    Mathew, Manjusha; Sandhyarani, N

    2014-08-15

    A highly sensitive electrochemical glucose sensor has been developed by the co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto a gold electrode modified with biocompatible cyclic bisureas-gold nanoparticle conjugate (CBU-AuNP). A self-assembled monolayer of mercaptopropionic acid (MPA) and CBU-AuNP was formed on the gold electrode through a layer-by-layer assembly. This modified electrode was used for immobilization of the enzymes GOx and HRP. Both the HRP and GOx retained their catalytic activity for an extended time, as indicated by the low value of Michaelis-Menten constant. Analytical performance of the sensor was examined in terms of sensitivity, selectivity, reproducibility, lower detection limit, and stability. The developed sensor surface exhibited a limit of detection of 100nM with a linear range of 100nM to 1mM. A high sensitivity of 217.5μAmM(-1)cm(-2) at a low potential of -0.3V was obtained in this sensor design. Various kinetic parameters were calculated. The sensor was examined for its practical clinical application by estimating glucose in human blood sample. PMID:24835425

  5. Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles.

    PubMed

    Aggarwal, V; Pundir, C S

    2016-01-01

    The aggregates of nanoparticles (NPs) are considered better supports for the immobilization of enzymes, as these promote enzyme kinetics, due to their unusual but favorable properties such as larger surface area to volume ratio, high catalytic efficiency of certain immobilized enzymes, non-toxicity of some of the nanoparticle matrices, high stability, strong adsorption of the enzyme of interest by a number of different approaches, and faster electron transportability. Co-immobilization of multiple enzymes required for a multistep reaction cascade on a single support is more efficient than separately immobilizing the corresponding enzymes and mixing them physically, since products of one enzyme could serve as reactants for another. These products can diffuse much more easily between enzymes on the same particle than diffusion from one particle to the next, in the reaction medium. Thus, co-immobilization of enzymes onto NP aggregates is expected to produce faster kinetics than their individual immobilizations on separate matrices. Lipase, glycerol kinase, and glycerol-3-phosphate oxidase are required for lipid analysis in a cascade reaction, and we describe the co-immobilization of these three enzymes on nanocomposites of zinc oxide nanoparticles (ZnONPs)-chitosan (CHIT) and gold nanoparticles-polypyrrole-polyindole carboxylic acid (AuPPy-Pin5COOH) which are electrodeposited on Pt and Au electrodes, respectively. The kinetic properties and analytes used for amperometric determination of TG are fully described for others to practice in a trained laboratory. Cyclic voltammetry, scanning electron microscopy, Fourier transform infra-red spectra, and electrochemical impedance spectra confirmed their covalent co-immobilization onto electrode surfaces through glutaraldehyde coupling on CHIT-ZnONPs and amide bonding on AuPPy/Pin5COOH. The combined activities of co-immobilized enzymes was tested amperometrically, and these composite nanobiocatalysts showed optimum activity

  6. Novel humic acid-bonded magnetite nanoparticles for protein immobilization.

    PubMed

    Bayrakci, Mevlut; Gezici, Orhan; Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz-Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJmol(-1)) and HSA bonded HA-APS-MNPs (33.42 kJmol(-1)) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. PMID:25063152

  7. Counterion-Mediated Assembly of Spherical Nucleic Acid-Au Nanoparticle Conjugates (SNA-AuNPs)

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Moreau, Liane; Guerrero-García, Guillermo; Mirkin, Chad; Olvera de La Cruz, Monica; Bedzyk, Michael; Afosr Muri Team

    2015-03-01

    Controlled crystallization of colloids from solution has been a goal of material scientists for decades. Recently, nucleic acid functionalized spherical Au nanoparticles (SNA-AuNPs) have been programmed to assemble in a wide variety of crystal structures. In this approach, the assembly is driven by Watson-Crick hybridization between DNAs coating the AuNPs. Here, we show that counterions can induce ordered assembly of SNA-AuNPs in bulk solutions, even in the absence of base pairing interactions. The electrostatics-driven assembly of spherical nucleic acid-Au nanoparticle conjugates (SNA-AuNPs) is probed as a function of counterion concentration and counterion valency [ +1 (Na+) or +2 (Ca2+) ] by in situ solution X-ray scattering. Assemblies of AuNPs capped with single-stranded (ss-) or double-stranded (ds-) DNA are examined. SAXS reveals disordered (gas-like) --> face-centered-cubic (FCC) --> glass-like phase transitions with increasing solution ionic strength. These studies demonstrate how non-base-pairing interactions can be tuned to create crystalline assemblies of SNA-AuNPs. The dependence of the inter-SNA-AuNP interactions on counterion valency and stiffness of the DNA corona will be discussed.

  8. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane.

    PubMed

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X S

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species. PMID:26729288

  9. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane

    PubMed Central

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X. S.

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species. PMID:26729288

  10. Fe/Au Core-Shell Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sra, Amandeep; Leslie-Pelecky, Diandra

    2009-10-01

    The physical properties of nanoparticles, including size, composition and surface chemistry, greatly influence biological and pharmacological properties and, ultimately, their clinical applications. Superparamagnetic iron oxide nanoparticles are widely used for applications such as MRI contrast agents, drug delivery via magnetic targeting and hyperthermia due to their chemical stability and biocompatibility; however, enhancing the saturation magnetization (Ms) of nanoparticles would produce greater sensitivity. Our design strategy involves a bottom-up wet chemistry approach to the synthesis of Fe nanoparticles. Specific advantages of Fe are the high value of Ms (210 emu/g in bulk) coupled with low toxicity; however, Fe nanoparticles must be protected from oxidation, which causes a dramatic reduction in Ms. To circumvent oxidation, Fe nanoparticles are coated with a Au shell that prevents the oxidation of the magnetic core and also provides the nanoparticles with plasmonic properties for optical stimulation. Ligands of various functionalities can be introduced through the well established Au-thiol surface chemistry for different biomedical applications while maintaining the magnetic functionality of the Fe core. In this presentation, we will discuss the physical, chemical and magnetic properties of our Fe/Au nanoparticles and their resistance to oxidation.

  11. Au nanoparticles improve amorphous carbon to be gas sensors

    NASA Astrophysics Data System (ADS)

    Liu, Keng-Wen; Lee, Jian-Heng; Chou, Hsiung; Lin, Tzu-Ching; Lin, Si-Ting; Shih-Jye Sun Collaboration

    In order to make the amorphous carbon possess the gas sensing capability transferring some sp3 orbits to sp2 is necessary. It is proposed that the metallic materials having a large charge exchange with sp3 carbon orbits are being catalysts to transfer the carbon orbits. We found embedding gold nanoparticles to the amorphous carbon will induce many compact sp2 orbits around the nanoparticles, which make the amorphous carbon be the candidate material for the gas sensors. The orbits of amorphous carbon near the interface of Au nanoparticles can be changed from sp3 to compact sp2 to reduce the surface energy of Au nanoparticles. Meanwhile, our molecular dynamics simulation has confirmed the fact, when an Au nanoparticle is embedded in the amorphous carbon system the ratio of sp2 orbits increases dramatically. Similar results also have been confirmed from the Raman spectrum measurements. We controlled the carrier transport by changing the hopping barriers formed by amorphous carbon matrix between the Au nanoparticles to modify the resistance. These nanocomposites exhibit a superior sensitivity to NH3 at room temperature as well as good reproducibility and short response/recovery times, which could have potential applications in gas sensors. Dept. of Applied Physics,NUK, Kaohsiung, Taiwan.

  12. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione

    PubMed Central

    Mers, SV Sheen; Kumar, Elumalai Thambuswamy Deva; Ganesh, V

    2015-01-01

    Glutathione (GSH) is vital for several functions of our human body such as neutralization of free radicals and reactive oxygen compounds, maintaining the active forms of vitamin C and E, regulation of nitric oxide cycle, iron metabolism, etc. It is also an endogenous antioxidant in most of the biological reactions. Given the importance of GSH, a simple strategy is proposed in this work to develop a biosensor for quantitative detection of GSH. This particular biosensor comprises of gold nanoparticles (Au NPs)-immobilized, hierarchically ordered titanium dioxide (TiO2) porous nanotubes. Hexagonally arranged, honeycomb-like nanoporous tubular TiO2 electrodes are prepared by using a simple electrochemical anodization process by applying a constant potential of 30 V for 24 hours using ethylene glycol consisting of ammonium fluoride as an electrolytic medium. Structural morphology and crystalline nature of such TiO2 nanotubes are analyzed using field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). Interestingly, nanocomposites of TiO2 with Au NPs is prepared in an effort to alter the intrinsic properties of TiO2, especially tuning of its band gap. Au NPs are prepared by a well-known Brust and Schiffrin method and are immobilized onto TiO2 electrodes which act as a perfect electrochemical sensing platform for GSH detection. Structural characterization and analysis of these modified electrodes are performed using FESEM, XRD, and UV-visible spectroscopic studies. GSH binding events on Au NPs-immobilized porous TiO2 electrodes are monitored by electrochemical techniques, namely, cyclic voltammetry (CV) and chronoamperometry (CA). Several parameters such as sensitivity, selectivity, stability, limit of detection, etc are investigated. In addition, Au NPs dispersed in aqueous medium are also explored for naked-eye detection of GSH using UV-visible spectroscopy in order to compare the performance of the proposed sensor. Our studies clearly indicate

  13. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione.

    PubMed

    Mers, Sv Sheen; Kumar, Elumalai Thambuswamy Deva; Ganesh, V

    2015-01-01

    Glutathione (GSH) is vital for several functions of our human body such as neutralization of free radicals and reactive oxygen compounds, maintaining the active forms of vitamin C and E, regulation of nitric oxide cycle, iron metabolism, etc. It is also an endogenous antioxidant in most of the biological reactions. Given the importance of GSH, a simple strategy is proposed in this work to develop a biosensor for quantitative detection of GSH. This particular biosensor comprises of gold nanoparticles (Au NPs)-immobilized, hierarchically ordered titanium dioxide (TiO2) porous nanotubes. Hexagonally arranged, honeycomb-like nanoporous tubular TiO2 electrodes are prepared by using a simple electrochemical anodization process by applying a constant potential of 30 V for 24 hours using ethylene glycol consisting of ammonium fluoride as an electrolytic medium. Structural morphology and crystalline nature of such TiO2 nanotubes are analyzed using field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). Interestingly, nanocomposites of TiO2 with Au NPs is prepared in an effort to alter the intrinsic properties of TiO2, especially tuning of its band gap. Au NPs are prepared by a well-known Brust and Schiffrin method and are immobilized onto TiO2 electrodes which act as a perfect electrochemical sensing platform for GSH detection. Structural characterization and analysis of these modified electrodes are performed using FESEM, XRD, and UV-visible spectroscopic studies. GSH binding events on Au NPs-immobilized porous TiO2 electrodes are monitored by electrochemical techniques, namely, cyclic voltammetry (CV) and chronoamperometry (CA). Several parameters such as sensitivity, selectivity, stability, limit of detection, etc are investigated. In addition, Au NPs dispersed in aqueous medium are also explored for naked-eye detection of GSH using UV-visible spectroscopy in order to compare the performance of the proposed sensor. Our studies clearly indicate

  14. A new strategy for the controlled deposition of gold nanoparticle aggregates on two-dimensional polystyrene arrays and its application in glucose oxidase immobilization.

    PubMed

    Xia, Yuetong; Li, Jinru; Jiang, Long

    2012-07-01

    Nano/microstructures play an important role in nanoparticle applications. This paper describes an innovative strategy to fabricate a variety of gold nanoparticle aggregates (AuNPs) on large-scale arrays of up to ∼1 cm(2) made from polystyrene (PS). A dendritic surfactant, C18N3, has multi-amine head groups that can control the thickness of a double layer adsorbed on the PS sphere surface in a pH-dependent manner. Controlling the pH and immersion time in the C18N3 solution allows the morphology of AuNPs deposited on the PS spheres (PS@AuNP) to be regulated. The influence of nano/microstructures on the activity enhancement of glucose oxidase (GOD) was investigated. The results indicated that well-ordered PS@AuNP arrays performed much better in the specific activity enhancement of GOD compared with free GOD and GOD immobilized on PS arrays. Furthermore, it was observed that the immobilized GOD on 2D PS@AuNP arrays maintained a highly improved operational stability compared to free GOD. The mechanism behind this effect is discussed. For practical applications, prepared PS@AuNP arrays can be used as an effective chip for GOD immobilization and application. PMID:22498366

  15. Immobilization of human carbonic anhydrase on gold nanoparticles assembled onto amine/thiol-functionalized mesoporous SBA-15 for biomimetic sequestration of CO2.

    PubMed

    Vinoba, Mari; Lim, Kyoung Soo; Lee, Si Hyun; Jeong, Soon Kwan; Alagar, Muthukaruppan

    2011-05-17

    A biocatalyst was synthesized by immobilizing human carbonic anhydrase onto gold nanoparticles assembled over amine/thiol-functionalized mesoporous SBA-15. The physicochemical properties of the functionalized mesoporous SBA-15 were obtained by XRD, BET, FE SEM, HR TEM, EDS, and zeta potential analysis. The biocatalytic performance was studied for para-nitrophenyl acetate (p-NPA) hydrolysis. The kinetic parameters K(m) were found to be 22.35 and 27.75 mM, and K(cat)/K(m) values were 1514.09 and 1612.25 M(-1) s(-1) for HCA immobilized on gold nanoparticles assembled on amine/thiol-functionalized mesoporous SBA-15 (HCA/Au/APTES/SBA-15 and HCA/Au/MPTES/SBA-15), respectively. These HCA/Au/APTES/SBA-15 and HCA/Au/MPTES/SBA-15 were investigated for biocatalytic hydration of CO(2) and its precipitation as CaCO(3). The amount of CaCO(3) precipitated over HCA/Au/MPTES/SBA-15 was nearly the same as that precipitated over free HCA. Storage stability and reusability studies suggested that HCA/Au/MPTES/SBA-15 retained its activity even after 20 days storage at 25 °C and 20 recycling runs. The present results demonstrate that HCA/Au/MPTES/SBA-15 and HCA/Au/APTES/SBA-15 are highly efficient potential nanobiocatalysts for industrial-scale CO(2) sequestration. PMID:21488617

  16. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance.

    PubMed

    Wang, Feng; Guo, Chen; Yang, Liang-rong; Liu, Chun-Zhao

    2010-12-01

    Newly large-pore magnetic mesoporous silica nanoparticles (MMSNPs) with wormhole framework structures were synthesized for the first time by using tetraethyl orthosilicate as the silica source and amine-terminated Jeffamine surfactants as template. Iminodiacerate was attached on these MMSNPs through a silane-coupling agent and chelated with Cu(2+). The Cu(2+)-chelated MMSNPs (MMSNPs-CPTS-IDA-Cu(2+)) showed higher adsorption capacity of 98.1 mg g(-1)-particles and activity recovery of 92.5% for laccase via metal affinity adsorption in comparison with MMSNPs via physical adsorption. The Michaelis constant (K(m)) and catalytic constant (k(cat)) of laccase immobilized on the MMSNPs-CPTS-IDA-Cu(2+) were 3.28 mM and 155.4 min(-1), respectively. Storage stability and temperature endurance of the immobilized laccase on MMSNPs-CPTS-IDA-Cu(2+) increased significantly, and the immobilized laccase retained 86.6% of its initial activity after 10 successive batch reactions operated with magnetic separation. PMID:20655206

  17. Conjugating folate on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles using click chemistry

    SciTech Connect

    Shen, Xiaofang Ge, Zhaoqiang; Pang, Yuehong

    2015-02-15

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe{sub 3}O{sub 4}@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe{sub 3}O{sub 4}@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe{sub 3}O{sub 4}@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry.

  18. Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles.

    PubMed

    Seelert, Trevor; Ghosh, Dipankar; Yargeau, Viviane

    2015-05-01

    In order to supplement the need for alternative energy resources within the near future, enhancing the production of biohydrogen with immobilized Clostridium beijerinckii NCIMB8052 was investigated. Magnetite nanoparticles were functionalized, with chitosan and alginic acid polyelectrolytes using a layer-by-layer method, to promote bacterial attachment. Cultivating C. beijerinckii with these nanoparticles resulted in a shorter lag growth phase and increased total biohydrogen production within 100-ml, 250-ml and 3.6-L reactors compared with freely suspended organisms. The greatest hydrogen yield was obtained in the 250-ml reactor with a value of 2.1 ± 0.7 mol H2/mol glucose, corresponding to substrate conversion and energy conversion efficiencies of 52 ± 18 and 10 ± 3 %, respectively. The hydrogen yields obtained using the immobilized bacteria are comparable to values found in literature. However, to make this process viable, further improvements are required to increase the substrate and energy conversion efficiencies. PMID:25728446

  19. Hierarchical organization of Au nanoparticles in a poly(vinyl carbazole) matrix for hybrid electronic devices

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu; Yoon, Seon-Mi; Shin, Hyeon-Jin; Joo, Won-Jae; Yi, Dong Kee; Choi, Jae-Young; Amarnath, Chellachamy A.; Paik, Ungyu

    2008-02-01

    We report a novel one-step method for the preparation of hierarchically patterned Au nanoparticles in a conducting polymer matrix by controlling the interface properties between Au nanoparticles and the conducting polymer matrix. The terminal group of capping molecules for the Au nanoparticles was modified to change the interface properties, not to change the size of the Au nanoparticles which affects their intrinsic properties. By modulating the interface properties, it is possible to construct Au nanoparticle-conducting polymer composites with two different structures: one presents a triple layer in which the conducting polymer layer is sandwiched between Au nanoparticle layers at the top and bottom; the other exhibits a form like a raisin cake in which Au nanoparticles are homogeneously organized in the conducting polymer matrix. High-resolution transmission electron microscopy was used to study the morphology and patterning of Au nanoparticles in the conducting polymer matrix.

  20. Enhanced electrochromic coloration of poly(3-hexylthiophene) films by electrodeposited Au nanoparticles.

    PubMed

    Nah, Yoon-Chae

    2013-05-01

    Au nanoparticles and poly(3-hexylthiophene) (P3HT) composite films were prepared by electrodeposition of Au nanoparticles using pulse-current electrodeposition followed by the spin coating of P3HT and their enhanced electrochromic coloration was investigated. A relatively uniformed Au nanoparticle was obtained by the controlled electrodeposition on indium tin oxide (ITO) substrate and plasmon absorption band of Au nanoparticles were observed. Optical and electrochemical properties of Au/P3HT composite films were compared with the pure P3HT films. The enhanced electrochromic absorption of the composite films was observed due to the surface plasmon resonance of the Au nanoparticles. PMID:23858881

  1. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    PubMed

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible. PMID:26215343

  2. Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer.

    PubMed

    Ahmed, Hanan B; Zahran, M K; Emam, Hossam E

    2016-10-01

    Due to its potency to utilize in enormous applications, preparation of nanogold is of interest. Moreover, getting of highly dispersed nanogold with small size is extremely needful in specific fields. Herein, Au nanocolloid was prepared using alkali catalyzed pectin biopolymer. Pectin was concurrently used as reductant for Au ions and stabilizer for the produced Au nanoparticles (AuNPs). Reducing sugars were evaluated in the colloidal solution reflecting the role alkali in catalytic degradation of pectin to produce much powerful reducing moieties. The obtained Au nanocolloid was monitored via changing in color, UV-visible spectral and transmission electron microscopy. Using of NaOH as strong alkali achieving rapid rate of degradation reaction, resulted in 0.45g/L reducing sugars from 0.2g/L pectin which produced AuNPs with mean size of 6.5nm. In case of Na2CO3 which attained slow degradation rate led to, slightly low reducing sugar content (0.41g/L), fabricated comparatively size of AuNPs (7.5nm). In both cases, well distributed AuNPs was obtained with suitable stabilization up to 5 months and Na2CO3 exhibited higher stability. The current successful method used to produce small sized AuNPs with high dispersion is an innovative, one-step, easily, costless, energy saving and eco-friendly method. PMID:27212212

  3. Tuning surface plasmon resonance by the plastic deformation of Au nanoparticles within a diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Bao, Yongjun; Zhao, Bin; Tang, Xinyu; Hou, Dongjie; Cai, Jian; Tang, Shan; Liu, Junsong; Wang, Fei; Cui, Tian

    2015-11-01

    In this work, surface plasmon resonance (SPR) is tuned by controlling the deformation of Au nanoparticles within a diamond anvil cell (DAC). Colloidal Au nanoparticles were loaded into a DAC and pressurized into a mixture of ice and Au nanoparticles. The Au nanoparticles were reshaped by their anisotropic compression of surrounding ice, which leads to the spectral variations of absorption peaks, broadening or red-shifting. These spectral features are well tuned by controlling the deformation process of Au nanoparticle with choosing the initial intended thickness of DAC gasket. The mechanical properties of Au nanoparticles are also revealed by the shape-dependent SPR in nanometer scale. This result provides us a way to fabricate Au nanoparticles into new shapes and tune SPR of metallic nanoparticles with pressure.

  4. Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation

    NASA Astrophysics Data System (ADS)

    Yung, Tung-Yuan; Liu, Ting-Yu; Huang, Li-Ying; Wang, Kuan-Syun; Tzou, Huei-Ming; Chen, Po-Tuan; Chao, Chi-Yang; Liu, Ling-Kang

    2015-09-01

    Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) for exploring the structural characterization for the electrochemical catalysis. According to TEM results, the diameter of Au and bimetallic PtAu nanoparticles is about 20-50 and 5-10 nm, respectively. X-ray diffraction (XRD) results indicate that both of PtAu and Au nanoparticles exhibit the crystalline plane of (111), (200), (210), and (311). Furthermore, XRD data also show the 2°-3° difference between pristine graphene sheets and the PDDA-modified graphene sheets. For the catalytic activity tests of Au/PDDA-G and PtAu/PDDA-G, the mixture of 0.5 M aqueous H2SO4 and 0.5 M aqueous formic acid was used as model to evaluate the electrochemical characterizations. The catalytic activities of the novel bimetallic PtAu/graphene electrocatalyst would be anticipated to be superior to the previous electrocatalyst of the cubic Pt/graphene.

  5. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  6. Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions.

    PubMed

    Alex, Deepthy; Mathew, Abraham; Sukumaran, Rajeev K

    2014-09-01

    Magnetite nanoparticles were prepared by reacting ferrous and ferric salts in presence of aqueous ammonia. The magnetic nanoparticles (MNPs) were amino functionalized by treating with 3-aminopropyl triethoxy silane (APTES) and was coupled with glutaraldehyde. A novel solvent tolerant esterase from Pseudozyma sp. NII 08165 was immobilized on the MNPs through covalent bonding to the glutaraldehyde. The magnetite nanoparticles had a size range of 10-100 nm, confirmed by DLS. Lipases immobilized on MNPs were evaluated for biotransformation reactions including synthesis of ethyl acetate and transesterification of vegetable oil for producing biodiesel. The MNP immobilized esterase had prolonged shelf life and there was no loss in enzyme activity. PMID:24968816

  7. Surface segregation phenomena in extended and nanoparticle surfaces of Cu-Au alloys

    NASA Astrophysics Data System (ADS)

    Li, Jonathan; Wang, Guofeng; Zhou, Guangwen

    2016-07-01

    Using density functional theory (DFT) and Monte Carlo (MC) simulations, we studied the surface segregation phenomena of Au atoms in the extended and nanoparticle surfaces of Cu-Au alloys. Our MC simulations predicted significant Au enrichment in the outermost layer of (111) and (100) extended surfaces, and Au enrichment in the two outermost layers of (110) extended surfaces. The equilibrium Cu-Au nanoparticles were predicted to develop into an Au-enriched shell structure, where Au atoms preferably segregate to the (100) facets while Cu atoms are mainly located on the (111) facet of the nanoparticles. Our simulation predictions agree with experimental measurements.

  8. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration.

    PubMed

    Heo, Dong Nyoung; Ko, Wan-Kyu; Lee, Hak Rae; Lee, Sang Jin; Lee, Donghyun; Um, Soong Ho; Lee, Jung Haeng; Woo, Yi-Hyung; Zhang, Lijie Grace; Lee, Deok-Won; Kwon, Il Keun

    2016-05-01

    Gold nanoparticles (GNPs) are quite attractive materials for use as osteogenic agents due to their potential effects on the stimulation of osteoblast differentiation. In this study, an osseo-integrated titanium (Ti) implant surface coated with GNPs was used for promotion of bone regeneration. We prepared a silanized Ti surface by chemical treatment of (3-Mercaptopropyl) trimethoxysilane (MPTMS) and immobilized the GNP layer (Ti-GNP) on their surfaces via Au-S bonding. The GNP layer is uniformly immobilized on the surface and the layer covers the titanium oxide surface well, as confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The Ti-GNP was used to investigate the effectiveness of this system both in vitro and in vivo. The in vitro results showed that the Ti-GNP significantly enhances the osteogenic differentiation with increased mRNA expression of osteogenic differentiation specific genes in human adipose-derived stem cells (ADSCs). Furthermore, the in vivo results showed that Ti-GNP had a significant influence on the osseous interface formation. Through these in vitro and vivo tests, we found that Ti-GNP can be useful as osseo-integration inducing dental implants for formation of an osseous interface and maintenance of nascent bone formation. PMID:26874978

  9. Assembling Bare Au Nanoparticles at Positively Charged Templates

    PubMed Central

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-01-01

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs. PMID:27225047

  10. Assembling Bare Au Nanoparticles at Positively Charged Templates.

    PubMed

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-01-01

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs. PMID:27225047

  11. Assembling Bare Au Nanoparticles at Positively Charged Templates

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-05-01

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs.

  12. Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles.

    PubMed

    Song, Chongfu; Sheng, Liangquan; Zhang, Xiaobo

    2012-10-01

    Superoxide dismutase (SOD) has been widely applied in medical treatments, cosmetic, food, agriculture, and chemical industries. In industry, the immobilization of enzymes can offer better stability, feasible continuous operations, easy separation and reusing, and significant decrease of the operation costs. However, little attention has focused on the immobilization of the SOD, as well as the immobilization of thermostable enzymes. In this study, the recombinant thermostable manganese superoxide dismutase (Mn-SOD) of Thermus thermophilus wl was purified and covalently immobilized onto supermagnetic 3-APTES-modified Fe(3)O(4)@SiO(2) nanoparticles using glutaraldehyde method to prepare the Mn-SOD bound magnetic nanoparticles. The Mn-SOD nanoparticles were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analysis. The results indicated that the diameter of Mn-SOD nanoparticles was 40 (± 5) nm, and its saturation magnetization value was 27.9 emu/g without remanence or coercivity. By comparison with the free Mn-SOD, it was found that the immobilized Mn-SOD on nanoparticles exhibited better resistance to temperature, pH, metal ions, enzyme inhibitors, and detergents. The results showed that the immobilized Mn-SOD on nanoparticles could be reused ten times without significant decrease of enzymatic activity. Therefore, our study presented a novel strategy for the immobilization of thermostable Mn-SOD and for the application of thermostable enzymes. PMID:22237672

  13. Electrochemical synthesis of reduced graphene sheet-AuPd alloy nanoparticle composites for enzymatic biosensing.

    PubMed

    Yang, Jiang; Deng, Shengyuan; Lei, Jianping; Ju, Huangxian; Gunasekaran, Sundaram

    2011-11-15

    A simple, fast, green and controllable approach was developed for electrochemical synthesis of a novel nanocomposite of electrochemically reduced graphene oxide (ERGO) and gold-palladium (1:1) bimetallic nanoparticles (AuPdNPs), without the aid of any reducing reagent. The electrochemical reduction efficiently removed oxygen-containing groups in ERGO, which was then modified with homogeneously dispersed AuPdNPs in a good size distribution. ERGO-AuPdNPs nanocomposite showed excellent biocompatibility, enhanced electron transfer kinetics and large electroactive surface area, and were highly sensitive and stable towards oxygen reduction. A biosensor was constructed by immobilizing glucose oxidase as a model enzyme on the nanocomposites for glucose detection through oxygen consumption during the enzymatic reaction. The biosensor had a detection limit of 6.9μM, a linear range up to 3.5mM and a sensitivity of 266.6μAmM(-1)cm(-2). It exhibited acceptable reproducibility and good accuracy with negligible interferences from common oxidizable interfering species. These characteristics make ERGO-AuPdNPs nanocomposite highly suitable for oxidase-based biosensing. PMID:21903376

  14. Ultrasensitive electrochemical sensor for Hg(2+) by using hybridization chain reaction coupled with Ag@Au core-shell nanoparticles.

    PubMed

    Li, Zongbing; Miao, Xiangmin; Xing, Ke; Peng, Xue; Zhu, Aihua; Ling, Liansheng

    2016-06-15

    A novel electrochemical biosensor for Hg(2+) detection was reported by using DNA-based hybridization chain reaction (HCR) coupled with positively charged Ag@Au core-shell nanoparticles ((+)Ag@Au CSNPs) amplification. To construct the sensor, capture probe (CP ) was firstly immobilized onto the surface of glass carbon electrode (GCE). In the presence of Hg(2+), the sandwiched complex can be formed between the immobilized CP on the electrode surface and the detection probe (DP) modified on the gold nanoparticles (AuNPs) based on T-Hg(2+)-T coordination chemistry. The carried DP then opened two ferrocene (Fc) modified hairpin DNA (H1 and H2) in sequence and propagated the happen of HCR to form a nicked double-helix. Numerous Fc molecules were formed on the neighboring probe and produced an obvious electrochemical signal. Moreover, (+)Ag@Au CSNPs were assembly onto such dsDNA polymers as electrochemical signal enhancer. Under optimal conditions, such sensor presents good electrochemical responses for Hg(2+) detection with a detection limit of 3.6 pM. Importantly, the methodology has high selectivity for Hg(2+) detection. PMID:26852203

  15. Photochromic reaction of the diarylethene derivative on Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryoji; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu

    2015-03-01

    We have studied the photochromic reaction of the diarylethene derivative on Au nanoparticles using the incoherent excitation as a function of the wavelength of the irradiation light with the aim to clarify the effect of metal nanoparticles on the reaction yield. The photochemical reaction was suppressed by the Au nanoparticles under the irradiation of light whose wave length was shorter than 700 nm, while photochemical reaction was enhanced by the irradiation of light whose wavelength was longer than 750 nm via two-photon absorption process. The suppression of the photochemical reaction could be explained by the quenching of the excited state via radiative and non-radiative decay through energy or charge transfer to the metal substrate (e.g. electron-hole pair formation, surface plasmon excitation, formation of induced-dipole induced-dipole coupling), and the absorption of light by the Au nanoparticle. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  16. Immobilization and Characterization of Penicillin G Acylase (PGA) Immobilized on Magnetic Ni₀.₅Zn₀.₅Fe₂O₄ Nanoparticles.

    PubMed

    Liu, Ruijiang; Fan, Jiawen; Zhang, Yewang; Wang, Peng; Shen, Xiangqian

    2016-01-01

    Magnetic Ni₀.₅Zn₀.₅Fe₂O₄ nanoparticles were prepared via the solution combustion process and their microstructure and magnetic properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The as-prepared magnetic Ni₀.₅Zn₀.₅Fe₂O₄ nanoparticles are characterized with average grain size of about 20 nm and magnetization of 90.3 Am²/kg. The surface of magnetic Ni₀.₅Zn₀.₅Fe₂O₄ nanoparticles was modified by use of sodium silicate and N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride, and the penicillin G acylase (PGA) was successfully immobilized on the surface-modified magnetic Ni₀.₅Zn₀.₅Fe₂O₄ nanoparticles. The results show that the activity for the immobilized PGA is affected less by pH and temperature than that for the free PGA, and the immobilized PGA exhibits a high effective activity, good stability of enzyme catalyst. This immobilized PGA on magnetic Ni₀.₅Zn₀.₅Fe₂O₄ nanoparticles can be separated from the solution by the external magnetic field for cyclic utilization, and they could retain about 70% of initial enzyme activity after 11 consecutive operations. The kinetic parameters (Km and Vmax) were determined, and the value of Km for the immobilized PGA (204.53 mmol/L) is higher than that of the free enzyme (3.50 mmol/L), while Vmax (1.93 mmol/min) is also larger than that of the free enzyme (0.838 mmol/min). PMID:27398443

  17. Development of a simple bioelectrode for the electrochemical detection of hydrogen peroxide using Pichia pastoris catalase immobilized on gold nanoparticle nanotubes and polythiophene hybrid.

    PubMed

    Nandini, Seetharamaiah; Nalini, Seetharamaiah; Sanetuntikul, Jakkid; Shanmugam, Sangaraju; Niranjana, Pathappa; Melo, Jose Savio; Suresh, Gurukar Shivappa

    2014-11-21

    In this paper, a simple and innovative electrochemical hydrogen peroxide biosensor has been proposed using catalase (CATpp) derived from Pichia pastoris as bioelectrocatalyst. The model biocomponent was immobilized on gold nanoparticle nanotubes (AuNPNTs) and polythiophene composite using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydroxysuccinimide (EDC-NHS) coupling reagent. In this present work, we have successfully synthesized gold nanoparticles (AuNPs) by ultrasonic irradiation. The tubular gold nanostructures containing coalesced AuNPs were obtained by sacrificial template synthesis. The assembly of AuNPNTs onto the graphite (Gr) electrode was achieved via S-Au chemisorption. The latter was pre-coated with electropolymerized thiophene (PTh) to enable S groups to bind AuNPNTs. The combination of AuNPNTs-PTh, i.e., an inorganic-organic hybrid, provides a stable enzyme immobilization platform. The physical morphology of the fabricated biosensor Gr/PTh/AuNPNTs/EDC-NHS/CATpp was investigated using scanning electron microscopy and energy-dispersive microscopy. The analytical performance of the bioelectrode was examined using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. Operational parameters such as working potential, pH, and thermal stability of the modified electrode were examined. The beneficial analytical characteristics of the proposed electrode were demonstrated. Our results indicate that the Gr/PTh/AuNPNTs/EDC-NHS/CATpp bioelectrode exhibits a wide linear range from 0.05 mM to 18.5 mM of H2O2, fast response time of 7 s, excellent sensitivity of 26.2 mA mM(-1) cm(-2), good detection limit of 0.12 μM and good Michaelis-Menten constant of 1.4 mM. In addition, the bioelectrode displayed good repeatability, high stability and acceptable reproducibility, which can be attributed to the AuNPNTs-PTh composite that provides a biocompatible micro-environment. PMID:25208248

  18. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  19. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    PubMed Central

    2013-01-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies. PMID:23452438

  20. Assembly of hybrid oligonucleotide modified gold (Au) and alloy nanoparticles building blocks.

    PubMed

    Kuo, Yu-Ching; Jen, Chun-Ping; Chen, Yu-Hung; Su, Chia-Hao; Tsai, Shu-Hui; Yeh, Chen-Sheng

    2006-01-01

    The alloy-based hybrid materials with macroscopic network arrays were developed by AuAg/Au and AuAgPd/Au nanoparticle composites through oligonucleotides hybridization. AuAg/Au and AuAgPd/Au exhibited distinct organization. The morphology of AuAg/Au conjugation assembled mainly as compact aggregates while AuAgPd/Au hybrid conjugated into the loosen network assemblies. The dehybridization temperatures were studied as a function of molar ratio of alloy/Au. It was found that higher alloy/gold molar ratio led to stronger hybridization for alloy/gold composite, accompanied with increased melting temperature. These results could be interpreted in terms of more alloy nanoparticles bound to a Au particle when the molar ratio of alloy/gold increased. The thermal analysis also showed that AuAg/Au exhibited higher dehybridization temperature. A modified model describing the dehybridization probability of an intact Au/alloy aggregate was performed to support the dehybridization temperature increased with increasing alloy/Au molar ratio. As to more oligonucleotides carried by AuAg (4.9 +/- 1.9 nm) than by AuAgPd (4.4 +/- 1.5 nm) due to larger size in AuAg, the efficient hybridization could result in higher dehybridization temperature in AuAg/Au. PMID:16573077

  1. Synthesis and characterization of cysteine functionalized silver nanoparticles for biomolecule immobilization.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2014-11-01

    A facile method for the aqueous phase synthesis of cysteine-functionalized silver nanoparticles by potato extract has been reported in the present work. These functionalized nanoparticles were then used for the covalent immobilization of a biomolecule, alkaline phosphatase, on its surface through carbodiimide coupling. Different reaction parameters such as cysteine concentration, reducing agent concentration, temperature, pH and reaction time were varied during the nanoparticles' formation, and their effects on plasmon resonance were studied using Ultraviolet-visible spectroscopy. Fourier transform infrared spectroscopy was used to confirm the surface modification of silver nanoparticles by cysteine and the particle size analysis was done using particle size analyzer, which showed the average nanoparticles' size of 61 nm for bare silver nanoparticles and 201 nm for the enzyme-immobilized nanoparticles. The synthesized nanoparticles were found to be highly efficient for the covalent immobilization of alkaline phosphatase on its surface and retained 67% of its initial enzyme activity (9.44 U/mg), with 75% binding efficiency. The shelf life of the enzyme-nanoparticle bioconjugates was found to be 60 days, with a 12% loss in the initial enzyme activity. With a simple synthesis strategy, high immobilization efficiency and enhanced stability, these enzyme-coated nanoparticles have the potential for further integration into the biosensor technology. PMID:24760173

  2. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-07-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  3. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid.

    PubMed

    Jiang, Xiao-Ping; Lu, Ting-Ting; Liu, Cai-Hong; Ling, Xiao-Ming; Zhuang, Meng-Yao; Zhang, Jiu-Xun; Zhang, Ye-Wang

    2016-07-01

    Epoxy functionalized magnetic Fe3O4@SiO2 nanoparticles were successfully prepared and characterized by Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The prepared nanoparticles were used for immobilization of alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae by covalent attachment. The optimal immobilization conditions were obtained as follows: enzyme/support 4.49mg/g, pH 8.0, buffer concentration 0.05M, time 12h and temperature 30°C. Under these conditions, a high immobilization yield and efficiency of above 92% were obtained after the optimization. Broad pH tolerance and high thermostability were achieved by the immobilization. The immobilized ADH retained about 84% initial activity after five cycles. Kinetic parameters Vmax and Km of free and immobilized ADH were determined as 56.72μM/min, 44.27μM/min and 11.54mM, 31.32mM, respectively. (R)-mandelic acid synthesis with the immobilized ADH was carried out, and the yield of (R)-mandelic acid was as high as 64%. These results indicate that the ADH immobilized onto epoxy-functionalized nanoparticles is an efficient and simple way for preparation of stable ADH, and the immobilized ADH has potential applications in the production of (R)-mandelic acid. PMID:26995611

  4. Preparation and characterization of tannase immobilized onto carboxyl-functionalized superparamagnetic ferroferric oxide nanoparticles.

    PubMed

    Wu, Changzheng; Xu, Caiyun; Ni, Hui; Yang, Qiuming; Cai, Huinong; Xiao, Anfeng

    2016-04-01

    Tannase from Aspergillus tubingensis was immobilized onto carboxyl-functionalized Fe3O4 nanoparticles (CMNPs), and conditions affecting tannase immobilization were investigated. Successful binding between CMNPs and tannase was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Vibrating sample magnetometry and X-ray diffraction showed that the CMNPs and immobilized tannase exhibit distinct magnetic responses and superparamagnetic properties. Free and immobilized tannase exhibited identical optimal temperatures of 50°C and differing pH optima at 6 and 7, respectively. The thermal, pH, and storage stabilities of the immobilized tannase were superior to those of free tannase. After six cycles of catalytic hydrolysis of propyl gallate, the immobilized tannase maintained over 60% of its initial activity. The Michaelis constant (Km) of the immobilized enzyme indicated its higher affinity for substrate binding than the free enzyme. PMID:26809129

  5. The impact of immobile zones on the transport and retention of nanoparticles in porous media

    NASA Astrophysics Data System (ADS)

    Molnar, Ian L.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.

    2015-11-01

    Nanoparticle transport and retention within porous media is treated by conceptualizing the porous media as a series of independent collectors (e.g., Colloid Filtration Theory). This conceptualization assumes that flow phenomena near grain-grain contacts, such as immobile zones (areas of low flow), exert a negligible influence on nanoparticle transport and assumes that retention and release of particles depends only on surface chemistry. This study investigated the impact of immobile zones on nanoparticle transport and retention by employing synchrotron X-ray computed microtomography (SXCMT) to examine pore-scale silver nanoparticle distributions during transport through three sand columns: uniform iron oxide, uniform quartz, and well-graded quartz. Extended tailing was observed during the elution phase of all experiments suggesting that hydraulic retention in immobile zones, not detachment from grains, was the source of tailing. A numerical simulation of fluid flow through an SXCMT data set predicted the presence of immobile zones near grain-grain contacts. SXCMT-determined silver nanoparticle concentrations observed that significantly lower nanoparticle concentrations existed near grain-grain contacts throughout the duration of all experiments. In addition, the SXCMT-determined pore-scale concentration gradients were found to be independent of surface chemistry and grain size distribution, suggesting that immobile zones limit the diffusive transport of nanoparticles toward the collectors. These results suggest that the well-known overprediction of nanoparticle retention by traditional CFT may be due to ignoring the influences of grain-grain contacts and immobile zones. As such, accurate prediction of nanoparticle transport requires consideration of immobile zones and their influence on both hydraulic and surface retention.

  6. Controlled deposition of Au on (BiO)2CO3 microspheres: the size and content of Au nanoparticles matter.

    PubMed

    Li, Qiuyan; Hao, Xiaodong; Guo, Xiaolong; Dong, Fan; Zhang, Yuxin

    2015-05-21

    Novel 3D Au/(BiO)2CO3 (Au/BOC) heterostructures with size-controlled Au nanoparticles (NPs) (2-10 nm) were first synthesized and used in photocatalytic removal of ppb-level NO for air cleaning. The photocatalytic performance of Au/BOC heterostructures was enhanced by fine-tuning the content of Au and the size of Au NPs. A new photocatalysis mechanism of surface scattering and reflecting (SSR) coupled with surface plasmon resonance (SPR) was proposed to understand the enhanced photocatalytic activity. PMID:25906416

  7. Urease immobilized fluorescent gold nanoparticles for urea sensing.

    PubMed

    Parashar, Upendra Kumar; Nirala, Narsingh R; Upadhyay, Chandan; Saxena, P S; Srivastava, Anchal

    2015-05-01

    We report a surfactant-free synthesis of monodispersed gold nanoparticles (AuNPs) with average size of 15 nm. An approach for visual and fluorescent sensing of urea in aqueous solution based on shift in surface plasmon band (SPB) maxima as well as quench in fluorescence intensity. To enable the urea detection, we functionalized the thiol-capped gold nanoparticles with urease, the enzyme specific to urea using carbodiimide chemistry. The visible color changed of the gold colloidal solution from red to blue (or purple); this was evident from quenching in absorbance and fluorescence intensity, is the principle applied here for the sensing of urea. The solution turns blue when the urea concentration exceeds 8 mg/dL which reveals visual lower detection limit. The lower detection limits governed by the fluorescence quenching were found 5 mg/dL (R(2) = 0.99) which is highly sensitive and selective compared to shift in SPB maxima. The approach depicted here seems to be important in clinical diagnosis. PMID:25809996

  8. Heterostructured Au/Pd-M (M = Au, Pd, Pt) nanoparticles with compartmentalized composition, morphology, and electrocatalytic activity.

    PubMed

    Lutz, Patrick S; Bae, In-Tae; Maye, Mathew M

    2015-10-14

    The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt). Interestingly, the dumbbell morphology remained after exchange, and the silver region was transformed to hollow, parachute, or concentric domains respectively. The morphology and microstructure change was visualized via TEM and HRTEM, and the composition changes were probed via STEM-EDS imaging and XPS. The electrocatalytic activity of the Au/Pd-M towards methanol oxidation was studied, with results indicating that the Au/Pd-Pt nanoparticles had high activity attributed to the porous nature of the platinum domains. PMID:26351824

  9. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    PubMed

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes. PMID:27427671

  10. Controlling Au Photodeposition on Large ZnO Nanoparticles.

    PubMed

    Fernando, Joseph F S; Shortell, Matthew P; Noble, Christopher J; Harmer, Jeffrey R; Jaatinen, Esa A; Waclawik, Eric R

    2016-06-01

    This study investigated how to control the rate of photoreduction of metastable AuCl2(-) at the solid-solution interface of large ZnO nanoparticles (NPs) (50-100 nm size). Band-gap photoexcitation of electronic charge in ZnO by 370 nm UV light yielded Au NP deposition and the formation of ZnO-Au NP hybrids. Au NP growth was observed to be nonepitaxial, and the patterns of Au photodeposition onto ZnO NPs observed by high-resolution transmission electron microscopy were consistent with reduction of AuCl2(-) at ZnO facet edges and corner sites. Au NP photodeposition was effective in the presence of labile oleylamine ligands attached to the ZnO surface; however, when a strong-binding dodecanethiol ligand coated the surface, photodeposition was quenched. Rates of interfacial electron transfer at the ZnO-solution interface were adjusted by changing the solvent, and these rates were observed to strongly depend on the solvent's permittivity (ε) and viscosity. From measurements of electron transfer from ZnO to the organic dye toluidine blue at the ZnO-solution interface, it was confirmed that low ε solvent mixtures (ε ≈ 9.5) possessed markedly higher rates of photocatalytic interfacial electron transfer (∼3.2 × 10(4) electrons·particle(-1)·s(-1)) compared to solvent mixtures with high ε (ε = 29.9, ∼1.9 × 10(4) electrons·particle(-1)·s(-1)). Dissolved oxygen content in the solvent and the exposure time of ZnO to band-gap, near-UV photoexcitation were also identified as factors that strongly affected Au photodeposition behavior. Production of Au clusters was favored under conditions that caused electron accumulation in the ZnO-Au NP hybrid. Under conditions where electron discharge was rapid (such as in low ε solvents), AuCl2(-) precursor ions photoreduced at ZnO surfaces in less than 5 s, leading to deposition of several small, isolated ∼6 nm Au NP on the ZnO host instead. PMID:27196721

  11. Photoreduction of Au(III) to form Au(0) nanoparticles using ferritin as a photocatalyst

    NASA Astrophysics Data System (ADS)

    Hilton, Robert J.; Keyes, Jeremiah D.; Watt, Richard K.

    2010-04-01

    Gold metal nanoparticles have applications in bio sensing technology, nano-tube formation, and cancer therapy. We report attempts to synthesize gold nanoparticles within the ferritin cavity (8 nm) or to use ferritin as a scaffold for coating gold on the outside surface (12 nm). The intrinsic iron oxide core of ferritin is a semi-conductor and light can excite electrons to a conduction band producing a powerful reductant when a sacrificial electron donor fills the electron hole. We present a method using ferritin to photo chemically reduce Au(III) to metallic gold nanoparticles. During initial studies we observed that the choice of buffers influenced the products that formed as evidenced by a red product formed in TRIS and a purple produce formed in MOPS. Gold nanoparticles formed in MOPS buffer in the absence of illumination have diameters of 15-30 nm whereas illumination in TRIS buffer produced 5-10 nm gold nanoparticles. Increases in temperature cause the gold nanoparticles to form more rapidly. Chemical reduction and photochemical reduction methods have very different reaction profiles with photochemical reduction possessing a lag phase prior to the formation of gold nanoparticles.

  12. Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer.

    PubMed

    Namura, Kyoko; Suzuki, Motofumi; Nakajima, Kaoru; Kimura, Kenji

    2013-04-01

    Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature. PMID:23571958

  13. Stabilization of D-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles.

    PubMed

    Hsieh, Hao-Chieh; Kuan, I-Ching; Lee, Shiow-Ling; Tien, Gee-Yeng; Wang, Yi-Jen; Yu, Chi-Yang

    2009-04-01

    D-amino acid oxidase from Rhodosporidium toruloides was immobilized onto glutaraldehyde-activated magnetic nanoparticles. Approximately four enzyme molecules were attached to one magnetic nanoparticle when the weight ratio of the enzyme to the support was 0.12. After immobilization, the T(m) was increased from 45 degrees C of the free form to 55 degrees C. In the presence of 20 mM H2O2, the immobilized form retained 93% of its activity after 5 h while the free form was completely inactivated after 3.5 h. PMID:19066733

  14. Oxidation of Chlorpromazine by Lipoxygenase Immobilized on Magnetic Fe3O4 Nanoparticles.

    PubMed

    Ding, Wenwu; Hou, Zhaosheng; Che, Zhenming; Li, Mingyuan; Chen, Xianggui; Zhang, Junqing; Zhang, Qikun

    2016-06-01

    In this work, soybean lipoxygenase enzyme was immobilized on the magnetic Fe3O4 nanoparticles to oxidate chlorpromazine (CPZ). The physicochemical properties of the nanoparticles were characterized with transmission electronic microscopy (TEM), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA), and the magnetic properties were detected by a vibrating sample magnetometer (VSM). The TEM images indicated the surface and the size of the immobilized enzyme were much rougher and thicker than those of the naked particles. The analyses of XRD patterns showed that the structure of the magnetic nanoparticles had no significant change while the nanoparticles also exhibited higher superparamagnetism at room temperature. Compared to free enzyme or the enzyme immobilized with other methods, the optimal pH, temperature and H2O2 concentration for the activity of immobilized enzyme did not have great changes, but the immobilized enzyme was more stable and less sensitive to the change of the influence factors than free counterpart. The immobilized enzyme could be recovered easily by magnetic separation and could be reused for many times in the process of CPZ oxidation. The results obtained by simulating the model of Michaelis-Menten indicated that the reaction of CPZ oxidation followed Michaelis-Menten kinetics and the enzyme still retained its affinity for CPZ while the enzyme was immobilized. PMID:27427602

  15. Efficient synthesis of core@shell Fe3O4@Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Alonso-Cristobal, Paulino; Laurenti, Marco; Lopez-Cabarcos, Enrique; Rubio-Retama, Jorge

    2015-07-01

    The synthesis of Fe3O4@Au nanoparticles has received much attention due to promising applications in the biomedical field. In this work, we produced Fe3O4@Au nanoparticles by using a two-step solvothermal route that employed Fe3O4 nanoparticles as seeds for the Au deposition. Although this protocol leads to highly monodisperse and reproducible Fe3O4@Au nanoparticles it was necessary to perform a systematic study to have a better understanding, improve the yield and allow us to obtain a tunable result. We demonstrated that the Au:Fe3O4 ratio is a key parameter that, contrary to what could be expected, does not influence the Au shell thickness. However, this parameter should be optimized because it strongly influences the yield. When the Au:Fe3O4 ratio was low there were plenty of uncoated Fe3O4 nanoparticles, whereas when the Au:Fe3O4 ratio was high there could be some pure Au nanoparticles together with the desired Fe3O4@Au nanoparticles. Furthermore we demonstrated that the Au shell thickness can be tuned by varying the reaction temperature. This paper describes the influence of both parameters and proposes a mechanism of the synthetic process by studying parametrically the morphological and structural evolution of the nanoparticles by TEM, DLS, SQUID and UV-vis spectroscopy.

  16. Selective oxidation of veratryl alcohol with composites of Au nanoparticles and graphene quantum dots as catalysts.

    PubMed

    Wu, Xiaochen; Guo, Shouwu; Zhang, Jingyan

    2015-04-14

    Veratryl alcohol can be oxidized to veratryl aldehyde or veratric acid with excellent selectivity and efficient conversion under acidic and alkaline conditions using Au nanoparticles and graphene quantum dot composites (Au/GQDs) as catalysts. PMID:25760658

  17. Immobilization of aptamer-modified gold nanoparticles on BiOCl nanosheets: Tunable peroxidase-like activity by protein recognition.

    PubMed

    Hsu, Chia-Lun; Lien, Chia-Wen; Wang, Chia-Wei; Harroun, Scott G; Huang, Chih-Ching; Chang, Huan-Tsung

    2016-01-15

    A self-assembled nanocomposite is prepared from an aqueous mixture of aptamer-modified gold nanoparticles (Apt-Au NPs), bismuth ions and chloride ions. The Apt-Au NPs are immobilized on bismuth oxychloride (BiOCl) nanosheets in situ to form Apt-Au NPs/BiOCl nanocomposites. The as-prepared nanocomposites exhibit high peroxidase-like activity for the catalytic conversion of Amplex Red (AR) to fluorescent resorufin in the presence of H2O2. The catalytic activity of Apt-Au NPs/BiOCl nanocomposites is at least 90-fold higher than that of Apt-Au NPs or BiOCl nanosheets, revealing synergistic effects on their activity. The catalytic activity of Apt-Au NPs/BiOCl nanocomposites is suppressed by vascular endothelial growth factor-A165 (VEGF-A165) molecules that specifically interact with the aptamer units (Del-5-1 and v7t-1) on the nanocomposite surface. The AR/H2O2-Apt-Au NPs/BiOCl nanocomposites probe shows high selectivity (>1000-fold over other proteins) and sensitivity (detection limit ~0.5nM) for the detection of VEGF-A165. Furthermore, the probe is employed for the detection of VEGF isoforms and for the study of interactions between VEGF and VEGF receptors. The practicality of this simple, rapid, cost-effective probe is validated by the analysis of VEGF-A165 in cell culture media, showing its great potential for the analysis of VEGF in biological samples. PMID:26318787

  18. Immobilization of Lipase by Adsorption Onto Magnetic Nanoparticles in Organic Solvents.

    PubMed

    Shi, Ying; Liu, Wei; Tao, Qing-Lan; Jiang, Xiao-Ping; Liu, Cai-Hong; Zeng, Sha; Zhang, Ye-Wang

    2016-01-01

    In order to improve the performance of lipase in organic solvents, a simple immobilization method was developed by adsorption of lipase onto Fe₃O₄@ SiO₂magnetic nanoparticles in organic solvent. Among the solvents tested, toluene was found to be the most effective solvent for the immobilization. A maximum immobilization yield of 97% and relative activity of 124% were achieved in toluene at 30 °C. The optimal temperature, enzyme loading and water activity were 30 °C, 1.25 mg/mg support and 0.48 aw, respectively. The residual activity of immobilized lipase was 67% after 10 cycles of use. The advantages of the immobilized lipase including easy recovery, high stability, and enhanced activity of immobilized lipase in organic solvents show potential industrial applications in anhydrous solvents. PMID:27398494

  19. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    NASA Astrophysics Data System (ADS)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  20. Enzymatic biosensor of horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene for the simultaneous determination of antioxidants.

    PubMed

    Wu, Long; Yin, Wenmin; Tang, Kun; Li, Dian; Shao, Kang; Zuo, Yunpeng; Ma, Jing; Liu, Jiawei; Han, Heyou

    2016-08-24

    A new electrochemical method has been proposed for the simultaneous determination of butylated hydroxyanisole (BHA) and propyl gallate (PG) in food matrices based on enzymatic biosensors. Spiny Au-Pt nanotubes (SAP NTs) was first synthesized and demonstrated to exhibit intrinsic peroxidase and catalase-like activity. The structure of SAP NTs provides large surface area and favorable medium for electron transfer, on which HRP were immobilized and acted as enzymatic biosensor for the simultaneous detection of BHA and PG. The results revealed that BHA and PG both have well-defined oxidation waves with peak potentials of 624 and 655 mV, respectively. Under the optimal conditions, the method behaved satisfactory analytical performance towards BHA and PG with a wide linear range of 0.3-50 mg L(-1) and 0.1-100 mg L(-1), as well as a detection limit of 0.046 mg L(-1) and 0.024 mg L(-1) (3σ/slope), respectively. Besides, the proposed method exhibits good sensitivity, stability and reproducibility, providing an alternative to fabricate electrode and construct sensitive biosensors. PMID:27497001

  1. Covalent Immobilization of Penicillin G Acylase onto Fe3O4@Chitosan Magnetic Nanoparticles.

    PubMed

    Ling, Xiao-Min; Wang, Xiang-Yu; Ma, Ping; Yang, Yi; Qin, Jie-Mei; Zhang, Xue-Jun; Zhang, Ye-Wang

    2016-05-28

    Penicillin G acylase (PGA) was immobilized on magnetic Fe3O4@chitosan nanoparticles through the Schiff base reaction. The immobilization conditions were optimized as follows: enzyme/support 8.8 mg/g, pH 6.0, time 40 min, and temperature 25°C. Under these conditions, a high immobilization efficiency of 75% and a protein loading of 6.2 mg/g-support were obtained. Broader working pH and higher thermostability were achieved by the immobilization. In addition, the immobilized PGA retained 75% initial activity after ten cycles. Kinetic parameters Vmax and Km of the free and immobilized PGAs were determined as 0.91 mmol/min and 0.53 mmol/min, and 0.68 mM and 1.19 mM, respectively. Synthesis of amoxicillin with the immobilized PGA was carried out in 40% ethylene glycol at 25°C and a conversion of 72% was obtained. These results showed that the immobilization of PGA onto magnetic chitosan nanoparticles is an efficient and simple way for preparation of stable PGA. PMID:26869599

  2. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Li, Ju-Fang; Huang, Ping-Ying; Dong, Xu-Yan; Guo, Lu-Lu; Yang, Liang; Cao, Yuan-Cheng; Wei, Fang; Zhao, Yuan-Di; Chen, Hong

    2010-07-01

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63±2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  3. Highly efficient antibody immobilization with multimeric protein Gs coupled magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Choi, H. K.; Chang, J. H.

    2011-10-01

    This work reports the immobilization of monomeric, dimeric and trimer protein Gs onto silica magnetic nanoparticles for self-oriented antibody immobilization. To achieve this, we initially prepared the silica-coated magnetic nanoparticle having about 170 nm diameters. The surface of the silica coated magnetic nanoparticles was modified with 3- aminopropyl-trimethoxysilane (APTMS) to chemically link to multimeric protein Gs. The conjugation of amino groups on the SiO2-MNPs to cysteine tagged in multimeric protein Gs was performed using a sulfo-SMCC coupling procedure. The binding efficiencies of monomer, dimer and trimer were 77 %, 67 % and 55 % respectively. However, the efficiencies of antibody immobilization were 70 %, 83 % and 95 % for monomeric, dimeric and trimeric protein G, respectively. To prove the enhancement of accessibility by using multimeric protein G, FITC labeled goat-anti-mouse IgG was treated to mouse IgG immobilized magnetic silica nanoparticles through multimeric protein G. FITC labeled goat anti-mouse IgGs were more easily bound to mouse IgG immobilized by trimeric protein G than others. Finally protein G bound silica magnetic nanoparticles were utilized to develop highly sensitive immunoassay to detect hepatitis B antigen.

  4. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    PubMed Central

    2014-01-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively. PMID:25593554

  5. Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Yu, Xianqin; Huo, Yujia; Yang, Jing; Chang, Sujie; Ma, Yunsheng; Huang, Weixin

    2013-09-01

    Various Au/C catalysts were prepared by Au nanoparticels supported on different carbonaceous supports including reduced graphene oxide (RGO), activated carbon (AC) and graphite (GC) using sol-immobilization method. Au/RGO shows a much higher activity than Au/AC and Au/GC in the liquid phase aerobic oxidation of benzyl alcohol. The superior catalytic performance of Au/RGO may be related to the presence of surface O-containing functional groups and moderate graphite character of RGO supports.

  6. Rhodamine B immobilized on hollow Au-HMS material for naked-eye detection of Hg2+ in aqueous media.

    PubMed

    Zhang, Na; Li, Gang; Cheng, Zhuhong; Zuo, Xiujin

    2012-08-30

    A simple, effective method has been demonstrated to immobilize Rhodamine B (RhB) probes on mesoporous silica (Au-HMS). The prepared chemosensor (Au-HMS-Probe) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectrum and Fourier transform infrared spectroscopy (FT-IR). Further application of Au-HMS-Probe in sensing Hg(2+) was confirmed by fluorescence titration experiment. Au-HMS-Probe afforded "turn-on" fluorescence enhancement and displayed high brightness in water, and it also showed excellent selectivity for Hg(2+) over alkali (Na(+), K(+)), alkaline earth (Mg(2+), Ca(2+)) and other heavy metal ions (Ag(+), Cd(2+), Co(2+), Pb(2+), Ni(2+), Cu(2+), Fe(2+)). Importantly, Au-HMS-Probe could be regenerated by treatment with tetrapropylammonium hydroxide solution. PMID:22771346

  7. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    NASA Astrophysics Data System (ADS)

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-03-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence.

  8. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  9. Facile Synthesis of Au Nanoparticles Embedded in an Ultrathin Hollow Graphene Nanoshell with Robust Catalytic Performance.

    PubMed

    Liu, Hongyang; Wang, Jia; Feng, Zhenbao; Lin, Yangming; Zhang, Liyun; Su, Dangsheng

    2015-10-01

    Au nanoparticles (NPs) uniformly embedded into an ultrathin hollow graphene nanoshell (Au@HGN) are synthesized using a facile template-based procedure. The obtained Au@HGN catalyst exhibits robust and stable catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol, compared with that of traditional Au/TiO2 and previously reported Au- and Ag-based catalysts. PMID:26280245

  10. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles.

    PubMed

    Dyal, Ansil; Loos, Katja; Noto, Mayumi; Chang, Seung W; Spagnoli, Chiara; Shafi, Kurikka V P M; Ulman, Abraham; Cowman, Mary; Gross, Richard A

    2003-02-19

    We report the stability and enzymatic activity of Candida rugosa Lipase (E.C.3.1.1.3) immobilized on gamma-Fe2O3 magnetic nanoparticles. The immobilization strategies were either reacting the enzyme amine group with a nanoparticle surface acetyl, or amine groups. In the former, the enzyme was attached through a C=N bond, while in the latter it was connected using glutaraldehyde. AFM images show an average particle size of 20 +/- 10 nm after deconvolution. The enzymatic activity of the immobilized lipase was determined by following the ester cleavage of p-nitrophenol butyrate. The covalently immobilized enzyme was stabile and reactive over 30 days. PMID:12580578

  11. Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania.

    PubMed

    Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Limaee, Nargess Yousefi; Gharanjig, Kamaladin

    2007-06-25

    Degradation and mineralization of two agricultural organic pollutants (Diazinon and Imidacloprid as N-heterocyclic aromatics) in aqueous solution by nanophotocatalysis using immobilized titania nanoparticles were investigated. Insecticides, Diazinon and Imidacloprid, are persistent pollutants in agricultural soil and watercourses. A simple and effective method was developed to immobilization of titania nanoparticles. UV-vis, ion chromatography (IC) and chemical oxygen demand (COD) analyses were employed. The effects of operational parameters such as H(2)O(2) and inorganic anions (NO(3)(-), Cl(-) and SO(4)(2-)) were investigated. The mineralization of Diazinon and Imidacloprid was evaluated by monitoring of the formed inorganic anions. The selected pollutants are effectively degraded following first order kinetics model. Results show that the nanophotocatalysis using immobilized titania nanoparticle is an effective method for treatment Diazinon and Imidacloprid from contaminated water. PMID:17145132

  12. Phenolics Impart Au3+-Stress Tolerance to Cowpea by Generating Nanoparticles

    PubMed Central

    Shabnam, Nisha; Pardha-Saradhi, P.; Sharmila, P.

    2014-01-01

    While evaluating impact of Au nanoparticles on seed germination and early seedling growth of cowpea, HAuCl4 was used as control. Seedlings of cowpea raised in HAuCl4, even at concentration as high as 1 mM, did not show any suppression in growth. Accordingly, Au3+, despite being a heavy metal, did not alter levels of stress markers (viz. proline and malondialdehyde) in cowpea. Interestingly, cowpea turned clear pale yellow HAuCl4 solutions colloidal purple during the course of seed germination and seedling growth. These purple colloidal suspensions showed Au-nanoparticle specific surface plasmon resonance band in absorption spectra. Transmission electron microscopic and powder X-ray diffraction investigations confirmed presence of crystalline Au-nanoparticles in these purple suspensions. Each germinating seed of cowpea released ∼35 nmoles of GAE of phenolics and since phenolics promote generation of Au-nanoparticles, which are less/non toxic compared to Au3+, it was contemplated that potential of cowpea to withstand Au3+ is linked to phenolics. Of the different components of germinating seed of cowpea tested, seed coat possessed immense power to generate Au-nanoparticles, as it was the key source of phenolics. To establish role of phenolics in generation of Au-nanoparticles (i) seed coat and (ii) the incubation medium in which phenolics were released by germinating seeds, were tested for their efficacy to generate Au-nanoparticles. Interestingly, incubation of either of these components with Au3+ triggered increase in generation of Au-nanoparticles with concomitant decrease in phenolics. Accordingly, with increase in concentration of Au3+, a proportionate increase in generation of Au-nanoparticles and decrease in phenolics was recorded. In summary, our findings clearly established that cowpea possessed potential to withstand Au3+-stress as the phenolics released by seed coat of germinating seeds possess potential to reduce toxic Au3+ to form non/less toxic Au-nanoparticles

  13. Solvent-induced desorption of alkanethiol ligands from Au nanoparticles.

    PubMed

    Huang, Yuanyuan; Liu, Wei; Cheng, Hao; Yao, Tao; Yang, Lina; Bao, Jie; Huang, Ting; Sun, Zhihu; Jiang, Yong; Wei, Shiqiang

    2016-06-21

    Removing surfactants from a colloidal metal nanoparticle surface is necessary for their realistic applications, and how they could be stripped is a subject of active investigation. Here, we report a solvent-induced desorption of dodecanethiol ligands from the gold nanoparticle surface, and traced this desorption process using a combination of in situ X-ray absorption fine structure (XAFS) and Raman spectroscopic techniques. In situ analysis results reveal that the solvent exchange of ethanol with tetrahydrofuran (THF) can effectively remove dodecanethiol ligands while keeping the particle morphology unchanged. Upon increasing the THF/ethanol ratio from 0 : 1 to 5 : 1, the surface coverage of thiol on the Au surface is reduced from 0.47 to 0.07, suggesting the depletion of ligands first from the nanoparticle facet sites, then from the edge sites, while the ligands at the corner sites are intact. This work enriches our knowledge on surfactant removal and may pave the way towards preparing surface-clean nanoparticles for practical applications. PMID:27241025

  14. Gold surfaces and nanoparticles are protected by Au(0)-thiyl species and are destroyed when Au(I)-thiolates form.

    PubMed

    Reimers, Jeffrey R; Ford, Michael J; Halder, Arnab; Ulstrup, Jens; Hush, Noel S

    2016-03-15

    The synthetic chemistry and spectroscopy of sulfur-protected gold surfaces and nanoparticles is analyzed, indicating that the electronic structure of the interface is Au(0)-thiyl, with Au(I)-thiolates identified as high-energy excited surface states. Density-functional theory indicates that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)-thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s-d hybridization and charge polarization effects that perturbatively mix in some Au(I)-thiolate character. A simple method for quantifying these contributions is presented, revealing that a driving force for nanoparticle growth is nobleization, minimizing Au(I)-thiolate involvement. Predictions that Brust-Schiffrin reactions involve thiolate anion intermediates are verified spectroscopically, establishing a key feature needed to understand nanoparticle growth. Mixing of preprepared Au(I) and thiolate reactants always produces Au(I)-thiolate thin films or compounds rather than monolayers. Smooth links to O, Se, Te, C, and N linker chemistry are established. PMID:26929334

  15. Multifunctional hybrid Fe2O3-Au nanoparticles for efficient plasmonic heating

    DOE PAGESBeta

    Murph, Simona E. Hunyadi; Larsen, George K.; Lascola, Robert J.

    2016-02-20

    We describe the synthesis and properties of multifunctional Fe2O3-Au nanoparticles produced by a wet chemical approach and investigate their photothermal properties using laser irradiation. Here, the composite Fe2O3-Au nanoparticles retain the properties of both materials, creating a multifunctional structure with excellent magnetic and plasmonic properties.

  16. Antimicrobial Properties of Lysosomal Enzymes Immobilized on NH₂Functionalized Silica-Encapsulated Magnetite Nanoparticles.

    PubMed

    Bang, Seung Hyuck; Sekhon, Simranjeet Singh; Cho, Sung-Jin; Kim, So Jeong; Le, Thai-Hoang; Kim, Pil; Ahn, Ji-Young; Kim, Yang-Hoon; Min, Jiho

    2016-01-01

    The immobilization efficiency, antimicrobial activity and recovery of lysosomal enzymes on NH2 functionalized magnetite nanoparticles have been studied under various conditions. The immobi- lization efficiency depends upon the ratio of the amount of enzyme and magnetite and it shows an increase with magnetite concentration which is due to the presence of amine group at the magnetite surface that leads to a strong attraction. The optimized reaction time to immobilize the lysosomal enzymes on magnetite was determined by using a rolling method. The immobilization efficiency increases with reaction time and reached a plateau after 5 minutes and then remained constant for 10 minutes. However, after 30 minutes the immobilization efficiency decreased to 85%, which is due to the weaker electrostatic interactions between magnetite and detached lysosomal enzymes. The recovery and stability of immobilized lysosomal enzymes has also been studied. The antimicrobial activity was almost 100% but it decreased upon reuse and no activity was observed after its reuse for seven times. The storage stability of lysosomal enzymes as an antimicrobial agent was about 88%, which decreased to 53% after one day and all activity of immobilized lysosomal enzymes was maintained after five days. Thus, the lysosomal enzymes immobilized on magnetite nanoparticles could potentially be used as antimicrobial agents to remove bacteria. PMID:27398573

  17. Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles

    NASA Astrophysics Data System (ADS)

    Gołąbiewska, Anna; Lisowski, Wojciech; Jarek, Marcin; Nowaczyk, Grzegorz; Zielińska-Jurek, Anna; Zaleska, Adriana

    2014-10-01

    TiO2 modified with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles have been prepared using a water-in-oil microemulsion system (water/AOT/cyclohexane) followed by calcination step. The effect of metal ratio, reducing agent type (NaBH4 or N2H4), TiO2 matrix type (P-25, ST-01, TiO-5, TiO2 nanotubes or TiO2 obtained by TIP hydrolysis) as well as calcination temperature (from 350 to 650 °C) were systematically investigated. Obtained photocatalysts were characterized by UV-vis diffuse-reflectance spectroscopy (DRS), BET surface area measurements, scanning transmission microscopy (STEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity under visible light (λ > 420 nm) has been estimated in phenol degradation reaction in aqueous phase. The results showed that phenol degradation rate under visible light in the presence of TiO2 loaded with Au/Pt nanoparticles differed from 0.7 to 2.2 μmol dm-3 min-1 for samples prepared using different reducing agent. Sodium borohydride (NaBH4) favors formation of smaller Au/Pt nanoparticles and higher amount gold in Au/Pt is in the form of electronegative species (Auδ-) resulted in higher photoactivity. TiO2 obtained by TIP hydrolysis in microemulsion system seems to be the best support for Au/Pt nanoparticles from all among investigated matrix. It was also observed that enhancement of calcination temperature from 450 to 650 °C resulted in rapid drop of Au/Pt-TiO2 photoactivity under visible light due to surface area shrinkage, crystal structure change and probably change in Au/Pt nanoparticles morphology.

  18. XAFS study on structural order in highly monodispersed thiol-stabilized Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Liu, W.; Yang, L.; Huang, T.; Jiang, Y.; Yao, T.; Wei, S.

    2016-05-01

    Understanding the influence of thiol on nanoparticle size and structure is essential for the fundamental and applied researches. Here, using x-ray absorption fine structure (XAFS) spectroscopy, we investigate the structural order of Au nanoparticles (NPs) in the protection of thiol ligands with different contents. We found that besides protecting Au NPs against aggregation and growth, thiolates can effectively eliminate the dangling bonds of unsaturated Au atoms, and thus increase the structural order. This work enriches our knowledge of Au-S interface interaction and guides the way towards preparing size-controllable nanoparticles with specific physical/chemical properties.

  19. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    PubMed

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles. PMID:25456348

  20. Enhanced electron field emission from CuO nanoplate arrays decorated with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Wu, Shumao; Zhang, Liangji; Li, Zhen

    2015-09-01

    A simple and controllable method was reported for the decoration of CuO nanoplate arrays with Au nanoparticles. It had been achieved through the reaction between Sn2+ and AuCl4 - in the presence of CuO nanoplate arrays. The structure and electron field emission properties of CuO nanoplate arrays decorated with different amounts of Au nanoparticles were investigated. The results demonstrated a remarkable enhancement of field emission performance of CuO nanoplate arrays decorated with Au nanoparticles. The effect of Au amount on the field emission performance was studied in detail, and excellent field emission properties such as a low turn-on electric field of 6.7 V/μm and a high field enhancement factor of 516 could be realized from the optimized sample. On the basis of experimental results, a possible mechanism for the formation of the CuO nanoplate arrays decorated with Au nanoparticles was speculated.

  1. One pot green synthesis of Ag, Au and Au-Ag alloy nanoparticles using isonicotinic acid hydrazide and starch.

    PubMed

    Malathi, Sampath; Ezhilarasu, Tamilarasu; Abiraman, Tamilselvan; Balasubramanian, Sengottuvelan

    2014-10-13

    Gold-silver alloy nanoparticles were synthesized via chemical reduction of varying mole fractions of chloroauric acid (HAuCl4) and silver nitrate (AgNO3) by environmentally benign isonicotinic acid hydrazide (INH) in the presence of starch as a capping agent in aqueous medium. The absorption spectra of Au-Ag nanoparticles show blue shift with increasing silver content indicating the formation of alloy nanoparticles. When the Ag content in the alloy decreases the size of the nanoparticles increases and as a result of which the oxidation potential also increases. The emission maximum undergoes a red shift from 443 to 614 nm. The nanoparticles are monodisperse and spherical with an average particle size of 3-18 nm. The catalytic behavior of alloy nanoparticles indicate that the rate constant for the reduction of 4-nitro phenol to 4-amino phenol increases exponentially from metallic Ag to metallic Au as Au content increases in the Au-Ag alloy nanoparticles. PMID:25037410

  2. Immobilization of uranium by biomaterial stabilized FeS nanoparticles: Effects of stabilizer and enrichment mechanism.

    PubMed

    Shao, Dadong; Ren, Xuemei; Wen, Jun; Hu, Sheng; Xiong, Jie; Jiang, Tao; Wang, Xiaolin; Wang, Xiangke

    2016-01-25

    Iron sulfide (FeS) nanoparticles have been recognized as effective scavengers for multi-valent metal ions. However, the aggregation of FeS nanoparticles in aqueous solution greatly restricts their application in real work. Herein, different biomaterial-FeS nanoparticles were developed for the in-situ immobilization of uranium(VI) in radioactive waste management. TEM images suggested that sodium carboxymethyl cellulose (CMC) and gelatin can effectively suppress the aggregation of FeS nanoparticles in aqueous solutions. The resulting CMC-FeS and gelatin-FeS were stable in aqueous solutions and showed high adsorption capacity for U(VI). Specially, gelatin-FeS showed the best performance in U(VI) adsorption-reduction immobilization under experimental conditions. The maximum enrichment capacity of U(VI) on CMC-FeS and gelatin-FeS at pH 5.0 and 20 °C achieved to ∼430 and ∼556 mg/g, respectively. Additionally, gelatin-FeS and CMC-FeS nanoparticles presented excellent tolerance to environmental salinity. The immobilized U(VI) on the surfaces of CMC-FeS and gelatin-FeS remained stable more than one year. These findings highlight the possibility of using ggelatin-FeS for efficient immobilization of U(VI) from radioactive wastewater. PMID:26448488

  3. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance

    PubMed Central

    Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P

    2013-01-01

    A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021

  4. Optical properties of ion-beam-synthesized Au nanoparticles in SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Lin; Oyoshi, Keiji; Chao, Der-Sheng; Tsai, Hsu-Sheng; Hong, Wei-Lun; Takeda, Yoshihiko; Liang, Jenq-Horng

    2016-05-01

    In recent years, gold (Au) nanoparticles have been synthesized via various methods and used in optical and biomedical detection. Au nanoparticles contain some remarkable dimension-dependent optical properties due to surface plasmon resonance (SPR) in Au nanoparticles which causes high absorption in visible light regions. Since SPR in well-crystallized Au nanoparticles can enhance the local electromagnetic field, it is thus expected that greater efficiency in the photoluminescence (PL) originating from oxygen deficiency centers (ODC) can be achieved in Au-implanted SiO2 matrix. In order to demonstrate the enhancement of PL, Au nanoparticles were formed in SiO2 film using ion beam synthesis and their optical and microstructural properties were also investigated in this study. The results revealed that a clear absorption peak at approximately 530 nm was identified in the UV-Vis spectra and was attributed to SPR induced by Au nanoparticles in SiO2. The SPR of Au nanoparticles is also dependent on thermal treatment conditions, such as post-annealing temperature and ambient. The Au nanoparticle-containing SiO2 film also displayed several distinctive peaks at approximately 320, 360, 460, and 600 nm in the PL spectra and were found to be associated with ODC-related defects and non-bridging oxygen hole centers (NBOHC) in SiO2. In addition, the PL peak intensities increased as post-annealing temperature increased, a finding contradictory to the defect recovery but highly consistent with the SPR tendency. A maximum PL emission was achieved when the Au-implanted SiO2 film was annealed at 1100 °C for 1 h under N2. Therefore, the existence of Au nanoparticles in SiO2 film can induce SPR effects as well as enhance PL emission resulting from defect-related luminescence centers.

  5. Facile synthesis of ultrathin Au nanorods by aging the AuCl(oleylamine) complex with amorphous Fe nanoparticles in chloroform.

    PubMed

    Li, Zhengquan; Tao, Jing; Lu, Xianmao; Zhu, Yimei; Xia, Younan

    2008-09-01

    Despite plenty of reports on the preparation of Au nanorods, it remains challenging to grow uniform Au nanorods with diameters below 5 nm. In this communication, we demonstrate the facile synthesis of ultrathin Au nanorods with a uniform diameter of 2 nm and an average aspect ratio of 30. The synthesis involves the room-temperature aging of a mixture of the [AuCl(oleylamine)] complex with amorphous Fe nanoparticles in chloroform. Analysis of the growth mechanism indicates that Au nanoparticles with a high density of defects were formed at early stages, followed by etching and redeposition process that gradually led to the growth of ultrathin Au nanorods along the 111 direction. This growth mechanism is different from the mechanism recently reported for ultrathin Au nanowires (ref ), where the [AuCl(oleylamine)] complex is assembled into polymer chains followed by reduction to form wires, although the template effect of oleylamine for the formation of ultrathin Au nanorods cannot be completely ruled out. PMID:18681484

  6. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    SciTech Connect

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  7. Metanephrine neuroendocrine tumor marker detection by SERS using Au nanoparticle/Au film sandwich architecture.

    PubMed

    Boca, Sanda; Farcau, Cosmin; Baia, Monica; Astilean, Simion

    2016-02-01

    Neuroendocrine tumors, such as pheochromocytoma or paraganglioma, are dangerous tumors that constitute a potential threat for a large number of patients. Currently, the biochemical diagnosis of neuroendocrine tumors is based on measurement of the direct secretory products of the adrenomedullary-sympathetic system or of their metabolites, such as catecholamines or their metanephrine derivatives, from plasma or urine. The techniques used for analysis of plasma free metanephrines, i.e. high-performance liquid chromatography or high-performance liquid chromatography coupled with mass-spectrometry are technically-demanding and time consuming, which limit their availability. Here we demonstrate a simple, fast and low-cost method for detecting metanephrine by Surface Enhanced Raman Scattering (SERS). The protocol consists in using evaporation-induced self-assembly of gold (Au) nanoparticles incubated with the analyte, on planar gold films. The assembly process produces regions with a dense distribution of both inter-particle gaps and particle-film gaps. Finite-difference time-domain simulations confirm that both kinds of gaps are locations of enhanced electromagnetic fields resulting from inter-particle and particle-film plasmonic coupling, useful for SERS amplification. Metanephrine vibrational bands assignment was performed according to density functional theory calculations. Metanephrine metabolite was detected in liquid at concentration levels lower than previously reported for other similar metabolites. The obtained results demonstrate that the Au nanoparticle/Au film exhibits noticeable SERS amplification of the adsorbed metabolite and can be used in the design of efficient, stable SERS-active substrates for the detection and identification of specific tumor markers. PMID:26820563

  8. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.

    PubMed

    Garg, Seema; De, Arnab; Mozumdar, Subho

    2015-05-01

    Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Although the enzyme serves a significant role in several detoxification and analytical processes, its usability is restricted due to high cost, availability in small amounts, instability, and a limited possibility of economic recovery from a reaction mixture. Hence, there is a need to develop an efficient, simple, and reliable immobilization strategy for the enzyme. In this study, the carboxyl terminated surface of glutathione-capped gold nanoparticles have been utilized as a solid support for the covalent attachment of urease. The immobilization has been carried out at different pH conditions so as to elucidate its effect on the immobilization efficiency and enzyme bioactivity. The binding of the enzyme has been quantitatively and qualitatively analyzed through techniques like ultraviolet-visible spectroscopy, intrinsic steady state fluorescence, and circular dichorism. The bioactivity of the immobilized enzyme was investigated with respect to the native enzyme under different thermal conditions. Recyclability and shelf life studies of the immobilized enzyme have also been carried out. Results reveal that the immobilization is most effective at pH of 7.4 followed by that in an acidic medium and is least in alkaline environment. The immobilized enzyme also exhibits enhance activity in comparison to the native form at physiological temperature. The immobilized urease (on gold glutathione nanoconjugates surface) can be effectively employed for biosensor fabrication, immunoassays and as an in vivo diagnostic tool in the future. PMID:25227875

  9. Heterostructured Au/Pd-M (M = Au, Pd, Pt) nanoparticles with compartmentalized composition, morphology, and electrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lutz, Patrick S.; Bae, In-Tae; Maye, Mathew M.

    2015-09-01

    The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt). Interestingly, the dumbbell morphology remained after exchange, and the silver region was transformed to hollow, parachute, or concentric domains respectively. The morphology and microstructure change was visualized via TEM and HRTEM, and the composition changes were probed via STEM-EDS imaging and XPS. The electrocatalytic activity of the Au/Pd-M towards methanol oxidation was studied, with results indicating that the Au/Pd-Pt nanoparticles had high activity attributed to the porous nature of the platinum domains.The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt). Interestingly, the dumbbell morphology remained after exchange, and the silver region was transformed to hollow, parachute, or concentric domains respectively. The morphology and microstructure change was visualized via TEM and HRTEM, and the composition changes were probed via STEM-EDS imaging and XPS. The electrocatalytic activity of the Au/Pd-M towards methanol oxidation was studied, with results indicating that the Au/Pd-Pt nanoparticles had

  10. Control of the spatial distribution and crystal orientation of self-organized Au nanoparticles.

    PubMed

    Yasukawa, Yukiko; Liu, Xiaoxi; Shirsath, Sagar E; Suematsu, Hisayuki; Kotaki, Yukio; Nemoto, Yoshihiro; Takeguchi, Masaki; Morisako, Akimitsu

    2016-09-23

    Ordered, two-dimensional, self-organized Au nanoparticles were fabricated using radiofrequency (RF) magnetron sputtering. The particles were uniformly spherical in shape and ultrafine in size (3-7 nm) and showed an ultrahigh density in the order of ∼10(12) inch(-2). A custom-developed sputtering apparatus that employs low sputtering power density and a minimized sputtering time (1 min) was used to markedly simplify the preparation conditions for Au nanoparticle fabrication. The spatial distribution of Au nanoparticles was rigorously controlled by placing a Ta interfacial layer between the Au nanoparticles and substrate as well as by post-annealing samples in an Ar atmosphere after the formation of Au nanoparticles. The interfacial layer and the post-annealing step caused approximately 40% of the Au nanoparticles on the substrate surface to orient in the (111) direction. This method was shown to produce ultrafine Au nanoparticles showing an ultrahigh surface density. The crystal orientation of the nanoparticles can be precisely controlled with respect to the substrate surface. Therefore, this technique promises to deliver tunable nanostructures for applications in the field of high-performance electronic devices. PMID:27528598

  11. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale

    NASA Astrophysics Data System (ADS)

    Sheny, D. S.; Mathew, Joseph; Philip, Daizy

    2011-06-01

    Present study reports a green chemistry approach for the biosynthesis of Au, Ag, Au-Ag alloy and Au core-Ag shell nanoparticles using the aqueous extract and dried powder of Anacardium occidentale leaf. The effects of quantity of extract/powder, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized using UV-vis and FTIR spectroscopies, XRD, HRTEM and SAED analyses. XRD studies show that the particles are crystalline in the cubic phase. The formation of Au core-Ag shell nanoparticles is evidenced by the dark core and light shell images in TEM and is supported by the appearance of two SPR bands in the UV-vis spectrum. FTIR spectra of the leaf powder before and after the bioreduction of nanoparticles are used to identify possible functional groups responsible for the reduction and capping of nanoparticles. Water soluble biomolecules like polyols and proteins are expected to bring about the bio-reduction.

  12. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves.

    PubMed

    Mondal, Samiran; Roy, Nayan; Laskar, Rajibul A; Sk, Ismail; Basu, Saswati; Mandal, Debabrata; Begum, Naznin Ara

    2011-02-01

    In this paper, we have demonstrated for the first time, the superb efficiency of aqueous extract of dried leaves of mahogany (Swietenia mahogani JACQ.) in the rapid synthesis of stable monometallic Au and Ag nanoparticles and also Au/Ag bimetallic alloy nanoparticles having spectacular morphologies. Our method was clean, nontoxic and environment friendly. When exposed to aqueous mahogany leaf extract, competitive reduction of Au(III) and Ag(I) ions present simultaneously in same solution leads to the production of bimetallic Au/Ag alloy nanoparticles. UV-visible spectroscopy was used to monitor the kinetics of nanoparticles formation. UV-visible spectroscopic data and TEM images revealed the formation of bimetallic Au/Ag alloy nanoparticles. Mahogany leaf extract contains various polyhydroxy limonoids which are responsible for the reduction of Au(III) and Ag(I) ions leading to the formation and stabilization of Au and Ag nanopaticles. PMID:21030220

  13. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating

    PubMed Central

    2011-01-01

    Background Immobilization of lipase on appropriate solid supports is one way to improve their stability and activity, and can be reused for large scale applications. A sample, cost- effective and high loading capacity method is still challenging. Results A facile method of lipase immobilization was developed in this study, by the use of polydopamine coated magnetic nanoparticles (PD-MNPs). Under optimal conditions, 73.9% of the available lipase was immobilized on PD-MNPs, yielding a lipase loading capacity as high as 429 mg/g. Enzyme assays revealed that lipase immobilized on PD-MNPs displayed enhanced pH and thermal stability compared to free lipase. Furthermore, lipase immobilized on PD-MNPs was easily isolated from the reaction medium by magnetic separation and retained more than 70% of initial activity after 21 repeated cycles of enzyme reaction followed by magnetic separation. Conclusions Immobilization of enzyme onto magnetic iron oxide nanoparticles via poly-dopamine film is economical, facile and efficient. PMID:21649934

  14. A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples.

    PubMed

    Haghshenas, Esmaeel; Madrakian, Tayyebeh; Afkhami, Abbas

    2015-12-01

    An electrochemical magneto Au nanoparticles/carbon paste electrodes (MAuNP/CPE) which is used for the determination of acetaminophen (AC) in real samples was developed. Initially, Au nanoparticles were immobilized at the surface of Fe3O4 (AuNPs@Fe3O4), which was used as a sorbent for capturing AC molecules. After adding AuNPs@Fe3O4 to the AC solution and stirring for 20 min, the AuNPs@Fe3O4 was gathered on the magneto electrode based on its magnetic field. The AC molecules which became adsorbed at AuNPs@Fe3O4 were analyzed by differential pulse voltammetry (DPV). For characterization and investigation of the performance of AuNPs@Fe3O4 and MAuNPs/CPE, various methods, including scanning electron microscopy, X-ray diffraction, UV-Vis spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and DPV were used. Under the optimized conditions, the anodic peak current was linear to the concentration of AC in the range of 0.1 to 70.0μmol L(-1) with the detection limit of 4.5×10(-2)μmol L(-1). This method was also successfully used to detect the concentration of AC in pharmaceutical formulations and human serum samples. In addition, the proposed magneto sensor exhibited good reproducibility, long-term stability and fast current response. PMID:26354256

  15. Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts.

    PubMed

    Chen, Yi Zhao; Yang, Cai Ting; Ching, Chi Bun; Xu, Rong

    2008-08-19

    Our study has demonstrated for the first time that zirconia nanoparticles modified by a simple carboxylic surfactant of a very long alkyl chain can significantly enhance the activity of the immobilized lipases for asymmetric synthesis in organic media. Zirconia nanoparticles of ca. 20 nm diameter were grafted with carboxylic surfactant modifiers from Tween 85 and erucic acid. The surface of nanoparticles was successfully changed from hydrophilic to hydrophobic. Lipases from Candida rugosa and Pseudomonas cepacia were immobilized on the modified zirconia nanoparticles by adsorption in aqueous solution. The immobilized lipases were used for the resolution of ( R, S)-ibuprofen and ( R, S)-1-phenylethanol through esterification and acylation, respectively, in isooctane organic solvent. When immobilized on erucic acid-modified zirconia, both lipases gave significantly higher activity and enantioselectivity compared with those from their corresponding crude lipase powders. The nanohybrid biocatalysts are stable and can be reused for eight cycles without loss in activity and selectivity. The interaction between the hydrophobic surface of zirconia support and lipases probably induces the conformational rearrangement of lipases into an active, stable form. PMID:18656972

  16. Thermal stability of bimetallic Au/Fe nanoparticles in silica matrix

    SciTech Connect

    Pannu, Compesh Singh, Udai B. Hooda, Sonu Kabiraj, D. Avasthi, D. K.

    2014-04-24

    Thin silica film containing Au and Fe bimetallic nanoparticles were prepared by atom beam cosputtering. The samples were annealed at different temperatures from 400 to 800° C to study the thermal stability of bimetallic nanoparticles using X ray diffraction. It is observed that at 800° C strong structural rearrangement took place leading to thermal decomposition of bimetallic nanoparticles.

  17. Xylanase Immobilized on Novel Multifunctional Hyperbranched Polyglycerol-Grafted Magnetic Nanoparticles: An Efficient and Robust Biocatalyst.

    PubMed

    Landarani-Isfahani, Amir; Taheri-Kafrani, Asghar; Amini, Mina; Mirkhani, Valiollah; Moghadam, Majid; Soozanipour, Asieh; Razmjou, Amir

    2015-08-25

    Although several strategies are now available for immobilization of enzymes to magnetic nanoparticles for bioapplications, little progresses have been reported on the use of dendritic or hyperbranched polymers for the same purpose. Herein, we demonstrated synthesis of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG) and a derivative conjugated with citric acid (MNP/HPG-CA) as unique and convenient nanoplatforms for immobilization of enzymes. Then, an important industrial enzyme, xylanase, was immobilized on the nanocarriers to produce robust biocatalysts. A variety of analytical tools were used to study the morphological, structural, and chemical properties of the biocatalysts. Additionally, the results of biocatalyst systems exhibited the substantial improvement of reactivity, reusability, and stability of xylanase due to this strategy, which might confer them a wider range of applications. PMID:26258956

  18. Hybrid nanoparticle architecture for cellular uptake and bioimaging: direct crystallization of a polymer immobilized with magnetic nanoparticles on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Depan, D.; Misra, R. D. K.

    2012-09-01

    We describe here the success of an innovative approach of direct immobilization of magnetic nanoparticles (MNPs) onto carbon nanotubes (CNTs). The approach involved functionalization of magnetic nanoparticles and consequent covalent linkage to a copolymer (PE-b-PEG). Next, the immobilized magnetic nanoparticles on the copolymer were directly crystallized on the long axis of CNTs, where the interfacial adhesion comes from electrostatic and van der Waals interaction. The intracellular trafficking of a hybrid nanoparticle system [(PE-b-PEG)-MNP-CNT-FITC] in HeLa cells was monitored using a fluorescent marker, FITC, conjugated to the nanoparticle system. The distribution of the nanoparticle system inside cells was studied by fluorescence microscopy in a time and dose dependent manner, and it was observed that the nanoparticles are located in the cytoplasm and no apparent cell death was observed at the concentration studied. Also, the effect of an externally applied magnetic field on actin cytoskeleton, cell morphology and intracellular uptake of iron was studied. The approach described here is promising for simultaneous imaging and monitoring intracellular uptake.

  19. Electrophoretic deposition on graphene of Au nanoparticles generated by laser ablation of a bulk Au target in water

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Hendry, E.; Chang, H.; Wears, M. L.

    2015-04-01

    The characteristic property of nanoparticles generated by laser ablation of metallic targets in liquids to be surface electrically charged can be exploited for the deposition of the nanoparticles onto electrically conducting substrates directly from the synthesized colloidal solution by using the method of electrophoretic deposition (EPD). The method benefits from the high quality of the interface between the deposited nanoparticles and the substrate due to the ligand-free nanoparticle surfaces and thus providing hybrid materials with advanced and novel properties. In this letter, an Au bulk target was laser ablated in deionized (DI) water for the generation of an Au nanoparticle colloidal solution. Under the present conditions of ablation, nanoparticles with diameters from 4 and up to 67 nm are formed in the solution with 80% of the nanoparticles having diameters below ~20 nm. Their size distribution follows a log-normal function with a median diameter of 8.6 nm. The nanoparticles were deposited onto graphene on a quartz surface by anodic EPD performed at 30 V for 20 min and a longer time of 1 h. A quite uniform surface distribution of the nanoparticles was achieved with surface densities ranging from ~15 to ~40 nanoparticles per μm2. The hybrid materials exhibit clearly the plasmon resonance absorption of the Au nanoparticles. Deposition for short times preserves the integrity of graphene while longer time deposition leads to the conversion of graphene to graphene oxide, which is attributed to the electrochemical oxidation of graphene.

  20. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; Lazzarini, Laura; Turner, Stuart; van Tendeloo, Gustaaf; Calestani, Davide; Gradečak, Silvija; Zappettini, Andrea; Salviati, Giancarlo

    2016-01-01

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presenting an isotropic distribution around the nanoparticle. On the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.

  1. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles.

    PubMed

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; Lazzarini, Laura; Turner, Stuart; Van Tendeloo, Gustaaf; Calestani, Davide; Gradečak, Silvija; Zappettini, Andrea; Salviati, Giancarlo

    2016-01-01

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presenting an isotropic distribution around the nanoparticle. On the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations. PMID:26754789

  2. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    DOE PAGESBeta

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; Lazzarini, Laura; Turner, Stuart; Van Tendeloo, Gustaaf; Calestani, Davide; Gradečak, Silvija; Zappettini, Andrea; Salviati, Giancarlo

    2016-01-12

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presentingmore » an isotropic distribution around the nanoparticle. Moreover, on the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.« less

  3. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    PubMed Central

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; Lazzarini, Laura; Turner, Stuart; Van Tendeloo, Gustaaf; Calestani, Davide; Gradečak, Silvija; Zappettini, Andrea; Salviati, Giancarlo

    2016-01-01

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presenting an isotropic distribution around the nanoparticle. On the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations. PMID:26754789

  4. Surface immobilization of kanamycin-chitosan nanoparticles on polyurethane ureteral stents to prevent bacterial adhesion.

    PubMed

    Venkat Kumar, Govindarajan; Su, Chia-Hung; Velusamy, Palaniyandi

    2016-09-13

    Bacterial adhesion is a major problem that can lead to the infection of implanted urological stents. In this study, kanamycin-chitosan nanoparticles (KMCSNPs) were immobilized on the surface of a polyurethane ureteral stent (PUS) to prevent urinary bacterial infection. KMCSNPs were synthesized using the ionic gelation method. The synthesized KMCSNPs appeared spherical with a ζ-average particle size of 225 nm. KMCSNPs were immobilized on the PUS surface by covalent immobilization techniques. The surface-modified PUS was characterized using attenuated total reflectance Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The surface-modified PUS showed significantly increased antibacterial activity against Escherichia coli MTCC 729 and Proteus mirabilis MTCC 425 relative to the surface of an unmodified PUS. These findings suggest that the KMCSNP-immobilized PUS has the potential to prevent bacterial infection in the human urinary tract. PMID:27436679

  5. Immobilization of Lipases on Alkyl Silane Modified Magnetic Nanoparticles: Effect of Alkyl Chain Length on Enzyme Activity

    PubMed Central

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R.

    2012-01-01

    Background Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Methodology/Principal Findings Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe3O4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. Conclusions/Significance The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization

  6. Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis.

    PubMed

    Yu, Ching-Ching; Kuo, Yu-Ying; Liang, Chien-Fu; Chien, Wei-Ting; Wu, Huan-Ting; Chang, Tsung-Che; Jan, Fan-Dan; Lin, Chun-Cheng

    2012-04-18

    Magnetic nanoparticles (MNPs) are attractive materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field; this could facilitate the recycling of enzymes and broaden their applications in organic synthesis. Herein, we report the methods for the immobilization of water-soluble and membrane-bound enzymes, and the activity difference between free and immobilized enzymes is discussed. Sialyltransferase (PmST1, from Pasteurella multocida ) and cytidine monophosphate (CMP)-sialic acid synthetase (CSS, from Neisseria meningitides ) were chosen as water-soluble enzymes and expressed using an intein expression system. The enzymes were site-specifically and covalently immobilized on PEGylated-N-terminal cysteine MNPs through native chemical ligation (NCL). Increasing the length of the PEG linker between the enzyme and the MNP surface increased the activity of the immobilized enzymes relative to the free parent enzymes. In addition, the use of a fluorescent acceptor tag for PmST1 affected enzyme kinetics. In contrast, sialyltransferase from Neisseria gonorrheae (NgST, a membrane-bound enzyme) was modified with a biotin-labeled cysteine at the C-terminus using NCL, and the enzyme was then assembled on streptavidin-functionalized MNPs. Using a streptavidin-biotin interaction, it was possible to immobilize NgST on a solid support under mild ligation conditions, which prevented the enzyme from high-temperature decomposition and provided an approximately 2-fold increase in activity compared to other immobilization methods on MNPs. Finally, the ganglioside GM3-derivative (sialyl-lactose derivative) was synthesized in a one-pot system by combining the use of immobilized PmST1 and CSS. The enzymes retained 50% activity after being reused ten times. Furthermore, the results obtained using the one-pot two-immobilized-enzyme system demonstrated that it can be applied to large-scale reactions with acceptable yields and

  7. Modification of TiO2 by Bimetallic Au-Cu Nanoparticles for Wastewater Treatment

    PubMed Central

    Hai, Zibin; Kolli, Nadia EL; Uribe, Daniel Bahena; Beaunier, Patricia; José-Yacaman, Miguel; Vigneron, Jackie; Etcheberry, Arnaud; Sorgues, Sébastien; Colbeau-Justin, Christophe; Chen, Jiafu; Remita, Hynd

    2016-01-01

    Au, Cu and bimetallic Au-Cu nanoparticles were synthesized on the surface of commercial TiO2 compounds (P25) by reduction of the metal precursors with tetrakis (hydroxymethyl) phosphonium chloride (THPC) (0.5 % in weight). The alloyed structure of Au-Cu NPs was confirmed by HAADF-STEM, EDS, HRTEM and XPS techniques. The photocatalytic properties of the modified TiO2 have been studied for phenol photodegradation in aqueous suspensions under UV-visible irradiation. The modification by the metal nanoparticles induces an increase in the photocatalytic activity. The highest photocatalytic activity is obtained with Au-Cu/TiO2 (Au/Cu 1:3). Their electronic properties have been studied by time resolved microwave conductivity (TRMC) to follow the charge-carrier dynamics. TRMC measurements show that the TiO2 modification with Au, Cu and Au-Cu nanoparticles plays a role in charge-carrier separations increasing the activity under UV-light. Indeed, the metal nanoparticles act as a sink for electron, decreasing the charge carrier recombination. The TRMC measurements show also that the bimetallic Au-Cu nanoparticles are more efficient in electron scavenging than the monometallic Au and Cu ones. PMID:27274844

  8. An amperometric β-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films.

    PubMed

    Wang, Beibei; Ji, Xueping; Zhao, Haiyan; Wang, Na; Li, Xianrui; Ni, Ruixing; Liu, Yuheng

    2014-05-15

    A novel β-glucan biosensor was fabricated by immobilizing β-glucanase (β-G) with glucose oxidase (GOD) on nano-Prussian blue-chitosan (PB-CS) and gold nanoparticles-chitosan (AuNPs-CS) composites. Both the PB-CS and AuNPs_CS film were directly electrodeposited on the surface of gold electrode. The morphology of the AuNPs-CS/PB-CS nanocomposites was characterized by scanning electron microscope (SEM). The electrochemical behavior of the resulting sensor was investigated using cyclic voltammetry (CV) and amperometry. It was found that PB-CS nanocomposite exhibited an excellent electrocatalytic reduction towards hydrogen peroxide at a low applied potential window. The synergistic effect of AuNPs-CS/PB-CS nanocomposites could remarkably improve the performances of the biosensor. Under optimal conditions, the biosensor showed a wide linear range of 6.25-93.75 μM, with a correlation coefficient of 0.9991. The sensitivity at an applied potential of 0.0 V was 100 nA μM(-1) cm(-2), with a detection limit of 1.56 μM. The apparent Michaelis-Menten constant (Km) was found to be 1.0mM, showed a high affinity of the immobilizing β-G for β-glucan. The biosensor displayed a rapid response (within 10s) toward β-glucan, with a good selectivity and stability. PMID:24368228

  9. Plasmonic interactions and optical forces between Au bypyramidal nanoparticle dimers.

    SciTech Connect

    Nome, R. A.; Guffey, M. J.; Scherer, N. F.; Gray, S. K.; Univ. of Chicago

    2009-04-23

    Interparticle forces that can be driven by applied (optical) fields could lead to the formation of new particle arrangements when assembled in arrays. Furthermore, the potentially large interactions and large local fields associated with plasmon excitations in anisotropic nanoparticles can lead to enhanced nonlinear responses and applications for sensing. These and other applications would benefit from simulations of spectra and forces arising from plasmonic interactions. We present the results of rigorous three-dimensional, finite-difference, time-domain calculations of near- and far-field properties of pairs of Au bipyramidal nanoparticles in three different configurations: side-by-side, head-to-tail, and face-on. The absorption and scattering spectra depend strongly on the geometry as well as on the interparticle separation, as intuitively expected from a dipole coupling picture. Bipyramidal dimers in head-to-tail and face-on geometries exhibit an increasingly red-shifted (longitudinal) plasmon resonance with decreasing separation, whereas side-by-side dimers exhibit a blue shift. Large resonant field enhancements at the gap between particles in a head-to-tail configuration indicate the strong coupling of plasmonic modes. The Maxwell stress tensor formalism is employed to calculate the optical force one particle exerts on the other. Both significant attraction and weak repulsion can be obtained, depending on the relative arrangement of the particles. The force between bipyramids in the head-to-tail configuration can be greater than 10 times the force between pairs of Au nanospheres with the same volume. Experimental linear scattering spectra of particles trapped using the plasmon-resonance-based optical trapping method are found to be consistent with two particles trapped in the side-by-side configuration.

  10. Synthesis and optical properties of Au decorated colloidal tungsten oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Nemat; Mahdavi, Seyed Mohammad

    2015-11-01

    In this study, colloidal tungsten oxide nanoparticles were fabricated by pulsed laser ablation of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.33 g/lit HAuCl4 aqueous solution was added into as-prepared colloidal nanoparticles. In this process, Au3+ ions were reduced to decorate gold metallic state (Au0) onto colloidal tungsten oxide nanoparticles surface. The morphology and chemical composition of the synthesized nanoparticles were studied by AFM, XRD, TEM and XPS techniques. UV-Vis analysis reveals a distinct absorption peak at ∼530 nm. This peak can be attributed to the surface plasmon resonance (SPR) of Au and confirms formation of gold state. Moreover, X-ray photoelectron spectroscopy reveals that Au ions' reduction happens after adding HAuCl4 solution into as-prepared colloidal tungsten oxide nanoparticles. Transmission electron microscope shows that an Au shell has been decorated onto colloidal WO3 nanoparticles. Noble metal decorated tungsten oxide nanostructure could be an excellent candidate for photocatalysis, gas sensing and gasochromic applications. Finally, the gasochromic behavior of the synthesized samples was investigated by H2 and O2 gases bubbling into the produced colloidal Au/WO3 nanoparticles. Synthesized colloidal nanoparticles show excellent coloration contrast (∼80%) through NIR spectra.

  11. Dual immobilization and magnetic manipulation of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jian, Z. F.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.; Wu, C. C.; Lee, Y. H.

    By suitably bio-functionalizing the surfaces, magnetic nanoparticles are able to bind specific biomolecules, and may serve as vectors for delivering bio-entities to target tissues. In this work, the synthesis of bio-functionalized magnetic nanoparticles with two kinds of bio-probes is developed. Here, the stem cell is selected as a to-be-delivered bio-entity and infarcted myocardium is the target issue. Thus, cluster designation-34 (CD-34) on stem cell and creatine kinase-MB (CK-MB) (or troponin I) on infarcted myocardium are the specific biomolecules to be bound with bio-functionalized magnetic nanoparticles. In addition to demonstrating the co-coating of two kinds of bio-probes on a magnetic nanoparticle, the feasibility of manipulation on bio-functionalized magnetic nanoparticles by external magnetic fields is investigated.

  12. Shape-dependent adhesion and friction of Au nanoparticles probed with atomic force microscopy.

    PubMed

    Yuk, Youngji; Hong, Jong Wook; Lee, Hyunsoo; Han, Sang Woo; Young Park, Jeong

    2015-03-27

    The relation between surface structure and friction and adhesion is a long-standing question in tribology. Tuning the surface structure of the exposed facets of metal nanoparticles is enabled by shape control. We investigated the effect of the shape of Au nanoparticles on friction and adhesion. Two nanoparticle systems, cubic nanoparticles with a low-index (100) surface and hexoctahedral nanoparticles with a high-index (321) surface, were used as model nanoparticle surfaces. Atomic force microscopy was used to probe the nanoscale friction and adhesion on the nanoparticle surface. Before removing the capping layers, the friction results include contributions from both the geometric factor and the presence of capping layers. After removing the capping layers, we can see the exclusive effect of the surface atomic structure while the geometric effect is maintained. We found that after removing the capping layer, the cubic Au nanoparticles exhibited higher adhesion and friction, compared with cubes capped with layers covering 25% and 70%, respectively. On the other hand, the adhesion and friction of hexoctahedral Au nanoparticles decreased after removing the capping layers, compared with nanoparticles with capping layers. The difference in adhesion and friction forces between the bare Au surfaces and Au nanoparticles with capping layers cannot be explained by geometric factors, such as the slope of the nanoparticle surfaces. The higher adhesion and friction forces on cubic nanoparticles after removing the capping layers is associated with the atomic structure of (100) and (321) (i.e., the flat (100) surfaces of the cubic nanoparticles have a larger contact area, compared with the rough (321) surfaces of the hexoctahedral nanoparticles). This study implies an intrinsic relation between atomic structure and nanomechanical properties, with potential applications for controlling nanoscale friction and adhesion via colloid chemistry. PMID:25765817

  13. Shape-dependent adhesion and friction of Au nanoparticles probed with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Yuk, Youngji; Hong, Jong Wook; Lee, Hyunsoo; Han, Sang Woo; Park, Jeong Young

    2015-03-01

    The relation between surface structure and friction and adhesion is a long-standing question in tribology. Tuning the surface structure of the exposed facets of metal nanoparticles is enabled by shape control. We investigated the effect of the shape of Au nanoparticles on friction and adhesion. Two nanoparticle systems, cubic nanoparticles with a low-index (100) surface and hexoctahedral nanoparticles with a high-index (321) surface, were used as model nanoparticle surfaces. Atomic force microscopy was used to probe the nanoscale friction and adhesion on the nanoparticle surface. Before removing the capping layers, the friction results include contributions from both the geometric factor and the presence of capping layers. After removing the capping layers, we can see the exclusive effect of the surface atomic structure while the geometric effect is maintained. We found that after removing the capping layer, the cubic Au nanoparticles exhibited higher adhesion and friction, compared with cubes capped with layers covering 25% and 70%, respectively. On the other hand, the adhesion and friction of hexoctahedral Au nanoparticles decreased after removing the capping layers, compared with nanoparticles with capping layers. The difference in adhesion and friction forces between the bare Au surfaces and Au nanoparticles with capping layers cannot be explained by geometric factors, such as the slope of the nanoparticle surfaces. The higher adhesion and friction forces on cubic nanoparticles after removing the capping layers is associated with the atomic structure of (100) and (321) (i.e., the flat (100) surfaces of the cubic nanoparticles have a larger contact area, compared with the rough (321) surfaces of the hexoctahedral nanoparticles). This study implies an intrinsic relation between atomic structure and nanomechanical properties, with potential applications for controlling nanoscale friction and adhesion via colloid chemistry.

  14. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    SciTech Connect

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.

  15. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    DOE PAGESBeta

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au tomore » replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.« less

  16. Immobilization of horseradish peroxidase on β-cyclodextrin-capped silver nanoparticles: Its future aspects in biosensor application.

    PubMed

    Karim, Zoheb; Khan, Mohd Jahir; Maskat, Mohamad Yusof; Adnan, Rohana

    2016-05-18

    This study aimed to work out a simple and high-yield procedure for the immobilization of horseradish peroxidase on silver nanoparticle. Ultraviolet-visible (UV-vis) and Fourier-transform infrared spectroscopy and transmission electron microscopy were used to characterize silver nanoparticles. Horseradish peroxidase was immobilized on β-cyclodextrin-capped silver nanoparticles via glutaraldehyde cross-linking. Single-cell gel electrophoresis (Comet assay) was also performed to confirm the genotoxicity of silver nanoparticles. To decrease toxicity, silver nanoparticles were capped with β-cyclodextrin. A comparative stability study of soluble and immobilized enzyme preparations was investigated against pH, temperature, and chaotropic agent, urea. The results showed that the cross-linked peroxidase was significantly more stable as compared to the soluble counterpart. The immobilized enzyme exhibited stable enzyme activities after repeated uses. PMID:25830286

  17. UV Spectra of Amino Acid Immobilized at Nanoparticles Formation through Nanosphere Lithography (NSL) by Plasma Treatment

    SciTech Connect

    Mohamad, Farizan; Agam, Mohd Arif; Nur, Hadi

    2011-05-25

    The modifying of nanospheres structures by plasma treatments to the fabricated nanoparticles arrays by Nanosphere Lithography (NSL) techniques to create Periodic Particles Arrays (PPAs) with different size, shape and orientation. Spectra of amino acid that immobilized to the nanoparticles arrays under Ultra Violet (UV) spectrums were studied. The PPAs with different sizes, shapes and orientation were fabricated by plasma treatment of 5 sec, 7 sec and 10 sec to the Polystyrene Nanosphere (PSN). Plasma treatment will effect to the PSN including etching part of the PSN to produce a much bigger channel to the single layer template of the PSN. Metal was deposited at interstitial sites between of the polymer balls and later removed by dissolving them in organic solvent, leaving a hexagonal pattern of metal structures at the interstitial sites. The nanoparticles immobilized with the standard amino acid, which later investigated under UV spectrums. The spectrums shows the possibilities use as biosensor devices.

  18. Synthesis of tripodal catecholates and their immobilization on zinc oxide nanoparticles

    PubMed Central

    Klitsche, Franziska; Ramcke, Julian; Migenda, Julia; Hensel, Andreas; Vossmeyer, Tobias; Weller, Horst

    2015-01-01

    Summary A common approach to generate tailored materials and nanoparticles (NPs) is the formation of molecular monolayers by chemisorption of bifunctional anchor molecules. This approach depends critically on the choice of a suitable anchor group. Recently, bifunctional catecholates, inspired by mussel-adhesive proteins (MAPs) and bacterial siderophores, have received considerable interest as anchor groups for biomedically relevant metal surfaces and nanoparticles. We report here the synthesis of new tripodal catecholates as multivalent anchor molecules for immobilization on metal surfaces and nanoparticles. The tripodal catecholates have been conjugated to various effector molecules such as PEG, a sulfobetaine and an adamantyl group. The potential of these conjugates has been demonstrated with the immobilization of tripodal catecholates on ZnO NPs. The results confirmed a high loading of tripodal PEG-catecholates on the particles and the formation of stable PEG layers in aqueous solution. PMID:26124871

  19. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.

    PubMed

    Xie, Wenbo; Liang, Qiqi; Qian, Tianwei; Zhao, Dongye

    2015-03-01

    Stabilized Fe-Mn binary oxide nanoparticles were synthesized and tested for removal and in-situ immobilization of Se(IV) in groundwater and soil. A water-soluble starch or food-grade carboxymethyl cellulose (CMC) was used as a stabilizer to facilitate in-situ delivery of the particles into contaminated soil. While bare and stabilized nanoparticles showed rapid sorption kinetics, starch-stabilized Fe-Mn offered the greatest capacity for Se(IV). The Langmuir maximum capacity was determined to be 109 and 95 mg-Se/g-Fe for starch- and CMC-stabilized nanoparticles, respectively, and the high Se(IV) uptake was observed over the typical groundwater pH range of 5-8. Column breakthrough tests indicated that the stabilized nanoparticles were deliverable in a model sandy soil while non-stabilized particles were not. When a Se(IV)-spiked soil was treated in situ with the nanoparticles, >90% water leachable Se(IV) was transferred to the nanoparticle phase, and thereby immobilized as the particles were retained in the downstream soil matrix. The nanoparticle amendment reduced the TCLP (toxicity characteristic leaching procedure) leachability and the California WET (waste extraction test) leachability of Se(IV) by 76% and 71%, respectively. The technology holds the potential to fill a major technology gap in remediation of metals-contaminated soil and groundwater. PMID:25577492

  20. Electrochemical Insight into the Brust-Schiffrin Synthesis of Au Nanoparticles.

    PubMed

    Uehara, Akihiro; Booth, Samuel G; Chang, Sin Yuen; Schroeder, Sven L M; Imai, Takahito; Hashimoto, Teruo; Mosselmans, J Frederick W; Dryfe, Robert A W

    2015-12-01

    The mechanism of the Brust-Schiffrin gold nanoparticle synthesis has been investigated through the use of ion transfer voltammetry at the water/1,2-dichloroethane (DCE) solution interface, combined with X-ray absorption fine structure (XAFS) of the reaction between [AuCl4](-) and thiol (RSH) in homogeneous toluene (TL) solution. Ion transfer calculations indicate the formation of [AuCl2](-) at RSH/Au ratios from 0.2-2 with a time-dependent variation observed over several days. At RSH/Au ratios above 2 and after time periods greater than 24 h, the formation of Au(I)SR is also observed. The relative concentrations of reaction products observed at the liquid/liquid interface are in excellent agreement with those observed by XAFS for the corresponding reaction in a single homogeneous phase. BH4(-) ion transfer reactions between water and DCE indicate that the reduction of [AuCl4](-) or [AuCl2](-) to Au nanoparticles by BH4(-) proceeds in the bulk organic phase. On the other hand, BH4(-) was unable to reduce the insoluble [Au(I)SR]n species to Au nanoparticles. The number and size of the nanoparticles formed was dependent on the concentration ratio of RSH/Au, as well as the experimental duration because of the competing formation of the [Au(I)SR]n precipitate. Higher concentrations of nanoparticles, with diameters of 1.0-1.5 nm, were formed at RSH/Au ratios from 1 to 2. PMID:26559785

  1. Au nanoparticles on graphitic petal arrays for surface-enhanced Raman spectroscopy

    SciTech Connect

    Rout, Chandra Sekhar; Kumar, Anurag; Xiong Guoping; Fisher, Timothy S.; Irudayaraj, Joseph

    2010-09-27

    We report a unique substrate for surface-enhanced Raman scattering (SERS) based on Au nanoparticle-decorated, thin graphitic petals. The petals were grown on Si substrates by microwave plasma chemical vapor deposition without catalyst, followed by Au nanoparticle decoration on the oxygen plasma-treated petals by electrodeposition. The substrates possess high surface area and sharp nanoscale features that enable high SERS sensitivity to detect 1x10{sup -7} M rhodamine 6G in methanol solution. The obtained SERS enhancement is comparable to the best values reported in the literature and is determined to result from high surface area and increased density of Au nanoparticles on the petal surfaces.

  2. Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2010-02-15

    We report the facile synthesis of carbon supported PtAu alloy nanoparticles with high electrocatalytic activity as the anode catalyst for direct formic acid fuel cells (DFAFCs). PtAu alloy nanopaticles are synthesized by co-reducing HAuCl4 and H2PtCl6 with NaBH4 in the presence of sodium citrate and then the nanoparticles are deposited on Vulcan XC-72R carbon support (PtAu/C). The obtained catalysts are characterized with X-ray diffraction (XRD) and transmission electron microscope (TEM), which reveal PtAu alloy formation with an average diameter of 4.6 nm. PtAu/C exhibits 8 times higher catalytic activity toward formic acid oxidation than Pt/C. The enhanced activity of PtAu/C catalyst is attributed to noncontinuous Pt sites formed in the presence of the neighbored Au sites, which promotes direct oxidation of formic acid by avoiding poison CO.

  3. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles.

    PubMed

    Huang, Jun; Liu, Huichao; Zhang, Peipei; Zhang, Pengfei; Li, Mengshi; Ding, Liyun

    2015-12-01

    The magnetic fluorescent core-shell structured nanoparticles, Fe3O4@SiO2(F)@meso-SiO2 nanoparticles, were prepared. Cholesterol oxidase (COD) was immobilized on their surface to form Fe3O4@SiO2(F)@meso-SiO2@COD nanoparticles. Optimal immobilization was achieved with 2.5% (v/v) APTES, 2.0% (v/v) GA, 10mg COD (in 15 mg carrier) and solution pH of 7.0. Fe3O4@SiO2(F)@meso-SiO2@COD nanoparticles showed maximal catalytic activity at pH7.0 and 50°C. The thermal, storage and operational stabilities of COD were improved greatly after its immobilization. After the incubation at 50°C for 5h, the nanoparticles and free COD retained 80% and 46% of its initial activity, respectively. After kept at 4°C for 30 days, the nanoparticles and free COD maintained 86% and 65% of initial activity, respectively. The nanoparticles retained 71% of its initial activity after 7 consecutive operations. Since Fe3O4@SiO2(F)@meso-SiO2@COD nanoparticles contained tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate (Ru(bpy)3Cl2) and were optical sensitive to oxygen in solution, it might be used as the sensing material and has the application potential in multi parameter fiber optic biosensor based on enzyme catalysis and oxygen consumption. PMID:26354237

  4. Direct imaging Au nanoparticle migration inside mesoporous silica channels.

    PubMed

    Liu, Zhengwang; Che, Renchao; Elzatahry, Ahmed A; Zhao, Dongyuan

    2014-10-28

    Supported metal nanoparticle (NP) catalysts have been widely used in many industry processes and catalytic reactions. Catalyst deactivation is mainly caused by the sintering of supported metal NPs. Hence, understanding the metal NPs' sintering behaviors has great significance in preventing catalyst deactivation. Here we report the metal particle migration inside/between mesochannels by scanning transmission electron microscopy and electron energy loss spectroscopy via an in situ TEM heating technique. A sintering process is proposed that particle migration predominates, driven by the difference of gravitational potential from the height of the uneven internal surface of the mesopores; when the distance of the gold nanoparticles with a size of about 3 and 5 nm becomes short after migration, the coalescence process is completed, which is driven by an "octopus-claw-like" expansion of a conduction electron cloud outside the Au NPs. The supports containing an abundance of micropores help to suppress particle migration and coalescence. Our findings provide the understanding toward the rational design of supported industrial catalysts and other nanocomposites with enhanced activity and stability for applications such as batteries, catalysis, drug delivery, gas sensors, and solar cells. PMID:25264601

  5. An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection.

    PubMed

    Chen, Mei; Hou, Changjun; Huo, Danqun; Bao, Jing; Fa, Huanbao; Shen, Caihong

    2016-11-15

    Multidrug resistance (MDR) has become a major obstacle to the adequate treatment of cancer patients; thus, there is an urgent need for exploring new strategies for early diagnosis of MDR in clinic. Here, we report a novel electrochemical biosensor based on nitrogen-doped graphene nanosheets functionalized with Au nanoparticles (N-G/Au) for sensitive and selective DNA detection. The highly conductive nanocomposite layer was characterized by using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. DNA with thiol groups at the 5' end was immobilized on the N-G/Au surface via the strong Au-S bond. Differential pulse voltammetry was applied to monitor the target DNA hybridization event using methylene blue as an electrochemical indicator. Under optimal conditions, the biosensor could detect target DNA down to 3.12×10(-15)M with a linear range from 1.0×10(-14) to 1.0×10(-7)M, showing high sensitivity. Further, the sensing strategy was successfully used for detecting MDR1 DNA in real clinical samples. These results will aid in developing a new portable detection system for MDR that will allow effective diagnosis in the early stages of related cancer. PMID:27258172

  6. A fluorescence-based method to directly quantify antibodies immobilized on gold nanoparticles.

    PubMed

    Filbrun, Seth L; Driskell, Jeremy D

    2016-06-21

    The ability to evaluate antibody immobilization onto gold nanoparticles is critical for assessing coupling chemistry and optimizing the sensitivity of nanoparticle-enabled biosensors. Herein, we developed a fluorescence-based method for directly quantifying antibodies bound onto gold nanoparticles. Antibody-modified gold nanoparticles were treated with KI/I2 etchant to dissolve the gold nanoparticles. A desalting spin column was used to recover the antibody released from the nanoparticles, and NanoOrange, a fluorescent dye, was used to quantify the antibody. We determined 309 ± 93 antibodies adsorb onto a 60 nm gold nanoparticles (2.6 × 10(10) NP mL(-1)), which is consistent with a fully adsorbed monolayer based on the footprint of an IgG molecule. Moreover, the increase in hydrodynamic diameter of the conjugated nanoparticle (76 nm) compared to that of the unconjugated nanoparticle (62 nm) confirmed that multilayers did not form. A more conventional method of indirectly quantifying the adsorbed antibody by analysis of the supernatant overestimated the antibody surface coverage (660 ± 87 antibodies per nanoparticle); thus we propose the method described herein as a more accurate alternative to the conventional approach. PMID:27113720

  7. Synthesis and immobilization of silver nanoparticles on aluminosilicate nanotubes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Ipek Yucelen, G.; Connell, Rachel E.; Terbush, Jessica R.; Westenberg, David J.; Dogan, Fatih

    2016-04-01

    A novel colloidal method is presented to synthesize silver nanoparticles on aluminosilicate nanotubes. The technique involves decomposition of AgNO3 solution to Ag nanoparticles in the presence of aluminosilicate nanotubes at room temperature without utilizing of reducing agents or any organic additives. Aluminosilicate nanotubes are shown to be capable of providing a unique chemical environment, not only for in situ conversion of Ag+ into Ag0, but also for stabilization and immobilization of Ag nanoparticles. The synthesis strategy described here could be implemented to obtain self-assembled nanoparticles on other single-walled metal oxide nanotubes for unique applications. Finally, we demonstrated that nanotube/nanoparticle hybrid show strong antibacterial activity toward Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli.

  8. Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions

    SciTech Connect

    Lupoi, Jason; Smith, Emily

    2011-12-01

    Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35 C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification products and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35 C. There was no significant accumulation (<250 {mu}g) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35 C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.

  9. Selective Hydrogenation of Acetylene over Pd, Au, and PdAu Supported Nanoparticles

    NASA Astrophysics Data System (ADS)

    Walker, Michael P.

    The removal of trace amounts of acetylene in ethylene streams is a high-volume industrial process that must possess high selectivity of alkyne hydrogenation over hydrogenation of alkenes. Current technology uses metallic nanoparticles, typically palladium or platinum, for acetylene removal. However, problems arise due to the deactivation of the catalysts at high temperatures as well as low selectivities at high conversions. Pore expanded MCM-41 is synthesized via a two-step strategy in which MCM-41 was prepared via cetyltrimethylammonium bromide (CTMABr) followed by the hydrothermal treatment with N,N-dimethyldecylamine (DMDA). This material was washed with ethanol to remove DMDA, or calcined to remove both surfactants. PE-MCM-41 based materials were impregnated with palladium, gold, and palladium-gold nanoparticles. The removal of DMDA had an effect on both the conversion and selectivity, in which they were found to drop significantly. However, by using the bimetallic PdAu catalysts, higher selectivity could be achieved due to increased electron density.

  10. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant.

    PubMed

    Liu, Jia; Vipulanandan, Cumaraswamy

    2013-10-01

    The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles. PMID:23910295

  11. Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Wu, Huan; Shang, Pengxiang; Zeng, Xiaoting; Chi, Yuwu

    2015-10-01

    Hydrazide-modified graphene quantum dots (HM-GQDs) obtained by refluxing GQDs with hydrazine hydrate were hybridized with gold nanoparticles (AuNPs) through a redox reaction between HM-GQDs and AuCl4-. The obtained nano-hybrids (HM-GQD-AuNPs) possess the unique electrochemiluminescence (ECL) properties of HM-GQDs and the easy self-assembly with some bio-molecules of AuNPs, which have great potential applications in bio-sensors. HM-GQD-AuNPs were modified on a glassy carbon electrode to develop a novel ECL immunosensor of carcinoembryonic antigen (CEA) as a model target analyte. Due to the increment of electron-transfer resistance after immunoreaction, the ECL intensity decreased as the concentration of CEA was increased. The linear response range was between 0.02 and 80 ng mL-1, and the detection limit was 0.01 ng mL-1.Hydrazide-modified graphene quantum dots (HM-GQDs) obtained by refluxing GQDs with hydrazine hydrate were hybridized with gold nanoparticles (AuNPs) through a redox reaction between HM-GQDs and AuCl4-. The obtained nano-hybrids (HM-GQD-AuNPs) possess the unique electrochemiluminescence (ECL) properties of HM-GQDs and the easy self-assembly with some bio-molecules of AuNPs, which have great potential applications in bio-sensors. HM-GQD-AuNPs were modified on a glassy carbon electrode to develop a novel ECL immunosensor of carcinoembryonic antigen (CEA) as a model target analyte. Due to the increment of electron-transfer resistance after immunoreaction, the ECL intensity decreased as the concentration of CEA was increased. The linear response range was between 0.02 and 80 ng mL-1, and the detection limit was 0.01 ng mL-1. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04328j

  12. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles.

    PubMed

    Yao, Gui-Hong; Liang, Ru-Ping; Huang, Chun-Fang; Zhang, Li; Qiu, Jian-Ding

    2015-04-29

    Herein, we combine the advantage of aptamer technique with the amplifying effect of an enzyme-free signal-amplification and Au nanoparticles (NPs) to design a sensitive surface plasmon resonance (SPR) aptasensor for detecting small molecules. This detection system consists of aptamer, detection probe (c-DNA1) partially hybridizing to the aptamer strand, Au NPs-linked hairpin DNA (Au-H-DNA1), and thiolated hairpin DNA (H-DNA2) previously immobilized on SPR gold chip. In the absence of target, the H-DNA1 possessing hairpin structure cannot hybridize with H-DNA2 and thereby Au NPs will not be captured on the SPR gold chip surface. Upon addition of target, the detection probe c-DNA1 is forced to dissociate from the c-DNA1/aptamer duplex by the specific recognition of the target to its aptamer. The released c-DNA1 hybridizes with Au-H-DNA1 and opens the hairpin structure, which accelerate the hybridization between Au-H-DNA1 and H-DNA2, leading to the displacement of the c-DNA1 through a branch migration process. The released c-DNA1 then hybridizes with another Au-H-DNA1 probe, and the cycle starts anew, resulting in the continuous immobilization of Au-H-DNA1 probes on the SPR chip, generating a significant change of SPR signal due to the electronic coupling interaction between the localized surface plasma of the Au NPs and the surface plasma wave. With the use of adenosine as a proof-of-principle analyte, this sensing platform can detect adenosine specifically with a detection limit as low as 0.21 pM, providing a simple, sensitive and selective protocol for small target molecules detection. PMID:25847158

  13. Size-Induced Chemical and Magnetic Ordering in Individual Fe-Au Nanoparticles

    SciTech Connect

    Mukherjee, Pinaki; Manchanda, Priyanka; Kumar, Pankaj; Zhou, Lin; Kramer, Matthew J; Kashyap, Arti; Skomski, Ralph; Sellmyer, David; Shield, Jeffrey E

    2014-08-26

    Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe–Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.

  14. Growth of Au@Pt coreshell nanoparticles: Probed by in-situ XANES and UV-visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Nayak, C.; Bhattacharyya, K.; Tripathi, A. K.; Jha, S. N.; Bhattacharyya, D.; Sahoo, N. K.

    2016-05-01

    Au@Pt core shell nanoparticles have been synthesized by reducing Au and Pt chloride precursors with Block Co-polymer and Ascorbic acid. The growth and nucleation of Au@Pt nanoparticles have been investigated by in-situ time resolved XANES measurement which gives the evolution of the reduction process of the precursors. Linear combination fitting of the XANES spectra has been carried out to find the fraction of Au and Pt cations reduced at a particular reaction time. UV-Visible spectroscopy is used as a complementary technique which gives the changes in the Au SPR peak as Au@Pt core shell nanoparticles are formed.

  15. Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles.

    PubMed

    Fouad, Dina M; El-Said, Waleed A; Mohamed, Mona B

    2015-04-01

    The magnetic nanoparticles iron oxide (Fe3O4) nanoparticles and iron oxide/gold core-shell (Fe3O4/Au) nanoparticles were synthesized and their catalytic photo-degradation activity towards malathion as example of organophosphorus pesticides were reported. Iron oxide (Fe3O4) magnetic nanoparticle was successfully prepared through co-precipitation method by the reduction of ferric chloride (FeCl3) using ascorbic acid. The morphology of the prepared nanoparticles was characterized by the TEM and XRD (X-ray diffraction) techniques. Degradation of 10 ppm of malathion in the presence of these nanoparticles under UV radiation was monitored using (HPLC) and UV-visible spectra. Fe3O4/Au nanoparticles showed higher efficiency in photo-degradation of malathion than Fe3O4 ones. PMID:25617979

  16. Au 4f spin-orbit coupling effects in supported gold nanoparticles.

    PubMed

    Chenakin, Sergey P; Kruse, Norbert

    2016-08-17

    Using X-ray photoelectron spectroscopy we examine the Au 4f spin-orbit components in Au 4f spectra of nanosized Au particles on a TiO2 support. In general, the peak ratios of the Au 4f7/2 and 4f5/2 excitations are found to deviate from the statistical ratio of 4 : 3 and their linewidths (FWHM) are not equal. We reveal that both the FWHM and the Au 4f7/2-to-4f5/2 peak ratios increase appreciably as the Au atomic concentration on the surface of the TiO2 support and the size of Au nanoparticles decrease. On the contrary, the Au 4f spin-orbit splitting remains essentially unchanged. Our findings are discussed in terms of alterations in the electronic band structure. PMID:27480507

  17. Effect of experimental conditions on size control of Au nanoparticles synthesized by atmospheric microplasma electrochemistry.

    PubMed

    Huang, Xunzhi; Li, Yongsheng; Zhong, Xiaoxia

    2014-01-01

    Atmospheric microplasma electrochemistry was utilized to synthesize Au nanoparticles (NPs). The synthesized Au NPs were investigated as a function of reduction current, solution temperature, and stirring (or not) by using ultraviolet-visible (UV-Vis) absorbance and transmission electron microscopy (TEM). It was illustrated that high current promoted the growth of Au NPs with small size, and more Au NPs with large size were synthesized as a rise of temperature. The Au NPs often with small size were synthesized as a result of stirring. The production rate, the electrostatic repulsion, and the residence time of the Au NPs at the interfacial region play an important role in the growth of Au NPs. The results shed light upon the roadmap to control the size and particle size distribution (PSD) of Au NPs synthesized by atmospheric microplasma electrochemistry. PMID:25364315

  18. Electrochemical Deposition and Re-oxidation of Au at Highly Oriented Pyrolytic Graphite. Stabilization of Au Nanoparticles on the Upper Plane of Step Edges

    SciTech Connect

    Pinhero, Patrick Joseph; Lister, Tedd Edward; Boxley, Chett J.; White, Henry S.

    2003-10-01

    The electrochemical deposition and reoxidation of Au on the basal plane of highly oriented pyrolytic graphite (HOPG) immersed in a 5 mM AuCl4-/6 M LiCl solution is reported. Scanning electron microscopy (SEM) and ex-situ atomic force microscopy (AFM) demonstrate that Au nanoparticles, ~3.3 nm in height and ~10 nm in diameter, are deposited at times less than ~1 s. The density of nanoparticles, 6 × 109 cm-2, is of the same order of magnitude as the surface point defect density, suggesting that point defects act as nucleation sites for Au electrodeposition. A small subset of the Au nanoparticles (~7%) continues to grow between 1 and 50 s, reaching a height of ~150 nm and a diameter of ~300 nm. At times greater than 50 s, the larger particles coalesce to yield a surface comprised of a low density (~2 × 106 cm-2) of micrometer-size Au crystallites surrounded by Au nanoparticles. Double potential step chronocoulometric experiments demonstrate that the electrodeposition of Au is chemically irreversible, a finding supported by SEM and AFM observations of Au nanoparticles and larger crystallites on the surface after long periods of reoxidation (>3600 s). Au nanoparticles are observed to be preferentially deposited on the upper plane of step edges, a consequence of the nonuniform surface electron density that results from relaxation of the graphite lattice near steps.

  19. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

    PubMed Central

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-01-01

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal. PMID:26144550

  20. pH dependent immobilization of Urease on glutathione capped gold nanoparticles.

    PubMed

    Garg, Seema; De, Arnab; Mozumdar, Subho

    2014-09-01

    Urease is a nickel-dependent metallonzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Although the enzyme serves a significant role in several detoxification and analytical processes, its usability is restricted due to high cost, availability in small amounts, instability and a limited possibility of economic recovery from a reaction mixture. Hence, there is a need to develop an efficient, simple and reliable immobilization strategy for the enzyme. In this work, the carboxyl terminated surface of glutathione capped gold nanoparticles have been utilized as a solid support for the covalent attachment of Urease. The immobilization has been carried out at different pH conditions so as to elucidate its effect on the immobilization efficiency and enzyme bio-activity. The binding of the enzyme has been quantitatively and qualitatively analyzed through techniques like UV-Vis spectroscopy, intrinsic steady state fluorescence and Circular Dichorism. The bio-activity of the immobilized enzyme was investigated with respect to the native enzyme under different thermal conditions. Recyclability and shelf life studies of the immobilized enzyme have also been carried out. Results reveal that the immobilization is most effective at pH of 7.4 followed by that in an acidic medium and is least in alkaline environment. The immobilized enzyme also exhibits enhance activity in comparison to the native form at physiological temperature. The immobilized urease (on gold glutathione nano-conjugates surface) can be effectively employed for biosensor fabrication, immunoassays and as an in vivo diagnostic tool in the future. PMID:25196908

  1. Carbon nanofiber supported bimetallic PdAu nanoparticles for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Qin, Yuan-Hang; Jiang, Yue; Niu, Dong-Fang; Zhang, Xin-Sheng; Zhou, Xing-Gui; Niu, Li; Yuan, Wei-Kang

    2012-10-01

    Carbon nanofiber (CNF) supported PdAu nanoparticles are synthesized with sodium citrate as the stabilizing agent and sodium borohydride as the reducing agent. High resolution transmission electron microscopy (HRTEM) characterization indicates that the synthesized PdAu particles are well dispersed on the CNF surface and X-ray diffraction (XRD) characterization indicates that the alloying degree of the synthesized PdAu nanoparticles can be improved by adding tetrahydrofuran to the synthesis solution. The results of electrochemical characterization indicate that the addition of Au can promote the electrocatalytic activity of Pd/C catalyst for formic acid oxidation and the CNF supported high-alloying PdAu catalyst possesses better electrocatalytic activity and stability for formic acid oxidation than either the CNF supported low-alloying PdAu catalyst or the CNF supported Pd catalyst.

  2. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    NASA Astrophysics Data System (ADS)

    Pariti, A.; Desai, P.; Maddirala, S. K. Y.; Ercal, N.; Katti, K. V.; Liang, X.; Nath, M.

    2014-09-01

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ˜74 emu g-1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional

  3. Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating.

    PubMed

    Murph, Simona E Hunyadi; Larsen, George K; Lascola, Robert J

    2016-01-01

    One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe2O3-Au nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle dimensions and loading onto Fe2O3. Additionally, the Au metal size, shape, and loading can easily be tuned by changing experimental parameters (e.g., reactant concentrations, reducing agents, surfactants, etc.). An advantage of this procedure is that the reaction can be done in air or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe2O3-Au nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe2O3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe2O3-Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe2O3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher

  4. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods. PMID:27497571

  5. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  6. Temperature-independent formation of Au nanoparticles in ionic liquids by arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Yoshikiyo; Kimura, Satoshi; Kameyama, Tatsuya; Agawa, Yoshiaki; Tanaka, Hiroyuki; Judai, Ken; Torimoto, Tsukasa; Nishikawa, Keiko

    2016-08-01

    An effective preparation method of Au nanoparticles (NPs) is presented, wherein an arc plasma deposition technique is combined with ionic liquids (ILs) used as capture media. This method requires no chemical reaction. By selecting ILs, size-controlled Au NPs are produced easily and on a massive scale.

  7. In situ immobilization of tin dioxide nanoparticles by nanoporous polymers scaffold toward monolithic humidity sensing devices.

    PubMed

    Wei, Shu; Han, Dong-Dong; Guo, Li; He, Yinyan; Ding, Hong; Zhang, Yong-Lai; Xiao, Feng-Shou

    2014-10-01

    Reported here is in situ immobilization of tin dioxide (SnO2) nanoparticles (NPs) within nanoporous polymer scaffolds for the development of monolithic humidity sensing devices. Through solvothermal polymerization of divinylbenzene (DVB) monomers in the interspaces of SnO2 fine powders, SnO2 NPs could be homogeneously immobilized in polymer matrices, forming a novel composite material. Immobilization of SnO2 NPs in nanoporous polymer matrices not only simplifies the fabrication process of NPs-based sensing devices, but also improves their adsorptive properties. The resultant nanoporous polymer/SnO2 NPs composites with adjustable SnO2 contents possess high BET surface areas, large pore sizes and pore volumes, thus they exhibit high adsorptive capacities for H2O vapor. As a general approach to NPs/nanoporous polymer composites, this work may open up a new way to nanomaterial-based sensing devices that features enhanced adsorptive property. PMID:24980621

  8. Amperometric immunosensor for α-fetoprotein antigen in human serum based on co-immobilizing dinuclear copper complex and gold nanoparticle doped chitosan film

    NASA Astrophysics Data System (ADS)

    Gan, Ning; Meng, Ling Hua; Wang, Feng

    2009-09-01

    A sensitive amperometric immunosensor for α-fetoprotein (AFP), a tumor marker for the diagnosis of hepatocellular carcinoma (HCC), was constructed, The immunosensor is prepared by co-immobilizing [Cu2(phen)2Cl2] (μ-Cl)2 (CuL), nano-Au/Chitosan(Chit) composite, horseradish peroxidase (HRP) and AFP antibody(anti-AFP) on a glassy carbon electrode (GCE). Firstly, CuL was irreversibly absorb on GCE electrode through π-π stacking interaction; then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, finally HRP and anti-AFP was adsorbed onto the surface of the gold nanoparticles to construct GCE | CuL/nanoAu-chit/HRP/anti-AFP immunosensor. The preparation procedure of the electrode was characterized by electrochemical and spectroscopy method. The results showed that this immunosensor exhibited an excellent electrocatalytic response to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator, offers a high-sensitivity (1710 nA · ng-1 · ml-1) for the detection of AFP and has good correlation for detection of AFP in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.05 ng/ml. The biosensor showed high selectivity as well as good stability and reproductivity.

  9. Noble metals (Ag, Au) nanoparticles addition effects on superconducting properties of CuTl-1223 phase

    NASA Astrophysics Data System (ADS)

    Jabbar, Abdul; Mumtaz, Muhammad; Nadeem, Kashif

    2015-03-01

    Low anisotropic (Cu0.5Tl0.5) Ba2Ca2Cu3O10 - δ (CuTl-1223) high temperature superconducting phase was synthesized by solid-state reaction, silver (Ag) nanoparticles were prepared by sol-gel method and gold (Au) nanoparticles were extracted from colloidal solution. We added Ag and Au nanoparticles in CuTl-1223 matrix separately with same concentration during the final sintering process to get (M)x/CuTl-1223; M = Ag nanoparticles or Au nanoparticles (x = 0 and 1.0 wt.%) nano-superconductor composites. We investigated and compared the effects of these noble metals nanoparticles addition on structural, morphological and superconducting transport properties of CuTl-1223 phase. The crystal structure of the host CuTl-1223 superconducting phase was not affected significantly after the addition of these nanoparticles. The enhancement of superconducting properties was observed after the addition of both Ag and Au nanoparticles, which is most probably due to improved inter-grains weak-links and reduction of defects such as oxygen deficiencies, etc. The reduction of normal state room temperature resistivity is the finger prints of the reduction of barriers and facilitation to the carriers transport across the inter-crystallite sites due to improved inter-grains weak-links. The greater improvement of superconducting properties in Ag nanoparticles added samples is attributed to the higher conductivity of silver as compared to gold, which also suits for practical applications due to lower cost and easy synthesis of Ag nanoparticles as compared to Au nanoparticles.

  10. Electrochemiluminescence immunosensor using poly(l-histidine)-protected glucose dehydrogenase on Pt/Au bimetallic nanoparticles to generate an in situ co-reactant.

    PubMed

    Xiao, Lijuan; Chai, Yaqin; Wang, Haijun; Yuan, Ruo

    2014-08-21

    In this work, Pt/Au bimetallic nanoparticles (Pt/Au NPs) were used as nanocarriers to develop an electrochemiluminescence (ECL) immunosensor for sensitive cardiac troponin I (cTnI) detection, coupling with enzyme-based signal amplification. First, gold nanoparticles modified Ru(phen)3(2+)-doped silica nanoparticles (Au@RuSiO2 NPs) with numerous luminophores were used as a platform, potentially increasing the signal intensity. Second, Pt/Au NPs with large surface area and rich surface atoms were a superior matrix for the immobilization of numerous antibodies (Ab2), poly(l-histidine) (PLH) and glucose dehydrogenase (GDH). More importantly, the PLH-protected GDH exhibited excellent enzymatic activity for the oxidation of glucose accompanied by the reduction of NAD(+) to NADH. The in situ generated NADH acted as a co-reactant of Ru(phen)3(2+), significantly enhancing the ECL signal. In this manner, the designed immunosensor displayed high sensitivity for the detection of cTnI in the range of 0.010 ng mL(-1) to 10 ng mL(-1) with a detection limit of 3.3 pg mL(-1) (S/N = 3). The proposed strategy holds a new promise for highly sensitive bioassays for application in clinical analyses. PMID:24940578

  11. A sensitive electrochemiluminescence immunosensor based on luminophore capped Pd@Au core-shell nanoparticles as signal tracers and ferrocenyl compounds as signal enhancers.

    PubMed

    Liu, Yuting; Wang, Haijun; Xiong, Chengyi; Yuan, Yali; Chai, Yaqin; Yuan, Ruo

    2016-07-15

    In this work, N-(aminobutyl)-N-(ethylisoluminol) (ABEI), an analogue of luminol, is served as both the reductant and luminescence reagent to synthesize ABEI capped Pd@Au core-shell nanoparticles (ABEI-Pd@AuNPs). The nanoparticles not only exhibit inherent electrochemiluminescence (ECL) property, but also possess advantages of noble-metal nanomaterials such as outstanding electronic property, high specific surface area and good biocompatibility. In order to enhance the luminescence efficiency, ferrocene monocarboxylic acid (Fc) as catalyzer is grafted on the surface of ABEI-Pd@AuNPs with the aid of l-cysteine (l-Cys). When the Fc is electrochemically oxidized to ferricinium cation species (Fc(+)), the decomposition of H2O2 which existed in detection solution can be catalyzed by Fc(+) to generate oxygen-related free radicals, resulting effective signal amplification for ABEI-H2O2 system. For potential applications, the Pd@Au core-shell nanoparticles bifunctionalized by ABEI and catalyzer are employed as nano-carriers to immobilize detection antibody (Ab2). Based on sandwiched immunoreactions, a "signal-on" ECL immunosensor is developed for detection of human collagen type IV (Col IV), a potential biomarker associated with diabetic nephropathy. Consequently, the proposed immunosensor provides a wide linear detection ranging from 1pgmL(-1) to 10ngmL(-1) with a relatively low detection limit of 0.3pgmL(-1) (S/N=3). PMID:26985586

  12. Cation exchange resin immobilized bimetallic nickel-iron nanoparticles to facilitate their application in pollutants degradation.

    PubMed

    Ni, Shou-Qing; Yang, Ning

    2014-04-15

    Nanoscale zerovalent iron (nZVI) usually suffers from reduction of reactivity by aggregation, difficulty of assembling, environmental release and health concerns. Furthermore, data are lacking on the effect of cheap nickel on debromination of decabromodiphenyl ether (DBDE) by immobilized nZVI in aqueous system. In this study, strong acid polystyrene cation-exchange resins with particle diameter from 0.4 to 0.6 mm were utilized as matrices to immobilize bimetallic nickel-iron nanoparticles in order to minimize aggregation and environmental leakage risks of nZVI and to enhance their reactivity. Elemental distribution mapping showed that iron particles distributed uniformly on the surface of the resin and nickel particles were dispersed homogeneously into Fe phase. The reaction rate of resin-bound nZVI is about 55% higher than that of dispersed nZVI. The immobilized bimetallic nanoparticles with 9.69% Ni had the highest debromination percent (96%) and reaction rate (0.493 1/h). The existence of Ni significantly improved the debromination rate, due to the surface coverage of catalytic metal on the reductive metal and the formation of a galvanic cell. The environmental dominant congeners, such as BDE 154, 153, 100, 99 and 47, were produced during the process. Outstanding reactive performance, along with magnetic separation assured that resin-bound bimetallic nickel-iron nanoparticles are promising material that can be utilized to remediate a wide variety of pollutants contaminated sites including polybrominated diphenyl ethers. PMID:24559714

  13. Immobilized Silver Nanoparticles on Chitosan with Special Surface State-Enhanced Antimicrobial Efficacy and Reduced Cytotoxicity.

    PubMed

    He, Miao; Lu, Liying; Zhang, Jinchi; Li, Danzhen

    2015-09-01

    Immobilized chitosan-Ag nanoparticles (CTS-Ag NPs) with special surface state have been synthesized successfully through immobilizing Ag NPs on the amino-enriched surface of CTS by reducing Ag (I) in situ. The antimicrobial efficiency and potency of CTS-Ag NPs against Escherichia coli and Staphylococcus aureus were studied. Our results reveal that surface-immobilized CTS-Ag NPs show better antimicrobial efficacy than several other reported monodisperse colloidal Ag NPs, because the unique surface state of our CTS-Ag NPs leads to both "contact killing" and "ion mediated killing" functions. Due to the synergetic effect of CTS and Ag NPs, the immobilized CTS-Ag NPs present a broader antimicrobial spectrum and a more effective antifungal activity against Monilia albican. In addition, CTS as an environment friendly dispersant can help to reduce the cytotoxicity of Ag NPs on higher organisms. The immobilized CTS-Ag NPs are stable and can maintain good disinfection potential after 6 months' shelf-time. PMID:26716197

  14. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  15. Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles.

    PubMed

    Atacan, Keziban; Özacar, Mahmut

    2015-04-01

    Fe3O4 nanoparticles (NPs) were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Fe3O4 NPs functionalized with tannic acid were prepared. After functionalization process, trypsin enzyme was immobilized on these Fe3O4 NPs. The influence of pH, temperature, thermal stability, storage time stability and reusability on non-covalent immobilization was studied. The properties of Fe3O4 and its modified forms were examined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), UV-vis spectrometer (UV) and X-ray diffraction (XRD), magnetization and zeta potential measurements. The immobilized enzyme was slightly more stable than the free enzyme at 45°C. According to the results, the activity of immobilized trypsin was preserved 55% at 45°C after 2 h and 90% after 120 days storage. In addition, the activity of the immobilized trypsin was preserved 40% of its initial activity after eight times of successive reuse. PMID:25686792

  16. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    PubMed Central

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  17. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film.

    PubMed

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  18. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination.

    PubMed

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au(3+) reduction to metallic Au(0) is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au(0) exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  19. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination

    PubMed Central

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au3+ reduction to metallic Au0 is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au0 exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  20. Modification of light absorption in thin CuInS2 films by sprayed Au nanoparticles.

    PubMed

    Katerski, Atanas; Kärber, Erki; Acik, Ilona Oja; Dolgov, Leonid; Mere, Arvo; Sildos, Ilmo; Mikli, Valdek; Krunks, Malle

    2014-12-01

    The chemical spray pyrolysis method was used to deposit CuInS2 (CIS) thin films and Au nanoparticles (NPs) in two configurations: glass/Au-NP layer covered with CuInS2 film (Au-NP/CIS) and glass/CuInS2 films covered with Au-NP layer (CIS/Au-NP). According to X-ray diffraction (XRD), the spray of 2 mM HAuCl4 aqueous solution with a volume of 2.5 to 15 ml onto a glass substrate at 340°C results in metallic Au nanoparticles with a similar mean crystallite size in the range of 30 - 38 nm. The mean crystallite sizes remain in the range of 15 - 20 nm when grown onto a CIS film. The prepared films show plasmonic light absorption with increasing intensity in the spectral range of 500- 800 nm when increasing the volume of HAuCl4 solution sprayed. When compared to bare CIS on glass, the absorptance was increased ca. 4.5 times in the case of glass/Au-NP/CIS and ca. 3 times in the case of glass/CIS/Au-NP configuration. The glass/Au-NP/CIS configuration had an advantage since Au-NP could be embedded without chemically damaging the CIS. PMID:26088996

  1. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis.

    PubMed

    Liu, Junyan; Lin, Shuang; Qi, Dawei; Deng, Chunhui; Yang, Pengyuan; Zhang, Xiangmin

    2007-12-28

    An easily replaceable microchip enzymatic microreactor has been fabricated based on the glass microchip with trypsin-immobilized superparamagnetic nanoparticles. Magnetic nanoparticles with small size (50 nm in diameter) and strong magnetism were synthesized. At first, amine-functionalized magnetic nanoparticles with high magnetic responsivity and excellent dispersibility were prepared through a facile one-pot strategy. Then, magnetic nanoparticles were functionalized with numerous aldehyde (-CHO) groups by treating the as-synthesized, amine-functionalized magnetic nanoparticles with glutaraldehyde. Finally, immobilization of trypsin onto the aldehyde-functionalized magnetic nanoparticles was achieved through reaction of the aldehyde groups with amine groups of trypsin. The prepared magnetic nanoparticles were then locally packed onto the glass microchip by the application of a strong magnetic field using a magnet to form an on-chip magnetic nanoparticles packing bed. Capability of the proteolytic microreactor was demonstrated by cytochrome c, bovine serum albumin and myoglobin as model proteins. The digestion products were characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with sequence coverage of 83%, 43% and 79% observed, respectively. Complete protein digestion was achieved in a short time (10 s) under the flow rate of 5 microL/min. These results are expected to open up a new possibility for the proteolysis analysis as well as a new application of magnetic nanoparticles. It is easy to replace the nanoparticles and make the new microreactor. It takes less than 1 min under the condition of extra magnetic to form a new packing bed. The packing bed can be used for at least five times without any treatments. Additionally, since the preparation and surface functionality of magnetic nanoparticles is low-cost and reproducible, the preparation method and application approach of the magnetic nanoparticles may find much

  2. Photocatalytic oxidation of chloroform using immobilized-biogenic TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Cho, Y.; Yoo, H.

    2011-12-01

    Although commercial titanium dioxide (TiO2) nanoparticles as a suspension in water are one of the most popular photocatalysts for treatment of chlorinated organic compounds, the reuse and recovery of the nanoscale phtocatalyst is a practical challenge for application in water and groundwater treatment system. As part of efforts to overcome this practical limitation, development of immobilized TiO2 is needed. Diatom Pinnularia sp. were found to be capable of producing nanoscale TiO2 in their microscale silica shells. In order to obtain biogenic TiO2 nanoparticles from Pinnularia sp., soluble Ti was fed to the silicon-starved cells, resulting in deposition of titanium on the microscale features of the silica shells. After thermal treatment at 720 oC for 2 hr, the titanium was eventually converted to nanoscale TiO2. In order to determine the physical and chemical properties of the immobilized TiO2, material characterization such as TEM, STEM-EDS, BET and XRD analysis was carried out. In this study, a novel type of immobilized photocatalytic nanoparticles, biogenic TiO2 on silica shells was used for the mineralization of chloroform in water. Batch tests were conducted to evaluate the chloroform removal efficiency of biogenic and commercial TiO2 nanoparticles. Also, the amount of Cl- ions in water during the mineralization was measured to check mineralization of chloroform by biogenic TiO2 nanoparticles. Kinetic models were used to determine the rate of chloroform mineralization. In addition, the effect of UVA (ultraviolet-A) intensity on chloroform mineralization was investigated. The results obtained from this study could provide useful information for practical application of biogenic TiO2 in the groundwater treatment contaminated with some chlorinated organic compounds.

  3. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1). PMID:26686921

  4. Facile synthesis of superparamagnetic Fe3O4@Au nanoparticles for photothermal destruction of cancer cells.

    PubMed

    Ren, Jinfeng; Shen, Shun; Pang, Zhiqing; Lu, Xiaohui; Deng, Chunhui; Jiang, Xinguo

    2011-11-14

    Superparamagnetic Fe(3)O(4) nanoparticles with positive surface ξ-potential were synthesized via a solvothermal route. After Fe(3)O(4) was mixed with HAuCl(4) and NaBH(4), the reduced Au nanoparticles could be directly adsorbed onto the surface of Fe(3)O(4) nanoparticles. The as-synthesized nanocomposites were successfully applied to photothermal destruction of cancer cells. PMID:21952492

  5. Protein Viability on Au Nanoparticles during an Electrospray and Electrostatic-Force-Directed Assembly Process

    DOE PAGESBeta

    Mao, Shun; Lu, Ganhua; Yu, Kehan; Chen, Junhong

    2010-01-01

    We study the protein viability on Au nanoparticles during an electrospray and electrostatic-force-directed assembly process, through which Au nanoparticle-antibody conjugates are assembled onto the surface of carbon nanotubes (CNTs) to fabricate carbon nanotube field-effect transistor (CNTFET) biosensors. Enzyme-linked immunosorbent assay (ELISA) and field-effect transistor (FET) measurements have been used to investigate the antibody activity after the nanoparticle assembly. Upon the introduction of matching antigens, the colored reaction from the ELISA and the change in the electrical characteristic of the CNTFET device confirm that the antibody activity is preserved during the assembly process.

  6. Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles.

    PubMed

    Li, Yue; Wang, Xiang-Yu; Zhang, Rui-Zhuo; Zhang, Xiao-Yun; Liu, Wei; Xu, Xi-Ming; Zhang, Ye-Wang

    2014-04-01

    Supermagnetic Fe3O4@SiO2 nanoparticles were molecular-imprinted prepared with cellulase as the template. The molecular imprinted nanoparticles were used as support to immobilization of cellulase. The transmission electron microscopy confirmed the core-shell structure and revealed that the size of the nanoparticles was around 10 nm. It was observed that cellulase was immobilized on the nanoparticles successfully from the Fourier transform infrared spectra. The adsorption of cellulase on the nanoparticles was specific and rapid. A high immobilization efficiency of 95% was achieved after the optimization. At 70 degrees C, the half-life of the immobilized cellulase was 3.3-fold of the free enzyme. Compared with the free enzyme, the immobilized cellulase has the same optimal pH, higher optimal temperature, better thermal stability and higher catalytic efficiency. The results strongly suggest that the immobilized cellulase on molecular imprinted Fe3O4@SiO2 has the potential applications in the production of bioethanol, paper and pulp industry, and pharmaceutical industry. PMID:24734713

  7. A facile surface-enhanced Raman scattering (SERS) detection of rhodamine 6G and crystal violet using Au nanoparticle substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Zeng, Tixian; Tan, Xiulan; Wu, Weidong; Tang, Yongjian; Zhang, Haibin

    2015-08-01

    In this study, Au nanoparticle (5 nm) colloid was employed for a facile preparation of SERS substrates from three approaches: (1) original Au nanoparticles, (b) Au colloid coated 200 nm polystyrene (PS) beads, and (3) Au colloid annealed at 200-500 °C. Rhodamine 6G (R6G) and crystal violet were employed as the Raman active probes. The Au colloid deposited PS beads (PS@Au) exhibit intensive SERS signal for R6G detection, which is promising for crystal violet detection after being annealed at 400 °C. The 200 °C annealed Au nanoparticles demonstrate excellent combined SERS sensitivity for both R6G and crystal violet. For the original Au colloid, elevated annealing temperature from 200 °C to 500 °C decreases the SERS intensity as Au particles were coarsened gradually.

  8. Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Wang, Tuo; Lv, Rui; Zhang, Peng; Li, Changjiang; Gong, Jinlong

    2014-11-01

    This paper describes the synthesis of Au nanoparticle sensitized ZnO nanopencil arrays on F-doped SnO2 substrates by an aqueous chemical growth and subsequent photoreduction method. The Au-ZnO nanopencil arrays yield a photocurrent of ~1.5 mA cm-2 at 1 V versus Ag/AgCl. The enhanced photocurrent is attributed to the surface plasmon resonance effect of Au nanoparticles and the prolonged lifetime of the photo-generated electron-hole pairs. The improved stability of ZnO is due to the plasmon resonance energy transfer process enabled by the Au nanoparticles, which enhances the electric field intensity in a small, well-defined location of the ZnO semiconductor.This paper describes the synthesis of Au nanoparticle sensitized ZnO nanopencil arrays on F-doped SnO2 substrates by an aqueous chemical growth and subsequent photoreduction method. The Au-ZnO nanopencil arrays yield a photocurrent of ~1.5 mA cm-2 at 1 V versus Ag/AgCl. The enhanced photocurrent is attributed to the surface plasmon resonance effect of Au nanoparticles and the prolonged lifetime of the photo-generated electron-hole pairs. The improved stability of ZnO is due to the plasmon resonance energy transfer process enabled by the Au nanoparticles, which enhances the electric field intensity in a small, well-defined location of the ZnO semiconductor. Electronic supplementary information (ESI) available: Illustrative schematic of PEC measurements, XPS of ZnO nanorods and nanopencils. See DOI: 10.1039/c4nr03735a

  9. Enhancement of the thermal transport in a culture medium with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, J. L.; Fuentes, R. Gutierrez; Alvarado, E. Maldonado; Ramón-Gallegos, E.; Cruz-Orea, A.; Tánori-Cordova, J.; Mendoza-Alvarez, J. G.

    2008-11-01

    In this work, it is reported the gold nanoparticles synthesis, their characterization, and their application to the enhancement of the thermal transport in a cellular culture medium. The Au nanoparticles (NPs), with average size of 10 nm, contained into a culture medium (DMEM (1)/F12(1)) (CM) increased considerably the heat transfer in the medium. Thermal lens spectrometry (TLS) was used to measure the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression, for transient thermal lens, to the experimental data. Our results show that the thermal diffusivity of the culture medium is highly sensitive to the Au nanoparticle concentration and size. The ability to modify the thermal properties to nanometer scale becomes very important in medical applications as in the case of cancer treatment by using photodynamic therapy (PDT). A complementary study with UV-vis and TEM techniques was performed to characterize the Au nanoparticles.

  10. Enantiomeric separations of chiral pharmaceuticals using chirally modified tetrahexahedral Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Shukla, N.; Yang, D.; Gellman, A. J.

    2016-06-01

    Tetrahexahedral (THH, 24-sided) Au nanoparticles modified with D- or L-cysteine (Cys) have been used as enantioselective separators of the chiral pharmaceutical propranolol (PLL) in solution phase. Polarimetry has been used to measure the rotation of linearly polarized light by solutions containing mixtures of PLL and Cys/THH-Au NPs with varying enantiomeric excesses of each. Polarimetry yields clear evidence of enantiospecific adsorption of PLL onto the Cys/THH-Au NPs. This extends prior work using propylene oxide as a test chiral probe, by using the crystalline THH Au NPs with well-defined facets to separate a real pharmaceutical. This work suggests that chiral nanoparticles, coupled with a density separation method such as centrifugation, could be used for enantiomeric purification of real pharmaceuticals. A simple robust model developed earlier has also been used to extract the enantiospecific equilibrium constants for R- and S-PLL adsorption onto the D- and L-Cys/THH-Au NPs.

  11. Immobilization of Iron Nanoparticles on Multi Substrates and Its Reduction Removal of Chromium (VI) from Waste Streams

    EPA Science Inventory

    This article describes the in-situ synthesis and immobilization of iron nanoparticles on several substrates at room temperature using NaBH4 as a reducing agent and ascorbic acid as capping agent. The method is very effective in protecting iron nanoparticles from air oxidation for...

  12. A facile and effective immobilization of glucose oxidase on tannic acid modified CoFe2O4 magnetic nanoparticles.

    PubMed

    Altun, Seher; Çakıroğlu, Bekir; Özacar, Münteha; Özacar, Mahmut

    2015-12-01

    This article presents a study of glucose oxidase (GOx) immobilization by employing tannic acid (TA) modified-CoFe2O4 (CFO) magnetic nanoparticles which demonstrates novel aspect for enzyme immobilization. By using the strong protein and tannic acid binding, GOx immobilization was carried out via physical adsorption in a simpler way compared with the other immobilization methods which require various chemicals and complicated procedures which is difficult, expensive, time-consuming, and destructive to the enzyme structure. CFO was synthesized by hydrothermal synthesis and modified with TA to immobilize GOx. The immobilized GOx demonstrated maximum catalytic activity at pH 6.5 and 45 °C. The samples were characterized by vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential, and fourier transform infrared spectroscopy (FTIR), all of which confirm the surface modification of CFO and GOx immobilization. Also, field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) were performed to demonstrate the surface morphology and chemical structure of samples. According to the Lineweaver-Burk plot, GOx possessed lower affinity to glucose after immobilization, and the Michelis-Menten constant (KM) of immobilized and free GOx were found to be 50.05 mM and 28.00 mM, respectively. The immobilized GOx showed excellent reusability, and even after 8 consecutive activity assay runs, the immobilized GOx maintained ca. 60% of its initial activity. PMID:26562188

  13. Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.

    PubMed

    Tan, Shu Fen; Chee, See Wee; Lin, Guanhua; Bosman, Michel; Lin, Ming; Mirsaidov, Utkur; Nijhuis, Christian A

    2016-04-27

    We study the overgrowth process of silver-on-gold nanocubes in dilute, aqueous silver nitrate solution in the presence of a reducing agent, ascorbic acid, using in situ liquid-cell electron microscopy. Au-Ag core-shell nanostructures were formed via two mechanistic pathways: (1) nuclei coalescence, where the Ag nanoparticles absorbed onto the Au nanocubes, and (2) monomer attachment, where the Ag atoms epitaxially deposited onto the Au nanocubes. Both pathways lead to the same Au-Ag core-shell nanostructures. Analysis of the Ag deposition rate reveals the growth modes of this process and shows that this reaction is chemically mediated by the reducing agent. PMID:27043921

  14. Phase decomposition of AuFe alloy nanoparticles embedded in silica matrix under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Pannu, Compesh; Bala, Manju; Singh, U. B.; Srivastava, S. K.; Kabiraj, D.; Avasthi, D. K.

    2016-07-01

    AuFe alloy nanoparticles embedded in silica matrix are synthesized using atom beam sputtering technique and subsequently irradiated with 100 MeV Au ions at various fluences ranging from 1 × 1013 to 6 × 1013 ions/cm2. The X-ray diffraction, absorption spectroscopy, X-ray photo electron spectroscopy and transmission electron microscopy results show that swift heavy ion irradiation leads to decomposition of AuFe alloy nanoparticles from surface region and subsequent reprecipitation of Au and Fe nanoparticles occur. The process of phase decomposition and reprecipitation of individual element nanoparticles is explained on the basis of inelastic thermal spike model.

  15. Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles.

    PubMed

    Tan, Yulong; Ma, Su; Liu, Chenguang; Yu, Wengong; Han, Feng

    2015-09-01

    A β-N-acetyl-glucosaminidase (DspB) from Aggregatibacter actinomycetemcomitans CU1000 has been proved to inhibit and detach the biofilms formed by Staphylococcus epidermidis, Staphylococcus aureus and A. actinomycetemcomitans. However, the application of this enzyme is limited by its poor stability. In the present study, a β-N-acetyl-glucosaminidase encoding gene, dspB, was cloned from A. actinomycetemcomitans HK1651 and expressed in Escherichia coli. The recombinant DspB was loaded on hydrogel nanoparticles, which was prepared by using linoleic acid (LA) modified carboxymethyl chitosan (CMCS) after sonication. The nanoparticles were almost saturated by DspB at 0.3 mg/ml, which gave a loading capacity of 76.7%. The immobilization enhanced thermal stability, storage stability and reusability of DspB significantly. Moreover, it also increased antibiofilm activity due to the dual mechanism, including the improvement of the enzyme stability and the antibiofilm activity of CMCS nanoparticles. PMID:26302845

  16. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gong, Yanyan; Liu, Yuanyuan; Xiong, Zhong; Kaback, Dawn; Zhao, Dongye

    2012-07-01

    Mercury (Hg) is one of the most pervasive and bio-accumulative metals in the environment. Yet, effective in situ remediation technologies have been lacking. This study investigated the effectiveness of a class of soil-deliverable FeS nanoparticles for in situ immobilization of Hg in two field-contaminated soils from a New Jersey site and one sediment from an Alabama site. The nanoparticles were prepared using sodium carboxymethyl cellulose (CMC) as a stabilizer. Transmission electron microscopy measurements revealed a particle size of 34.3 ± 8.3 nm (standard deviation), whereas dynamic light scattering gave a hydrodynamic diameter of 222.5 ± 3.2 nm. Batch tests showed that at an FeS-to-Hg molar ratio of 28:1-118:1, the nanoparticles reduced water-leachable Hg by 79%-96% and the TCLP (toxicity characteristic leaching procedure) based leachability by 26%-96%. Column breakthrough tests indicated that the nanoparticles were deliverable in the sediment/soil columns under moderate injection pressure. However, once the external pressure was removed, the delivered nanoparticles remained virtually mobile under typical groundwater flow conditions. When the Hg-contaminated soil and sediment were treated with 52-95 pore volumes of a 500 mg l-1 FeS nanoparticle suspension, water-leachable Hg was reduced by 90%-93% and TCLP-leachable Hg was reduced by 65%-91%. The results warrant further field demonstration of this promising in situ remediation technology.

  17. Gold Nanoparticles Doped with (199) Au Atoms and Their Use for Targeted Cancer Imaging by SPECT.

    PubMed

    Zhao, Yongfeng; Pang, Bo; Luehmann, Hannah; Detering, Lisa; Yang, Xuan; Sultan, Deborah; Harpstrite, Scott; Sharma, Vijay; Cutler, Cathy S; Xia, Younan; Liu, Yongjian

    2016-04-01

    Gold nanoparticles have been labeled with various radionuclides and extensively explored for single photon emission computed tomography (SPECT) in the context of cancer diagnosis. The stability of most radiolabels, however, still needs to be improved for accurate detection of cancer biomarkers and thereby monitoring of tumor progression and metastasis. Here, the first synthesis of Au nanoparticles doped with (199) Au atoms for targeted SPECT tumor imaging in a mouse triple negative breast cancer (TNBC) model is reported. By directly incorporating (199) Au atoms into the crystal lattice of each Au nanoparticle, the stability of the radiolabel can be ensured. The synthetic procedure also allows for a precise control over both the radiochemistry and particle size. When conjugated with D-Ala1-peptide T-amide, the Au nanoparticles doped with (199) Au atoms can serve as a C-C chemokine receptor 5 (CCR5)-targeted nanoprobe for the sensitive and specific detection of both TNBC and its metastasis in a mouse tumor model. PMID:26865221

  18. Structural studies of Au-Pd bimetallic nanoparticles by a genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Shao, Gui-Fang; Tu, Na-Na; Liu, Tun-Dong; Xu, Liang-You; Wen, Yu-Hua

    2015-06-01

    Metallic nanoparticles have attracted particular interests due to their excellent electronic, catalytic and optical properties over the past decades. Atomic-level understanding of structural characteristics of metallic nanoparticles is of great importance for their syntheses and applications because the structural characteristics strongly determine their chemical and physical properties. In this article, we systematically investigated the structural stability and structural features of Au-Pd nanoparticles by using the genetic algorithm with the quantum correction Sutton-Chen potentials. Layered coordinate ranking method and an effective fitness function have been introduced into the genetic algorithm to enhance its searching ability of low-energy configurations. Here were addressed eight representative nanoshapes including single-crystalline and multiple-twinned structures. The results reveal that the developed genetic algorithm exhibits superior searching ability. In all polyhedra, the truncated octahedron possessed the best stability, while the icosahedron did the worst. Moreover, segregation of Au to the surface and that of Pd to the core were disclosed in these polyhedral Au-Pd nanoparticles. Particularly, for Au composition of 50%, the optimized structures of Au-Pd nanoparticles were predicted to exhibit core-shell structures.

  19. Thermal diffusivity of nanofluids containing Au/Pd bimetallic nanoparticles of different compositions.

    PubMed

    Sánchez-Ramírez, J F; Jiménez Pérez, J L; Cruz Orea, A; Gutierrez Fuentes, R; Bautista-Hernández, A; Pal, U

    2006-03-01

    Colloidal suspensions of bimetallic Au/Pd nanoparticles were prepared by simultaneous reduction of the metal ions from their corresponding chloride salts with polymer (PVP) stabilizer. Thermal properties of water containing bimetallic nanoparticles with different nominal compositions (Au/Pd = 12/1, 5/1, 1/1, 1/5) were measured using the mode mismatched dual-beam thermal lens technique to determine the effect of particle composition on the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was estimated by fitting the experimental data to the theoretical expression for transient thermal lens. The thermal diffusivity of the nanofluids (water, containing Au/Pd bimetallic nanoparticles) is seen to be strongly dependent on the composition of the particles. The maximum diffusivity was achieved for the nanoparticles with highest Au/Pd molar ratio. A possible mechanism for such high thermal diffusivity of the nanofluids with bimetallic particles is given. UV-Vis spectroscopy, TEM and high-resolution electron microscopy (HREM) techniques were used to characterize the Au/Pd bimetallic nanoparticles. PMID:16573121

  20. Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles.

    PubMed

    Jiang, Yanjun; Sun, Wenya; Zhou, Liya; Ma, Li; He, Ying; Gao, Jing

    2016-08-01

    Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195 ± 16 nm. The Brunauer-Emmett-Teller (BET) results showed that the TA-MSNs had a relatively high surface area (447 m(2)/g) and large pore volume (0.91 cm(3)/g), and the mean pore size was ca. 10.1 nm. Burkholderia cepacia lipase was immobilized on the TA-MSNs by physical adsorption for the first time, and the properties of immobilized lipase (BCL@TA-MSNs) were investigated. The BCL@TA-MSNs exhibited satisfactory thermal stability; strong tolerance to organic solvents such as methanol, ethanol, isooctane, n-hexane, and tetrahydrofuran; and high operational reusability when BCL@TA-MSNs were applied in esterification and transesterification reactions. After recycling 15 times in the transesterification reaction for biodiesel production, over 85 % of biodiesel yield can be maintained. With these desired characteristics, the TA-MSNs may provide excellent candidates for enzyme immobilization. PMID:27011329

  1. Immobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production

    PubMed Central

    Dumri, Kanchana; Hung Anh, Dau

    2014-01-01

    Biodiesel production technology is competitive in terms of low cost and alternative source of energy which should be not only sustainable but also environmentally friendly. Designing of the lipase immobilization for biodiesel production has a remarkable impact and is still challenging. In this work, biodiesel production from soybean oil was enhanced and facilitated by using a novel biocatalyst consisting of commercial lipase (EC 3.1.1.3), silver nanoparticles, and polydopamine. Silver nanoparticles (AgNPs) were synthesized with a size range of 10–20 nm. Polydopamine (PD) was delivered by the self-polymerization of dopamine in 10 mM Tris-HCl pH 8.5 and simultaneously coated the AgNPs to form a PD/AgNPs complex. Lipase was immobilized on the PD/AgNPs complex surface via covalent bonds to form a tailor-made biocatalyst consisting of immobilized lipase/PD/AgNPs complex (LPA). The formation and morphology of each composition were characterized by UV-Vis spectroscopy and scanning electron microscope (SEM). Significantly, gas chromatography analysis showed a remarkable biodiesel production yield of 95% by using the LPA complex at 40°C for 6-hours reaction time, whereas the yield was 86% when using free lyophilized lipase. The LPA complex was apparently reusable after 7 batches and the latter conversion rate of soybean oil was decreased by only 27%. PMID:25328685

  2. A novel electrochemical DNA biosensor construction based on layered CuS-graphene composite and Au nanoparticles.

    PubMed

    Xu, Chun-Xuan; Zhai, Qiu-Ge; Liu, Yu-Jie; Huang, Ke-Jing; Lu, Lu; Li, Ke-Xin

    2014-11-01

    A novel CuS-graphene (CuS-Gr) composite was synthesized to achieve excellent electrochemical properties for application as a DNA electrochemical biosensor. CuS-Gr composite was prepared by a hydrothermal method, in which two-dimensional graphene served as a two-dimensional conductive skeleton to support CuS nanoparticles. A sensitive electrochemical DNA biosensor was fabricated by immobilizing single-stranded DNA (ss-DNA) labeled at the 5' end using 6-mercapto-1-hexane (HS-ssDNA) on the surface of Au nanoparticles (AuNPs) to form ssDNA-S-AuNPs/CuS-Gr, and hybridization sensing was done in phosphate buffer. Cyclic voltammetry and electrochemical impedance spectroscopy were performed for the characterization of the modified electrodes. Differential pulse voltammetry was applied to monitor the DNA hybridization using an [Fe(CN)6](3-/4-) solution as a probe. Under optimum conditions, the biosensor developed exhibited a good linear relationship between the current and the logarithm of the target DNA concentration ranging from 0.001 to 1 nM, with a low detection limit of 0.1 pM (3σ/S). The biosensor exhibited high selectivity to differentiate one-base-mismatched DNA and three-base-mismatched DNA. The results indicated that the sensing platform based on CuS-Gr provides a stable and conductive interface for electrochemical detection of DNA hybridization, and could easily be extended to the detection of other nucleic acids. PMID:24894519

  3. Interaction of Mesotetrakis (2,6,dimethoxyphenol) Porphyrin with AuTiO2 Nanoparticles: A Spectroscopic Approach.

    PubMed

    Revathi, R; Rameshkumar, A; Sivasudha, T

    2016-06-01

    The combination of nanoparticles with the photosensitizing molecules will assist in developing new approach for their biological applications. In this paper work, we have studied the interaction of photosensitising mesotetrakis (2,6,dimethoxyphenol) porphyrin molecule (P1) with AuTiO2 nanoparticles using absorption, fluorescence and time resolved measurements. An isosbestic point is appeared in the absorption spectrum of P1 on increasing the concentration of AuTiO2 nanoparticles indicates the interaction of P1 with AuTiO2 nanoparticles. Static type of quenching is observed in the fluorescence quenching measurement which is confirmed through lifetime measurements. Energy level calculations and Rehm Weller methods confirms the electron transfer mechanism from the excited P1 to the AuTiO2 nanoparticles. The observed effective binding and electron transfer property of porphyrin with AuTiO2 nanoparticles has great potential to be applied in the field of photodynamic therapy. PMID:27427692

  4. Photoluminescence enhancement in few-layer WS{sub 2} films via Au nanoparticles

    SciTech Connect

    Choi, Sin Yuk; Yip, Cho Tung; Li, Guang-Can; Lei, Dang Yuan; Fung, Kin Hung; Yu, Siu Fung E-mail: jh.hao@polyu.edu.hk; Hao, Jianhua E-mail: jh.hao@polyu.edu.hk

    2015-06-15

    Nano-composites of two-dimensional atomic layered WS{sub 2} and Au nanoparticles (AuNPs) have been fabricated by sulfurization of sputtered W films followed by immersing into HAuCl{sub 4} aqueous solution. The morphology, structure and AuNPs distribution have been characterized by electron microscopy. The decorated AuNPs can be more densely formed on the edge and defective sites of triangle WS{sub 2}. We have compared the optical absorption and photoluminescence of bare WS{sub 2} and Au-decorated WS{sub 2} layers. Enhancement in the photoluminescence is observed in the Au-WS{sub 2} nano-composites, attributed to localized surface plasmonic effect. This work provides the possibility to develop photonic application in two-dimensional materials.

  5. Effects of the proximity of Au nanoparticles on magnetic and transport properties of LSMO ultrathin layers

    SciTech Connect

    Brivio, S.; Magen Dominguez, Cesar; Sidorenko, A; Petti, D.; Cantoni, M.; Finazzi, M; Ciccacci, F; Renzi, R; Varela del Arco, Maria; Picozzi, S.; Bertacco, R.

    2010-01-01

    The effect of the proximity of Au nanoparticles on the transport and magnetic properties of ultrathin La2/3Sr1/3MnO3 (LSMO) films has been investigated. We find a huge increase of the resistivity of the manganite (by four orders of magnitude for a Au nominal thickness of 2 nm), which is accompanied by a strong decrease of the Curie temperature. A combined scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS) analysis shows that interfaces are coherent and atomically sharp, and that the structural quality is very high. On the other end, a strong reduction of the Mn oxidation state is seen upon Au capping. NMR data show a strong attenuation of the double exchange signal upon formation of Au nanoparticles. Ab-initio calculations indicate a negligible influence of Au on LSMO at an ideal interface, with the LSMO surface magnetic and electronic properties essentially unchanged upon creation of the Au/LSMO interface. In view of these calculations, the experimental results cannot be explained in terms of purely electrostatic effects induced by the proximity of a noble metal. Here we propose that the main driving force underlying the observed change in physical properties is the high reactivity of Au nanoparticles which can locally pump oxygen from the manganite, thus favouring a phase separation ensuing from O inhomogeneity which deteriorates the transport and electrical properties.

  6. Immobilization and surface functionalization of gold nanoparticles monitored via streaming current/potential measurements.

    PubMed

    Greben, Kyrylo; Li, Pinggui; Mayer, Dirk; Offenhäusser, Andreas; Wördenweber, Roger

    2015-05-14

    A streaming current/potential method is optimized and used for the analysis of the variation of the surface potential upon chemical modifications of a complex interface consisting of different organic molecules and gold nanoparticles (AuNPs). The surfaces of Si/SiO2 substrates modified with 3-aminopropyltriethoxysilane (APTES), AuNPs, and 11-amino-1-undecanethiol (aminothiols) are analyzed via pH and time dependent ζ potential measurements that reveal the stability and modification of the surface and identify crucial parameters for each individual preparation step. For instance, surface activation and especially molecular adsorbate layers tend not to be stable in time, whereas the substrate and the AuNPs provide a stable surface potential as long as impurities are avoided. It is shown that the streaming potential/current technique represents an ideal tool to analyze and monitor the complex surfaces and their modification. PMID:25905436

  7. Synthesis of α-glucosidase-immobilized nanoparticles and their application in screening for α-glucosidase inhibitors.

    PubMed

    Xiong, Yejuan; Liu, Qingshan; Yin, Xiaoying

    2016-06-01

    In order to rapidly and accurately screen compounds present in Chinese herbal medicines for α-glucosidase inhibition activity, we have developed a screening strategy which couples the immobilized enzymes with HPLC analysis. First, the core-shell PMMA/CS nanoparticle carrier was prepared by graft polymerization method. Subsequently, α-glucosidase was loaded on the nanoparticles to prepare the immobilized enzyme and construct a screening model. Secondly, the morphology and structure of the core-shell PMMA/CS material were characterized by transmission electron microscopy (TEM) and infrared spectroscopy (IR). The results indicate that the size distribution was uniform for the α-glucosidase-immobilized nanoparticles, with an average particle size of about 239nm. Finally, the α-glucosidase-immobilized nanoparticles were used to screen α-glucosidase inhibitors from extracts of traditional Chinese medicine and from a mixture of pharmacologically active compounds. Extracts of traditional Chinese medicines were analyzed by HPLC method before and after incubation with the immobilized enzyme nanoparticles. Using this method, magnoflorine was selectively separated from methanol extracts of Magnoliae Officinalis Cortex and genistein was selectively separated from a mixture of isoflavone compounds. Both the two compounds have previously been reported to have α-glucosidase inhibitory activity. These results demonstrate that this screening strategy represents a rapid and highly efficient method for the identification of α-glucosidase inhibitors in complex extracts of Chinese herbal medicines. PMID:27085015

  8. Covalent Immobilization of Biotin on Magnetic Nanoparticles: Synthesis, Characterization, and Cytotoxicity Studies.

    PubMed

    Islam, Md Rafiqul; Bach, Long Giang; Vo, Thanh-Sang; Lim, Kwon Taek

    2015-01-01

    A simple protocol for covalent immobilization of biotin onto the surface of Fe3O4 magnetic nanoparticles (MNPs) for improving the biocompatibility of original MNPs has been realized. MNPs were first prepared by co-precipitation method which was subsequently anchored with functionalized biotin. The as-synthesized MNPs were observed to be monocrystalline as evidenced from XRD and TEM images. The covalent grafting of biotin to MNPs was confirmed by FT-IR. The XPS analysis suggested the successful preparation of Biotin-f-MNPs. The as-synthesized Biotin-f-MNPs were found to be superparamagnetic character as recorded by SQUID. Cell viability studies revealed that the biocompatibility of MNPs was improved upon Biotin immobilization. PMID:26328324

  9. Construction of glutamate biosensor based on covalent immobilization of glutamate oxidase on polypyrrole nanoparticles/polyaniline modified gold electrode.

    PubMed

    Batra, Bhawna; Kumari, Seema; Pundir, Chandra Shekhar

    2014-04-10

    A method is described for construction of a highly sensitive electrochemical biosensor for detection of glutamate. The biosensor is based on covalent immobilization of glutamate oxidase (GluOx) onto polypyrrole nanoparticles and polyaniline composite film (PPyNPs/PANI) electrodeposited onto Au electrode. The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 3s at pH 7.5 (0.1 M sodium phosphate) and 35 °C, when operated at 50 mV s⁻¹. It exhibited excellent sensitivity (detection limit as 0.1 nM), fast response time and wider linear range (from 0.02 to 400 μM). Analytical recovery of added glutamate (5 mM and 10 mM) was 95.56 and 97%, while within batch and between batch coefficients of variation were 3.2% and 3.35% respectively. The enzyme electrode was used 100 times over a period of 60 days, when stored at 4 °C. The biosensor measured glutamate level in food stuff, which correlated well with a standard colorimetric method (r=0.99). PMID:24629270

  10. Influence of the S-Au Bond Strength on the Magnetic Behavior of S-Capped Au Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vázquez, María J. Rodríguez; Rivas, José; López-Quintela, M. Arturo; Mosquera, Antonio Mouriño; Torneiro, Mercedes

    Recently, large permanent atomic magnetic moments have been found in Au nanoparticles capped with thiols. It is assumed that the formation of localized Au-S bonds at the particle surface induces the damping of the surface plasmon resonance and the appearance of a ferromagnetic-like behavior. In this work we will show for the first time that thioethers can also induce both phenomena, i.e., the damping of the plasmon band and the appearance of permanent magnetic moments. Furthermore, we have studied the influence of the Au-S bond strength on both phenomena using two different synthesized thioether ligands. It will be shown that, although both ligands can induce a complete damping of the plasmon band, only with one of the ligands (the one corresponding to the stronger S-Au bond) the appearance of a ferromagnetic-like order is observed. This is an indication of the extreme sensitivity of the magnetism on the strength of the charge transfer at the S-Au bond.

  11. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    NASA Astrophysics Data System (ADS)

    Gutierrez Fuentes, R.; Pescador Rojas, J. A.; Jiménez-Pérez, J. L.; Sanchez Ramirez, J. F.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.

    2008-11-01

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.

  12. Hydrogen sensing with optical microfibers coated with Pd/Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Monzón-Hernández, David; Luna-Moreno, Donato; Martínez-Escobar, Dalia; Villatoro, Joel

    2010-10-01

    Optical microfibers decorated with PdAu nanoparticles are proposed for fast hydrogen sensing. The microfibers were obtained by simply tapering conventional telecommunications fiber down to dimensions comparable to the wavelength of the guided light. A few millimeters of the microfiber were coated with a PdAu layer in island form by depositing the layer at low evaporation rate (0.1 Å/s). Then the islands were grown with a thermal annealing process until composite nanoparticles were formed. The PdAu nanoparticles deposited on the optical microfibers experience optical and physical changes when they exposed to hydrogen. This gives rise to reversible transmission changes with an unusual pulsed like behavior which is attributed to scattering of the guided light. The devices are promising for detecting low concentrations of hydrogen (up to 8%) at room temperature with response and recovery times on the order of seconds.

  13. Green preparation of Au nanoparticles for electrochemical detection of H2O2

    NASA Astrophysics Data System (ADS)

    Wenchao, Wang; Ye, Ji; Yong, Zhang; Ziying, Wang; Tong, Zhang

    2016-01-01

    A simple and green method for preparation of Au nanoparticles by reduction of HAuCl4 using carbon nanodots as the reducing agent is reported. The carbon nanodots were prepared by a green method as well, using hydrothermal treatment of grass. It is observed that Au nanoparticles show obvious electrochemical catalytic ability for reduction of hydrogen peroxide, leading to its application of a high-performance non-enzymatic hydrogen peroxide sensor. The hydrogen peroxide sensor based on Au nanoparticles was made, with the detection limit at 23 μM and linear range between 0.1-160 mM. Project supported by the National Natural Science Foundation of China (No. 51202085), and the Open Project from State Key Laboratory of Transducer Technology (No. SKT1402).

  14. Laser generated Ag and Ag-Au composite nanoparticles for refractive index sensor

    NASA Astrophysics Data System (ADS)

    Navas, M. P.; Soni, R. K.

    2014-09-01

    Localized surface plasmon resonance (LSPR) wavelength of metal nanoparticles (NPs) is highly sensitive to size, shape and the surrounding medium. Metal targets were laser ablated in liquid for preparation of spherical Ag and Ag@Au core-shell NP colloidal solution for refractive index sensing. The LSPR peak wavelength and broadening of the NPs were monitored in different refractive index liquid. Quasi-static Mie theory simulation results show that refractive index sensitivity of Ag, Ag-Au alloy and Ag@Au core-shell NPs increases nearly linearly with size and shell thickness. However, the increased broadening of the LSPR peak with size, alloy concentration and Au shell thickness restricts the sensing resolution of these NPs. Figure-of-merit (FOM) was calculated to optimize the size of Ag NPs, concentration of Ag-Au alloy NPs and Au shell thickness of Ag@Au core-shell NPs. The refractive index sensitivity (RIS) and FOM were optimum in the size range 20-40 nm for Ag NPs. Laser generated Ag@Au NPs of Au shell thickness in the range of 1-2 nm showed optimum FOM, where thin layer of Au coating can improve the stability of Ag NPs.

  15. Trimetallic Au/Pt/Rh Nanoparticles as Highly Active Catalysts for Aerobic Glucose Oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Cao, Yingnan; Lu, Lilin; Cheng, Zhong; Zhang, Shaowei

    2015-02-01

    This paper reports the findings of an investigation of the correlations between the catalytic activity for aerobic glucose oxidation and the composition of Au/Pt/Rh trimetallic nanoparticles (TNPs) with average diameters of less than 2.0 nm prepared by rapid injection of NaBH4. The prepared TNPs were characterized by UV-Vis, TEM, and HR-TEM. The catalytic activity of the alloy-structured TNPs for aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with nearly the same particle size. The catalytic activities of the TNP catalysts were dependent not only on the composition, but also on the electronic structure. The high catalytic activities of the Au/Pt/Rh TNPs can be ascribed to the formed negative-charged Au atoms due to electron donation of Rh neighboring atoms acting as catalytically active sites for aerobic glucose oxidation.

  16. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd-Au bimetallic nanoparticle tubes.

    PubMed

    Cui, Chun-Hua; Yu, Jin-Wen; Li, Hui-Hui; Gao, Min-Rui; Liang, Hai-Wei; Yu, Shu-Hong

    2011-05-24

    The interface, which formed in a bimetallic system, is a critical issue to investigate the fundamental mechanism of enhanced catalytic activity. Here, we designed unsupported Pd-Au bimetallic nanoparticle tubes with a tunable interface, which was qualitatively controlled by the proportion of Pd and Au nanoparticles (NPs), to demonstrate the remarkably enhanced effect of Pd and Au NPs in electro-oxidation of ethanol. The results demonstrated that the electrocatalytic activity is highly relative to the interface and has no direct relation with individual metal component in the Pd-Au system. This effect helps us in achieving a fundamental understanding of the relationship between their activity and the interface structure and chemical properties and, consequently, is helpful in designing new catalysts with high performances. PMID:21506570

  17. Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells.

    PubMed

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2014-09-21

    Gold nanoparticles with varying sizes were prepared by the spray process under an electric field (DC voltages of 0 V and 1 kV applied to the nozzle) for studying their role in inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag). The application of electric field during the spray process resulted in a smaller size (35 nm as compared to 70 nm without the electric field) of the nanoparticles with more uniform distribution. This gave rise to a difference in the surface plasmon resonance (SPR) effect created by the gold nanoparticles (Au NPs), which then affected the solar cell performance. The photovoltaic performances of plasmonic inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag) using spray-deposited Au and ZnO layers (both at 1 kV) showed improved efficiency. Fast exciton quenching in the P3HT:PCBM layer was achieved by using a spray-deposited Au layer in between ITO and ZnO layers. The absorption spectra and internal power conversion efficiency (IPCE) curve showed that the Au nanoparticles provide significant plasmonic broadband light absorption enhancement which resulted in the enhancement of the JSC value. Maximum efficiency of 3.6% was achieved for the inverted organic solar cell (IOSC) with an exceptionally high short circuit current density of ∼15 mA cm(-2) which is due to the additional photon absorption and the corresponding increase observed in the IPCE spectrum. The spray technique can be easily applied for the direct formation of Au nanoparticles in the fabrication of IOSC with improved performance over a large area. PMID:25100621

  18. Deposition of Au and Ag nanoparticles on PEDOT.

    PubMed

    Danieli, Tamar; Colleran, John; Mandler, Daniel

    2011-12-01

    The deposition of Au and Ag, locally and from bulk solution, on poly(3,4-ethylenedioxythiophene) (PEDOT) was studied. Specifically, PEDOT was electrochemically polymerized onto a glassy carbon (GC) electrode and used for bulk deposition of Au and Ag from their respective ions dissolved in the solution as well as for the local deposition of these metals using scanning electrochemical microscopy (SECM). These two sets of experiments were utilized to investigate the difference between Au and Ag electrochemical deposition on PEDOT. In particular, SECM experiments, which were conducted by the controlled anodic dissolution of Au and Ag microelectrodes close to GC/PEDOT, probed the effect of different PEDOT oxidation states on local deposition. The current-time transients recorded during the deposition, combined with scanning electron microscopy and EDX analysis provided insight into the reduction processes. AuCl(4)(-) and Ag(+) ions were electrochemically reduced at a potential equal to and more negative than the ions redox potentials (0.4 and 0.2 V, respectively) and more positive than -0.7 V, where the PEDOT starts transforming into the reduced, i.e. insulating, state. We found that the electroreduction of Ag(+) ions was diffusion-controlled and the PEDOT film served as a simple conductor. On the other hand, the reduction of AuCl(4)(-) ions was enhanced on GC/PEDOT as compared with bare GC, indicating that PEDOT catalyzes the reduction of AuCl(4)(-) to Au. PMID:21993698

  19. Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution.

    PubMed

    Yu, Guiyang; Wang, Xiang; Cao, Jungang; Wu, Shujie; Yan, Wenfu; Liu, Gang

    2016-02-01

    The activity and stability of CdS for visible-light-driven hydrogen evolution could be significantly enhanced by embedding plasmonic Au nanoparticles. The plasmon resonance energy field of Au nanoparticles could increase the formation rate and lifetime of e(-)/h(+) pairs in CdS semiconductors. PMID:26732587

  20. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    SciTech Connect

    Horikoshi, S. Matsumoto, N.; Kato, T.; Omata, Y.

    2014-05-21

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  1. Diffusion-limited attachment of nanoparticles to flexible membrane-immobilized receptors

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2016-04-01

    In biosystems, vesicles, virions, or metal particles of size ∼100 nm often diffuse in solution and interact with short (<10 nm) flexible receptors immobilized in a lipid membrane. The attachment kinetics of such nanoparticles can be limited by diffusion globally or locally. In the latter case, the calculation of the attachment rate is complicated by the dependence of the diffusion coefficient on the distance between a particle and membrane. The analysis, taking this factor into account, shows that the attachment rate constant is proportional to the receptor length and nearly independent of the particle radius.

  2. A click strategy for the immobilization of MacMillan organocatalysts onto polymers and magnetic nanoparticles.

    PubMed

    Riente, Paola; Yadav, Jagjit; Pericàs, Miquel A

    2012-07-20

    A chemically modified, first generation MacMillan imidazolidin-4-one has been anchored onto 1% DVB Merrifield resin and Fe3O4 (5.3 ± 1.4 nm) magnetic nanoparticles through copper-catalyzed alkyne azide cycloaddition (CuAAC) reactions. The resulting immobilized catalysts have been successfully used in the asymmetric Friedel-Crafts alkylation of N-substituted pyrroles with α,β-unsaturated aldehydes. The PS-supported catalyst (B) showed higher catalytic activity and enantioselectivity, while the MNP-supported one (A) showed higher recyclability and could be used in a sequential process with intermediate magnetic decantation. PMID:22758605

  3. Enhancement of the power conversion efficiency for inverted organic photovoltaic devices due to the localized surface plasmonic resonant effect of Au nanoparticles embedded in ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Yong Hun; Kim, Dae Hun; Lee, Dea Uk; Li, Fushan; Kim, Tae Whan

    2015-07-01

    The absorption spectra and input photon-to-converted current efficiency curves showed that Au nanoparticles increased the plasmonic broadband light absorption, thereby enhancing the short-circuit current density of the inverted organic photovoltaic (OPV) cells with a Au-ZnO nanocomposite electron transport layer (ETL). The power conversion efficiency of the inverted OPV cell fabricated with a Au-ZnO nanocomposite ETL was higher by 40% than that of the inverted OPV cell fabricated with a ZnO nanoparticle ETL, which could be attributed to the enhanced photon absorption in the active layer due to the localized surface plasmonic resonance of the Au nanoparticles.

  4. Conducting shrinkable nanocomposite based on au-nanoparticle implanted plastic sheet: tunable thermally induced surface wrinkling.

    PubMed

    Greco, Francesco; Bellacicca, Andrea; Gemmi, Mauro; Cappello, Valentina; Mattoli, Virgilio; Milani, Paolo

    2015-04-01

    A thermally shrinkable and conductive nanocomposite material is prepared by supersonic cluster beam implantation (SCBI) of neutral Au nanoparticles (Au NPs) into a commercially available thermo-retractable polystyrene (PS) sheet. Micronanowrinkling is obtained during shrinking, which is studied by means of SEM, TEM and AFM imaging. Characteristic periodicity is determined and correlated with nanoparticle implantation dose, which permits us to tune the topographic pattern. Remarkable differences emerged with respect to the well-known case of wrinkling of bilayer metal-polymer. Wrinkled composite surfaces are characterized by a peculiar multiscale structuring that promises potential technological applications in the field of catalytic surfaces, sensors, biointerfaces, and optics, among others. PMID:25811100

  5. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    NASA Astrophysics Data System (ADS)

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Sebastian, Víctor; Imbuluzqueta, Edurne; Arruebo, Manuel; Blanco-Prieto, María J.; Santamaría, Jesús

    2016-03-01

    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography.A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading

  6. Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Liu, Jun; Aksay, Ilhan A.; Yin, Geping; Lin, Yuehe

    2011-03-01

    PtAu alloy nanoparticles (~ 3.2 nm in diameter) are synthesized in poly(diallyldimethylammonium chloride) (PDDA) aqueous solution and uniformly dispersed on graphene nanosheets. PtAu/graphene exhibits high electrocatalytic activity and stability for formic acid oxidation, which is attributed to the high dispersion of PtAu nanoparticles and the specific interaction between PtAu and graphene, indicating a promising catalyst for direct formic acid fuel cells. The facile method can be readily extended to the synthesis of other alloy nanoparticles.

  7. Synthesis and Characterization of Au@Cu Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna; Velazquez-Salazar, Jesus; Yacaman, Miguel Jose

    2011-10-01

    The synthesis of bimetallic nanoparticles has become so important in present times due to its diverse applications of nanotechnology. Particularly most of the bimetallic nanoparticles are focused to use in catalysis, plasmonic, magnetic, sensors, and many other applications. In Au/Cu case, the bulk Au and Cu are soluble at all compositions. But the structure of Au/Cu nanoparticles depends on the preparation methods. The structure might be the core shell, alloys or other morphology. Au- Cu core-shell nanocrystals were prepared using a two-step polyol reduction method. First, Au core seeds were prepared by reducing HAuCl4. 4H2O in ethylene glycol (EG) using oil-bath heating in the presence of polyvinylpyrrolidone (PVP) as a polymer surfactant. Then Cu shells were overgrown on Au core seeds by reducing Cu2(OAc)4 in EG with PVP again using oil-bath heating. The morphology is studied by STEM HITACHI S-5500.The resultant crystal structures were characterized using TEM, high-resolution (HR)-TEM and the STEM were using for the study of micro analysis.

  8. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach.

    PubMed

    Tamuly, Chandan; Hazarika, Moushumi; Borah, Sarat Ch; Das, Manash R; Boruah, Manas P

    2013-02-01

    The synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Piper pedicellatum C.DC leaf extract is demonstrated here. The rapid formation of stable Ag and Au nanoparticles has been found using P. pedicellatum C.DC leaf extract in aqueous medium at normal atmospheric condition. Competitive reduction of Ag(+) and Au(3+) ions present simultaneously in solution during exposure to P. pedicellatum C.DC leaf extract leads to the synthesis of bimetallic Ag-Au nanoparticles in solution. Transmission electron microscopy (TEM) analysis revealed that the Ag nanoparticles predominantly form spherical in shape with the size range of 2.0±0.5-30.0±1.2 nm. In case of Au nanoparticles, the particles are spherical in shape along with few triangular, hexagonal and pentagonal shaped nanoparticles also observed. X-ray diffraction (XRD) studies revealed that the nanoparticles were face centered cubic (fcc) in shape. Fourier transform infrared spectroscopy (FTIR) showed nanoparticles were capped with plant compounds. The chemical constituents, viz. catechin, gallic acid, courmaric acid and protocatechuic acid of the leaf extract were identified which may act as a reducing, stabilizing and capping agent. The expected reaction mechanism in the formation of Ag and Au nanoparticles is also reported. PMID:23107941

  9. Enzyme-free Detection of Hydrogen Peroxide from Cerium Oxide Nanoparticles Immobilized on Poly(4-vinylpyridine) Self-Assembled Monolayers

    SciTech Connect

    Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Seal, Sudipta; Thevuthasan, Suntharampillai

    2013-05-02

    A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.

  10. Synthesis of TiO2 Nanoparticles on the Au(111) Surface

    SciTech Connect

    Biener, J; Farfan-Arribas, E; Biener, M M; Friend, C M; Madix, R J

    2005-01-11

    The growth of titanium oxide nanoparticles on reconstructed Au(111) surfaces was investigated by scanning tunneling microscopy and X-ray photoelectron spectroscopy. Ti was deposited by physical vapor deposition at 300 K. Regular arrays of titanium nanoparticles form by preferential nucleation of Ti at the elbow sites of the herringbone reconstruction. Titanium oxide clusters were synthesized by subsequent exposure to O{sub 2} at 300 K. Two- and three-dimensional titanium oxide nanocrystallites form during annealing in the temperature range from 600 to 900 K. At the same time, the Au(111) surface assumes a serrated, <110> oriented step-edge morphology, suggesting step-edge pinning by titanium oxide nanoparticles. The oxidation state of these titanium oxide nanoparticles varies with annealing temperature. Specifically, annealing to 900 K results in the formation of stoichiometric TiO{sub 2} nanocrystals as judged by the observed XPS binding energies. Nano-dispersed TiO{sub 2} on Au(111) is an ideal system to test the various models explaining the enhanced catalytic reactivity of supported Au nanoparticles.

  11. The development of an electrochemical immunosensor using a thiol aromatic aldehyde and PAMAM-functionalized Fe3O4@Au nanoparticles.

    PubMed

    Zhang, Chunxiang; Shen, Guangyu; Shen, Youming; Zhang, Xiangyang

    2015-09-15

    In this work, a novel thiol aromatic aldehyde was synthesized. It can be used as a substrate to directly immobilize antibodies on a gold electrode, for which no additional chemical cross-linker is required. It was also applied as a linker to prepare Fe3O4@Au/PAMAM/Ab2-horseradish peroxidase bioconjugates, which introduced multiple enzymes onto a sensing interface owing to the high surface-to-volume ratio of Fe3O4@Au nanoparticles and many functional groups of the poly(amidoamine) dendrimer (PAMAM). The introduced multiple enzymes greatly improved the detection signal. Under optimal conditions, the proposed electrochemical immunosensor exhibited desirable performance for detection of IgG in the range 0.005-50 ng ml(-1) with a detection limit of 3 pg ml(-1) based on a signal-to-noise ratio of 3. It has great potential application in the area of clinical analysis. PMID:26087149

  12. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles.

    PubMed

    Walsh, Gary F; Dal Negro, Luca

    2013-02-13

    By systematically investigating the light emission and scattering properties of arrays of Au nanoparticles with varying size and separation, we demonstrate tunability and control of metal photoluminescence and unveil the critical role of near-field plasmonic coupling for the engineering of active metal nanostructures. We show that the decay of photoexcited electron-hole pairs into localized surface plasmons (LSPs) dramatically modifies the Au emission wavelength, line shape, and quantum efficiency depending both on particles size and separation. In particular, in arrays with near-field coupled nanoparticles we demonstrate broad light scattering and emission spectra that scale differently with respect to nanoparticle size due to the enhanced LSP nonradiative decay caused by near-field interparticle coupling. Our experimental results are fully supported by semianalytical extinction simulations based on rigorous coupled wave analysis, which demonstrate the importance of tuning plasmonic near-field coupling for the engineering of active devices based on light emitting arrays of metallic nanoparticles. PMID:23339774

  13. Study of photodynamic activity of Au@SiO2 core-shell nanoparticles in vitro.

    PubMed

    Meena, K S; Dhanalekshmi, K I; Jayamoorthy, K

    2016-06-01

    Metal-semiconductor core-shell type Au@SiO2 nanoparticles were prepared by Stober's method. They were characterized by absorption, XRD, HR-TEM and EDAX techniques. The resulting modified core-shell nanoparticles shows that the formation of singlet oxygen, which was confirmed by ESR technique. The photohemolysis studies were carried out under two different experimental conditions. It is observed that the photohemolysis increases with concentration as well as light dose. Cell viability of the core-shell nanoparticles against HeLa cell lines were studied by MTT assay method. The outcomes of the present study indicate that, the Au@SiO2 core-shell nanoparticles are extremely stable with a very high photodynamic efficiency under visible light illumination. PMID:27040225

  14. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Liu, Bitao; Zeng, Wei; Wang, Yuhua

    2013-09-01

    Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail.Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in

  15. Using flow to switch the valency of bacterial capture on engineered surfaces containing immobilized nanoparticles.

    PubMed

    Fang, Bing; Gon, Saugata; Park, Myoung-Hwan; Kumar, Kushi-Nidhi; Rotello, Vincent M; Nüsslein, Klaus; Santore, Maria M

    2012-05-22

    Toward an understanding of nanoparticle-bacterial interactions and the development of sensors and other substrates for controlled bacterial adhesion, this article describes the influence of flow on the initial stages of bacterial capture (Staphylococcus aureus) on surfaces containing cationic nanoparticles. A PEG (poly(ethylene glycol)) brush on the surface around the nanoparticles sterically repels the bacteria. Variations in ionic strength tune the Debye length from 1 to 4 nm, increasing the strength and range of the nanoparticle attractions toward the bacteria. At relatively high ionic strengths (physiological conditions), bacterial capture requires several nanoparticle-bacterial contacts, termed "multivalent capture". At low ionic strength and gentle wall shear rates (on the order of 10 s(-1)), individual bacteria can be captured and held by single surface-immobilized nanoparticles. Increasing the flow rate to 50 s(-1) causes a shift from monovalent to divalent capture. A comparison of experimental capture efficiencies with statistically determined capture probabilities reveals the initial area of bacteria-surface interaction, here about 50 nm in diameter for a Debye length κ(-1) of 4 nm. Additionally, for κ(-1) = 4 nm, the net per nanoparticle binding energies are strong but highly shear-sensitive, as is the case for biological ligand-receptor interactions. Although these results have been obtained for a specific system, they represent a regime of behavior that could be achieved with different bacteria and different materials, presenting an opportunity for further tuning of selective interactions. These finding suggest the use of surface elements to manipulate individual bacteria and nonfouling designs with precise but finite bacterial interactions. PMID:22563906

  16. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  17. A Facile Synthesis of Monodisperse Au Nanoparticles and Their Catalysis of CO Oxidation

    SciTech Connect

    Lee, Youngmin; Sun, Shouheng; Wang, Chao; Yin, Hongfeng; Peng, Sheng; Dai, Sheng

    2008-01-01

    Monodisperse Au nanoparticles (NPs) have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1, 2, 3, 4-tetrahydronaphthalene solution of HAuCl{sub 4} {center_dot} 3H{sub 2}O in the presence of oleylamine. The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm. They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures. When deposited on a graphitized porous carbon support, the NPs are highly active for CO oxidation, showing 100% CO conversion at -45 C.

  18. Fluorescence enhancement of acridine orange in a water solution by Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Hairong; Xu, Liangmin; Zhang, Zhenglong; Dong, Jun; Chen, Shutang; Zhang, Xiaoling

    2010-10-01

    The surface enhanced fluorescence effect of acridine orange fluorophore in the proximity of Au nanoparticles has been investigated experimentally in the system of aqueous solution. Significant enhancement of the fluorescence intensity was observed when the system was excited with 532 nm or 442 nm CW lasers. The influence of the distances between neighboring Au particles as well as that between the fluorophore molecules and the Au surface were explored experimentally. The results demonstrated that a compact distribution of metallic particles was able to produce stronger fluorescence enhancement. Proper separation between the fluorophore molecules and the metal surface was favorable for a better enhancement.

  19. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles

    SciTech Connect

    Liu, X.; Zhang, X. W. Yin, Z. G.; Meng, J. H.; Gao, H. L.; Zhang, L. Q.; Zhao, Y. J.; Wang, H. L.

    2014-11-03

    We have reported a method to enhance the performance of graphene-Si (Gr/Si) Schottky junction solar cells by introducing Au nanoparticles (NPs) onto the monolayer graphene and few-layer graphene. The electron transfer between Au NPs and graphene leads to the increased work function and enhanced electrical conductivity of graphene, resulting in a remarkable improvement of device efficiency. By optimizing the initial thickness of Au layers, the power conversion efficiency of Gr/Si solar cells can be increased by more than three times, with a maximum value of 7.34%. These results show a route for fabricating efficient and stable Gr/Si solar cells.

  20. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test.

    PubMed

    Ratanajanchai, Montri; Soodvilai, Sunhapas; Pimpha, Nuttaporn; Sunintaboon, Panya

    2014-01-01

    Herein, we prepared PEI-immobilized core-shell particles possessing various types of polymer cores via a visible light-induced surfactant-free emulsion polymerization (SFEP) of three vinyl monomers: styrene (St), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA). An effect of monomers on the polymerization and characteristics of resulting products was investigated. Monomers with high polarity can provide high monomer conversion, high percentage of grafted PEI, stable particles with uniform size distribution but less amino groups per particles. All prepared nanoparticles exhibited a core-shell nanostructure, containing PEI on the shell with hydrodynamic size around 140-230nm. For in-vitro study in Caco-2 cells, we found that the incorporation of PEI into these core-shell nanoparticles can significantly reduce its cytotoxic effect and also be able to internalized within the cells. Accordingly, these biocompatible particles would be useful for various biomedical applications, including gene transfection and intracellular drug delivery. PMID:24268272

  1. Polarization-based immunoassay in aqueous solution using Au nanoparticle-labeled antibody

    NASA Astrophysics Data System (ADS)

    Mizuno, N.; Takeshita, Y.; Kobayashi, J.; Esashika, K.; Saiki, T.

    2014-04-01

    Here we describe an ultrasensitive antigen-antibody immunoassay using gold nanoparticles (AuNPs). Polarization microscopy is used to discriminate individual AuNP dimers from isolated single AuNPs by means of their Brownian motion in aqueous solution. The optical anisotropy and rotational diffusion time were measured to provide accurate and robust discrimination. Since the size of a naked antibody is comparable to that of an AuNP, the distance between two AuNPs (inter-dimer distance) is rather large, and therefore the optical anisotropy is seriously degraded. To address this problem, we digested the antibody with the protease pepsin to reduce the distance. Autocorrelation analysis allowed discrimination of the difference in optical anisotropy and rotational diffusion time. Setting an appropriate threshold for the measurement enabled sufficient accuracy in the discrimination.

  2. Dealloying-based facile synthesis and highly catalytic properties of Au core/porous shell nanoparticles.

    PubMed

    Kim, Minho; Ko, Sung Min; Nam, Jwa-Min

    2016-06-01

    Porous nanostructures exhibit excellent catalytic properties due to high surface-to-volume ratio, good surface reactivity and various structural features, but controlling the distribution, size, shape and density of pores and structural features of these particles is highly challenging. Herein, we report a tunable dealloying-based facile synthetic strategy to form highly porous Au core/porous shell nanoparticles (CPS NPs) in high yield by selectively dissolving Ag atoms from Au/Au-Ag core/alloy shell NPs. The CPS NPs exhibit a very short induction time, high conversion rate constant, low activation energy and high turnover frequency due to their catalytically active porous shells containing networked thin ligaments, surface defects, ultra-high porosity and photothermal properties. The CPS NPs are more catalytic Au NPs than other reported Au nanostructures, and the strategy and results open avenues in porous nanostructures and nanocatalysts. PMID:27221241

  3. Self-decorated Au nanoparticles on antireflective Si pyramids with improved hydrophobicity

    NASA Astrophysics Data System (ADS)

    Saini, C. P.; Barman, A.; Kumar, M.; Satpati, B.; Som, T.; Kanjilal, A.

    2016-04-01

    Post-deposition annealing mediated evolution of self-decorated Au nanoparticles (NPs) on chemically etched Si pyramids is presented. A distinct transformation of Si surfaces from hydrophilic to hydrophobic is initially found after chemical texturing, showing an increase in contact angle (CA) from 58° to 98° (±1°). Further improvement of hydrophobicity with CA up to ˜118° has been established after annealing a 10 nm thick Au-coated Si pyramids at 400 °C that led to the formation of Au NPs on Si facets along with self-ordering at the pyramid edges. Detailed x-ray diffraction studies suggest the evolution of crystalline Au NPs on strained Si facets. Microstructural studies, however, indicate no mixing of Au and Si atoms at the Au/Si interfaces, instead of forming Au nanocrystals at 400 °C. The improved hydrophobicity of Si pyramids, even with Au NPs can be explained in the light of a decrease in solid fractional surface area according to Wenzel's model. Moreover, a sharp drop in specular reflectance from Si pyramids in the range of 300-800 nm, especially in the ultraviolet region up to ˜0.4% is recorded in the presence of Au NPs by ultraviolet-visible spectroscopy, reflecting the possible use in photovoltaic devices with improved antireflection property.

  4. Size-tunable Au nanoparticles on MoS2(0001)

    NASA Astrophysics Data System (ADS)

    Chu, Xinjun; Yao, Guanggeng; Thye Shen Wee, Andrew; Wang, Xue-Sen

    2012-09-01

    Ultra-fine Au nanoparticles (NPs) show great application potential in catalysis. Size-tunable Au NPs have been fabricated on MoS2 covered with monolayer 3,4,5,10-perylene tetracarboxylic dianhydride (PTCDA), and the morphological evolution as a function of Au deposition amount was investigated using scanning tunneling microscopy (STM). The PTCDA molecules act as a surfactant to stabilize ultra-fine Au NPs. Molecular scale STM images show that on MoS2 the Au NPs with PTCDA molecules on top can be formed with height and lateral size down to 1.3 nm and 3.5 nm, respectively. By controlling the deposition amount and annealing temperature, the size of Au NPs can be tuned. After annealing at 270 °C to remove PTCDA, Au NPs with a linear size ≤5 nm can be obtained on MoS2(0001), facilitating the characterization of their intrinsic physical and chemical properties using various analytical techniques. In addition, photoemission spectroscopy data reveal charge transfer from Au NPs to PTCDA, indicating that the NPs possess more reactive chemical properties than bulk Au.

  5. Size-tunable Au nanoparticles on MoS2(0001).

    PubMed

    Chu, Xinjun; Yao, Guanggeng; Wee, Andrew Thye Shen; Wang, Xue-Sen

    2012-09-21

    Ultra-fine Au nanoparticles (NPs) show great application potential in catalysis. Size-tunable Au NPs have been fabricated on MoS(2) covered with monolayer 3,4,5,10-perylene tetracarboxylic dianhydride (PTCDA), and the morphological evolution as a function of Au deposition amount was investigated using scanning tunneling microscopy (STM). The PTCDA molecules act as a surfactant to stabilize ultra-fine Au NPs. Molecular scale STM images show that on MoS(2) the Au NPs with PTCDA molecules on top can be formed with height and lateral size down to 1.3 nm and 3.5 nm, respectively. By controlling the deposition amount and annealing temperature, the size of Au NPs can be tuned. After annealing at 270 °C to remove PTCDA, Au NPs with a linear size ≤5 nm can be obtained on MoS(2)(0001), facilitating the characterization of their intrinsic physical and chemical properties using various analytical techniques. In addition, photoemission spectroscopy data reveal charge transfer from Au NPs to PTCDA, indicating that the NPs possess more reactive chemical properties than bulk Au. PMID:22922593

  6. Ultrasensitive enzyme-free electrochemical immunoassay for free thyroxine based on three dimensionally ordered macroporous chitosan-Au nanoparticles hybrid film.

    PubMed

    Zhang, Qi; Chen, Xiaojun; Tu, Fulai; Yao, Cheng

    2014-09-15

    The measurement of free thyroxine concentration in serum is considered to be an essential indicator of thyroid function. Here, a novel enzyme-free sandwich electrochemical immunosensor for the detection of FT4 antigen based on the immobilization of primary antibody (Ab1) on three dimensional ordered macroporous chitosan-Au nanoparticles hybrid (3DOM CS-AuNPs) film electrode, and magnetic multiwall carbon nanotubes (MMWCNTs) were used as label of secondary antibody (Ab2). The 3DOM CS-AuNPs film electrode was constructed by one-step electrodeposition of CS-AuNPs composite onto Au electrode with silica opal template. MMWCNTs were prepared by chemical co-precipitation of Fe(2+) and Fe(3+) salts on carboxylated MWCNTs. Ru(bpy)3(2+) labeled anti-FT4 (Ru(bpy)3(2+)-Ab2) was covalently attached to MMWCNTs through the formation of amide bond between the carboxylic groups of MWCNTs and the amine groups of antibody. Under the optimal conditions, FT4 was detected in a concentration range from 0.71 fg mL(-1) to 1.15 pg mL(-1) with a correlation coefficient of 0.998 and a detection limit of 0.20 fg mL(-1). Moreover, the immunosensor showed excellent selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from the commercialized electrochemiluminescent method. PMID:24752149

  7. Electrochemical immunosensor for detecting typical bladder cancer biomarker based on reduced graphene oxide-tetraethylene pentamine and trimetallic AuPdPt nanoparticles.

    PubMed

    Ma, Hongmin; Zhang, Xiaoyue; Li, Xiaojian; Li, Rongxia; Du, Bin; Wei, Qin

    2015-10-01

    A highly sensitive electrochemical immunosensor for detection of typical bladder cancer biomarker-nuclear matrix protein 22 (NMP22) was developed by using reduced graphene oxide-tetraethylene pentamine (rGO-TEPA) and trimetallic AuPdPt nanoparticles (NPs). rGO-TEPA was used as the ideal material for signal amplification and AuPdPt NPs immobilization due to its excellent conductivity and large surface area. An effective platform was constructed for antibodies anchoring by using AuPdPt NPs, which kept the antibodies' high stability and bioactivity. Moreover, AuPdPt NPs could accelerate the electron transfer and enhance the signal response, which assisted by the synergistic effect of the three different metals (Au, Pd and Pt). The proposed immunosensor showed satisfied performance such as simple fabrication, low detection limits (0.01 U/mL), wide linear range (from 0.040 to 20 U/mL), short analysis time (2 min), high stability and selectivity in the detection of NMP22. Furthermore, the proposed immunosensor was employed to test real urine samples with satisfactory results. PMID:26078131

  8. Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

    PubMed Central

    Maharaj, Dave

    2012-01-01

    Summary Nano-object additives are used in tribological applications as well as in various applications in liquids requiring controlled manipulation and targeting. On the macroscale, nanoparticles in solids and liquids have been shown to reduce friction and wear. On the nanoscale, atomic force microscopy (AFM) studies have been performed in single- and multiple-nanoparticle contact, in dry environments, to characterize friction forces and wear. However, limited studies in submerged liquid environments have been performed and further studies are needed. In this paper, spherical Au nanoparticles were studied for their effect on friction and wear under dry conditions and submerged in water. In single-nanoparticle contact, individual nanoparticles, deposited on silicon, were manipulated with a sharp tip and the friction force was determined. Multiple-nanoparticle contact sliding experiments were performed on nanoparticle-coated silicon with a glass sphere. Wear tests were performed on the nanoscale with AFM as well as on the macroscale by using a ball-on-flat tribometer to relate friction and wear reduction on the nanoscale and macroscale. Results indicate that the addition of Au nanoparticles reduces friction and wear. PMID:23213639

  9. Experimental study on the coalescence process of SiO2 supported colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Torrisi, V.; Grimaldi, M. G.

    2015-11-01

    We report on an experimental study of the coalescence-driven grow process of colloidal Au nanoparticles on SiO2 surface. Nanoparticles with 30, 50, 80, 100 nm nominal diameters on a SiO2 substrate were deposited, from solutions, by the drop-casting method. Then, annealing processes, in the 573-1173 K temperature range and 900-3600 s time range, were performed. Using scanning electron microscopy analyses, the temporal evolution of the nanoparticles sizes has been studied. In particular, for all classes of nanoparticles, the experimental-obtained diameters distributions evidenced double-peak shapes (i. e. bimodal distributions): a first peak centered (and unchanged changing the annealing temperature and/or time) at the nominal diameter of the as-deposited nanoparticles, , and a second peak shifting at higher mean diameters, , increasing the annealing temperature and/or time. This observation suggested us a coalescence-driven growth process of a nanoparticles sub-population. As a consequence, the temporal evolution of (for each class of nanoparticles and each annealing temperature), within the well-established particles coalescence theoretical framework, has been analyzed. In particular, by the analyses of the experimental data using relations as prescribed by the theoretical model, a characteristic size-dependent activation energy for the Au nanoparticles coalescence process has been evaluated.

  10. Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize.

    PubMed

    Ma, Haihua; Sun, Jizhou; Zhang, Yuan; Bian, Chao; Xia, Shanhong; Zhen, Tong

    2016-06-15

    Gold nanoparticles (AuNPs) embedded in chitosan (CHI) film, well-dispersed and smaller in size (about 10 nm), were fabricated by one-step electrodeposion on Au microelectrode in solution containing chitosan and chloride trihydrate. The nano-structure CHI-AuNPs composite film offers abundant amine groups, good conductivity, excellent biocompatibility and stability for antibody immobilization. The combination of aflatoxin B1 (AFB1) with immobilized antibody introduces a barrier to electron transfer, resulting in current decreasement. The morphologies and characterizations of modified microelectrodes were investigated by scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR). The proposed non-enzyme and label-free immunosensor exhibited high sensitive amperometric response to AFB1 concentration in two linear ranges of 0.1 to 1 ng mL(-1) and 1 to 30 ng mL(-1), with the detection limit of 0.06 ng mL(-1) (S/N=3). The immunoassay was also applied for analysis of maize samples spiked with AFB1. Considering the sample extraction procedure, the linear range and limit of detection were assessed to be 1.6-16 ng mL(-1) and 0.19 ng mL(-1) respectively. The simple method showed good fabrication controllability and reproducibility for immunosensor design. PMID:26851579

  11. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach.

    PubMed

    Aijaz, Arshad; Karkamkar, Abhi; Choi, Young Joon; Tsumori, Nobuko; Rönnebro, Ewa; Autrey, Tom; Shioyama, Hiroshi; Xu, Qiang

    2012-08-29

    Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a "double solvents" method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation. PMID:22888976

  12. Dealloying-based facile synthesis and highly catalytic properties of Au core/porous shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Minho; Ko, Sung Min; Nam, Jwa-Min

    2016-06-01

    Porous nanostructures exhibit excellent catalytic properties due to high surface-to-volume ratio, good surface reactivity and various structural features, but controlling the distribution, size, shape and density of pores and structural features of these particles is highly challenging. Herein, we report a tunable dealloying-based facile synthetic strategy to form highly porous Au core/porous shell nanoparticles (CPS NPs) in high yield by selectively dissolving Ag atoms from Au/Au-Ag core/alloy shell NPs. The CPS NPs exhibit a very short induction time, high conversion rate constant, low activation energy and high turnover frequency due to their catalytically active porous shells containing networked thin ligaments, surface defects, ultra-high porosity and photothermal properties. The CPS NPs are more catalytic Au NPs than other reported Au nanostructures, and the strategy and results open avenues in porous nanostructures and nanocatalysts.Porous nanostructures exhibit excellent catalytic properties due to high surface-to-volume ratio, good surface reactivity and various structural features, but controlling the distribution, size, shape and density of pores and structural features of these particles is highly challenging. Herein, we report a tunable dealloying-based facile synthetic strategy to form highly porous Au core/porous shell nanoparticles (CPS NPs) in high yield by selectively dissolving Ag atoms from Au/Au-Ag core/alloy shell NPs. The CPS NPs exhibit a very short induction time, high conversion rate constant, low activation energy and high turnover frequency due to their catalytically active porous shells containing networked thin ligaments, surface defects, ultra-high porosity and photothermal properties. The CPS NPs are more catalytic Au NPs than other reported Au nanostructures, and the strategy and results open avenues in porous nanostructures and nanocatalysts. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01321j

  13. Sintering Behavior of Spin-coated FePt and FePtAu Nanoparticles

    SciTech Connect

    Kang, Shishou; Jia, Zhiyong; Zoto, Ilir; Reed, R. C.; Nikles, David E.; Harrell, J. W.; Vemuru, Krishnamurthy V; Porcar, L.

    2006-01-01

    FePt and [FePt]{sub 95}Au{sub 5} nanoparticles with an average size of about 4 nm were chemically synthesized and spin coated onto silicon substrates. Samples were subsequently thermally annealed at temperatures ranging from 250 to 500 C for 30 min. Three-dimensional structural characterization was carried out with small-angle neutron scattering (SANS) and small-angle x-ray diffraction (SAXRD) measurements. For both FePt and [FePt]{sub 95}Au{sub 5} particles before annealing, SANS measurements gave an in-plane coherence length parameter a = 7.3 nm, while SAXRD measurements gave a perpendicular coherence length parameter c = 12.0 nm. The ratio of c/a is about 1.64, indicating the as-made particle array has a hexagonal close-packed superstructure. For both FePt and FePtAu nanoparticles, the diffraction peaks shifted to higher angles and broadened with increasing annealing temperature. This effect corresponds to a shrinking of the nanoparticle array, followed by agglomeration and sintering of the nanoparticles, resulting in the eventual loss of positional order with increasing annealing temperature. The effect is more pronounced for FePtAu than for FePt. Dynamic coercivity measurements show that the FePtAu nanoparticles have both higher intrinsic coercivity and higher switching volume at the same annealing temperature. These results are consistent with previous studies that show that additive Au both lowers the chemical ordering temperature and promotes sintering.

  14. Sensing of glycoprotein via a biomimetic sensor based on molecularly imprinted polymers and graphene-Au nanoparticles.

    PubMed

    Wang, Xindong; Dong, Jing; Ming, Huami; Ai, Shiyun

    2013-02-21

    A novel strategy was proposed for preparing a highly sensitive glycoprotein sensor based on molecularly imprinted polymers (MIP), which was electropolymerized with o-phenylenediamine and 3-aminophenylboronic acid monohydrate in the presence of template molecules (bovine serum albumin (BSA)). Sensitivity improved dramatically owing to the application of a graphene-Au nanoparticles hybrid as the electrode modifier, and the immobilization of a large amount of 6-ferrocenylhexanethiol, as the electroactive species, onto nanoparticles. The quantification of BSA was realized by detecting the electrochemical oxidation signal of 6-ferrocenylhexanethiol, which was bonded onto the electrode. Under optimized conditions, a good relationship was obtained between the response current and logarithm of BSA concentration in the range of 1.0 × 10(-11) to 1.0 × 10(-5) g mL(-1) with a detection limit of 7.5 × 10(-12) g mL(-1) (S/N = 3). The resulting MIP sensor displayed good selectivity, reproducibility and stability. PMID:23304694

  15. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF. PMID:26035249

  16. Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization.

    PubMed

    Luan, Pan-Pan; Jiang, Yan-Jun; Zhang, Song-Ping; Gao, Jing; Su, Zhi-Guo; Ma, Guang-Hui; Zhang, Yu-Fei

    2014-11-01

    Our work here, for the first time, reported the use of chitosan-mediated biomimetic silica nanoparticles in enzyme immobilization. In order to make clear the relationship among silicification process, silica nanoparticle structure and immobilized enzyme activity, a mechanism of chitosan-mediated silicification using sodium silicate as the silica source was primarily evaluated. Chitosan was demonstrated effectively to promote the silicification not only in accelerating the aggregation rate of sodium silicate, but also in templating the formation of silica nanoparticles. Although the whole biomimetic silicification process contained polycondensation-aggregation-precipitation three stages, the elemental unit in precipitated silica was confirmed to be nanoparticles with 100 nm diameter regardless of the chitosan and silicate concentration used. Furthermore, the effect of enzyme on silicification process was also investigated. The introducing of manganese peroxidase (MnP) to silica precursor solution had no obvious effect on the silicification rate and nanoparticle morphology. The residual activity and embedding rate of immobilized MnP were 64.2% and 36.4% respectively under the optimum conditions. In addition, compared to native MnP, the MnP embedded in chitosan/silica nanoparticles exhibited improved stability against organic solvent and ultrasonic wave. After ultrasonic treatment for 20 min, 77% of the initial activity was remained due to the protective effect of chitosan/silica nanoparticles, while native MnP lost almost all of its original activity. PMID:24913823

  17. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH{sub 4}

    SciTech Connect

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH{sub 4}, and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory.

  18. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles.

    PubMed

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants. PMID:22138171

  19. Stimulus-responsive Controlled Release System by Covalent Immobilization of an Enzyme into Mesoporous Silica Nanoparticles

    PubMed Central

    Méndez, Jessica; Monteagudo, Alina; Griebenow, Kai

    2012-01-01

    Mesoporous silica nanoparticles (MSN) have emerged as an attractive class of drug delivery carriers for therapeutic agents. Herein, we explored the covalent immobilization of proteins into MSN to generate a stimulus-responsive controlled release system. First, MSN were functionalized with thiol groups using (mercaptopropyl)-trimethoxysilane (MPTMS). Functionalization was verified by X-ray photoelectron spectroscopy (XP), Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering. The model enzyme carbonic anhydrase (CA) was coupled to sulfosuccinimidyl 6-[3'(2-pyridyldithio)-propionamido]hexanoate (Sulfo-LC-SPDP) at a low ratio of 1:1 to prevent enzyme inactivation and subsequently covalently immobilized into MSN via thiol-disulfide interchange. The enzyme could be released from MSN with 10 mM glutathione which represents intra-cellular redox conditions while it remained bound to the MSN at extra-cellular redox conditions represented by 1 μM glutathione. The activity of the released enzyme was >80% demonstrating that the enzyme was still largely functional and active after immobilization and release. Human cervical cancer (HeLa) cells were incubated with the MSN-CA bioconjugates at various concentrations for 24 h and the data show good biocompatibility. In summary, we demonstrate the potential of MSN as potential drug delivery systems for proteins. PMID:22375899

  20. Supramolecular immobilization of glucose oxidase on gold coated with cyclodextrin-modified cysteamine core PAMAM G-4 dendron/Pt nanoparticles for mediatorless biosensor design.

    PubMed

    Díez, Paula; Piuleac, Ciprian-George; Martínez-Ruiz, Paloma; Romano, Santiago; Gamella, María; Villalonga, Reynaldo; Pingarrón, José M

    2013-04-01

    Cysteamine core polyamidoamine G-4 dendron branched with β-cyclodextrins was chemisorbed on the surface of Au electrodes and further coated with Pt nanoparticles. Adamantane-modified glucose oxidase was subsequently immobilized on the nanostructured electrode surface by supramolecular association. This enzyme electrode was used to construct a reagentless amperometric biosensor for glucose, making use of the electrochemical oxidation of H2O2 generated in the enzyme reaction. The amperometric response of the biosensor was rapid (6 s) and a linear function of glucose concentration between 5 and 705 μmol L(-1). The biosensor had a low detection limit of 2.0 μmol L(-1), sensitivity of 197 mA mol(-1) L cm(-2), and retained 94% of its initial response after storage for nine days at 4 °C. PMID:23090651

  1. Nanoporous Au-based chronocoulometric aptasensor for amplified detection of Pb(2+) using DNAzyme modified with Au nanoparticles.

    PubMed

    Zhang, Chen; Lai, Cui; Zeng, Guangming; Huang, Danlian; Tang, Lin; Yang, Chunping; Zhou, Yaoyu; Qin, Lei; Cheng, Min

    2016-07-15

    The authors herein described an amplified detection strategy employing nanoporous Au (NPG) and gold nanoparticles (AuNPs) to detect Pb(2+) ions in aqueous solution. The thiol modified Pb(2+)-specific DNAzyme was self-assembled onto the surface of the NPG modified electrode for hybridizing with the AuNPs labeled oligonucleotide and for forming the DNA double helix structure. Electrochemical signal, redox charge of hexaammineruthenium(III) chloride (RuHex), was measured by chronocoulometry. Taking advantage of amplification effects of the NPG electrode for increasing the reaction sites of capture probe and DNA-AuNPs complexes for bringing about the adsorption of large numbers of RuHex molecules, this electrochemical sensor could detect Pb(2+) quantitatively, in the range of 0.05-100nM, with a limit of detection as low as 0.012nM. Selectivity measurements revealed that the sensor was specific for Pb(2+) even with interference by high concentrations of other metal ions. This sensor was also used to detect Pb(2+) ions from samples of tap water, river water, and landfill leachate samples spiked with Pb(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. This simple aptasensor represented a promising potential for on-site detecting Pb(2+) in drinking water. PMID:26921553

  2. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    PubMed

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. PMID:25689073

  3. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing.

    PubMed

    Maji, Swarup Kumar; Sreejith, Sivaramapanicker; Mandal, Amal Kumar; Ma, Xing; Zhao, Yanli

    2014-08-27

    A new kind of two-dimensional (2-D) hybrid material (RGO-PMS@AuNPs), fabricated by the immobilization of ultrasmall gold nanoparticles (AuNPs, ∼3 nm) onto sandwich-like periodic mesopourous silica (PMS) coated reduced graphene oxide (RGO), was employed for both electrocatalytic application and cancer cell detection. The hybrid-based electrode sensor showed attractive electrochemical performance for sensitive and selective nonenzymatic detection of hydrogen peroxide (H2O2) in 0.1 M phosphate buffered saline, with wide linear detection range (0.5 μM to 50 mM), low detection limit (60 nM), and good sensitivity (39.2 μA mM(-1) cm(-2)), and without any interference by common interfering agents. In addition, the sensor exhibited a high capability for glucose sensing and H2O2 detection in human urine. More interestingly, the hybrid was found to be nontoxic, and the electrode sensor could sensitively detect a trace amount of H2O2 in a nanomolar level released from living tumor cells (HeLa and HepG2). Because the hybrid presents significant properties for the detection of bioactive species and certain cancerous cells by the synergistic effect from RGO, PMS, and AuNPs, it could be able to serve as a versatile platform for biosensing, bioanalysis, and biomedical applications. PMID:25046127

  4. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-11-01

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of "glue" material between the core and the shell.

  5. 99mTc radiolabelling of Fe3O4-Au core-shell and Au-Fe3O4 dumbbell-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Felber, M.; Alberto, R.

    2015-04-01

    The development of nanoparticle-based dual-modality probes for magnetic resonance imaging (MRI) and positron emission tomography (PET) or single photon emission computed tomography (SPECT) is increasingly growing in importance. One of the most commonly used radionuclides for clinical SPECT imaging is 99mTc and the labelling of Fe3O4 nanoparticles with 99mTc was shown to be a successful strategy to obtain dual-modality imaging agents. In this work, we focus on gold containing magnetic nanomaterials. The radiolabelling of magnetic Fe3O4-Au core-shell and Fe3O4-Au dumbbell-like nanoparticles with the [99mTc(CO)3]+ fragment is described. The key elements for this 99mTc labelling approach are novel coating ligands, consisting of an anchor for the Au surface, a polyethylene glycol linker and a strong chelator for the [99mTc(CO)3]+ moiety.The development of nanoparticle-based dual-modality probes for magnetic resonance imaging (MRI) and positron emission tomography (PET) or single photon emission computed tomography (SPECT) is increasingly growing in importance. One of the most commonly used radionuclides for clinical SPECT imaging is 99mTc and the labelling of Fe3O4 nanoparticles with 99mTc was shown to be a successful strategy to obtain dual-modality imaging agents. In this work, we focus on gold containing magnetic nanomaterials. The radiolabelling of magnetic Fe3O4-Au core-shell and Fe3O4-Au dumbbell-like nanoparticles with the [99mTc(CO)3]+ fragment is described. The key elements for this 99mTc labelling approach are novel coating ligands, consisting of an anchor for the Au surface, a polyethylene glycol linker and a strong chelator for the [99mTc(CO)3]+ moiety. Electronic supplementary information (ESI) available: Analyses of Fe3O4-Au core-shell nanoparticles; analyses of Au-Fe3O4 dumbbell-like nanoparticles; 99mTc labelling of Fe3O4-Au core-shell nanoparticles; 99mTc complexes; 99mTc labelling of Au-Fe3O4 dumbbell-like nanoparticles; syntheses coating ligands. See

  6. Gold nanoparticles immobilized on metal-organic frameworks with enhanced catalytic performance for DNA detection.

    PubMed

    Liu, Ya Li; Fu, Wen Liang; Li, Chun Mei; Huang, Cheng Zhi; Li, Yuan Fang

    2015-02-25

    In this work, gold nanoparticles (AuNPs) assembled on the surface of iron based metal-organic frameworks (MOFs), Fe-MIL-88, are facilely prepared through electrostatic interactions using polyethyleneimine (PEI) molecules as linker. The resulting hybrid materials possess synergetic peroxidase-like activity. Because iron based metal-organic frameworks, Fe-MIL-88, exhibits highly peroxidase-like activity, and AuNPs has the distinct adsorption property to single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). The peroxidase-like activity of Au@Fe-MIL-88 exhibit excellent switchable in response to specific DNA, ssDNA is easily adsorbed on the surface of the Au@Fe-MIL-88 hybrids, resulting in the reduce of the peroxidase-like activity of the hybrids. While it is recovered by the addition of target DNA, and the recovery degree is proportional to the target DNA concentration over the range of 30-150 nM with a detection limit of 11.4 nM. Based on these unique properties, we develop a label-free colorimetric method for DNA hybridization detection. In control experiment, base-mismatched DNA cannot induce recovery of the peroxidase-like activity. This detection method is simple, cheap, rapid and colorimetric. PMID:25702274

  7. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load.

    PubMed

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Sebastian, Víctor; Imbuluzqueta, Edurne; Arruebo, Manuel; Blanco-Prieto, María J; Santamaría, Jesús

    2016-03-28

    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(DL-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography. PMID:26612770

  8. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    NASA Astrophysics Data System (ADS)

    Rubina, M. S.; Kamitov, E. E.; Zubavichus, Ya. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil'kov, A. Yu.

    2016-03-01

    Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  9. FRET controlled photoluminescence in β-In2S3 microflower—Au nanoparticle ensemble

    NASA Astrophysics Data System (ADS)

    Warrier, Anita R.; Parameswaran, Chithra; Bingi, Jayachandra; Vijayan, C.

    2016-06-01

    We report on the exciton–plasmon interaction and fluorescence resonance energy transfer controlled photoluminescence quenching and switching in β-In2S3 microflowers dispersed in Au nanoparticle colloid. The strong resonant interaction of excited β-In2S3 microflowers with the surface plasmons of Au nanoparticles (∼520 nm) lead to shift in the excitonic binding energy (2.4 eV) with a magnitude of ∼50 meV. In the proximity of Au nanoparticles, the broad emission spectrum of β-In2S3 microflowers with prominent peak at wavelength of ∼540 nm is quenched and the peak switches to wavelength of ∼600 nm. We demonstrate that the quenching and switching of emission band depends on the rate of fluorescence resonance energy transfer, extent of spectral overlap and β-In2S3 microflowers (donor)- Au nanoparticles (acceptor) distance. This study opens the wide possibility of fabricating sensors and photonic devices with tunable optical properties.

  10. Air-stable Fe@Au nanoparticles synthesized by the microemulsion's methods

    NASA Astrophysics Data System (ADS)

    Rivas, José; Redondo, Yolanda Piñeiro; Iglesias-Silva, Esther; Vilas-Vilela, J. M.; León, L. M.; López-Quintela, Manuel Arturo

    2013-05-01

    Magnetic particles covered by gold are very important in many biological applications. However, there are not simple methods to produce small (< 5-10 nm) nanoparticles. One of the main reasons for that is the general use of iron oxides as magnetic cores, which have a large crystalline mismatch with gold. The use of Fe would be more appropriate, but its high tendency to oxidation has largely precluded it from being used as a core. Here, we will show that using a simple "one-pot" successive reaction method in microemulsions, can avoid such problems and is able to produce very stable core-shell Fe@Au nanoparticles. With this procedure, nanoparticles of ˜6 nm with a Fe core of 3 nm can easily be obtained. These Fe@Au nanoparticles, with a saturation magnetization of 1.13 emu/g, are very stable even in air after magnetic separation from the solution, which shows the good covering of the Fe core by the Au shell. In this contribution we will report the key parameters, which have to be taken into account, to prepare such stable Fe@Au dispersions and analyze their optical and magnetic properties, as well as their possible applications as biosensors, targeted magnetic separation, etc.

  11. Reductant and sequence effects on the morphology and catalytic activity of peptide-capped Au nanoparticles.

    PubMed

    Briggs, Beverly D; Li, Yue; Swihart, Mark T; Knecht, Marc R

    2015-04-29

    The use of peptides as capping ligands for materials synthesis has been widely explored. The ambient conditions of bio-inspired syntheses using molecules such as peptides represent an attractive route for controlling the morphology and activity of nanomaterials. Although various reductants can be used in such syntheses, no comprehensive comparison of the same bio-based ligand with different reductants has been reported. In this contribution, peptides AuBP1, AuBP2, and Pd4 are used in the synthesis of Au nanoparticles. The reductant strength is varied by using three different reducing agents: NaBH4, hydrazine, and ascorbic acid. These changes in reductant produce significant morphological differences in the final particles. The weakest reductant, ascorbic acid, yields large, globular nanoparticles with rough surfaces, whereas the strongest reductant, NaBH4, yields small, spherical, smooth nanomaterials. Studies of 4-nitrophenol reduction using the Au nanoparticles as catalysts reveal a decrease in activation energy for the large, globular, rough materials relative to the small, spherical, smooth materials. These studies demonstrate that modifying the reductant is a simple way to control the activity of peptide-capped nanoparticles. PMID:25839335

  12. Spectroscopic and Physical Characterization of Functionalized Au Nanoparticles: A Multiweek Experimental Project

    ERIC Educational Resources Information Center

    Masson, Jean-Francois; Yockell-Lelièvre, Hélène

    2014-01-01

    A term project was introduced in teaching advanced spectroscopy and notions of nanotechnology to chemistry students at the graduate level (M.Sc. and Ph.D.). This project could also be suited for an honor's thesis at the undergraduate level. Students were assigned a unique combination of nanoparticle synthesis (13 nm Au nanospheres, ~100 nm…

  13. Apoferritin Nanoparticle: A Novel and Biocompatible Carrier for Enzyme Immobilization with Enhanced Activity and Stability

    SciTech Connect

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong J.; Lin, Chiann Tso; Lin, Yuehe

    2011-11-01

    Apoferritin is a nanostructured material with a uniform size and spherical structure, and it has excellent bio-compatibility. In this work, we report the use of apoferritin as a novel and biocompatible carrier for stabilizing enzymes and their activities. We used glucose oxidase (GOx) as a model enzyme. GOx was immobilized on the surface of the apoferritin through a green synthetic approach taking advantage of bioaffinity binding between streptavidin and biotin. As a result, a glucose oxidase-biotin/streptavidin/biotin-apoferritin conjugate (Apo-GOx) was prepared using streptavidin as a bridge. The synthesized Apo-GOx was characterized with transmission electron microscopy, ultraviolet, and fluorescence spectroscopy. The activity and stability of GOx on the surface of the apoferritin were studied in different environments, such as temperature, chemicals, and pH, in comparison with the biotinylated GOx (B-GOx). The results showed that the activity of GOx on the apoferritin surface was significantly enhanced. The thermal and chemical stability of the GOx on the apoferritin was also greatly improved compared to free B-GOx in a solution. It was found that the activity of the GOx on the apoferritin only lost 30% in comparison to a 70% loss of free B-GOx after a 2 h incubation at 50oC. There was almost no decrease in activity for the GOx on the apoferritin as compared to an 80% activity decrease for free B-GOx after 30 min incubation in a 5 M urea solution. Glucose detection was used as a model application for the enzyme immobilization method developed in this work. The GOx immobilized apoferritin nanoparticles exhibited high sensitivity for glucose detection with a detection limit of 3 nM glucose. This work offers a novel approach for immobilizing enzymes with enhanced stability and activity, and this method may find a number of applications, such as in enzyme catalysis, DNA assays and immunoassays.

  14. Catalytic Gas-Phase Glycerol Processing over SiO2-, Cu-, Ni- and Fe- Supported Au Nanoparticles

    PubMed Central

    Kapkowski, Maciej; Siudyga, Tomasz; Sitko, Rafal; Lelątko, Józef; Szade, Jacek; Balin, Katarzyna; Klimontko, Joanna; Bartczak, Piotr; Polanski, Jaroslaw

    2015-01-01

    In this study, we investigated different metal pairings of Au nanoparticles (NPs) as potential catalysts for glycerol dehydration for the first time. All of the systems preferred the formation of hydroxyacetone (HYNE). Although the bimetallics that were tested, i.e., Au NPs supported on Ni, Fe and Cu appeared to be more active than the Au/SiO2 system, only Cu supported Au NPs gave high conversion (ca. 63%) and selectivity (ca. 70%) to HYNE. PMID:26580400

  15. Immobilization of glucose oxidase using CoFe2O4/SiO2 nanoparticles as carrier

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Huang, Jun; Wang, Chao; Li, Dapeng; Ding, Liyun; Han, Yun

    2011-04-01

    Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.

  16. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  17. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction.

    PubMed

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-18

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells. PMID:26585310

  18. Gold surfaces and nanoparticles are protected by Au(0)–thiyl species and are destroyed when Au(I)–thiolates form

    PubMed Central

    Reimers, Jeffrey R.; Ford, Michael J.; Halder, Arnab; Ulstrup, Jens; Hush, Noel S.

    2016-01-01

    The synthetic chemistry and spectroscopy of sulfur-protected gold surfaces and nanoparticles is analyzed, indicating that the electronic structure of the interface is Au(0)–thiyl, with Au(I)–thiolates identified as high-energy excited surface states. Density-functional theory indicates that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)–thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s–d hybridization and charge polarization effects that perturbatively mix in some Au(I)–thiolate character. A simple method for quantifying these contributions is presented, revealing that a driving force for nanoparticle growth is nobleization, minimizing Au(I)–thiolate involvement. Predictions that Brust–Schiffrin reactions involve thiolate anion intermediates are verified spectroscopically, establishing a key feature needed to understand nanoparticle growth. Mixing of preprepared Au(I) and thiolate reactants always produces Au(I)–thiolate thin films or compounds rather than monolayers. Smooth links to O, Se, Te, C, and N linker chemistry are established. PMID:26929334

  19. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes.

    PubMed

    Wen, Yan; Liu, Bitao; Zeng, Wei; Wang, Yuhua

    2013-10-21

    Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail. PMID:23963545

  20. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode

    NASA Astrophysics Data System (ADS)

    Fujiki, A.; Uemura, T.; Zettsu, N.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y.

    2010-01-01

    A significant increase in electroluminescence was achieved through coupling with localized surface plasmons in a single layer of Au nanoparticles. We fabricated a thin-film organic electroluminescence diode, which consists of an indium tin oxide (ITO) anode, a Au nanoparticle array, a Cu phthalocyanine hole transport layer, a tris(8-hydroxylquinolianato) aluminum (III) electron transport layer, a LiF electron injection layer, and an Al cathode. The device structure, with size-controlled Au particles embedded on ITO, can be used to realize the optimum distance for exciton-plasmon interactions by simply adjusting the thickness of the hole transport layer. We observed a 20-fold increase in the molecular fluorescence compared with that of a conventional diode structure.

  1. Facile synthesis and optical properties of polymer-laced ZnO-Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, XianHong; Zhang, XiaoYan; Cheng, WenZheng; Shao, HongQin; Liu, Xiao; Li, XueMei; Liu, HongLing; Wu, JunHua

    2014-03-01

    Bi-phase dispersible ZnO-Au hybrid nanoparticles were synthesized via one-pot non-aqueous nanoemulsion using the triblock copolymer poly(ethylene glycol)- block-poly(propylene glycol)- block-poly(ethylene glycol) as the surfactant. The characterization shows that the polymer-laced ZnO-Au nanoparticles are monosized and of high crystallinity and demonstrate excellent dispersibility and optical performance in both organic and aqueous medium, revealing the effects of quantum confinement and medium. The findings show two well-behaved absorption bands locating at approximately 360 nm from ZnO and between 520 and 550 nm from the surface plasmon resonance of the nanosized Au and multiple visible fingerprint photoluminescent emissions. Consequently, the wide optical absorbance and fluorescent activity in different solvents could be promising for biosensing, photocatalysis, photodegradation, and optoelectronic devices.

  2. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.

    PubMed

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  3. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells

    PubMed Central

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  4. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida).

    PubMed

    Unrine, Jason M; Hunyadi, Simona E; Tsyusko, Olga V; Rao, William; Shoults-Wilson, W Aaron; Bertsch, Paul M

    2010-11-01

    Because Au nanoparticles (NPs) are resistant to oxidative dissolution and are easily detected, they have been used as stable probes for the behavior of nanomaterials within biological systems. Previous studies provide somewhat limited evidence for bioavailability of Au NPs in food webs, because the spatial distribution within tissues and the speciation of Au was not determined. In this study, we provide multiple lines of evidence, including orthogonal microspectroscopic techniques, as well as evidence from biological responses, that Au NPs are bioavailable from soil to a model detritivore (Eisenia fetida). We also present limited evidence that Au NPs may cause adverse effects on earthworm reproduction. This is perhaps the first study to demonstrate that Au NPs can be taken up by detritivores from soil and distributed among tissues. We found that primary particle size (20 or 55 nm) did not consistently influence accumulated concentrations on a mass concentration basis; however, on a particle number basis the 20 nm particles were more bioavailable. Differences in bioavailability between the treatments may have been explained by aggregation behavior in pore water. The results suggest that nanoparticles present in soil from activities such as biosolids application have the potential to enter terrestrial food webs. PMID:20879765

  5. Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals

    PubMed Central

    Shi, Yumeng; Huang, Jing-Kai; Jin, Limin; Hsu, Yu-Te; Yu, Siu Fung; Li, Lain-Jong; Yang, Hui Ying

    2013-01-01

    We report a controllable wet method for effective decoration of 2-dimensional (2D) molybdenum disulfide (MoS2) layers with Au nanoparticles (NPs). Au NPs can be selectively formed on the edge sites or defective sites of MoS2 layers. The Au-MoS2 nano-composites are formed by non-covalent bond. The size distribution, morphology and density of the metal nanoparticles can be tuned by changing the defect density in MoS2 layers. Field effect transistors were directly fabricated by placing ion gel gate dielectrics on Au-decorated MoS2 layers without the need to transfer these MoS2 layers to SiO2/Si substrates for bottom gate devices. The ion gel method allows probing the intrinsic electrical properties of the as-grown and Au-decorated MoS2 layers. This study shows that Au NPs impose remarkable p-doping effects to the MoS2 transistors without degrading their electrical characteristics. PMID:23670611

  6. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida)

    SciTech Connect

    J Unrine; S Hunyadi; O Tsyusko; W Rao; A Shoults-Wilson; P Bertsch

    2011-12-31

    Because Au nanoparticles (NPs) are resistant to oxidative dissolution and are easily detected, they have been used as stable probes for the behavior of nanomaterials within biological systems. Previous studies provide somewhat limited evidence for bioavailability of Au NPs in food webs, because the spatial distribution within tissues and the speciation of Au was not determined. In this study, we provide multiple lines of evidence, including orthogonal microspectroscopic techniques, as well as evidence from biological responses, that Au NPs are bioavailable from soil to a model detritivore (Eisenia fetida). We also present limited evidence that Au NPs may cause adverse effects on earthworm reproduction. This is perhaps the first study to demonstrate that Au NPs can be taken up by detritivores from soil and distributed among tissues. We found that primary particle size (20 or 55 nm) did not consistently influence accumulated concentrations on a mass concentration basis; however, on a particle number basis the 20 nm particles were more bioavailable. Differences in bioavailability between the treatments may have been explained by aggregation behavior in pore water. The results suggest that nanoparticles present in soil from activities such as biosolids application have the potential to enter terrestrial food webs.

  7. Electrical Characteristics of Hybrid-Organic Memory Devices Based on Au Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nejm, Razan R.; Ayesh, Ahmad I.; Zeze, Dagou A.; Sleiman, Adam; Mabrook, Mohammed F.; Al-Ghaferi, Amal; Hussein, Mousa

    2015-08-01

    We report on the fabrication and characterization of hybrid-organic memory devices based on gold (Au) nanoparticles that utilize metal-insulator-semiconductor structure. Au nanoparticles were produced by sputtering and inert-gas condensation inside an ultrahigh-vacuum compatible system. The nanoparticles were self-assembled on a silicon dioxide (SiO2)/silicon (Si) substrate, then coated with a poly(methyl methacrylate) (PMMA) insulating layer. Aluminum (Al) electrodes were deposited by thermal evaporation on the Si substrate and the PMMA layer to create a capacitor. The nanoparticles worked as charge storage elements, while the PMMA is the capacitor insulator. The capacitance-voltage ( C- V) characteristics of the fabricated devices showed a clockwise hysteresis with a memory window of 3.4 V, indicative of electron injection from the top Al electrode through the PMMA layer into Au nanoparticles. Charge retention was measured at the stress voltage, demonstrating that the devices retain 94% of the charge stored after 3 h of continuous testing.

  8. Ellagic Acid Directed Growth of Au-Pt Bimetallic Nanoparticles and Their Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Barnaby, Stacey N.; Sarker, Nazmul H.; Banerjee, Ipsita A.

    2013-02-01

    In this work, we report the facile formation of bimetallic nanoparticles of Au-Pt in the presence of the plant polyphenol ellagic acid (EA). It was found that EA formed micro-fibrillar assemblies, which aggregated into micro-bundles under aqueous conditions. Those micro-bundles acted as templates for the growth of Au nanoparticles, as well as bimetallic Au-Pt nanoparticles biomimetically. At higher concentrations of EA, it was observed that in addition to forming fibrous micro-bundles, columnar assemblies of EA were formed in the presence of the metal nanoparticles. The formation of the assemblies was found to be concentration dependent. It appears that upon binding to metal ions and subsequent formation of the nanoparticles, morphological changes occur in the case of EA assemblies. The morphological changes observed were probed by electron microscopy. Further, the ability of the materials to degrade the toxic aromatic nitro compound 2-methoxy-4-nitroaniline was explored, where 50% degradation was observed within 15 min, indicating that such hybrid materials may have potential applications in environmental remediation.

  9. Synthesis and electron microscopy characterization of bimetallic nanoparticles and atomically controlled Au nanoclusters

    NASA Astrophysics Data System (ADS)

    Bhattarai, Nabraj

    The properties of metal nanoparticles are controlled by their composition, shape, size and crystalline structure. Nanoparticles and nanoclusters with controlled shape and size were synthesized and investigated using atomic resolution images from aberration corrected scanning/transmission electron microscopy (STEM) and mass spectrometry (MS). Gold-palladium (Au-Pd) core-shell nanocube and triangular nanoparticles were prepared by a seed-mediated growth process and the growth mechanism was studied by varying the volume of Pd precursors added to the Au seed solution. The atomic resolution STEM images revealed that the nanocube is formed from a single-crystal Au seed with rapid growth along <111> directions while the triangular nanoparticles were obtained with growth preferentially along <110> directions rather than <111> direction. The strain generated by the lattice mismatch between fcc-Au and fcc-Pd, is released by Shockley partial dislocations (SPD), combined with stacking faults (SF) that appear at the final (outer) Pd layer. Then, as the shell grows the SPDs and SFs appear at the interface and combine with misfit dislocations, which finally diffuse to the free surfaces due to the alloying of Au into the Pd shell. In related work, magneto-plasmonic gold-cobalt (Au-Co) nanoparticles of diameter 4-nm were generated by a phase-transfer process and investigated by STEM, where the Z-contrast imaging and energy dispersive x-ray spectroscopy (EDS) showed inhomogeneous alloying between Au and Co at the nanoscale. The observed ferromagnetic behavior carries significance in biomedical applications. In addition, selected metallic (Au144(SR)60) and bimetallic (CuAu144) nanoclusters were obtained with thiolate-ligand protection and characterized using optical, MS, and STEM techniques. The optical spectrum and MS results established the monodispersity and purity of the nanoclusters. Another important aspect is that the emergence of broad strong plasmonic band centered near 520

  10. Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading.

    PubMed

    Hong, Xinguo; Duffy, Thomas S; Ehm, Lars; Weidner, Donald J

    2015-12-01

    The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS) of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. The internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au. PMID:26570982

  11. An amplified electrochemiluminescent aptasensor using Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites as a signal enhancement tag.

    PubMed

    Ma, Meng-Nan; Zhang, Xia; Zhuo, Ying; Chai, Ya-Qin; Yuan, Ruo

    2015-02-01

    A novel electrochemiluminescent (ECL) signal tag of Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites (AuNPs/TSC-PTC/C60NPs) was developed for thrombin (TB) aptasensor construction based on the peroxydisulfate/oxygen (S2O8(2-)/O2) system. For signal tag fabrication, the C60 nanoparticles (C60NPs) were prepared and then coated with 3,4,9,10-perylene tetracarboxylic acid (PTCA) by π-π stacking interactions. Afterwards, thiosemicarbazide (TSC) was linked with PTCA functionalized C60NPs via amidation for further assembling Au nanoparticles (AuNPs). Finally, detection aptamer of thrombin (TBA 2) was labeled on the ECL signal amplification tag of AuNPs/TSC-PTC/C60NPs. Herein, TSC, with the active groups of -NH2 and -SH, was selected and introduced into the ECL S2O8(2-)/O2 system for the first time, which could not only offer the active groups of -SH to absorb AuNPs for TBA 2 anchoring but also remarkably enhance the ECL signal of the S2O8(2-)/O2 system by the formation of TSC-PTC/C60NPs for signal amplification. Meanwhile, the sensing interface of a glassy carbon electrode (GCE) was modified by AuNPs/graphene (AuNPs/GR) nanocomposites with the large specific surface area and the active sites, followed by immobilization of thiol-terminated thrombin capture aptamer (TBA 1). With the formation of the sandwich-type structure of TBA 1, TB, and TBA 2 signal probes, a desirable enhanced ECL signal was measured in the testing buffer of an S2O8(2-)/O2 solution for detecting TB. The aptasensor exhibited a good linear relationship for TB detection in the range of 1 × 10(-5)-10 nM with a detection limit of 3.3 fM. PMID:25559492

  12. Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle

    NASA Astrophysics Data System (ADS)

    Jin, Zhiwen; Liu, Guo; Wang, Jizheng

    2013-05-01

    Uniform Au nanoparticles (NPs) are formed by thermally depositing nominal 2-nm thick Au film on a 10-nm thick polyimide film formed on a Al electrode, and then covered by a thin polymer semiconductor film, which acts as an energy barrier for electrons to be injected from the other Al electrode (on top of polymer film) into the Au NPs, which are energetically electron traps in such a resistive random access memory (RRAM) device. The Au NPs based RRAM device exhibits estimated retention time of 104 s, cycle times of more than 100, and ON-OFF ratio of 102 to 103. The carrier transport properties are also analyzed by fitting the measured I-V curves with several conduction models.

  13. Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles

    SciTech Connect

    Zhang S.; Su D.; Guo, S.; Zhu, H.; Sun, S.

    2012-03-21

    Using FePtAu nanoparticles (NPs) as an example, this Communication demonstrates a new structure-control strategy to tune and optimize NP catalysis. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face-centered cubic (fcc) structure to chemically ordered face-centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu NPs have mass activity as high as 2809.9 mA/mg Pt and retain 92.5% of this activity after a 13 h stability test. They become the most efficient NP catalyst ever reported for FAOR. This structure-control strategy can be extended to other multimetallic NP systems, providing a general approach to advanced NP catalysts with desired activity and durability control for practical applications.

  14. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays.

    PubMed

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Liu, Yi-Ming; Wei, Ying; Qing, Lin-Sen; Liao, Xun

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe3O4-SiO2) possessed three dimensional core-shell structures with an average diameter of ~20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g(-1). The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The Km and the Vmax values (0.02 mM, 6.40 U·mg(-1) enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg(-1) enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. PMID:24656379

  15. Pulsed-laser-deposited TiO2 nanocrystalline films supporting Au nanoparticles for visible-light-operating plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yoshida, Takehito; Watanabe, Tei; Kikuchi, Fumito; Tabuchi, Takeru; Umezu, Ikurou; Haraguchi, Masanobu

    2016-05-01

    We have synthesized pulsed-laser-deposited (PLD) TiO2 nanocrystalline films supporting Au nanoparticles. Au films were deposited on the PLD TiO2 nanocrystalline films with the mass thickness of 4 nm. The as-deposited Au films had island structures. After furnace annealing at 300 °C for 180 min in air, the as-deposited island-structured Au films were balled with the mean diameter of 19 nm on the PLD TiO2 nanocrystalline films. We confirmed that the balled Au nanoparticles had the localized surface plasmonic resonance absorption band in the range of 510-600 nm. Photocatalytic activities of the Au-supporting TiO2 nanocrystalline films were evaluated by a methylene blue decomposition method. We clarified that the Au-supporting TiO2 nanocrystalline films demonstrated visible-light-driven photocatalytic activities, under the filtered (490-500 nm) Xe arc lamp irradiation.

  16. Immobilization of invertase on chitosan coated γ-Fe2O3 magnetic nanoparticles to facilitate magnetic separation.

    PubMed

    Waifalkar, P P; Parit, S B; Chougale, A D; Sahoo, Subasa C; Patil, P S; Patil, P B

    2016-11-15

    Industrially important invertase enzyme was immobilized on chitosan coated sol gel derived γ-Fe2O3 magnetic nanoparticles (MNPs) to enable it for repetitive use by magnetic separation. MNPs were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), field emission scanning electron microscope (FE-SEM), Fourier transform infrared (FTIR) spectrometer and magnetic measurements. FTIR studies confirmed successful immobilization of invertase on MNPs. The ability to convert sucrose into invert syrup was enhanced in immobilized invertase compared to that of free enzyme. Further it was found that invertase immobilized on MNPs (IIMNPs) were more stable at varying pH and temperature conditions. Magnetic separation technique was successfully employed for reuse of the IIMNPs for 20 times without significant loss of activity. PMID:27501039

  17. Hydrodechlorination Catalysis of Pd-on-Au Nanoparticles Varies with Particle Size

    SciTech Connect

    Pretzer, Lori A.; Song, Hyun J.; Fang, Yu-Lun; Zhao, Zhun; Guo, Neng; Wu, Tianpin; Arslan, Ilke; Miller, Jeffrey T.; Wong, Michael S.

    2013-02-01

    The dependence of bimetallic PdAu catalytic activity on the relative ratios of Pd and Au has been theoretically predicted and experimentally observed for a number of reactions. Trichloroethene (TCE), a common carcinogenic solvent that is difficult to remove from contaminated groundwater in many industrialized nations, can be chemically degraded especially rapidly with Au nanoparticles partially coated with Pd ("Pd-on-Au NPs"). These NPs catalyze the room-temperature water-phase TCE hydrodechlorination (HDC) reaction with activities that follow a volcano-shape dependence on Pd surface coverage. The effect of particle size is not known, though. Pd-on-Au NPs synthesized with 3, 7, and 10 nm Au NPs and Pd surface coverages between 0 and 150% were studied in detail. Volcano-shape dependence on Au particle size and Pd surface coverage was observed, with 7 nm Au NPs with a Pd coverage of 60-70% having the highest TCE HDC activity. Extended x-ray absorption fine-structure spectroscopy (EXAFS) revealed the correlation was strongest between catalytic activity and the presence of non-oxidized Pd ensembles of ~2-3 atoms in contact with ~8-10 Au atoms. Isolated Pd atoms and Pd ensembles were visualized for the first time through aberration-corrected scanning transmission electron microscopy (STEM). This study provides the most direct evidence yet for Pd-on-Au NPs containing 2-dimensional Pd ensembles as the active sites for TCE HDC and likely for other chemical reactions. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This research was supported by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  18. Characterization of localized surface plasmon resonance transducers produced from Au25 nanoparticle multilayers

    PubMed Central

    Vaccarello, Paul; Tran, Linh; Meinen, Julia; Kwon, Chuhee; Abate, Yohannes; Shon, Young-Seok

    2012-01-01

    This article reports the preparation of gold plasmonic transducers using a nanoparticle self-assembly/heating method and the characterization of the films using scattering-type scanning near-field optical microscopy (s-SNOM). Nanoparticle-polymer multilayer films were prepared by the layer-by-layer assembly on glass slides by alternating exposures to monodisperse Au25 nanoparticles and ionic polymer linkers. Thermal evaporation of organic matters from the nanoparticle-polymer multilayer films at 600 °C allowed the nanoparticles to coalescence and form nanostructured films. Characterization of the nanostructured films generated from Au25 nanoparticles using atomic force microscopy (AFM) showed that the films have rounded, small, island-like morphologies (d: 30-50 nm) with a pit in the center of many islands. However, further characterizations with s-SNOM revealed that the produced nanoislands contain a single gold cluster in a pit surrounded by donut-shaped dielectric species. Formation of such a structure is thought to be resulted from the embedding of gold clusters under the reorganized polysiloxane binder coatings and glass surfaces during heat treatment of the Au25 nanoparticle multilayer films. The nanostructured films displayed strong surface plasmon resonance bands in UV-vis spectra with a peak absorbance occurring at ~545-550 nm. The optical sensing capability of the films was examined using D-glucose-functionalized gold island films with the interaction of Concanavalin A (ConA). The result showed that the adsorption of ConA on island films causes a large change in the LSPR band intensity. PMID:22822292

  19. Preparation of multi-functionalized Fe3O4/Au nanoparticles for medical purposes.

    PubMed

    del Mar Ramos-Tejada, María; Viota, Julian L; Rudzka, Katarzyna; Delgado, Angel V

    2015-04-01

    In this work, we investigate a route towards the synthesis of multi-functionalized nanoparticles for medical purposes. The aim is to produce magnetite/gold (Fe3O4/Au) nanoparticles combining several complementary properties, specifically, being able to carry simultaneously an antitumor drug and a selected antibody chosen so as to improve specificity of the drug vehicle. The procedure included, firstly, the preparation of Fe3O4 cores coated with Au nanoparticles: this was achieved by using initially the layer-by-layer technique in order to coat the magnetite particles with a three polyelectrolyte (cationic-anionic-cationic) layer. With this, the particles became a good substrate for the growth of the gold layer in a well-defined core-shell structure. The resulting nanoparticles benefit from the magnetic properties of the magnetite and the robust chemistry and the biostability of gold surfaces. Subsequently, the Fe3O4/Au nanoparticles were functionalized with a humanized monoclonal antibody, bevacizumab, and a chemotherapy drug, doxorubicin. Taken together, bevacizumab enhances the therapeutic effect of chemotherapy agents on some kinds of tumors. In this work we first discuss the morphology of the particles and the electrical characteristics of their surface in the successive synthesis stages. Special attention is paid to the chemical stability of the final coating, and the physical stability of the suspensions of the nanoparticles in aqueous solutions and phosphate buffer. We describe how optical absorbance and electrokinetic data provide a follow up of the progress of the nanostructure formation. Additionally, the same techniques are employed to demonstrate that the composite nanoparticles are capable of loading/releasing doxorubicin and/or bevacizumab. PMID:25710633

  20. Development of morin-conjugated Au nanoparticles: Exploring the interaction efficiency with BSA using spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Yue, Hua-Li; Hu, Yan-Jun; Huang, Hong-Gui; Jiang, Shan; Tu, Bao

    2014-09-01

    In order to enhance its interaction efficiency with biomacromolecules for the usage as a therapeutic agent, we have conjugated morin, an antioxidant activity and anti-tumor drug, with citrate-coated Au nanoparticles (M-C-AuNPs). M-C-AuNPs were prepared by reducing chloroauric acid using trisodium citrate in the boiling condition, and the resulted M-C-AuNPs were characterized by UV-vis absorption spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. In this article, UV-vis absorption spectroscopy in combination with fluorescence spectroscopy, and circular dichroism (CD) spectroscopy were employed to investigate the interactions between M-C-AuNPs and bovine serum albumin (BSA), C-AuNPs and BSA in a phosphate buffer at pH 7.4. By comparing the quenching constant KSV, effective quenching constant Ka, binding constant Kb and the number of binding sites n, it is clearly suggested that M-C-AuNPs could enhance the binding force of morin with BSA, which would pave the way for the design of nanotherapeutic agents with improved functionality.

  1. Electron emission of Au nanoparticles embedded in ZnO for highly conductive oxide

    SciTech Connect

    Huang, Po-Shun; Lee, Jung-Kun; Hoe Kim, Dong

    2014-04-07

    We investigated the effect of embedded Au nanoparticles (Au NPs) on electrical properties of zinc oxide (ZnO) for highly conductive oxide semiconductor. Au NPs in ZnO films influenced both the structural and electrical properties of the mixture films. The electrical resistivity decreases by as much as five orders of magnitude. This is explained by the electron emission from Au NPs to the ZnO matrix. Temperature-dependent Hall effect measurements show that an electron emission mechanism changes from tunneling to thermionic emission at T = 180 K. The electron mobility in the mixture film is mainly limited by the grain boundaries at lower temperature (80-180 K), and the Au/ZnO heterogeneous interface at higher temperature (180-340 K). In addition to the electron emission, embedded Au NPs alter the ZnO matrix microstructure and improve the electron mobility. Compared to the undoped ZnO film, the carrier concentration of the Au NP-embedded ZnO film can be increased by as much as six orders of magnitude with a small change in the carrier mobility. This result suggests a way to circumvent the inherent tradeoff between the carrier concentration and the carrier mobility in transparent conductive oxide (TCO) materials.

  2. From the Au nano-clusters to the nanoparticles on 4H-SiC (0001).

    PubMed

    Li, Ming-Yu; Zhang, Quanzhen; Pandey, Puran; Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature. PMID:26354098

  3. From the Au nano-clusters to the nanoparticles on 4H-SiC (0001)

    NASA Astrophysics Data System (ADS)

    Li, Ming-Yu; Zhang, Quanzhen; Pandey, Puran; Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2015-09-01

    The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature.

  4. From the Au nano-clusters to the nanoparticles on 4H-SiC (0001)

    PubMed Central

    Li, Ming-Yu; Zhang, Quanzhen; Pandey, Puran; Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature. PMID:26354098

  5. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification.

    PubMed

    Fang, Lin-Xia; Huang, Ke-Jing; Liu, Yang

    2015-09-15

    A new electrochemical aptamer biosensor for the platelet-derived growth factor BB (PDGF-BB) detection has been developed based on the signal amplification of MoS2/carbon aerogel composites (MoS2/CA) and sandwich assay. A facile hydrothermal route assisted by L-cysteine was applied to synthesize CA incorporated flower-like MoS2 with the large surface active sites and good conductivity. The electrochemical aptasensor was constructed by sandwiching the PDGF-BB between a glassy carbon electrode modified with thiol-terminated PDGF-BB aptamer-1 (Apt1)/gold nanoparticles (AuNPs)/MoS2/CA and the AuNPs with thiol-terminated PDGF-BB aptamer-2 (Apt2) and 6-ferrocenyl hexanethiol (Fc). Fc-AuNPs-Apt2 acted as tracer and AuNPs/MoS2/CA were utilized as the biosensor platform to immobilize a large amount of capture aptamers, owing to their layered structure and high surface-to-volume ratio. Based on the sandwich format, a dual signal amplification strategy had been successfully developed with a wide linear response in the range of 0.001-10nM and a limit of detection of 0.3 pM. The developed assay demonstrated good selectivity and high sensitivity, indicating potential applications in bioanalysis and biomedicine. PMID:25909336

  6. Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Zhang, Ye; Zhang, Xiang; Zhou, Xiuhong; Teng, Xiyao; Yan, Manqing; Bi, Hong

    2015-02-01

    Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles (MMSNs-HRP) have been synthesized by a NHS/EDC coupling between the amino groups of horseradish peroxidase (HRP) and the carboxyl groups on the MMSNs surface. It is found that the immobilized HRP on MMSNs still retain high activity and the MMSNs-HRP can eliminate the reactive oxygen species (ROS) in Chinese hamster ovary (CHO) cells induced by the addition of H2O2 aqueous solution. Further, the fluorescent MMSN-HRP-CD nanoparticles have been prepared by attaching biocompatible, fluorescent carbon dots (CDs) to MMSNs-HRP. We have also investigated the effect of an applied magnetic field on cellular uptake of MMSNs-HRP-CDs and found that the internalization of MMSNs-HRP-CDs by CHO cells could be enhanced within 2 hours under the magnetic field. This work provides us with a novel and efficient method to eliminate ROS in living cells by using HRP-immobilized nanoparticles.Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles (MMSNs-HRP) have been synthesized by a NHS/EDC coupling between the amino groups of horseradish peroxidase (HRP) and the carboxyl groups on the MMSNs surface. It is found that the immobilized HRP on MMSNs still retain high activity and the MMSNs-HRP can eliminate the reactive oxygen species (ROS) in Chinese hamster ovary (CHO) cells induced by the addition of H2O2 aqueous solution. Further, the fluorescent MMSN-HRP-CD nanoparticles have been prepared by attaching biocompatible, fluorescent carbon dots (CDs) to MMSNs-HRP. We have also investigated the effect of an applied magnetic field on cellular uptake of MMSNs-HRP-CDs and found that the internalization of MMSNs-HRP-CDs by CHO cells could be enhanced within 2 hours under the magnetic field. This work provides us with a novel and efficient method to eliminate ROS in living cells by using HRP-immobilized nanoparticles. Electronic supplementary information (ESI) available: TEM image of CDs, BET XRD

  7. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.

    PubMed

    Wang, Lei; Zhou, Xuemei; Nguyen, Nhat Truong; Schmuki, Patrik

    2015-02-01

    Hematite nanoflake arrays were decorated with Au nanoparticles through a simple solution chemistry approach. We show that the photoactivity of Au-decorated Fe2 O3 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the UV/Visible region compared with the bare Fe2 O3 . Au-nanoparticle-decorated Fe2 O3 nanoflake electrodes exhibit a significant cathodic shift of the onset potential up to 0.6 V [vs. reversible hydrogen electrode (RHE)], and a two times increase in the water oxidation photocurrent is achieved at 1.23 VRHE . A maximum photocurrent of 2.0 mA cm(-2) at 1.6 VRHE is obtained in 1 M KOH under AM 1.5 (100 mW cm(-2) ) conditions. The enhancement in photocurrent can be attributed to the Au nanoparticles acting as plasmonic photosensitizers that increase the optical absorption. PMID:25581403

  8. Effect of Au nano-particles doping on polycrystalline YBCO high temperature superconductor

    NASA Astrophysics Data System (ADS)

    Dadras, Sedigheh; Gharehgazloo, Zahra

    2016-07-01

    In this research, we prepared different Au nanoparticles (0.1-2 wt%) doped YBCO high temperature superconductor samples by sol-gel method. To characterize the samples, we used X-Ray diffraction (XRD) and scanning electron microscope (SEM) analysis. Results show the formation of orthorhombic phase of superconductivity for all prepared samples. We observed that by adding Au nanoparticles, the grains' size of the samples reduces from 76 nm to 47 nm as well. The critical current density (Jc) and transition temperature (Tc) were determined using current versus voltage (I-V) and resistivity versus temperature (ρ-T) measurements, respectively. We found that by increasing Au nanoparticles in the compound, in comparison to the pure YBCO sample, the transition temperature, pinning energy and critical current density will increase. Also, the highest Jc is for 1 wt% Au doped YBCO compound that its critical current density is about 8 times more than the Jc of pure one in 0.7 T magnetic field.

  9. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method.

    PubMed

    Wang, Junfeng; Wu, Xuezhong; Wang, Chongwen; Rong, Zhen; Ding, Hongmei; Li, Hui; Li, Shaohua; Shao, Ningsheng; Dong, Peitao; Xiao, Rui; Wang, Shengqi

    2016-08-10

    This study proposes a facile method for synthesis of Au-coated magnetic nanoparticles (AuMNPs) core/shell nanocomposites with nanoscale rough surfaces. MnFe2O4 nanoparticles (NPs) were first modified with a uniform polyethylenimine layer (2 nm) through self-assembly under sonication. The negatively charged Au seeds were then adsorbed on the surface of the MnFe2O4 NPs through electrostatic interaction for Au shell formation. Our newly developed sonochemically assisted hydroxylamine seeding growth method was used to grow the adsorbed gold seeds into large Au nanoparticles (AuNPs) to form a nanoscale rough Au shell. Au-coated magnetic nanoparticles (AuMNPs) were obtained from the intermediate product (Au seeds decorated magnetic core) under sonication within 5 min. The AuMNPs were highly uniform in size and shape and exhibited satisfactory surface-enhanced Raman scattering (SERS) activity and strong magnetic responsivity. PATP was used as a probe molecule to evaluate the SERS performance of the synthesized AuMNPs with a detection limit of 10(-9) M. The synthesized AuMNPs were conjugated with Staphylococcus aureus (S. aureus) antibody for bacteria capture and separation. The synthesized plasmonic AuNR-DTNB NPs, whose LSPR wavelength was adjusted to the given laser excitation wavelength (785 nm), were conjugated with S. aureus antibody to form a SERS tag for specific recognition and report of the target bacteria. S. aureus was indirectly detected through SERS based on sandwich-structured immunoassay, with a detection limit of 10 cells/mL. Moreover, the SERS intensity at Raman peak of 1331 cm(-1) exhibited a linear relationship to the logarithm of bacteria concentrations ranging from 10(1) cells/mL to 10(5) cells/mL. PMID:27420923

  10. Preparation and photocatalytic activity of eccentric Au-titania core-shell nanoparticles by block copolymer templates.

    PubMed

    Li, Xue; Fu, Xiaoning; Yang, Hui

    2011-02-21

    A novel route for a preparation of eccentric Au-titania core-shell nanoparticles using gold nanoparticles (AuNPs) with block copolymer shells as a template is reported. AuNPs with poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PVP-b-PEO) block copolymer shells are first prepared by UV irradiation of the solution of PVP-b-PEO/HAuCl(4) complexes. Then the sol-gel reaction of titanium tetra-isopropoxide (TTIP) selectively on the surfaces of AuNPs leads to Au-titania core-shell composite nanoparticles. The eccentric Au-titania core-shell nanoparticles are obtained from the Au-titania core-shell composite nanoparticles by removal of organic interlayer by UV treatment. Photocatalytic activities of the resulting eccentric core-shell nanoparticles are investigated in terms of the degradation of methylene blue (MB). The results show that the eccentric core-shell structures endow the catalyst with greatly enhanced photocatalytic activity. PMID:21157597

  11. Micro-patterns of Au@SiO 2 core-shell nanoparticles formed by electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Qi, Youli; Chen, Miao; Liang, Shan; Yang, Wu; Zhao, Jing

    2008-01-01

    In this paper, silica-coated Au nanoparticles (Au@SiO 2) were prepared by the technique of vortex mixing. Subsequently, these monodisperse Au@SiO 2 nanoparticles were functionalized by the silane reagents 3-aminopropyltriethoxysilane (APS) and 3-mercaptopropyltriethoxysilane (MPTS) respectively. Then, these NH 2-terminated and SO 32--terminated Au@SiO 2 nanoparticles were respectively assembled onto the substrates, which have been patterned with different self-assembly monolayers (SAMs), to form close-packed two-dimensional Au@SiO 2 nanoparticle arrays by electrostatic interactions. The morphologies and the optical properties of Au@SiO 2 nanoparticles with different silica-shell thicknesses were characterized by TEM and UV-vis. The compositions and zeta potentials of the functionalized Au@SiO 2 nanoparticles were examined by X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS). The morphologies of the patterns formed on different templates were characterized by atomic force microscopy (AFM).

  12. "Soft and rigid" dithiols and Au nanoparticles grafting on plasma-treated polyethyleneterephthalate

    PubMed Central

    2011-01-01

    Surface of polyethyleneterephthalate (PET) was modified by plasma discharge and subsequently grafted with dithiols (1, 2-ethanedithiol (ED) or 4, 4'-biphenyldithiol) to create the thiol (-SH) groups on polymer surface. This "short" dithiols are expected to be fixed via one of -SH groups to radicals created by the plasma treatment on the PET surface. "Free" -SH groups are allowed to interact with Au nanoparticles. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrokinetic analysis (EA, zeta potential) were used for the characterization of surface chemistry of the modified PET. Surface morphology and roughness of the modified PET were studied by atomic force microscopy (AFM). The results from XPS, FTIR, EA and AFM show that the Au nanoparticles are grafted on the modified surface only in the case of biphenyldithiol pretreatment. The possible explanation is that the "flexible" molecule of ethanedithiol is bounded to the activated PET surface with both -SH groups. On the contrary, the "rigid" molecule of biphenyldithiol is bounded via only one -SH group to the modified PET surface and the second one remains "free" for the consecutive chemical reaction with Au nanoparticle. The gold nanoparticles are distributed relatively homogenously over the polymer surface. PMID:22117780

  13. Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids

    NASA Astrophysics Data System (ADS)

    Wender, Heberton; Andreazza, Marcos L.; Correia, Ricardo R. B.; Teixeira, Sérgio R.; Dupont, Jairton

    2011-03-01

    Stable gold nanoparticles (AuNPs) were prepared by simple laser ablation of an Au foil placed inside or outside four ionic liquids (ILs), without the addition of any external chemical reagent. Irregular spherical AuNPs with a diameter range of 5 to 20 nm were produced after laser ablation of an Au foil located inside or outside the ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF6) and 1-(3-cyanopropyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ((BCN)MI.NTf2). Additionally, whereas laser ablation inside the IL 1-n-butyl-3-methylimidazolium dicyanamide BMI.N(CN)2 produced flower-like shaped nanoparticles of about 50 nm in size, ablation outside this IL presented similar results to the others ILs studied, as determined by TEM and UV-Vis. The size and shape of the prepared NPs were related to where NP nucleation and growth occurred, i.e., at the IL surface or within the IL. Indeed, the chemical composition of the IL/air interface and surface ion orientation played important roles in the stabilization of the AuNPs formed by laser ablation outside the ILs.

  14. Effect of dielectric spacer layers and substrate on SERS with Au nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Briber, Robert M.; Rabin, Oded

    2015-03-01

    The optical response of a plasmonic nanostructure is often highly dependent on the nature of the underlying substrate. To study the effect of the substrate on surface enhanced Raman scattering (SERS), a series of SERS substrates were fabricated consisting of a hexagonal array of Au nanoparticles self assembled on block copolymer films, a silicon oxide (dielectric) layer and a silicon substrate or an Au substrate. The inter-particle distance and the dielectric layer thickness were controlled. The SERS Enhancement Factors (EF) were calculated by comparing the Raman spectra of 4-aminothiophenol adsorbed on the surface of the Au nanoparticles and in a standard solution. The SERS EF were found to be strongly affected by the inter-particle distance and silicon oxide thickness. Changing the inter-particle spacing induced a 102 variation in the EF, changing the oxide thickness increased EF values by an factor of 10, and changing substrate from Si to Au increased EF by a factor of 10. Maximal enhancement factors were found with oxide layer thicknesses between 30 nm and 50 nm beneath the 30 nm polymer film with Au substrates. This geometry both improved the resonance condition with the probe laser and reduced the absorption by the substrate. This work illustrates that optimization of plasmonic-based sensors should consider both the metallic and the surrounding structures. The Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland, College Park, MD 20742.

  15. Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo

    PubMed Central

    Li, Yuntao; Liu, Jing; Zhong, Yuejiao; Zhang, Jia; Wang, Ziyu; Wang, Li; An, Yanli; Lin, Mei; Gao, Zhiqiang; Zhang, Dongsheng

    2011-01-01

    Purpose This research was conducted to assess the biocompatibility of the core–shell Fe3O4@ Au composite magnetic nanoparticles (MNPs), which have potential application in tumor hyperthermia. Methods Fe3O4@Au composite MNPs with core–shell structure were synthesized by reduction of Au3+ in the presence of Fe3O4-MNPs prepared by improved co-precipitation. Cytotoxicity assay, hemolysis test, micronucleus (MN) assay, and detection of acute toxicity in mice and beagle dogs were then carried out. Results The result of cytotoxicity assay showed that the toxicity grade of this material on mouse fibroblast cell line (L-929) was classified as grade 1, which belongs to no cytotoxicity. Hemolysis rates showed 0.278%, 0.232%, and 0.197%, far less than 5%, after treatment with different concentrations of Fe3O4@Au composite MNPs. In the MN assay, there was no significant difference in MN formation rates between the experimental groups and negative control (P > 0.05), but there was a significant difference between the experimental groups and the positive control (P < 0.05). The median lethal dose of the Fe3O4@Au composite MNPs after intraperitoneal administration in mice was 8.39 g/kg, and the 95% confidence interval was 6.58–10.72 g/kg, suggesting that these nanoparticles have a wide safety margin. Acute toxicity testing in beagle dogs also showed no significant difference in body weight between the treatment groups at 1, 2, 3, and 4 weeks after liver injection and no behavioral changes. Furthermore, blood parameters, autopsy, and histopathological studies in the experimental group showed no significant difference compared with the control group. Conclusion The results indicate that Fe3O4@Au composite MNPs appear to be highly biocompatible and safe nanoparticles that are suitable for further application in tumor hyperthermia. PMID:22131827

  16. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  17. Green synthesis and applications of Au-Ag bimetallic nanoparticles.

    PubMed

    Meena Kumari, M; Jacob, John; Philip, Daizy

    2015-02-25

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenolnanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field. PMID:25218228

  18. Spectroscopic study of 3-Hydroxyflavone - protein interaction in lipidic bi-layers immobilized on silver nanoparticles.

    PubMed

    Voicescu, Mariana; Ionescu, Sorana; Nistor, Cristina L

    2017-01-01

    The interaction of 3-Hydroxyflavone with serum proteins (BSA and HSA) in lecithin lipidic bi-layers (PC) immobilized on silver nanoparticles (SNPs), was studied by fluorescence and Raman spectroscopy. BSA secondary structure was quantified with a deconvolution algorithm, showing a decrease in α-helix structure when lipids were added to the solution. The effect of temperature on the rate of the excited-state intra-molecular proton transfer and on the dual fluorescence emission of 3-HF in the HSA/PC/SNPs systems was discussed. Evaluation of the antioxidant activity of 3-HF in HSA/PC/SNPs systems was also studied. The antioxidant activity of 3-HF decreased in the presence of SNPs. The results are discussed with relevance to the secondary structure of proteins and of the 3-HF based nano-systems to a topical formulation useful in the oxidative stress process. PMID:27380623

  19. Immobilization of lactobionic acid on the surface of cadmium sulfide nanoparticles and their interaction with hepatocytes.

    PubMed

    Kamruzzaman Selim, K M; Xing, Zhi-Cai; Guo, Haiqing; Kang, Inn-Kyu

    2009-09-01

    In the current study, beta-galactose-carrying lactobionic acid (LA) was conjugated on the surface of mercaptoacetic acid-coated cadmium sulfide nanoparticles (CSNPs) to ensure specific recognition of liver cells (hepatocytes) and to enhance biocompatibility. Maltotrionic acid-coated CSNPs (MCSNPs) were also prepared for use as a control. The results showed that LA-immobilized CSNPs (LCSNPs) were selectively and rapidly internalized into hepatocytes and emitted more intense fluorescence images as well as demonstrated increased biocompatible behavior in vitro than those of CSNPs and MCSNPs. Furthermore, the uptake amount of LCSNPs into hepatocytes was higher than that of CSNPs and MCSNPs. All these results indicate that LCSNPs may find ever-growing applications in biological labels and detection or contrast agents in life science and medical diagnostics. PMID:19365615

  20. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    DOE PAGESBeta

    Feygenson, Mikhail; Bauer, John C; Gai, Zheng; Marques, Carlos; Aronson, Meigan C.; Teng, Xiaowei; Su, Dong; Stanic, Vesna; Urban, Volker S; Kevin, Beyer; et al

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron scattering, synchrotron x-ray diffraction and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wüstite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatchmore » between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed across the interface to accommodate an excess of oxygen released during the reduction of magnetite.« less

  1. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    SciTech Connect

    Feygenson, Mikhail; Bauer, John C.; Gai, Zheng; Marques, Carlos; Aronson, Meigan C.; Teng, Xiaowei; Su, Dong; Stanic, Vesna; Urban, Volker S.; Beyer, Kevin A.; Dai, Sheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron-scattering, synchrotron x-ray diffraction, and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wustite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into the FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed, presumably across the interface to accommodate an excess of oxygen released during the reduction of magnetite

  2. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future. PMID:25137194

  3. Oxygen reduction reaction activity and structural stability of Pt-Au nanoparticles prepared by arc-plasma deposition.

    PubMed

    Takahashi, Shuntaro; Chiba, Hiroshi; Kato, Takashi; Endo, Shota; Hayashi, Takehiro; Todoroki, Naoto; Wadayama, Toshimasa

    2015-07-28

    The oxygen reduction reaction (ORR) activity and durability of various Au(x)/Pt100 nanoparticles (where x is the atomic ratio of Au against Pt) are evaluated herein. The samples were fabricated on a highly-oriented pyrolytic graphite substrate at 773 K through sequential arc-plasma depositions of Pt and Au. The electrochemical hydrogen adsorption charges (electrochemical surface area), particularly the characteristic currents caused by the corner and edge sites of the Pt nanoparticles, decrease with increasing Au atomic ratio (x). In contrast, the specific ORR activities of the Au(x)/Pt100 samples were dependent on the atomic ratios of Pt and Au: the Au28/Pt100 sample showed the highest specific activity among all the investigated samples (x = 0-42). As for ORR durability evaluated by applying potential cycles between 0.6 and 1.0 V in oxygen-saturated 0.1 M HClO4, Au28/Pt100 was the most durable sample against the electrochemical potential cycles. The results clearly showed that the Au atoms located at coordinatively-unsaturated sites, e.g. at the corners or edges of the Pt nanoparticles, can improve the ORR durability by suppressing unsaturated-site-induced degradation of the Pt nanoparticles. PMID:26118789

  4. Immobilization of nitrate reductase onto epoxy affixed silver nanoparticles for determination of soil nitrates.

    PubMed

    Sachdeva, Veena; Hooda, Vinita

    2015-08-01

    Epoxy glued silver nanoparticles were used as immobilization support for nitrate reductase (NR). The resulting epoxy/AgNPs/NR conjugates were characterized at successive stages of fabrication by scanning electron microscopy and fourier transform infrared spectroscopy. The immobilized enzyme system exhibited reasonably high conjugation yield (37.6±0.01 μg/cm(2)), with 93.54±0.88% retention of specific activity. Most favorable working conditions of pH, temperature and substrate concentration were ascertained to optimize the performance of epoxy/AgNPs/NR conjugates for soil nitrate quantification. The analytical results for soil nitrate determination were consistent, reliable and reproducible. Minimum detection limit of the method was 0.05 mM with linearity from 0.1 to 11.0 mM. The % recoveries of added nitrates (0.1 and 0.2 mM) were<95.0% and within-day and between-day coefficients of variations were 0.556% and 1.63% respectively. The method showed good correlation (R(2)=0.998) with the popular Griess reaction method. Epoxy/AgNPs bound NR had a half-life of 18 days at 4 °C and retained 50% activity after 15 reuses. PMID:25957718

  5. Internalization: acute apoptosis of breast cancer cells using herceptin-immobilized gold nanoparticles

    PubMed Central

    Rathinaraj, Pierson; Al-Jumaily, Ahmed M; Huh, Do Sung

    2015-01-01

    Herceptin, the monoclonal antibody, was successfully immobilized on gold nanoparticles (GNPs) to improve their precise interactions with breast cancer cells (SK-BR3). The mean size of the GNPs (29 nm), as determined by dynamic light scattering, enlarged to 82 nm after herceptin immobilization. The in vitro cell culture experiment indicated that human skin cells (FB) proliferated well in the presence of herceptin-conjugated GNP (GNP–Her), while most of the breast cancer cells (SK-BR3) had died. To elucidate the mechanism of cell death, the interaction of breast cancer cells with GNP–Her was tracked by confocal laser scanning microscopy. Consequently, GNP–Her was found to be bound precisely to the membrane of the breast cancer cell, which became almost saturated after 6 hours incubation. This shows that the progression signal of SK-BR3 cells is retarded completely by the precise binding of antibody to the human epidermal growth factor receptor 2 receptor of the breast cancer cell membrane, causing cell death. PMID:25709498

  6. Immobilization of uricase enzyme on self-assembled gold nanoparticles for application in uric acid biosensor.

    PubMed

    Ahuja, T; Tanwar, V K; Mishra, S K; Kumar, D; Biradar, A M; Rajesh

    2011-06-01

    An enzyme immobilization matrix is described by preparing a self-assembly of gold nanoparticles (GNPs) over a self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) on an indium-tin-oxide (ITO) coated glass plate. The surface of the GNPs was modified with a mixed (1:9) SAM of 11-mercaptoundecanoic acid (MUA) and 3-mercapto-propionic acid (MPA). The enzyme, uricase was covalently immobilized to the carboxyl groups of the mixed SAM of MUA/MPA through carbodiimide coupling reaction. The whole assembly was constructed on 1 cm2 area of ITO-glass plate and was tested as an amperometric biosensor for the detection of uric acid in aqueous solution. The biosensor assembly was characterized by atomic force microscopy (AFM) and electrochemical techniques. The AFM of the enzyme biosensor assembly reveals an asymmetrical sharp regular island-like structure with an average roughness parameter value of 2.81 nm. Chronoamperometric response was measured as a function of uric acid concentration in aqueous solution (pH 7.4), which exhibits a linear response over a concentration range of 0.07 to 0.63 mM with a sensitivity of 19.27 microAmM(-1) and a response of 25 s with excellent reproducibility. These results are not influenced by the presence of interfering reagents such as ascorbic acid, urea and glucose. GNPs-biomolecule assemblies constructed using this method may facilitate development of new hybrid biosensing materials. PMID:21770094

  7. PCF with immobilized silver nanoparticles as an optofluidic SERS sensing platform

    NASA Astrophysics Data System (ADS)

    Han, Yun; Tan, Siliu; Khaing Oo, Maung Kyaw; Du, Henry

    2010-04-01

    The unique feature of photonic crystal fiber (PCF) both as a light guide and a liquid transmission cell allows synergistic integration of optics and microfluidics to form an unconventional optofluidic platform of long interaction path limited only by the fiber length. We report the strategy and methods in realizing full-length surface-enhanced Raman scattering (SERS) PCF optofluidics by immobilization of negatively charged Ag nanoparticles (NP) through polyelectrolyte-mediated approach or direct deposition of positively charged Ag NP on the PCF air channels. Through forward propagating Raman measurements, we demonstrate the full-length SERS-active PCF optofluidics with accumulative Raman signal gain along the entire fiber length. We show SERS measurements of 1x10-7 M (~48 ppb) Rhodamine 6G and 1x10-8 M (~0.8 ppb) sodium thiocyanate in a minute volume of ~10-7-10-8 liter aqueous solution using PCF with immobilized Ag NP over ~20 cm in length. The combination of high detection sensitivity and small sampling volume renders the SERS-active PCF optofluidic platform excellent potential for a multitude of applications ranging from label-free chemical and biological sensing to process monitoring in geometrically confined systems.

  8. Ultrathin InAs nanowire growth by spontaneous Au nanoparticle spreading on indium-rich surfaces

    NASA Astrophysics Data System (ADS)

    Jung, Kyooho; Mohseni, Parsian K.; Li, Xiuling

    2014-11-01

    Ultrathin InAs nanowires (NWs) can enable true one-dimensional electronics. We report a growth phenomenon where a bimodal size distribution (~α nm and ~5 nm in diameter) of InAs NWs can be achieved from gold (Au) nanoparticles of a single size, α (α = 50-250 nm). We determine that ultrathin InAs NW growth is seeded by ultra-small Au nanoparticles shed from the large Au seeds upon indium (In) introduction into the growth system and formed prior to the supersaturation of In in Au. The Au spreading phenomenon is explained by the balancing of Gibbs free energy lowering from In-Au mixing and the surface tension increase. Ultrathin InAs NWs formed in this way exhibit a perfect wurtzite structure with no stacking faults. We have observed InAs NWs with diameters down to ~2 nm using our growth method. Passivating the ultrathin InAs NWs with an AlAs shell, subsequently oxidized in air, results in physical deformation of the InAs core, demonstrating the mechanical pliability of these ultrathin NWs.Ultrathin InAs nanowires (NWs) can enable true one-dimensional electronics. We report a growth phenomenon where a bimodal size distribution (~α nm and ~5 nm in diameter) of InAs NWs can be achieved from gold (Au) nanoparticles of a single size, α (α = 50-250 nm). We determine that ultrathin InAs NW growth is seeded by ultra-small Au nanoparticles shed from the large Au seeds upon indium (In) introduction into the growth system and formed prior to the supersaturation of In in Au. The Au spreading phenomenon is explained by the balancing of Gibbs free energy lowering from In-Au mixing and the surface tension increase. Ultrathin InAs NWs formed in this way exhibit a perfect wurtzite structure with no stacking faults. We have observed InAs NWs with diameters down to ~2 nm using our growth method. Passivating the ultrathin InAs NWs with an AlAs shell, subsequently oxidized in air, results in physical deformation of the InAs core, demonstrating the mechanical pliability of these

  9. Synthesis, characterization and application of Au-198 nanoparticles as radiotracer for industrial applications.

    PubMed

    Goswami, Sunil; Pant, H J; Biswal, Jayashree; Samantray, J S; Sharma, V K; Dash, Ashutosh

    2016-05-01

    This paper describes synthesis and characterization of radioactive gold nanoparticles ((198)Au-NPs), and explores their utility as a radiotracer for tracing an aqueous phase in a continuous laboratory-scale bubble column at ambient conditions. The performance of the (198)Au-NPs as a radiotracer was compared with the results obtained with a conventional radiotracer i.e. bromine-82 ((82)Br) as ammonium bromide and found to be identical. A tank-in-series with backmixing model (TISBM) was used to simulate the RTDs of the aqueous phase and characterize flow in the bubble column. PMID:26897465

  10. Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Hu, Peiguang; Song, Yang; Chen, Limei; Chen, Shaowei

    2015-05-01

    1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold concentrations. The self-assembly of 1-dodecyne ligands on the nanoparticle surface was manifested in infrared spectroscopic measurements. Importantly, the resulting nanoparticles exhibited apparent electrocatalytic activity for oxygen reduction in alkaline media, and the performance was found to show a volcano variation in the Au content in the alloy nanoparticles, with the best performance observed for the samples with ca. 35.5 at% Au. The enhanced catalytic activity, as compared to pure Ag nanoparticles or even commercial Pt/C catalysts, was accounted for by the unique metal-ligand interfacial bonding interactions as well as alloying effects that increased metal-oxygen affinity.1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold

  11. DC electric field induced phase array self-assembly of Au nanoparticles.

    PubMed

    Yadavali, S; Sachan, R; Dyck, O; Kalyanaraman, R

    2014-11-21

    In this work we report the discovery of phase array self-assembly, a new way to spontaneously make periodic arrangements of metal nanoparticles. An initially random arrangement of gold (Au) or silver (Ag) nanoparticles on SiO2/Si substrates was irradiated with linearly polarized (P) laser light in the presence of a dc electric (E) field applied to the insulating substrate. For E fields parallel to the laser polarization (E||P), the resulting periodic ordering was single-crystal like with extremely low defect density and covered large macroscopic areas. The E field appears to be modifying the phase between radiation scattered by the individual nanoparticles thus leading to enhanced interference effects. While phase array behavior is widely known in antenna technology, this is the first evidence that it can also aid in nanoscale self-assembly. These results provide a simple way to produce periodic metal nanoparticles over large areas. PMID:25355725

  12. Low-temperature solution synthesis of chemically functional ferromagnetic FePtAu nanoparticles.

    PubMed

    Kinge, Sachin; Gang, Tian; Naber, Wouter J M; Boschker, Hans; Rijnders, Guus; Reinhoudt, David N; van der Wiel, Wilfred G

    2009-09-01

    Magnetic nanoparticles are of great scientific and technological interest. The application of ferromagnetic nanoparticles for high-density data storage has great potential, but energy efficient synthesis of uniform, isolated, and patternable nanoparticles that remain ferromagnetic at room temperature is not trivial. Here, we present a low-temperature solution synthesis method for FePtAu nanoparticles that addresses all those issues and therefore can be regarded as an important step toward applications. We show that the onset of the chemically ordered face-centered tetragonal (L1(0)) phase is obtained for thermal annealing temperatures as low as 150 degrees C. Large uniaxial magnetic anisotropy (10(7) erg/cm(3)) and a high long-range order parameter have been obtained. Our low-temperature solution annealing leaves the organic ligands intact, so that the possibility for postanneal monolayer formation and chemically assisted patterning on a surface is maintained. PMID:19691342

  13. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy

    PubMed Central

    Andres-Arroyo, Ana; Wang, Fan; Toe, Wen Jun; Reece, Peter

    2015-01-01

    Assessing the degree of heating present when a metal nanoparticle is trapped in an optical tweezers is critical for its appropriate use in biological applications as a nanoscale force sensor. Heating is necessarily present for trapped plasmonic particles because of the non-negligible extinction which contributes to an enhanced polarisability. We present a robust method for characterising the degree of heating of trapped metallic nanoparticles, using the intrinsic temperature dependence of the localised surface plasmon resonance (LSPR) to infer the temperature of the surrounding fluid at different incident laser powers. These particle specific measurements can be used to infer the rate of heating and local temperature of trapped nanoparticles. Our measurements suggest a considerable amount of a variability in the degree of heating, on the range of 414–673 K/W, for different 100 nm diameter Au nanoparticles, and we associated this with variations in the axial trapping position. PMID:26417530

  14. Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Xu, Ling; Zhang, Renqi; Ge, Zhaoyun; Zhang, Wenping; Xu, Jun; Ma, Zhongyuan; Chen, Kunji

    2015-03-01

    Au nanoparticles (Au NPs)/CdTe/CdS QDs nanocomposite films were fabricated by deposition of Au NPs and layer-by-layer self-assembly of colloidal CdTe/CdS QDs. Photoluminescence (PL) spectra showed that Au NPs incorporation resulted in an increase of PL intensity about 16-fold compared with that of the samples without Au NPs. PL enhancement of Au NPs/CdTe/CdS QDs nanocomposite films can be controlled by tuning the thickness of spacer layer between the metal nanoparticles (MNPs) and QDs. Optical absorption spectra exhibited the incorporation of Au NPs boosted the absorption of Au NPs/CdTe/CdS QDs nanocomposite films. The results of finite-difference time-domain (FDTD) simulation indicated that the increased sizes of Au NPs resulted in stronger localization of electric field, which boosted the PL intensity of QDs in the vicinity of Au NPs. We thought that these were mainly attributed to localized SP enhancement effects of the Au NPs. Our experiment results demonstrated that Au NPs/QDs nanocomposite films would be a promising candidate for optoelectronic devices application.

  15. A nanoparticle-based immobilization assay for prion-kinetics study

    PubMed Central

    Kouassi, Gilles K; Irudayaraj, Joseph

    2006-01-01

    Magnetic and gold coated magnetic nanoparticles were synthesized by co-precipitation of ferrous and ferric chlorides, and by the micromicelles method, respectively. Synthesized nanoparticles were functionalized to bear carboxyl and amino acid moieties and used as prion protein carriers after carbodiimide activation in the presence of N-hydroxysuccinimide. The binding of human recombinant prion protein (huPrPrec) to the surface of these nanoparticles was confirmed by FTIR and the size and structures of the particles were characterized by transmission electron microscopy. Findings indicate that the rate of prion binding increased only slightly when the concentration of prion in the reaction medium was increased. Rate constants of binding were very similar on Fe3O4@Au and Fe3O4-LAA when the concentrations of protein were 1, 2, 1.5, 2.25 and 3.57 μg/ml. For a 5 μg/ml concentration of huPrPrec the binding rate constant was higher for the Fe3O4-LAA particles. This study paves the way towards the formation of prion protein complexes onto a 3-dimensional structure that could reveal obscure physiological and pathological structure and prion protein kinetics. PMID:16916458

  16. Studies on 2D hybrid films of half surfactant-covered Au nanoparticles at the air/water interface.

    PubMed

    Pang, Shufeng; Tetsuya, Oikawa; Tomoyuki, Watanabe; Kondo, Takeshi; Kawai, Takeshi

    2005-05-15

    A hybrid monolayer film of Au nanoparticles, half-covered with dioctadecyldimethylammonium chloride (DODAC), was prepared at the air/water interface and characterized using transmission electron microscopy (TEM), a quartz-crystal microbalance, and infrared spectra measurements. TEM images of the hybrid film showed that the distribution of Au nanoparticles depends on the surface density of DODAC and reaction time. IR spectral data provided evidence for a surface-enhanced effect of the Au nanoparticles. The wavenumber of CH(2)-stretch vibrations of DODAC in the infrared external reflection spectra revealed that the DODAC molecules were adsorbed onto the Au nanoparticles in a close-packed crystalline state for any surface density of DODAC, which is different from the usual behavior of Langmuir monolayers. PMID:15837481

  17. Synthesis of amino-silane modified superparamagnetic Fe{sub 3}O{sub 4} nanoparticles and its application in immobilization of lipase from Pseudomonas fluorescens Lp1

    SciTech Connect

    Kanimozhi, S.; Perinbam, K.

    2013-05-15

    Highlights: ► Magnetic nanoparticles were synthesized by chemical co-precipitation method. ► Surface was functionalized with amino-silane and used for lipase immobilization. ► Characterized through TEM, SEM, XRD, FT-IR and VSM analysis. ► The functionalization and immobilization did not affect the magnetite properties. ► The immobilized lipase showed greater functional property than free lipase. - Abstract: Superparamagnetic nanoparticles (Fe{sub 3}O{sub 4}–magnetite) were prepared by chemical co-precipitation method and their surface was functionalized with 3-aminopropyltriethoxysilane via silanization reaction to obtain amino functionalized magnetic nanoparticles. The purified lipase from Pseudomonas fluorescens Lp1 was immobilized onto functionalized magnetite using glutaraldehyde as the coupling agent. The characterization of the nanoparticles was done by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, vibrating sample magnetometry and Fourier transformed infrared spectroscopy. The size of the magnetite was measured about 10–30 nm. The results of characterization study revealed the successful immobilization of lipase on to functionalized magnetite. The saturation magnetization of magnetic nanoparticles was found to be 28.34 emu/g whereas the immobilized magnetic nanoparticle was 17.074 emu/g. The immobilized lipase had greater activity at 50 °C and thermal stability upto 70 °C. It exhibited excellent reusability for 4 cycles and storage stability upto 15 days by retaining 75% of its initial activity.

  18. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Hai; Liu, Rui-Hua; Sun, Qi-Jun; Chang, Jian-Bing; Gao, Xu; Liu, Yang; Lee, Shuit-Tong; Kang, Zhen-Hui; Wang, Sui-Dong

    2015-03-01

    Graphene-supported bimetallic nanoparticles are promising nanocatalysts, which can show strong and tunable catalytic activity and selectivity. Herein room-temperature-ionic-liquid-assisted metal sputtering is utilized to synthesize PdAu bimetallic nanoparticles on graphene with bare surface, small size, high surface density and controlled Pd-to-Au ratio. This controllable synthetic approach is green-chemistry compatible and totally free of additives and byproducts. The supported PdAu nanoparticles show excellent catalytic capabilities for both oxidation and reduction reactions, strongly dependent on the Pd-to-Au ratio. A strong correlation among catalytic performance, bimetallic composition and charge redistribution in the PdAu nanoparticles has been demonstrated. The results suggest that sufficient Au d-holes appear to be significant to the catalysis of oxidation reaction, and a metallic Pd surface is critical to the catalysis of reduction reaction. By the present method, the bimetallic combination can be tailored for distinct types of catalytic reactions.Graphene-supported bimetallic nanoparticles are promising nanocatalysts, which can show strong and tunable catalytic activity and selectivity. Herein room-temperature-ionic-liquid-assisted metal sputtering is utilized to synthesize PdAu bimetallic nanoparticles on graphene with bare surface, small size, high surface density and controlled Pd-to-Au ratio. This controllable synthetic approach is green-chemistry compatible and totally free of additives and byproducts. The supported PdAu nanoparticles show excellent catalytic capabilities for both oxidation and reduction reactions, strongly dependent on the Pd-to-Au ratio. A strong correlation among catalytic performance, bimetallic composition and charge redistribution in the PdAu nanoparticles has been demonstrated. The results suggest that sufficient Au d-holes appear to be significant to the catalysis of oxidation reaction, and a metallic Pd surface is critical

  19. Enabling low amounts of YAG:Ce3+ to convert blue into white light with plasmonic Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Hussain, Talib; Zhong, Liubiao; Danesh, Mohammad; Ye, Huiqi; Liang, Ziqiang; Xiao, Dong; Qiu, Cheng-Wei; Lou, Chaogang; Chi, Lifeng; Jiang, Lin

    2015-06-01

    We report a new strategy to directly attach Au nanoparticles onto YAG:Ce3+ phosphor via a chemical preparation method, which yields efficient and quality conversion of blue to yellow light in the presence of a low amount of phosphor. Photoluminescent intensity and quantum yield of YAG:Ce3+ phosphor are significantly enhanced after Au nanoparticle modification, which can be attributed to the strongly enhanced local surface electromagnetic field of Au nanoparticles on the phosphor particle surface. The CIE color coordinates shifted from the blue light (0.23, 0.23) to the white light region (0.30, 0.33) with a CCT value of 6601 K and a good white light CRI value of 78, which indicates that Au nanoparticles greatly improve the conversion efficiency of low amounts of YAG:Ce3+ in WLEDs.We report a new strategy to directly attach Au nanoparticles onto YAG:Ce3+ phosphor via a chemical preparation method, which yields efficient and quality conversion of blue to yellow light in the presence of a low amount of phosphor. Photoluminescent intensity and quantum yield of YAG:Ce3+ phosphor are significantly enhanced after Au nanoparticle modification, which can be attributed to the strongly enhanced local surface electromagnetic field of Au nanoparticles on the phosphor particle surface. The CIE color coordinates shifted from the blue light (0.23, 0.23) to the white light region (0.30, 0.33) with a CCT value of 6601 K and a good white light CRI value of 78, which indicates that Au nanoparticles greatly improve the conversion efficiency of low amounts of YAG:Ce3+ in WLEDs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01038a

  20. Dual Transient Bleaching of Au/PbS Hybrid Core/Shell Nanoparticles.

    PubMed

    Kobayashi, Yoichi; Nonoguchi, Yoshiyuki; Wang, Li; Kawai, Tsuyoshi; Tamai, Naoto

    2012-05-01

    We examined the optical response of hybrid Au/PbS core/shell nanoparticles (NPs) using transient absorption spectroscopy. Finite-difference time-domain (FDTD) calculations and transient absorption measurements show that Au/PbS NPs have unique two extinction peaks: the peak at the longer wavelength (∼700 nm) is originated from the plasmon, and that at the shorter wavelength (550 nm) is from the local maximum of the refractive index of PbS. The transient absorption dynamics of Au/PbS NPs excited at 400 nm have clear oscillation behavior, which is assigned to the breathing mode of whole particle. We observed a weak excitation-wavelength dependence of the plasmon band. The time constant of electron-phonon coupling of Au/PbS NPs was obtained by changing the excitation intensity. We show that spectral properties of Au/PbS NPs are strongly altered by the hybrid formations, while their dynamics differ only minimally compared with those of Au NPs. PMID:26288045

  1. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    PubMed

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples. PMID:27474318

  2. Spherical and polygonal shape of Au nanoparticles coated functionalized polymer microspheres

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Li, Yingzhi; Zhang, Junxian; Qi, Yalong; Zhao, Xin; Zhang, Qinghua

    2015-08-01

    Uniform polystyrene (PS)/polypyrrole (PPy) composite microspheres with well-defined core/shell structures are synthesized by chemical oxidative polymerization. Gold nanoparticles (Au NPs) are successfully coated on the surface of PS/PPy microspheres by means of electrostatic interactions due to the functionalized PPy coatings supplying sufficient amino groups and the additive of mercapto acetic acid. Furthermore, the as-prepared PS/PPy/Au microspheres serving as seeds facilitate Au NPs further growth by in situ reduction in HAuCl4 solution to obtain PS/PPy/Au spheres with the core/shell/shell structure. Morphology observation demonstrates that the monodisperse PS/PPy/Au microspheres compose of uniform cores and the compact coatings containing distinct two layers. X-ray diffraction and X-ray photoelectron spectroscope confirm the existence of PPy and Au on the surface of the composite spheres. This facile approach to preparing metal-coated polymer spheres supplies the potential applications in biosensors, electronics and medical diagnosis.

  3. Investigating the Energy Transfer from Dye Molecules to DNA Stabilized Au Nanoparticles.

    PubMed

    Patel, Arun Singh; Sahoo, Harekrushna; Mohanty, T

    2016-09-01

    Double-stranded DNA stabilized gold nanoparticles (Au NPs) are synthesized by chemical reduction method and characterized with different spectroscopic techniques such as UV-Visible absorption, Fourier transform infrared (FTIR), & circular-dichroism (CD) as well as transmission electron microscopy (TEM). These NPs show absorption maximum at 520 nm and size of most of the particles are of the order of 3.5 ± 1.0 nm. These Au NPs show crystalline nature as confirmed from electron diffraction pattern. The effect of formation of Au NPs on the macromolecule has been studied using infrared and circular dichroism spectroscopy. Formation of NPs causes conformational changes in the DNA molecules. These Au NPs are further used as resonant energy acceptor of fluorescence emission from dye molecules (Rhodamine 6G). The fluorescence intensity of Rhodamine 6G (R6G) is quenched in presence of Au NPs. The effect of DNA molecules on the fluorescence quenching and the rate of energy transfer from R6G molecules to Au NPs have been explored. PMID:27422695

  4. A composition and size controllable approach for Au-Ag alloy nanoparticles

    PubMed Central

    2012-01-01

    A capillary micro-reaction was established for the synthesis of Au-Ag alloy nanoparticles (NPs) with a flexible and controllable composition and grain size by tuning the synthesis temperature, the residence time, or the mole ratio of Au3+:Ag+. By extending the residence time from 5 to 900 s, enhancing the temperature from 120°C to 160°C, or decreasing the mole ratio of Au3+:Ag+ from 1:1 to 1:20, the composition of samples was changed continuously from Au-rich to Ag-rich. The particles became large with the increase of the residence time; however, synthesis temperatures showed less effect on the particle size change. The particle size of the Au-Ag alloy NPs with various composition could be kept by adjusting the mole ratio of Au3+:Ag+. TEM observation displayed that the as-obtained NPs were sphere-like with the smallest average size of 4.0 nm, which is half of those obtained by the traditional flask method. PMID:22513005

  5. Electrogenerated chemiluminescence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4@Au nanoparticles.

    PubMed

    Li, Jianping; Xu, Qian; Wei, Xiaoping; Hao, Zaibin

    2013-02-20

    A highly sensitive electrochemiluminescence (ECL) immunosensor for Cry1Ac was fabricated. The primary antibody anti-Cry1Ac was immobilized onto core-shell structural Fe(3)O(4)@Au nanoparticles. The antigen and glucose-oxidase-labeled secondary antibody were then successively combined to form sandwich-type immunocomplexes through a specific interaction. The magnetic particles loaded with sandwich immune complexes were attracted to a magnet-controlled glass carbon electrode (GCE) by an external magnet applied on top of the GCE. ECL was generated by the reaction between luminol and hydrogen peroxide derived from the enzymatic reaction in the presence of glucose. The sensors exhibited high sensitivity and a wide linear range for Bacillus thuringiensis Cry1Ac detection from 0 to 6 ng/mL, as well as a detection limit of 0.25 pg/mL (S/N = 3). The sensor is one of the most sensitive sensors for Cry1Ac, which can be easily renewed and conveniently used. PMID:23317307

  6. Comparison of in situ and ex situ bioconjugation of Au nanoparticles generated by laser ablation

    NASA Astrophysics Data System (ADS)

    Mutisya, S.; Franzel, L.; Barnstein, B. O.; Faber, T. W.; Ryan, J. J.; Bertino, M. F.

    2013-01-01

    Au nanoparticles were generated by laser ablation in PBS buffer and conjugated to immunoglobulin E (IgE) during ablation (in situ) and after ablation (ex situ). Exposure for 5 min to 532 nm pulses with a duration of 150 ps, an energy of 8 mJ and a repetition rate of 10 Hz yielded nanoparticles with a mean diameter of about 4 nm for in situ conjugation and of about 5 nm for ex situ conjugation. ELISA analysis showed that the conjugation efficiency was comparable for in situ and ex situ fabrication. ELISA for cytokine (IL-6) production by IgE-activated mast cells showed that the Au-IgE conjugates induced a response which coincided within error for conjugates prepared in situ and ex situ.

  7. Synthesis and surface immobilization of antibacterial hybrid silver-poly(l-lactide) nanoparticles

    NASA Astrophysics Data System (ADS)

    Taheri, Shima; Baier, Grit; Majewski, Peter; Barton, Mary; Förch, Renate; Landfester, Katharina; Vasilev, Krasimir

    2014-08-01

    Infections associated with medical devices are a substantial healthcare problem. Consequently, there has been increasing research and technological efforts directed toward the development of coatings that are capable of preventing bacterial colonization of the device surface. Herein, we report on novel hybrid silver loaded poly(L-lactic acid) nanoparticles (PLLA-AgNPs) with narrowly distributed sizes (17 ± 3 nm) prepared using a combination of solvent evaporation and mini-emulsion technology. These particles were then immobilized onto solid surfaces premodified with a thin layer of allylamine plasma polymer (AApp). The antibacterial efficacy of the PLLA-AgNPs nanoparticles was studied in vitro against both gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria. The minimal inhibitory concentration values against Staphylococcus epidermidis and Escherichia coli were 0.610 and 1.156 μg · mL-1, respectively. The capacity of the prepared coatings to prevent bacterial surface colonization was assessed in the presence of Staphylococcus epidermidis, which is a strong biofilm former that causes substantial problems with medical device associated infections. The level of inhibition of bacterial growth was 98%. The substrate independent nature and the high antibacterial efficacy of coatings presented in this study may offer new alternatives for antibacterial coatings for medical devices.

  8. Carbonic anhydrase immobilized on encapsulated magnetic nanoparticles for CO2 sequestration.

    PubMed

    Vinoba, Mari; Bhagiyalakshmi, Margandan; Jeong, Soon Kwan; Nam, Sung Chan; Yoon, Yeoil

    2012-09-17

    Bovine carbonic anhydrase (BCA) was covalently immobilized onto OAPS (octa(aminophenyl)silsesquioxane)-functionalized Fe(3)O(4)/SiO(2) nanoparticles by using glutaraldehyde as a spacer. The Fe(3)O(4) nanoparticles were coated with SiO(2), onto which was grafted OAPS, and the product was characterized using SEM, TEM, XRD, IR, X-ray photoelectron spectroscopy (XPS), and magnetometer analysis. The enzymatic activities of the free and Fe(3)O(4)/SiO(2)/OAPS-conjugated BCA (Fe-CA) were investigated by hydrolyzing p-nitrophenylacetate (p-NPA), and hydration and sequestration of CO(2) to CaCO(3). The CO(2) conversion efficiency and reusability of the Fe-CA were studied before and after washing the recovered Fe-CA by applying a magnetic field and quantifying the unreacted Ca(2+) ions by using ion chromatography. After 30 cycles, the Fe-CA displayed strong activity, and the CO(2) capture efficiency was 26-fold higher than that of the free enzyme. Storage stability studies suggested that Fe-CA retained nearly 82 % of its activity after 30 days. Nucleation of the precipitated CaCO(3) was monitored by using polarized light microscopy, which revealed the formation of two phases, calcite and valerite, at pH 10 upon addition of serine. The magnetic nanobiocatalyst was shown to be an excellent reusable catalyst for the sequestration of CO(2). PMID:22888048

  9. An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications

    NASA Astrophysics Data System (ADS)

    Scuderi, Viviana; Impellizzeri, Giuliana; Romano, Lucia; Scuderi, Mario; Brundo, Maria V.; Bergum, Kristin; Zimbone, Massimo; Sanz, Ruy; Buccheri, Maria A.; Simone, Francesca; Nicotra, Giuseppe; Svensson, Bengt G.; Grimaldi, Maria G.; Privitera, Vittorio

    2014-09-01

    We propose a ground-breaking approach by an upside-down vision of the Au/TiO2 nano-system in order to obtain an enhanced photocatalytic response. The system was synthesized by wrapping Au nanoparticles (~8 nm mean diameter) with a thin layer of TiO2 (~4 nm thick). The novel idea of embedding Au nanoparticles with titanium dioxide takes advantage of the presence of metal nanoparticles, in terms of electron trapping, without losing any of the TiO2 exposed surface, so as to favor the photocatalytic performance of titanium dioxide. A complete structural characterization was made by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The remarkable photocatalytic performance together with the stability of the nano-system was demonstrated by degradation of the methylene blue dye in water. The non-toxicity of the nano-system was established by testing the effect of the material on the reproductive cycle of Mytilus galloprovincialis in an aquatic environment. The originally synthesized material was also compared to conventional TiO2 with Au nanoparticles on top. The latter system showed a dispersion of Au nanoparticles in the liquid environment, due to their instability in the aqueous solution that clearly represents an environmental contamination issue. Thus, the results show that nanometric TiO2 wrapping of Au nanoparticles has great potential in eco-friendly water/wastewater purification.

  10. Probing Hot Electron Flow Generated on Pt Nanoparticles with Au/TiO2 Schottky Diodes during Catalytic CO Oxidation

    SciTech Connect

    Park, Jeong Y.; Lee, Hyunjoo; Renzas, J. Russell; Zhang, Yawen; Somorjai, G.A.

    2008-05-01

    Hot electron flow generated on colloid platinum nanoparticles during exothermic catalytic carbon monoxide oxidation was directly detected with Au/TiO{sub 2} diodes. Although Au/TiO{sub 2} diodes are not catalytically active, platinum nanoparticles on Au/TiO{sub 2} exhibit both chemicurrent and catalytic turnover rate. Hot electrons are generated on the surface of the metal nanoparticles and go over the Schottky energy barrier between Au and TiO{sub 2}. The continuous Au layer ensures that the metal nanoparticles are electrically connected to the device. The overall thickness of the metal assembly (nanoparticles and Au thin film) is comparable to the mean free path of hot electrons, resulting in ballistic transport through the metal. The chemicurrent and chemical reactivity of nanoparticles with citrate, hexadecylamine, hexadecylthiol, and TTAB (Tetradecyltrimethylammonium Bromide) capping agents were measured during catalytic CO oxidation at pressures of 100 Torr O{sub 2} and 40 Torr CO at 373-513 K. We found that chemicurrent yield varies with each capping agent, but always decreases with increasing temperature. We suggest that this inverse temperature dependence is associated with the influence of charging effects due to the organic capping layer during hot electron transport through the metal-oxide interface.

  11. An amplified electrochemiluminescent aptasensor using Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites as a signal enhancement tag

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Nan; Zhang, Xia; Zhuo, Ying; Chai, Ya-Qin; Yuan, Ruo

    2015-01-01

    A novel electrochemiluminescent (ECL) signal tag of Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites (AuNPs/TSC-PTC/C60NPs) was developed for thrombin (TB) aptasensor construction based on the peroxydisulfate/oxygen (S2O82-/O2) system. For signal tag fabrication, the C60 nanoparticles (C60NPs) were prepared and then coated with 3,4,9,10-perylene tetracarboxylic acid (PTCA) by π-π stacking interactions. Afterwards, thiosemicarbazide (TSC) was linked with PTCA functionalized C60NPs via amidation for further assembling Au nanoparticles (AuNPs). Finally, detection aptamer of thrombin (TBA 2) was labeled on the ECL signal amplification tag of AuNPs/TSC-PTC/C60NPs. Herein, TSC, with the active groups of -NH2 and -SH, was selected and introduced into the ECL S2O82-/O2 system for the first time, which could not only offer the active groups of -SH to absorb AuNPs for TBA 2 anchoring but also remarkably enhance the ECL signal of the S2O82-/O2 system by the formation of TSC-PTC/C60NPs for signal amplification. Meanwhile, the sensing interface of a glassy carbon electrode (GCE) was modified by AuNPs/graphene (AuNPs/GR) nanocomposites with the large specific surface area and the active sites, followed by immobilization of thiol-terminated thrombin capture aptamer (TBA 1). With the formation of the sandwich-type structure of TBA 1, TB, and TBA 2 signal probes, a desirable enhanced ECL signal was measured in the testing buffer of an S2O82-/O2 solution for detecting TB. The aptasensor exhibited a good linear relationship for TB detection in the range of 1 × 10-5-10 nM with a detection limit of 3.3 fM.A novel electrochemiluminescent (ECL) signal tag of Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites (AuNPs/TSC-PTC/C60NPs) was developed for thrombin (TB) aptasensor construction based on the peroxydisulfate/oxygen (S2O82-/O2) system. For signal

  12. Surface-enhanced raman scattering detection of DNAs derived from virus genomes using au-coated paramagnetic nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A magnetic capture-based, surface-enhanced Raman scattering (SERS) assay for DNA detection has been developed which utilizes Au-coated paramagnetic nanoparticles (Au@PMPs) as both a SERS substrate and effective bio-separation reagent for the selective removal of target DNAs from solution. Hybridizat...

  13. Combined Au-plasmonic nanoparticles with mesoporous carbon material (CMK-3) for photocatalytic water splitting

    SciTech Connect

    Hung, Wei Hsuan E-mail: yinm@sari.ac.cn; Lai, Sz Nian; Su, Cheng Yi; Yin, Min E-mail: yinm@sari.ac.cn; Li, Dongdong; Xue, Xinzhong; Tseng, Chuan Ming

    2015-08-17

    The conventional TiO{sub 2} photoelectrode for water splitting was integrated with ordered mesoporous carbon material (CMK-3) and Au metal nanoparticles (NPs) to improve the photocatalytic efficiency under visible light irradiation. Compared to TiO{sub 2}, Au/TiO{sub 2}-CMK-3 photoelectrode demonstrated over two orders of magnitude enhancement of photocurrent under 532 nm laser irradiation due to the generation of hot electron and near field from Au NPs. Furthermore, the improvement of free carrier transport and additional long-wavelength absorption can be achieved by exploiting the superior conductivity and blackbody-like property of CMK-3. This proposed enhancement mechanism was proved by the measurements of photoluminescence emission spectrum and electrochemical impedance spectroscopy.

  14. Long-timescale dynamics of thiol capped Au nanoparticle clusters at the air-water interface

    NASA Astrophysics Data System (ADS)

    Choudhuri, Madhumita; Datta, Alokmay

    2014-04-01

    A two-dimensional network of thiol-capped Au nanoparticle (AuNP) clusters is self-organized on a Stearic Acid (amphiphilic fatty acid) Langmuir monolayer on water surface. The AuNP clusters are found to form a pattern of connected and enclosed microspaces in the stearic acid template. The network features can be controlled by changing the surface pressure of the monolayer during compression. The two-dimensional dynamics of this network has been studied over a long timescale using Brewster Angle Microscopy (BAM). The dynamics is very slow, indicating the stability of the network system, and is essentially driven by the tendency to lower the number of nodes or joints in the network.

  15. Development of α-polyoxometalate-polypyrrole-Au nanoparticles modified sensor applied for detection of folic acid.

    PubMed

    Babakhanian, Arash; Kaki, Samineh; Ahmadi, Mahtab; Ehzari, Hosna; Pashabadi, Afshin

    2014-10-15

    In this work, electrochemically synthesized gold nanoparticles (AuNPs) and α-polyoxometalate (α-POM) (K7PMO2W9O39 · H2O) were simultaneously doped into electropolymerized polypyrrole (PPy) film using the cyclic voltammetry (CV) technique. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and CVs were used to characterize the composite films. The PPy-α-POM-AuNPs modified gold (Au) electrode was used to determine folic acid (FA) using square-wave voltammetry (SWV). The modified electrode exhibited excellent electrocatalytic ability to the reduction of FA at 0.3 V (vs. SCE) with the electron transfer rate constant (ks) of 1.15 × 10(-19)s(-1). The common coexisting substances showed no interferences on the response of modified electrode to FA. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for the analytical purposes. PMID:24800683

  16. Au(I)-thiolate nanostructures fabricated by chemical exfoliation and their transformation to gold nanoparticle assemblies.

    PubMed

    Nie, Hui; Li, Minjie; Hao, Yajiao; Wang, Xudong; Gao, Sheng; Yang, Bingjie; Gu, Mengdi; Sun, Linlin; Zhang, Sean Xiao-An

    2014-11-15

    Chemical exfoliation method was applied to transform bulky assemblies of Au(I)-3-mercaptopropionate (MPA) coordination polymer (CP) to nanosheets and nanostrings using sodium citrate as an exfoliator. The exfoliation process and the structural characteristics of the Au(I)-MPA nanosheets and nanostrings were fully investigated by transmission electron microscopy, atomic force microscopy, UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy and so on. As the structural rigidity and stability of the obtained Au(I)-MPA nanosheets, they are ideal precursors for fabrication of water soluble gold nanoparticle assemblies through progressive pyrolysis. This work provides a significant strategy toward the morphology regulation of CP nanostructures and will inspire further development of this research area. PMID:25170603

  17. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode.

    PubMed

    Shang, Lei; Zhao, Faqiong; Zeng, Baizhao

    2014-05-15

    In this work, graphene oxide was reduced to graphene with an endogenous reducing agent from dimethylformamide, and then AuPd alloy nanoparticles were electrodeposited on the graphene film. The obtained AuPd-graphene hybrid film was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and voltammetry. The electrochemical behavior of vanillin was studied using the AuPd-graphene hybrid based electrode. It presented high electrocatalytic activity and vanillin could produce a sensitive oxidation peak at it. Under the optimal conditions, the peak current was linear to the concentration of vanillin in the ranges of 0.1-7 and 10-40 μM. The sensitivities were 1.60 and 0.170 mA mM(-1) cm(-2), respectively; the detection limit was 20 nM. The electrode was successfully applied to the detection of vanillin in vanilla bean, vanilla tea and biscuit samples. PMID:24423501

  18. A Au nanoparticle-incorporated sponge as a versatile transmission surface-enhanced Raman scattering substrate.

    PubMed

    Shin, Kayeong; Chung, Hoeil

    2015-08-01

    We report a sponge-based transmission surface-enhanced Raman scattering (TSERS) substrate that combines the bulk sampling capabilities of a transmission measurement to improve the quantitative representation of sample concentration with several sponge properties useful for analysis such as fast sample uptake, easy sample enrichment, and a stable polymeric structure. Among nine commercially available sponges made of different materials, a melamine sponge was ultimately selected for this study because it provided the fastest sample uptake and a low background Raman signal. Simultaneously, the amino groups and three-nitrogen hybrid rings in its structure could easily hold Au nanoparticles (AuNPs) inside the sponge. AuNP-incorporated sponges (AuNP sponges) were prepared by simply soaking a melamine sponge in a AuNP solution; these sponges were initially used to measure 4-nitrobenzenethiol (4-NBT) samples with different concentrations in order to evaluate their ability as TSERS substrates. The intensities of the 4-NBT peaks clearly varied according to changes in the concentration, and the relative standard deviation (RSD) of the peak intensity estimated by the measurements of five independently prepared AuNP sponges was 10.0%. Sample enrichment was easily completed by repeated suctioning of the sample into the AuNP sponges followed by depletion of the solvent, so three-time enrichment doubled the intensity. Furthermore, paraquat samples were prepared in diverse matrices (de-ionized water, tap water, river water, and orange juice) and measured using the AuNP sponges. The paraquat peaks were clearly observed from these samples and their peak intensities became smaller with the increased compositional complexity of the matrices. Our overall results demonstrate that the TSERS sponge substrates are easy to prepare and practically versatile for SERS analysis of diverse samples. PMID:26079472

  19. Nucleation and growth of Fe and FeO nanoparticles and films on Au(111)

    SciTech Connect

    Khan, Neetha A.; Matranga, Christopher

    2008-02-01

    We have studied the formation of Fe and FeO nanoparticles and thin films on the reconstructed Au(111) surface. Scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and ion-scattering spectroscopy (ISS) were used to evaluate the structure and composition of Fe and FeO nanoparticles and films at different growth conditions. Iron grows as one monolayer high triangular particles on the Au(111) reconstruction. FeO was grown by exposing the Fe nanoparticles to molecular oxygen at 323 K, followed by annealing at 500-700 K. XPS results indicate that FeO is formed after room temperature oxidation. STM images show that well-ordered iron oxide particles form after annealing to 700 K. STM images also show evidence of a overlayer lattice with a short periodicity of 3.3 angstrom modulated by a larger periodicity of approximately 35 angstrom. The larger periodicity results from a moire pattern formed between the iron oxide overlayer and the underlying Au(111) surface.

  20. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.

    PubMed

    Shang, Li; Jin, Lihua; Guo, Shaojun; Zhai, Junfeng; Dong, Shaojun

    2010-05-01

    A new synthesis strategy has been developed for the preparation of bimetallic gold-silver (Au-Ag) alloy nanoparticles by the virtue of polyelectrolyte multilayer (PEM) nanoreactors. By controlling the assembly conditions, gold and silver ions can be effectively loaded onto the PEM composed of polyethylenimine (PEI) and poly(acrylic acid) (PAA) simultaneously. Upon further thermal treatment, Au-Ag alloy nanoparticles with sizes of ca. 3.8 nm formed in the PEM, which were characterized in detail by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) analysis. Appearance of a single plasmon band in the visible region and lack of apparent core-shell structures in the TEM images confirm the formation of homogeneous Au-Ag alloy nanoparticles. In addition, the surface plasmon absorption band of the Au-Ag alloy nanoparticles shows linear blue-shift with increasing Ag content, which also supported the formation of alloy nanoparticles. Several key parameters of the present strategy have been investigated, which showed that pH of both the assembly solution and gold salt solution and the choice of polymers for constructing PEM, as well as the reduction approach, all played an important role in successfully synthesizing bimetallic Au-Ag nanoparticles. The formation mechanism of alloy nanoparticles has also been discussed based on the spectral evolution during the thermal reduction. PMID:20017511

  1. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects

    NASA Astrophysics Data System (ADS)

    Wang, Min-Hua; Hu, Jia-Wen; Li, Yong-Jun; Yeung, Edward S.

    2010-04-01

    An environment-friendly method is developed to fabricate close-packed Au nanoparticle (AuNP) monolayers with sub-10 nm interparticle spacing simply by covering n-butanol on the surface of an Au aqueous colloid. The close-packed nanostructure can further transform into two-dimensional (2D) aggregates with different aggregation degrees upon aging for several days. This structural evolution process was disclosed by transition electron microscopy (TEM) and UV-vis spectroscopy and its influence on the ensemble optical properties was further demonstrated by surface-enhanced Raman scattering (SERS). It was revealed that creating sub-10 nm interparticle spacing and particle dimers are highly desirable for engendering strong SERS activity under a 632.8 nm excitation. Further aging the film leads to the formation of larger aggregates, which moves the surface plasmon resonance of the aggregates gradually 'off-resonance' from the 632.8 nm excitation line and costs some numbers of sub-10 nm interparticle spacings. The two parameters together decrease the SERS activity of the close-packed AuNP monolayers. The present strategy thus provides an easy way to finely tune the SERS properties of thin nanoparticle films and other ensemble properties, which can easily be realized by creating sub-10 interparticle spacing, controlling the particle aggregation degree and by adopting suitable particle sizes and shapes.

  2. Spectroscopic monitoring on irradiation-induced formation of AuAg alloy nanoparticles by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Herbani, Yuliati; Nakamura, Takahiro; Sato, Shunichi

    2016-02-01

    The interaction of an intense femtosecond laser pulses with a neat liquid solvent has been known to produce a number of highly reactive species that are useful to induce chemical reactions in the solution through the nonlinear absorption processes. When metal ions are present in the solution, they are assumed to readily reduce by ions, radicals, molecules or excited states generated photolytically from the solvent resulting in the formation of zerovalent metal nanoalloys. If two kinds of metal precursors are involved in a reduction process, the alloying process is expected. In this work, irradiation-induced synthesis of AuAg bimetallic nanoparticle at different laser-pulse energies was examined to investigate the formation mechanism in the presence of NH4OH in the initial solution. At a given laser pulse energy (5.8 mJ/pulse), the time evolution of the UV-visible absorption spectra showed that the formation of AuAg nanoalloys most likely begin with the formation of Ag-riched alloy nanoparticles. As the reduction is started, the absorption spectrum of solution was closer to that of pure Ag nanoparticles. This indicates that the reduction rate of Ag is relatively greater than that of Au nanoparticle in the presence of ammonia. The single peak position then shifts to the red region as the irradiation time increases. After 10 min, the peak positions are between pure silver and gold peaks indicating the alloying process occurs at this stage. At low pulse energy (1.0 mJ/pulse), there was an induction time for several minutes before the absorption is detectable, and hence the alloying process is also delayed (after 20 minutes irradiation). While the formation rate of nanoparticles is more pronounced at high laser pulse energy, the formation yield is relatively the same for both laser pulse energies.

  3. Impact of surface roughness of Au core in Au/Pd core-shell nanoparticles toward formic acid oxidation - Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-12-01

    The Au/Pd core-shell nanoparticles (NPs) were synthesized via galvanic replacement of Cu by Pd on hollow Au cores by adding different concentrations of Na2SO3 solution. It was found that the higher concentration of Na2SO3 that was used, the rougher the Au nanospheres became. However, the rougher Au surface may cause more defects in the Pd layers and decrease the catalytic abilities. The Au/Pd NPs synthesized using 0 M Na2SO3 (denoted as 0 M-Au/Pd NPs) have the smoothest Pd surface and demonstrate higher formic acid oxidation (FAO) activity (0.714 mA cm-2, normalized to the surface area of Pd) than other Au/Pd NPs and commercial Pd black (0.47 mA cm-2). Additional electrochemical characterization of the 0 M-Au/Pd NPs also demonstrated lower CO-stripping onset and peak potentials, higher stability (8× improvement in stabilized oxidation current), and superior durability (by 1.6×) than the Pd black. In addition, a simple simulation of FAO was adopted to predict the anodic curve by including reaction intermediates of formate and hydroxyl. The 0 M-Au/Pd NPs were found to show higher formate and lower hydroxyl coverage than the Pd black.

  4. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol.

    PubMed

    Lu, Wenbo; Ning, Rui; Qin, Xiaoyun; Zhang, Yingwei; Chang, Guohui; Liu, Sen; Luo, Yonglan; Sun, Xuping

    2011-12-15

    In this paper, we develop a cost-effective and simple route for the synthesis of Au nanoparticles (AuNPs) decorated graphene oxide (GO) nanosheets using polyoxyethylene sorbitol anhydride monolaurate (TWEEN 20) as a stabilizing agent for GO as well as a reducing and immobilizing agent for AuNPs. The AuNPs assemble on the surface of TWEEN-functionalized GO by the in situ reduction of HAuCl(4) aqueous solution. The morphologies of these composites were characterized by atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is found that the resultant AuNPs decorated GO nanosheets (AuNPs/TWEEN/GO) exhibit remarkable catalytic performance for hydrazine oxidation. This hydrazine sensor has a fast amperometric response time of less than 3s. The linear range is estimated to be from 5 μM to 3 mM (r=0.999), and the detection limit is estimated to be 78 nM at a signal-to-noise ratio of 3. The AuNPs/TWEEN/GO composites also exhibit good catalytic activity toward 4-nitrophenol (4-NP) reduction and the GO supports also enhance the catalytic activity via a synergistic effect. PMID:22019107

  5. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  6. Role of Au-C Interactions on the Catalytic Activity of Au Nanoparticles Supported on TiC(001) Towards Molecular Oxygen Dissociation

    SciTech Connect

    Rodriguez, J.A.; Feria, L.; Jirsak, T.; Takahashi, Y.; Nakamura, K.; Illas, F.

    2010-03-10

    High-resolution photoemission and density functional calculations on realistic slab surface models were used to study the interaction and subsequent dissociation of O{sub 2} with Au nanoparticles supported on TiC(001). The photoemission results indicate that at 150 K O{sub 2} adsorbs molecularly on the supported gold nanoparticles, and upon heating to temperatures above 200 K the O{sub 2} {yields} 2O reaction takes place with migration of atomic oxygen to the TiC(001) substrate. The addition of Au to TiC(001) substantially enhances the rate of O{sub 2} dissociation at room temperature. The reactivity of Au nanoparticles supported on TiC(001) toward O{sub 2} dissociation is much larger than that of similar nanoparticles supported either on TiO{sub 2}(110) or MgO(001) surfaces, where the cleavage of O-O bonds is very difficult. Density functional calculations carried out on large supercells show that the contact of Au with TiC(001) is essential for charge polarization and an enhancement in the chemical activity of Au. Small two-dimensional particles which expose Au atoms in contact with TiC(001) are the most reactive. While O{sub 2} prefers binding to Au sites, the O atoms interact more strongly with the TiC(001) surface. The oxygen species active during the low-temperature (<200 K) oxidation of carbon monoxide on Au/TiC(001) is chemisorbed O{sub 2}. Once atomic O binds to TiC(001), the chemisorption bond is so strong that temperatures well above 400 K are necessary to remove the O adatoms from the TiC(001) substrate by direct reaction with CO. The high reactivity of Au/TiC(001) toward O{sub 2} at low-temperature opens the route for the transformation of alcohols and amines on the supported Au nanoparticles.

  7. Role of Au-C Interactions on the Catalytic Activity of Au Nanoparticles Supported on TiC(001) toward Molecular Oxygen Dissociation

    SciTech Connect

    Rodriguez, J.; Feria, L; Jirsak, T; Takahashi, Y; Nakamura, K; Illas, F

    2010-01-01

    High-resolution photoemission and density functional calculations on realistic slab surface models were used to study the interaction and subsequent dissociation of O{sub 2} with Au nanoparticles supported on TiC(001). The photoemission results indicate that at 150 K O{sub 2} adsorbs molecularly on the supported gold nanoparticles, and upon heating to temperatures above 200 K the O{sub 2} {yields} 2O reaction takes place with migration of atomic oxygen to the TiC(001) substrate. The addition of Au to TiC(001) substantially enhances the rate of O{sub 2} dissociation at room temperature. The reactivity of Au nanoparticles supported on TiC(001) toward O{sub 2} dissociation is much larger than that of similar nanoparticles supported either on TiO{sub 2}(110) or MgO(001) surfaces, where the cleavage of O-O bonds is very difficult. Density functional calculations carried out on large supercells show that the contact of Au with TiC(001) is essential for charge polarization and an enhancement in the chemical activity of Au. Small two-dimensional particles which expose Au atoms in contact with TiC(001) are the most reactive. While O{sub 2} prefers binding to Au sites, the O atoms interact more strongly with the TiC(001) surface. The oxygen species active during the low-temperature (<200 K) oxidation of carbon monoxide on Au/TiC(001) is chemisorbed O{sub 2}. Once atomic O binds to TiC(001), the chemisorption bond is so strong that temperatures well above 400 K are necessary to remove the O adatoms from the TiC(001) substrate by direct reaction with CO. The high reactivity of Au/TiC(001) toward O{sub 2} at low-temperature opens the route for the transformation of alcohols and amines on the supported Au nanoparticles.

  8. Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis.

    PubMed

    Sinha, Rajeshwari; Khare, S K

    2015-04-01

    The present work targets the fabrication of an active, stable, reusable enzyme preparation using functionalized silica nanoparticles as an effective enzyme support for crude halophilic Bacillus sp. EMB9 protease. The immobilization efficiency under optimized conditions was 60%. Characterization of the immobilized preparation revealed marked increase in pH and thermal stability. It retained 80% of its original activity at 70 °C while t 1/2 at 50 °C showed a five-fold enhancement over that for the free protease. Kinetic constants K m and V max were indicative of a higher reaction velocity along with decreased affinity for substrate. The preparation could be efficiently reused up to 6 times and successfully hydrolysed whey proteins with high degree of hydrolysis. Immobilization of a crude halophilic protease on a nanobased scaffold makes the process cost effective and simple. PMID:25385659

  9. Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: Direct electron transfer and electrocatalysis.

    PubMed

    Zhao, Shuang; Zhang, Kai; Bai, Yu; Yang, Weiwei; Sun, Changqing

    2006-10-01

    The direct electron transfer of glucose oxidase (GOD) was achieved based on the immobilization of GOD/colloidal gold nanoparticles on a glassy carbon electrode by a Nafion film. The immobilized GOD displayed a pair of well-defined and nearly reversible redox peaks with a formal potential (Eo ') of -0.434 V in 0.1 M pH 7.0 phosphate buffer solution and the response showed a surface-controlled electrode process. The dependence of Eo ' on solution pH indicated that the direct electron transfer reaction of GOD was a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOD retained its electrocatalytic activity for the oxidation of glucose. So the resulting modified electrode can be used as a biosensor for detecting glucose. PMID:16556513

  10. Immobilization of carboxypeptidase from Sulfolobus solfataricus on magnetic nanoparticles improves enzyme stability and functionality in organic media

    PubMed Central

    2014-01-01

    Background Superparamagnetic iron oxide nanoparticles (MNP) offer several advantages for applications in biomedical and biotechnological research. In particular, MNP-based immobilization of enzymes allows high surface-to-volume ratio, good dispersibility, easy separation of enzymes from the reaction mixture, and reuse by applying an external magnetic field. In a biotechnological perspective, extremophilic enzymes hold great promise as they often can be used under non-conventional harsh conditions, which may result in substrate transformations that are not achievable with normal enzymes. This prompted us to investigate the effect of MNP bioconjugation on the catalytic properties of a thermostable carboxypeptidase from the hyperthermophilic archaeon Sulfolobus solfataricus (CPSso), which exhibits catalytic properties that are useful in synthetic processes. Results CPSso was immobilized onto silica-coated iron oxide nanoparticles via NiNTA-His tag site-directed conjugation. Following the immobilization, CPSso acquired distinctly higher long-term stability at room temperature compared to the free native enzyme, which, in contrast, underwent extensive inactivation after 72 h incubation, thus suggesting a potential utilization of this enzyme under low energy consumption. Moreover, CPSso conjugation also resulted in a significantly higher stability in organic solvents at 40°C, which made it possible to synthesize N-blocked amino acids in remarkably higher yields compared to those of free enzyme. Conclusions The nanobioconjugate of CPSso immobilized on silica-coated magnetic nanoparticles exhibited enhanced stability in aqueous media at room temperature as well as in different organic solvents. The improved stability in ethanol paves the way to possible applications of immobilized CPSso, in particular as a biocatalyst for the synthesis of N-blocked amino acids. Another potential application might be amino acid racemate resolution, a critical and expensive step in

  11. Assembly/Disassembly of DNA-Au Nanoparticles: A Strategy of Intervention

    DOE PAGESBeta

    Lim, I-Im S.; Wang, Lingyan; Chandrachud, Uma; Gal, Susannah; Zhong, Chuan-Jian

    2008-01-01

    This report describes the viability of a strategy for manipulating the assembly/disassembly processes of DNA-Au nanoparticles by molecular intervention. Using the temperature-induced assembly and disassembly processes of DNAs and gold nanoparticles as a model system, the introduction of a molecular recognition probe is demonstrated to lead to the intervention of the assembly/disassembly processes depending on its specific biorecognition. This process can be detected by monitoring the change in the optical properties of gold nanoparticles and their DNA assemblies. Implications of the preliminary results to exploration of the resulting nanostructures for fine-tuning of the interfacial reactivities in DNA-based bioassays and biomaterialmore » engineering are also discussed.« less

  12. Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media.

    PubMed

    Cruz, Juan C; Würges, Kerstin; Kramer, Martin; Pfromm, Peter H; Rezac, Mary E; Czermak, Peter

    2011-01-01

    Enzymatic catalysis in nonaqueous media is considered as an attractive tool for the preparation of a variety of organic compounds of commercial interest. This approach is advantageous for numerous reasons including the enhanced stability of some substrates and products in solvents, sometimes improved selectivity of the enzyme, and reduction of unwanted water-dependent side reactions since little water is present. Due to the poor solubility of enzymes in these media, mass transfer limitations are sometimes present, leading to low apparent catalytic activity. Immobilization on solid supports has been successfully applied to overcome enzyme solubility issues by increasing the accessibility of substrates to the enzymes' active sites. We have developed a simple immobilization protocol that uses fumed silica as support. Fumed silica is an inexpensive nanostructured material with unique properties including large surface area and exceptional adsorptive affinity for organic macromolecules. Our protocol is performed in two main steps. First, the enzyme molecules are physically adsorbed on the surface of the non-porous fumed silica nanoparticles with the participation of silanol groups (Si-OH) and second, water is removed by lyophilization. The protocol has been successfully applied to both s. Carlsberg and Candida antarctica lipase B (CALB). The resulting fumed silica-based nanobiocatalysts of these two enzymes were tested for catalytic activity in hexane. The transesterification of N-acetyl-L: -phenylalanine ethyl ester was the model reaction for s. Carlsberg nanobiocatalysts. The simple esterification of geraniol and the enantioselective transesterification of (RS)-1-phenylethanol were the model reactions for CALB nanobiocatalysts. The observed catalytic activities were remarkably high and even exceeded those of commercially available preparations. PMID:21553189

  13. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration.

    PubMed

    Wirth, Stacy M; Bertuccio, Alex J; Cao, Feng; Lowry, Gregory V; Tilton, Robert D

    2016-04-01

    Immobilization of antimicrobial silver nanoparticles (AgNPs) on surfaces has been proposed as a method to inhibit biofouling or as a possible route by which incidental releases of AgNPs may interfere with biofilms in the natural environment or in wastewater treatment. This study addresses the ability of planktonic Pseudomonas fluorescens bacteria to colonize surfaces with pre-adsorbed AgNPs. The ability of the AgNP-coated surfaces to inhibit colonization was controlled by the dissolved silver in the system, with a strong dependence on the initial planktonic cell concentration in the suspension, i.e., a strong inoculum effect. This dependence was attributed to a decrease in dissolved silver ion bioavailability and toxicity caused by its binding to cells and/or cell byproducts. Therefore, when the initial cell concentration was high (∼1×10(7)CFU/mL), an excess of silver binding capacity removed most of the free silver and allowed both planktonic growth and surface colonization directly on the AgNP-coated surface. When the initial cell concentration was low (∼1×10(5)CFU/mL), 100% killing of the planktonic cell inoculum occurred and prevented colonization. When an intermediate initial inoculum concentration (∼1×10(6)CFU/mL) was sufficiently large to prevent 100% killing of planktonic cells, even with 99.97% initial killing, the planktonic population recovered and bacteria colonized the AgNP-coated surface. In some conditions, colonization of AgNP-coated surfaces was enhanced relative to silver-free controls, and the bacteria demonstrated a preferential attachment to AgNP-coated, rather than bare, surface regions. The degree to which the bacterial concentration dictates whether or not surface-immobilized AgNPs can inhibit colonization has significant implications both for the design of antimicrobial surfaces and for the potential environmental impacts of AgNPs. PMID:26771749

  14. Facile fabrication and selective detection for cysteine of xylan/Au nanoparticles composite.

    PubMed

    Luo, Yuqiong; Shen, Zuguang; Liu, Pai; Zhao, Lihong; Wang, Xiaoying

    2016-04-20

    This work reported a facile and green method to prepare highly stable and uniformly distributed Au nanoparticles (AuNPs), using biopolymer xylan as stabilizing and reducing agent. Full characterizations were performed and the results revealed that AuNPs were well dispersed with the diameters of 10-30nm. The optimal condition was as follows: the ratio of xylan to HAuCl4 was 150mg:15mg, reaction temperature was 80°C and reaction time was 40min. The xylan/AuNPs composite exhibited highly selective and sensitive sensing of cysteine in aqueous solution, it could distinguish cysteine among dozens kinds of amino acids, and the limit of detection (LOD) for cysteine was calculated as 0.57μM. Besides, the xylan/AuNPs composite was applied for Cys detection in human serum. This study provides a new way for high-value utilization of the rich biomass resource and a cheap, rapid and simple method for Cys detection in real biological samples. PMID:26876835

  15. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    SciTech Connect

    Herz, A. E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D. E-mail: dong.wang@tu-ilmenau.de; Schaaf, P.; Friák, M.; Holec, D.; Šob, M.; Schneeweiss, O.

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  16. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    NASA Astrophysics Data System (ADS)

    Herz, A.; Friák, M.; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D.; Holec, D.; Šob, M.; Schneeweiss, O.; Schaaf, P.

    2015-08-01

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that {100} faceting planes of the equilibrated particles are enriched with Ni and {111} faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  17. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides.

    PubMed

    Chauhan, Nidhi; Pundir, Chandra Shekhar

    2011-09-01

    An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe(3)O(4)NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe(3)O(4)/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe(3)O(4)NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4V). The optimum working conditions for the sensor were pH 7.5, 35°C, 600 μM substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10nM for endosulfan. The biosensor exhibited good sensitivity (0.475 mA μM(-1)), reusability (more than 50 times) and stability (2 months). The sensor was suitable for trace detection of OP pesticide residues in milk and water. PMID:21763810

  18. Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS.

    PubMed

    Liang, Xiu; You, Tingting; Liu, Dapeng; Lang, Xiufeng; Tan, Enzhong; Shi, Jihua; Yin, Penggang; Guo, Lin

    2015-04-21

    Graphene-based nanocomposites have recently attracted tremendous research interest in the field of catalysis due to their unique optical and electronic properties. However, direct observation of enhanced plasmon-driven catalytic activity of Au nanoparticles (NPs) supported on reduced graphene oxides (Au/rGO) has rarely been reported. Herein, based on the reduction from 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobenzene (DMAB), the catalytic property of Au/rGO nanocomposites was investigated and compared with corresponding Au NP samples with similar size distribution. Our results show that Au/rGO nanocomposites could serve as a good catalytic and analytic platform for plasmon-driven chemical reactions. In addition, systematic comparisons were conducted during power- and time-dependent surface-enhanced Raman scattering (SERS) experiments, which exhibited a lower power threshold and higher catalytic efficiency for Au/rGO as compared to Au NPs toward the reaction. PMID:25793752

  19. Photocatalytic activity of erbium-doped TiO{sub 2} nanoparticles immobilized in macro-porous silica films

    SciTech Connect

    Castaneda-Contreras, J.; Maranon-Ruiz, V.F.; Chiu-Zarate, R.; Perez-Ladron de Guevara, H.; Rodriguez, R.; Michel-Uribe, C.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Erbium-doped TiO{sub 2} nanoparticles were immobilized on macro-porous silica films. Black-Right-Pointing-Pointer The films were obtained by a phase separation process. Black-Right-Pointing-Pointer The samples exhibited photo-catalytic activity under visible light. Black-Right-Pointing-Pointer The sensitization of TiO{sub 2} was attributed to a red shift in the TiO{sub 2} band-gap. -- Abstract: A macro-porous silica film served as mechanical support to immobilize TiO{sub 2} nanoparticles, which were doped with erbium. The films and the nanoparticles were prepared by sol-gel route. The nanoparticles exhibited photocatalytic activity under visible light. We obtained a degradation rate of methylene blue that followed first order kinetics. The sensitization of the nanoparticles to visible light was attributed to a red shift in the band-gap of the TiO{sub 2} due to the addition of erbium ions.

  20. Au@MnS@ZnS Core/Shell/Shell Nanoparticles for Magnetic Resonance Imaging and Enhanced Cancer Radiation Therapy.

    PubMed

    Li, Meifang; Zhao, Qi; Yi, Xuan; Zhong, Xiaoyan; Song, Guosheng; Chai, Zhifang; Liu, Zhuang; Yang, Kai

    2016-04-20

    Although conventional radiotherapy (RT) has been widely used in the clinic to treat cancer, it often has limited therapeutic outcomes and severe toxic effects. There is still a need to develop theranostic agents with both imaging and RT-enhancing functions to improve the accuracy and efficiency of RT. Herein we synthesize Au@MnS@ZnS core/shell/shell nanoparticles with polyethylene glycol (PEG) functionalization, yielding Au@MnS@ZnS-PEG nanoparticles with great stability in different physiological solutions and no significant cytotoxicity. It is found that Au@MnS@ZnS-PEG nanoparticles can enhance the cancer cell killing efficiency induced by RT, as evidenced by multiple in vitro assays. Owing to the existence of paramagnetic Mn(2+) in the nanoparticle shell, our Au@MnS@ZnS-PEG can be used as a contrast agent for T1-weighted magnetic resonance (MR) imaging, which reveals the efficient accumulation and retention of nanoparticles in the tumors of mice after intravenous injection. Importantly, by exposing tumor-bearing mice that were injected with Au@MnS@ZnS-PEG to X-ray irradiation, the tumor growth can be significantly inhibited. This result shows clearly improved therapeutic efficacy compared to RT alone. Furthermore, no obvious side effect of Au@MnS@ZnS-PEG is observed in the injected mice. Therefore, our work presents a new type of radiosensitizing agent, which is promising for the imaging-guided enhanced RT treatment of cancer. PMID:27039932

  1. Controlled protein embedment onto Au/Ag core-shell nanoparticles for immuno-labeling of nanosilver surface.

    PubMed

    Lee, In Hwan; Lee, Jeong Min; Jung, Yongwon

    2014-05-28

    Difficulties in stable conjugation of biomolecules to nanosilver surfaces have severely limited the use of silver nanostructures in biological applications. Here, we report a facile antibody conjugation onto gold/silver (Au/Ag) core-shell nanoparticles by stable and uniform embedment of an antibody binding protein, protein G, in silver nanoshells. A rigid helical peptide linker with a terminal cysteine residue was fused to protein G. A mixture of the peptide-fused protein G and space-filling free peptide was reacted with gold nanoparticles (AuNPs) to form a protein G-linked peptide layer on the particle surface. Uniform silver nanoshells were successfully formed on these protein G-AuNPs, while stably embedding protein G-linked peptide layers. Protein G specifically targets the Fc region of an antibody and thus affords properly orientated antibodies on the particle surface. Compared to Au nanoparticles of similar size with randomly adsorbed antibodies, the present immuno-labeled Au/Ag core-shell nanoparticles offered nearly 10-fold higher sensitivities for naked-eye detection of surface bound antigens. In addition, small dye molecules that were bonded to the peptide layer on Au nanoparticles exhibited highly enhanced surface-enhanced Raman scattering (SERS) signals upon Ag shell formation. The present strategy provides a simple but efficient way to conjugate antibodies to nanosilver surfaces, which will greatly facilitate wider use of the superior optical properties of silver nanostructures in biological applications. PMID:24801432

  2. Multifunctional nanocomposites constructed from Fe3O4-Au nanoparticle cores and a porous silica shell in the solution phase.

    PubMed

    Chen, Fenghua; Chen, Qingtao; Fang, Shaoming; Sun, Yu'an; Chen, Zhijun; Xie, Gang; Du, Yaping

    2011-11-01

    This work is directed towards the synthesis of multifunctional nanoparticles composed of Fe(3)O(4)-Au nanocomposite cores and a porous silica shell (Fe(3)O(4)-Au/pSiO(2)), aimed at ensuring the stability, magnetic, and optical properties of magnetic-gold nanocomposite simultaneously. The prepared Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles are characterized by means of TEM, N(2) adsorption-desorption isotherms, FTIR, XRD, UV-vis, and VSM. Meanwhile, as an example of the applications, catalytic activity of the porous silica shell-encapsulated Fe(3)O(4)-Au nanoparticles is investigated by choosing a model reaction, reduction of o-nitroaniline to benzenediamine by NaBH(4). Due to the existence of porous silica shells, the reaction with Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles as a catalyst follows second-order kinetics with the rate constant (k) of about 0.0165 l mol(-1) s(-1), remarkably different from the first-order kinetics with the k of about 0.002 s(-1) for the reduction reaction with the core Fe(3)O(4)-Au nanoparticles as a catalyst. PMID:21637876

  3. Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO₂ nanoparticles.

    PubMed

    Hu, Liang; Zeng, Guangming; Chen, Guiqiu; Dong, Haoran; Liu, Yutang; Wan, Jia; Chen, Anwei; Guo, Zhi; Yan, Ming; Wu, Haipeng; Yu, Zhigang

    2016-01-15

    This study investigated the performance of immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles in the treatment of raw landfill leachate with a very low biodegradability ratio (BOD5/COD) of 0.09. The effects of various operating parameters, such as initial chemical oxygen demand (COD) concentration, pH, temperature, and biosorbent dosage, were evaluated with respect to the removal efficiency of total organic carbon (TOC) and ammonia nitrogen (NH3-N). For the immobilized biosorbents, an optimum pH of 6.0 for TOC and 7.0 for NH3-N were found suitable for TOC and NH3-N removal at temperature of 37°C, respectively. The most superior removal efficiencies of TOC and NH3-N of landfill leachate were over 75% and 74% in 72 h at an initial COD concentration of 200 mg L(-1), respectively. In addition, heavy metals were partly removed by the immobilized biosorbents during the process of landfill leachate treatment. The species and mass percentage of organic compounds in landfill leachate after the treatment were found to have considerably declined according to the gas chromatography coupled with mass spectrometry (GC-MS) system. These results indicate that the immobilized P. chrysosporium loaded with nitrogen-doped TiO2 nanoparticles could be a convenient and efficient method for the treatment of landfill leachate. PMID:26355412

  4. Application of Cryopreserved Fibroblast Culture with Au Nanoparticles to Treat Burns.

    PubMed

    Volkova, Nataliia; Yukhta, Mariia; Pavlovich, Olena; Goltsev, Anatoliy

    2016-12-01

    The aim was to investigate a possibility of using the cryopreserved human culture of fibroblasts (CrHFC) with gold nanoparticles (AuNPs) to treat experimental burns in rats.The third-degree burns were modeled in white male rats. All the animals with burns were divided into three experimental groups: control group with no wound treatment; group 1 was composed of animals with CrHFC application; and group 2 consisted of those with CrHFC and AuNPs (6 μg/ml) application to a burn surface the next day after the injury. The CrHFC was applied to the methylcellulose gel in a dose of 5 × 10(4) of viable cells per 1 cm(2) of the burn. The animals were removed from the experiment on day 21 after the treatment.The CrHFC use alone and with AuNPs to the surface of burns stimulated the wound healing compared with the control. The effect of using CrHFC was less pronounced compared to the CrHFC application with AuNPs. It was reflected in a slower recovery of burns and moderate lymphocytic infiltration of granulation tissue. Immunofluorescent analysis emphasized that the use of CrHFC with AuNPs accelerated the skin synthetic processes and was helpful in recovering type I and III collagen content on day 21 after therapy.The results were likely related primarily to the unique structure and antimicrobial properties of AuNPs. Our experimental study of the effect of CrHFC with AuNPs application on regenerative processes in burns gives some pre-conditions to the following advanced bio- and nanotechnology developments. PMID:26762263

  5. Enhancement of superconducting Tc (33 K) by entrapment of FeSe in carbon coated Au-Pd17Se15 nanoparticles.

    PubMed

    Mishra, Sukhada; Song, Kai; Ghosh, Kartik C; Nath, Manashi

    2014-03-25

    FeSe has been an interesting member of the Fe-based superconductor family ever since the discovery of superconductivity in this simple binary chalcogenide. Simplicity of composition and ease of synthesis has made FeSe, in particular, very lucrative as a test system to understand the unconventional nature of superconductivity, especially in low-dimensional models. In this article we report the synthesis of composite nanoparticles containing FeSe nanoislands entrapped within an ent-FeSe-Pd16Se15-Au nanoparticle and sharing an interface with Pd17Se15. This assembly exhibits a significant enhancement in the superconducting Tc (onset at 33 K) accompanied by a noticeable lattice compression of FeSe along the <001> and <101> directions. The Tc in FeSe is very sensitive to application of pressure and it has been shown that with increasing external pressure Tc can be increased almost 4-fold. In these composite nanoparticles reported here, immobilization of FeSe on the Pd17Se15 surface contributes to increasing the effect of interfacial pressure, thereby enhancing the Tc. The effect of interfacial pressure is also manifested in the contraction of the FeSe lattice (up to 3.8% in <001> direction) as observed through extensive high-resolution TEM imaging. The confined FeSe in these nanoparticles occupied a region of approximately 15-25 nm, where lattice compression was uniform over the entire FeSe region, thereby maximizing its effect in enhancing the Tc. The nanoparticles have been synthesized by a simple catalyst-aided vapor transport reaction at 800 °C where iron acetylacetonate and Se were used as precursors. Morphology and composition of these nanoparticles have been studied in details through extensive electron microscopy. PMID:24494773

  6. Iodide-induced organothiol desorption and photochemical reaction, gold nanoparticle (AuNP) fusion, and SERS signal reduction in organothiol-containing AuNP aggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gold nanoparticles (AuNPs) have been used extensively as surface-enhanced Raman spectroscopic (SERS) substrates for their large SERS enhancements and widely believed chemical stability. Presented is the finding that iodide can rapidly reduce the SERS intensity of the ligands, including organothiols ...

  7. Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles.

    PubMed

    Lv, Yongqin; Lin, Zhixing; Tan, Tianwei; Svec, Frantisek

    2014-01-01

    Porcine lipase has been reversibly immobilized on a monolithic polymer support containing thiol functionalities prepared within confines of a fused silica capillary and functionalized with gold nanoparticles. Use of gold nanoparticles enabled rejuvenation of the activity of the deactivated reactor simply by stripping the inactive enzyme from the nanoparticles using 2-mercaptoethanol and subsequent immobilization of fresh lipase. This flow through enzymatic reactor was then used to catalyze the hydrolysis of glyceryl tributyrate (tributyrin). The highest activity was found within a temperature range of 37-40°C. The reaction kinetics is characterized by Michaelis-Menten constant, Km  = 10.9 mmol/L, and maximum reaction rate, Vmax  = 5.0 mmol/L min. The maximum reaction rate for the immobilized enzyme is 1,000 times faster compared to lipase in solution. The fast reaction rate enabled to achieve 86.7% conversion of tributyrin in mere 2.5 min and an almost complete conversion in 10 min. The reactor lost only less than 10% of its activity even after continuous pumping through it a solution of substrate equaling 1,760 reactor volumes. Finally, potential application of this enzymatic reactor was demonstrated with the transesterification of triacylglycerides from kitchen oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:23860941

  8. Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species.

    PubMed

    Shen, Yajing; Zhang, Ye; Zhang, Xiang; Zhou, Xiuhong; Teng, Xiyao; Yan, Manqing; Bi, Hong

    2015-02-21

    Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles (MMSNs-HRP) have been synthesized by a NHS/EDC coupling between the amino groups of horseradish peroxidase (HRP) and the carboxyl groups on the MMSNs surface. It is found that the immobilized HRP on MMSNs still retain high activity and the MMSNs-HRP can eliminate the reactive oxygen species (ROS) in Chinese hamster ovary (CHO) cells induced by the addition of H2O2 aqueous solution. Further, the fluorescent MMSN-HRP-CD nanoparticles have been prepared by attaching biocompatible, fluorescent carbon dots (CDs) to MMSNs-HRP. We have also investigated the effect of an applied magnetic field on cellular uptake of MMSNs-HRP-CDs and found that the internalization of MMSNs-HRP-CDs by CHO cells could be enhanced within 2 hours under the magnetic field. This work provides us with a novel and efficient method to eliminate ROS in living cells by using HRP-immobilized nanoparticles. PMID:25587910

  9. Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process.

    PubMed

    Usón, Laura; Sebastian, Victor; Mayoral, Alvaro; Hueso, Jose L; Eguizabal, Adela; Arruebo, Manuel; Santamaria, Jesus

    2015-06-14

    In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible. PMID:25985914

  10. Understanding the mechanism of amino acid-based Au nanoparticle chain formation.

    PubMed

    Sethi, Manish; Knecht, Marc R

    2010-06-15

    Understanding the surface orientation and interactions between biomolecules and nanoparticles is important in order to determine their effects on the final structure and activity. At present, limited analytical techniques are available to probe these interactions, especially for materials dispersed in solution. We recently demonstrated that arginine, a simple amino acid, is able to bind to the surface of Au nanoparticles in a segregated pattern, which produces an electronic dipole across the structure. As a result, the formation of linear chains of Au nanoparticles occurred that was dependent upon of the concentration of arginine. Here, we present new information concerning the mechanism of assembly and demonstrate unique reaction conditions that can be used to directly control the assembly rate, and thus the size of the final superstructure that is produced. The assembly process was modulated by the arginine/Au nanoparticle ratio, the temperature of the system, the dielectric of the solvent, and the solution ionic strength, all of which can be used in combination to control the process. These effects were monitored using UV-vis spectroscopy, transmission electron microscopy, and dynamic light scattering. From these results, it is suggested that the second step of the assembly process, which is the formation of nanoparticle chains mediated by Brownian motion, controls the overall assembly rate and thus the size and orientation of the final superstructure produced. Furthermore, the reaction kinetics of the system have been studied from which rate constants and activity energies have been extracted for electrostatic-based nanoparticle assembly. This analysis indicates that the assembly/organization step is likely broken into two substeps with the formation of nanoparticle dimers occurring in solution first, followed by the oligomerization of the dimers to form the linear and branched chains. The dimerization step follows traditional second-order kinetics and is

  11. Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes.

    PubMed

    Singh, Vishal; Rakshit, Kanak; Rathee, Shweta; Angmo, Stanzin; Kaushal, Shimayali; Garg, Pankaj; Chung, Jong Hoon; Sandhir, Rajat; Sangwan, Rajender S; Singhal, Nitin

    2016-08-01

    Novel magnetic nanoparticles coated with silica and gold were synthesized for immobilization of α-amylase enzyme and characterized with Fourier transform infrared spectroscopy, transmission electron microscopy. Effect of various limiting factors such as substrate concentration, temperature, and pH on the catalytic activity of enzyme was investigated. The optimum pH for free and immobilized enzyme was found unaffected (7.0), whereas optimum temperature for the enzyme activity was increased from 60°C for free enzyme to 80°C for immobilized counterpart. The gains in catalytic attributes concomitant to ease of recovery of the enzyme reflect the potential of the approach and the product to be useful for the enzymatic bioprocessing. The Michaelis-Menten constant (Km) value of the immobilized α-amylase was higher than that of free α-amylase, whereas maximum velocity (Vmax), and turn over number (Kcat), values were almost similar. Immobilized α-amylase maintained 60% of the enzyme activity even after recycling ten times. PMID:27176673

  12. Immobilization of β-galactosidase from Lactobacillus plantarum HF571129 on ZnO nanoparticles: characterization and lactose hydrolysis.

    PubMed

    Selvarajan, E; Mohanasrinivasan, V; Subathra Devi, C; George Priya Doss, C

    2015-09-01

    β-Galactosidase from Lactobacillus plantarum HF571129 was immobilized on zinc oxide nanoparticles (ZnO NPs) using adsorption and cross-linking technique. Immobilized β-galactosidase showed broad-spectrum pH optima at pH 5-7.5 and temperature 50-60 °C. Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) showed that β-galactosidase successfully immobilized onto supports. Due to the limited diffusion of high molecular weight substrate, K m of immobilized enzyme slightly increased from 6.64 to 10.22 mM, while V max increased from 147.5 to 192.4 µmol min(-1) mg(-1) as compared to the soluble enzyme. The cross-linked adsorbed enzyme retained 90 % activity after 1-month storage, while the native enzyme showed only 74 % activity under similar incubation conditions. The cross-linked β-galactosidase showed activity until the seventh cycle and maintained 88.02 % activity even after the third cycle. The activation energy of thermal deactivation from immobilized biocatalyst was 24.33 kcal/mol with a half-life of 130.78 min at 35 °C. The rate of lactose hydrolysis for batch and packed bed was found to be 0.023 and 0.04 min(-1). PMID:25924968

  13. Regional selective construction of nano-Au on Fe3O4@SiO2@PEI nanoparticles by photoreduction

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Ping, Tuo; Maitlo, Inamullah; Wang, Bowen; Yasir Akram, Muhammad; Nie, Jun; Zhu, Xiaoqun

    2016-05-01

    A magnetically separatable catalyst Fe3O4@SiO2@PEI@Au (gold) nanoparticle was successfully constructed by a novel regional selective photoreduction method. Based on the photolysis mechanism of a type II photoinitiator, through controlling the distribution of polyethylene imine (PEI), Au nanoparticles about 10 nm, which are only on the surface of the Fe3O4@SiO2@PEI nanoparticle, could be photoreduced due to the PEI acting as a coordinating agent, capping agent, and photoreducing agent simultaneously. The small size Au nanoparticles endow the catalyst with a high catalytic performance toward the reduction of 4-nitroaniline to 4-aminophenol by NaBH4. In addition, magnetic Fe3O4@SiO2@PEI@Au nanoparticles could easily be recovered and could be reused at least six times still keeping catalytic efficiency higher than 95%, which contributes to their high stability and magnetization. Furthermore, compared to another reported approach, this method showed great regional selectivity of reducing metal nanoparticles by controlling the distribution of the PEI. Taking advantage of the regional selectivity of the photoreducing method could also be used to fabricate other metal nanoparticles as catalysts for various reactions.

  14. Regional selective construction of nano-Au on Fe3O4@SiO2@PEI nanoparticles by photoreduction.

    PubMed

    Zhou, Ying; Ping, Tuo; Maitlo, Inamullah; Wang, Bowen; Akram, Muhammad Yasir; Nie, Jun; Zhu, Xiaoqun

    2016-05-27

    A magnetically separatable catalyst Fe3O4@SiO2@PEI@Au (gold) nanoparticle was successfully constructed by a novel regional selective photoreduction method. Based on the photolysis mechanism of a type II photoinitiator, through controlling the distribution of polyethylene imine (PEI), Au nanoparticles about 10 nm, which are only on the surface of the Fe3O4@SiO2@PEI nanoparticle, could be photoreduced due to the PEI acting as a coordinating agent, capping agent, and photoreducing agent simultaneously. The small size Au nanoparticles endow the catalyst with a high catalytic performance toward the reduction of 4-nitroaniline to 4-aminophenol by NaBH4. In addition, magnetic Fe3O4@SiO2@PEI@Au nanoparticles could easily be recovered and could be reused at least six times still keeping catalytic efficiency higher than 95%, which contributes to their high stability and magnetization. Furthermore, compared to another reported approach, this method showed great regional selectivity of reducing metal nanoparticles by controlling the distribution of the PEI. Taking advantage of the regional selectivity of the photoreducing method could also be used to fabricate other metal nanoparticles as catalysts for various reactions. PMID:27079331

  15. Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer.

    PubMed

    Abo Markeb, Ahmad; Alonso, Amanda; Dorado, Antonio David; Sánchez, Antoni; Font, Xavier

    2016-08-01

    A novel nanocomposite (NC) based on magnetite nanoparticles (Fe3O4-NPs) immobilized on the surface of a cationic exchange polymer, C100, using a modification of the co-precipitation method was developed to obtain magnetic NCs for phosphate removal and recovery from water. High-resolution transmission electron microscopy-energy-dispersive spectroscopy, scanning electron microscopy , X-ray diffraction, and inductively coupled plasma optical emission spectrometry were used to characterize the NCs. Continuous adsorption process by the so-called breakthrough curves was used to determine the adsorption capacity of the Fe3O4-based NC. The adsorption capacity conditions were studied under different conditions (pH, phosphate concentration, and concentration of nanoparticles). The optimum concentration of iron in the NC for phosphate removal was 23.59 mgFe/gNC. The sorption isotherms of this material were performed at pH 5 and 7. Taking into account the real application of this novel material in real water, the experiments were performed at pH 7, achieving an adsorption capacity higher than 4.9 mgPO4-P/gNC. Moreover, Freundlich, Langmuir, and a combination of them fit the experimental data and were used for interpreting the influence of pH on the sorption and the adsorption mechanism for this novel material. Furthermore, regeneration and reusability of the NC were tested, obtaining 97.5% recovery of phosphate for the first cycle, and at least seven cycles of adsorption-desorption were carried out with more than 40% of recovery. Thus, this work described a novel magnetic nanoadsorbent with properties for phosphate recovery in wastewater. PMID:26849360

  16. Rhombic Coulomb diamonds in a single-electron transistor based on an Au nanoparticle chemically anchored at both ends.

    PubMed

    Azuma, Yasuo; Onuma, Yuto; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2016-02-28

    Rhombic Coulomb diamonds are clearly observed in a chemically anchored Au nanoparticle single-electron transistor. The stability diagrams show stable Coulomb blockade phenomena and agree with the theoretical curve calculated using the orthodox model. The resistances and capacitances of the double-barrier tunneling junctions between the source electrode and the Au core (R1 and C1, respectively), and those between the Au core and the drain electrode (R2 and C2, respectively), are evaluated as 4.5 MΩ, 1.4 aF, 4.8 MΩ, and 1.3 aF, respectively. This is determined by fitting the theoretical curve against the experimental Coulomb staircases. Two-methylene-group short octanedithiols (C8S2) in a C8S2/hexanethiol (C6S) mixed self-assembled monolayer is concluded to chemically anchor the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes even when the Au nanoparticle is protected by decanethiol (C10S). This is because the R1 value is identical to that of R2 and corresponds to the tunneling resistances of the octanedithiol chemically bonded with the Au core and the Au electrodes. The dependence of the Coulomb diamond shapes on the tunneling resistance ratio (R1/R2) is also discussed, especially in the case of the rhombic Coulomb diamonds. Rhombic Coulomb diamonds result from chemical anchoring of the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes. PMID:26856419

  17. Electrocatalytic oxidation of small organic molecules on Pt-Au nanoparticles supported by POMAN-MWCNTs

    NASA Astrophysics Data System (ADS)

    Dong, Qi-Zhi; Li, Li-Li; Chen, Qian-Shan; Guo, Can-Cheng; Yu, Gang

    2015-08-01

    Poly ( o-methoxyaniline) and multi-wall carbon nanotube composite (POMAN-MWCNT) films were deposited onto the platinum (Pt) electrode surface by cyclic voltammetry (CV). Then, platinum and gold (Au) nano-particles were deposited by CV and the double potential deposition method to modify the composite film on the Pt electrode. The morphology of the composite film was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and its electrocatalytic activity toward methanol and formaldehyde oxidation was studied by CV and other electrochemical methods. The results demonstrated that Pt-Au/POMAN-MWCNTs obtained by the double potential deposition method had a much higher catalytic activity and better anti-poisoning property for electrooxidation of methanol and formaldehyde. The improved catalytic performance could be attributed to the uniformly distribution of duel-metal nanoparticles and the synergistic effect between Pt and Au metals. The abstract should briefly state the problem or purpose of the research, indicate the methodology used, summarize the principal findings and major conclusions.

  18. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles.

    SciTech Connect

    Toussaint, K. C.; Liu, M.; Pelton, M.; Pesic, J.; Guffey, M.; Guyot-Sionnest, P.; Scherer, N. F.; Univ. of Chicago

    2007-01-01

    The plasmon resonance-based optical trapping (PREBOT) method is used to achieve stable trapping of metallic nanoparticles of different shapes and composition, including Au bipyramids and Au/Ag core/shell nanorods. In all cases the longitudinal plasmon mode of these anisotropic particles is used to enhance the gradient force of an optical trap, thereby increasing the strength of the trap potential. Specifically, the trapping laser is slightly detuned to the long-wavelength side of the longitudinal plasmon resonance where the sign of the real component of the polarizability leads to an attractive gradient force. A second (femtosecond pulsed) laser is used to excite two-photon fluorescence for detection of the trapped nanoparticles. Two-photon fluorescence time trajectories are recorded for up to 20 minutes for single and multiple particles in the trap. In the latter case, a stepwise increase reflects sequential loading of single Au bipyramids. The nonlinearity of the amplitude and noise with step number are interpreted as arising from interactions or enhanced local fields among the trapped particles and fluctuations in the arrangements thereof.

  19. Impedimetric Aptasensor for Ochratoxin A Determination Based on Au Nanoparticles Stabilized with Hyper-Branched Polymer

    PubMed Central

    Evtugyn, Gennady; Porfireva, Anna; Stepanova, Veronika; Kutyreva, Marianna; Gataulina, Alfiya; Ulakhovich, Nikolay; Evtugyn, Vladimir; Hianik, Tibor

    2013-01-01

    An impedimetric aptasensor for ochratoxin A (OTA) detection has been developed on the base of a gold electrode covered with a new modifier consisting of electropolymerized Neutral Red and a mixture of Au nanoparticles suspended in the dendrimeric polymer Botlorn H30®. Thiolated aptamer specific to OTA was covalently attached to Au nanoparticles via Au-S bonding. The interaction of the aptamer with OTA induced the conformational switch of the aptamer from linear to guanine quadruplex form followed by consolidation of the surface layer and an increase of the charge transfer resistance. The aptasensor makes it possible to detect from 0.1 to 100 nM of OTA (limit of detection: 0.02 nM) in the presence of at least 50 fold excess of ochratoxin B. The applicability of the aptasensor for real sample assay was confirmed by testing spiked beer samples. The recovery of 2 nM OTA was found to be 70% for light beer and 78% for dark beer. PMID:24287535

  20. Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhu, Hong

    2012-10-01

    A thin layer of nano-scaled Fe-doped TiO2 particles prepared by hydrothermal method is immobilized on the surface of polyamide 6 (PA6) fiber using tetrabutyl titanate as the precursor, ferric trichloride as the doping agent and chitosan as the dispersant agent. The morphology, crystal structure, thermal behavior, composition and chemical structure of PA6 fabric before and after treatments are characterized by means of scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry and thermal gravimetric analysis techniques. The properties of diffuse reflectance spectrum, tensile, air permeability, whiteness, yellowness and photocatalytic activity are also analyzed. It is found that the anatase phase Fe-doped TiO2 nanoparticles with crystal size of 12 nm or so are synthesized, and simultaneously grafted onto the fiber surface during the processing. Compared with the TiO2-coated fabric, the thermal stability of the Fe-doped TiO2-coated fabric changes a little. The absorption ability to ultraviolet (UV) rays and visible light is greatly improved. The breaking force and breaking elongation increase to some extent because of the shrinkage of fabric. The air permeability decreases distinctly. The color of PA6 fabric changes from white to light brownish because of the introduction of ferric trichloride. The photocatalytic activity of methylene blue decolorization is enhanced under sunlight and UV irradiation.

  1. Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles.

    PubMed

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-01-01

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively. PMID:24336109

  2. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    PubMed

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. PMID:20932723

  3. Optimized Production of Biodiesel from Waste Cooking Oil by Lipase Immobilized on Magnetic Nanoparticles

    PubMed Central

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-01-01

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively. PMID:24336109

  4. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  5. Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle

    PubMed Central

    Zeng, Chenjie; Chen, Yuxiang; Kirschbaum, Kristin; Appavoo, Kannatassen; Sfeir, Matthew Y.; Jin, Rongchao

    2015-01-01

    Structural ordering is widely present in molecules and materials. However, the organization of molecules on the curved surface of nanoparticles is still the least understood owing to the major limitations of the current surface characterization tools. By the merits of x-ray crystallography, we reveal the structural ordering at all scales in a super robust 133–gold atom nanoparticle protected by 52 thiolate ligands, which is manifested in self-assembled hierarchical patterns starting from the metal core to the interfacial –S–Au–S– ladder-like helical “stripes” and further to the “swirls” of carbon tails. These complex surface patterns have not been observed in the smaller nanoparticles. We further demonstrate that the Au133(SR)52 nanoparticle exhibits nonmetallic features in optical and electron dynamics measurements. Our work uncovers the elegant self-organization strategies in assembling a highly robust nanoparticle and provides a conceptual advance in scientific understanding of pattern structures. PMID:26601152

  6. Study of faceted Au nanoparticle capped ZnO nanowires: antireflection, surface enhanced Raman spectroscopy and photoluminescence aspects

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Juluri, R. R.; Guha, P.; Sathyavathi, R.; Dash, Ajit; Jena, B. K.; Satyam, P. V.

    2015-02-01

    We report a single step growth process of faceted Au nanoparticles (NPs) on highly c-axis oriented ZnO nanowires (NWs) and report that a system with a lower antireflection coefficient also showed higher surface enhanced Raman spectroscopy (SERS) enhanced factors. Well-dispersed Au NPs are grown on silicon substrate using a thin film-in-air-annealing method (using 1 nm and 5 nm thick Au films on silicon and subsequent annealing in air at 800 °C) wherein enhanced oxide growth at the Au-Si interface was used to inhibit inter-diffusion to avoid Au-Si alloy formation (Au/SiOx/Si). These substrates are used to grow aligned ZnO NWs using a high temperature (≈900 °C) chemical vapour deposition method. Depending on the size and areal density of initial catalytic Au NPs, the resultant photoluminescence, reflectance characteristics, and effectiveness as SERS substrates of the faceted Au NP capped ZnO NWs coatings are systematically studied. The highly oriented and faceted Au NPs on ZnO NWs have been used as free standing SERS substrates to detect sub-micro molar crystal violet molecules with an analytical enhancement factor (AEF) of ≥104 and with high repeatability. The substrate with high-density Au-ZnO heterostructures (5 nm Au case) found to have larger AEF, very low reflectance (≈0.75%) and more green emission.

  7. Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine.

    PubMed

    Govindhan, Maduraiveeran; Amiri, Mona; Chen, Aicheng

    2015-04-15

    Here we report on a facile, rapid, sensitive, selective and highly stable electrochemical sensing platform for β-nicotinamide adenine dinucleotide (NADH) based on uncapped Au nanoparticle/reduced graphene oxide (rGO) nanocomposites without the aid of any redox mediators and enzymes. The Au nanoparticle/rGO composite sensing platform was directly formed on a glassy carbon electrode through an in situ electrochemical reduction of GO and Au(3+) with a 100% usage of the precursors. The as-prepared Au nanoparticle/rGO composites demonstrated excellent direct electrocatalytic oxidation toward NADH, providing a large electrochemical active surface area as well as a favorable environment for electron transfer from NADH to the electrode via the enhanced mobility of charge carriers. The Au nanoparticle/rGO composites offered a ~2.3 times higher electrocatalytic current density with a negative shift of 112mV, in comparison to Au nanoparticles. The sensor developed in this study displayed a high sensitivity of 0.916µA/µMcm(2) and a wide linear range of from 50nM to 500µM with a limit of detection of 1.13nM (S/N=3). The interferences from the common interferents such as glutathione, glucose, ascorbic acid and quanine were negligible. The prepared sensor was further tested for the determination of NADH in human urine samples, showing the Au nanoparticle/rGO nanocomposites simultaneously formed by one-step electrochemical reduction have promising biomedical applications. PMID:25499660

  8. Disorder and cluster formation during ion irradiation of Au nanoparticles in SiO2

    NASA Astrophysics Data System (ADS)

    Kluth, P.; Johannessen, B.; Foran, G. J.; Cookson, D. J.; Kluth, S. M.; Ridgway, M. C.

    2006-07-01

    Au nanoparticles (NPs) have been formed by ion beam synthesis in 600nm thin SiO2 . Subsequently the NPs were irradiated with 2.3MeV Sn ions at liquid nitrogen temperature. Samples were analyzed using extended x-ray absorption fine structure (EXAFS) spectroscopy and small angle x-ray scattering (SAXS) as a function of Sn irradiation dose. Transmission electron microscopy shows that the NPs largely retain their spherical shape upon irradiation. However, we observe a reduction in average NP size and a concomitant significant narrowing of the size distribution with increasing irradiation dose as consistent with inverse Ostwald ripening. At lower irradiation doses, significant structural disorder is apparent with an effective bond length expansion as consistent with amorphous material. At higher irradiation doses, EXAFS measurements indicate dissolution of a significant fraction of Au from the NPs into the SiO2 matrix (as monomers) and the formation of small Au clusters (dimers, trimers, etc.). We estimate the volume fraction of such monomers/clusters. Ion irradiation thus yields disordering then dissolution of Au NPs.

  9. Green synthesis and physical characterization of Au nanoparticles and their interaction with bovine serum albumin.

    PubMed

    Yue, Hua-Li; Hu, Yan-Jun; Chen, Jun; Bai, Ai-Min; Ouyang, Yu

    2014-10-01

    In this study, we used morin as a reducing agent for the synthesis of stable and nearly spherical Au nanoparticles (M-AuNPs), which were characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The binding characteristics and molecular mechanism of the interaction between the M-AuNPs and bovine serum albumin (BSA) were explored by UV-vis absorbance, fluorescence spectroscopy, and circular dichroism spectra (CD). The results showed that the quenching mechanisms were based on static quenching. The thermodynamic parameters ΔG, ΔH and ΔS, suggested that the reaction was spontaneous, and mainly driven by electrostatic interactions. Site marker competitive displacement experiments indicated that MAuNPs bound with high affinity to site I (subdomain IIA) of BSA. Synchronous fluorescence and CD spectra demonstrated that BSA conformation was slightly altered in the presence of M-AuNPs. In addition, the effect of pH, temperature, morin quantity, and reaction time were investigated. PMID:25033430

  10. Localized-surface-plasmon-enhanced multifunction silicon nanomembrane Schottky diodes based on Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Ha, Hyeon Jun; Kang, Byung Hyun; Yeom, Seung-Won; Park, Junsu; Lee, Yun-Hi; Ju, Byeong-Kwon

    2015-12-01

    Au nanoparticle (NP)-modified Si nanomembrane (Si NM) Schottky barrier diodes (SBDs) were fabricated by using a transfer-printing method to create pedestals using only one photomask on a flexible substrate. The transfer using the pedestals afforded a yield of >95% with no significant cracks. The plasmonic Au NPs can facilitate the improvement of the incident optical absorption. The Au NP-modified Si NM SBD exhibited enhanced photoresponse characteristics with an external quantum efficiency ({{\\boldsymbol{η }}}{{EQE}}) of 34%, a photosensitivity ({\\boldsymbol{P}}) of 27 at a voltage bias of -5 V, a light intensity of 1.2 W cm-2, and a responsivity ({{\\boldsymbol{R}}}{{ph}}) of 0.21 A W-1. Additionally, the mechanical bending characteristics of the device were observed while a compressive strain up to 0.62% was applied to the diode. The results suggest that the Au NP-modified Si NM SBD has great potential for use in multifunction devices as a strain sensor and photosensor.

  11. Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles.

    PubMed

    Nezhad, M Reza Hormozi; Alimohammadi, M; Tashkhourian, J; Razavian, S Mehdi

    2008-11-01

    An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4(-) to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at lambda = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 x 10(-7) to 1.0 x 10(-4)M, 6.0 x 10(-6) to 2.0 x 10(-4)M and 6.0 x 10(-7) to 1.0 x 10(-4)M, respectively. The detection limits were 5.3 x 10(-7), 2.5 x 10(-6) and 3.2 x 10(-7)M for the hydroquinone, catechol and pyrogallol, respectively. The method was applied satisfactorily to the determination of phenolic compounds in water samples and pharmaceutical formulations. PMID:18222104

  12. Localized-surface-plasmon-enhanced multifunction silicon nanomembrane Schottky diodes based on Au nanoparticles.

    PubMed

    Ha, Hyeon Jun; Kang, Byung Hyun; Yeom, Seung-Won; Park, Junsu; Lee, Yun-Hi; Ju, Byeong-Kwon

    2015-12-01

    Au nanoparticle (NP)-modified Si nanomembrane (Si NM) Schottky barrier diodes (SBDs) were fabricated by using a transfer-printing method to create pedestals using only one photomask on a flexible substrate. The transfer using the pedestals afforded a yield of >95% with no significant cracks. The plasmonic Au NPs can facilitate the improvement of the incident optical absorption. The Au NP-modified Si NM SBD exhibited enhanced photoresponse characteristics with an external quantum efficiency (η(EQE)) of 34%, a photosensitivity (P) of 27 at a voltage bias of -5 V, a light intensity of 1.2 W cm(-2), and a responsivity (R(ph)) of 0.21 A W(-1). Additionally, the mechanical bending characteristics of the device were observed while a compressive strain up to 0.62% was applied to the diode. The results suggest that the Au NP-modified Si NM SBD has great potential for use in multifunction devices as a strain sensor and photosensor. PMID:26541294

  13. CO2-Responsive Polymer-Functionalized Au Nanoparticles for CO2 Sensor.

    PubMed

    Ma, Ying; Promthaveepong, Kittithat; Li, Nan

    2016-08-16

    Metallic nanoparticles (NPs) coated with stimuli-responsive polymers (SRPs) exhibit tunable optical properties responding to external stimuli and show promising sensing applications. We present a new CO2-responsive polymer, poly(N-(3-amidino)-aniline) (PNAAN), coated gold NPs (AuNPs) synthesized by directly reducing HAuCl4 with a CO2-responsive monomer N-(3-amidino)-aniline (NAAN). The amidine group of PNAAN can be protonated into a hydrophilic amidinium group by dissolved CO2 (dCO2). This induces the PNAAN to swell and detach from the AuNP surface, resulting in AuNP aggregation and color change. By monitoring the UV absorbance change of AuNPs, a sensitive dCO2 sensor with a linear range of 0.0132 to 0.1584 hPa and a limit of detection (LOD) of 0.0024 hPa is developed. This method shows dramatic improvement in sensitivity and convenience of sample preparation compared with the previously reported dCO2 sensor. PMID:27459645

  14. Impact of temperature-induced coalescence on SERS properties of Au nanoparticles deposited on GaN nano-columns

    NASA Astrophysics Data System (ADS)

    Dzięcielewski, Igor; Smalc-Koziorowska, Julita; Bańkowska, Małgorzata; Sochacki, Tomasz; Khachapuridze, Alexandr; Weyher, Jan

    2016-08-01

    Nanostructured GaN surfaces sputtered with Au provide very promising and reproducible platforms for surface enhanced Raman scattering (SERS). The enhancement factor (EF) in SERS is expected to depend strongly on the local metal (Au) surface structure (size, distribution and morphology). Herein we show how temperature-induced coalescence followed by recrystallization of Au on GaN nano-columns occurs well below the melting point of gold. This process is reflected in SEM, TEM images and SERS spectra of Au/GaN - bound p-mercaptobenzoic acid (4-MBA), a model Raman scatterer. SERS signals of 4-MBA bound to Au/GaN reach minimum for platforms exposed to t = 350 °C before regaining the intensity when annealed in the range of 450-900 °C. The results have been discussed in the light of the nature of SERS active sites - so called "hot spots" and structure of Au nanoparticles.

  15. Formation of Au-Pt alloy nanoparticles on a Si substrate by simple dip-coating at room temperature.

    PubMed

    Zhao, Liyan; Heinig, Nina; Leung, K T

    2013-01-22

    Spherical Au-Pt alloy nanoparticles of 10 nm average size have been prepared on a H-terminated Si(100) substrate by an extremely simple method of dip-coating. X-ray photoelectron spectroscopy and glancing-incidence X-ray diffraction confirm the formation of Au-Pt alloy. The Au(3+) ions are first reduced on the Si substrate upon dipping, and the freshly formed Au nuclei then work as a "catalyst" by promoting the reduction of PtCl(6)(2-) ions on the Au nuclei. The subsequent interdiffusion of Au and Pt atoms leads to the observed alloy formation. The present method provides an environment-friendly, low-cost route to preparing anode electrodes in fuel cells. PMID:23234580

  16. Nonlocal nonlinear optical response of graphene oxide-Au nanoparticles dispersed in different solvents

    NASA Astrophysics Data System (ADS)

    Fakhri, P.; Rashidian Vaziri, M. R.; Jaleh, B.; Partovi Shabestari, N.

    2016-01-01

    In this paper, we report on the preparation of graphene oxide and graphene oxide-Au nanodispersions in various solvents, such as water, DMF (N,N-dimethylformamide) and NMP (N-methyl-2-pyrrolidone). Optical, structural and nonlinear optical properties of all the samples have been studied. The nonlinear optical properties have been measured using the z-scan technique. It is shown that the incorporation of Au nanoparticles can greatly improve the nonlinear optical properties of graphene oxide. More importantly, the fact is recognized that the media that surround the nonlinear sample can influence its nonlinear optical properties by their nonlocal action. The nonlocal z-scan theory has been used to estimate the role of the surrounding medium in changing the samples’ nonlinear responses.

  17. Immobilization of Thiadiazole Derivatives on Magnetite Mesoporous Silica Shell Nanoparticles in Application to Heavy Metal Removal from Biological Samples

    SciTech Connect

    Emadi, Masoomeh; Shams, Esmaeil

    2010-12-02

    In this report magnetite was synthesized by a coprecipitation method, then coated with a layer of silica. Another layer of mesoporous silica was added by a sol-gel method, then 5-amino-1,3,4-thiadiazole-thiol (ATT) was immobilized onto the synthesized nanoparticles with a simple procedure. This was followed by a series of characterizations, including transmission electron microscopy (TEM), FT-IR spectrum, elemental analysis and XRD. Heavy metal uptake of the modified nanoparticles was examined by atomic absorption spectroscopy. For further investigation we chose Cu{sup 2+} as the preferred heavy metal to evaluate the amount of adsorption, as well as the kinetics and mechanism of adsorption. Finally, the capacity of our nanoparticles for the heavy metal removal from blood was shown. We found that the kinetic rate of Cu{sup 2+} adsorption was 0.05 g/mg/min, and the best binding model was the Freundlich isotherm.

  18. Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions.

    PubMed

    Venkatesan, P; Santhanalakshmi, J

    2010-07-20

    Pdnp and Pd containing trimetallic nanoparticles (tnp) are synthesized by chemical method with cetyltrimethylammonium bromide as the capping agent. Compositionally, four different tnp are prepared and the particle sizes are characterized by UV-vis spectra, HR-TEM, and XRD measurements. The catalytic activities of Pdnp and tnp are tested using the Sonogashira C-C coupling reaction. The product yield and recyclability of the recovered catalysts are studied. tnp (1:1:1) exhibited better catalysis than Pdnp, which may be due to the concerted electronic effects of the Au-Ag core onto the Pd shell atoms. PMID:20462280

  19. Synthesis and characterization of Au102(p-MBA)44 nanoparticles.

    PubMed

    Levi-Kalisman, Yael; Jadzinsky, Pablo D; Kalisman, Nir; Tsunoyama, Hironori; Tsukuda, Tatsuya; Bushnell, David A; Kornberg, Roger D

    2011-03-01

    The synthesis of Au(102)(p-MBA)(44) nanoparticles on a preparative scale in high yield is described. Various analytical methods are shown to give results consistent with the composition and known structure of the particles, showing the preparation is essentially homogeneous, and attesting to the validity of the methods as well. Derivatization of the particles with proteins and DNA is demonstrated, and conditions are described for imaging individual particles by cryo-EM at low electron dose, close to focus, conditions optimal for recording high-resolution details. PMID:21319754

  20. Surface plasmon excitation via Au nanoparticles in n-CdSe /p-Si heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Konda, R. B.; Mundle, R.; Mustafa, H.; Bamiduro, O.; Pradhan, A. K.; Roy, U. N.; Cui, Y.; Burger, A.

    2007-11-01

    We report on the significant enhancement of photocurrent in pn heterojunction diode, consisting of n-CdSe /p-Si substrates, in situ deposited with Au nanoparticles on the surface by the pulsed-laser deposition technique. This is attributed due to the large enhancement in electromagnetic field that occurs in the vicinity of the metal surface, causing surface plasmons. The large enhancement in Raman and photoluminescence intensity was observed due to surface plasmon resonance. Our results suggest that the photodetectors, optoelectronic, such as high-performance thin-film solar cells, optical communication, and sensing devices, including bio- and molecular sensors, can be fabricated with improved functionality.

  1. Effect of ultrasonic wave on the syntheses of Au and ZnO nanoparticles by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Takada, N.; Fujikawa, A.; Koshizaki, N.; Sasaki, K.

    2013-03-01

    We synthesized Au and ZnO nanoparticles by laser ablation in distilled water with the superposition of an ultrasonic wave. The effect of the ultrasonic wave was examined on the optical absorbance of colloidal solution and the crystallinity of synthesized nanoparticles. The absorbance of colloidal solution was enhanced by the ultrasonic wave, indicating more efficient production rate of nanoparticles. In addition, the ultrasonic wave enhanced the crystallinity of synthesized nanoparticles. These enhancements are attributed to the fact that the ultrasonic wave drives the repetitive formations and collapses of cavitation bubbles.

  2. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.

    PubMed

    Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong

    2016-01-28

    Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (∼15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (∼1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (∼76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection. PMID:26701141

  3. Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts

    DOE PAGESBeta

    T. D. Nguyen-Phan; Baber, A. E.; Rodriguez, J. A.; Senanayake, S. D.

    2015-12-10

    The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au– and Pt– based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects ofmore » studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).« less

  4. Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts

    SciTech Connect

    T. D. Nguyen-Phan; Baber, A. E.; Rodriguez, J. A.; Senanayake, S. D.

    2015-12-10

    The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au– and Pt– based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects of studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).

  5. Configuration of microbially synthesized Pd-Au nanoparticles studied by STEM-based techniques

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Jones, I. P.; Preece, J. A.; Johnston, R. L.; Deplanche, K.; Macaskie, L. E.

    2012-02-01

    Bimetallic Pd-Au particles synthesized using Desulfovibrio desulfuricans bacteria are characterized using scanning transmission electron microscopy (STEM) with a high-angle annular dark field (HAADF) detector combined with energy dispersive x-ray (EDX) silicon drift detector (SDD) elemental mapping and plasmon electron energy-loss spectroscopy (EELS). When combined with EDX, theoretical considerations or EELS, the atomic-number contrast (Z-contrast) provided by HAADF-STEM is effective in characterizing the compositional configuration of the bimetallic nanoparticles. Homogeneous mixing and complex segregations have been found for different particles in this work. The EELS study has also found different behaviours corresponding to surface plasmon resonances in different regions of a single particle due to its heterogeneity and anisotropy. HAADF-STEM tomography has been performed to obtain three-dimensional (3D) visualization of the nanoparticles.

  6. An experimental study of thermal diffusivity of Au nanoparticles: effects of concentration particle size

    NASA Astrophysics Data System (ADS)

    Shahriari, Esmaeil; Moradi, Mohammad; Raeisi, Morteza

    2016-06-01

    In this article, Au nanoparticles in polyvinylpyrrolidone (PVP) solution were prepared by gamma radiation at different concentrations. The solutions were irradiated at doses of 50 kGy for making different sizes. The average sizes of particle in the prepared samples were measured using the nanophox machine. A dual-beam mode-mismatched thermal lens (TL) method was used to investigate the effect of thermal diffusivity of samples. The TL measurement was carried out using a green diode laser (wavelength 532 nm, 60 mW) and a He-Ne laser (wavelength 632.8 nm, 0.5 mW) for excitation source and probe beam, respectively. The results showed that the thermal diffusivity of samples enhances with the growth of particle size and density of solutions. This increment can be attributed to phonon scattering at interface of particles-liquid and contact between the nanoparticles and surrounded liquid.

  7. Electron Beam Crosslinked Au-nanoparticle Films for Sensor Array Patterning

    NASA Astrophysics Data System (ADS)

    Covington, Elizabeth; Kurdak, Cagliyan; Bohrer, Forest; Chang, Hungwei; Zellers, Edward T.

    2010-03-01

    We have fabricated chemiresistors, arranged in a 2x2 array with 4 μm spacing between the sensors, for use in a micro-gas chromatography (μ-GC) system. To discriminate between analytes, each sensor should be coated with a different thiol coated Au-nanoparticle film. Due to their close spacing, it is not possible to pattern the sensors with different films with traditional film coating methods. Electron beam exposure crosslinks the nanoparticles and renders the film insoluble, and it possible to selectively expose a single sensor in an array. After crosslinking, the remaining film can be rinsed away leaving one coated sensor. This process can be repeated for different films until all sensors in the array have a distinct coating. Using this technique we have made the smallest chemiresistor array with four different films to date. The sensors were characterized by four volatile organic compounds and exhibit different response patterns making them suitable for μ-GC applications.

  8. New GO-PEI-Au-L-Cys ZIC-HILIC composites: synthesis and selective enrichment of glycopeptides.

    PubMed

    Jiang, Bo; Liang, Yu; Wu, Qi; Jiang, Hao; Yang, Kaiguang; Zhang, Lihua; Liang, Zhen; Peng, Xiaojun; Zhang, Yukui

    2014-06-01

    GO-PEI-Au-L-Cys composites were synthesized via loading gold nanoparticles on a GO surface using polyethylenimine as reducing and stabilizing reagents, followed by L-cysteine immobilization through an Au-S bond. The composites were applied as a kind of novel ZIC-HILIC material to achieve highly selective enrichment of glycopeptides from biological samples. PMID:24752239

  9. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Liu, Xinyu; Wei, Chao; Xu, Zhichuan J.; Sim, Stanley Siong Wei; Liu, Linbo; Xu, Chenjie

    2015-10-01

    Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT.Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05459a

  10. The deposition of Au-Pt core-shell nanoparticles on reduced graphene oxide and their catalytic activity

    NASA Astrophysics Data System (ADS)

    Cui, Xiu; Wu, Shengnan; Jungwirth, Scott; Chen, Zhibing; Wang, Zhenghua; Wang, Lun; Li, Yongxin

    2013-07-01

    Au-Pt core-shell nanoparticles have been synthesized on a reduced graphene oxide (RGO) surface by an under-potential deposition (UPD) redox replacement technique, which involves redox replacement of a copper UPD monolayer by {{PtCl}}_{4}^{2-} that could be reduced and deposited simultaneously. Scanning electron microscopy (SEM) and electrochemical methods have been used to characterize the graphene decorated with Au-Pt core-shell nanoparticles. The electrochemical experiments show that the materials exhibit excellent catalytic activity towards the oxygen reduction reaction and the methanol oxidation reaction. It is believed that the high-performance of this new catalyst is due to the ultrathin Pt shell on the Au nanoparticles surface and the oxygen-containing functional groups on the RGO surface.

  11. Effects of nanoparticles size and concentration and laser power on nonlinear optical properties of Au and Au-CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Salah, Abeer; Mansour, A.; Mohamed, M. B.; Azzouz, I. M.; Elnaby, S.; Badr, Y.

    2015-10-01

    Au and Au-CdSe nanoparticles (NPs) have been synthesized by organometallic pyrolysis method. Nano-crystals (NCs) structure was confirmed using high resolution transmission electron microscope (HRTEM) and X-ray diffraction (XRD). Nonlinear optical absorption is investigated by Z-scan technique using nanosecond laser pulses of second harmonic Nd:YAG. Intensity-dependence of nonlinear absorption on both nano-size and concentrations is reported. These are interesting findings which can be used to fabricate optical limiting and optical switching devices from NPs and hybrid systems.

  12. Tailoring the electrical properties of MoS2 field effect transistors by depositing Au nanoparticles and alkanethiol molecules.

    PubMed

    Cho, Kyungjune; Jeong, Hyunhak; Kim, Tae-Young; Pak, Jinsu; Kim, Jae-Keun; Choi, Barbara Yuri; Lee, Takhee

    2016-05-11

    We fabricated and characterized MoS2 field effect transistors. First, we measured the electrical properties of MoS2 field effect transistors (FETs) that were made with mechanically exfoliated MoS2 flakes. Then, we deposited Au nanoparticles on the MoS2 channel and measured the electrical properties. We observed whether the source-drain current increased or decreased after the Au particles were deposited. The deposited Au particles either formed an extra current path and increased the current or behaved as charge-withdrawing sites and decreased the current. Next, we deposited alkanethiol molecules on the Au particles to reduce the work function of the Au. Alkanethiol molecules are known to form a self-assembled monolayer on the Au surface, and the electric dipole moment of the molecules causes the work function of the Au to decrease. Au particles can capture electrons from the MoS2 channel due to their high work function. However, the decreased work function of the Au particles subjected to alkanethiol treatment could cause captured electrons to be released from the Au particles to MoS2. Therefore, the current increased after alkanethiol treatment. This study may provide useful methods to utilize surface treatments with particles and molecules to tailor the electrical properties of MoS2-based FETs. PMID:27057642

  13. Tailoring the electrical properties of MoS2 field effect transistors by depositing Au nanoparticles and alkanethiol molecules

    NASA Astrophysics Data System (ADS)

    Cho, Kyungjune; Jeong, Hyunhak; Kim, Tae-Young; Pak, Jinsu; Kim, Jae-Keun; Choi, Barbara Yuri; Lee, Takhee

    2016-05-01

    We fabricated and characterized MoS2 field effect transistors. First, we measured the electrical properties of MoS2 field effect transistors (FETs) that were made with mechanically exfoliated MoS2 flakes. Then, we deposited Au nanoparticles on the MoS2 channel and measured the electrical properties. We observed whether the source-drain current increased or decreased after the Au particles were deposited. The deposited Au particles either formed an extra current path and increased the current or behaved as charge-withdrawing sites and decreased the current. Next, we deposited alkanethiol molecules on the Au particles to reduce the work function of the Au. Alkanethiol molecules are known to form a self-assembled monolayer on the Au surface, and the electric dipole moment of the molecules causes the work function of the Au to decrease. Au particles can capture electrons from the MoS2 channel due to their high work function. However, the decreased work function of the Au particles subjected to alkanethiol treatment could cause captured electrons to be released from the Au particles to MoS2. Therefore, the current increased after alkanethiol treatment. This study may provide useful methods to utilize surface treatments with particles and molecules to tailor the electrical properties of MoS2-based FETs.

  14. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    PubMed Central

    Huang, Po-Jung; Chang, Ken-Lin; Chen, Shui-Tein

    2015-01-01

    Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride) was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase−1 at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h−1 L−1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L−1). Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase. PMID:25874210

  15. Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica

    PubMed Central

    Rösken, Liz M; Cappel, Felix; Körsten, Susanne; Fischer, Christian B; Schönleber, Andreas; van Smaalen, Sander; Geimer, Stefan; Beresko, Christian; Ankerhold, Georg

    2016-01-01

    Summary Microbial biosynthesis of metal nanoparticles as needed in catalysis has shown its theoretical ability as an extremely environmentally friendly production method in the last few years, even though the separation of the nanoparticles is challenging. Biosynthesis, summing up biosorption and bioreduction of diluted metal ions to zero valent metals, is especially ecofriendly, when the bioreactor itself is harmless and needs no further harmful reagents. The cyanobacterium Anabaena cylindrica (SAG 1403.2) is able to form crystalline Au0-nanoparticles from Au3+ ions and does not release toxic anatoxin-a. X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and laser-induced breakdown spectroscopy (LIBS) are applied to monitor the time-dependent development of gold nanoparticles for up to 40 hours. Some vegetative cells (VC) are filled with nanoparticles within minutes, while the extracellular polymeric substances (EPS) of vegetative cells and the heterocyst polysaccharide layer (HEP) are the regions, where the first nanoparticles are detected on most other cells. The uptake of gold starts immediately after incubation and within four hours the average size remains constant around 10 nm. Analyzing the TEM images with an image processing program reveals a wide distribution for the diameter of the nanoparticles at all times and in all regions of the cyanobacteria. Finally, the nanoparticle concentration in vegetative cells of Anabaena cylindrica is about 50% higher than in heterocysts (HC). These nanoparticles are found to be located along the thylakoid membranes. PMID:27335727

  16. Time-dependent growth of crystalline Au(0)-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica.

    PubMed

    Rösken, Liz M; Cappel, Felix; Körsten, Susanne; Fischer, Christian B; Schönleber, Andreas; van Smaalen, Sander; Geimer, Stefan; Beresko, Christian; Ankerhold, Georg; Wehner, Stefan

    2016-01-01

    Microbial biosynthesis of metal nanoparticles as needed in catalysis has shown its theoretical ability as an extremely environmentally friendly production method in the last few years, even though the separation of the nanoparticles is challenging. Biosynthesis, summing up biosorption and bioreduction of diluted metal ions to zero valent metals, is especially ecofriendly, when the bioreactor itself is harmless and needs no further harmful reagents. The cyanobacterium Anabaena cylindrica (SAG 1403.2) is able to form crystalline Au(0)-nanoparticles from Au(3+) ions and does not release toxic anatoxin-a. X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and laser-induced breakdown spectroscopy (LIBS) are applied to monitor the time-dependent development of gold nanoparticles for up to 40 hours. Some vegetative cells (VC) are filled with nanoparticles within minutes, while the extracellular polymeric substances (EPS) of vegetative cells and the heterocyst polysaccharide layer (HEP) are the regions, where the first nanoparticles are detected on most other cells. The uptake of gold starts immediately after incubation and within four hours the average size remains constant around 10 nm. Analyzing the TEM images with an image processing program reveals a wide distribution for the diameter of the nanoparticles at all times and in all regions of the cyanobacteria. Finally, the nanoparticle concentration in vegetative cells of Anabaena cylindrica is about 50% higher than in heterocysts (HC). These nanoparticles are found to be located along the thylakoid membranes. PMID:27335727

  17. Interaction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cells

    PubMed Central

    Woltmann, Beatrice; Torger, Bernhard; Müller, Martin; Hempel, Ute

    2014-01-01

    Background Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles’ composition and surface net charge. Materials and methods Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs’ physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5–50 nmol·cm−2) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). Results PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC+NP) or negative (PEC−NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into “variant systems” featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and “invariant systems” lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC

  18. Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode.

    PubMed

    Palanisamy, Selvakumar; Karuppiah, Chelladurai; Chen, Shen-Ming

    2014-02-01

    The direct electrochemistry of glucose oxidase (GOx) was successfully realized on electrochemically reduced graphene oxide and silver nanoparticles (RGO/Ag) nanocomposite modified electrode. The fabricated nanocomposite was characterized by field emission scanning electron microscope and energy dispersive spectroscopy. The GOx immobilized nanocomposite modified electrode showed a pair of well-defined redox peaks with a formal potential (E°) of -0.422 V, indicating that the bioactivity of GOx was retained. The heterogeneous electron transfer rate constant (Ks) of GOx at the nanocomposite was calculated to be 5.27 s(-1), revealing a fast direct electron transfer of GOx. The GOx immobilized RGO/Ag nanocomposite electrode exhibited a good electrocatalytic activity toward glucose over a linear concentration range from 0.5 to 12.5 mM with a detection limit of 0.16 mM. Besides, the fabricated biosensor showed an acceptable sensitivity and selectivity for glucose. PMID:24184536

  19. Fabrication of two-dimensional Au at FePt core-shell nanoparticle arrays by photochemical metal deposition

    SciTech Connect

    Haertling, Thomas; Uhlig, Tino; Olk, Phillip; Eng, Lukas M.; Seidenstuecker, Axel; Wiedwald, Ulf; Han Luyang; Plettl, Alfred; Ziemann, Paul; Bigall, Nadja C.; Eychmueller, Alexander

    2010-05-03

    In this report, we experimentally demonstrate that single platinum nanoparticles exhibit the necessary catalytic activity for the optically induced reduction of H[AuCl{sub 4}] complexes to elemental gold. This finding is exploited for the parallel Au encapsulation of FePt nanoparticles arranged in a self-assembled two-dimensional array. Magnetic force microscopy reveals that the thin gold layer formed on the FePt particles leads to a strongly increased long-term stability of their magnetization under ambient conditions.

  20. Volcano-like Behavior of Au-Pd Core-shell Nanoparticles in the Selective Oxidation of Alcohols

    PubMed Central

    Silva, Tiago A. G.; Teixeira-Neto, Erico; López, Núria; Rossi, Liane M.

    2014-01-01

    Gold-palladium (AuPd) nanoparticles have shown significantly enhanced activity relative to monometallic Au and Pd catalysts. Knowledge of composition and metal domain distributions is crucial to understanding activity and selectivity, but these parameters are difficult to ascertain in catalytic experiments that have primarily been devoted to equimolar nanoparticles. Here, we report AuPd nanoparticles of varying Au:Pd molar ratios that were prepared by a seed growth method. The selective oxidation of benzyl alcohol was used as a model reaction to study catalytic activity and selectivity changes that occurred after varying the composition of Pd in bimetallic catalysts. We observed a remarkable increase in catalytic conversion when using a 10:1 Au:Pd molar ratio. This composition corresponds to the amount of Pd necessary to cover the existing Au cores with a monolayer of Pd as a full-shell cluster. The key to increased catalytic activity derives from the balance between the number of active sites and the ease of product desorption. According to density functional theory calculations, both parameters are extremely sensitive to the Pd content resulting in the volcano-like activity observed. PMID:25042537

  1. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    NASA Astrophysics Data System (ADS)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  2. Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution

    SciTech Connect

    Yu, Guiyang; Wang, Xiang; Cao, Jungang; Wu, Shujie; Yan, Wenfu; Liu, Gang

    2016-01-01

    A composite photocatalyst of embedding plasmonic Au nanoparticle into CdS (Au@CdS) was prepared with a cysteine-assisted hydrothermal approach. This structure could take fully advantage of electromagnetic fields at the surface of the Au nanoparticles under visible light illumination. The photocatalytic hydrogen evolution activity of CdS could be significantly improved. Without the use of any other metal or metal oxide as cocatalysts, the quantum efficiency can reach 12.1 % over 0.5%Au@CdS at 420 nm. When using 0.1%Pt as a cocatalyst, the quantum efficiency of 0.5%Au@CdS can be further improved to 45.6%. This efficiency can be maintained more than 100 h in the test 12 days, exhibiting a relatively high stability. Photoluminescence (PL) characterization shows that the formation rate of photoexcited e-/h+ was dramatically increased when Au nanoparticles were embedded into CdS. Time-resolved PL measurement shows that Au@CdS also has a longer luminescence lifetime than that of CdS, reflecting that the photoexcited electrons in Au@CdS be with much longer lifetime to reduce H+ forming H2. All these enhancements can be attributed to the effective energy transfer between the Au surface and CdS due to the well matched composite nanostructure. Dr. Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work.

  3. Role of Au(III) coordination by polymer in "green" synthesis of gold nanoparticles using chitosan derivatives.

    PubMed

    Pestov, Alexander; Nazirov, Alexander; Privar, Yuliya; Modin, Evgeny; Bratskaya, Svetlana

    2016-10-01

    Here we report "green" synthesis of gold nanoparticles in solutions of heterocyclic chitosan derivatives (N-(4-imidazolyl)methylchitosan (IMC), N-2-(2-pyridyl)ethylchitosan (2-PEC), and N-2-(4-pyridyl)ethylchitosan (4-PEC)) and show how efficiency of Au(III) binding to polymer influences the Au(III) reduction rate and the size of the gold nanoparticles formed using only the reducing power of these chitosan derivatives. Rheology measurements and (1)H NMR spectroscopy data have confirmed that cleavage of glycosidic bond is a common mechanism of reducing species generation in solutions of chitosan and its N-heterocyclic derivatives. However, the emerging additional reducing species in 2-PEC and 4-PEC solutions due to vinylpyridine elimination promotes Au(III) reduction and gold nanoparticles growth despite lower efficiency of glycosidic bond cleavage in pyridyl derivatives. The decrease of the average size of gold nanoparticles in the row chitosan>2-PEC>IMC supported assumption that the increase of ligand nucleophilicity and stability of Au(III)-polymer complex results in formation of smaller nanoparticles. PMID:27259650

  4. Resonant microwave absorption in thermally deposited au nanoparticle films near percolation coverage.

    PubMed

    Obrzut, Jan; Douglas, Jack F; Kirillov, Oleg; Sharifi, Fred; Liddle, J Alexander

    2013-07-16

    We observe a resonant transition in the microwave absorption of thin thermally deposited Au nanoparticle films near the geometrical percolation transition pc where the films exhibit a 'fractal' heterogeneous geometry. Absorption of incident microwave radiation increases sharply near pc, consistent with effective medium theory predictions. Both the theory and our experiments indicate that the hierarchical structure of these films makes their absorption insensitive to the microwave radiation wavelength λ, so that this singular absorption of microwave radiation is observed over a broad frequency range between 100 MHz and 20 GHz. The interaction of electromagnetic radiation with randomly distributed conductive scattering particles gives rise to localized resonant modes, and our measurements indicate that this adsorption process is significantly enhanced for microwaves in comparison to ordinary light. In particular, above the percolation transition a portion of the injected microwave power is stored within the film until dissipated. Finally, we find that the measured surface conductivity can be quantitatively described at all Au concentrations by generalized effective medium theory, where the fitted conductivity percolation exponents and pc itself are consistent with known two-dimensional estimates. Our results demonstrate that microwave measurements provide a powerful means of remotely measuring the electromagnetic properties of highly heterogeneous conducting films, enabling purposeful engineering of the electromagnetic properties of thin films in the microwave frequency range through fabrication of 'disordered' films of conducting particles such as metal nanoparticles or carbon nanotubes. PMID:23815370