Science.gov

Sample records for au probleme energetique

  1. Amelioration de l'efficacite energetique du procede d'electrolyse de l'aluminium conception d'un nouveau bloc cathodique

    NASA Astrophysics Data System (ADS)

    Blais, Mathieu

    Au Quebec, les alumineries sont de grandes consommatrices d'energie electrique, soit pres de 14 % de la puissance installee d'Hydro-Quebec. Dans ce contexte, des petits gains en efficacite energetique des cuves d'electrolyse pourraient avoir un impact important sur la reduction globale de la consommation d'electricite. Le projet de maitrise decrit dans cette etude repond a la problematique suivante : comment l'optimisation de la geometrie d'un bloc cathodique en vue d'uniformiser la densite de courant peut augmenter l'efficacite energetique et la duree de vie de la cuve d'aluminium? Le but premier du projet est de modifier la geometrie en vue d'ameliorer le comportement thermoelectrique des blocs cathodiques et d'accroitre par le fait meme l'efficacite energetique du procede de production d'aluminium. La mauvaise distribution de la densite de courant dans la cuve est responsable de certains problemes energetiques ayant des impacts negatifs sur l'economie et l'environnement. Cette non-uniformite de la distribution du courant induit une usure prematuree de la surface de la cathode et contribue a reduire la stabilite magnetohydrodynamique de la nappe de metal liquide. Afin de quantifier les impacts que peut avoir l'uniformisation de la densite de courant a travers le bloc cathodique, un modele d'un bloc cathodique d'une cuve de la technologie AP-30 a ete concu et analyse par elements finis. A partir de son comportement thermoelectrique et de donnees experimentales d'une cuve AP-30 tirees de la litterature, une correlation entre le profil de densite de courant a la surface du bloc et le taux d'erosion local au meme endroit a ete creee. Cette relation correspond au modele predictif de la duree de vie de tout bloc du meme materiau a partir de son profil de densite de courant. Ensuite, une programmation a ete faite incorporant dans une meme fonction cout les impacts economiques de la duree de vie, de la chute de voltage cathodique et de l'utilisation de nouveaux materiaux

  2. Les reseaux de politique publique comme facteur d'influence du choix des instruments de politique energetique canadienne a des fins environnementales de 1993 a nos jours

    NASA Astrophysics Data System (ADS)

    Fathy El Dessouky, Naglaa

    Au cours de la derniere decennie, les modes de la gouvernance ont pris place dans un contexte totalement different de celui qu'ils avaient auparavant. Les gouvernements modernes se rendent compte qu'ils perdent de plus en plus leur capacite a elaborer et a gerer les changements d'une maniere autonome. Ainsi, les fonctions et les activites traditionnellement accomplies exclusivement par le gouvernement engagent de nos jours une gamme d'acteurs etatiques et non etatiques. A l'encontre du concept traditionnel de l'Etat controleur, la gouvernance contemporaine est ainsi devenue moins une question d'offre de service et davantage une gestion indirecte des reseaux de politique publique. Dans cette entreprise, les gouvernements contemporains, cherchant plus d'information, de soutien et de legitimite en matiere de formulation des decisions, ont besoin d'etablir des relations avec les divers groupes d'interet qui, a leur tour, voulaient plus de promotion et de protection en faveur de leurs interets a travers leur implication au processus de l'elaboration et de la mise en oeuvre des politiques publiques. Ainsi, l'approche des reseaux de politique publique represente aujourd'hui un courant considerable au sein du champ d'analyse des politiques publiques. Toutefois, les preoccupations des chercheurs pour cette approche, dans le domaine des politiques energetiques a des fins environnementales, semblent recentes, et les etudes realisees sont encore trop peu nombreuses. Au Canada, au debut des annees 1990, le gouvernement ainsi que plusieurs groupes d'interets, des differents secteurs energetique, industriel et environnemental, ont commence a intensifier leurs efforts pour s'attaquer au probleme du changement climatique d'origine energetique, genere surtout par le secteur de l'industrie. Au cours de la derniere decennie, la question touchant plutot le sujet du developpement energetique durable represente le plus important domaine des politiques publiques ayant surgi recemment dans

  3. Methodes entropiques appliquees au probleme inverse en magnetoencephalographie

    NASA Astrophysics Data System (ADS)

    Lapalme, Ervig

    2005-07-01

    This thesis is devoted to biomagnetic source localization using magnetoencephalography. This problem is known to have an infinite number of solutions. So methods are required to take into account anatomical and functional information on the solution. The work presented in this thesis uses the maximum entropy on the mean method to constrain the solution. This method originates from statistical mechanics and information theory. This thesis is divided into two main parts containing three chapters each. The first part reviews the magnetoencephalographic inverse problem: the theory needed to understand its context and the hypotheses for simplifying the problem. In the last chapter of this first part, the maximum entropy on the mean method is presented: its origins are explained and also how it is applied to our problem. The second part is the original work of this thesis presenting three articles; one of them already published and two others submitted for publication. In the first article, a biomagnetic source model is developed and applied in a theoretical con text but still demonstrating the efficiency of the method. In the second article, we go one step further towards a realistic modelization of the cerebral activation. The main priors are estimated using the magnetoencephalographic data. This method proved to be very efficient in realistic simulations. In the third article, the previous method is extended to deal with time signals thus exploiting the excellent time resolution offered by magnetoencephalography. Compared with our previous work, the temporal method is applied to real magnetoencephalographic data coming from a somatotopy experience and results agree with previous physiological knowledge about this kind of cognitive process.

  4. Analyse des interactions energetiques entre un arena et son systeme de refrigeration

    NASA Astrophysics Data System (ADS)

    Seghouani, Lotfi

    La presente these s'inscrit dans le cadre d'un projet strategique sur les arenas finance par le CRSNG (Conseil de Recherche en Sciences Naturelles et en Genie du Canada) qui a pour but principal le developpement d'un outil numerique capable d'estimer et d'optimiser la consommation d'energie dans les arenas et curlings. Notre travail s'inscrit comme une suite a un travail deja realise par DAOUD et coll. (2006, 2007) qui a developpe un modele 3D (AIM) en regime transitoire de l'arena Camilien Houde a Montreal et qui calcule les flux de chaleur a travers l'enveloppe du batiment ainsi que les distributions de temperatures et d'humidite durant une annee meteorologique typique. En particulier, il calcule les flux de chaleur a travers la couche de glace dus a la convection, la radiation et la condensation. Dans un premier temps nous avons developpe un modele de la structure sous la glace (BIM) qui tient compte de sa geometrie 3D, des differentes couches, de l'effet transitoire, des gains de chaleur du sol en dessous et autour de l'arena etudie ainsi que de la temperature d'entree de la saumure dans la dalle de beton. Par la suite le BIM a ete couple le AIM. Dans la deuxieme etape, nous avons developpe un modele du systeme de refrigeration (REFSYS) en regime quasi-permanent pour l'arena etudie sur la base d'une combinaison de relations thermodynamiques, de correlations de transfert de chaleur et de relations elaborees a partir de donnees disponibles dans le catalogue du manufacturier. Enfin le couplage final entre l'AIM +BIM et le REFSYS a ete effectue sous l'interface du logiciel TRNSYS. Plusieurs etudes parametriques on ete entreprises pour evaluer les effets du climat, de la temperature de la saumure, de l'epaisseur de la glace, etc. sur la consommation energetique de l'arena. Aussi, quelques strategies pour diminuer cette consommation ont ete etudiees. Le considerable potentiel de recuperation de chaleur au niveau des condenseurs qui peut reduire l'energie requise par

  5. Optimisation structurelle des systemes energetiques

    NASA Astrophysics Data System (ADS)

    Saloux, Etienne

    The development of renewable energies is growing over the last decade to face environmental issues due to the world fossil fuel consumption increase. These energies are highly involved in houses and commercial buildings and numerous systems have been proposed to meet their energy demand. Therefore, improving both efficiency and use of systems, i.e. improving energy management, appears essential to limit the ecological footprint of humanity on the planet. However, system integration yields a very complex problem to be solved due to the large number of units and theirs technology, size, working conditions and interconnections. This situation highlights the lack of systematic analysis for comparing integrated system performance and for correctly pointing out their potential. As a result, the objective of this thesis is to develop and to present such a method, in other words the structural optimization of energy systems. It will be helpful to choose the optimal equipment by identifying all the possibilities of system arrangements and for comparing their performance. Combinations have then been subjected to environmental (climate), structural (available area) and economical constrains while assessment criteria have considered both energy, economic and ecological aspects. For that reason, as well as energy and economic analyses, the exergy concept has also been applied to the equipment. Nevertheless, the high degree of complexity of integrated systems and the tedious numerical calculations make the resolution by using standard software very difficult. It is clear that the whole optimization project would be considerable and the aim is to develop models and optimization tools. First of all, an exhaustive review of energy equipment including photovoltaic panels, solar collectors, heat pumps and thermal energy storage systems, has been performed. Afterwards, energy and exergy models have been developed and tested for two specific energy scenarios: a) a solar assisted heat

  6. Modelisation et commande des redresseurs triphases fonctionnant a haut rendement et a faible taux de distorsion harmonique: Application au redresseur triphase de vienne

    NASA Astrophysics Data System (ADS)

    Belhadj Youssef, Nesrine

    Les problemes de la qualite de l'onde electrique constituent l'une des preoccupations majeures des fournisseurs de l'energie et des organismes specialises en qualite d'energie. Ce sujet a gagne davantage d'ampleur avec l'utilisation ascendante des convertisseurs de l'energie electrique dans la majorite des applications industrielles et domestiques. Dans le cadre de cette these, on s'interesse plus particulierement au type des convertisseurs alternatif/continu, dont le fonctionnement adequat implique la parfaite regulation du bus DC de tension, l'attenuation des harmoniques de courants, la compensation de l'energie reactive et la maximisation du rendement energetique. Ces differents criteres doivent etre maintenus pour diverses conditions de fonctionnement, c'est-a-dire independamment des variations parametriques auxquelles le systeme peut etre sujet. Il s'avere donc indispensable d'adopter des techniques de commande efficaces, ce qui passe par une modelisation correcte du convertisseur. L'optimisation du nombre de capteurs dans le circuit est egalement un facteur cle a prendre en consideration.

  7. Optimisation multi-objectif des systemes energetiques

    NASA Astrophysics Data System (ADS)

    Dipama, Jean

    The increasing demand of energy and the environmental concerns related to greenhouse gas emissions lead to more and more private or public utilities to turn to nuclear energy as an alternative for the future. Nuclear power plants are then called to experience large expansion in the coming years. Improved technologies will then be put in place to support the development of these plants. This thesis considers the optimization of the thermodynamic cycle of the secondary loop of Gentilly-2 nuclear power plant in terms of output power and thermal efficiency. In this thesis, investigations are carried out to determine the optimal operating conditions of steam power cycles by the judicious use of the combination of steam extraction at the different stages of the turbines. Whether it is the case of superheating or regeneration, we are confronted in all cases to an optimization problem involving two conflicting objectives, as increasing the efficiency imply the decrease of mechanical work and vice versa. Solving this kind of problem does not lead to unique solution, but to a set of solutions that are tradeoffs between the conflicting objectives. To search all of these solutions, called Pareto optimal solutions, the use of an appropriate optimization algorithm is required. Before starting the optimization of the secondary loop, we developed a thermodynamic model of the secondary loop which includes models for the main thermal components (e.g., turbine, moisture separator-superheater, condenser, feedwater heater and deaerator). This model is used to calculate the thermodynamic state of the steam and water at the different points of the installation. The thermodynamic model has been developed with Matlab and validated by comparing its predictions with the operating data provided by the engineers of the power plant. The optimizer developed in VBA (Visual Basic for Applications) uses an optimization algorithm based on the principle of genetic algorithms, a stochastic

  8. Adult Illiteracy in Canada: Identifying and Addressing the Problem = L'analphabetisme chez les adultes au Canada: definition et traitement de la question.

    ERIC Educational Resources Information Center

    Canadian Council of Ministers of Education, Toronto (Ontario).

    This statement of the Council of Ministers of Education, Canada, focuses on the approaches that provincial ministers have taken to address the problem of adult illiteracy. First, it sets out concisely the nature and extent of functional illiteracy in Canada. Second, it describes a sample of the initiatives already under way to create effective…

  9. Ultra-relativistic Au+Au and d+Au collisions:

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  10. Collective flow in Au + Au collisions

    SciTech Connect

    Ritter, H.G.; EOS Collaboration

    1994-05-01

    Based on a preliminary sample of Au + Au collisions in the EOS time projection chamber at the Bevalac, we study sideward flow as a function of bombarding energy between 0.25A GeV and 1.2A GeV. We focus on the increase in in-plane transverse momentum per nucleon with fragment mass. We also find event shapes to be close to spherical in the most central collisions, independent of bombarding energy and fragment mass up to {sup 4}He.

  11. Microstructural evolution of eutectic Au-Sn solder joints

    SciTech Connect

    Song, Ho Geon

    2002-05-31

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  12. Modelisation et optimisation des systemes energetiques a l'aide d'algorithmes evolutifs

    NASA Astrophysics Data System (ADS)

    Hounkonnou, Sessinou M. William

    Optimization of thermal and nuclear plant has many economics advantages as well as environmentals. Therefore new operating points research and use of new tools to achieve those kind of optimization are the subject of many studies. In this momentum, this project is intended to optimize energetic systems precisely the secondary loop of Gentilly 2 nuclear plant using both the extraction of the high and low pressure turbine as well as the extraction of the mixture coming from the steam generator. A detailed thermodynamic model of the various equipment of the secondary loop such as the feed water heaters, the moisture separator-reheater, the dearator, the condenser and the turbine is carried out. We use Matlab software (version R2007b, 2007) with the library for the thermodynamic properties of water and steam (XSteam pour Matlab, Holmgren, 2006). A model of the secondary loop is than obtained thanks to the assembly of the different equipments. A simulation of the equipment and the complete cycle enabled us to release two objectifs functions knowing as the net output and the efficiency which evolve in an opposite way according to the variation of the extractions. Due to the complexity of the problem, we use a method based on the genetic algorithms for the optimization. More precisely we used a tool which was developed at the "Institut de genie nucleaire" named BEST (Boundary Exploration Search Technique) developed in VBA* (Visual BASIC for Application) for its ability to converge more quickly and to carry out a more exhaustive search at the border of the optimal solutions. The use of the DDE (Dynamic Data Exchange) enables us to link the simulator and the optimizer. The results obtained show us that they still exists several combinations of extractions which make it possible to obtain a better point of operation for the improvement of the performance of Gentilly 2 power station secondary loop. *Trademark of Microsoft

  13. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  14. Electrochemistry of Au(II) and Au(III) pincer complexes: determination of the Au(II)-Au(II) bond energy.

    PubMed

    Dann, Thomas; Roşca, Dragoş-Adrian; Wright, Joseph A; Wildgoose, Gregory G; Bochmann, Manfred

    2013-10-01

    The bond energy of the unsupported Au-Au bond in the Au(ii) dimer [(C(∧)N(∧)C)Au]2 and the difference between Au(III)-OH and Au(III)-H bond enthalpies have been determined experimentally by electrochemical methods, with Au-OH and Au-H complexes showing unexpected differences in their reduction pathways, supported by DFT modelling. PMID:24051607

  15. Magnetoresistance of Au films

    DOE PAGESBeta

    Zhang, D. L.; Song, X. H.; Zhang, X.; Zhang, Xiaoguang

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  16. Magnetoresistance of Au films

    SciTech Connect

    Zhang, D. L.; Song, X. H.; Zhang, X; Zhang, Xiaoguang

    2014-01-01

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  17. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  18. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems

    NASA Astrophysics Data System (ADS)

    Kalachyova, Yevgeniya; Lyutakov, Oleksiy; Solovyev, Andrey; Slepička, Petr; Švorčík, Vaclav

    2013-12-01

    Porphyrin/Au and Au/porphyrin/Au systems were prepared by vacuum evaporation and vacuum sputtering onto glass substrate. The surface morphology of as-prepared systems and those subjected to annealing at 160°C was studied by optical microscopy, atomic force microscopy, and scanning electron microscopy techniques. Absorption and luminescence spectra of as-prepared and annealed samples were measured. Annealing leads to disintegration of the initially continuous gold layer and formation of gold nanoclusters. An amplification of Soret band magnitude was observed on the Au/meso-tetraphenyl porphyrin (TPP) system in comparison with mere TPP. Additional enhancement of luminescence was observed after the sample annealing. In the case of sandwich Au/porphyrin/Au structure, suppression of one of the two porphyrins' luminescence maxima and sufficient enhancement of the second one were observed.

  19. Antibacterial Au nanostructured surfaces.

    PubMed

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. PMID:26648134

  20. Long Term Measurement of the Vapor Pressure of Gold in the Au-C System

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.

    2009-01-01

    Incorporating the {Au(s,l) + graphite} reference in component activity measurements made with the multiple effusion-cell vapor source mass spectrometry (multicell KEMS) technique provides a fixed temperature defining ITS-90 (T(sub mp)(Au) = 1337.33K) and a systematic method to check accuracy. Over a 2 year period delta H sub(298)Au was determined by the 2nd and 3rd law methods in 25 separate experiments and were in the ranges 362.2 plus or minus 3.3 kJmol(sup -1) and 367.8 plus or minus 1.1 kJmol(sup -1), respectively. This 5 kJmol-1 discrepancy is transferred directly to the measured activities. This is unacceptable and the source of this discrepancy needs to be understood and corrected. Accepting the 2nd law value increases p(Au) by about 50 percent, brings the 2nd and 3rd law values into agreement and removes the T dependence in the 3rd law values. While compelling, there is no way to independently determine instrument sensitivities, S(sub Au), with T in a single experiment with KEMS. This lack of capability is stopping a deeper understanding of this problem. In addition, the Au-C phase diagram suggests a eutectic invariant reaction: L-Au(4.7at%C) = FCC-Au(0.08at%C) + C(graphite) at T(sub e) approximately 1323K. This high C concentration in Au(l) must reduce p(Au) in equilibrium with {Au(s,l) + graphite} and raises some critical questions about the Gibbs free energy functions of Au(s,l) and the Au fixed point (T(sub mp)(Au) = 1337.33K) which is always measured in graphite.

  1. Nitrogen mineralization from 'AU Golden' sunn hemp residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tropical legume sunn hemp (Crotalaria juncea) cultivar ‘AU Golden’ has the potential to provide substantial amounts of nitrogen (N) to subsequent crops that could reduce recommended application rates of synthetic N fertilizers. Nitrogen fertilization problems via legumes are often due to asynch...

  2. Au20: A Tetrahedral Cluster

    SciTech Connect

    Li, Jun; Li, Xi; Zhai, Hua Jin; Wang, Lai S.

    2003-02-07

    Photoelectron spectroscopy revealed that a 20 atom gold cluster has an extremely large energy gap, which is even greater than that of C60, and an electron affinity comparable with that of C60. This observation suggests that the Au20 cluster must be extremely stable and chemically inert. Using relativistic density functional calculations, we found that Au20 possesses a remarkable tetrahedral structure, which is a fragment of the bulk face-centered cubic lattice of gold with a small structural relaxation. Au20 is thus a true cluster molecule, while at the same time it is exactly part of the bulk, but with very different properties. The tetrahedral Au20 may possess interesting catalytic properties and may be synthesized in bulk quantity or assembled on non-interacting surfaces.

  3. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts

    PubMed Central

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-01-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol. PMID:24797697

  4. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts.

    PubMed

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-01-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol. PMID:24797697

  5. Symmetry energy from elliptic flow in 197Au + 197Au

    NASA Astrophysics Data System (ADS)

    Russotto, P.; Wu, P. Z.; Zoric, M.; Chartier, M.; Leifels, Y.; Lemmon, R. C.; Li, Q.; Łukasik, J.; Pagano, A.; Pawłowski, P.; Trautmann, W.

    2011-03-01

    The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of neutron-rich systems at relativistic energies is proposed as an observable sensitive to the strength of the symmetry term in the equation of state at supra-normal densities. The results obtained from the existing FOPI/LAND data for 197Au + 197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model favor a moderately soft symmetry term with a density dependence of the potential term proportional to (ρ /ρ0) γ with γ = 0.9 ± 0.4.

  6. Flow in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Belt Tonjes, Marguerite; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{s_{{\\rm NN}}} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  7. Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Rich, Ryan; Fudala, Rafal; Butler, Susan; Kokate, Rutika; Gryczynski, Zygmunt; Luchowski, Rafal; Gryczynski, Ignacy

    2013-12-01

    Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several disadvantages such as low fluorescence quantum efficiency (typically near 6%) and broad emission spectrum (540 nm to 800 nm). We describe an approach to enhance the apparent brightness of BSA Au clusters by linking them with a high extinction donor organic dye pacific blue (PB). In this conjugate PB acts as a donor to BSA Au clusters and enhances its brightness by resonance energy transfer (RET). We found that the emission of BSA Au clusters can be enhanced by a magnitude of two-fold by resonance energy transfer (RET) from the high extinction donor PB, and BSA Au clusters can act as an acceptor to nanosecond lifetime organic dyes. By pumping the BSA Au clusters using a high extinction donor, one can increase the effective brightness of less bright fluorophores like BSA Au clusters. Moreover, we prepared another conjugate of BSA Au clusters with the near infrared (NIR) dye Dylight 750 (Dy750), where BSA Au clusters act as a donor to Dy750. We observed that BSA Au clusters can function as a donor, showing 46% transfer efficiency to the NIR dye Dy750 with a long lifetime component in the acceptor decay through RET. Such RET-based probes can be used to prevent the problems of a broad emission spectrum associated with the BSA Au clusters. Moreover, transferring energy from BSA Au clusters to Dy750 will result in a RET probe with a narrow emission spectrum and long lifetime component which can be utilized in imaging applications.Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to

  8. Polarization-based immunoassay in aqueous solution using Au nanoparticle-labeled antibody

    NASA Astrophysics Data System (ADS)

    Mizuno, N.; Takeshita, Y.; Kobayashi, J.; Esashika, K.; Saiki, T.

    2014-04-01

    Here we describe an ultrasensitive antigen-antibody immunoassay using gold nanoparticles (AuNPs). Polarization microscopy is used to discriminate individual AuNP dimers from isolated single AuNPs by means of their Brownian motion in aqueous solution. The optical anisotropy and rotational diffusion time were measured to provide accurate and robust discrimination. Since the size of a naked antibody is comparable to that of an AuNP, the distance between two AuNPs (inter-dimer distance) is rather large, and therefore the optical anisotropy is seriously degraded. To address this problem, we digested the antibody with the protease pepsin to reduce the distance. Autocorrelation analysis allowed discrimination of the difference in optical anisotropy and rotational diffusion time. Setting an appropriate threshold for the measurement enabled sufficient accuracy in the discrimination.

  9. Global polarization measurement in Au+Au collisions

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev,V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2007-08-02

    The system created in non-central relativisticnucleus-nucleus collisions possesses large orbital angular momentum. Dueto spin-orbit coupling, particles produced in such a system could becomeglobally polarized along the direction of the system angular momentum. Wepresent the results of Lambda and anti-Lambda hyperon global polarizationmeasurements in Au+Au collisions at sqrt sNN=62.4 GeV and 200 GeVperformed with the STAR detector at RHIC. The observed globalpolarization of Lambda and anti-Lambda hyperons in the STAR acceptance isconsistent with zero within the precision of the measurements. Theobtained upper limit, lbar P Lambda, anti-Lambda rbar<= 0.02, iscompared to the theoretical values discussed recently in theliterature.

  10. Universality in fragment inclusive yields from Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Insolia, A.; Tuvè, C.; Albergo, S.; Bieser, F.; Brady, F. P.; Caccia, Z.; Cebra, D.; Chacon, A. D.; Chance, J. L.; Choi, Y.; Costa, S.; Elliott, J. B.; Gilkes, M.; Hauger, J. A.; Hirsch, A. S.; Hjort, E. L.; Justice, M.; Keane, D.; Kintner, J.; Lisa, M.; Matis, H. S.; McMahan, M.; McParland, C.; Olson, D. L.; Partlan, M. D.; Porile, N. T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H. G.; Romero, J. L.; Russo, G. V.; Scharenberg, R.; Scott, A.; Shao, Y.; Srivastava, B. K.; Symons, T. J. M.; Tincknell, M. L.; Wang, S.; Warren, P. G.; Wieman, H. H.; Wolf, K. L.

    2001-11-01

    The inclusive light fragment (Z⩽7) yield data in Au+Au reactions, measured by the EOS Collaboration at the LBNL Bevalac, are presented and discussed. For peripheral collisions the measured charge distributions develop progressively according to a power law which can be fitted by a single τ exponent independently of the bombarding energy in the range 250-1200 A MeV. In addition to this universal feature, we observe that the location of the maximum in the individual yields of different charged fragments shift towards lower multiplicity as the fragment charge increases from Z=3 to Z=7. This trend is common to all six measured beam energies. Moments of charge distributions and correlations among different moments are reported. Finally, the THe,DT thermometer has been constructed for central and peripheral collisions using the double yield ratios of He and D, T projectile fragments. The measured nuclear temperatures are in agreement with experimental findings in other fragmentation reactions.

  11. Nuclear Modification of Jet Fragmentation in Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Rowan, Zachary; Phenix Collaboration

    2015-10-01

    The characterization of energy in the quark gluon plasma is facilitated by measurements of modifications to the observed jet fragmentation. A favorable channel of study relies on direct photons created in the initial parton interactions of heavy ion collisions. Such a photon traverses the created medium unscathed and grants us a proxy for the transverse momentum of an away side jet. PHENIX Au+Au data recorded at √{sNN} = 200 GeV during RHIC run 14 benefit from the background rejection capability of the silicon vertex detector, enabling the extraction of a higher purity hadron signal. This advantage, combined with a larger integrated luminosity, allows previous PHENIX measurements of fragmentation functions to be extended to greater jet energies. In this talk, the status of the analysis of direct photon hadron correlations with the new data set will be discussed.

  12. Global polarization measurement in Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kurnadi, P.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Toledo, A. Szanto De; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Yurevich, V. I.; Zawisza, M.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2007-08-01

    The system created in noncentral relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Because of spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Λ and Λ¯ hyperon global polarization measurements in Au+Au collisions at sNN=62.4 and 200 GeV performed with the STAR detector at the BNL Relativistic Heavy Ion Collider (RHIC). The observed global polarization of Λ and Λ¯ hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |PΛ,Λ¯|⩽0.02, is compared with the theoretical values discussed recently in the literature.

  13. d + Au hadron correlation measurements at PHENIX

    SciTech Connect

    Anne M. Sickles

    2014-05-13

    In these proceedings, we discuss recent results from d + Au collisions in PHENIX ridge related measurements and their possible hydrodynamic origin. We present the v2 at midrapidity and measurements of the pseudorapidity dependence of the ridge, distinguishing between the d-going and Au-going directions. We investigate the possible geometrical origin by comparing v2 in d + Au to that in p + Pb, Au + Au and Pb + Pb collisions. Future plans to clarify the role of geometry in small collision systems at RHIC are discussed.

  14. Evaluation of diffuse neutron scattering at elevated temperatures and local decomposition in Ni-Au

    NASA Astrophysics Data System (ADS)

    Portmann, M. J.; Schönfeld, B.; Kostorz, G.; Altorfer, F.; Kohlbrecher, J.

    2003-07-01

    It is demonstrated that in the diffuse neutron scattering of alloys at elevated temperatures (i) the temperature dependence of the linear absorption coefficient is the reason for problems encountered hitherto in the evaluation of diffuse wide-angle scattering and (ii) small-angle neutron scattering has to be corrected for thermal diffuse scattering. These corrections are applied to published data of Ni-8.4 at. % Au and Ni-9.6 at. % Ti and are used to firmly establish that local decomposition is also present in Au-rich Ni-Au above the miscibility gap.

  15. Cometary Activity Beyond 4 AU

    NASA Astrophysics Data System (ADS)

    Womack, M.

    2000-10-01

    Recent observations of the distantly active comets 29 P/Schwassmann-Wachmann 1, 2060 Chiron, and C/1995 O1 (Hale-Bopp) are consistent with models that predict that the activity beyond 4 AU is dominated by outgassing of CO and CO2 molecules trapped in an amorphous water ice surface undergoing crystallization. The nominal CO production rates in Hale-Bopp, SW 1 and Chiron over the range of r = 4 to 9 AU are consistent with Q(CO) = (2.9+/-0.5)x1030r{(-2.5 +/- 0.1)}, with sporadic outbursts superimposed. The data indicate that the gas production rates in distant comets are primarily determined by the composition, and not the size, of the nucleus. The dust production rates, however, are very different among these comets and are not well-correlated with heliocentric distance. Thus, the gas and dust mixtures may not be uniform amongst these comets, nor in an individual comet. Development and sublimation of an icy grain coma at ~ 5 AU appears to be a common feature in distantly active comets. Sublimation of such icy grains is probably the main source of emission of OH, CH3OH, HCN, and H2S in comets beyond 4 AU. Studying the energetics of these phenomena provides an excellent opportunity to learn more about the composition and physical behavior of comet nuclei, as well as other icy bodies in the outer solar system, such as moons and Kuiper Belt Objects. This work was funded by the NSF CAREER Program.

  16. Au/(Ti-W) and Au/Cr metallization of chemically vapor-deposited diamond substrates for multichip module applications

    NASA Astrophysics Data System (ADS)

    Meyyappan, Ilango; Malshe, A. P.; Naseem, H. A.; Brown, W. D.

    1994-12-01

    Since diamond obtained by chemical vapor deposition (CVD) has an extremely high thermal conductivity, it holds great promise in solving thermal management problems in high performance multichip modules (MCMs). Consequently, there is a need to develop a reliable metallization system for CVD diamond. Refractory metals such as Ti, Mo, Ta and W are known to form adhering carbide layers at high temperatures. Also, transition metals such as Cr, Ni and Ni-Cr are widely used in other MCM technologies involving Si, AlN, SiC and alumina substrates. In the work reported here, adherent Au/Cr and Au/(Ti-W) metallization systems were produced at low temperatures using d.c. magnetron sputtering and electron beam evaporation techniques. Adhesion at low temperature is essential since CVD diamond could lose its thermal and electrical properties at high temperatures. Furthermore, interaction between metal layers may cause an increase in conductor trace resistivity and delamination. Adhesion was measured using a Sebastian V-A thin film stud pull tester. The deposition parameters were optimized to give maximum adhesion using a statistical design software package, echip. In the case of the sputtered metallization, pre-sputter cleaning of diamond surface improved adhesion significantly. Values above 9 klbf/sq in were obtained in the case of Au/(Ti-W) and 11.8 klbf/sq in in the case of Au/Cr. Post-deposition annealing was performed in nitrogen ambient to investigate the effect of post-metallization processing on adhesion and also to test for any possible interaction between the metals at high temperatures. Annealing temperatures were limited to 450 C since MCM substrates are seldom exposed to temperatures higher than these. Energy-dispersive spectroscopy (EDS) analysis indicated outdiffusion of W through Au at 400 deg C. No interdiffusion was observed in the case of Au/Cr as per optical microscopy and EDS analysis. Auger electron spectroscopy results indicate interaction between the

  17. Synthesis and optical property characterization of elongated AuPt and Pt@Au metal nanoframes

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Hong, Soonchang; Moh, Sang Hyun; Park, Sungho

    2016-02-01

    We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges.We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08200e

  18. Problem Periods

    MedlinePlus

    ... gov/ Home Body Getting your period Problem periods Problem periods It’s common to have cramps or feel ... doctor Some common period problems Signs of period problems top One way to know if you may ...

  19. Balance Problems

    MedlinePlus

    ... it could be a sign of a balance problem. Balance problems can make you feel unsteady or as if ... related injuries, such as hip fracture. Some balance problems are due to problems in the inner ear. ...

  20. Balance Problems

    MedlinePlus

    ... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady or as ... fall-related injuries, such as hip fracture. Some balance problems are due to problems in the inner ...

  1. Wetting and energetics of solid Au and Au-Ge/SiC interfaces

    SciTech Connect

    Wang, Z.; Wynblatt, P.

    1998-09-01

    A solid state wetting technique has been used to investigate the effects of alloying Au with Ge on the wetting and energetics of Au/SiC interfaces at 1123 K. Germanium was found to segregate to the Au/SiC interface, thereby lowering the contact angle of Au on SiC from 133 to 110, and doubling the work of adhesion of Au on SiC. Calculations based on a monolayer model predict a segregation of 0.89 monolayers of Ge at the Au/SiC interface for Au containing 2.3 at.% Ge. This agrees reasonably well with a coverage of 0.6 monolayers Ge at the Au/SiC interface obtained by direct measurements based on the crater edge profiling technique. The work also demonstrates that simple models of interfacial composition can be combined with the Gibbs adsorption isotherm to provide reliable estimates of interfacial composition at complex four-component interfaces.

  2. Pt{sub 3}Au and PtAu clusters: Electronic states and potential energy surfaces

    SciTech Connect

    Dai, D.; Balasubramanian, K.

    1994-03-15

    We carried out complete active space multiconfiguration self-consistent-field calculations followed by multireference singles+doubles configuration interaction with the Davidson correction which included up to 3.55 million configurations employing relativistic effective core potentials on Pt{sub 3}+Au and PtAu clusters. Four low-lying electronic states were identified for Pt{sub 3}+Au. The {sup 2}{ital A}{sub 2} electronic state ({ital C}{sub 3{ital v}}) was found to be the ground state of Pt{sub 3}Au. Spin--orbit effects were found to be significant. We also computed six low-lying electronic states of PtAu and four low-lying electronic states of PtAu{sup +}. The 5/2 ({sup 2}{Delta}) and 0{sup +}({sup 1}{Sigma}{sup +}) states were found to be the ground states of PtAu and PtAu{sup +}, respectively.

  3. Gold nanowired: a linear (Au25)(n) polymer from Au25 molecular clusters.

    PubMed

    De Nardi, Marco; Antonello, Sabrina; Jiang, De-en; Pan, Fangfang; Rissanen, Kari; Ruzzi, Marco; Venzo, Alfonso; Zoleo, Alfonso; Maran, Flavio

    2014-08-26

    Au25(SR)18 has provided fundamental insights into the properties of clusters protected by monolayers of thiolated ligands (SR). Because of its ultrasmall core, 1 nm, Au25(SR)18 displays molecular behavior. We prepared a Au25 cluster capped by n-butanethiolates (SBu), obtained its structure by single-crystal X-ray crystallography, and studied its properties both experimentally and theoretically. Whereas in solution Au25(SBu)18(0) is a paramagnetic molecule, in the crystal it becomes a linear polymer of Au25 clusters connected via single Au-Au bonds and stabilized by proper orientation of clusters and interdigitation of ligands. At low temperature, [Au25(SBu)18(0)]n has a nonmagnetic ground state and can be described as a one-dimensional antiferromagnetic system. These findings provide a breakthrough into the properties and possible solid-state applications of molecular gold nanowires. PMID:25088331

  4. Interplanetary dust between 1 and 5 AU

    NASA Technical Reports Server (NTRS)

    Stanley, J. E.; Singer, S. F.; Alvarez, J. M.

    1979-01-01

    Analyses of data from the Meteoroid Detection Experiment (MDE) and the Imaging Photopolarimeter (IPP) aboard Pioneer 10 and 11 have led to contradictory conclusions. While the MDE indicates a significant particle environment in the outer solar system (out to at least 5 AU), the IPP sees no zodiacal light (therefore implying no small particles) past 3.3 AU. These two results are reconciled by noting that the spectral index p (relating particle radius and particle concentration) is not a constant in the solar system but changes from less than 2 near 1 AU to more than 2.5 at 5 AU for particles in the range of 10 microns.

  5. Bright, NIR-emitting Au23 from Au25: characterization and applications including biolabeling.

    PubMed

    Muhammed, Madathumpady Abubaker Habeeb; Verma, Pramod Kumar; Pal, Samir Kumar; Kumar, R C Arun; Paul, Soumya; Omkumar, Ramakrishnapillai Vyomakesannair; Pradeep, Thalappil

    2009-10-01

    A novel interfacial route has been developed for the synthesis of a bright-red-emitting new subnanocluster, Au(23), by the core etching of a widely explored and more stable cluster, Au(25)SG(18) (in which SG is glutathione thiolate). A slight modification of this procedure results in the formation of two other known subnanoclusters, Au(22) and Au(33). Whereas Au(22) and Au(23) are water soluble and brightly fluorescent with quantum yields of 2.5 and 1.3 %, respectively, Au(33) is organic soluble and less fluorescent, with a quantum yield of 0.1 %. Au(23) exhibits quenching of fluorescence selectively in the presence of Cu(2+) ions and it can therefore be used as a metal-ion sensor. Aqueous- to organic-phase transfer of Au(23) has been carried out with fluorescence enhancement. Solvent dependency on the fluorescence of Au(23) before and after phase transfer has been studied extensively and the quantum yield of the cluster varies with the solvent used. The temperature response of Au(23) emission has been demonstrated. The inherent fluorescence of Au(23) was used for imaging human hepatoma cells by employing the avidin-biotin interaction. PMID:19711391

  6. The Electronic Properties and L3 XANES of Au and Nano-Au

    SciTech Connect

    Yiu, Y.M.; Zhang, P.; Sham, T.K.

    2004-04-20

    The electronic properties of Au crystal and nano Au have been investigated by theory and experiment. Molecularly capped nano-Au was synthesized using the two-phase method. Au nano-particles have been characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). They retain the fcc crystal structure. Their sizes have been determined to be in a range from 5.5 nm to 1.7 nm. The L3 X-ray Absorption Near Edge Structure (XANES) of nano-Au and Au foil have been recorded using synchrotron radiation, and examined by theoretical calculation based on the first principles. Both theory and experiment show that the nano-Au particles have essentially all the Au L3 XANES features of bulk Au in the near edge region with less pronounced resonance peaks. It is also shown that nano Au exhibits lower 4f binding energy than bulk Au in good agreement with quantum confined Au systems reported previously.

  7. Au nanorod helical superstructures with designed chirality.

    PubMed

    Lan, Xiang; Lu, Xuxing; Shen, Chenqi; Ke, Yonggang; Ni, Weihai; Wang, Qiangbin

    2015-01-14

    A great challenge for nanotechnology is to controllably organize anisotropic nanomaterials into well-defined three-dimensional superstructures with customized properties. Here we successfully constructed anisotropic Au nanorod (AuNR) helical superstructures (helices) with tailored chirality in a programmable manner. By designing the 'X' pattern of the arrangement of DNA capturing strands (15nt) on both sides of a two-dimensional DNA origami template, AuNRs functionalized with the complementary DNA sequences were positioned on the origami and were assembled into AuNR helices with the origami intercalated between neighboring AuNRs. Left-handed (LH) and right-handed (RH) AuNR helices were conveniently accomplished by solely tuning the mirrored-symmetric 'X' patterns of capturing strands on the origami. The inter-rod distance was precisely defined as 14 nm and inter-rod angle as 45°, thus a full helix contains 9 AuNRs with its length up to about 220 nm. By changing the AuNR/origami molar ratio in the assembly system, the average number of AuNR in the helices was tuned from 2 to 4 and 9. Intense chiroptical activities arose from the longest AuNR helices with a maximum anisotropy factor of ∼0.02, which is highly comparable to the reported macroscopic AuNR assemblies. We expect that our strategy of origami templated assembly of anisotropic chiral superstructures would inspire the bottom-up fabrication of optically active nanostructures and shed light on a variety of applications, such as chiral fluids, chiral signal amplification, and fluorescence combined chiral spectroscopy. PMID:25516475

  8. Oxygen-assisted reduction of Au species on Au/SiO2 catalyst in room temperature CO oxidation

    SciTech Connect

    Wu, Zili; Zhou, Shenghu; Zhu, Haoguo; Dai, Sheng; Overbury, Steven {Steve} H

    2008-01-01

    An unexpected oxygen-assisted reduction of cationic Au species by CO was found on a Au/SiO2 catalyst at room temperature; CO oxidation activity increases simultaneously with the reduction of Au species, suggesting the key role of metallic Au played in CO oxidation on Au/SiO2.

  9. [(CF3)4Au2(C5H5N)2]--a new alkyl gold(II) derivative with a very short Au-Au bond.

    PubMed

    Zopes, David; Hegemann, Corinna; Tyrra, Wieland; Mathur, Sanjay

    2012-09-11

    A new gold(II) species [(CF(3))(4)Au(2)(C(5)H(5)N)(2)] with a very short unsupported Au-Au bond (250.62(9) pm) was generated by photo irradiation of a silver aurate, [Ag(Py)(2)][Au(CF(3))(2)], unambiguously characterized by (19)F and (109)Ag NMR studies. PMID:22836874

  10. Childbirth Problems

    MedlinePlus

    ... labor starts before 37 completed weeks of pregnancy Problems with the umbilical cord Problems with the position of the baby, such as ... feet first Birth injuries For some of these problems, the baby may need to be delivered surgically ...

  11. Balance Problems

    MedlinePlus

    ... version of this page please turn Javascript on. Balance Problems About Balance Problems Have you ever felt dizzy, lightheaded, or ... dizziness problem during the past year. Why Good Balance is Important Having good balance means being able ...

  12. Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles.

    PubMed

    Yin, Yongguang; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2014-01-01

    Naturally occurring Au nanoparticles (AuNPs) have been widely observed in ore deposits, coal, soil, and environmental water. Identifying the source of these naturally occurring AuNPs could be helpful for not only the discovery of Au deposits through advanced exploration methods, but also the elucidation of the biogeochemical cycle and environmental toxicity of ionic Au and engineered AuNPs. Here, we investigated the effect of natural/simulated sunlight and heating on the reduction of ionic Au by ubiquitous dissolved organic matter (DOM) in river water. The reductive process probed by X-ray photoelectron spectroscopy revealed that phenolic, alcoholic, and aldehyde groups in DOM act as reductive sites. Long-time exposure with thermal and photoirradiation induced the further fusion and growth of AuNPs to branched Au nanostructure as precipitation. The formation processes and kinetics of AuNPs were further investigated using humic acid (HA) as the DOM model, with comprehensive characterizing methods. We have observed that HA can reduce ionic Au(III) complex (as chloride or hydroxyl complex) to elemental Au nanoparticles under sunlight or heating. In this process, nearly all of the Au(III) could be reduced to AuNPs, in which HA serves as not only the reductive agent, but also the coating agent to stabilize and disperse AuNPs. The size and stability of AuNPs were highly dependent on the concentration ratio of Au(III) to HA. These results imply that, besides biological processes, this thermal or photochemical reduction process is another possible source of naturally occurring AuNPs in natural environments, which possibly has critical impacts on the transport and transformation of Au and engineered AuNPs. PMID:24471802

  13. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  14. Systematics of Fragment Spectra and Collective Motion in Au + Au Collisions

    NASA Astrophysics Data System (ADS)

    Keane, Declan

    1998-04-01

    The importance of comprehensive data on single-particle spectra and collective motion has been recognized for many years. The literature contains many references to the need for full ``triple-differential cross section" measurements (d^3σ/dp_⊥ dy dφr , or their equivalent, where φr signifies azimuth relative to the event reaction plane). There are grounds for arguing that talk about triple-differential cross sections is misleading in this context, because the ideal measurements for constraining models in fact resemble eighth-order differentials d^8 σ / dp_⊥ dy dφr dM dm_frag dAt dAp dE_p, where M is a measure of event centrality (e.g., multiplicity), m_frag steps through the possible fragment species, and the subscripts t and p refer to target and projectile, respectively. The ideal goal of a meaningful measurement of the full parameter space in principle requires prohibitively large statistics, and even if those statistics were available, many millions of spectra would be needed to present the eighth-order differential cross sections. In practice, the problem is manageable because the structure of the events in the eight-dimensional parameter space is not nearly as complex as it could be in principle, and a relatively simple phenomenological framework can describe all the known relevant features of the events. The above points will be discussed mostly in the context of measurements of Au + Au data from the EOS Time Projection Chamber at beam energies of 0.25A GeV and above.

  15. Photoionization of Au+, Au2+, and Au3+ ions and developments in the synthesis of the metallofullerene Au@C60

    NASA Astrophysics Data System (ADS)

    Kilcoyne, A. L. David; Muller, Alfred; Schippers, Stefan; Hellhund, Jonas; Borovik, Alexander; Mueller, Allison; Gross, Dylan; Johnson, Andrea; Macaluso, David; A. L. D. Kilcoyne Collaboration

    2015-05-01

    Absolute single photoionization of Au+, Au2+, and Au3+ ions was investigated via the merged-beams technique at AMO Beamline 10.0.1.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The absolute single photoionization yield was measured as a function of photon energy for each species from the metastable state ionization threshold region to well above the ground state ionization potential. Additional high-resolution measurements were performed for Au+ and Au2+ ions in the region of the ground and metastable state ionization thresholds to better resolve the detailed resonant structure found therein. This structure was used, along with the reported excited state energy levels of Au+, to preliminarily identify previously unreported excitation levels in all three ions. In addition and as a component of the same program, photoionization studies of the endohedral metallofullerene Au@C60+were performed using endohedral fullerene samples synthesized on-site at Beamline 10.0.1.2 of the ALS.

  16. Controlled Synthesis of Au@AgAu Yolk-Shell Cuboctahedra with Well-Defined Facets.

    PubMed

    Londono-Calderon, Alejandra; Bahena, Daniel; Yacaman, Miguel J

    2016-08-01

    The synthesis of Au@AgAu yolk-shell cuboctahedra nanoparticles formed by galvanic replacement in a seed-mediated method is described. Initially, single-crystal Au seeds are used for the formation of Au@Ag core-shell nanocubes, which serve as the template material for the deposition of an external Au layer. The well-controlled synthesis yields the formation of cuboctahedra nanoparticles with smooth inner and outer Au/Ag surfaces. The deposition/oxidation process is described to understand the formation of cuboctahedra and octahedra nanoparticles. The Au core maintains the initial morphology of the seed and remains static at the center of the yolk-shell because of residual Ag. Structural analysis of the shell indicates intrinsic stacking faults (SFs) near the surface. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) compositional analysis show an Au-Ag nonordered alloy forming the shell. The three-dimensional structure of the nanoparticles presented open facets on the [111] as observed by electron tomography SIRT reconstruction over a stack of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The geometrical model was validated by analyzing the direction of streaks in coherent nanobeam diffraction (NBD). The catalytic activity was evaluated using a model reaction based on the reduction of 4-nitrophenol (4-NTP) by NaBH4 in the presence of Au@AgAu yolk-shell nanoparticles. PMID:27385583

  17. Au40: A Large Tetrahedral Magic Cluster

    SciTech Connect

    Jiang, Deen; Walter, Michael

    2011-01-01

    40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au{sub 40} could be such a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au{sub 40} has a twisted pyramid structure, reminiscent of the famous tetrahedral Au{sub 20}, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.

  18. Au40: A large tetrahedral magic cluster

    NASA Astrophysics Data System (ADS)

    Jiang, De-En; Walter, Michael

    2011-11-01

    40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au40 could be such a a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au40 has a twisted pyramid structure, reminiscent of the famous tetrahedral Au20, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.

  19. d + Au hadron correlation measurements from PHENIX

    NASA Astrophysics Data System (ADS)

    Sickles, Anne M.

    2015-01-01

    Recent observations of extended pseudorapidity correlations at the LHC in p+p and p+Pb collisions are of great interest. Here we present related results from d+Au collisions at PHENIX. We present the observed v2 and discuss the possible origin in the geometry of the collision region. We also present new measurements of the pseudorapidity dependence of the ridge in d+Au collision. Future plans to clarify the role of geometry in small collision systems using 3 He + Au collisions are discussed.

  20. Au, Ge and AuGe Nanoparticles Fabricated by Laser Ablation

    SciTech Connect

    Musaev, O.R.; Sutter, E.; Wrobel, J.M.; Kruger, M.B.

    2012-02-01

    A eutectic AuGe target immersed in distilled water was ablated by pulsed ultraviolet laser light. The structure of the ablated material was investigated by high-resolution transmission electron microscopy (HRTEM). The images show formation of nanowire structures of AuGe up to 100 nm in length, with widths of 5-10 nm. These nanostructures have Ge content significantly lower than the target material. Electron diffraction demonstrates that they crystallize in the {alpha}-AuGe structure. For comparison, laser ablation of pure Au and pure Ge targets was also performed under the same conditions. HRTEM shows that Ge forms spherical nanoparticles with a characteristic size of {approx}30 nm. Au forms spherical nanoparticles with diameters of {approx}10 nm. Similar to AuGe, it also forms chainlike structures with substantially lower aspect ratio.

  1. Charged hadron transverse momentum distributions in Au+Au collisions at S=200 GeV

    NASA Astrophysics Data System (ADS)

    Roland, Christof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  2. Ir-induced activation of Au towards CO adsorption: Ir films deposited on Au{111}

    NASA Astrophysics Data System (ADS)

    Zhang, Tianfu; Driver, Stephen M.; Pratt, Stephanie J.; Jenkins, Stephen J.; King, David A.

    2016-06-01

    We have investigated the interaction of CO with Ir/Au{111} bimetallic surfaces, and the influence of morphology changes as Ir moves sub-surface into the Au bulk, using reflection-absorption infrared spectroscopy (RAIRS). The presence of Ir stabilises CO on exposed regions of the Au surface at temperatures up to around 200 K: we attribute this to low-coordinated Au sites, probably associated with lifting of the clean-surface 'herringbone' reconstruction by Ir deposition. The highest density of active Au sites is obtained after annealing the bimetallic surface to 500-600 K: we attribute this to morphology changes associated with the movement of Ir into bulk Au.

  3. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  4. Sclerometric study of galvanic AuNi and AuCo coatings

    NASA Astrophysics Data System (ADS)

    Shugurov, A. R.; Panin, A. V.; Shesterikov, E. V.

    2011-03-01

    Mechanisms of wear in galvanic AuNi and AuCo coatings have been studied using the methods of sclerometry and atomic force microscopy. It is demonstrated that the scratch test at a small load can be used for a comparative analysis of the resistance of metal coatings to abrasive wear. It is established that a developed surface relief related to the formation of grain agglomerates provides for a higher wear resistance of AuCo coatings as compared to that of smooth AuNi films, which is explained by dissipation of the elastic energy of the contact interaction of the sclerometric indenter with the sample surface.

  5. Counterion-Mediated Assembly of Spherical Nucleic Acid-Au Nanoparticle Conjugates (SNA-AuNPs)

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Moreau, Liane; Guerrero-García, Guillermo; Mirkin, Chad; Olvera de La Cruz, Monica; Bedzyk, Michael; Afosr Muri Team

    2015-03-01

    Controlled crystallization of colloids from solution has been a goal of material scientists for decades. Recently, nucleic acid functionalized spherical Au nanoparticles (SNA-AuNPs) have been programmed to assemble in a wide variety of crystal structures. In this approach, the assembly is driven by Watson-Crick hybridization between DNAs coating the AuNPs. Here, we show that counterions can induce ordered assembly of SNA-AuNPs in bulk solutions, even in the absence of base pairing interactions. The electrostatics-driven assembly of spherical nucleic acid-Au nanoparticle conjugates (SNA-AuNPs) is probed as a function of counterion concentration and counterion valency [ +1 (Na+) or +2 (Ca2+) ] by in situ solution X-ray scattering. Assemblies of AuNPs capped with single-stranded (ss-) or double-stranded (ds-) DNA are examined. SAXS reveals disordered (gas-like) --> face-centered-cubic (FCC) --> glass-like phase transitions with increasing solution ionic strength. These studies demonstrate how non-base-pairing interactions can be tuned to create crystalline assemblies of SNA-AuNPs. The dependence of the inter-SNA-AuNP interactions on counterion valency and stiffness of the DNA corona will be discussed.

  6. DFT study on cysteine adsorption mechanism on Au(111) and Au(110)

    SciTech Connect

    Buimaga-Iarinca, Luiza; Floare, Calin G.; Calborean, Adrian; Turcu, Ioan

    2013-11-13

    Periodic density functional theory calculations were used to investigate relevant aspects of adsorption mechanisms of cysteine dimers in protonated form on Au(111) and Au(110) surfaces. The projected densities of states are explicitly discussed for all main chemical groups of cysteine, i.e. the amino group (NH2), the thiol group (SH) and the carboxylic group (COOH) to identify differences in adsorption mechanism. Special emphasis is put on the analysis of changes in the electronic structure of molecules adsorbed on Au(111) and Au(110) surfaces as well as the accompanying charge transfer mechanisms at molecule-substrate interaction.

  7. Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

    SciTech Connect

    STAR Coll

    2009-04-11

    Identified charged particle spectra of {pi}{sup {+-}}, K{sup {+-}}, p and {bar p} at mid-rapidity (|y| < 0.1) measured by the dE/dx method in the STAR-TPC are reported for pp and d + Au collisions at {radical}s{sub NN} = 200 GeV and for Au + Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm{sub 3} for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters due to the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase

  8. Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the star detector.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.; STAR Collaboration

    2009-01-01

    Identified charged-particle spectra of {pi}{sup {+-}}, K{sup {+-}}, p, and {bar p} at midrapidity (|y|<0.1) measured by the dE/dx method in the STAR (solenoidal tracker at the BNL Relativistic Heavy Ion Collider) time projection chamber are reported for pp and d+Au collisions at {radical}s{sub NN} = 200 GeV and for Au+Au collisions at 62.4, 130, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged-particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm{sup 3} for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au+Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au+Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters because of the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of

  9. Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Silva, C. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jin, F.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Levine, M. J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Molnar, L.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; van Leeuwen, M.; Molen, A. M. Vander; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2009-03-01

    Identified charged-particle spectra of π±, K±, p, and pmacr at midrapidity (|y|<0.1) measured by the dE/dx method in the STAR (solenoidal tracker at the BNL Relativistic Heavy Ion Collider) time projection chamber are reported for pp and d+Au collisions at sNN=200 GeV and for Au+Au collisions at 62.4, 130, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged-particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm3 for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au+Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au+Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters because of the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close

  10. Walking Problems

    MedlinePlus

    ... daily activities, get around, and exercise. Having a problem with walking can make daily life more difficult. ... walk is called your gait. A variety of problems can cause an abnormal gait and lead to ...

  11. Breathing Problems

    MedlinePlus

    ... re not getting enough air. Sometimes mild breathing problems are from a stuffy nose or hard exercise. ... emphysema or pneumonia cause breathing difficulties. So can problems with your trachea or bronchi, which are part ...

  12. Erection problems

    MedlinePlus

    ... cord injury In some cases, your emotions or relationship problems can lead to ED, such as: Poor ... you stressed, depressed, or anxious? Are you having relationship problems? You may have a number of different ...

  13. Joint Problems

    MedlinePlus

    ... ankles and toes. Other types of arthritis include gout or pseudogout. Sometimes, there is a mechanical problem ... for more information on osteoarthritis, rheumatoid arthritis and gout. How Common are Joint Problems? Osteoarthritis, which affects ...

  14. 100-MeV proton beam intensity measurement by Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, Leila; Jung, Nam-Suk; Oh, Joo-Hee; Lee, Hee-Seock

    2016-05-01

    The proton beam intensity of a 100-MeV proton linac at the Korea Multi-purpose Accelerator Complex (KOMAC) was measured by an Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions to determine the accuracy and precision of beam intensity measurement using Gafchromic film dosimetry method. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of Au, Al foils and Pb plates. The yields of produced radio-nuclei in Au foils were obtained by gamma-ray spectroscopy. The FLUKA code was employed to calculate the energy spectrum of protons onto the front surface of Au foils located at three different depth points of the target and also to investigate the condition of incident beam on the target. A good agreement was found between the beam intensity measurements using the activation analysis method at three different depth points of the target. An excellent agreement was also observed between the beam intensity measurements using the Au activation analysis method and the dosimetry method using Gafchromic film.

  15. Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai

    2015-12-01

    Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to

  16. Observation of anisotropic event shapes and transverse flow in ultrarelativistic Au+Au collisions

    SciTech Connect

    Barrette, J.; Bellwied, R.; Bennett, S.; Braun-Munzinger, P.; Cleland, W.E.; Clemen, M.; Cole, J.; Cormier, T.M.; David, G.; Dee, J.; Dietzsch, O.; Drigert, M.; Gilbert, S.; Hall, J.R.; Hemmick, T.K.; Herrmann, N.; Hong, B.; Jiang, C.L.; Kwon, Y.; Lacasse, R.; Lukaszew, A.; Li, Q.; Ludlam, T.W.; McCorkle, S.; Mark, S.K.; Matheus, R.; O'Brien, E.; Panitkin, S.; Piazza, T.; Pruneau, C.; Rao, M.N.; Rosati, M.; daSilva, N.C.; Sedykh, S.; Sonnadara, U.; Stachel, J.; Takai, H.; Takagui, E.M.; Voloshin, S.; Wang, G.; Wessels, J.P.; Woody, C.L.; Xu, N.; Zhang, Y.; Zhang, Z.; Zou, C. Gesellschaft fuer Schwerionenforschung, Darmstadt Idaho National Engineering Laboratory, Idaho Falls, Idaho 83402 McGill Univesity, Montreal, H3A 2T8 University of Pittsburgh, Pittsburgh, Pennsylvania 15260 SUNY, Stony Brook, New York, 11794 University of Sao Paulo, Sao Paulo

    1994-11-07

    Event shapes for Au + Au collisions at 11.4 GeV/[ital c] per nucleon were studied over nearly the full solid angle with the E877 apparatus. The analysis was performed by Fourier expansion of azimuthal distributions of the transverse energy ([ital E][sub [ital T

  17. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces.

    PubMed

    Trzeciakiewicz, Hanna; Esteves-Villanueva, Jose; Soudy, Rania; Kaur, Kamaljit; Martic-Milne, Sanela

    2015-01-01

    The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN)6](3-/4-). The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine) and diluents (hexanethiol or 2-mercaptoethanol) was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in Rct for all three proteins. Furthermore, an increase in Rct was observed with CD13 (an aminopeptidase overexpressed in certain cancers) in comparison to the other proteins when the VLGXE-Au surface was modified with n-butylamine as a blocking agent. The electrochemical data indicated that protein adsorption may be modulated by tailoring the peptide sequence on Au surfaces and that blocking agents and diluents play a key role in promoting or preventing protein adsorption. The peptide-Au platform may also be used for targeting cancer biomarkers with designer peptides. PMID:26262621

  18. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    NASA Astrophysics Data System (ADS)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  19. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces

    PubMed Central

    Trzeciakiewicz, Hanna; Esteves-Villanueva, Jose; Soudy, Rania; Kaur, Kamaljit; Martic-Milne, Sanela

    2015-01-01

    The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3−/4−. The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine) and diluents (hexanethiol or 2-mercaptoethanol) was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in Rct for all three proteins. Furthermore, an increase in Rct was observed with CD13 (an aminopeptidase overexpressed in certain cancers) in comparison to the other proteins when the VLGXE-Au surface was modified with n-butylamine as a blocking agent. The electrochemical data indicated that protein adsorption may be modulated by tailoring the peptide sequence on Au surfaces and that blocking agents and diluents play a key role in promoting or preventing protein adsorption. The peptide-Au platform may also be used for targeting cancer biomarkers with designer peptides. PMID:26262621

  20. EVENT STRUCTURE AT RHIC FROM P-P TO AU-AU.

    SciTech Connect

    TRAINOR,T.A.

    2004-03-15

    Several correlation analysis techniques are applied to p-p and Au-Au collisions at RHIC. Strong large-momentum-scale correlations are observed which can be related to local charge and momentum conservation during hadronization and to minijet (minimum-bias parton fragment) correlations.

  1. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    SciTech Connect

    Villa, Alberto; Prati, Laura; Su, Dangshen; Wang, Di; Veith, Gabriel M

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  2. Identified particles in Au+Au collisions at S=200 GeV

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Wosiek, Barbara; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The yields of identified particles have been measured at RHIC for Au+Au collisions at S=200 GeV using the PHOBOS spectrometer. The ratios of antiparticle to particle yields near mid-rapidity are presented. The first measurements of the invariant yields of charged pions, kaons and protons at very low transverse momenta are also shown.

  3. Selective Hydrogenation of Acetylene over Pd, Au, and PdAu Supported Nanoparticles

    NASA Astrophysics Data System (ADS)

    Walker, Michael P.

    The removal of trace amounts of acetylene in ethylene streams is a high-volume industrial process that must possess high selectivity of alkyne hydrogenation over hydrogenation of alkenes. Current technology uses metallic nanoparticles, typically palladium or platinum, for acetylene removal. However, problems arise due to the deactivation of the catalysts at high temperatures as well as low selectivities at high conversions. Pore expanded MCM-41 is synthesized via a two-step strategy in which MCM-41 was prepared via cetyltrimethylammonium bromide (CTMABr) followed by the hydrothermal treatment with N,N-dimethyldecylamine (DMDA). This material was washed with ethanol to remove DMDA, or calcined to remove both surfactants. PE-MCM-41 based materials were impregnated with palladium, gold, and palladium-gold nanoparticles. The removal of DMDA had an effect on both the conversion and selectivity, in which they were found to drop significantly. However, by using the bimetallic PdAu catalysts, higher selectivity could be achieved due to increased electron density.

  4. Au 133 (SPh - t Bu) 52 Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis

    SciTech Connect

    Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy; Kumara, Chanaka; Jupally, Vijay Reddy; Fortunelli, Alessandro; Sementa, Luca; Barcaro, Giovanni; Zuo, Xiaobing; Noll, Bruce C.

    2015-04-15

    Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the "nanostructure problem". Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au-133(SPh-tBu)(52), was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au-144(SCH2CH2Ph)(60). Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.

  5. The role of plasmons and interband transitions in the color of AuAl2, AuIn2, and AuGa2

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Birt, K.; Koch, C. T.; Supansomboon, S.; Cortie, M. B.

    2011-09-01

    First principles calculations of the optical properties of the intermetallic compounds AuAl2, AuIn2, and AuGa2 have been performed. Analysis of the dielectric functions showed that AuAl2 is unique because a bulk plasmon is seen in the optical region and contributes to the purple color of this material. An experimental electron energy-loss spectrum showed excellent agreement with the theoretical prediction and confirmed the presence of the bulk plasmon.

  6. The study on the extraction and recovery of Au from scrap of the used computer using chloride solvent

    NASA Astrophysics Data System (ADS)

    Oh, Su-ji; Choi, Eunju; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    Recently, due to the realization of environmental problems of cyanide, it is a worldwide quest to find viable alternatives. One of the alternatives is a chloride solvent(chlorine-hypochlorite acid) with an appropriate oxidizing agent. The rate of dissolution of Au by chloride solvent is much faster than that by cyanide. Also, due to presence of chloride ions, there is no passivation of gold surfaces during chlorination. The objective of this work was to investigate the effect of Au extraction efficiency under various experimental conditions(pulp density, chlorine-hypochlorite ratio and concentration of NaCl) from scrap of the used computer by chloride solvent. In addition, the recovery experiment was conducted to examine of the precipitation efficiency of Au under various metabisulfite concentration from extracted solution. In an EDS analysis, valuable metals such as Cu, Sn, Sb, Al, Ni, Pb and Au were observed in scrap of the used computer. The result of extraction experiment showed that the highest extraction rate was obtained under 1% of pulp density with a chlorine-hypochlorite ratio of 2:1, and a concentration of NaCl at 2M. The highest Au recovery(precipitation) rate was observed the addition of sodium metabisulfite at 2M concentration. Under these conditions, chlorine-hypochlorite could effectively Au extraction from scrap of the used computer sections and the additive reagent using sodium metabisulfite could easily precipitate the Au from the chlorine-hypochlorite solution.

  7. Jets and dijets in Au+Au and p+p collisions at RHIC

    SciTech Connect

    Hardtke, D.; STAR Collaboration

    2002-12-09

    Recent data from RHIC suggest novel nuclear effects in the production of high p{sub T} hadrons. We present results from the STAR detector on high p{sub T} angular correlations in Au+Au and p+p collisions at {radical}S = 200 GeV/c. These two-particle angular correlation measurements verify the presence of a partonic hard scattering and fragmentation component at high p{sub T} in both central and peripheral Au+Au collisions. When triggering on a leading hadron with p{sub T}>4 GeV, we observe a quantitative agreement between the jet cone properties in p+p and all centralities of Au+Au collisions. This quantitative agreement indicates that nearly all hadrons with p{sub T}>4 GeV/c come from jet fragmentation and that jet fragmentation properties are not substantially modified in Au+Au collisions. STAR has also measured the strength of back-to-back high p{sub T} charged hadron correlations, and observes a small suppression of the back-to-back correlation strength in peripheral collisions, and a nearly complete disappearance o f back-to-back correlations in central Au+Au events. These phenomena, together with the observed strong suppression of inclusive yields and large value of elliptic flow at high p{sub T}, are consistent with a model where high p{sub T} hadrons come from partons created near the surface of the collision region, and where partons that originate or propagate towards the center of the collision region are substantially slowed or completely absorbed.

  8. Interaction of HNCO with Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Farkas, A. P.; Berkó, A.; Solymosi, F.

    2012-08-01

    The surface chemistry of isocyanic acid, HNCO, and its dissociation product, NCO, was studied on clean, O-dosed and Ar ion bombarded Au(111) surfaces. The techniques used are high resolution energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). The structure of Ar ion etched surface is explored by scanning tunneling microscopy (STM). HNCO adsorbs molecularly on Au(111) surface at 100 K yielding strong losses at 1390, 2270 and 3230 cm- 1. The weakly adsorbed HNCO desorbs in two peaks characterized by Tp = 130 and 145 K. The dissociation of the chemisorbed HNCO occurs at 150 K to give NCO species characterized by a vibration at 2185 cm- 1. The dissociation process is facilitated by the presence of preadsorbed O and by defect sites on Au(111) produced by Ar ion bombardment. In the latter case the loss feature of NCO appeared at 2130 cm- 1. Isocyanate on Au(111) surface was found to be more stable than on the single crystal surfaces of Pt-group metals. Results are compared with those obtained on supported Au catalysts.

  9. Synthesis and characterization in AuCu–Si nanostructures

    SciTech Connect

    Novelo, T.E.; Amézaga-Madrid, P.; Maldonado, R.D.; Oliva, A.I.; Alonzo-Medina, G.M.

    2015-03-15

    Au/Cu bilayers with different Au:Cu concentrations (25:75, 50:50 and 75:25 at.%) were deposited on Si(100) substrates by thermal evaporation. The thicknesses of all Au/Cu bilayers were 150 nm. The alloys were prepared by thermal diffusion into a vacuum oven with argon atmosphere at 690 K during 1 h. X-ray diffraction analysis revealed different phases of AuCu and CuSi alloys in the samples after annealing process. CuSi alloys were mainly obtained for 25:75 at.% samples, meanwhile the AuCuII phase dominates for samples prepared with 50:50 at.%. Additionally, the Au:Cu alloys with 75:25 at.%, produce Au{sub 2}Cu{sub 3} and Au{sub 3}Cu phases. The formed alloys were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to study the morphology and the elemental concentration of the formed alloys. - Highlights: • AuCu/Si alloy thin films were prepared by thermal diffusion. • Alloys prepared with 50 at.% of Au produce the AuCuII phase. • Alloys prepared with 75 at.% of Au produce Au{sub 3}Cu and Au{sub 2}Cu{sub 3} phases. • All alloys present diffusion of Si and Cu through the CuSi alloy formation.

  10. Au nanoparticles films used in biological sensing

    NASA Astrophysics Data System (ADS)

    Rosales Pérez, M.; Delgado Macuil, R.; Rojas López, M.; Gayou, V. L.; Sánchez Ramírez, J. F.

    2009-05-01

    Lactobacillus para paracasei are used commonly as functional food and probiotic substances. In this work Au nanoparticles self-assembled films were used for Lactobacillus para paracasei determination at five different concentrations. Functionalized substrates were immersed in a colloidal solution for one and a half hour at room temperature and dried at room temperature during four hours. After that, drops of Lactobacillus para paracasei in aqueous solution were put into the Au nanoparticles film and let dry at room temperature for another two hours. Infrared spectroscopy in attenuated total reflectance sampling mode was used to observe generation peaks due to substrate silanization, enhancement of Si-O band intensity due to the Au colloids added to silanized substrate and also to observe the enhancement of Lactobacillus para paracasei infrared intensity of the characteristic frequencies at 1650, 1534 and 1450 cm-1 due to surface enhancement infrared absorption.

  11. Parking Problem

    ERIC Educational Resources Information Center

    Foster, Colin

    2012-01-01

    This is the story of a real problem, not a problem that is contrived, or invented for the convenience of the appropriate planning tool. This activity by a group of students, defined simply as "8FN", might be likened to an "end of term concert". If you just happened to be a delegate at the ATM Conference 2003 you might remember the analogy. Social…

  12. Balance Problems

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Balance Problems Basic Facts & Information What are Balance Problems? Having good balance means being able to ... Only then can you “keep your balance.” Why Balance is Important Your feelings of dizziness may last ...

  13. Au-Ag@Au Hollow Nanostructure with Enhanced Chemical Stability and Improved Photothermal Transduction Efficiency for Cancer Treatment.

    PubMed

    Jiang, Tongtong; Song, Jiangluqi; Zhang, Wenting; Wang, Hao; Li, Xiaodong; Xia, Ruixiang; Zhu, Lixin; Xu, Xiaoliang

    2015-10-01

    Despite the fact that Au-Ag hollow nanoparticles (HNPs) have gained much attention as ablation agents for photothermal therapy, the instability of the Ag element limits their applications. Herein, excess Au atoms were deposited on the surface of a Au-Ag HNP by improving the reduction power of l-ascorbic acid (AA) and thereby preventing the reaction between HAuCl4 and the Ag element in the Au-Ag alloy nanostructure. Significantly, the obtained Au-Ag@Au HNPs show excellent chemical stability in an oxidative environment, together with remarkable increase in extinction peak intensity and obvious narrowing in peak width. Moreover, finite-difference time-domain (FDTD) was used to simulate the optical properties and electric field distribution of HNPs. The calculated results show that the proportion of absorption cross section in total extinction cross section increases with the improvement of Au content in HNP. As predicted by the theoretical calculation results, Au-Ag@Au nanocages (NCs) exhibit a photothermal transduction efficiency (η) as high as 36.5% at 808 nm, which is higher than that of Au-Ag NCs (31.2%). Irradiated by 808 nm laser at power densities of 1 W/cm(2), MCF-7 breast cancer cells incubated with PEGylated Au-Ag@Au NCs were seriously destroyed. Combined together, Au-Ag@Au HNPs with enhanced chemical stability and improved photothermal transduction efficiency show superior competitiveness as photothermal agents. PMID:26371629

  14. Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka.

    PubMed

    Liaw, Jiunn-Woei; Chen, Huang-Chih; Kuo, Mao-Kuen

    2013-01-01

    This study theoretically investigates Fano resonances and dips of an Au-SiO2-Au nanomatryoshka that is excited by a nearby electric dipole. An analytical solution of dyadic Green's functions is used to analyze the radiative and nonradiative power spectra of a radial dipole in the proximity of a nanomatryoshka. From these spectra, the plasmon modes and Fano resonances that accompany the Fano dips are identified. In addition, the scattering and absorption spectra of a nanomatryoshka that is illuminated by a plane wave are investigated to confirm these modes and Fano dips. Our results reveal that a Fano dip splits each of the dipole and quadrupole modes into bonding and anti-bonding modes. The Fano dip and resonance result from the destructive interference of the plasmon modes of the Au shell and the Au core. The Fano factors that are obtained from the nonradiative power spectra of the Au shell and the Au core of a nanomatryoshka are in accordance with those obtained from the absorption cross section spectra. Moreover, these Fano factors increase as the plasmonic coupling of the Au shell with the core increases for both dipole and quadrupole modes. PMID:24206789

  15. Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka

    PubMed Central

    2013-01-01

    This study theoretically investigates Fano resonances and dips of an Au-SiO2-Au nanomatryoshka that is excited by a nearby electric dipole. An analytical solution of dyadic Green's functions is used to analyze the radiative and nonradiative power spectra of a radial dipole in the proximity of a nanomatryoshka. From these spectra, the plasmon modes and Fano resonances that accompany the Fano dips are identified. In addition, the scattering and absorption spectra of a nanomatryoshka that is illuminated by a plane wave are investigated to confirm these modes and Fano dips. Our results reveal that a Fano dip splits each of the dipole and quadrupole modes into bonding and anti-bonding modes. The Fano dip and resonance result from the destructive interference of the plasmon modes of the Au shell and the Au core. The Fano factors that are obtained from the nonradiative power spectra of the Au shell and the Au core of a nanomatryoshka are in accordance with those obtained from the absorption cross section spectra. Moreover, these Fano factors increase as the plasmonic coupling of the Au shell with the core increases for both dipole and quadrupole modes. PMID:24206789

  16. The role of interfaces in the magnetoresistance of Au/Fe/Au/Fe/GaAs(001)

    SciTech Connect

    Enders, A.; Monchesky, T. L.; Myrtle, K.; Urban, R.; Heinrich, B.; Kirschner, J.; Zhang, X.-G.; Butler, W. H.

    2001-06-01

    The electron transport and magnetoresistance (MR) were investigated in high quality crystalline epitaxial Fe(001) and Au(001) films and exchange coupled Au/Fe/Au/Fe/GaAs(001) trilayer structures. Fits to the experimental data were based on the semiclassical Boltzmann equation, which incorporates the electronic properties obtained from first-principles local density functional calculations. The fits require a surprisingly high asymmetry for the spin dependent electron lifetimes in Fe, {tau}{sup {down_arrow}}/{tau}{sup {up_arrow}}=10 at room temperature. Despite the large atomic terraces at the Au/vacuum and Fe/GaAs interfaces the scattering at the outer interfaces was found to be diffuse. The origin of MR in Au/Fe/Au/Fe/GaAs(001) structures is due to electron channeling in the Au spacer layer. The measured MR is consistent with the diffusivity parameters s{sup {up_arrow}}=0.55, s{sup {down_arrow}}=0.77 at the metal{endash}metal interfaces. {copyright} 2001 American Institute of Physics.

  17. Fabrication of segmented Au/Co/Au nanowires: insights in the quality of Co/Au junctions.

    PubMed

    Jang, Bumjin; Pellicer, Eva; Guerrero, Miguel; Chen, Xiangzhong; Choi, Hongsoo; Nelson, Bradley J; Sort, Jordi; Pané, Salvador

    2014-08-27

    Electrodeposition is a versatile method, which enables the fabrication of a variety of wire-like nanoarchitectures such as nanowires, nanorods, and nanotubes. By means of template-assisted electrodeposition, segmented Au/Co/Au nanowires are grown in anodic aluminum oxide templates from two different electrolytes. To tailor the properties of the cobalt segments, several electrochemical conditions are studied as a function of current density, pulse deposition, and pH. The morphology, crystal structure, and magnetic properties are accordingly investigated. Changes in the deposition conditions affect the cobalt electrocrystallization process directly. Cobalt tends to crystallize mainly in the hexagonal close-packed structure, which is the reason cobalt might not accommodate satisfactorily on the face-centered cubic Au surface or vice versa. We demonstrate that by modifying the electrolyte and the applied current densities, changes in the texture and the crystalline structure of cobalt lead to a good quality connection between dissimilar segments. In particular, lowering the bath pH, or using pulse plating at a high overpotential, produces polycrystalline fcc Co and thus well-connected Co/Au bimetallic junctions with smooth interface. These are crucial factors to be carefully considered taking into account that nanowires are potential building blocks in micro- and nanoelectromechanical systems. PMID:25025496

  18. Evidence of final-state suppression of high-p{_ T} hadrons in Au + Au collisions using d + Au measurements at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    Transverse momentum spectra of charged hadrons with pT < 6 GeV/c have been measured near mid-rapidity (0.2 < ɛ < 1.4) by the PHOBOS experiment at RHIC in Au + Au and d + Au collisions at {√ {s{NN}} = {200 GeV}}. The spectra for different collision centralities are compared to {p + ¯ {p}} collisions at the same energy. The resulting nuclear modification factor for central Au + Au collisions shows evidence of strong suppression of charged hadrons in the high-pT region (>2 GeV/c). In contrast, the d + Au nuclear modification factor exhibits no suppression of the high-pT yields. These measurements suggest a large energy loss of the high-pT particles in the highly interacting medium created in the central Au + Au collisions. The lack of suppression in d + Au collisions suggests that it is unlikely that initial state effects can explain the suppression in the central Au + Au collisions. PACS: 25.75.-q

  19. Revisiting the S-Au(111) interaction: Static or Dynamic?

    SciTech Connect

    Biener, M M; Biener, J; Friend, C M

    2004-08-17

    The chemical inertness typically observed for Au does not imply a general inability to form stable bonds with non-metals but is rather a consequence of high reaction barriers. The Au-S interaction is probably the most intensively studied interaction of Au surfaces with non-metals as, for example, it plays an important role in Au ore formation, and controls the structure and dynamics of thiol-based self-assembled-monolayers (SAMs). In recent years a quite complex picture of the interaction of sulfur with Au(111) surfaces emerged, and a variety of S-induced surface structures was reported under different conditions. The majority of these structures were interpreted in terms of a static Au surface, where the positions of the Au atoms remain essentially unperturbed. Here we demonstrate that the Au(111) surface exhibits a very dynamic character upon interaction with adsorbed sulfur: low sulfur coverages modify the surface stress of the Au surface leading to lateral expansion of the surface layer; large-scale surface restructuring and incorporation of Au atoms into a growing two-dimensional AuS phase were observed with increasing sulfur coverage. These results provide new insight into the Au-S surface chemistry, and reveal the dynamic character of the Au(111) surface.

  20. Controlled deposition of Au on (BiO)2CO3 microspheres: the size and content of Au nanoparticles matter.

    PubMed

    Li, Qiuyan; Hao, Xiaodong; Guo, Xiaolong; Dong, Fan; Zhang, Yuxin

    2015-05-21

    Novel 3D Au/(BiO)2CO3 (Au/BOC) heterostructures with size-controlled Au nanoparticles (NPs) (2-10 nm) were first synthesized and used in photocatalytic removal of ppb-level NO for air cleaning. The photocatalytic performance of Au/BOC heterostructures was enhanced by fine-tuning the content of Au and the size of Au NPs. A new photocatalysis mechanism of surface scattering and reflecting (SSR) coupled with surface plasmon resonance (SPR) was proposed to understand the enhanced photocatalytic activity. PMID:25906416

  1. Charged hadron transverse momentum distributions in Au+Au collisions at √ SNN = 200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; van Nieuwenhuizen, Gerrit; PHOBOS Collaboration

    2003-04-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at √ SNN = 200 GeV. The evolution of the spectra for transverse momenta p T from 0.25 to 5 GeV/C is studied as a function of collision centrality. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. When comparing peripheral to central Au+Au collisions, we find that the yields at the highest p T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  2. Suppression of Upsilon production in d + Au and Au + Au collisions at root s(NN) = 200 GeV (vol 735, pg 127, 2014)

    SciTech Connect

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Gliske, S.; Krueger, K.; Spinka, H. M.; Underwood, D. G.

    2014-07-30

    We report measurements of Υ meson production in p + p, d +Au, and Au+Aucollisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d +Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p +p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Υ (1S + 2S + 3S) in the rapidity range |y| < 1 in d + Aucollisions of RdAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Υ mesons in Au + Aucollisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.

  3. Thyroid Problems

    MedlinePlus

    ... treated differently. Common thyroid disorders and problems include: Hypothyroidism Hypothyroidism is a disorder in which your thyroid doesn’ ... normal after you get better. If you have hypothyroidism, however, the levels of T4 in your blood ...

  4. Urination Problems

    MedlinePlus

    ... back or groin? Yes You may have a KIDNEY STONE or another serious problem. EMERGENCY See your doctor ... the bladder, called INTERSTITIAL CYSTITIS, or from a KIDNEY STONE stuck in the bladder, or a chemical in ...

  5. Kidney Problems

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... the production of red blood cells. What are Kidney Diseases? For about one-third of older people, ...

  6. Hearing Problems

    MedlinePlus

    ... This flow chart will help direct you if hearing loss is a problem for you or a family ... may damage the inner ear. This kind of hearing loss is called OCCUPATIONAL. Prevent occupational hearing loss by ...

  7. Sleep Problems

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  8. Speech Problems

    MedlinePlus

    ... a person's ability to speak clearly. Some Common Speech Disorders Stuttering is a problem that interferes with fluent ... is a language disorder, while stuttering is a speech disorder. A person who stutters has trouble getting out ...

  9. Swallowing problems

    MedlinePlus

    ... the home Dry mouth during cancer treatment Enteral nutrition - child - managing problems Gastrostomy feeding tube - bolus Jejunostomy feeding tube Mouth and neck radiation - discharge Multiple sclerosis - discharge Stroke - discharge Update Date 5/15/2014 ...

  10. Nipple problems

    MedlinePlus

    ... Inverted nipple; Nipple problems Images Female breast Intraductal papilloma Mammary gland Abnormal discharge from the nipple Normal ... 8. Read More Breast cancer Endocrine glands Intraductal papilloma Update Date 11/16/2014 Updated by: Cynthia ...

  11. Vision problems

    MedlinePlus

    ... which nothing can be seen) Vision loss and blindness are the most severe vision problems. Causes Vision ... that look faded. The most common cause of blindness in people over age 60. Eye infection, inflammation, ...

  12. Nanoporous Au: an unsupported pure gold catalyst?

    SciTech Connect

    Wittstock, A; Neumann, B; Schaefer, A; Dumbuya, K; Kuebel, C; Biener, M; Zielasek, V; Steinrueck, H; Gottfried, M; Biener, J; Hamza, A; B?umer, M

    2008-09-04

    The unique properties of gold especially in low temperature CO oxidation have been ascribed to a combination of various effects. In particular, particle sizes below a few nm and specific particle-support interactions have been shown to play important roles. On the contrary, recent reports revealed that monolithic nanoporous gold (npAu) prepared by leaching a less noble metal, such as Ag, out of the corresponding alloy can also exhibit remarkably high catalytic activity for CO oxidation, even though no support is present. Therefore, it was claimed to be a pure and unsupported gold catalyst. We investigated npAu with respect to its morphology, surface composition and catalytic properties. In particular, we studied the reaction kinetics for low temperature CO oxidation in detail taking mass transport limitation due to the porous structure of the material into account. Our results reveal that Ag, even if removed almost completely from the bulk, segregates to the surface resulting in surface concentrations of up to 10 at%. Our data suggest that this Ag plays a significant role in activation of molecular oxygen. Therefore, npAu should be considered as a bimetallic catalyst rather than a pure Au catalyst.

  13. Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation

    NASA Astrophysics Data System (ADS)

    Yung, Tung-Yuan; Liu, Ting-Yu; Huang, Li-Ying; Wang, Kuan-Syun; Tzou, Huei-Ming; Chen, Po-Tuan; Chao, Chi-Yang; Liu, Ling-Kang

    2015-09-01

    Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) for exploring the structural characterization for the electrochemical catalysis. According to TEM results, the diameter of Au and bimetallic PtAu nanoparticles is about 20-50 and 5-10 nm, respectively. X-ray diffraction (XRD) results indicate that both of PtAu and Au nanoparticles exhibit the crystalline plane of (111), (200), (210), and (311). Furthermore, XRD data also show the 2°-3° difference between pristine graphene sheets and the PDDA-modified graphene sheets. For the catalytic activity tests of Au/PDDA-G and PtAu/PDDA-G, the mixture of 0.5 M aqueous H2SO4 and 0.5 M aqueous formic acid was used as model to evaluate the electrochemical characterizations. The catalytic activities of the novel bimetallic PtAu/graphene electrocatalyst would be anticipated to be superior to the previous electrocatalyst of the cubic Pt/graphene.

  14. Strangelet search in Au+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Burton, T. P.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, S. U.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. G.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, N.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D.; Hollis, R.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jia, F.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kim, B. C.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kurnadi, P.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Melnick, Yu.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mironov, C.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, N. S.; Netrakanti, P. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Toledo, A. Szanto De; Szeliga, B.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Watson, J. W.; Webb, J. C.; Westfall, G. D.; Wetzler, A.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Yurevich, V. I.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2007-07-01

    We have searched for strangelets in a triggered sample of 61 million central (top 4%) Au+Au collisions at sNN=200 GeV near beam rapidities at the STAR solenoidal tracker detector at the BNL Relativistic Heavy Ion Collider. We have sensitivity to metastable strangelets with lifetimes of order ⩾0.1 ns, in contrast to limits over ten times longer in BNL Alternating Gradient Synchrotron (AGS) studies and longer still at the CERN Super Proton Synchrotron (SPS). Upper limits of a few 10-6 to 10-7 per central Au+Au collision are set for strangelets with mass ≳30 GeV/c2.

  15. Enhanced Second Harmonic Generation in AU/AI2O3/AU absorber

    NASA Astrophysics Data System (ADS)

    Huang, Fenglun; Bai, Songang; Li, Qiang; Qu, Yurui; Min, Qiu

    2016-01-01

    A kind of metal-insulator-metal (MIM) metamaterial absorber for generating second harmonic signal is investigated. The absorbers exhibit high absorption efficiency at the dip and notably enhance the generated second harmonic signal by a factor of over 30, in contrast to an Au/alumina double-layer without Au disk on the top. This study demonstrates the potential of metamaterial absorber for nonlinear photonics.

  16. Photoinduced drug release from thermosensitive AuNPs-liposome using a AuNPs-switch.

    PubMed

    An, Xueqin; Zhang, Fan; Zhu, Yinyan; Shen, Weiguo

    2010-10-14

    A thermosensitive liposome with embedded AuNPs in a bilayer was prepared using supercritical CO(2). The AuNPs-liposome can absorb a certain wavelength light, convert optical energy into heat, induce phase transition, and release drug. The results show that drug release from the liposome is due to the photothermic effects inducing phase transition of the liposome rather than destruction of the liposome structure. PMID:20820547

  17. Flow and bose-einstein correlations in Au-Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Manly, Steven; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hofman, D.; Hollis, R. S.; Hołyinski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    Argonne flow and Bose-Einstein correlations have been measured in Au-Au collisions at S=130 and 200 GeV using the PHOBOS detector at RHIC. The systematic dependencies of the flow signal on the transverse momentum, pseudorapidity, and centrality of the collision, as well as the beam energy are shown. In addition, results of a 3-dimensional analysis of two-pion correlations in the 200 GeV data are presented.

  18. Directed Flow of Charged Kaons in Au+Au Collisions from the BES Program at RHIC

    NASA Astrophysics Data System (ADS)

    Pandit, Yadav; STAR Collaboration

    2015-08-01

    We report the measurement of the directed flow (v1) for charged kaons in Au+Au collisions at =7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV as a function of rapidity and compare these results for pions, protons and antiprotons. These new kaon results may help to constrain the medium properties and collision dynamics including the in-medium kaon potential and baryon number transport in these collisions.

  19. Ecole et communaute au Portugal

    NASA Astrophysics Data System (ADS)

    Melo, Alberto

    1980-09-01

    Since 1974 Portugal has experienced some dramatic changes in educational practices at the local level. The school has been opened to the community and the community to the school. Teacher education now includes community studies, designed to prepare teachers for an active role in this process and for the better understanding of the social background of pupils. One new practice is the publication of local newspapers or news-sheets to enhance the understanding of the community by teachers and pupils. The development of a school garden for the cultivation of flowers and vegetables serves as another bridge between school and community. Other examples of community action are adult literacy classes, the creation of voluntary organisations for women, the running of youth clubs, the formation of co-operatives, and local projects like the purchase of an old tram-car to be converted into a library. The introduction of `Civic and Polytechnic Education' for 13-16 year olds was an important innovation. One half-day a week was to be devoted to the integration of the school with the locality, young people's participation in society as agents of change, the linking of study and productive work, and the involvement of young people in the solution of national problems, working from a concrete knowledge of local and regional life. However, since 1976 there has been a more conservative approach, and only in places with a strong consensus amongst teachers has the new relationship between school and community been maintained.

  20. Fabrication of High Sensitive Immunochromato Kit Using Au Colloid

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji

    Au colloid have characteristics of surface plasmon resonance with absorption at 500 nm~600 nm wavelength. Surface on the citric acid Au colloid can be conjugated with protein eg. antibody. Various particle size of Au colloid makes it high sensitive immunochromato as diagnostics. High sensitive immunochromato will be useful for application of cancer marker eg. prostate specific antigen and influenza early diagnosis.

  1. Experimental and Theoretical Studies on Oxidation of Cu-Au Alloy Surfaces: Effect of Bulk Au Concentration.

    PubMed

    Okada, Michio; Tsuda, Yasutaka; Oka, Kohei; Kojima, Kazuki; Diño, Wilson Agerico; Yoshigoe, Akitaka; Kasai, Hideaki

    2016-01-01

    We report results of our experimental and theoretical studies on the oxidation of Cu-Au alloy surfaces, viz., Cu3Au(111), CuAu(111), and Au3Cu(111), using hyperthermal O2 molecular beam (HOMB). We observed strong Au segregation to the top layer of the corresponding clean (111) surfaces. This forms a protective layer that hinders further oxidation into the bulk. The higher the concentration of Au in the protective layer formed, the higher the protective efficacy. As a result, of the three Cu-Au surfaces studied, Au3Cu(111) is the most stable against dissociative adsorption of O2, even with HOMB. We also found that this protective property breaks down for oxidations occurring at temperatures above 300 K. PMID:27516137

  2. Bonding, Luminescence, Metallophilicity in Linear Au3 and Au2Ag Chains Stabilized by Rigid Diphosphanyl NHC Ligands.

    PubMed

    Ai, Pengfei; Mauro, Matteo; Gourlaouen, Christophe; Carrara, Serena; De Cola, Luisa; Tobon, Yeny; Giovanella, Umberto; Botta, Chiara; Danopoulos, Andreas A; Braunstein, Pierre

    2016-09-01

    The heterofunctional and rigid ligand N,N'-diphosphanyl-imidazol-2-ylidene (PCNHCP; P = P(t-Bu)2), through its phosphorus and two N-heterocyclic carbene (NHC) donors, stabilizes trinuclear chain complexes, with either Au3 or AgAu2 cores, and dinuclear Au2 complexes. The two oppositely situated PCNHCP (L) ligands that "sandwich" the metal chain can support linear and rigid structures, as found in the known tricationic Au(I) complex [Au3(μ3-PCNHCP,κP,κCNHC,κP)2](OTf)3 (OTf = CF3SO3; [Au3L2](OTf)3; Chem. Commun. 2014, 50, 103-105) now also obtained by transmetalation from [Ag3(μ3-PCNHCP,κP,κCNHC,κP)2](OTf)3 ([Ag3L2](OTf)3), or in the mixed-metal tricationic [Au2Ag(μ3-PCNHCP,κP,κCNHC,κP)2](OTf)3 ([Au2AgL2](OTf)3). The latter was obtained stepwise by the addition of AgOTf to the digold(I) complex [Au2(μ2-PCNHCP,κP,κCNHC)2](OTf)2 ([Au2L2](OTf)2). The latter contains two dangling P donors and displays fluxional behavior in solution, and the Au···Au separation of 2.8320(6) Å in the solid state is consistent with metallophilic interactions. In the solvento complex [Au3Cl2(tht)(μ3-PCNHCP,κP,κCNHC,κP)](OTf)·MeCN ([Au3Cl2(tht)L](OTf)·MeCN), which contains only one L and one tht ligand (tht = tetrahydrothiophene), the metal chain is bent (148.94(2)°), and the longer Au···Au separation (2.9710(4) Å) is in line with relaxation of the rigidity due to a more "open" structure. Similar features were observed in [Au3Cl2(SMe2)L](OTf)·2MeCN. A detailed study of the emission properties of [Au3L2](OTf)3, [Au3Cl2(tht)L](OTf)·MeCN, [Au2L2](OTf)2, and [Au2AgL2](OTf)3 was performed by means of steady state and time-resolved photophysical techniques. The complex [Au3L2](OTf)3 displays a bright (photoluminescence quantum yield = 80%) and narrow emission band centered at 446 nm with a relatively small Stokes' shift and long-lived excited-state lifetime on the microsecond timescale, both in solution and in the solid state. In line with the very narrow emission

  3. Experimental and Theoretical Studies on Oxidation of Cu-Au Alloy Surfaces: Effect of Bulk Au Concentration

    PubMed Central

    Okada, Michio; Tsuda, Yasutaka; Oka, Kohei; Kojima, Kazuki; Diño, Wilson Agerico; Yoshigoe, Akitaka; Kasai, Hideaki

    2016-01-01

    We report results of our experimental and theoretical studies on the oxidation of Cu-Au alloy surfaces, viz., Cu3Au(111), CuAu(111), and Au3Cu(111), using hyperthermal O2 molecular beam (HOMB). We observed strong Au segregation to the top layer of the corresponding clean (111) surfaces. This forms a protective layer that hinders further oxidation into the bulk. The higher the concentration of Au in the protective layer formed, the higher the protective efficacy. As a result, of the three Cu-Au surfaces studied, Au3Cu(111) is the most stable against dissociative adsorption of O2, even with HOMB. We also found that this protective property breaks down for oxidations occurring at temperatures above 300 K. PMID:27516137

  4. Identified particle distributions in pp and Au+Au collisions atsqrt sNN=200 GeV

    SciTech Connect

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M; Arkhipkin, D.; Averichev, G.S.; Badyal,S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele,S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj,S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar,A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez,M.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Ganti, M.S.; Gutierrez, T.D.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Cronstal, S.; Grosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris,J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang,S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Konstantinov, A.S.; Kopytine,S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger,K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

    2003-10-06

    Transverse mass and rapidity distributions for charged pions, charged kaons, protons and antiprotons are reported for {radical}sNN = 200 GeV pp and Au+Au collisions at RHIC. The transverse mass distributions are rapidity independent within |y| < 0.5, consistent with a boost-invariant system in this rapidity interval. Spectral shapes and relative particle yields are similar in pp and peripheral Au+Au collisions and change smoothly to central Au+Au collisions. No centrality dependence was observed in the kaon and antiproton production rates relative to the pion production rate from medium-central to central collisions. Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and relatively long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.

  5. Charged hadron transverse momentum distributions in Au+Au collisions at √sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Lee, J. W.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-01-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sNN=200 GeV. The spectra were measured for transverse momenta pT from 0.25 to 4.5 GeV/c in a pseudorapidity range of 0.2<η<1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and semi-peripheral Au+Au collisions. Comparing semi-peripheral to central Au+Au collisions, we find that the yields at high pT exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  6. Azimuthal anisotropy of ϕ meson in U+U and Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Bairathi, Vipul

    2016-01-01

    The measurements of the azimuthal anisotropy of φ meson in the U+U and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) are reported. The centrality dependence of the Fourier coefficients v2, v3, v4 and v5 is presented for φ meson at midrapidity (|ƞ| < 1.0), in U+U and Au+Au collisions at -√8NN = 193 and 200 GeV, respectively. The ƞ-sub event plane method is used with a n gap of 0.1 to suppress the non-flow effects. A strong centrality dependence is observed for the φ meson elliptic flow (v2), whereas no clear centrality dependence is observed for v3, v4 and v5. Ratios of the Fourier coefficients, v3/v2 and v4/v22 as a function of transverse momentum (pT) are also presented. A systematic comparison of the Fourier coefficients for the two systems U+U and Au+Au is discussed.

  7. The effect of Au amount on size uniformity of self-assembled Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, S.-H.; Wang, D.-C.; Chen, G.-Y.; Chen, K.-Y.

    2008-03-01

    The self-assembled fabrication of nanostructure, a dreaming approach in the area of fabrication engineering, is the ultimate goal of this research. A finding was proved through previous research that the size of the self-assembled gold nanoparticles could be controlled with the mole ratio between AuCl4- and thiol. In this study, the moles of Au were fixed, only the moles of thiol were adjusted. Five different mole ratios of Au/S with their effect on size uniformity were investigated. The mole ratios were 1:1/16, 1:1/8, 1:1, 1:8, 1:16, respectively. The size distributions of the gold nanoparticles were analyzed by Mac-View analysis software. HR-TEM was used to derive images of self-assembled gold nanoparticles. The result reached was also the higher the mole ratio between AuCl4- and thiol the bigger the self-assembled gold nanoparticles. Under the condition of moles of Au fixed, the most homogeneous nanoparticles in size distribution derived with the mole ratio of 1:1/8 between AuCl4- and thiol. The obtained nanoparticles could be used, for example, in uniform surface nanofabrication, leading to the fabrication of ordered array of quantum dots.

  8. From the Ternary Eu(Au/In)2 and EuAu4(Au/In)2 with Remarkable Au/In Distributions to a New Structure Type: The Gold-Rich Eu5Au16(Au/In)6 Structure.

    PubMed

    Steinberg, Simon; Card, Nathan; Mudring, Anja-Verena

    2015-09-01

    The ternary Eu(Au/In)2 (EuAu(0.46)In(1.54(2))) (I), EuAu4(Au/In)2 (EuAu(4+x)In(2-x) with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au(17.29)In(4.71(3))) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au(17.29)In(4.71(3))) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2-"EuAu4In2". The site preferences of the disordered Au/In positions in II were investigated for different hypothetical "EuAu4(Au/In)2" models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au-In contacts. A chemical bonding analysis on two "EuAu5In" and "EuAu4In2" models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems. PMID:26270622

  9. Centrality dependence of direct photon production in (square root)S(NN) = 200 GeV Au + Au collisions.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Perdekamp, M Grosse; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2005-06-17

    The first measurement of direct photons in Au + Au collisions at (square root)S(NN) = 200 GeV is presented. The direct photon signal is extracted as a function of the Au + Au collision centrality and compared to next-to-leading order perturbative quantum chromodynamics calculations. The direct photon yield is shown to scale with the number of nucleon-nucleon collisions for all centralities. PMID:16090462

  10. Spectra and elliptic flow for Λ, Ξ, and Ω in 200 A GeV Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangrong; Song, Huichao

    2016-01-01

    Using VISHNU hybrid model, we calculate the pT-spectra and elliptic flow of Λ, Ξ, and Ω in 200 A GeV Au+Au collisions. Comparisons with the STAR measurements show that the model generally describes these soft hadron data. We also briefly study and discuss the mass ordering of elliptic flow among π, K, p, Λ, Ξ, and Ω in minimum bias Au+Au collisions.

  11. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics

    NASA Astrophysics Data System (ADS)

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-01

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics.As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity

  12. AU-FREDI - AUTONOMOUS FREQUENCY DOMAIN IDENTIFICATION

    NASA Technical Reports Server (NTRS)

    Yam, Y.

    1994-01-01

    The Autonomous Frequency Domain Identification program, AU-FREDI, is a system of methods, algorithms and software that was developed for the identification of structural dynamic parameters and system transfer function characterization for control of large space platforms and flexible spacecraft. It was validated in the CALTECH/Jet Propulsion Laboratory's Large Spacecraft Control Laboratory. Due to the unique characteristics of this laboratory environment, and the environment-specific nature of many of the software's routines, AU-FREDI should be considered to be a collection of routines which can be modified and reassembled to suit system identification and control experiments on large flexible structures. The AU-FREDI software was originally designed to command plant excitation and handle subsequent input/output data transfer, and to conduct system identification based on the I/O data. Key features of the AU-FREDI methodology are as follows: 1. AU-FREDI has on-line digital filter design to support on-orbit optimal input design and data composition. 2. Data composition of experimental data in overlapping frequency bands overcomes finite actuator power constraints. 3. Recursive least squares sine-dwell estimation accurately handles digitized sinusoids and low frequency modes. 4. The system also includes automated estimation of model order using a product moment matrix. 5. A sample-data transfer function parametrization supports digital control design. 6. Minimum variance estimation is assured with a curve fitting algorithm with iterative reweighting. 7. Robust root solvers accurately factorize high order polynomials to determine frequency and damping estimates. 8. Output error characterization of model additive uncertainty supports robustness analysis. The research objectives associated with AU-FREDI were particularly useful in focusing the identification methodology for realistic on-orbit testing conditions. Rather than estimating the entire structure, as is

  13. Three views of two giant streams: Aligned observations at 1 AU, 4.6 AU, and 5.9 AU

    NASA Technical Reports Server (NTRS)

    Siscoe, George; Intriligator, Devrie

    1993-01-01

    A close radial alignment of the Interplanetary Monitoring Platform (IMP) and Pioneers 10 and 11 spacecraft in 1974 allows a nearly unambiguous, empirical study of the radial evolution of the interaction regions of two contrasting weak and strong, giant streams. The study confirms the main aspects of the standard model of corotating interaction regions: an expanding and strengthening pair of forward-reverse shocks sandwich a stream interface. It adds the follwoing concepts: stream group speed--the speed at the stream interface tends to remain constant with distance; corotating stream complexes--interaction regions can include features like noncompressive density enhancements and streamer belts; secondary interfaces--a possible precursor to the reverse shock; and emerging stream interfaces--one emerged between 1 AU and 4.6 AU. The study uses the conservation specific entropy to correlate features between spacecraft.

  14. Di-hadron correlations with identified leading hadrons in 200 GeV Au + Au and d + Au collisions at STAR

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, T.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Z. M.; Li, Y.; Li, C.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Ma, R.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, F.; Wang, H.; Wang, G.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, H.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, N.; Yang, S.; Yang, Y.; Yang, Q.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Y.; Zhang, Z.; Zhang, J. B.; Zhang, J.; Zhang, X. P.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.

    2015-12-01

    The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

  15. From the ternary Eu(Au/In)2 and EuAu4(Au/In)2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu5Au16(Au/In)6 structure

    DOE PAGESBeta

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In)2 (EuAu0.46In1.54(2)) (I), EuAu4(Au/In)2 (EuAu4+xIn2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squaredmore » Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2–“EuAu4In2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu4(Au/In)2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu5In” and “EuAu4In2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  16. Thermal Desorption of Au from W(001) Surface

    NASA Astrophysics Data System (ADS)

    Błaszczyszyn, R.; Chrzanowski, J.; Godowski, P. J.

    2000-12-01

    Adsorption of Au on W(001) at 450 K up to multilayer structures was investigated. Temperature programmed desorption technique was used in determination of coverage dependent desorption energy (region up to one monolayer). Results were discussed in terms of competitive interactions of Au--Au and Au--W atoms. Simple procedure for prediction of faceting behavior on the interface, basing on the desorption data, was postulated. It was deduced that the Au/W(001) interface should not show faceting tendency after thermal treatment.

  17. Enhanced spin pumping at yttrium iron garnet/Au interfaces

    SciTech Connect

    Burrowes, C.; Heinrich, B.; Kardasz, B.; Montoya, E. A.; Girt, E.; Sun Yiyan; Song, Young-Yeal; Wu Mingzhong

    2012-02-27

    Spin injection across the ferrimagnetic insulator yttrium iron garnet (YIG)/normal metal Au interface was studied using ferromagnetic resonance. The spin mixing conductance was determined by comparing the Gilbert damping parameter {alpha} in YIG/Au and YIG/Au/Fe heterostructures. The main purpose of this study was to correlate the spin pumping efficiency with chemical modifications of the YIG film surface using in situ etching and deposition techniques. By means of Ar{sup +} ion beam etching, one is able to increase the spin mixing conductance at the YIG/Au interface by a factor of 5 compared to the untreated YIG/Au interface.

  18. Surface effects on the radiation response of nanoporous Au foams

    SciTech Connect

    Fu, E. G.; Caro, M.; Wang, Y. Q.; Baldwin, K.; Caro, A.; Zepeda-Ruiz, L. A.; Bringa, E.; Nastasi, M.

    2012-11-05

    We report on an experimental and simulation campaign aimed at exploring the radiation response of nanoporous Au (np-Au) foams. We find different defect accumulation behavior by varying radiation dose-rate in ion-irradiated np-Au foams. Stacking fault tetrahedra are formed when np-Au foams are irradiated at high dose-rate, but they do not seem to be formed in np-Au at low dose-rate irradiation. A model is proposed to explain the dose-rate dependent defect accumulation based on these results.

  19. First results on d+Au collisions from PHOBOS

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2004-02-01

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at √SNN = 200 GeV, in the range 0.25 < pT < 6.0 GeV/c. With increasing collision centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-pT hadrons observed in Au+Au collisions.

  20. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics.

    PubMed

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-28

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics. PMID:26743815

  1. Puzzles & Problems.

    ERIC Educational Resources Information Center

    Murphy, Pat, Ed.

    1993-01-01

    "Exploring" is a magazine of science, art, and human perception, produced by Exploratorium in collaboration with other participating museums. This issue focuses on puzzles and problem solving. Brain teasers, puzzles, and the strategies for solving them are included. Features include: (1) "Homework Assignment #3" (Paul Doherty); (2) "The Case of…

  2. Heat Problems.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Heat problems and heat cramps related to jogging can be caused by fluid imbalances, medications, dietary insufficiency, vomiting or diarrhea, among other factors. If the condition keeps reoccurring, the advice of a physician should be sought. Some preventive measures that can be taken include: (1) running during the cooler hours of the day; (2)…

  3. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers

    SciTech Connect

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

    2009-10-29

    The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  4. Direct Observation of Au Nanoclusters at Au/Si Interface and Enhanced SiO2 Growth Due to Catalytic Action by Au in Thermally Oxidized Au-Precipitated n-Type Si(001) Surfaces

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi; Kumamoto, Akihito; Imamura, Senji

    2013-04-01

    The behavior of Au nanoclusters at a Au/n-Si interface was investigated. In particular, SiO2 growth in thermally oxidized Au-precipitated n-type Si(001) surfaces was enhanced by the catalytic action of Au. When the Au-precipitated Si wafer was exposed to air for 30 d at room temperature (RT), a SiO2 film layer grew over Au nanoclusters on the Si surface. This is possibly because Si atoms may diffuse in an as-deposited Au layer and are oxidized in air at RT. In the case of oxidation at higher temperatures (850 °C for 30 min), Au nanoclusters were found to exist at the Au/n-Si interface. Moreover, the origin of protuberances observed by atomic force microscopy was found to be a bulge in the SiO2 film formed over the Au nanocluster, proving that the growth of the SiO2 film layer was enhanced by the catalytic action of Au.

  5. Isomorphism and solid solutions among Ag- and Au-selenides

    NASA Astrophysics Data System (ADS)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Kokh, Konstantin A.; Bakakin, Vladimir V.

    2016-09-01

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag2-xAuxSe with a step of x=0.25 (0≤x≤2) to 1050 °C and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag2Se - Ag1.94Au0.06Se, fischesserite Ag3AuSe2 - Ag3.2Au0.8Se2 and gold selenide AuSe - Au0.94Ag0.06Se. Solid solutions and AgAuSe phases were added to the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe.

  6. [Gold antirheumatic drug: desired and adverse effects of Au(I) and Au(III) [corrected] on the immune system.

    PubMed

    Griem, P; Gleichmann, E

    1996-01-01

    Three new findings are reviewed that help to understand the mechanisms of action of anti-rheumatic gold drugs, such as disodium aurothiomalate (Na2Au(I)TM): i) We found that Na2Au(I)TM selectively inhibits T-cell receptor-mediated antigen recognition by murine CD4+ T-cell hybridomas specific for antigenic peptides containing at least two cysteine residues. Presumably, Au(I) acts as a chelating agent forming linear complexes (Cys-Au(I)-Cys) which prevents correct antigen-processing and/or peptide recognition by the T-cell receptor, ii) We were able to show that Au(I) is oxidized to Au(III) in mononuclear phagocytes, such as macrophages. Because Au(III) rapidly oxidizes protein and itself is re-reduced to Au(I), this may introduce an Au(I)/Au(III) redox system into phagocytes which scavenges reactive oxygen species, such as hypochlorous acid (HOCl) and inactivates lysosomal enzymes, iii) Pretreatment with Au(III) of a model protein antigen, bovine ribonuclease A (RNase A), induced novel antigenic determinants recognized by CD4+ T lymphocytes. Analysis of the fine specificity of these "Au(III)-specific" T-cells revealed that they react to RNase peptides that are not presented to T-cells when the native protein, i.e., not treated with Au(III), is used as antigen. The T-cell recognition of these cryptic peptides did not require the presence of gold. This finding has important implications for understanding the pathogenesis of allergic and autoimmune responses induced by gold drugs. Taken together, our findings indicate that Au(I) and Au(III) each exert specific effects on several distinct functions of macrophages and the activation of T-cells. These effects may explain both the desired anti-inflammatory and the adverse effects of antirheumatic gold drugs. PMID:9036720

  7. Au-nanoparticles grafted on plasma treated PE

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.

    2010-03-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  8. Tunable VO2/Au hyperbolic metamaterial

    NASA Astrophysics Data System (ADS)

    Prayakarao, S.; Mendoza, B.; Devine, A.; Kyaw, C.; van Dover, R. B.; Liberman, V.; Noginov, M. A.

    2016-08-01

    Vanadium dioxide (VO2) is known to have a semiconductor-to-metal phase transition at ˜68 °C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial studied in this work is composed of subwavelength VO2 and Au layers and is designed to undergo a temperature controlled transition from the optical hyperbolic phase to the metallic phase. VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in electrical conductivity and optical (transmission and reflection) experiments. The observed temperature-dependent changes in the reflection and transmission spectra of the metamaterials and VO2 thin films are in a good qualitative agreement with theoretical predictions. The demonstrated optical hyperbolic-to-metallic phase transition is a unique physical phenomenon with the potential to enable advanced control of light-matter interactions.

  9. Collision-spike Sputtering of Au Nanoparticles.

    PubMed

    Sandoval, Luis; Urbassek, Herbert M

    2015-12-01

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; the remainder is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering. PMID:26245857

  10. Collision-spike sputtering of Au nanoparticles

    SciTech Connect

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For this specific case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31% of the impact energy remains in the nanoparticles after impact; the remainder is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80% of that of free nanoparticles due to the suppression of forward sputtering.

  11. Collision-spike sputtering of Au nanoparticles

    DOE PAGESBeta

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For this specific case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31% of the impact energy remains in the nanoparticles after impact; the remaindermore » is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80% of that of free nanoparticles due to the suppression of forward sputtering.« less

  12. Analysis of the residual linewidth in electron-paramagnetic resonance of AuEr and AuYb

    NASA Astrophysics Data System (ADS)

    Spalden, Y. von; Baberschke, K.

    1981-04-01

    For single crystals of AuEr and polycrystalline AuYb the residual EPR linewidth due to inhomogeneous broadening is analyzed. Angular dependent experiments show uniquely that the main contribution is due to internal strain rather than to dipolar interaction. The independent experiments for AuEr and AuYb yield a consistent set of parameters but show a dipolar contribution two to three times smaller than calculated. An explanation for this is given. The very precise determination of Hres yields |Δg | = |ρJ1| < 0.005 for AuEr, a vanishing g-shift.

  13. Thermal stability of sputtered intermetallic Al-Au coatings

    SciTech Connect

    Moser, M.; Mayrhofer, P. H.; Ross, I. M.; Rainforth, W. M.

    2007-09-15

    Recently, the authors have shown that single-phase Al{sub 2}Au coatings, prepared by unbalanced magnetron sputtering, exhibit a dense columnar structure and highest hardness and indentation moduli of 8 and 144 GPa, respectively, within the Al-Au films investigated. This study focuses on the thermal stability of Al{sub 2}Au with respect to films containing more Al and Au having Al/Au at. % ratios of 4.32 and 1.85, respectively. Single-phase Al{sub 2}Au has the highest onset temperature for recovery of 475 deg. C and recrystallization of 575 deg. C. Upon annealing Au- and Al-rich films, their stresses deviate from the linear thermoelastic behavior at temperatures (T) above 200 and 450 deg. C, respectively, due to pores and metallic phases present. Metastable Au within the as-deposited Au-rich film is consumed by the growing intermetallic AlAu and AlAu{sub 2} phases at T{>=}450 deg. C, which themselves melt at {approx}625 deg. C. Due to nanometer scale segregations of Al, encapsulated by Al{sub 2}Au in Al-rich coatings, their melting point is reduced by {approx}85 deg. C to 575 deg. C. Dynamic thermal analyses up to 1100 deg. C in synthetic air reveal the single-phase Al{sub 2}Au films with a superior thermal stability and only negligible oxidation. At 750 deg. C, the mass gain is {approx}1.5 mg/cm{sup 2} after 50 h isothermal exposure. Based on the investigations, the authors can conclude that single-phase intermetallic Al{sub 2}Au films have a high potential for oxidation protection of sensitive materials.

  14. Air-stable Fe@Au nanoparticles synthesized by the microemulsion's methods

    NASA Astrophysics Data System (ADS)

    Rivas, José; Redondo, Yolanda Piñeiro; Iglesias-Silva, Esther; Vilas-Vilela, J. M.; León, L. M.; López-Quintela, Manuel Arturo

    2013-05-01

    Magnetic particles covered by gold are very important in many biological applications. However, there are not simple methods to produce small (< 5-10 nm) nanoparticles. One of the main reasons for that is the general use of iron oxides as magnetic cores, which have a large crystalline mismatch with gold. The use of Fe would be more appropriate, but its high tendency to oxidation has largely precluded it from being used as a core. Here, we will show that using a simple "one-pot" successive reaction method in microemulsions, can avoid such problems and is able to produce very stable core-shell Fe@Au nanoparticles. With this procedure, nanoparticles of ˜6 nm with a Fe core of 3 nm can easily be obtained. These Fe@Au nanoparticles, with a saturation magnetization of 1.13 emu/g, are very stable even in air after magnetic separation from the solution, which shows the good covering of the Fe core by the Au shell. In this contribution we will report the key parameters, which have to be taken into account, to prepare such stable Fe@Au dispersions and analyze their optical and magnetic properties, as well as their possible applications as biosensors, targeted magnetic separation, etc.

  15. Assembly of hybrid oligonucleotide modified gold (Au) and alloy nanoparticles building blocks.

    PubMed

    Kuo, Yu-Ching; Jen, Chun-Ping; Chen, Yu-Hung; Su, Chia-Hao; Tsai, Shu-Hui; Yeh, Chen-Sheng

    2006-01-01

    The alloy-based hybrid materials with macroscopic network arrays were developed by AuAg/Au and AuAgPd/Au nanoparticle composites through oligonucleotides hybridization. AuAg/Au and AuAgPd/Au exhibited distinct organization. The morphology of AuAg/Au conjugation assembled mainly as compact aggregates while AuAgPd/Au hybrid conjugated into the loosen network assemblies. The dehybridization temperatures were studied as a function of molar ratio of alloy/Au. It was found that higher alloy/gold molar ratio led to stronger hybridization for alloy/gold composite, accompanied with increased melting temperature. These results could be interpreted in terms of more alloy nanoparticles bound to a Au particle when the molar ratio of alloy/gold increased. The thermal analysis also showed that AuAg/Au exhibited higher dehybridization temperature. A modified model describing the dehybridization probability of an intact Au/alloy aggregate was performed to support the dehybridization temperature increased with increasing alloy/Au molar ratio. As to more oligonucleotides carried by AuAg (4.9 +/- 1.9 nm) than by AuAgPd (4.4 +/- 1.5 nm) due to larger size in AuAg, the efficient hybridization could result in higher dehybridization temperature in AuAg/Au. PMID:16573077

  16. Virus-templated Au and Au/Pt Core/shell Nanowires and Their Electrocatalytic Activitives for Fuel Cell Applications

    PubMed Central

    LEE, YOUJIN; KIM, JUNHYUNG; YUN, DONG SOO; NAM, YOON SUNG; SHAO-HORN, YANG; BELCHER, ANGELA M.

    2014-01-01

    A facile synthetic route was developed to make Au nanowires (NWs) from surfactant-mediated bio-mineralization of a genetically engineered M13 phage with specific Au binding peptides. From the selective interaction between Au binding M13 phage and Au ions in aqueous solution, Au NWs with uniform diameter were synthesized at room temperature with yields greater than 98 % without the need for size selection. The diameters of Au NWs were controlled from 10 nm to 50 nm. The Au NWs were found to be active for electrocatalytic oxidation of CO molecules for all sizes, where the activity was highly dependent on the surface facets of Au NWs. This low-temperature high yield method of preparing Au NWs was further extended to the synthesis of Au/Pt core/shell NWs with controlled coverage of Pt shell layers. Electro-catalytic studies of ethanol oxidation with different Pt loading showed enhanced activity relative to a commercial supported Pt catalyst, indicative of the dual functionality of Pt for the ethanol oxidation and Au for the anti-poisoning component of Pt. These new one-dimensional noble metal NWs with controlled compositions could facilitate the design of new alloy materials with tunable properties. PMID:24910712

  17. Unwinding Au(+)···Au(+) Bonded Filaments in Ligand-Supported Gold(I) Polymer under Pressure.

    PubMed

    Paliwoda, Damian; Wawrzyniak, Paulina; Katrusiak, Andrzej

    2014-07-01

    The ultimately thin single-strand gold filaments, of Au(+)···Au(+) bonded gold(I) diethyldithiocarbamate polymer, AuEt2DTC, can be transformed depending on pressure and solvate contents. When synthesized in the presence of CH2Cl2, it crystallizes into a tetragonal AuEt2DTC·xCH2Cl2 phase α with ligand-supported and unsupported Au(+)···Au(+) bonded filaments modulated into molecular Au8-pitch helices. Low contents of CH2Cl2 favors the β phase of significantly reduced volume and orthorhombic space group Fddd. The α-AuEt2DTC·xCH2Cl2 crystal exhibits a highly unusual negative-area compressibility, due to the spring-like compression of helices. Above 0.05 GPa, the crystal transforms to phase β, where the Au16-pitch helices partly unwind their turns, which relaxes the tension generated by external pressure between neighboring helices of the opposite handedness. This is a unique observation of atomic-scale helical filaments transformation, which otherwise is a universal process analogous to the helix reversal between DNA forms B and Z, and in macroscopic world it is similar to nonperiodic unwind kinks in grapevine tendrils and telephone cords. Pressure also reduces the differences between the ligand-supported and unsupported Au(+)···Au(+) bonds. PMID:26279531

  18. Simulation of Electric Field in Semi Insulating Au/CdTe/Au Detector under Flux

    SciTech Connect

    Franc, J.; James, R.; Grill, R.; Kubat, J.; Belas, E.; Hoschl, P.; Moravec, P.; Praus, P.

    2009-08-02

    We report our simulations on the profile of the electric field in semi insulating CdTe and CdZnTe with Au contacts under radiation flux. The type of the space charge and electric field distribution in the Au/CdTe/Au structure is at high fluxes result of a combined influence of charge formed due to band bending at the electrodes and from photo generated carriers, which are trapped at deep levels. Simultaneous solution of drift-diffusion and Poisson equations is used for the calculation. We show, that the space charge originating from trapped photo-carriers starts to dominate at fluxes 10{sup 15}-10{sup 16}cm{sup -2}s{sup -1}, when the influence of contacts starts to be negligible.

  19. Net charge fluctuations in Au + Au interactions at sqrt[s(NN)]=130 GeV.

    PubMed

    Adcox, K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Y; Botelho, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A; Dutta, D; Ebisu, K; Efremenko, Y V; El Chenawi, K; En'yo, H; Esumi, S; Ewell, L; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Z; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, H-A; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Hayano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Klinksiek, S; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kotchetkov, D; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Manko, V I; Mao, Y; Mark, S K; Markacs, S; Martinez, G; Marx, M D; Masaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V; Oskarsson, A; Osterman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, T; Petridis, A N; Pinkenburg, C; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saito, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shiina, T; Shin, Y H; Sibiriak, I G; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sorensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tsvetkov, A A; Tuli, S K; Tydesjö, H; Tyurin, N; Ushiroda, T; van Hecke, H W; Velissaris, C; Velkovska, J; Velkovsky, M; Vinogradov, A A; Volkov, M A; Vorobyov, A; Vznuzdaev, E; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2002-08-19

    Data from Au + Au interactions at sqrt[s(NN)]=130 GeV, obtained with the PHENIX detector at the Relativistic Heavy-Ion Collider, are used to investigate local net charge fluctuations among particles produced near midrapidity. According to recent suggestions, such fluctuations may carry information from the quark-gluon plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays. PMID:12190459

  20. Domain wall dynamics in a spin-reorientation transition system Au/Co/Au

    SciTech Connect

    Roy, Sujoy; Seu, Keoki; Turner, Joshua J.; Park, Sungkyun; Kevan, Steve; Falco, Charles M.

    2009-05-14

    We report measurements of domain wall dynamics in an ultrathin Au/Co/Au system that exhibits a spin reorientation phase transition as a function of temperature.The domain walls exhibit cooperative motion throughout the temperature range of 150 - 300 K. The decay times were found to exhibit a maximum at the transition temperature. The slowdown has been explained as due to formation of a double well in the energy landscape by the different competing interactions. Our results show that the complex, slow dynamics can provide a more fundamental understanding of magnetic phase transitions.

  1. Admittance of Au/1,4-benzenedithiol/Au single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Yamauchi, Kazumasa; Kurokawa, Shu; Sakai, Akira

    2012-12-01

    Employing the admittance formula for double-barrier junctions [Fu and Dudley, Phys. Rev. Lett. 70, 65 (1993)], we have estimated an ac susceptance (imaginary part of admittance) of Au/1,4-benzenedithiol/Au single-molecule junctions from their current-voltage characteristics. In the MHz regime, we find that the junction susceptance shows a very small (˜0.1 aF) capacitive component that can be entirely masked by a larger electrode capacitance. Direct ac signal transmission measurements up to 1 GHz reveal no molecular signals and confirm the smallness of the molecular capacitance in the MHz regime.

  2. Onset of nuclear vaporization in [sup 197]Au+[sup 197]Au collisions

    SciTech Connect

    Tsang, M.B.; Hsi, W.C.; Lynch, W.G.; Bowman, D.R.; Gelbke, C.K.; Lisa, M.A.; Peaslee, G.F. ); Kunde, G.J.; Begemann-Blaich, M.L.; Hofmann, T.; Hubele, J.; Kempter, J.; Kreutz, P.; Kunze, W.D.; Lindenstruth, V.; Lynen, U.; Mang, M.; Mueller, W.F.J.; Neumann, M.; Ocker, B.; Ogilvie, C.A.; Pochodzalla, J.; Rosenberger, F.; Sann, H.; Schuettauf, A.; Serfling, V.; Stroth, J.; Trautmann, W.; Tucholski, A.; Woerner, A.; Zude, E.; Zwieglinski, B. ); Aiello, S.; Imme, G.; Pappalardo, V.; Raciti, G. ); Charity, R.J.; Sobotka, L.G. ); Iori, I.; Moroni, A.; Scardoni, R.; Ferr

    1993-09-06

    Multifragmentation has been measured for [sup 197]Au+[sup 197]Au collisions at [ital E]/[ital A]=100, 250, and 400 MeV. The mean fragment multiplicity increases monotonically with the charged particle multiplicity at [ital E]/[ital A]=100 MeV, but decreases for central collisions with incident energy, consistent with the onset of nuclear vaporization. Molecular dynamics calculations follow some trends but underpredict the observed fragment multiplicities. Including the statistical decay of excited residues improves the agreement for peripheral collisions but worsens it for central collisions.

  3. Beam Energy Scan a Case for the Chiral Magnetic Effect in Au-Au Collisions

    SciTech Connect

    Longacre, R.

    2014-01-05

    The Chiral Magnetic Effect (CME) is predicted for Au-Au collisions at RHIC. However, many backgrounds can give signals that make the measurement hard to interpret. The STAR experiment has made measurements at different collisions energy ranging from √(sNN)=7.7 GeV to 62.4 GeV. In the analysis that is presented we show that the CME turns on with energy and is not present in central collisions where the induced magnetic is small.

  4. Two-Particle Interferometry of 200 GeV Au+Au Collisions at PHENIX

    SciTech Connect

    Heffner, M

    2004-04-19

    The PHENIX experiment has measured pion-pion, kaon-kaon, and proton-proton correlations in Au+Au collisions at {radical}S{sub NN} = 200GeV. The correlations are fit to extract radii using both the Bowler Coulomb correction and full calculation of the two-particle wave function. The resulting radii are similar for all three species and decrease with increasing k{sub t} as expected for collective flow. The R{sub out} and R{sub side} radii are approximately equal indicating a short emission duration.

  5. Energy Dependence of Particle Multiplicities in Central Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-01-01

    We present the first measurement of the pseudorapidity density of primary charged particles in Au+Au collisions at (sNN) = 200 GeV. For the 6% most central collisions, we obtain dNch/dη\\|\\|η\\|<1 = 650+/-35(syst). Compared to collisions at (sNN) = 130 GeV, the highest energy studied previously, an increase by a factor of 1.14+/-0.05 at 90% confidence level, is found. The energy dependence of the pseudorapidity density is discussed in comparison with data from proton-induced collisions and theoretical predictions.

  6. Measuring away-side jet modifications in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Jiang, Kun; STAR Collaboration

    2015-08-01

    We report measurements of jet correlations in Au+Au collisions at = 200 GeV by the STAR experiment. In this analysis we devise a novel method to subtract flow background using data itself. The correlation width is studied as a function of centrality and associated particle pTT. The width is found to increase with centrality at modest to high associated particle pTT. The increase can arise from jet modification by medium and/or event averaging of away-side jets deflected by medium flow. The discrimination of the physics mechanisms requires further study by three-particle correlations.

  7. Relativistic multireference many-body perturbation theory calculations on Au64+ - Au69+ ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2006-03-31

    Many-body perturbation theory (MBPT) calculations are an adequate tool for the description of the structure of highly charged multi-electron ions and for the analysis of their spectra. They demonstrate this by way of a re-investigation of n=3, {Delta}n=0 transitions in the EUV spectra of Na-, Mg-, Al-like, and Si-like ions of Au that have been obtained previously by heavy-ion accelerator based beam-foil spectroscopy. They discuss the evidence and propose several revisions on the basis of the multi-reference many-body perturbation theory calculations of Ne- through P-like ions of Au.

  8. Initial-state geometry and fluctuations in Au + Au, Cu + Au, and U + U collisions at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2014-06-01

    We study within the IP-Glasma and two-component MC-Glauber models the effects of initial-state geometry and fluctuations on multiplicities and eccentricities for several collision species at the Relativistic Heavy Ion Collider (RHIC). These include copper-gold (Cu + Au), gold-gold (Au + Au), and uranium-uranium (U + U) collisions. The multiplicity densities per participant pair are very similar in all systems studied. Ellipticities vary strongly between collision systems, most significantly for central collisions, while fluctuation driven odd moments vary little between systems. Event-by-event distributions of eccentricities in mid-central collisions are wider in Cu + Au relative to Au + Au and U + U systems. An anticorrelation between multiplicity and eccentricity is observed in ultracentral U + U collisions which is weaker in the IP-Glasma model than the two-component MC-Glauber model. In ultracentral Au + Au collisions the two models predict opposite signs for the slope of this correlation. Measurements of elliptic flow as a function of multiplicity in such central events can therefore be used to discriminate between models with qualitatively different particle production mechanisms.

  9. Bridging gold in electron-deficient Al2Au(n)(0/-) and BAlAu(n)(0/-) (n = 1-3) clusters.

    PubMed

    Yao, Wen-Zhi; Liu, Bing-Tao; Lu, Zhang-Hui; Li, Si-Dian

    2013-06-20

    The geometrical and electronic structures of the electron-deficient dialuminum aurides Al2Aun(0/-) and hybrid boron-aluminum aurides BAlAun(0/-) (n = 1-3) are systematically investigated based on the density and wave function theories. Ab initio theoretical evidence strongly suggests that bridging gold atoms exist in the ground states of C2v Al2Au(-) ((3)B1), C2v Al2Au ((2)B1), C2v Al2Au2(-) ((2)A1), C2v Al2Au2 ((1)A1), Cs Al2Au3(-) ((1)A'), and D3h Al2Au3 ((2)A1), which prove to possess an Al-Au-Al τ bond. For BAlAun(0/-) (n = 1-3) mixed clusters, bridging B-Au-Al units only exist in Cs BAlAu3(-) ((1)A') and Cs BAlAu3 ((2)A'), whereas Cs BAlAu(-) ((3)A''), Cs BAlAu ((2)A''), Cs BAlAu2(-) ((2)A'), and Cs BAlAu2 ((1)A') do not possess a bridging gold, as demonstrated by the fact that B-Al and B-Au exhibit significantly stronger electronic interaction than Al-Au in the same clusters. Orbital analyses indicate that Au 6s contributes approximately 98%-99% to the Au-based orbital in these Al-Au-Al/B-Au-Al interactions, whereas Au 5d contributes 1%-2%. The adiabatic and vertical detachment energies of Al2Aun(-) (n = 1-3) are calculated to facilitate future experimental characterizations. The results obtained in this work establish an interesting τ bonding model (Al-Au-Al/B-Au-Al) for electron-deficient systems in which Au 6s plays a major factor. PMID:23718624

  10. Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures

    NASA Astrophysics Data System (ADS)

    Ozoliņš, V.; Wolverton, C.; Zunger, Alex

    1998-03-01

    The classic metallurgical systems-noble-metal alloys-that have formed the benchmark for various alloy theories are revisited. First-principles fully relaxed general-potential linearized augmented plane-wave (LAPW) total energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation to study the phase stability, thermodynamic properties, and bond lengths in Cu-Au, Ag-Au, Cu-Ag, and Ni-Au alloys. (i) Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to form compounds and Ni-Au and Cu-Ag to phase separate at T=0 K. (ii) Of all possible structures, Cu3Au (L12) and CuAu (L10) are found to be the most stable low-temperature phases of Cu1-xAux with transition temperatures of 530 K and 660 K, respectively, compared to the experimental values 663 K and ~670 K. The significant improvement over previous first-principles studies is attributed to the more accurate treatment of atomic relaxations in the present work. (iii) LAPW formation enthalpies demonstrate that L12, the commonly assumed stable phase of CuAu3, is not the ground state for Au-rich alloys, but rather that ordered (100) superlattices are stabilized. (iv) We extract the nonconfigurational (e.g., vibrational) entropies of formation and obtain large values for the size-mismatched systems: 0.48 kB/atom in Ni0.5Au0.5 (T=1100 K), 0.37 kB/atom in Cu0.141Ag0.859 (T=1052 K), and 0.16 kB/atom in Cu0.5Au0.5 (T=800 K). (v) Using 8 atom/cell special quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys and obtain good qualitative agreement with recent extended x-ray-absorption fine-structure measurements.

  11. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    PubMed Central

    2013-01-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies. PMID:23452438

  12. Electrostatic assembles and optical properties of Au CdTe QDs and Ag/Au CdTe QDs

    NASA Astrophysics Data System (ADS)

    Yang, Dongzhi; Wang, Wenxing; Chen, Qifan; Huang, Yuping; Xu, Shukun

    2008-09-01

    Au-CdTe and Ag/Au-CdTe assembles were firstly investigated through the static interaction between positively charged cysteamine-stabilized CdTe quantum dots (QDs) and negatively charged Au or core/shell Ag/Au nano-particles (NCs). The CdTe QDs synthesized in aqueous solution were capped with cysteamine which endowed them positive charges on the surface. Both Au and Ag/Au NCs were prepared through reducing precursors with gallic acid obtained from the hydrolysis of natural plant poly-phenols and favored negative charges on the surface of NCs. The fluorescence spectra of CdTe QDs exhibited strong quenching with the increase of added Au or Ag/Au NCs. Railey resonance scattering spectra of Au or Ag/Au NCs increased firstly and decreased latter with the concentration of CdTe QDs, accompanied with the solution color changing from red to purple and colorless at last. Experimental results on the effects of gallic acid, chloroauric acid tetrahydrate and other reagents demonstrated the static interaction occurred between QDs and NCs. This finding reveals the possibilities to design and control optical process and electromagnetic coupling in hybrid structures.

  13. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  14. Structural and electronic properties of AuIr nanoalloys

    NASA Astrophysics Data System (ADS)

    Jiménez-Díaz, Laura M.; Pérez, Luis A.

    2013-01-01

    The lowest-energy structures of binary (AuIr) n , (AuIr3) s , and (Au3Ir) s clusters, with n = 2-20, and s = 5, modeled by the many-body Gupta potential, were obtained by using a genetic-symbiotic algorithm. These structures were further relaxed within the density functional theory to obtain the most stable structures for each composition. Segregation is observed in all the AuIr clusters, where the Ir atoms occupy the cluster core and the Au atoms are situated on the cluster surface. On the other hand, there is experimental evidence that the (AuIr) n nanoalloys could have an enhanced catalytic activity for CO oxidation. In order to study this phenomenon, we also performed first-principles density functional calculations of the CO and O2 adsorption on these bimetallic nanoclusters, considering three different compositions and a fixed cluster size of 20 atoms.

  15. Lateral spreading of Au contacts on InP

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1990-01-01

    The contact spreading phenomenon observed when small area Au contacts on InP are annealed at temperatures above about 400 C was investigated. It was found that the rapid lateral expansion of the contact metallization which consumes large quantities of InP during growth is closely related to the third stage in the series of solid state reactions that occur between InP and Au, i.e., to the Au3In-to-Au9In4 transition. Detailed descriptions are presented of both the spreading process and the Au3In-to-Au9In4 transition along with arguments that the two processes are manifestations of the same basic phenomenon.

  16. Atomic and molecular adsorption on Au(111)

    SciTech Connect

    Santiago-Rodríguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, María C.; Mavrikakis, Manos

    2014-09-01

    Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH3 < NO < CO < CH3 < HCO < NH2 < COOH < OH < HCOO < CNH2 < H < N < NH < NOH < COH < Cl,< HCO3 < CH2 < CN b HNO < O < F < S < C < CH. Although the atomic species preferred to bind at the three-fold fcc site, no tendency was observed in site preference for the molecular species and fragments. The intramolecular and adsorbate-surface vibrational frequencies were calculated for all the adsorbates on their most energetically stable adsorption site. Most of the theoretical binding energies and frequencies agreed with experimental values reported in the literature. In general, the values obtained with the PW91 functional are more accurate than RPBE in reproducing these experimental binding energies. The energies of the adsorbed species were used to calculate the thermochemical potential energy surfaces for decomposition of CO, NO, N2, NH3 and CH4, oxidation of CO, and hydrogenation of CO, CO2 and NO, giving insight into the thermochemistry of these reactions on gold nanoparticles. These potential energy surfaces demonstrated that: the decomposition of species is not energetically favorable on Au(111); the desorption of NH3, NO and CO are more favorable than their decomposition; the oxidation of CO and hydrogenation of CO and NO on Au(111) to form HCO and HNO, respectively, are also thermodynamically favorable.

  17. Pearls, Not Problems: Exploring Transformative Education in Indigenous Australian Studies

    ERIC Educational Resources Information Center

    Mackinlay, Elizabeth; Barney, Katelyn

    2012-01-01

    This article explores the shift in terminology that occurred in a 2-year Australian Learning and Teaching Council (ALTC)-funded curriculum renewal project that set out to broadly explore current teaching and learning practice in Indigenous Australian studies (www.teaching4change.edu.au). While we started with the term "Problem-Based Learning", it…

  18. Iodide-Responsive Cu-Au Nanoparticle-Based Colorimetric Platform for Ultrasensitive Detection of Target Cancer Cells.

    PubMed

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Yan, Lv'an; Xu, Fengzhou; Lei, Yanli; Tang, Jinlu; Yu, Yanru

    2015-07-21

    Colorimetric analysis is promising in developing facile, fast, and point-of-care cancer diagnosis techniques, but the existing colorimetric cancer cell assays remain problematic because of dissatisfactory sensitivity as well as complex probe design or synthesis. To solve the problem, we here present a novel colorimetric analytical strategy based on iodide-responsive Cu-Au nanoparticles (Cu-Au NPs) combined with the iodide-catalyzed H2O2-TMB (3,3,5,5-tetramethylbenzidine) reaction system. In this strategy, bimetallic Cu-Au NPs prepared with an irregular shape and a diameter of ∼15 nm could chemically absorb iodide, thus indirectly inducing colorimetric signal variation of the H2O2-TMB system. By further utilizing its property of easy biomolecule modification, a versatile colorimetric platform was constructed for detection of any target that could cause the change of Cu-Au NPs concentration via molecular recognition. As proof of concept, an analysis of human leukemia CCRF-CEM cells was performed using aptamer Sgc8c-modified Cu-Au NPs as the colorimetric probe. Results showed that Sgc8c-modified Cu-Au NPs successfully achieved a simple, label-free, cost-effective, visualized, selective, and ultrasensitive detection of cancer cells with a linear range from 50 to 500 cells/mL and a detection limit of 5 cells in 100 μL of binding buffer. Moreover, feasibility was demonstrated for cancer cell analysis in diluted serum samples. The iodide-responsive Cu-Au NP-based colorimetric strategy might not only afford a new design pattern for developing cancer cell assays but also greatly extend the application of the iodide-catalyzed colorimetric system. PMID:26100583

  19. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles.

    PubMed

    Shabnam, Nisha; Pardha-Saradhi, P

    2013-01-01

    In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant) and Spinacia oleracea (a terrestrial plant) turned Au³⁺ solutions purple in presence of light of 600 µmol m⁻² s⁻¹ photon flux density (PFD) and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au³⁺ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au³⁺ to Au⁰ which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5-20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m⁻² s⁻¹. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au³⁺ to Au⁰ to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles. PMID:23976990

  20. Photoionization of Au+ ions and developments in the synthesis of the metallofullerene Au@C60

    NASA Astrophysics Data System (ADS)

    Bogolub, Kyren; Macaluso, David; Mueller, Allison; Johnson, Andrea; Müller, Alfred; Schippers, Stefan; Hellhund, Jonas; Borovik, Alexander; Anders, Andre; Aguilar, Alex; Kilcoyne, A. L. David

    2014-05-01

    Single photoionization of Au+ ions was investigated via the merged-beams technique at AMO Beamline 10.0.1.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The relative single photoionization yield was measured as a function of photon energy in the 45 eV to 120 eV energy range. These measurements were made in preparation for future photoionization studies of the endohedral metallofullerene Au@C60, the production of which was also investigated. In proof-of-principle measurements a mass-resolved beam of Au@C60+was produced with a primary ion beam current in the single picoamp range without optimization of the ion source or synthesis parameters. Plans are presented for improved metallofullere production yield to be used in photoionization measurements of the endohedral fullerene ions in conjunction with the continuing study of pure Au. We would like to acknowledge the generous sharing of equipment vital to this work by Andre Anders, the Plasma Applications group leader at the Advanced Light Source, LBNL.

  1. Systematic studies of the centrality dependence of soft photon production in Au + Au collision with PHENIX

    NASA Astrophysics Data System (ADS)

    Bannier, Benjamin

    2014-11-01

    Since the earliest days of Heavy Ion Physics thermal soft photon radiation emitted during the reaction had been theorized as a smoking gun signal for formation of a quark-gluon plasma and as a tool to characterize its properties. In recent years the existence of excess photon radiation in heavy ion collisions over the expectation from initial hard interactions has been confirmed at both RHIC and LHC energies by PHENIX and ALICE respectively. There the radiation has been found to exhibit elliptic flow v2 well above what can currently be reconciled with a picture of early emission from a plasma phase. During the 2007 and 2010 Au + Au runs PHENIX has measured a high purity sample of soft photons down to pT > 0.4 GeV / c using an external conversion method. We present recent systematic studies by PHENIX from that sample on the centrality dependence of the soft photon yield, and elliptic and triangular flow v2 and v3 in Au + Au collisions which fill in the experimental picture and enable discrimination of competing soft photon production scenarios.

  2. Layer growth in Au-Pb/In solder joints

    SciTech Connect

    Yost, F.G.; Ganyard, F.P.; Karnowsky, M.M.

    1986-01-01

    The solid state reaction between a Pb-In solder alloy and thin film Au has been investigated at ten aging temperatures ranging from 70 to 170/sup 0/C. Also, bulk Au-solder samples were aged at 150/sup 0/C for metallographic analysis. No significant difference was found between the aging behavior of thin and bulk Au specimens. A thin single phase layer of Au/sub 9/In/sub 4/ was found adjacent to Au while a thick two-phase layer of AuIn/sub 2/ and Pb was found between Au/sub 9/In/sub 4/ and solder. The Pb phase was shown to have considerable mobility and able to ripen at room temperature. Peculiar planar interface instabilities and voids in the Au-Au/sub 9/In/sub 4/ interface were found. The total layer thickness was found to vary linearly with aging time, indicating an interface-controlled reaction. An activation energy of 14,000 calories per mole was found by regression analysis of the kinetic data.

  3. Do Methanethiol Adsorbates on the Au(111) Surface Dissociate?

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ge; Hagelberg, Frank

    2006-07-01

    The interaction of methanethiol molecules CH3SH with the Au(111) surface is investigated, and it is found for the first time that the S-H bond remains intact when the methanethiol molecules are adsorbed on the regular Au(111) surface. However, it breaks if defects are present in the Au(111) surface. At low coverage, the fcc region is favored for S atom adsorption, but at saturated coverage the adsorption energies at various sites are almost isoenergetic. The presented calculations show that a methanethiol layer on the regular Au(111) surface does not dimerize.

  4. Density functional study of the cysteine adsorption on Au nanoclusters

    NASA Astrophysics Data System (ADS)

    Pérez, L. A.; López-Lozano, X.; Garzón, I. L.

    2009-04-01

    The adsorption of the cysteine amino acid (H-SCβH2-CαH-NH2-COOH) on the Au55 cluster is investigated through density functional theory calculations. Two isomers, with icosahedral (Ih) and chiral (C1) geometries, of the Au55 cluster are used to calculate the adsorption energy of the cysteine on different facets of these isomers. Results, only involving the S(thiolate)-Au bonding show that the higher adsorption energies are obtained when the sulfur atom is bonded to an asymmetrical bridge site at the facet containing Au atoms with the lowest coordination of the C1 cluster isomer.

  5. Preparations for p-Au run in 2015

    SciTech Connect

    Liu, C.

    2014-12-31

    The p-Au particle collision is a unique category of collision runs. This is resulted from the different charge mass ratio of the proton and fully stripped Au ion (1 vs.79/197). The p-Au run requires a special acceleration ramp, and movement of a number of beam components as required by the beam trajectories. The DX magnets will be moved for the first time in the history of RHIC. In this note, the planning and preparations for p-Au run will be presented.

  6. An Exploration of Catalytic Chemistry on Au/Ni(111)

    SciTech Connect

    Sylvia T. Ceyer

    2011-12-09

    This project explored the catalytic oxidation chemistry that can be effected on a Au/Ni(111) surface alloy. A Au/Ni(111) surface alloy is a Ni(111) surface on which less than 60% of the Ni atoms are replaced at random positions by Au atoms. The alloy is produced by vapor deposition of a small amount of Au onto Ni single crystals. The Au atoms do not result in an epitaxial Au overlayer or in the condensation of the Au into droplets. Instead, Au atoms displace and then replace Ni atoms on a Ni(111) surface, even though Au is immiscible in bulk Ni. The two dimensional structure of the clean Ni surface is preserved. This alloy is found to stabilize an adsorbed peroxo-like O2 species that is shown to be the critical reactant in the low temperature catalytic oxidation of CO and that is suspected to be the critical reactant in other oxidation reactions. This investigation revealed a new, practically important catalyst for CO oxidation that has since been patented.

  7. Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer.

    PubMed

    Ahmed, Hanan B; Zahran, M K; Emam, Hossam E

    2016-10-01

    Due to its potency to utilize in enormous applications, preparation of nanogold is of interest. Moreover, getting of highly dispersed nanogold with small size is extremely needful in specific fields. Herein, Au nanocolloid was prepared using alkali catalyzed pectin biopolymer. Pectin was concurrently used as reductant for Au ions and stabilizer for the produced Au nanoparticles (AuNPs). Reducing sugars were evaluated in the colloidal solution reflecting the role alkali in catalytic degradation of pectin to produce much powerful reducing moieties. The obtained Au nanocolloid was monitored via changing in color, UV-visible spectral and transmission electron microscopy. Using of NaOH as strong alkali achieving rapid rate of degradation reaction, resulted in 0.45g/L reducing sugars from 0.2g/L pectin which produced AuNPs with mean size of 6.5nm. In case of Na2CO3 which attained slow degradation rate led to, slightly low reducing sugar content (0.41g/L), fabricated comparatively size of AuNPs (7.5nm). In both cases, well distributed AuNPs was obtained with suitable stabilization up to 5 months and Na2CO3 exhibited higher stability. The current successful method used to produce small sized AuNPs with high dispersion is an innovative, one-step, easily, costless, energy saving and eco-friendly method. PMID:27212212

  8. Local anodic oxidation patterning of Au deposited Si surfaces.

    PubMed

    Vijaykumar, T; Kulkarni, G U

    2009-09-01

    Nanopatterning of Si(100) surfaces deposited with Au films from physical and chemical methods, has been carried out using a AFM set up mounted with a conducting tip. At a tip bias of -12 V, the LAO patterns drawn on various Au/SiOx surfaces have been compared with those on bare Si. The height of the oxide patterns is several times higher in the case of Au covered Si surfaces compared to patterns on bare Si surface. The enhancement in LAO is related to the catalytic activity of Au nanoparticulates at SiOx interface. PMID:19928226

  9. Prolonged reorganization of thiol-capped Au nanoparticles layered structures

    NASA Astrophysics Data System (ADS)

    Kundu, Sarathi; Das, Kaushik; Konovalov, Oleg

    2013-09-01

    Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001) substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.

  10. Enhanced photoluminescence in Au-embedded ITO nanowires.

    PubMed

    Kim, Hyunsu; Park, Sunghoon; Jin, Changhyun; Lee, Chongmu

    2011-12-01

    Gold (Au)-embedded indium tin oxide (ITO) nanowires were synthesized by thermal evaporation of a mixture of In(2)O(3,) SnO(2) and graphite powders on Si (100) substrates coated with Au thin films followed by annealing. At the initial stages of annealing, Au formed a continuous linear core located along the long axis of each ITO nanowire. The morphology of the Au core changed from a continuous line to a discrete line, and then to a droplet-like chain, finally evolving into a peapod in which crystalline Au nanoparticles were encapsulated in crystalline ITO with increasing annealing temperature. The ITO nanowires with the Au core showed an emission band at ~380 nm in the ultraviolet region. The ultraviolet emission intensity increased rapidly with increasing annealing temperature. The intensity of emission from the Au-peapod ITO nanowires (annealed at 750 °C) was approximately 20 times higher than that of the emission from the Au-core/ITO-shell ITO nanowires with a continuous linear shaped-Au core (annealed at 550 °C). This ultraintense ultraviolet emission might have originated mainly from the enhanced crystalline quality of the annealed ITO nanowires. PMID:22087582

  11. Electron paramagnetic resonance in positively charged Au25 molecular nanoclusters.

    PubMed

    Akbari-Sharbaf, Arash; Hesari, Mahdi; Workentin, Mark S; Fanchini, Giovanni

    2013-01-14

    In this study, we investigated the unpaired electrons and singly occupied molecular orbitals (SOMO) of positively charged Au(25) molecular clusters using solid-state electron paramagnetic resonance (EPR). The EPR powder spectra of the positively charged (Au(25) (+)) and neutral (Au(25) (0)) species of Au(25) are discussed and compared. Our study demonstrates that Au(25) (+) is paramagnetic with a SOMO that is mostly localized about the central gold atom in the core of the molecule and possesses a strong p-type atomic character. The unpaired electron spin is demonstrated to strongly interact with the nuclear spins from other (197)Au nuclei in the core of Au(25) (+) molecules and the hyperfine tensor describing such interaction was extracted from the comparison of the EPR spectra with quantum mechanical simulations assuming an anisotropic structure of the core. Our simulations suggest that the core of Au(25) (+) molecular clusters is more distorted than in the corresponding neutral counterpart. They also confirm previous hypotheses suggesting that the icosahedral core of Au(25) (+) experiences contraction with decreasing temperature. PMID:23320681

  12. Atomistic simulations of Au-silica nanocomposite film growth

    SciTech Connect

    Khan, Saif A.; Heinig, K.-H.; Avasthi, D. K.

    2011-05-01

    The growth of Au-silica nanocomposite film is simulated in the framework of kinetic three dimensional lattice Monte Carlo simulations considering the basic phenomena in the deposition process. In case of co-sputter deposition, the growth kinetics of nanoparticles has been studied taking into consideration the effect of the energetic sputtered species reaching the surface of the film during deposition. Formation of Au nanorod like structures are predicted under certain growth conditions particularly when surface diffusion assisted phase separation plays the dominant role and bulk kinetics is frozen. The observed dependence of the Au nanoparticle size on Au/silica ratio is in agreement with the experimental results.

  13. Observation of D0 Meson Nuclear Modifications in Au +Au Collisions at √sNN =200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-10-01

    We report the first measurement of charmed-hadron (D0) production via the hadronic decay channel (D0→K-+π+) in Au +Au collisions at √sNN =200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, Nbin, from p +p to central Au +Au collisions. The D0 meson yields in central Au +Au collisions are strongly suppressed compared to those in p+p scaled by Nbin, for transverse momenta pT>3 GeV /c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate pT is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.

  14. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates.

    PubMed

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-07-14

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. PMID:27315144

  15. Diffusion of the Linear CH3S-Au-SCH3 Complex on Au(111) from First Principles

    SciTech Connect

    Jiang, Deen; Dai, Sheng

    2009-01-01

    Recent experimental and computational advances have clearly established the importance of the linear alkylthiolate-Au-alkylthiolate (RS-Au-SR) complex at the interface between the thiolate groups and the gold surface. By using density functional theory-based first principles method, here we show that the elementary diffusion step of this linear complex on Au(111) has a barrier of only {approx}0.5 eV in the case of methylthiolate, indicating great mobility of the linear complex on Au(111). The role of this low barrier in the formation of a self-assembled monolayer of thiolate groups in the form of RS-Au-SR on Au(111) is discussed.

  16. Heterostructured Au/Pd-M (M = Au, Pd, Pt) nanoparticles with compartmentalized composition, morphology, and electrocatalytic activity.

    PubMed

    Lutz, Patrick S; Bae, In-Tae; Maye, Mathew M

    2015-10-14

    The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt). Interestingly, the dumbbell morphology remained after exchange, and the silver region was transformed to hollow, parachute, or concentric domains respectively. The morphology and microstructure change was visualized via TEM and HRTEM, and the composition changes were probed via STEM-EDS imaging and XPS. The electrocatalytic activity of the Au/Pd-M towards methanol oxidation was studied, with results indicating that the Au/Pd-Pt nanoparticles had high activity attributed to the porous nature of the platinum domains. PMID:26351824

  17. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-06-01

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications.We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03484e

  18. Mesomorphic Lamella Rolling of Au in Vacuum

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Ning; Chen, Shuei-Yuan; Shen, Pouyan

    2009-11-01

    Lamellar nanocondensates in partial epitaxy with larger-sized multiply twinned particles (MTPs) or alternatively in the form of multiple-walled tubes (MWTs) having nothing to do with MTP were produced by the very energetic pulse laser ablation of Au target in vacuum under specified power density and pulses. Transmission electron microscopic observations revealed (111)-motif diffraction and low-angle scattering. They correspond to layer interspacing (0.241-0.192 nm) and the nearest neighbor distance (ca. 0.74-0.55 nm) of atom clusters within the layer, respectively, for the lamella, which shows interspacing contraction with decreasing particle size under the influence of surface stress and rolls up upon electron irradiation. The uncapped MWT has nearly concentric amorphous layers interspaced by 0.458-0.335 nm depending on dislocation distribution and becomes spherical onions for surface-area reduction upon electron dosage. Analogous to graphene-derived tubular materials, the lamella-derived MWT of Au could have pentagon-hexagon pair at its zig-zag junction and useful optoelectronic properties worthy of exploration.

  19. Mesomorphic Lamella Rolling of Au in Vacuum

    PubMed Central

    2009-01-01

    Lamellar nanocondensates in partial epitaxy with larger-sized multiply twinned particles (MTPs) or alternatively in the form of multiple-walled tubes (MWTs) having nothing to do with MTP were produced by the very energetic pulse laser ablation of Au target in vacuum under specified power density and pulses. Transmission electron microscopic observations revealed (111)-motif diffraction and low-angle scattering. They correspond to layer interspacing (0.241–0.192 nm) and the nearest neighbor distance (ca. 0.74–0.55 nm) of atom clusters within the layer, respectively, for the lamella, which shows interspacing contraction with decreasing particle size under the influence of surface stress and rolls up upon electron irradiation. The uncapped MWT has nearly concentric amorphous layers interspaced by 0.458–0.335 nm depending on dislocation distribution and becomes spherical onions for surface-area reduction upon electron dosage. Analogous to graphene-derived tubular materials, the lamella-derived MWT of Au could have pentagon–hexagon pair at its zig-zag junction and useful optoelectronic properties worthy of exploration. PMID:20628452

  20. Mesomorphic lamella rolling of au in vacuum.

    PubMed

    Huang, Chang-Ning; Chen, Shuei-Yuan; Shen, Pouyan

    2009-01-01

    Lamellar nanocondensates in partial epitaxy with larger-sized multiply twinned particles (MTPs) or alternatively in the form of multiple-walled tubes (MWTs) having nothing to do with MTP were produced by the very energetic pulse laser ablation of Au target in vacuum under specified power density and pulses. Transmission electron microscopic observations revealed (111)-motif diffraction and low-angle scattering. They correspond to layer interspacing (0.241-0.192 nm) and the nearest neighbor distance (ca. 0.74-0.55 nm) of atom clusters within the layer, respectively, for the lamella, which shows interspacing contraction with decreasing particle size under the influence of surface stress and rolls up upon electron irradiation. The uncapped MWT has nearly concentric amorphous layers interspaced by 0.458-0.335 nm depending on dislocation distribution and becomes spherical onions for surface-area reduction upon electron dosage. Analogous to graphene-derived tubular materials, the lamella-derived MWT of Au could have pentagon-hexagon pair at its zig-zag junction and useful optoelectronic properties worthy of exploration. PMID:20628452

  1. Interplanetary magnetic clouds at 1 AU

    NASA Technical Reports Server (NTRS)

    Klein, L. W.; Burlaga, L. F.

    1981-01-01

    Magnetic clouds are defined as regions with a radial dimension approximately 0.25 AU (at 1 AU) in which the magnetic field strength is high and the magnetic field direction changes appreciably by means of rotation of one component of B nearly parallel to a plane. The magnetic field geometry in such a magnetic cloud is consistent with that of a magnetic loop, but it cannot be determined uniquely. Forty-five clouds were identified in interplanetary data obtained near Earth between 1967 and 1978; at least one cloud passed the Earth every three months. Three classes of clouds were identified, corresponding to the association of a cloud with a shock, a stream interface, or a CME. There are approximately equal numbers of clouds in each class, and the three types of clouds might be different manifestations of a coronal transient. The magnetic pressure inside the clouds is higher than the ion pressure and the sum is higher than the pressure of the material outside of the cloud.

  2. Ordered arrays of Au catalysts by FIB assisted heterogeneous dewetting

    NASA Astrophysics Data System (ADS)

    Benkouider, A.; Ronda, A.; David, T.; Favre, L.; Abbarchi, M.; Naffouti, M.; Osmond, J.; Delobbe, A.; Sudraud, P.; Berbezier, I.

    2015-12-01

    Synthesizing Au0.8Si0.2 nanocatalysts that are homogeneous in size and have controlled position is becoming a challenging and crucial prequisite for the fabrication of ordered semiconductor nanowires. In this study, Au0.8Si0.2 nanocatalysts are synthesized via dewetting of Au layers on Si(111) during thermal annealing in an ultra-high vacuum. In the first part of the paper, the mechanism of homogeneous dewetting is analyzed as a function of the Au-deposited thickness (h Au). We distinguish three different dewetting regimes: (I) for a low thickness ({h}{{Au}}≤slant 0.4 {nm}), a submonolyer coverage of Au is stabilized and there is no dewetting. (II) For an intermediate thickness (0.4 {nm}\\lt {h}{Au}≤slant 5 {nm}), there is both dewetting and Au0.8Si0.2 phase formation. The size and density of the Au0.8Si0.2 clusters are directly related to h Au. When cooling down to room temperature, the clusters decompose and reject the Si at the Au/Si substrate interface. (III) For a large thickness ({h}{{Au}}\\gt 5 {nm}), only dewetting takes place, without forming AuSi clusters. In this regime, the dewetting is kinetically controlled by the self-diffusion of Au (activation energy ∼0.43 eV) without evidence of an Si-alloying effect. As a practical consequence, when relying solely on the homogeneous dewetting of Au/Si(111) to form the Au0.8Si0.2 catalysts (without a supply of Si atoms from vapor), regime II should be used to obtain good size and density control. In the second part of the paper, a process for ordering the catalysts using focused ion beam-(FIB) assisted dewetting (heterogeneous dewetting) is developed. We show that no matter what the FIB milling conditions and the Au nominal thickness are, dewetting is promoted by ion beam irradiation and is accompanied by the formation of Au0.8Si0.2 droplets. The droplets preferentially form on the patterned areas, while in similar annealing conditions, they do not form on the unpatterned areas. This behavior is attributed

  3. Coating of a layer of Au on Al13 : The findings of icosahedral Al@Al12Au20- and Al12Au202- fullerenes using ab initio pseudopotential calculations

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay

    2009-02-01

    We report results of ab initio pseudopotential calculations on the nanocoating of gold on an icosahedral Al13 cluster and the findings of icosahedrally symmetric endohedral Al@Al12Au20- and empty cage Al12Au202- compound fullerenes formed of metal atoms. Twelve Al atoms cap the pentagonal faces of a dodecahedral Au20 cage in which each Au atom has three Al atoms and three Au atoms as nearest neighbors. Mixing of Al13 and Au20 magic clusters leads to a large heat of formation of 0.55 eV/atom and high stability of the Al@Al12Au20 compound fullerene. The binding energies of Al12Au20 and Al@Al12Au20 are 3.017 and 3.007 eV/atom, respectively, which are much larger than 2.457 eV/atom for Au32 fullerene, leading to the possibility of their high abundance.

  4. Gold Apes Hydrogen. The Structure and Bonding in the Planar B7Au2- and B7Au2 Clusters

    SciTech Connect

    Zhai, Hua JIN.; Wang, Lai S.; Zubarev, Dmitry Y.; Boldyrev, Alexander I.

    2006-02-09

    We produced the B7Au2- mixed cluster and studied its electronic structure and chemical bonding using photoelectron spectroscopy and ab initio calculations. The photoelectron spectra of B7Au2- were observed to be relatively simple with vibrational resolution, in contrast to the complicated spectra observed for pure B7-, which had contributions from three isomers (Alexandrova et al., J. Phys. Chem. A, 2004, 108, 3509). Theoretical calculations show that B7Au2- possesses an extremely stable planar structure, identical to that of B7H2-, demonstrating that Au mimics H in its bonding to boron, analogous to the Au-Si bonding. The ground state structure of B7Au2- (B7H2-) can be viewed as adding two Au (H) atoms to the terminal B atoms of a higher-lying planar isomer of B7-. The bonding and stability in the planar B7Au2- (B7H2-) clusters are elucidated on the basis of the strong covalent B-Au (H) bonding and the concepts of aromaticity/antiaromaticity in these systems.

  5. Facile synthesis of ultrathin Au nanorods by aging the AuCl(oleylamine) complex with amorphous Fe nanoparticles in chloroform.

    PubMed

    Li, Zhengquan; Tao, Jing; Lu, Xianmao; Zhu, Yimei; Xia, Younan

    2008-09-01

    Despite plenty of reports on the preparation of Au nanorods, it remains challenging to grow uniform Au nanorods with diameters below 5 nm. In this communication, we demonstrate the facile synthesis of ultrathin Au nanorods with a uniform diameter of 2 nm and an average aspect ratio of 30. The synthesis involves the room-temperature aging of a mixture of the [AuCl(oleylamine)] complex with amorphous Fe nanoparticles in chloroform. Analysis of the growth mechanism indicates that Au nanoparticles with a high density of defects were formed at early stages, followed by etching and redeposition process that gradually led to the growth of ultrathin Au nanorods along the 111 direction. This growth mechanism is different from the mechanism recently reported for ultrathin Au nanowires (ref ), where the [AuCl(oleylamine)] complex is assembled into polymer chains followed by reduction to form wires, although the template effect of oleylamine for the formation of ultrathin Au nanorods cannot be completely ruled out. PMID:18681484

  6. Ultrafast charge carrier dynamics in Au/semiconductor nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Lambright, Scott

    The charge carrier dynamics in several Au/semiconductor core/shell heterostructures were examined. Firstly, Au/CdS core/shell nanocomposites were synthesized in a four step procedure culminating in a cation exchange performed on the shell. Previous studies of the ultrafast carrier dynamics in Au/CdS nanocomposites with epitaxial boundary regions reported the suppression of plasmon character in transient absorption spectra accompanied by broadband photoinduced absorption. The coupling of electron wavefunctions with lattice defects at the boundary of the two domains has been blamed for these phenomena. In the current study, transmission electron micrographs of Au/CdS synthesized using cation exchange showed no evidence of strain on the lattice of either component, while femtosecond transient absorption data show the retention of bleach regions attributed to CdS's 1S(e)-1S3/2(h) transition and Au's plasmon resonance. Accelerated rates of bleach recovery for both excitations ( tauexiton ≈ 300 ps, tauplasmon ≈ .7 ps) indicated that the interaction of Au and CdS domains leads to faster relaxation to their respective photoexcitations when compared to relaxation times in isolated Au and CdS nanoparticles. It was believed that the Au/CdS boundary was non-epitaxial in the presented core/shell nanocomposites. Secondly, these non-epitaxial Au/CdS core/shells were subsequently used to demonstrate near-field energy transfer from 5 nm diameter Au cores to CdS-encapsulated CdSe quantum dots. To this end, Au/CdS and CdSe/CdS nanocrystals were embedded in semiconductor-matrix-encapsulated-nanocrystal-arrays (SMENA) together. The encapsulation of both domains in the high band-gap semiconductor CdS was a means to suppress charge transfer between the two nanoparticles. The fluorescence intensity in these films was enhanced 6-fold in some cases as a result of the presence of Au domains. It was also demonstrated that the fluorescence enhancement was independent of the potential

  7. Gas phase selective hydrogenation over oxide supported Ni-Au.

    PubMed

    Cárdenas-Lizana, Fernando; Keane, Mark A

    2015-11-14

    The chemoselective continuous gas phase (T = 573 K; P = 1 atm) hydrogenation of nitroarenes (p-chloronitrobenzene (p-CNB) and m-dinitrobenzene (m-DNB)) has been investigated over a series of oxide (Al2O3 and TiO2) supported Au and Ni-Au (1 : 10 mol ratio; 0.1-1 mol% Au) catalysts. Monometallic supported Au with mean particle size 3-9 nm promoted exclusive formation of p-chloroaniline (p-CAN) and m-nitroaniline (m-NAN). Selective hydrogenation rate was higher over smaller Au particles and can be attributed to increased surface hydrogen (from TPD measurements) at higher metal dispersion. (S)TEM analysis has confirmed an equivalent metal particle size for the supported bimetallics at the same Au loading where TPR indicates Ni-Au interaction and EDX surface mapping established Ni in close proximity to Au on isolated nanoparticles with a composition (Au/Ni) close to the bulk value (= 10). Increased spillover hydrogen due to the incorporation of Ni in the bimetallics resulted in elevated -NO2 group reduction rate. Full selectivity to p-CAN was maintained over all the bimetallic catalysts. Conversion of m-DNB over the lower loaded Ni-Au/Al2O3 generated m-NAN as sole product. An increase in Ni content (0.01 → 0.1 mol%) or a switch from Al2O3 to TiO2 as support resulted in full -NO2 reduction (to m-phenylenediamine). Our results demonstrate the viability of Ni-promotion of Au in the continuous production of functionalised anilines. PMID:25752655

  8. CO oxidation on h-BN supported Au atom

    SciTech Connect

    Gao Min; Lyalin, Andrey; Taketsugu, Tetsuya

    2013-01-21

    The mechanism of CO oxidation by O{sub 2} on Au atoms supported on the pristine and defected hexagonal boron nitride (h-BN) surface has been studied theoretically using density functional theory. It is found that O{sub 2} binds stronger than CO on an Au atom supported on the defect free h-BN surface and h-BN surface with nitrogen vacancy (V{sub N}-h-BN), but weaker than CO on a free Au atom or Au trapped by a boron vacancy (V{sub B}-h-BN). The excess of the positive or negative charge on Au can considerably change its catalytic properties and enhance activation of the adsorbed O{sub 2}. Coadsorption of CO and O{sub 2} on Au, Au/V{sub N}-h-BN, and Au/V{sub B}-h-BN results in additional charge transfer to O{sub 2}. Various pathways of the CO oxidation reaction by molecular oxygen are studied. We found two different pathways for CO oxidation: a two-step pathway where two CO{sub 2} molecules are formed independently, and a self-promotion pathway where oxidation of the first CO molecule is promoted by the second CO molecule. Interaction of Au with the defect-free and defected h-BN surface considerably affects the CO oxidation reaction pathways and barriers. Therefore, Au supported on the h-BN surface (pristine or defected) cannot be considered as pseudo-free atom and support effects have to be taken into account, even when the interaction of Au with the support is weak.

  9. Mixed Valent Gold Oxides: Syntheses, Structures, and Properties of Rb 5Au 3O 2, Rb 7Au 5O 2, and Cs 7Au 5O 2

    NASA Astrophysics Data System (ADS)

    Mudring, Anja-Verena; Nuss, Jürgen; Wedig, Ulrich; Jansen, Martin

    2000-11-01

    The title compounds Rb5Au3O2, Rb7Au5O2, and Cs7Au5O2 are the first examples of mixed valent phases containing gold in the oxidation states +1 and -1. Their crystal structures (Rb5Au3O2, Pbam, a=736.4(1) pm, b=1430.8(2) pm, c=567.9(1) pm, Z=2, R(F)=0.053, 647 reflections; Rb7Au5O2, Immm, a=567.1(2) pm, b=930.1(1) pm, C=1659.4(3) pm, Z=2, R(F)=0.066, 409 reflections; Cs7Au5O2, Immm, a=599.4(1) pm, b=960.6(3) pm, c=1720.8(12) pm, Z=2, R(F)=0.039, 386 reflections) are characterized by the combination of distinctive structural features of gold(I) oxides and aurides: for Au(+1) a typical linear coordination by oxygen is found and the surroundings of Au(-1) bear a close resemblance to the binary 1:1 aurides. In consequence the overall structures of Rb5Au3O2 and M7Au5O2 can be described as intergrowths of M3AuO2 and MAu (M=Rb, Cs), constituting members of a homologous series [MAu]n[M3AuO2] with n=2 and 4, respectively. The crystal chemical evidence for the valence states assumed, also confirmed by Mößbauer spectroscopy, is supported by various band structure calculations (Hartee-Fock and density functional) clearly indicating the coexistence of two different oxidation states. The compounds have been synthesized by reacting binary aurides MAu and alkali monoxides M2O (M=Rb, Cs) with elemental gold in the required stochiometric amounts. Hereby, a further astonishing parallel to the chemistry of halogens is revealed. Like these, gold disproportionates upon interaction with bases.

  10. High transverse momentum {eta} meson production in p+p,d+Au, and Au+Au collisions at {radical}(s{sub NN})=200 GeV

    SciTech Connect

    Adler, S. S.; Aronson, S. H.; Chujo, T.; David, G.; Desmond, E. J.; Drees, K. A.; Ewell, L.; Franz, A.; Guryn, W.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Makdisi, Y. I.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; O'Brien, E.; Pinkenburg, C.

    2007-02-15

    Inclusive transverse momentum spectra of {eta} mesons in the range p{sub T}{approx_equal}2-12 GeV/c have been measured at midrapidity (|{eta}|<0.35) by the PHENIX experiment at RHIC in p+p,d+Au, and Au+Au collisions at {radical}(s{sub NN})=200 GeV. The {eta} mesons are reconstructed through their {eta}{yields}{gamma} {gamma} channel for the three colliding systems as well as through the {eta}{yields}{pi}{sup 0}{pi}{sup +}{pi}{sup -} decay mode in p+p and d+Au collisions. The nuclear modification factor in d+Au collisions, R{sub dAu}(p{sub T}){approx_equal}1.0-1.1, suggests at most only modest p{sub T} broadening (''Cronin enhancement''). In central Au+Au reactions, the {eta} yields are significantly suppressed, with R{sub AuAu}(p{sub T}){approx_equal}0.2. The ratio of {eta} to {pi}{sup 0} yields is approximately constant as a function of p{sub T} for the three colliding systems in agreement with the high-p{sub T} world average of R{sub {eta}/{pi}{sup 0}}{approx_equal}0.5 in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions for a wide range of center-of-mass energies ({radical}(s{sub NN}){approx_equal}3-1800 GeV) as well as, for high scaled momentum x{sub p}, in e{sup +}e{sup -} annihilations at {radical}(s)=91.2 GeV. These results are consistent with a scenario where high-p{sub T} {eta} production in nuclear collisions at the Relativistic Heavy Ion Collider is largely unaffected by initial-state effects but where light-quark mesons ({pi}{sup 0},{eta}) are equally suppressed due to final-state interactions of the parent partons in the dense medium produced in Au+Au reactions.

  11. Silver migration between Au38(SC2H4Ph)24 and doped AgxAu38-x(SC2H4Ph)24 nanoclusters.

    PubMed

    Zhang, Bei; Salassa, Giovanni; Bürgi, Thomas

    2016-07-28

    A fast redistribution of metal atoms occurs upon mixing the AgxAu38-x and Au38 nanoclusters in solution, as observed by mass spectrometry. Physical separation of AgxAu38-x and Au38 species by a dialysis membrane prohibits the metal migration, which suggests that collisions between the reacting clusters are at the origin of the observation. PMID:27352728

  12. Deposition of Au and Ag nanoparticles on PEDOT.

    PubMed

    Danieli, Tamar; Colleran, John; Mandler, Daniel

    2011-12-01

    The deposition of Au and Ag, locally and from bulk solution, on poly(3,4-ethylenedioxythiophene) (PEDOT) was studied. Specifically, PEDOT was electrochemically polymerized onto a glassy carbon (GC) electrode and used for bulk deposition of Au and Ag from their respective ions dissolved in the solution as well as for the local deposition of these metals using scanning electrochemical microscopy (SECM). These two sets of experiments were utilized to investigate the difference between Au and Ag electrochemical deposition on PEDOT. In particular, SECM experiments, which were conducted by the controlled anodic dissolution of Au and Ag microelectrodes close to GC/PEDOT, probed the effect of different PEDOT oxidation states on local deposition. The current-time transients recorded during the deposition, combined with scanning electron microscopy and EDX analysis provided insight into the reduction processes. AuCl(4)(-) and Ag(+) ions were electrochemically reduced at a potential equal to and more negative than the ions redox potentials (0.4 and 0.2 V, respectively) and more positive than -0.7 V, where the PEDOT starts transforming into the reduced, i.e. insulating, state. We found that the electroreduction of Ag(+) ions was diffusion-controlled and the PEDOT film served as a simple conductor. On the other hand, the reduction of AuCl(4)(-) ions was enhanced on GC/PEDOT as compared with bare GC, indicating that PEDOT catalyzes the reduction of AuCl(4)(-) to Au. PMID:21993698

  13. Registration of ‘AU-1101’ peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AU-1101’ (Reg. No. CV-xxx, PI 661498) is a large-seeded virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) with high yield and medium maturity, uniform pod size and shape, high grade, superior shelling characters, low oil content, normal oleic acid content, and good flavor. AU-...

  14. Formation of Cu x Au1- x phases by cold homogenization of Au/Cu nanocrystalline thin films.

    PubMed

    Tynkova, Alona; Katona, Gabor L; Langer, Gabor A; Sidorenko, Sergey I; Voloshko, Svetlana M; Beke, Dezso L

    2014-01-01

    It is shown, by using depth profiling with a secondary neutral mass spectrometer and structure investigations by XRD and TEM, that at low temperatures, at which the bulk diffusion is frozen, a complete homogenization can take place in the Cu/Au thin film system, which leads to formation of intermetallic phases. Different compounds can be formed depending on the initial thickness ratio. The process starts with grain boundary interdiffusion, which is followed by a formation of reaction layers at the grain boundaries that leads to the motion of the newly formed interfaces perpendicular to the grain boundary plane. Finally, the homogenization finishes when all the pure components have been consumed. The process is asymmetric: It is faster in the Au layer. In Au(25nm)/Cu(50nm) samples the final state is the ordered AuCu3 phase. Decrease of the film thicknesses, as expected, results in the acceleration of the process. It is also illustrated that changing the thickness ratio either a mixture of Cu-rich AuCu and AuCu3 phases (in Au(25nm)/Cu(25nm) sample), or a mixture of disordered Cu- as well as Au-rich solid solutions (in Au(25nm)/Cu(12nm) sample) can be produced. By using a simple model the interface velocity in both the Cu and Au layers were estimated from the linear increase of the average composition and its value is about two orders of magnitude larger in Au (ca. 10(-11) m/s) than in Cu (ca. 10(-13) m/s). PMID:25247132

  15. Formation of CuxAu1− x phases by cold homogenization of Au/Cu nanocrystalline thin films

    PubMed Central

    Tynkova, Alona; Katona, Gabor L; Langer, Gabor A; Sidorenko, Sergey I; Voloshko, Svetlana M

    2014-01-01

    Summary It is shown, by using depth profiling with a secondary neutral mass spectrometer and structure investigations by XRD and TEM, that at low temperatures, at which the bulk diffusion is frozen, a complete homogenization can take place in the Cu/Au thin film system, which leads to formation of intermetallic phases. Different compounds can be formed depending on the initial thickness ratio. The process starts with grain boundary interdiffusion, which is followed by a formation of reaction layers at the grain boundaries that leads to the motion of the newly formed interfaces perpendicular to the grain boundary plane. Finally, the homogenization finishes when all the pure components have been consumed. The process is asymmetric: It is faster in the Au layer. In Au(25nm)/Cu(50nm) samples the final state is the ordered AuCu3 phase. Decrease of the film thicknesses, as expected, results in the acceleration of the process. It is also illustrated that changing the thickness ratio either a mixture of Cu-rich AuCu and AuCu3 phases (in Au(25nm)/Cu(25nm) sample), or a mixture of disordered Cu- as well as Au-rich solid solutions (in Au(25nm)/Cu(12nm) sample) can be produced. By using a simple model the interface velocity in both the Cu and Au layers were estimated from the linear increase of the average composition and its value is about two orders of magnitude larger in Au (ca. 10−11 m/s) than in Cu (ca. 10−13 m/s). PMID:25247132

  16. Forecasting coronal mass ejections at 1 AU using Heliospheric Imagers

    NASA Astrophysics Data System (ADS)

    Moestl, C.; Amla, K.; Temmer, M.; Hall, J. R.; Liewer, P. C.; De Jong, E. M.; Davies, J.; Lugaz, N.; Rollett, T.; Veronig, A.; Liu, Y.; Farrugia, C. J.; Luhmann, J. G.; Galvin, A. B.; Zhang, T.

    2012-12-01

    We study the feasibility of using a Heliospheric Imager (HI) instrument, such as STEREO/HI, for space weather forecasting of interplanetary coronal mass ejections (ICMEs) at 1 AU. We compare the predictions for speed and arrival time for ~15 ICME events, each observed remotely by one STEREO spacecraft, to the speed and arrival time observed at in situ observatories. We use three different models with varying ICME geometry, from point-like (Fixed-Phi) to a circle with a given width (Self-Similar-Expansion) to a very wide circle (Harmonic Mean). The models are fitted to density tracks on HI Jmaps with the SolarSoft SATPLOT tool. All these techniques assume constant ICME speed and direction. Partly, the configuration mimics the situation of a single HI observatory parked at the L4 or L5 point in the Sun-Earth system. We discuss problems associated with this study, such as CME-CME interactions leading to complicated Jmaps. For assessing the accuracy of these predictions we look at in situ data by Wind/ACE, STEREO-A/B, and Venus Express and MESSENGER. We also look at the ratio of prediction lead time to its accuracy, and see if there is a preferred value for the ICME width.

  17. Packaged Au-PPy valves for drug delivery systems

    NASA Astrophysics Data System (ADS)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  18. High-spin level scheme of {sup 183}Au

    SciTech Connect

    Song, L.T.; Zhou, X.H.; Zhang, Y. H.; Guo, Y. X.; Lei, X.G.; Zheng, Y.; Liu, M.L.; De Angelis, G.; Marginean, N.; Gadea, A.; Napoli, D.R.; Axiotis, M.; Rusu, C.; Martinez, T.

    2005-01-01

    High-spin states in {sup 183}Au have been studied experimentally using the {sup 159}Tb({sup 29}Si,5n){sup 183}Au reaction at a beam energy of 140 MeV. Three- or higherfold {gamma}-ray coincidences have been measured using the detector array of GASP. The level scheme of {sup 183}Au was revised and extended. A rotational band proposed as the unfavored signature branch of the {pi}i{sub 13/2} band has been observed for {sup 183}Au. Interaction properties between the two negative-signature bands of the {pi}h{sub 9/2}-{pi}f{sub 7/2} system have been discussed for the light odd-A Au nuclei.

  19. Identification of Au–S complexes on Au(100)

    DOE PAGESBeta

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo; Yang, Hyun Jin; Kim, Yousoo; Thiel, P. A.

    2016-01-25

    In this study, using a combination of scanning tunneling microscopy and density functional theory (DFT) calculations, we have identified a set of related Au–S complexes that form on Au(100), when sulfur adsorbs and lifts the hexagonal surface reconstruction. The predominant complex is diamond-shaped with stoichiometry Au4S5. All of the complexes can be regarded as combinations of S–Au–S subunits. The complexes exist within, or at the edges of, p(2 × 2) sulfur islands that cover the unreconstructed Au regions, and are observed throughout the range of S coverage examined in this study, 0.009 to 0.12 monolayers. A qualitative model is developedmore » which incorporates competitive formation of complexes, Au rafts, and p(2 × 2) sulfur islands, as Au atoms are released by the surface structure transformation.« less

  20. Sputtering of Au induced by single Xe ion impacts

    SciTech Connect

    Birtcher, R. C.; Donnelly, S. E.

    1999-12-06

    Sputtering of Au thin films has been determined for Xe ions with energies between 50 and 600 keV. In-situ transmission electron microscopy was used to observe sputtered Au during deposition on a carbon foil near the specimen. Total reflection and transmission sputtering yields for a 62 nm thick Au thin film were determined by ex-situ measurement of the total amount of Au on the carbon foils. In situ observations show that individual Xe ions eject Au nanoparticles as large as 7 nm in diameter with an average diameter of approximately 3 nm. Particle emission correlates with crater formation due to single ion impacts. Nanoparticle emission contributes significantly to the total sputtering yield for Xe ions in this energy range in either reflection or transmission geometry.

  1. Graphene quantum dots/Au hybrid nanoparticles as electrocatalyst for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Jiang, Linqin; Zhang, Weilong; Guan, Xiangfeng

    2015-11-01

    Graphene quantum dots/Au hybrid nanoparticles (denoted as GQDs-Au) were prepared by heating HAuCl4 with GQDs, and they showed higher electrocatalytic activity for hydrogen evolution reaction than that of pure Au nanoparticles.

  2. The AuScope VLBI Array

    NASA Astrophysics Data System (ADS)

    Lovell, J.; McCallum, J.; Shabala, S.; Dickey, J.; Watson, C.; Titov, O.

    2012-12-01

    The AuScope VLBI array, consisting of three new 12-meter radio telescopes in Australia dedicated to geodesy, has recently commenced operations. The telescopes at Hobart (Tasmania), Katherine (Northern Territory) and Yarragadee (Western Australia) are co-located with other space geodetic techniques including Global Navigation Satellite Systems (GNSS) and gravity infrastructure, and in the case of Yarragadee, Satellite Laser Ranging facilities. This new facility will make significant contributions to improving the densification of the International Celestial Reference Frame in the southern hemisphere, and subsequently, improve the International Terrestrial Reference Frame through the improved ability to detect and mitigate systematic error. Improvements to both the ICRF and ITRF, as well as the simultaneous densification of the GNSS network across Australia will enable the improved measurement of intraplate deformation across the Australian tectonic plate.

  3. From the ternary Eu(Au/In)2 and EuAu4(Au/In)2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu5Au16(Au/In)6 structure

    SciTech Connect

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In)2 (EuAu0.46In1.54(2)) (I), EuAu4(Au/In)2 (EuAu4+xIn2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2–“EuAu4In2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu4(Au/In)2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu5In” and “EuAu4In2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.

  4. Dynamic aperture calculation for the RHIC 2010 100 GeV Au-Au run lattices

    SciTech Connect

    Luo, Y.; Brown, K.; Fischer, W.; Ptitsyn, V.; Roser, T.; Schoefer, V.; Tepikian, S.; Trbojevic, D.

    2010-08-01

    In this note we summarize the dynamic aperture calculation with the 2010 RHIC 100 GeV Au-Au run lattices. This study was initiated to understand the observed large beam decay in the Yellow ring after rf re-bucketing in the beginning of this run. The off-line linear lattice models and the interaction region non-linearity models are used. The large beam decay in the Yellow ring after re-bucketing was eventually eliminated by lowering the Yellow tunes to 0.21 from 0.235 with {beta}* = 0.7m lattice. In this note we only focus on the numeric simulation instead of the beam experiments.

  5. Azimuthal Anisotropy in U +U and Au +Au Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, Y.; Li, C.; Li, Z. M.; Li, X.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, Y. G.; Ma, G. L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, N.; Xu, Z.; Xu, Q. H.; Xu, H.; Yang, Y.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J. B.; Zhang, J.; Zhang, Z.; Zhang, S.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-11-01

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2 } and v2{4 }, for charged hadrons from U +U collisions at √{sNN }=193 GeV and Au +Au collisions at √{sNN}=200 GeV . Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2 } on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U +U collisions. We also show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.

  6. Predictions for {radical} (s) =200A; GeV Au+Au collisions from relativistic hydrodynamics

    SciTech Connect

    Schlei, B.R.; Schlei, B.R.; Strottman, D.

    1999-01-01

    The relativistic hydrodynamical model HYLANDER-C is used to give estimates for single inclusive particle momentum spectra in {radical} (s) =200 GeV/nucleon Au+Au collisions that will be investigated experimentally in the near future. The predictions are based on initial conditions that the initial fireball has a longitudinal extension of 1.6 fm and an initial energy density of 30.8 GeV/fm{sup 3} as obtained from a cascade model. For the collision energy considered here, different stopping scenarios are explored for the first time. Our calculations give particle yields of the order of 10thinsp000 to 20thinsp000 charged particles per event. {copyright} {ital 1999} {ital The American Physical Society}

  7. Charge transport in single Au / alkanedithiol / Au junctions: coordination geometries and conformational degrees of freedom.

    PubMed

    Li, Chen; Pobelov, Ilya; Wandlowski, Thomas; Bagrets, Alexei; Arnold, Andreas; Evers, Ferdinand

    2008-01-01

    Recent STM molecular break-junction experiments have revealed multiple series of peaks in the conductance histograms of alkanedithiols. To resolve a current controversy, we present here an in-depth study of charge transport properties of Au|alkanedithiol|Au junctions. Conductance histograms extracted from our STM measurements unambiguously confirm features showing more than one set of junction configurations. On the basis of quantum chemistry calculations, we propose that certain combinations of different sulfur-gold couplings and trans/gauche conformations act as the driving agents. The present study may have implications for experimental methodology: whenever conductances of different junction conformations are not statistically independent, the conductance histogram technique can exhibit a single series only, even though a much larger abundance of microscopic realizations exists. PMID:18076172

  8. Results from Vernier Scans in RHIC from 2001/02 Au-Au and pp Operation

    NASA Astrophysics Data System (ADS)

    Drees, Angelika; Xu, Zhangbu; Zhang, Haibin

    2002-10-01

    A series of Vernier Scans (or Van-der-Meer Scans) has been performed during the Au-Au run as well as the pp run at a beam energy of 100 GeV in RHIC during the 2001/02 operation period. During a scan one beam is swept across the other in the two transverse planes while collision rates are monitored as a function of beam displacement. Scans were done at various settings of beta* and various IRs. Maximum collision rate and transverse beam profiles are derived from a Gauss fit to the scan data. This report explains the method and summarizes the data taken during this operation period. first results from the fits are shown and compared to prediction and earlier runs.

  9. Steering epitaxial alignment of Au, Pd, and AuPd nanowire arrays by atom flux change.

    PubMed

    Yoo, Youngdong; Seo, Kwanyong; Han, Sol; Varadwaj, Kumar S K; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo; Ahn, Jae Pyoung; Ihee, Hyotcherl; Kim, Bongsoo

    2010-02-10

    We have synthesized epitaxial Au, Pd, and AuPd nanowire arrays in vertical or horizontal alignment on a c-cut sapphire substrate. We show that the vertical and horizontal nanowire arrays grow from half-octahedral seeds by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. The alignment of nanowires can be steered by changing the atom flux. At low atom deposition flux vertical nanowires grow, while at high atom flux horizontal nanowires grow. Similar vertical/horizontal epitaxial growth is also demonstrated on SrTiO(3) substrates. This orientation-steering mechanism is visualized by molecular dynamics simulations. PMID:20050692

  10. Pion-kaon femtoscopy in Au+Au collisions at STAR

    NASA Astrophysics Data System (ADS)

    Poniatowska, Katarzyna; STAR Collaboration

    2015-05-01

    In non-identical particle correlations, e.g. pion-kaon femtoscopy, one can obtain information about source size and asymmetry in emission processes of pions and kaons. Such asymmetry give us knowledge of which type of particles is emitted first/second and/or from which region of the source. The studies of non-identical particle femtoscopy for Beam Energy Scan energies give us the opportunity to study how the source size and asymmetry in particle emission depend on the initial conditions of the collision. It also allows one to examine these parameters in the vicinity of the theoretical critical point. In these proceedings, we present STAR results of pion-kaon femtoscopy at mid-rapidity in Au+Au collisions at \\sqrt{sNN} = 7.7, 19.6 and 39 GeV.

  11. Pion-kaon femtoscopy in Au+Au collisions at STAR

    NASA Astrophysics Data System (ADS)

    Poniatowska, Katarzyna

    2015-05-01

    Femtoscopy analysis allows us to extract information about the properties of particle emission source created after collision. From HBT of two correlated pions one can calculate source sizes; in addition, from the non-identical particle correlations, e.g. pion-kaon femtoscopy, one can obtain information not only about source sizes but the asymmetry in the emission processes of particles of different types as well. Such asymmetry gives knowledge of which kind of particles are emitted first/second and/or from which region of the source. The studies of non-identical particle femtoscopy for different collision energies gives us the opportunity to study how the source size and asymmetry in particle emission depend on the initial conditions of the collision. In these proceedings, we will present STAR results of pion-kaon femtoscopy at mid-rapidity in Au + Au collisions from the Beam Energy Scan program.

  12. A comparative study of the Au + H2, Au+ + H2, and Au- + H2 systems: Potential energy surfaces and dynamics of reactive collisions

    NASA Astrophysics Data System (ADS)

    Dorta-Urra, Anaís; Zanchet, Alexandre; Roncero, Octavio; Aguado, Alfredo

    2015-04-01

    In order to study the Au- + H2 collision, a new global potential energy surface (PES) describing the ground electronic state of AuH 2- system is developed and compared with the PESs of the neutral [Zanchet et al., J. Chem. Phys. 132, 034301 (2010)] and cationic systems [Anaís et al., J. Chem. Phys. 135, 091102 (2011)]. We found that Au- - H2 presents a H-Au-H insertion minimum attributed to the stabilization of the LUMO 3b2 orbital, which can be considered as the preamble of the chemisorption well appearing in larger gold clusters. While the LUMO orbital is stabilized, the HOMO 6a1 is destabilized, creating a barrier at the geometry where the energy orbitals' curves are crossing. In the anion, this HOMO is doubly occupied, while in the neutral system is half-filled and completely empty in the cation, explaining the gradual disappearance of the well and the barrier as the number of electrons decreases. The cation presents a well in the entrance channel partially explained by electrostatic interactions. The three systems' reactions are highly endothermic, by 1.66, 2.79, and 3.23 eV for AuH, AuH+, and AuH- products, respectively. The reaction dynamics is studied using quasi-classical trajectory method for the three systems. The one corresponding to the anionic system is new in this work. Collision energies between 1.00 and 8.00 eV, measured for the cation, are in good agreement with the simulated cross section for the AuH+. It was also found that the total fragmentation, in three atoms, competes becoming dominant at sufficiently high energy. Here, we study the competition between the two different reaction pathways for the anionic, cationic, and neutral species, explaining the differences using a simple model based on the topology of the potential energy surfaces.

  13. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.

    PubMed

    Philip, Daizy

    2009-07-15

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size approximately 15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (111) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications. PMID:19324587

  14. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2009-07-01

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size ˜15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (1 1 1) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications.

  15. Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (nTP).

    PubMed

    Niskala, Jeremy R; Rice, William C; Bruce, Robert C; Merkel, Timothy J; Tsui, Frank; You, Wei

    2012-07-25

    Construction of permanent metal-molecule-metal (MMM) junctions, though technically challenging, is desirable for both fundamental investigations and applications of molecule-based electronics. In this study, we employed the nanotransfer printing (nTP) technique using perfluoropolyether (PFPE) stamps to print Au thin films onto self-assembled monolayers (SAMs) of alkanedithiol formed on Au thin films. We show that the resulting MMM junctions form permanent and symmetrical tunnel junctions, without the need for an additional protection layer between the top metal electrode and the molecular layer. This type of junction makes it possible for direct investigations into the electrical properties of the molecules and the metal-molecule interfaces. Dependence of transport properties on the length of the alkane molecules and the area of the printed Au electrodes has been examined systematically. From the analysis of the current-voltage (I-V) curves using the Simmons model, the height of tunneling barrier associated with the molecule (alkane) has been determined to be 3.5 ± 0.2 eV, while the analysis yielded an upper bound of 2.4 eV for the counterpart at the interface (thiol). The former is consistent with the theoretical value of ~3.5-5.0 eV. The measured I-V curves show scaling with respect to the printed Au electrode area with lateral dimensions ranging from 80 nm to 7 μm. These results demonstrate that PFPE-assisted nTP is a promising technique for producing potentially scalable and permanent MMM junctions. They also demonstrate that MMM structures (produced by the unique PFPE-assisted nTP) constitute a reliable test bed for exploring molecule-based electronics. PMID:22720785

  16. {phi} meson production in Au + Au and p + p collisions at {radical}s{sub NN}=200 GeV

    SciTech Connect

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Gronstal, S.; Grosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Hughes, E.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaplan, M.; Keane, D.; Khodyrev; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Kravstov, V.I.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.Kh.; et al.

    2004-06-01

    We report the STAR measurement of {psi} meson production in Au + Au and p + p collisions at {radical}s{sub NN} = 200 GeV. Using the event mixing technique, the {psi} spectra and yields are obtained at midrapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the {psi} transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that {psi} production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions (). The systematics of versus centrality and the constant {psi}/K{sup -} ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for {psi} production.

  17. Charged particle multiplicity fluctuations in Au+Au collisions at \\sqrt{s_{NN}} = 200\\, {\\rm GeV}

    NASA Astrophysics Data System (ADS)

    Wozniak, Krzysztof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J. L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wuosmaa, A. H.; Wyslouch, B.

    2004-08-01

    This paper presents the first PHOBOS results on charged particle multiplicity fluctuations measured for Au+Au collisions at the highest RHIC energy within a wide pseudorapidity range of |eegr| < 3. The dependence on collision geometry is removed in the analysis by using the normalized difference between the number of particles in separate eegr bins. We compare our data to HIJING model predictions.

  18. CO Oxidation mechanism on CeO2-supported Au nanoclusters

    SciTech Connect

    Kim H. Y.; Henkelman, G.

    2013-09-08

    To reveal the richer chemistry of CO oxidation by CeO2 supported Au Nanoclusters(NCs)/Nanoparticles, we design Au13 and Au12 supported on a flat and a stepped-CeO2 model (Au/CeO2) and study various kinds of CO oxidation mechanisms at the Au-CeO2 interface and the Au NC as well.

  19. Electronic and resonance Raman spectra of [Au2(CS3)2]2-. Spectroscopic properties of a "short" Au(I)-Au(I) bond.

    PubMed

    Cheng, E C; Leung, K H; Miskowski, V M; Yam, V W; Phillips, D L

    The anion [Au2(CS3)2]2- has an unusually short Au-Au distance (2.80 A) for a binuclear Au(I) complex. We report detailed Raman studies of the nBu4N+ salt of this complex, including FT-Raman of the solid and UV/vis resonance Raman of dimethyl sulfoxide solutions. All five totally symmetric vibrations of the anion have been located and assigned. A band at delta nu = 125 cm-1 is assigned to nu (Au2). The visible-region electronic absorption bands (384 (epsilon 30,680) and 472 nm (epsilon 610 M-1 cm-1)) are attributable to CS3(2-) localized transitions, as confirmed by the dominance of nu sym(C-Sexo) (delta nu = 951 cm-1) in RR spectra measured in this region. An absorption band at 314 nm (22,250 M-1 cm-1) is assigned as the metal-metal 1(d sigma*-->p sigma) transition, largely because nu sym(C-Sexo) is not strongly enhanced in RR involving this band. Observation of the expected strong resonance enhancement of nu (Au2) was precluded as a result of masking by intense solvent Rayleigh scattering in the UV. PMID:11196834

  20. A Bis(Diphosphanyl N-Heterocyclic Carbene) Gold Complex: A Synthon for Luminescent Rigid AuAg2 Arrays and Au5 and Cu6 Double Arrays.

    PubMed

    Ai, Pengfei; Mauro, Matteo; De Cola, Luisa; Danopoulos, Andreas A; Braunstein, Pierre

    2016-03-01

    A mononuclear bis(NHC)/Au(I) (NHC=N-heterocyclic carbene) cationic complex with a rigid bis(phosphane)-functionalized NHC ligand (PCNHC P) was used to construct linear Au3 and Ag2 Au arrays, a Au5 cluster with two intersecting crosslike Au3 arrays, and an unprecedented Cu6 complex with two parallel Cu3 arrays. The impact of metallophilic interactions on photoluminescence was studied experimentally. PMID:26823329

  1. Novodneprite (AuPb3), anyuiite [Au(Pb, Sb)2] and gold micro- and nano-inclusions within plastically deformed mantle-derived olivine from the Lherz peridotite (Pyrenees, France): a HRTEM-AEM-EELS study

    NASA Astrophysics Data System (ADS)

    Ferraris, Cristiano; Lorand, Jean-Pierre

    2015-02-01

    To contribute the problem of the missing ("invisible") gold fraction in mantle rocks, olivine grains separated from orogenic lherzolite of the peridotite body of Lherz (Eastern Pyrenees, France) have been investigated by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). The results indicate the presence of micrometric inclusions of novodneprite, AuPb3, and anyuiite, Au(Pb,Sb)2, together with nanometric clusters of metallic gold. Both minerals have been recognised on TEM images as darker contrast inclusions and identified through selected area electron diffraction (SAED) and energy dispersive spectroscopy (EDS) analyses. Gold clusters have been indirectly identified in randomly distributed nano-sized rectangular areas that occur in TEM images obtained from the edges of olivine crystals. Within these volumes the EDS analyses reveal a constant presence of Au (0.1-0.2 wt %). High-resolution TEM (HRTEM) investigations evidence series of regularly alternating sigmoidal and ellipsoidal domains developed along [110]. The EELS investigations revealed that the Au signal (M-series lines) arises from the ellipsoidal domains. It is proposed that novodneprite and anyuiite are the result of subsolidus recrystallization of the Pyrenean lherzolites accompanied by a secondary olivine grains growth that trapped inter-granular components. Likely, a process of plastic deformation favoured the formation of edge dislocations within olivine grains and thus, the circulation through them of Au-enriched fluids. A mass balance calculation of the missing gold percentage within this lherzolite points to olivine as one of the potential hosts for about the 80 % of the "invisible" gold in form of nano-inclusions, whereas only 20 % of the whole-rock Au-budget, would be hosted within assemblages of Cu-Fe-Ni sulphides.

  2. Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Pizzo, V.; Lazarus, A.; Gazis, P. R.

    1984-01-01

    A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment.

  3. Neutral pion production in Au+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bnzarov, I.; Bombara, M.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Silva, L. C. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lee, J. H.; Leight, W.; Levine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu. A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Nieuwenhuizen, G. Van; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2009-10-01

    The results of midrapidity (0Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter or by the Time Projection Chamber via tracking of conversion electron-positron pairs. Our measurements are compared to previously published π± and π0 results. The nuclear modification factors RCP and RAA of π0 are also presented as a function of pT. In the most central Au+Au collisions, the binary collision scaled π0 yield at high pT is suppressed by a factor of about 5 compared to the expectation from the yield of p+p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at the Relativistic Heavy Ion Collider.

  4. Electrocatalytic oxidation of small organic molecules on Pt-Au nanoparticles supported by POMAN-MWCNTs

    NASA Astrophysics Data System (ADS)

    Dong, Qi-Zhi; Li, Li-Li; Chen, Qian-Shan; Guo, Can-Cheng; Yu, Gang

    2015-08-01

    Poly ( o-methoxyaniline) and multi-wall carbon nanotube composite (POMAN-MWCNT) films were deposited onto the platinum (Pt) electrode surface by cyclic voltammetry (CV). Then, platinum and gold (Au) nano-particles were deposited by CV and the double potential deposition method to modify the composite film on the Pt electrode. The morphology of the composite film was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and its electrocatalytic activity toward methanol and formaldehyde oxidation was studied by CV and other electrochemical methods. The results demonstrated that Pt-Au/POMAN-MWCNTs obtained by the double potential deposition method had a much higher catalytic activity and better anti-poisoning property for electrooxidation of methanol and formaldehyde. The improved catalytic performance could be attributed to the uniformly distribution of duel-metal nanoparticles and the synergistic effect between Pt and Au metals. The abstract should briefly state the problem or purpose of the research, indicate the methodology used, summarize the principal findings and major conclusions.

  5. Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Veigas, Bruno; Machado, Diana; Perdigão, João; Portugal, Isabel; Couto, Isabel; Viveiros, Miguel; Baptista, Pedro V.

    2010-10-01

    Tuberculosis (TB) is one of the leading causes of infection in humans, causing high morbility and mortality all over the world. The rate of new cases of multidrug resistant tuberculosis (MDRTB) continues to increase, and since these infections are very difficult to manage, they constitute a serious health problem. In most cases, drug resistance in Mycobacterium tuberculosis has been related to mutations in several loci within the pathogen's genome. The development of fast, cheap and simple screening methodologies would be of paramount relevance for the early detection of these mutations, essential for the timely and effective diagnosis and management of MDRTB patients. The use of gold nanoparticles derivatized with thiol-modified oligonucleotides (Au-nanoprobes) has led to new approaches in molecular diagnostics. Based on the differential non-cross-linking aggregation of Au-nanoprobes, we were able to develop a colorimetric method for the detection of specific sequences and to apply this approach to pathogen identification and single base mutations/single nucleotide polymorphisms (SNP) discrimination. Here we report on the development of Au-nanoprobes for the specific identification of SNPs within the beta subunit of the RNA polymerase (rpoB locus), responsible for resistance to rifampicin in over 95% of rifampicin resistant M. tuberculosis strains.

  6. AuToGraFS: automatic topological generator for framework structures.

    PubMed

    Addicoat, Matthew A; Coupry, Damien E; Heine, Thomas

    2014-10-01

    Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are recently notable examples of highly porous polymer frameworks with a raft of potential applications. Synthesis of these compounds is modular, with "connectors" and "linkers" able to be replaced almost at will in the fabrication of isoreticular frameworks (frameworks with the same underlying topology). The range of components available to form such framework structures is vast, leading to a "combinatorial explosion" problem in predicting which framework compounds might have a set of desired properties. Computational investigations can be used in both predictive and explanatory roles in this research but rely on accurate structural models. In this work, we present our software, AuToGraFS, Automated Topological Generator for Framework Structures, and show some of its advanced functionality in "computational reticular chemistry". AuToGraFS is linked to a fully featured force field to produce fully optimized structures of arbitrary frameworks. AuToGraFS, including a graphical user interface, is publicly available for download. PMID:25208338

  7. Autonomous Repair Mechanism of Creep Damage in Fe-Au and Fe-Au-B-N Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Kwakernaak, C.; Tichelaar, F. D.; Sloof, W. G.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2015-12-01

    The autonomous repair mechanism of creep cavitation during high-temperature deformation has been investigated in Fe-Au and Fe-Au-B-N alloys. Combined electron-microscopy techniques and atom probe tomography reveal how the improved creep properties result from Au precipitation within the creep cavities, preferentially formed on grain boundaries oriented perpendicular to the applied stress. The selective precipitation of Au atoms at the free creep cavity surface results in pore filling, and thereby, autonomous repair of the creep damage. The large difference in atomic size between the Au and Fe strongly hampers the nucleation of precipitates in the matrix. As a result, the matrix acts as a reservoir for the supersaturated solute until damage occurs. Grain boundaries and dislocations are found to act as fast transport routes for solute gold from the matrix to the creep cavities. The mechanism responsible for the self-healing can be characterized by a simple model for cavity growth and cavity filling.

  8. Observation of D0 meson nuclear modifications in Au+Au collisions at sNN=200 GeV

    DOE PAGESBeta

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; et al

    2014-09-30

    We report the first measurement of charmed-hadron (D0) production via the hadronic decay channel (D0→K-+π+) in Au+Au collisions at √sNN=200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, Nbin, from p+p to central Au+Au collisions. The D0 meson yields in central Au+Aucollisions are strongly suppressed compared to those in p+p scaled by Nbin, for transverse momenta pT>3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate pT is also observed. Model calculations including strong charm-medium interactions andmore » coalescence hadronization describe our measurements.« less

  9. Wafer-level Au-Au bonding in the 350-450 °C temperature range

    NASA Astrophysics Data System (ADS)

    Tofteberg, Hannah R.; Schjølberg-Henriksen, Kari; Fasting, Eivind J.; Moen, Alexander S.; Taklo, Maaike M. V.; Poppe, Erik U.; Simensen, Christian J.

    2014-08-01

    Metal thermocompression bonding is a hermetic wafer-level packaging technology that facilitates vertical integration and shrinks the area used for device sealing. In this paper, Au-Au bonding at 350, 400 and 450 °C has been investigated, bonding wafers with 1 µm Au on top of 200 nm TiW. Test Si laminates with device sealing frames of 100, 200, and 400 µm in width were realized. Bond strengths measured by pull tests ranged from 8 to 102 MPa and showed that the bond strength increased with higher bonding temperatures and decreased with increasing frame width. Effects of eutectic reactions, grain growth in the Au film and stress relaxation causing buckles in the TiW film were most pronounced at 450 °C and negligible at 350 °C. Bond temperature below the Au-Si eutectic temperature 363 °C is recommended.

  10. Electronic and geometric structures of Au30 clusters: a network of 2e-superatom Au cores protected by tridentate protecting motifs with u3-S

    NASA Astrophysics Data System (ADS)

    Tian, Zhimei; Cheng, Longjiu

    2015-12-01

    Density functional theory calculations have been performed to study the experimentally synthesized Au30S(SR)18 and two related Au30(SR)18 and Au30S2(SR)18 clusters. The patterns of thiolate ligands on the gold cores for the three thiolate-protected Au30 nanoclusters are on the basis of the ``divide and protect'' concept. A novel extended protecting motif with u3-S, S(Au2(SR)2)2AuSR, is discovered, which is termed the tridentate protecting motif. The Au cores of Au30S(SR)18, Au30(SR)18 and Au30S2(SR)18 clusters are Au17, Au20 and Au14, respectively. The superatom-network (SAN) model and the superatom complex (SAC) model are used to explain the chemical bonding patterns, which are verified by chemical bonding analysis based on the adaptive natural density partitioning (AdNDP) method and aromatic analysis on the basis of the nucleus-independent chemical shift (NICS) method. The Au17 core of the Au30S(SR)18 cluster can be viewed as a SAN of one Au6 superatom and four Au4 superatoms. The shape of the Au6 core is identical to that revealed in the recently synthesized Au18(SR)14 cluster. The Au20 core of the Au30(SR)18 cluster can be viewed as a SAN of two Au6 superatoms and four Au4 superatoms. The Au14 core of Au30S2(SR)18 can be regarded as a SAN of two pairs of two vertex-sharing Au4 superatoms. Meanwhile, the Au14 core is an 8e-superatom with 1S21P6 configuration. Our work may aid understanding and give new insights into the chemical synthesis of thiolate-protected Au clusters.Density functional theory calculations have been performed to study the experimentally synthesized Au30S(SR)18 and two related Au30(SR)18 and Au30S2(SR)18 clusters. The patterns of thiolate ligands on the gold cores for the three thiolate-protected Au30 nanoclusters are on the basis of the ``divide and protect'' concept. A novel extended protecting motif with u3-S, S(Au2(SR)2)2AuSR, is discovered, which is termed the tridentate protecting motif. The Au cores of Au30S(SR)18, Au30(SR)18 and Au30S