Science.gov

Sample records for au-sn solder joints

  1. Microstructural evolution of eutectic Au-Sn solder joints

    SciTech Connect

    Song, Ho Geon

    2002-05-31

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  2. Residue-Free Solder Bumping Using Small AuSn Particles by Hydrogen Radicals

    NASA Astrophysics Data System (ADS)

    Higurashi, Eiji; Chino, Daisuke; Suga, Tadatomo

    An AuSn reflow process using hydrogen radicals as a way to avert the cleaning of flux residues was investigated for its application to solder bumping. AuSn particles (manufactured by a gas atomizer) smaller than 5µm, which are difficult to reflow by conventional methods that use rosin mildly activated (RMA) flux, were used for the experiments. In this process, the reduction effect by the hydrogen radicals removes the surface oxides of the AuSn particles. Excellent wetting between 1-µm-diameter AuSn particles and Ni metallization occurred in hydrogen plasma. Using hydrogen radicals, 100µm-diameter AuSn bumps without voids were successfully formed at a peak temperature of 300°C. The average bump shear strength was approximately 73gf/bump. Bump inspection after shear testing showed that a fracture had occurred between the Au/Ni/Cr under bump metallurgy (UBM) and Si substrate, suggesting sufficient wetting between the AuSn bump and the UBM.

  3. Effect of the Silver Content of SnAgCu Solder on the Interfacial Reaction and on the Reliability of Angle Joints Fabricated by Laser-Jet Soldering

    NASA Astrophysics Data System (ADS)

    Ji, Hongjun; Ma, Yuyou; Li, Mingyu; Wang, Chunqing

    2015-02-01

    The silver content of lead-free solders affects their microstructure, the interfacial reaction, and the performance of the joints in reliability tests. In this study, Sn3.0Ag0.5Cu (wt.%, SAC305) and Sn1.0Ag0.5Cu (wt.%, SAC105) solder balls of diameter 55 μm were reflowed on gold surface pads by laser-jet soldering. It was found that four types of layered intermetallic compound (IMC) were formed at the interfaces; these were Au5Sn/AuSn, AuSn, AuSn2, and AuSn4 from the pad side to the solder matrix. The Au5Sn/AuSn eutectic region, thickness 400 nm, formed because of the high cooling rate induced by the laser-jet soldering. During high-temperature storage tests, the silver became segregated at the interfaces between the Au-Sn IMC and the solder matrix, resulting in inhibition of IMC growth in SAC305 joints, the shear strengths of which were higher than those of SAC105 joints. In mechanical drop tests, however, percentage failure of the SAC305 joints was twice that of the SAC105 joints.

  4. Compound solder joints

    NASA Technical Reports Server (NTRS)

    Batista, R. I.; Simonson, R. B.

    1976-01-01

    Joining technique prevents contamination, may be used to join dissimilar metal tubes, minimizes fluid and gas entrapment, expedites repairs, and can yield joints having leakage rates less than 0.000001 standard cubic cm He/min. Components of joint are solder sleeve, two solder rings, Teflon sleeve, and tubing to be joined.

  5. Stress-relieved solder joints

    NASA Technical Reports Server (NTRS)

    Zemenick, C. J.

    1980-01-01

    Mechanical stress on solder joints is reduced by procedure for soldering electronic components to circuit boards. Procedure was developed for radio-frequency (RF) strip-line circuits, for which dimensions must be carefully controlled to minimize parasitic capacitance and inductance. Procedure consists of loosening component from its mounting after each lead is soldered relieving induced stresses before next soldering step.

  6. Solder Joint Health Monitoring Testbed

    NASA Technical Reports Server (NTRS)

    Delaney, Michael M.; Flynn, James G.; Browder, Mark E.

    2009-01-01

    A method of monitoring the health of selected solder joints, called SJ-BIST, has been developed by Ridgetop Group Inc. under a Small Business Innovative Research (SBIR) contract. The primary goal of this research program is to test and validate this method in a flight environment using realistically seeded faults in selected solder joints. An additional objective is to gather environmental data for future development of physics-based and data-driven prognostics algorithms. A test board is being designed using a Xilinx FPGA. These boards will be tested both in flight and on the ground using a shaker table and an altitude chamber.

  7. The failure analysis and lifetime prediction for the solder joint of the magnetic head

    NASA Astrophysics Data System (ADS)

    Xiao, Xianghui; Peng, Minfang; Cardoso, Jaime S.; Tang, Rongjun; Zhou, YingLiang

    2015-02-01

    Micro-solder joint (MSJ) lifetime prediction methodology and failure analysis (FA) are to assess reliability by fatigue model with a series of theoretical calculations, numerical simulation and experimental method. Due to shortened time of solder joints on high-temperature, high-frequency sampling error that is not allowed in productions may exist in various models, including round-off error. Combining intermetallic compound (IMC) growth theory and the FA technology for the magnetic head in actual production, this thesis puts forward a new growth model to predict life expectancy for solder joint of the magnetic head. And the impact of IMC, generating from interface reaction between slider (magnetic head, usually be called slider) and bonding pad, on mechanical performance during aging process is analyzed in it. By further researching on FA of solder ball bonding, thesis chooses AuSn4 growth model that affects least to solder joint mechanical property to indicate that the IMC methodology is suitable to forecast the solder lifetime. And the diffusion constant under work condition 60 °C is 0.015354; the solder lifetime t is 14.46 years.

  8. Intermetallic Layers in Soldered Joints

    Energy Science and Technology Software Center (ESTSC)

    1998-12-10

    ILAG solves the one-dimensional partial differential equations describing the multiphase, multicomponent, solid-state diffusion-controlled growth of intermetallic layers in soldered joints. This software provides an analysis capability for materials researchers to examine intermetallic growth mechanisms in a wide variety of defense and commercial applications involving both traditional and advanced materials. ILAG calculates the interface positions of the layers, as well as the spatial distribution of constituent mass fractions, and outputs the results at user-prescribed simulation times.

  9. Electronic hidden solder joint geometry characterization

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Jen

    2009-05-01

    To reduce the size of electronic equipment, multi-layer printed circuit board structures have become popular in recent years. As a result, the inspection of hidden solder joints between layers of boards has become increasingly difficult. Xray machines have been used for ball grid array (BGA) and hidden solder joint inspection; however, the equipment is costly and the inspection process is time consuming. In this paper, we investigate an active thermography approach to probing solder joint geometry. A set of boards having the same number of solder joints and amount of solder paste (0.061 g) was fabricated. Each solder joint had a different geometry. A semi-automated system was built to heat and then transfer each board to a chamber where an infrared camera was used to scan the board as it was cooling down. Two-thirds of the data set was used for model development and one-third was used for model evaluation. Both artificial neural network (ANN) and binary logistic regression models were constructed. Results suggest that solder joints with more surface area cool much faster than those with less surface area. In addition, both modeling approaches are consistent in predicting solder geometry; ANN had 85% accuracy and the regression model had 80%. This approach can potentially be used to test for cold solder joints prior to BGA assembly, since cold solder joints may have air gaps between the joint and the board and air is a poor heat conductor. Therefore, a cold solder joint may have a slower cooling rate than a normal one.

  10. Computer simulation of solder joint failure

    SciTech Connect

    Burchett, S.N.; Frear, D.R.; Rashid, M.M.

    1997-04-01

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide the fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.

  11. Solder Joint Health Monitoring Testbed System

    NASA Technical Reports Server (NTRS)

    Delaney, Michael M.

    2009-01-01

    The density and pin count for Field Programmable Gate Arrays (FPGAs) has been increasing, and has exceeded current methods of solder joint inspection, making early detection of failures more problematic. These failures are a concern for both flight safety and maintenance in commercial aviation. Ridgetop Group, Inc. has developed a method for detecting solder joint failures in real time. The NASA Dryden Flight Research Center is developing a set of boards to test this method in ground environmental and accelerated testing as well as flight test on a Dryden F-15 or F-18 research aircraft. In addition to detecting intermittent and total solder joint failures, environmental data on the boards, such as temperature and vibration, will be collected and time-correlated to aircraft state data. This paper details the technical approach involved in the detection process, and describes the design process and products to date for Dryden s FPGA failure detection boards.

  12. Testing of printed circuit board solder joints by optical correlation

    NASA Technical Reports Server (NTRS)

    Espy, P. N.

    1975-01-01

    An optical correlation technique for the nondestructive evaluation of printed circuit board solder joints was evaluated. Reliable indications of induced stress levels in solder joint lead wires are achievable. Definite relations between the inherent strength of a solder joint, with its associated ability to survive stress, are demonstrable.

  13. Solder joint reliability of indium-alloy interconnection

    NASA Astrophysics Data System (ADS)

    Shimizu, Kozo; Nakanishi, Teru; Karasawa, Kazuaki; Hashimoto, Kaoru; Niwa, Koichi

    1995-01-01

    Recent high-density very large scale integrated (VLSI) interconnections in multichip modules require high-reliability solder interconnection to enable us to achieve small interconnect size andlarge number of input/output terminals, and to minimize soft errors in VLSIs induced by α-particle emission from solder. Lead-free solders such as indium (In)-alloy solders are a possible alternative to conventional lead-tin (Pb-Sn) solders. To realize reliable interconnections using In-alloy solders, fatigue behavior, finite element method (FEM) simulations, and dissolution and reaction between solder and metallization were studied with flip-chip interconnection models. We measured the fatigue life of solder joints and the mechanical properties of solders, and compared the results with a computer simulation based on the FEM. Indium-alloy solders have better mechanical properties for solder joints, and their flip-chip interconnection models showed a longer fatigue life than that of Pb-Sn solder in thermal shock tests between liquid nitrogen and room temperatures. The fatigue characteristics obtained by experiment agree with that given by FEM analysis. Dissolution tests show that Pt film is resistant to dissolution into In solder, indicating that Pt is an adequate barrier layer material for In solder. This test also shows that Au dissolution into the In-Sn solder raises its melting point; however, Ag addition to In-Sn solder prevents melting point rise. Experimental results show that In-alloy solders are suitable for fabricating reliable interconnections.

  14. Effect of Solder Joint Length on Fracture Under Bending

    NASA Astrophysics Data System (ADS)

    Akbari, Saeed; Nourani, Amir; Spelt, Jan K.

    2016-01-01

    Fracture tests were conducted on copper-solder-copper joints of various lengths using double-cantilever-beam (DCB) specimens under mode I loading conditions. The thickness and length of the solder joints were large enough to neglect any anisotropy associated with the solder microstructure. It was found that the critical strain energy release rate at crack initiation, G ci, was insensitive to the length of the solder joint; however, for joints shorter than a characteristic length which was a function of the thickness and the mechanical properties of the solder layer and the substrates, the fracture load increased with increasing solder joint length. A sandwich model was developed for the analysis of the stress and strain in solder joints, taking into account the influence of both the bending deformation and the shear deformation of the substrates on the solder joint stresses. Consistent with the experimental results, it was found that solder joints longer than the characteristic length have a maximum peel stress that remains unchanged with joint length, causing the joint strength to become independent of the joint length. A closed-form analytical solution was developed for the characteristic length of DCB specimens under mode I loading. The experimental results were in good agreement with the analytical model and with finite element results. The generality of the G ci failure criterion was demonstrated by comparing the experimental results and the fracture load predictions of mode I DCB solder joints with different lengths.

  15. Shaping Transistor Leads for Better Solder Joints

    NASA Technical Reports Server (NTRS)

    Mandel, H.; Dillon, J. D.

    1982-01-01

    Special lead-forming tool puts step in leads of microwave power transistors without damaging braze joints that fasten leads to package. Stepped leads are soldered to circuit boards more reliably than straight leads, and stress on brazes is relieved. Lead-forming hand-tool has two parts: a forming die and an actuator. Spring-loaded saddle is adjusted so that when transistor package is placed on it, leads rest on forming rails.

  16. Strength of Soldered Joints Formed under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Atkinson, A.; Dashwood, R. J.

    2007-01-01

    Experiments have been carried out to compare the mechanical strength of joints soldered with Sn-Ag-Cu under different gravitational conditions. Joints soldered under microgravity (produced during a parabolic flight) have lower strength (by 32% in this case) than similar joints formed under normal gravity. Electron microscopy has shown that this is due to a larger volume of residual porosity (14%) in the joints formed in microgravity compared with <1% for joints formed in normal gravity. The residual porosity in joints formed in microgravity is mainly within the bulk of the solder, with some microporosity in the Cu6Sn5 intermetallic layer near the copper interfaces. The porosity not only weakens the joint, but also biases the failure path away from the intermetallic layer and into the bulk of the solder. These observations show that gravitational buoyancy is important for the expulsion of flux and flux residues from soldered joints.

  17. The effect of intermetallic compound evolution on the fracture behavior of Au stud bumps joined with Sn-3.5Ag solder

    NASA Astrophysics Data System (ADS)

    Lee, Young-Kyu; Ko, Yong-Ho; Kim, Jun-Ki; Lee, Chang-Woo; Yoo, Sehoon

    2013-01-01

    The microstructure and joint properties of Au stud bumps joined with Sn-3.5Ag solder were investigated as functions of flip chip bonding temperature and aging time. Au stud bumps were bonded on solder-onpad (SOP) at bonding temperature of 260°C and 300°C for 10 s, respectively. Aging treatment was carried out at 150°C for 100 h, 300 h, and 500 h, respectively. After flip chip bonding, intermetallic compounds (IMCs) of AuSn, AuSn2, and AuSn4 were formed at the interface between the Au stud bump and Sn-3.5Ag solder. At a bonding temperature of 300°C, AuSn2 IMC clusters, which were surrounded by AuSn4 IMCs, were observed in the Sn-3.5Ag solder bump. After flip chip bonding, bonding strength was approximately 220.5mN/bump. As aging time increased, the bonding strength decreased. After 100 h of aging treatment, the bonding strength of the joint bonded at 300°C was lower than that bonded at 260°C due to the fast growth rate of the AuSn2 IMCs. The main failure modes were interface fractures between the AuSn2 IMCs and AuSn4 IMCs, fractures through the AuSn2 IMCs and pad lift. Initial joint microstructures after flip chip bonding strongly affected the bonding strengths of aged samples.

  18. Flexible multisensor inspection system for solder-joint analysis

    NASA Astrophysics Data System (ADS)

    Lacey, Gerard; Waldron, Ronan; Dinten, Jean-Marc; Lilley, Francis

    1993-08-01

    This paper describes the design and construction of an open, automated, solder bond verification machine for the electronics manufacturing industry. The application domain is the higher end assembly technologies, with an emphasis on fine pitch surface mount components. The system serves a measurement function, quantifying the solder bonds. It interfaces with the manufacturing process to close the manufacturing loop. A geometric model of the solder in a joint, coupled with a finite element analysis of the physical properties of solder, lead to objective measurement of the solder. Principle illumination systems are laser, X-ray and noncoherent lighting. Open, Objected Oriented design and implementation practices enable a forward looking system to be developed.

  19. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Khatibi, Golta; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2016-08-01

    Although considerable research has been dedicated to the synthesis and characterization of lead-free nanoparticle solder alloys, only very little has been reported on the reliability of the respective joints. In fact, the merit of nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature has always been challenged when compared with conventional solder joints, especially in terms of inferior solderability due to the oxide shell commonly present on the nanoparticles, as well as due to compatibility problems with common fluxing agents. Correspondingly, in the current study, Sn-Ag-Cu (SAC) nanoparticle alloys were combined with a proper fluxing vehicle to produce prototype nanosolder pastes. The reliability of the solder joints was successively investigated by means of electron microscopy and mechanical tests. As a result, the optimized condition for employing nanoparticles as a competent nanopaste and a novel procedure for surface treatment of the SAC nanoparticles to diminish the oxide shell prior to soldering are being proposed.

  20. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Khatibi, Golta; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2016-05-01

    Although considerable research has been dedicated to the synthesis and characterization of lead-free nanoparticle solder alloys, only very little has been reported on the reliability of the respective joints. In fact, the merit of nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature has always been challenged when compared with conventional solder joints, especially in terms of inferior solderability due to the oxide shell commonly present on the nanoparticles, as well as due to compatibility problems with common fluxing agents. Correspondingly, in the current study, Sn-Ag-Cu (SAC) nanoparticle alloys were combined with a proper fluxing vehicle to produce prototype nanosolder pastes. The reliability of the solder joints was successively investigated by means of electron microscopy and mechanical tests. As a result, the optimized condition for employing nanoparticles as a competent nanopaste and a novel procedure for surface treatment of the SAC nanoparticles to diminish the oxide shell prior to soldering are being proposed.

  1. Electromigration performance of Pb-free solder joints in terms of solder composition and joining path

    NASA Astrophysics Data System (ADS)

    Seo, Sun-Kyoung; Kang, Sung K.; Cho, Moon Gi; Lee, Hyuck Mo

    2010-07-01

    The electromigration (EM) performance of Pb-free solder joints is investigated in terms of solder composition (Sn-0.5Cu vs. Sn-1.8Ag) and joining path to Cu vs. Ni(P) under bump metallization (UBM). In the double-sided joints of Ni(P)/solder/Cu, the micro-structure of solder joints and the interfacial intermetallic compound (IMC) layers are significantly affected by solder composition and joining path. The as-reflowed microstructure of Sn-0.5Cu joints consists of small columnar grains with thin IMC layers at both UBM interfaces, independent of the joining path, while Sn-1.8Ag joints have a few large grains of low-angle grain boundaries with thick IMC layers when joined first to Ni(P) UBM, but a few 60° twins with thin IMC layers when joined first to Cu UBM. The EM stressing under high current densities at 150°C reveals that Sn-1.8Ag joints have a superior lifetime compared to Sn-0.5Cu joints. In addition, the EM lifetime of Sn-1.8Ag joints reflowed first on Ni(P) UBM is the longest among four groups of the solder joints examined.

  2. Solderability of melting lead-free solder to tiny joint of electronic products

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Du, Changhua; Du, Yunfei

    2005-12-01

    The behavior of melting solder has an important influence on the tiny joints of electronic products. In order to improve the properties of lead-free solder, a Sn-3.5Ag0.6Cu alloy was smelted using traditional and a modified technology, respectively. The solderability of the two alloys were investigated using a wetting balance method for the different conditions. The test results showed that the modified solder had good solderability, where the excellent flux used was rosin-ethanol or rosin-isopropanol solution. In experimental condition, when the added active agent is 0.4% of rosin mass or 0.1% of solution mass, the wetting velocity and wetting force can be improved 5 times and 1.5 times, respectively. The best soldering parameters are temperature levels less than or equal to 270°, and the soakage time in 2-3s.

  3. Fatigue and thermal fatigue of Pb-Sn solder joints

    SciTech Connect

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55/sup 0/C and 125/sup 0/C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb.

  4. Microstructural Evolution of Lead-Free Solder Joints in Ultrasonic-Assisted Soldering

    NASA Astrophysics Data System (ADS)

    Ji, Hongjun; Wang, Qiang; Li, Mingyu

    2016-01-01

    Solder joint reliability greatly depends on the microstructure of the solder matrix and the morphology of intermetallic compounds (IMCs) in the joints. Addition of strengthening phases such as carbon nanotubes and ceramic particles to solder joints to improve their properties has been widely studied. In this work, ultrasonic vibration (USV) of casting ingots was applied to considerably improve their microstructure and properties, and the resulting influence on fluxless soldering of Cu/Sn-3.0Ag-0.5Cu/Cu joints and their microstructural evolution was investigated. It was demonstrated that USV application during reflow of Sn-based solder had favorable effects on β-Sn grain size refinement as well as the growth and distribution of various IMC phases within the joints. The β-Sn grain size was significantly refined as the ultrasound power was increased, with a reduction of almost 90% from more than 100 μm to below 10 μm. Long and large Cu6Sn5 tubes in the solder matrix of the joints were broken into tiny ones. Needle-shaped Ag3Sn was transformed into flake-shaped. These IMCs were mainly precipitated along β-Sn phase boundaries. High-temperature storage tests indicated that the growth rate of interfacial IMCs in joints formed with USV was slower than in conventional reflow joints. The mechanisms of grain refinement and IMC fragmentation are discussed and related to the ultrasonic effects.

  5. Simulation of thermomechanical fatigue in solder joints

    SciTech Connect

    Fang, H.E.; Porter, V.L.; Fye, R.M.; Holm, E.A.

    1997-12-31

    Thermomechanical fatigue (TMF) is a very complex phenomenon in electronic component systems and has been identified as one prominent degradation mechanism for surface mount solder joints in the stockpile. In order to precisely predict the TMF-related effects on the reliability of electronic components in weapons, a multi-level simulation methodology is being developed at Sandia National Laboratories. This methodology links simulation codes of continuum mechanics (JAS3D), microstructural mechanics (GLAD), and microstructural evolution (PARGRAIN) to treat the disparate length scales that exist between the macroscopic response of the component and the microstructural changes occurring in its constituent materials. JAS3D is used to predict strain/temperature distributions in the component due to environmental variable fluctuations. GLAD identifies damage initiation and accumulation in detail based on the spatial information provided by JAS3D. PARGRAIN simulates the changes of material microstructure, such as the heterogeneous coarsening in Sn-Pb solder, when the component`s service environment varies.

  6. Thermomechanical Stress and Strain in Solder Joints During Electromigration

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Xi, H. J.; Wu, Y. P.; Wu, F. S.

    2009-05-01

    Thermomechanical stress and strain in the solder joints of a dummy area array package were studied as electromigration occurred. A current density of 0.4 × 104 A/cm2 was applied to this package, constructed with 9 × 9 solder joints in a daisy chain, to perform the electromigration test. After 37 h, the first joint on the path of the electron flow broke off at the cathode, and the first three solder joints all exhibited a typical accumulation of intermetallic compounds at the anode. Different solder joints exhibited dissimilar electromigration states, such as steady state and nonsteady state. Finite element analysis indicated that during steady-state electromigration, although the symmetrical structure produced uniform distributions of current density and Joule heating in all solder joints, the distribution of temperature was nonuniform. This was due to the imbalanced heat dissipation, which in turn affected the distribution of thermomechanical stress and strain in the solder joints. The maximum thermomechanical stress and strain, as well the highest temperature and current crowding, appeared in the Ni/Cu layer of each joint. The strain in the Ni/Cu layer was significant along the z-axis, but was constrained in the x- y plane. The thermomechanical stress and strain increased with advancing electromigration; thus, a potential delamination between the Ni/Cu layer and the printed circuit board could occur.

  7. Investigation of gold embrittlement in connector solder joints

    NASA Technical Reports Server (NTRS)

    Lane, F. L.

    1972-01-01

    An investigation was performed to determine to what extent typical flight connector solder joints may be embrittled by the presence of gold. In addition to mapping of gold content in connector solder joints by an electron microprobe analyzer, metallographic examinations and mechanical tests (thermal shock, vibration, impact and tensile strength) were also conducted. A description of the specimens and tests, a discussion of the data, and some conclusions are presented.

  8. Embrittlement of surface mount solder joints by hot solder-dipped, gold-plated leads

    SciTech Connect

    Vianco, P.T.

    1993-07-01

    The detachment of beam-leaded transistors from several surface mount circuit boards following modest thermal cycling was examined. Microstructural analysis of the package leads and bonding pads from the failed units indicated that gold embrittlement was responsible for a loss of solder joint mechanical integrity that caused detachment of transistors from the circuit boards. An analysis of the hot dipping process used to remove gold from the leads prior to assembly demonstrated that the gold, although dissolved from the lead, remained in the nearby solder and was subsequently retained in the coating formed on the lead upon withdrawal from the bath. This scenario allowed gold to enter the circuit board solder joints. It was hypothesized, and later confirmed by experimental trials, that increasing the number of dips prevented gold from entering the solder coatings.

  9. Robotic 3D vision solder joint verification system evaluation

    SciTech Connect

    Trent, M.A.

    1992-02-01

    A comparative performance evaluation was conducted between a proprietary inspection system using intelligent 3D vision and manual visual inspection of solder joints. The purpose was to assess the compatibility and correlation of the automated system with current visual inspection criteria. The results indicated that the automated system was more accurate (> 90%) than visual inspection (60--70%) in locating and/or categorizing solder joint defects. In addition, the automated system can offer significant capabilities to characterize and monitor a soldering process by measuring physical attributes, such as solder joint volumes and wetting angles, which are not available through manual visual inspection. A more in-depth evaluation of this technology is recommended.

  10. Conductance Degradation in HTS Coated Conductor Solder Joints

    NASA Astrophysics Data System (ADS)

    Canavan, Edgar R.; Leidecker, Henning; Panashchenko, Lyudmyla

    2015-12-01

    Solder joints between YBCO coated conductors and normal metal traces have been analysed as part of an effort to develop a robust HTS lead assembly for a spaceflight mission. Measurements included critical current and current transfer profiles. X-ray micrographs were used to verify proper solder flow and to determine the extent of voiding. SEM of cross-sections with EDS analysis was crucial in understanding the diffusion of the protective silver layer over the YBCO into the solder for different solder processes. The assembly must be stored for an extended period of time prior to final cool-down and operation. Measurements of the joint resistance over the course of months show a significant increase with time. Understanding the interface condition suggests an explanation for the change.

  11. Inconsistencies in the Understanding of Solder Joint Reliability Physics

    NASA Technical Reports Server (NTRS)

    Wen, L.; Mon, G. R.; Ross, R. G., Jr.

    1997-01-01

    Over the years, many analytical and experimental research studies have aimed to improve the state-of-the-art assessment of solder joint integrity from a physics-of-failure perspective. Although much progress has been made, there still exist many inconsistent and even contradictory correlations and conclusions. Before discussing some of the prominent inconsistencies found in the literature, this paper reviews the fundamental physics underlying the nature of solder failure...Using the complex constitutive properties of solder, fundamental mechanical and thermomechanical proccesses can be modeled to demonstrate some of the inconsistencies in the literature.

  12. Coarsening of the Sn-Pb Solder Microstructure in Constitutive Model-Based Predictions of Solder Joint Thermal Mechanical Fatigue

    SciTech Connect

    Vianco, P.T.; Burchett, S.N.; Neilsen, M.K.; Rejent, J.A.; Frear, D.R.

    1999-04-12

    Thermal mechanical fatigue (TMF) is an important damage mechanism for solder joints exposed to cyclic temperature environments. Predicting the service reliability of solder joints exposed to such conditions requires two knowledge bases: first, the extent of fatigue damage incurred by the solder microstructure leading up to fatigue crack initiation, must be quantified in both time and space domains. Secondly, fatigue crack initiation and growth must be predicted since this metric determines, explicitly, the loss of solder joint functionality as it pertains to its mechanical fastening as well as electrical continuity roles. This paper will describe recent progress in a research effort to establish a microstructurally-based, constitutive model that predicts TMF deformation to 63Sn-37Pb solder in electronic solder joints up to the crack initiation step. The model is implemented using a finite element setting; therefore, the effects of both global and local thermal expansion mismatch conditions in the joint that would arise from temperature cycling.

  13. Thermomechanical fatigue behavior of Sn-Ag solder joints

    NASA Astrophysics Data System (ADS)

    Choi, S.; Subramanian, K. N.; Lucas, J. P.; Bieler, T. R.

    2000-10-01

    Microstructural studies of thermomechanically fatigued actual electronic components consisting of metallized alumina substrate and tinned copper lead, soldered with Sn-Ag or 95.5Ag/4Ag/0.5Cu solder were carried out with an optical microscope and environmental scanning electron microscope (ESEM). Damage characterization was made on samples that underwent 250 and 1000 thermal shock cycles between -40°C and 125°C, with a 20 min hold time at each extreme. Surface roughening and grain boundary cracking were evident even in samples thermally cycled for 250 times. The cracks were found to originate on the free surface of the solder joint. With increased thermal cycles these cracks grew by grain boundary decohesion. The crack that will affect the integrity of the solder joint was found to originate from the free surface of the solder very near the alumina substrate and progress towards and continue along the solder region adjacent to the Ag3Sn intermetallic layer formed with the metallized alumina substrate. Re-examination of these thermally fatigued samples that were stored at room temperature after ten months revealed the effects of significant residual stress due to such thermal cycles. Such observations include enhanced surface relief effects delineating the grain boundaries and crack growth in regions inside the joint.

  14. Effect of Metal Bond-Pad Configurations on the Solder Microstructure Development of Flip-Chip Solder Joints

    NASA Astrophysics Data System (ADS)

    Hu, Y. J.; Hsu, Y. C.; Huang, T. S.; Lu, C. T.; Wu, Albert T.; Liu, C. Y.

    2014-01-01

    Various microstructural zones were observed in the solidified solder of flip-chip solder joints with three metal bond-pad configurations (Cu/Sn/Cu, Ni/Sn/Cu, and Cu/Sn/Ni). The developed microstructures of the solidified flip-chip solder joints were strongly related to the associated metal bond pad. A hypoeutectic microstructure always developed near the Ni bond pad, and a eutectic or hypereutectic microstructure formed near the Cu pad. The effect of the metal bond pads on the solder microstructure alters the Cu solubility in the molten solder. The Cu content (solubility) in the molten Sn(Cu) solder eventually leads to the development of particular microstructures. In addition to the effect of the associated metal bond pads, the developed microstructure of the flip-chip solder joint depends on the configuration of the metal bond pads. A hypereutectic microstructure formed near the bottom Cu pad, and a eutectic microstructure formed near the top Cu pad. Directional cooling in the flip-chip solder joint during the solidification process causes the effects of the metal bond-pad configuration. Directional cooling causes the Cu content to vary in the liquid Sn(Cu) phase, resulting in the formation of distinct microstructural zones in the developed microstructure of the flip-chip solder joint.

  15. Corrosion Issues in Solder Joint Design and Service

    SciTech Connect

    VIANCO,PAUL T.

    1999-11-24

    Corrosion is an important consideration in the design of a solder joint. It must be addressed with respect to the service environment or, as in the case of soldered conduit, as the nature of the medium being transported within piping or tubing. Galvanic-assisted corrosion is of particular concern, given the fact that solder joints are comprised of different metals or alloy compositions that are in contact with one-another. The (thermodynamic) potential for corrosion to take place in a particular environment requires the availability of the galvanic series for those conditions and which includes the metals or alloys in question. However, the corrosion kinetics, which actually determine the rate of material loss under the specified service conditions, are only available through laboratory evaluations or field data that are found in the existing literature or must be obtained by in-house testing.

  16. Porosity in collapsible Ball Grid Array solder joints

    SciTech Connect

    Gonzalez, C.A. |

    1998-05-01

    Ball Grid Array (BGA) technology has taken off in recent years due to the increased need for high interconnect density. Opposite to all the advantages BGA packages offer, porosity in collapsible BGA solder joints is often a major concern in the reliability of such packages. The effect of pores on the strength of collapsible BGA solder-joints was studied by manufacturing samples with different degrees of porosity and testing them under a shear load. It was found that the shear strength of the solder joints decreased in a linear fashion with increasing porosity. Failure occurred by internal necking of the interpore matrix. It was confirmed that entrapment of flux residues leads to porosity by manufacturing fluxless samples in a specially made furnace, and comparing them with samples assembled using flux. Also, contamination of Au electrodeposits (in substrate metallization) was determined to cause significant porosity. It was found that hard-Au (Co hardened Au) electrodeposits produce high degrees of porosity even in the absence of flux. Finally, increasing the time the solder spends in the molten state was proven to successfully decrease porosity.

  17. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    SciTech Connect

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  18. Local melting induced by electromigration in flip-chip solder joints

    NASA Astrophysics Data System (ADS)

    Tsai, C. M.; Lin, Y. L.; Tsai, J. Y.; Lai, Yi-Shao; Kao, C. R.

    2006-05-01

    A new electromigration failure mechanism in flip-chip solder joints is reported. The solder joints failed by local melting of a PbSn eutectic solder. Local melting occurred due to a sequence of events induced by the microstructure changes in the flip-chip solder joint. The formation of a depression in the current-crowding region of a solder joint induced the local electrical resistance to increase. The rising local resistance resulted in a larger Joule heating, which, in turn, raised the local temperature. When the local temperature rose above the eutectic temperature of the PbSn solder, the solder joint melted and consequently failed. The results of this study suggest that a dynamic, coupled simulation that takes into account the microstructure evolution, current density distribution, and temperature distribution may be needed to fully solve this problem.

  19. Effect of the Soldering Process on the Microstructure and Mechanical Properties of Sn-9Zn/Al Solder Joints

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Feng, Xue; Jian, Zhou; Zhanying, Feng; Xu, Chen

    2015-08-01

    Tin-zinc solder alloys are considered to be appropriate for soldering of aluminum alloys at low-temperature in electronics and radiators applications. In this paper, the effects of different soldering parameters on the microstructure and interfacial reaction behaviors of 1070Al/Sn-9Zn/1070Al joints were investigated. The results show that the Al substrate was dissolved by the liquid solder, but Al-related intermetallic was not observed in the interface. Two kinds of Al-rich phases formed in the solder matrix. Large butterfly-shaped solid solution (Al)″ phases (about 10 μm) were formed in the liquid alloys, and compact-shaped precipitations (nano-size) were dissolved out from solders during solidification process. With increasing of the soldering time, Al″ phases were migrated upwards in the solders and the amount of this phase increased. In addition, with the increase of the soldering temperature, the dissolution rate of Al into the solder increased and the formation time of (Al)″ phases was reduced. Shear test results indicate when soldered at 250 °C, the shear strength increased from 48.6 MPa to a maximum 60.5 MPa and then decreased to a stable value (about 55 MPa) with increasing of the soldering time. Similar trends were also observed at 300 and 350 °C, while the soldering time needed to obtain maximum shear strength was shortened. The formation of these Al-rich phases improves the shear strength but deteriorates the ductility.

  20. Automated inspection of solder joints for surface mount technology

    NASA Technical Reports Server (NTRS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-01-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  1. Automated inspection of solder joints for surface mount technology

    NASA Astrophysics Data System (ADS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-03-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  2. Solder joint fatigue analysis under low temperature Martian conditions

    NASA Technical Reports Server (NTRS)

    Tudryn, Carissa

    2006-01-01

    Electronics, without requiring heater power or enclosure in a centralized 'warm electronics box,' will need to survive mean surface temperatures of -120 degrees Celsius to +20 degrees Celsius for an extended Martian mission and an operational temperature up to 85 degrees Celsisus. Since these electronics will need to survive extended cycles under these conditions, fatigue is a significant concern. The solder joint reliability of connectors on a printed wiring board was investigated.

  3. Inelastic Strain Analysis of Solder Joint in NASA Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Dasgupta, Abhijit; Oyan, Chen

    1991-01-01

    The solder fatigue specimen designed by NASA-GSFC/UNISYS is analyzed in order to obtain the inelastic strain history during two different representative temperature cycles specified by UNISYS. In previous reports (dated July 25, 1990, and November 15, 1990), results were presented of the elastic-plastic and creep analysis for delta T = 31 C cycle, respectively. Subsequent results obtained during the current phase, from viscoplastic finite element analysis of the solder fatigue specimen for delta T = 113 C cycle are summarized. Some common information is repeated for self-completeness. Large-deformation continuum formulations in conjunction with a standard linear solid model is utilized for modeling the solder constitutive creep-plasticity behavior. Relevant material properties are obtained from the literature. Strain amplitudes, mean strains, and residual strains (as well as stresses) accumulated due to a representative complete temperature cycle are obtained as a result of this analysis. The partitioning between elastic strains, time-independent inelastic (plastic) strains, and time-dependent inelastic (creep) strains is also explicitly obtained for two representative cycles. Detailed plots are presented for two representative temperature cycles. This information forms an important input for fatigue damage models, when predicting the fatigue life of solder joints under thermal cycling

  4. A wafer-level Sn-rich Au-Sn intermediate bonding technique with high strength

    NASA Astrophysics Data System (ADS)

    Fang, Zhiqiang; Mao, Xu; Yang, Jinling; Yang, Fuhua

    2013-09-01

    Sn-rich Au-Sn solder bonding has been systematically investigated for low temperature wafer-level hermetic packaging of high-end micro-electro-mechanical systems (MEMS) devices. The AuSn2 phase with the highest Vickers-hardness among the four stable intermetallic compounds of the Au-Sn system makes a major contribution to the high bonding strength. A maximum shear strength of 64 MPa and a leak rate lower than 4.9 × 10-7 atm-cc s-1 have been obtained for Au46Sn54 solder bonded at 310 °C. In addition, several routines have been used to effectively inhibit the solder overflow and preserve a good bonding strength and water resilience: producing dielectric SiO2 structures which do not wet the melting solder to the surrounding bonding region, reducing the bonding pressure, and prolonging the bonding time. This wafer level bonding technique with good hermeticity can be applied to MEMS devices requiring a low temperature package.

  5. Some Observations of Solder Joint Failure Under Tensile-Compressive Stress

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.

    1993-01-01

    It has long been known that solder joints under mechanical stress are subject to failure. In early electronic systems, such failures were avoided primarily by avoiding the use of solder as a mechanical structural component. The rule was to first make sound wire connections that did not depend mechanically on solder, and only then to solder them. Careful design and miniaturization in modern electronic systems limits the mechanical stresses exerted on solder joints to values less than their yield points, and these joints have become integral parts of the mechanical structures. Unfortunately, while these joints are strong enough when new, they have proven vulnerable to fatigue failures as they age.Details of the fatigue process are poorly understood, making predictions of expected lifetimes difficult.

  6. Experimental Investigation of Solder Joint Defect Formation and Mitigation in Reduced-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Struk, Peter M.; Pettegrew, RIchard D.; Downs, Robert S.

    2006-01-01

    This paper documents a research effort on reduced gravity soldering of plated through hole joints which was conducted jointly by the National Center for Space Exploration Research, NASA Glenn Research Center, and NASA Johnson Space Center. Significant increases in joint porosity and changes in external geometry were observed in joints produced in reduced gravity as compared to normal gravity. Multiple techniques for mitigating the observed increase in porosity were tried, including several combinations of flux and solder application techniques, and demoisturizing the circuit board prior to soldering. Results were consistent with the hypothesis that the source of the porosity is a combination of both trapped moisture in the circuit board itself, as well as vaporized flux that is trapped in the molten solder. Other topics investigated include correlation of visual inspection results with joint porosity, pore size measurements, limited pressure effects (0.08 MPa - 0.1 MPa) on the size and number of pores, and joint cooling rate.

  7. An Overview of Surface Finishes and Their Role in Printed Circuit Board Solderability and Solder Joint Performance

    SciTech Connect

    Vianco, P.T.

    1998-10-15

    A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.

  8. Magellan/Galileo solder joint failure analysis and recommendations

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.

    1989-01-01

    On or about November 10, 1988 an open circuit solder joint was discovered in the Magellan Radar digital unit (DFU) during integration testing at Kennedy Space Center (KSC). A detailed analysis of the cause of the failure was conducted at the Jet Propulsion Laboratory leading to the successful repair of many pieces of affected electronic hardware on both the Magellan and Galileo spacecraft. The problem was caused by the presence of high thermal coefficient of expansion heat sink and conformal coating materials located in the large (0.055 inch) gap between Dual Inline Packages (DIPS) and the printed wiring board. The details of the observed problems are described and recommendations are made for improved design and testing activities in the future.

  9. Microstructure and Properties of Sn-10Bi- xCu Solder Alloy/Joint

    NASA Astrophysics Data System (ADS)

    Lai, Zhongmin; Ye, Dan

    2016-07-01

    The effect of Cu on the microstructure and properties of Sn-10Bi solder alloy/joint were investigated. The results showed that the microstructure of Sn-10Bi-Cu solder alloy consisted of a Sn-rich phase, Bi-rich phase, and particles of Cu6Sn5 intermetallic compounds (IMCs). The pasty range of Sn-10Bi- xCu had an influence on the spreading property of Sn-10Bi- xCu. Cu improved the growth of the IMCs layer during the liquid reaction stage. Furthermore, the hardness of the solder alloy increased as the Cu concentration of increased. The strength of the solder joint was controlled by the solder alloy hardness and the interfacial IMCs layer thickness together. For the joints with low solder alloy hardness and a thin IMCs layer, the fracture was in the solder alloy. For the joints with high solder alloy hardness and a thick IMCs layer, the fracture was in the IMCs layer.

  10. Interfacial Reactions and Joint Strengths of Sn- xZn Solders with Immersion Ag UBM

    NASA Astrophysics Data System (ADS)

    Jee, Y. K.; Yu, Jin

    2010-10-01

    The solder joint microstructures of immersion Ag with Sn- xZn ( x = 0 wt.%, 1 wt.%, 5 wt.%, and 9 wt.%) solders were analyzed and correlated with their drop impact reliability. Addition of 1 wt.% Zn to Sn did not change the interface microstructure and was only marginally effective. In comparison, the addition of 5 wt.% or 9 wt.% Zn formed layers of AgZn3/Ag5Zn8 at the solder joint interface, which increased drop reliability significantly. Under extensive aging, Ag-Zn intermetallic compounds (IMCs) transformed into Cu5Zn8 and Ag3Sn, and the drop impact resistance at the solder joints deteriorated up to a point. The beneficial role of Zn on immersion Ag pads was ascribed to the formation of Ag-Zn IMC layers, which were fairly resistant to the drop impact, and to the suppression of the brittle Cu6Sn5 phase at the joint interface.

  11. Imaging and Analysis of Void-defects in Solder Joints Formed in Reduced Gravity using High-Resolution Computed Tomography

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.; Rotella, Anthony

    2008-01-01

    As a part of efforts to develop an electronics repair capability for long duration space missions, techniques and materials for soldering components on a circuit board in reduced gravity must be developed. This paper presents results from testing solder joint formation in low gravity on a NASA Reduced Gravity Research Aircraft. The results presented include joints formed using eutectic tin-lead solder and one of the following fluxes: (1) a no-clean flux core, (2) a rosin flux core, and (3) a solid solder wire with external liquid no-clean flux. The solder joints are analyzed with a computed tomography (CT) technique which imaged the interior of the entire solder joint. This replaced an earlier technique that required the solder joint to be destructively ground down revealing a single plane which was subsequently analyzed. The CT analysis technique is described and results presented with implications for future testing as well as implications for the overall electronics repair effort discussed.

  12. A microstructural study of creep and thermal fatigue deformation in 60Sn-40Pb solder joints

    SciTech Connect

    Tribula, D.

    1990-06-02

    Thermal fatigue failures of solder joints in electronic devices often arise from cyclic shear strains imposed by the mismatched thermal expansion coefficients of the materials that bind the joint as temperature changes are encountered. Increased solder joint reliability demands a fundamental understanding of the metallurigical mechanisms that control the fatigue to design accurate accelerated probative tests and new, more fatigue resistant solder alloys. The high temperatures and slow strain rates that pertain to thermal fatigue imply that creep is an important deformation mode in the thermal fatigue cycle. In this work, the creep behaviour of a solder joint is studied to determine the solder's microstructural response to this type of deformation and to relate this to the more complex problem of thermal fatigue. It is shown that creep failures arise from the inherent inhomogeneity and instability of the solder microstructure and suggest that small compositional changes of the binary near-eutectic Pn-Sn alloy may defeat the observed failure mechanisms. This work presents creep and thermal fatigue data for several near-eutectic Pb-Sn solder compositions and concludes that a 58Sn-40Pb-2In and a 58Sn-40Pb-2Cd alloy show significantly enhanced fatigue resistance over that of the simple binary material. 80 refs., 33 figs., 1 tab.

  13. A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints

    NASA Astrophysics Data System (ADS)

    Wei, Helin; Wang, Kuisheng

    2011-11-01

    Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.

  14. Influence of Asymmetrical Waveform on Low-Cycle Fatigue Life of Micro Solder Joint

    NASA Astrophysics Data System (ADS)

    Kanda, Yoshihiko; Kariya, Yoshiharu

    2010-02-01

    The effects of waveform symmetry on the low-cycle fatigue life of the Sn-3.0Ag-0.5Cu alloy have been investigated, using micro solder joint specimens with approximately the same volume of solder as is used in actual products. Focusing on crack initiation life, fatigue tests on Sn-Ag-Cu micro solder joints using asymmetrical triangular waveforms revealed no significant reduction in fatigue life. A slight reduction in fatigue life at low strain ranges caused by an increase in the fatigue ductility exponent, which is the result of a weakening microstructure due to loads applied at high temperature for long testing time, was observed. This was due to the fact that grain boundary damage, which has been reported in large-size specimens subjected to asymmetrical triangular waveforms, does not occur in Sn-Ag-Cu micro size solder joints with only a small number of crystal grain boundaries.

  15. Microstructurally based thermomechanical fatigue lifetime model of solder joints for electronic applications

    SciTech Connect

    Frear, D.R.; Rashid, M.M.; Burchett, S.N.

    1993-07-01

    We present a new methodology for predicting the fatigue life of solder joints for electronics applications. This approach involves integration of experimental and computational techniques. The first stage involves correlating the manufacturing and processing parameters with the starting microstructure of the solder joint. The second stage involves a series of experiments that characterize the evolution of the microstructure during thermal cycling. The third stage consists of a computer modeling and simulation effort that utilizes the starting microstructure and experimental data to produce a reliability prediction of the solder joint. This approach is an improvement over current methodologies because it incorporates the microstructure and properties of the solder directly into the model and allows these properties to evolve as the microstructure changes during fatigue.

  16. Soldering of Thin Film-Metallized Glass Substrates

    SciTech Connect

    Hosking, F.M.; Hernandez, C.L.; Glass, S.J.

    1999-03-31

    The ability to produce reliable electrical and structural interconnections between glass and metals by soldering was investigated. Soldering generally requires premetallization of the glass. As a solderable surface finish over soda-lime-silicate glass, two thin films coatings, Cr-Pd-Au and NiCr-Sn, were evaluated. Solder nettability and joint strengths were determined. Test samples were processed with Sn60-Pb40 solder alloy at a reflow temperature of 210 C. Glass-to-cold rolled steel single lap samples yielded an average shear strength of 12 MPa. Solder fill was good. Control of the Au thickness was critical in minimizing the formation of AuSn{sub 4} intermetallic in the joint, with a resulting joint shear strength of 15 MPa. Similar glass-to-glass specimens with the Cr-Pd-Au finish failed at 16.5 MPa. The NiCr-Sn thin film gave even higher shear strengths of 20-22.5 MPa, with failures primarily in the glass.

  17. Intermetallics Characterization of Lead-Free Solder Joints under Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Choubey, Anupam; Yu, Hao; Osterman, Michael; Pecht, Michael; Yun, Fu; Yonghong, Li; Ming, Xu

    2008-08-01

    Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.

  18. Microstructure Evolution and Shear Behavior of the Solder Joints for Flip-Chip LED on ENIG Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Sun, Fenglian; Luo, Liangliang; Yuan, Cadmus A.; Zhang, Guoqi

    2015-07-01

    The microstructure evolution and shear behavior of the solder joints for the flip-chip light-emitting diode on the electroless nickel/immersion gold (ENIG) substrate were investigated in this study. The experimental results reveal that the solder joints for the anode and cathode have different microstructures and failure characteristics during the shear test before and after isothermal aging. For the solder joints for the anode, the interfacial intermetallic compound (IMC) is (Au, Ni)Sn4 at the solder/anode interface but dendritic Ni3Sn4 grains at the solder/ENIG interface after reflow. Meanwhile, the dendritic Ni3Sn4 grains are surrounded by (Au, Ni)Sn4, which suppresses the growth of the Ni3Sn4 grains during aging. For the solder joints for the cathode, a nano scaled Au-rich layer can be observed near the cathode/solder layer interface after reflow. And the Au-rich layer moves toward the bulk solder because of the volume expansion by the transformation from Au into (Au, Ni)Sn4 during reflow and isothermal aging. Due to the diffusion of the Au atom from the Au-rich layer into the bulk solder, the Au-rich layer transformed into an interface inside of the solder joint. The average shear force of the solder joints shows a decrease from 380 gf to 250 gf because of the microstructure evolution during the isothermal aging for 1000 h at 85°C. After long time aging, the primary failure mode of the solder joint for the anode changed from the anode broken to the brittle failure of the solder layer. The delamination between the IMC layer and the insulation layer is suggested to be the dominated failure mode of the solder joint for the cathode after aging.

  19. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    SciTech Connect

    Paulus, Wilfred; Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu; Yusoff, Wan Yusmawati Wan

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  20. Effect of interface microstructure on the mechanical properties of Pb-free hybrid microcircuit solder joints

    SciTech Connect

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.

    1998-08-01

    Although Sn-Pb eutectic alloy is widely used as a joining material in the electronics industry, it has well documented environmental and toxicity issues. Sandia National Laboratories is developing alternative solder materials to replace traditional Pb-containing alloys. The alloys are based on the Sn-Ag, Sn-Ag-Bi and Sn-Ag-Bi-Au systems. Prototype hybrid microcircuit (HMC) test vehicles have been developed to evaluate these Pb-free solders, using Au-Pt-Pd thick film metallization. Populated test vehicles with surface mount devices have been designed and fabricated to evaluate the reliability of surface mount solder joints. The test components consist of a variety of dummy chip capacitors and leadless ceramic chip carriers (LCCC`s). Intermetallic compound (IMC) layer reaction products that form at the solder/substrate interface have been characterized and their respective growth kinetics quantified. Thicker IMC layers pose a potential reliability problem with solder joint integrity. Since the IMC layer is brittle, the likelihood of mechanical failure of a joint in service is increased. The effect of microstructure and the response of these different materials to wetting, aging and mechanical testing was also investigated. Solid-state reaction data for intermetallic formation and mechanical properties of the solder joints are reported.

  1. Morphology and Shear Strength of Lead-Free Solder Joints with Sn3.0Ag0.5Cu Solder Paste Reinforced with Ceramic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yakymovych, A.; Plevachuk, Yu.; Švec, P.; Švec, P.; Janičkovič, D.; Šebo, P.; Beronská, N.; Roshanghias, A.; Ipser, H.

    2016-08-01

    To date, additions of different oxide nanoparticles is one of the most widespread procedures to improve the mechanical properties of metals and metal alloys. This research deals with the effect of minor ceramic nanoparticle additions (SiO2, TiO2 and ZrO2) on the microstructure and mechanical properties of Cu/solder/Cu joints. The reinforced Sn3.0Ag0.5Cu (SAC305) solder alloy with 0.5 wt.% and 1.0 wt.% of ceramic nanoparticles was prepared through mechanically stirring. The microstructure of as-solidified Cu/solder/Cu joints was studied using scanning electron microscopy. The additions of ceramic nanoparticles suppressed the growth of the intermetallic compound layer Cu6Sn5 at the interface solder/Cu and improved the microstructure of the joints. Furthermore, measurements of mechanical properties showed improved shear strength of Cu/composite solder/Cu joints compared to joints with unreinforced solder. This fact related to all investigated ceramic nanoinclusions and should be attributed to the adsorption of nanoparticles on the grain surface during solidification. However, this effect is less pronounced on increasing the nanoinclusion content from 0.5 wt.% to 1.0 wt.% due to agglomeration of nanoparticles. Moreover, a comparison analysis showed that the most beneficial influence was obtained by minor additions of SiO2 nanoparticles into the SAC305 solder alloy.

  2. Eutectic Solder Bonding for Highly Manufacturable Microelectromechanical Systems Probe Card

    NASA Astrophysics Data System (ADS)

    Kim, Bonghwan

    2011-06-01

    We developed eutectic solder bonding for the microelectromechanical systems (MEMS) probe card. We tested various eutectic solder materials, such as Sn, AgSn, and AuSn, and investigated the bonding ability of Sn-based multi-element alloys and their resistance to chemical solutions. The Sn-based alloys were formed by sputtering, electroplating, and the use of solder paste. According to our experimental results, Sn-rich solders, such as Ag3.5Sn, Ag3.5Sn96Cu0.5, and Sn, were severely damaged by silicon wet etchant such as potassium hydroxide (KOH) and tetramethylammonium hydroxide (TMAH). On the other hand Au80Sn20 was resistant to those chemicals. In order to verify the joint bondability of the solders, we used a cantilever probe beam, and bump which were made of nickel and nickel alloy. After flip-chip bonding of the cantilever beam and the bump with Au80Sn20 solder paste, we measured the contact force to verify the mechanical strength. We then re-inspected it with X-rays and found no voids in the joint.

  3. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn-xAg-0.7Cu

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-07-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  4. Mechanical Properties of Lead-Free Solder Joints Under High-Speed Shear Impact Loading

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2014-09-01

    In this study we expanded on recently reported research by using a modified miniature Charpy impact-testing system to investigate the shear deformation behavior of Sn-3.0Ag-0.5Cu lead-free solder joints at high strain rates ranging from 1.1 × 103 s-1 to 5.5 × 103 s-1. The experimental results revealed that the maximum shear strength of the solder joint decreased with increasing load speed in the ranges tested in this study. For solder joints tested at a shear speed exceeding 1 m/s, corresponding to an approximate strain rate that exceeds 1950 s-1, the brittle fracture mode is the main failure mode, whereas lower strain rates result in a ductile-to-brittle transition in the fracture surfaces of solder joints. In addition, the mode II stress intensity factor (K II) used to evaluate the fracture toughness (K C) of an interfacial intermetallic compound layer between Sn-3.0Ag-0.5Cu solder and the toughness of copper substrate was found to decrease from 1.63 MPa m0.5 to 0.97 MPa m0.5 in the speed range tested here.

  5. Mechanical Properties of Lead-Free Solder Joints Under High-Speed Shear Impact Loading

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2014-11-01

    In this study we expanded on recently reported research by using a modified miniature Charpy impact-testing system to investigate the shear deformation behavior of Sn-3.0Ag-0.5Cu lead-free solder joints at high strain rates ranging from 1.1 × 103 s-1 to 5.5 × 103 s-1. The experimental results revealed that the maximum shear strength of the solder joint decreased with increasing load speed in the ranges tested in this study. For solder joints tested at a shear speed exceeding 1 m/s, corresponding to an approximate strain rate that exceeds 1950 s-1, the brittle fracture mode is the main failure mode, whereas lower strain rates result in a ductile-to-brittle transition in the fracture surfaces of solder joints. In addition, the mode II stress intensity factor ( K II) used to evaluate the fracture toughness ( K C) of an interfacial intermetallic compound layer between Sn-3.0Ag-0.5Cu solder and the toughness of copper substrate was found to decrease from 1.63 MPa m0.5 to 0.97 MPa m0.5 in the speed range tested here.

  6. Evaluation of solder joint reliability in flip-chip packages during accelerated testing

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woong; Kim, Dae-Gon; Hong, Won Sik; Jung, Seung-Boo

    2005-12-01

    The microstructural investigation and thermomechanical reliability evaluation of the Sn-3.0Ag-0.5Cu solder bumped flip-chip package were carried out during the thermal shock test of the package. In the initial reaction, the reaction product between the solder and Cu mini bump of chip side was Cu6Sn5 intermetallic compound (IMC) layer, while the two phases which were (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 were formed between the solder and electroless Ni-P layer of the package side. The cracks occurred at the corner solder joints after the thermal shocks of 400 cycles. The primary failure mechanism of the solder joints in this type of package was confirmed to be thermally-activated solder fatigue failure. The premature brittle interfacial failure sometimes occurred in the package side, but nearly all of the failed packages showed the occurrence of the typical fatigue cracks. The finite-element analyses were conducted to interpret the failure mechanisms of the packages, and revealed that the cracks were induced by the accumulation of the plastic work and viscoplastic shear strains.

  7. Effects of Ce Addition on the Microstructure and Mechanical Properties of Sn-58Bi Solder Joints

    NASA Astrophysics Data System (ADS)

    Chuang, Tung-Han; Wu, Hsing-Fei

    2011-01-01

    The effects of a rare-earth element on the microstructure, mechanical properties, and whisker growth of Sn-58Bi alloys and solder joints in ball grid array (BGA) packages with Ag/Cu pads have been investigated. Mechanical testing indicated that the elongation of Sn-58Bi alloys doped with Ce increased significantly, and the tensile strength decreased slightly, in compar- ison with undoped Sn-58Bi. In addition, the growth of both fiber- and hillock-shaped tin whiskers on the surface of Sn-58Bi-0.5Ce was retarded in the case of Sn-3Ag-0.5Cu-0.5Ce alloys. The growth of interfacial intermetallic compounds (IMC) in Sn-58Bi-0.5Ce solder joints was slower than that in Sn-58Bi because the activity of Ce atoms at the interface of the Cu6Sn5 IMC/solder was reduced. The reflowed Sn-58Bi and Sn-58Bi-0.5Ce BGA packages with Ag/Cu pads had a ball shear strength of 7.91 N and 7.64 N, which decreased to about 7.13 N and 6.87 N after aging at 100°C for 1000 h, respectively. The reflowed and aged solder joints fractured across the solder balls with ductile characteristics after ball shear tests.

  8. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    SciTech Connect

    Frear, D.R.; Burchett, S.N.; Rashid, M.M.

    1994-12-31

    The thermomechanical fatigue failure of solder joints in increasingly becoming an important reliability issue. In this paper we present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.

  9. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints

    PubMed Central

    Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam

    2015-01-01

    Statement of the Problem Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. Purpose The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. Materials and Method A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (p< 0.05). Results The mean tensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Conclusion Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint. PMID:26636118

  10. Study of Height Reduction of Sn99Cu1/Cu Solder Joints as a Result of Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwen; Liu, Changqing; Wu, Yiping; An, Bing; Zhou, Longzao

    2015-11-01

    Sn99Cu1/Cu solder joints were investigated after isothermal aging at 175°C for different lengths of time under vacuum conditions. The results revealed height reduction of the solder of approximately 1.2 μm after aging for 1132.5 h. This was primarily attributed to growth of a layer of interfacial intermetallic compounds. The reduction was measured by use of a copper block containing a recess filled with solder, which was reflowed then polished flat. Height reduction of the solder joint during aging was found to obey the parabolic law Δ h = -0.031√ t, and was in excellent agreement with theoretical calculation.

  11. Soldering tool heats workpieces and applies solder in one operation

    NASA Technical Reports Server (NTRS)

    Gudkese, V. W.

    1966-01-01

    Fountain-pen type soldering iron heats workpieces and applies solder to joints in densely packed electronics assemblies. The basic soldering tool is used with different-sized orifice tips, eliminating the need for an assortment of conventional soldering guns.

  12. Incorporation of Interfacial Intermetallic Morphology in Fracture Mechanism Map for Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-01-01

    A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.

  13. Learning algorithms for both real-time detection of solder shorts and for SPC measurement correction using cross-sectional x-ray images of PCBA solder joints

    NASA Astrophysics Data System (ADS)

    Roder, Paul A.

    1994-03-01

    Learning algorithms are introduced for use in the inspection of cross-sectional X-ray images of solder joints. These learning algorithms improve measurement accuracy by accounting for localized shading effects that can occur when inspecting double- sided printed circuit board assemblies. Two specific examples are discussed. The first is an algorithm for detection of solder short defects. The second algorithm utilizes learning to generate more accurate statistical process control measurements.

  14. Joint Lead-Free Solder Test Program for High Reliability Military and Space Applications

    NASA Technical Reports Server (NTRS)

    Brown, Christina

    2004-01-01

    Current and future space and defense systems face potential risks from the continued use of tin-lead solder, including: compliance with current environmental regulations, concerns about potential environmental legislation banning lead-containing products, reduced mission readiness, and component obsolescence with lead surface finishes. For example, the United States Environmental Protection Agency (USEPA) has lowered the Toxic Chemical Release reporting threshold for lead to 100 pounds. Overseas, the Waste Electrical and Electronic Equipment (WEEE) and the Restriction on Hazardous Substances (RoHS) Dicctives in Europe and similar mandates in Japan have instilled concern that a legislative body will prohibit the use of lead in aerospace/military electronics soldering. Any potential banning of lead compounds could reduce the supplier base and adversely affect the readiness of missions led by the National Aeronautics and Space Administration (NASA) and the U.S. Department of Defense (DoD). Before considering lead-free electronics for system upgrades or future designs, however, it is important for the DoD and NASA to know whether lead-free solders can meet their systems' requirements. No single lead-free solder is likely to qualify for all defense and space applications. Therefore, it is important to validate alternative solders for discrete applications. As a result of the need for comprehensive test data on the reliability of lead-free solders, a partnership was formed between the DoD, NASA, and several original equipment manufactures (OEMs) to conduct solder-joint reliability (laboratory) testing of three lead-free solder alloys on newly manufactured and reworked circuit cards to generate performance data for high-reliability (IPC Class 3) applications.

  15. In-situ study of electromigration-induced grain rotation in Pb-free solder joint by synchrotron microdiffraction

    SciTech Connect

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2008-10-31

    The rotation of Sn grains in Pb-free flip chip solder joints hasn't been reported in literature so far although it has been observed in Sn strips. In this letter, we report the detailed study of the grain orientation evolution induced by electromigration by synchrotron based white beam X-ray microdiffraction. It is found that the grains in solder joint rotate more slowly than in Sn strip even under higher current density. On the other hand, based on our estimation, the reorientation of the grains in solder joints also results in the reduction of electric resistivity, similar to the case of Sn strip. We will also discuss the reason why the electric resistance decreases much more in strips than in the Sn-based solders, and the different driving force for the grain growth in solder joint and in thin film interconnect lines.

  16. Thermal Cycling Fatigue in DIPs Mounted with Eutectic Tin-Lead Solder Joints in Stub and Gullwing Geometries

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    It has long been known that solder joints under mechanical stress are subject to failure. In early electronic systems, such failures were avoided primarily by avoiding the use of solder as a mechanical structural component. The rule was first to make sound wire connections that did not depend mechanically on solder, and only then to solder them. Careful design and miniaturization in modern electronic systems limits the mechanical stresses exerted on solder joints to values less than their yield points, and these joints have become integral parts of the mechanical structures. Unfortunately, while these joints are strong enough when new, they have proven vulnerable to fatigue failures as they age. Details of the fatigue process are poorly understood, making predictions of expected lifetimes difficult.

  17. Predicting the Drop Performance of Solder Joints by Evaluating the Elastic Strain Energy from High-Speed Ball Pull Tests

    NASA Astrophysics Data System (ADS)

    You, Taehoon; Kim, Yunsung; Kim, Jina; Lee, Jaehong; Jung, Byungwook; Moon, Jungtak; Choe, Heeman

    2009-03-01

    Despite being expensive and time consuming, board-level drop testing has been widely used to assess the drop or impact resistance of the solder joints in handheld microelectronic devices, such as cellphones and personal digital assistants (PDAs). In this study, a new test method, which is much simpler and quicker, is proposed. The method involves evaluating the elastic strain energy and relating it to the impact resistance of the solder joint by considering the Young’s modulus of the bulk solder and the fracture stress of the solder joint during a ball pull test at high strain rates. The results show that solder joints can be ranked in order of descending elastic strain energy as follows: Sn-37Pb, Sn-1Ag-0.5Cu, Sn-3Ag-0.5Cu, and Sn-4Ag-0.5Cu. This order is consistent with the actual drop performances of the samples.

  18. Comparison of Extensive Thermal Cycling Effects on Microstructure Development in Micro-alloyed Sn-Ag-Cu Solder Joints

    SciTech Connect

    Anderson, Iver E.; Boesenberg, Adam; Harringa, Joel; Riegner, David; Steinmetz, Andrew; Hillman, David

    2011-09-28

    Pb-free solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic have promise for widespread adoption across assembly conditions and operating environments, but enhanced microstructural control is needed. Micro-alloying with elements such as Zn was demonstrated for promoting a preferred solidification path and joint microstructure earlier in simple (Cu/Cu) solder joints studies for different cooling rates. This beneficial behavior now has been verified in reworked ball grid array (BGA) joints, using dissimilar SAC305 (Sn-3.0Ag-0.5Cu, wt.%) solder paste. After industrial assembly, BGA components joined with Sn-3.5Ag-0.74Cu-0.21Zn solder were tested in thermal cycling (-55 C/+125 C) along with baseline SAC305 BGA joints beyond 3000 cycles with continuous failure monitoring. Weibull analysis of the results demonstrated that BGA components joined with SAC + Zn/SAC305 have less joint integrity than SAC305 joints, but their lifetime is sufficient for severe applications in consumer, defense, and avionics electronic product field environments. Failure analysis of the BGA joints revealed that cracking did not deviate from the typical top area (BGA component side) of each joint, in spite of different Ag3Sn blade content. Thus, SAC + Zn solder has not shown any advantage over SAC305 solder in these thermal cycling trials, but other characteristics of SAC + Zn solder may make it more attractive for use across the full range of harsh conditions of avionics or defense applications.

  19. Layer growth in Au-Pb/In solder joints

    SciTech Connect

    Yost, F.G.; Ganyard, F.P.; Karnowsky, M.M.

    1986-01-01

    The solid state reaction between a Pb-In solder alloy and thin film Au has been investigated at ten aging temperatures ranging from 70 to 170/sup 0/C. Also, bulk Au-solder samples were aged at 150/sup 0/C for metallographic analysis. No significant difference was found between the aging behavior of thin and bulk Au specimens. A thin single phase layer of Au/sub 9/In/sub 4/ was found adjacent to Au while a thick two-phase layer of AuIn/sub 2/ and Pb was found between Au/sub 9/In/sub 4/ and solder. The Pb phase was shown to have considerable mobility and able to ripen at room temperature. Peculiar planar interface instabilities and voids in the Au-Au/sub 9/In/sub 4/ interface were found. The total layer thickness was found to vary linearly with aging time, indicating an interface-controlled reaction. An activation energy of 14,000 calories per mole was found by regression analysis of the kinetic data.

  20. Influence of bonding pressure on thermal resistance in reactively-bonded solder joints

    NASA Astrophysics Data System (ADS)

    Kanetsuki, Shunsuke; Miyake, Shugo; Kuwahara, Koichi; Namazu, Takahiro

    2016-06-01

    To realize the practical use of reactively bonded solder joints for thermally sensitive devices such as MEMS and electrical modules, we quantitatively measure the thermal resistance of solder joints fabricated by Al/Ni self-propagating exothermic reaction. By the laser flash method with response function analysis, the influence of bonding pressure on the thermal resistance of the reactive joints is investigated. The thermal resistance of the joints obtained by 3 MPa bonding is higher than that by 20 MPa bonding. By cross-sectional scanning electron microscopy (SEM) observation, many voids are found in the vicinity of the interface between the reacted AlNi and bottom-side solder layers in 3 MPa joints. In 20 MPa joints, a Ni-rich AlNi intermetallic compound instead of voids is produced around the interface. For reducing the thermal resistance of the reactive joints, the void generation mechanism is discussed in light of SEM observation and electron probe microanalysis (EPMA) analysis results.

  1. Effect of Electromigration on the Type of Drop Failure of Sn-3.0Ag-0.5Cu Solder Joints in PBGA Packages

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Zhao, N.

    2015-10-01

    Board-level drop tests of plastic ball grid array (PBGA) packages were performed in accordance with the Joint Electron Devices Engineering Council standard to investigate the effect of electromigration (EM) on the drop reliability of Sn-3.0Ag-0.5Cu solder joints with two substrate surface finishes, organic solderability preservative (OSP) and electroless nickel electroless palladium immersion gold (ENEPIG). In the as-soldered state, drop failures occurred at the substrate sides only, with cracks propagating within the interfacial intermetallic compound (IMC) layer for OSP solder joints and along the IMC/Ni-P interface for ENEPIG solder joints. The drop lifetime of OSP solder joints was approximately twice that of ENEPIG joints. EM had an important effect on crack formation and drop lifetime of the PBGA solder joints. ENEPIG solder joints performed better in drop reliability tests after EM, that is, the drop lifetime of ENEPIG joints decreased by 43% whereas that of OSP solder joints decreased by 91%, compared with the as-soldered cases. The more serious polarity effect, i.e., excessive growth of the interfacial IMC at the anode, was responsible for the sharper decrease in drop lifetime. The different types of drop failure of PBGA solder joints before and after EM, including the position of initiation and the propagation path of cracks, are discussed on the basis of the growth behavior of interfacial IMC.

  2. Sensitivity of Solder Joint Fatigue to Sources of Variation in Advanced Vehicular Power Electronics Cooling

    SciTech Connect

    Vlahinos, A.; O'Keefe, M.

    2010-06-01

    This paper demonstrates a methodology for taking variation into account in thermal and fatigue analyses of the die attach for an inverter of an electric traction drive vehicle. This method can be used to understand how variation and mission profile affect parameters of interest in a design. Three parameters are varied to represent manufacturing, material, and loading variation: solder joint voiding, aluminum nitride substrate thermal conductivity, and heat generation at the integrated gate bipolar transistor. The influence of these parameters on temperature and solder fatigue life is presented. The heat generation loading variation shows the largest influence on the results for the assumptions used in this problem setup.

  3. A systems approach to solder joint fatigue in spacecraft electronic packaging

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1991-01-01

    Differential expansion induced fatigue resulting from temperature cycling is a leading cause of solder joint failures in spacecraft. Achieving high reliability flight hardware requires that each element of the fatigue issue be addressed carefully. This includes defining the complete thermal-cycle environment to be experienced by the hardware, developing electronic packaging concepts that are consistent with the defined environments, and validating the completed designs with a thorough qualification and acceptance test program. This paper describes a useful systems approach to solder fatigue based principally on the fundamental log-strain versus log-cycles-to-failure behavior of fatigue. This fundamental behavior has been useful to integrate diverse ground test and flight operational thermal-cycle environments into a unified electronics design approach. Each element of the approach reflects both the mechanism physics that control solder fatigue, as well as the practical realities of the hardware build, test, delivery, and application cycle.

  4. Wave soldering with Pb-free solders

    SciTech Connect

    Artaki, I.; Finley, D.W.; Jackson, A.M.; Ray, U.; Vianco, P.T.

    1995-07-01

    The manufacturing feasibility and attachment reliability of a series of newly developed lead-free solders were investigated for wave soldering applications. Some of the key assembly aspects addressed included: wettability as a function of board surface finish, flux activation and surface tension of the molten solder, solder joint fillet quality and optimization of soldering thermal profiles. Generally, all new solder formulations exhibited adequate wave soldering performance and can be considered as possible alternatives to eutectic SnPb for wave soldering applications. Further process optimization and flux development is necessary to achieve the defect levels associated with the conventional SnPb process.

  5. Properties and Reliability of Solder Microbump Joints Between Si Chips and a Flexible Substrate

    NASA Astrophysics Data System (ADS)

    Ko, Yong-Ho; Kim, Min-Su; Bang, Junghwan; Kim, Taek-Soo; Lee, Chang-Woo

    2015-07-01

    Future generations of electronics are expected to include flexible, bendable, and wearable devices. There have been very few studies, however, on the bonding technology and reliability of bonding joints between a chip and a flexible substrate. In this study, we investigated the properties and reliability of joints formed with Sn-58Bi solder microbumps between a Si chip and a flexible substrate. For fine-pitch bonding, we formed Cu pillar bumps and Sn-58Bi solder microbumps with diameter of 25 μm by electroplating. The Si chips were then bonded on a flexible substrate finished with electroless nickel immersion gold (ENIG) using flip-chip technology, processing at 170°C under a force of 1 N, 2 N, or 3 N for 15 s. Cross-sectional images of bump joints were analyzed using field-emission scanning electron microscopy. While the Cu6Sn5 intermetallic compound (IMC) was formed on the Cu-pillar-bump side, another IMC, Ni3Sn4, was formed on the ENIG-substrate side. In addition, we performed a shear test, thermal shock test, and bending test to evaluate the joints' mechanical properties and reliability. The bending test was performed by a machine designed for joints on flexible substrates. Unit shear force of 2 N was the nominally highest value obtained from joints prepared under the three bonding conditions. After the thermal shock test, we observed cracks initiated at the Cu6Sn5/Sn-58Bi interface, which then propagated within the solder bumps or at the interface. In the case of the bending test, failure occurred at the Ni3Sn4/Sn-58Bi interface or within the solder bumps.

  6. Ball shear strength and fracture modes of lead-free solder joints prepared using nickel nanoparticle doped flux

    NASA Astrophysics Data System (ADS)

    Sujan, G. K.; Haseeb, A. S. M. A.; Amalina, M. A.; Nishikawa, Hiroshi

    2015-05-01

    Miniaturization and the need for the replacement of lead (Pb) based solders in microelectronic devices raise concerns over their reliability in the recent years. Particularly, the rapid growth of interfacial intermetallic compound (IMC) layers in Pb free solders can lead to brittle fracture. A novel nanoparticle doped fluxing method was used to prepare ball grid array solder joints between Sn-3.0Ag-0.5Cu solder balls and Cu pads. In this method, nickel nanoparticles were mixed with a water soluble flux prior to its use. The shear strength and fracture modes of the resulting solder joints were investigated as a function of aging time. Results showed that IMC layer growth was suppressed in solder joints prepared with 0.1 wt.% Ni doped flux. The average shear strength was marginally higher for solder joints prepared using 0.1 wt. % Ni doped flux compared with the joints prepared with undoped flux. Samples prepared using Ni doped flux showed a better resistant against brittle fracture for up to 30 days of aging.[Figure not available: see fulltext.

  7. Non-centrosymmetric Au-SnO2 hybrid nanostructures with strong localization of plasmonic for enhanced photocatalysis application.

    PubMed

    Wu, Wei; Liao, Lei; Zhang, Shaofeng; Zhou, Juan; Xiao, Xiangheng; Ren, Feng; Sun, Lingling; Dai, Zhigao; Jiang, Changzhong

    2013-06-21

    We present an innovative approach to the production of sub-100 nm hollow Au-SnO2 hybrid nanospheres, employing a low-cost, surfactant-free and environmentally friendly solution-based route. The hollow hybrid nanostructures were synthesized using a seed-mediated hydrothermal method, which can be divided into two stages: (1) formation of multicore-shell Au@SnO2 nanoparticles (NPs) and (2) thermal diffusion and ripening to form hollow Au-SnO2 hybrid NPs. The morphology, optical properties and formation mechanism were determined by a collection of joint techniques. Photocatalytic degradation of Rhodamine B (RhB) in the liquid phase served as a probe reaction to evaluate the activity of the as-prepared hollow hybrid Au-SnO2 NPs under the irradiation of both visible light and ultraviolet light. Significantly, the as-obtained Au-SnO2 hybrid nanostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to commercial pure SnO2 products and P25 TiO2, mainly owing to the effective electron hole separation at the SnO2-Au interfaces and strong localization of plasmonic near-fields effects. PMID:23685533

  8. Nucleation and Growth of Tin in Pb-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Gourlay, C. M.; Belyakov, S. A.; Ma, Z. L.; Xian, J. W.

    2015-08-01

    The solidification of Pb-free solder joints is overviewed with a focus on the formation of the βSn grain structure and grain orientations. Three solders commonly used in electronics manufacturing, Sn-3Ag-0.5Cu, Sn-3.5Ag, and Sn-0.7Cu-0.05Ni, are used as case studies to demonstrate that (I) growth competition between primary dendrites and eutectic fronts during growth in undercooled melts is important in Pb-free solders and (II) a metastable eutectic containing NiSn4 forms in Sn-3.5Ag/Ni joints. Additionally, it is shown that the substrate (metallization) has a strong influence on the nucleation and growth of tin. We identify Co, Pd, and Pt substrates as having the potential to control solidification and microstructure formation. In the case of Pd and Pt substrates, βSn is shown to nucleate on the PtSn4 or PdSn4 intermetallic compound (IMC) reaction layer at relatively low undercooling of ~4 K, even for small solder ball diameters down to <200 μm.

  9. A quick electrical inspection method of solder joint quality for LED products

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Que, Xiufu; Liu, Yanan; Chen, Weining; Tao, Guoqiao; Yang, Lianqiao

    2016-06-01

    Solder joint qualities of light-emitting diodes (LED) lamps have a significant effect on their lifetime. Due to variations in LEDs, the product lifetime is determined by the lowest performing component of the product when multi-LEDs are used. In this paper, we propose a quick electrical inspection method of solder joint quality for LED products, which is obtained by the heating curve measurement for a short time with the forward voltage as a temperature sensitive parameter. The utility of this quick inspection method is verified by the measurement of a solder voids ratio based on the most commonly used approaches in the industry—x-ray. The proposed method is cost effective and only needs around 1–5 s for each LED, which is about one third of the x-ray. Therefore, the quick electrical test method is both meaningful and promising especially when carrying out quality tests on large quantities of solder and can be a highly recommended method to be adopted by the LED lighting industry.

  10. Reliability of Sn-3.5Ag Solder Joints in High Temperature Packaging Applications

    SciTech Connect

    Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth; Kercher, Andrew K; Leslie, Dr Scott

    2010-01-01

    There is a significant need for next generation, high performance power electronic packages and systems with wide band gap devices to operate at high temperatures in automotive and electricity transmission applications. Sn-3.5Ag solder is a candidate for use in such packages with potential operating temperatures up to 200oC. However, there is a need to understand thermal cycling reliability of Sn-3.5Ag solders subject to such operating conditions. The results of a study on the damage evolution occurring in large area Sn-3.5Ag solders joints between silicon dies and DBC substrates subject to thermal cycling between 200oC and 5oC is presented in this paper. Damage accumulation was followed using high resolution X-ray radiography techniques while nonlinear finite element models were developed based on the mechanical property data available in literature to understand the relationship between the stress state within the solder joint and the damage evolution occurring under thermal cycling conditions. It was observed that regions of damage observed in the experiments do not correspond to the finite element predictions of the location of regions of maximum plastic work.

  11. Microstructural Coarsening during Thermomechanical Fatigue and Annealing of Micro Flip-Chip Solder Joints

    SciTech Connect

    Barney, Monica M.

    1998-12-01

    Microstructural evolution due to thermal effects was studied in micro solder joints (55 {+-} 5 {micro}m). The composition of the Sn/Pb solder studied was found to be hypereutectic with a tin content of 65--70 wt%.This was determined by Energy Dispersive X-ray analysis and confirmed with quantitative stereology. The quantitative stereological value of the surface-to-volume ratio was used to characterize and compare the coarsening during thermal cycling from 0--160 C to the coarsening during annealing at 160 C. The initial coarsening of the annealed samples was more rapid than the cycled samples, but tapered off as time to the one-half as expected. Because the substrates to which the solder was bonded have different thermal expansion coefficients, the cycled samples experienced a mechanical strain with thermal cycling. The low-strain cycled samples had a 2.8% strain imposed on the solder and failed by 1,000 cycles, despite undergoing less coarsening than the annealed samples. The high-strain cycled samples experienced a 28% strain and failed between 25 and 250 cycles. No failures were observed in the annealed samples. Failure mechanisms and processing issues unique to small, fine pitch joints are also discussed.

  12. Roles of service parameters on the mechanical behavior of lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Rhee, Hongjoo

    2005-07-01

    Lead-based solders have been extensively used as interconnects in various electronic applications due to their low cost and suitable material properties. However, in view of environmental and health concerns, the electronics industry is forced to develop lead-free alternative solders. Eutectic Sn-3.5Ag based solders are being considered as suitable substitutes due to their non-toxicity, tolerable melting temperatures, and comparable mechanical as well as electrical properties. Smaller electronic packaging and emerging new technologies impose several constraints on the solder interconnect that require better inherent properties in the solder to resist failure during operation. Hence, it is important to develop a clear understanding of the deformation behavior of eutectic Sn-Ag solder joints. Mechanical characterization was performed to investigate the behavior of eutectic Sn-Ag solder joints. Peak shear stress and flow stress decreased with increasing testing temperature and with decreasing simple shear-strain rate. The effect of simple shear-strain rate on the peak shear stress was found to be more significant at temperature regimes less than 125°C. The deformation structure of specimens deformed at higher temperatures was dominated by grain boundary deformation, while at lower temperatures it was dominated by shear banding. Stress relaxation studies on eutectic Sn-Ag solder joints were carried out to provide a better understanding of various parameters contributing to thermomechanical damage accumulation. Monotonic stress relaxation tests at various pre-strain conditions and testing temperatures can provide information relevant to the effects of ramp rates during heating and cooling excursions experienced during thermomechanical fatigue. Peak shear stress and residual shear stress, resulting from stress relaxation period, decreased with increasing testing temperature for a given pre-strain condition. A faster ramp rate was found to cause higher resultant residual

  13. Fast formation and growth of high-density Sn whiskers in Mg/Sn-based solder/Mg joints by ultrasonic-assisted soldering: Phenomena, mechanism and prevention

    PubMed Central

    Li, M. Y.; Yang, H. F.; Zhang, Z. H.; Gu, J. H.; Yang, S. H.

    2016-01-01

    A universally applicable method for promoting the fast formation and growth of high-density Sn whiskers on solders was developed by fabricating Mg/Sn-based solder/Mg joints using ultrasonic-assisted soldering at 250 °C for 6 s and then subjected to thermal aging at 25 °C for 7 d. The results showed that the use of the ultrasonic-assisted soldering could produce the supersaturated dissolution of Mg in the liquid Sn and lead to the existence of two forms of Mg in Sn after solidification. Moreover, the formation and growth of the high-density whiskers were facilitated by the specific contributions of both of the Mg forms in the solid Sn. Specifically, interstitial Mg can provide the persistent driving force for Sn whisker growth, whereas the Mg2Sn phase can increase the formation probability of Sn whiskers. In addition, we presented that the formation and growth of Sn whiskers in the Sn-based solders can be significantly restricted by a small amount of Zn addition (≥3 wt.%), and the prevention mechanisms are attributed to the segregation of Zn atoms at grain or phase boundaries and the formation of the lamellar-type Zn-rich structures in the solder. PMID:27273421

  14. Fast formation and growth of high-density Sn whiskers in Mg/Sn-based solder/Mg joints by ultrasonic-assisted soldering: Phenomena, mechanism and prevention.

    PubMed

    Li, M Y; Yang, H F; Zhang, Z H; Gu, J H; Yang, S H

    2016-01-01

    A universally applicable method for promoting the fast formation and growth of high-density Sn whiskers on solders was developed by fabricating Mg/Sn-based solder/Mg joints using ultrasonic-assisted soldering at 250 °C for 6 s and then subjected to thermal aging at 25 °C for 7 d. The results showed that the use of the ultrasonic-assisted soldering could produce the supersaturated dissolution of Mg in the liquid Sn and lead to the existence of two forms of Mg in Sn after solidification. Moreover, the formation and growth of the high-density whiskers were facilitated by the specific contributions of both of the Mg forms in the solid Sn. Specifically, interstitial Mg can provide the persistent driving force for Sn whisker growth, whereas the Mg2Sn phase can increase the formation probability of Sn whiskers. In addition, we presented that the formation and growth of Sn whiskers in the Sn-based solders can be significantly restricted by a small amount of Zn addition (≥3 wt.%), and the prevention mechanisms are attributed to the segregation of Zn atoms at grain or phase boundaries and the formation of the lamellar-type Zn-rich structures in the solder. PMID:27273421

  15. Fast formation and growth of high-density Sn whiskers in Mg/Sn-based solder/Mg joints by ultrasonic-assisted soldering: Phenomena, mechanism and prevention

    NASA Astrophysics Data System (ADS)

    Li, M. Y.; Yang, H. F.; Zhang, Z. H.; Gu, J. H.; Yang, S. H.

    2016-06-01

    A universally applicable method for promoting the fast formation and growth of high-density Sn whiskers on solders was developed by fabricating Mg/Sn-based solder/Mg joints using ultrasonic-assisted soldering at 250 °C for 6 s and then subjected to thermal aging at 25 °C for 7 d. The results showed that the use of the ultrasonic-assisted soldering could produce the supersaturated dissolution of Mg in the liquid Sn and lead to the existence of two forms of Mg in Sn after solidification. Moreover, the formation and growth of the high-density whiskers were facilitated by the specific contributions of both of the Mg forms in the solid Sn. Specifically, interstitial Mg can provide the persistent driving force for Sn whisker growth, whereas the Mg2Sn phase can increase the formation probability of Sn whiskers. In addition, we presented that the formation and growth of Sn whiskers in the Sn-based solders can be significantly restricted by a small amount of Zn addition (≥3 wt.%), and the prevention mechanisms are attributed to the segregation of Zn atoms at grain or phase boundaries and the formation of the lamellar-type Zn-rich structures in the solder.

  16. Effect on properties of 42Sn58Bi solder joint by adding the 96.5Sn3.5Ag

    NASA Astrophysics Data System (ADS)

    Tang, Qinghua; Pan, Xiaoguang; Wu, C. M. L.; Chan, Y. C.

    2000-05-01

    The different composition in 42Sn58Bi and 96.5Sn3.5Ag system has been studied. The reflow conditions of various composition pastes were studied, and a suitable adding of Sn-Ag paste could raise the soldering temperature of paste. It was found that the shear tensile strength of solder joint could be improved after adding suitable Sn-Ag to Sn-Bi paste by testing the solder joint tension. The thermal fatigue properties were studied through performed thermal annealing and thermal shocking. The shear tensile strength of solder joints for adding suitable Sn-Ag is higher than the pure Sn- Bi after thermal shocking. The solder property, mechanical and fatigue failure properties of solder joint for adding suitable Sn-Ag could be improved. It was found that suitable Sn-Ag could decrease the porosity in Sn-Bi solder joint thought X-ray and SEM analysis.

  17. Thermal Fatigue Evaluation of Pb-Free Solder Joints: Results, Lessons Learned, and Future Trends

    NASA Astrophysics Data System (ADS)

    Coyle, Richard J.; Sweatman, Keith; Arfaei, Babak

    2015-09-01

    Thermal fatigue is a major source of failure of solder joints in surface mount electronic components and it is critically important in high reliability applications such as telecommunication, military, and aeronautics. The electronic packaging industry has seen an increase in the number of Pb-free solder alloy choices beyond the common near-eutectic Sn-Ag-Cu alloys first established as replacements for eutectic SnPb. This paper discusses the results from Pb-free solder joint reliability programs sponsored by two industry consortia. The characteristic life in accelerated thermal cycling is reported for 12 different Pb-free solder alloys and a SnPb control in 9 different accelerated thermal cycling test profiles in terms of the effects of component type, accelerated thermal cycling profile and dwell time. Microstructural analysis on assembled and failed samples was performed to investigate the effect of initial microstructure and its evolution during accelerated thermal cycling test. A significant finding from the study is that the beneficial effect of Ag on accelerated thermal cycling reliability (measured by characteristic lifetime) diminishes as the severity of the accelerated thermal cycling, defined by greater ΔT, higher peak temperature, and longer dwell time increases. The results also indicate that all the Pb-free solders are more reliable in accelerated thermal cycling than the SnPb alloy they have replaced. Suggestions are made for future work, particularly with respect to the continued evolution of alloy development for emerging application requirements and the value of using advanced analytical methods to provide a better understanding of the effect of microstructure and its evolution on accelerated thermal cycling performance.

  18. Time And Temperature Dependent Micromechanical Properties Of Solder Joints For 3D-Package Integration

    NASA Astrophysics Data System (ADS)

    Roellig, Mike; Meier, Karsten; Metasch, Rene

    2010-11-01

    The recent development of 3D-integrated electronic packages is characterized by the need to increase the diversity of functions and to miniaturize. Currently many 3D-integration concepts are being developed and all of them demand new materials, new designs and new processing technologies. The combination of simulation and experimental investigation becomes increasingly accepted since simulations help to shorten the R&D cycle time and reduce costs. Numerical calculations like the Finite-Element-Method are strong tools to calculate stress conditions in electronic packages resulting from thermal strains due to the manufacturing process and environmental loads. It is essential for the application of numerical calculations that the material data is accurate and describes sufficiently the physical behaviour. The developed machine allows the measurement of time and temperature dependent micromechanical properties of solder joints. Solder joints, which are used to mechanically and electrically connect different packages, are physically measured as they leave the process. This allows accounting for process influences, which may change material properties. Additionally, joint sizes and metallurgical interactions between solder and under bump metallization can be respected by this particular measurement. The measurement allows the determination of material properties within a temperature range of 20° C-200° C. Further, the time dependent creep deformation can be measured within a strain-rate range of 10-31/s-10-81/s. Solder alloys based on Sn-Ag/Sn-Ag-Cu with additionally impurities and joint sizes down to O/ 200 μm were investigated. To finish the material characterization process the material model coefficient were extracted by FEM-Simulation to increase the accuracy of data.

  19. Investigation Of The Effects Of Reflow Profile Parameters On Lead-free Solder Bump Volumes And Joint Integrity

    NASA Astrophysics Data System (ADS)

    Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.

    2011-01-01

    The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.

  20. Microstructural evolution and atomic transport by thermomigration in eutectic tin-lead flip chip solder joints

    SciTech Connect

    Yang, Dan; Wu, B. Y.; Chan, Y. C.; Tu, K. N.

    2007-08-15

    The thermomigration behavior of eutectic tin-lead flip chip solder joints at an ambient temperature of 150 deg. C was investigated in terms of microstructural evolution, atomic transport, and numerical simulation. Pb accumulation and phase separation were observed in solder joints near a melting temperature after 50 h, which was supported by energy dispersive x-ray and element mapping analysis. It is believed that Pb atoms migrated from the chip side (the hot side) to the substrate side (the cold side) under a temperature gradient. Thermal electrical finite element simulation for the real flip chip test structure showed the existence of a temperature difference between the substrate side and the chip side. In addition, a temperature gradient above 1000 deg. C/cm across the adjacent unpowered solder joints was predicted. This was also verified by temperature measurements with thermocouples. The atomic flux of Pb due to thermomigration was calculated here, which was agreeable with the values originally reported. Also, the driving force of thermomigration was estimated to be 10{sup -17} N, even approaching the same order with that of electromigration under a current density of 10{sup 4} A/cm{sup 2}.

  1. Solder joint aging characteristics from the MC2918 firing set of a B61 accelerated aging unit (AAU)

    SciTech Connect

    Vianco, P.T.; Rejent, J.A.

    1997-10-01

    The B61 accelerated aging unit (AAU) provided a unique opportunity to document the effects of a controlled, long-term thermal cycling environment on the aging of materials used in the device. This experiment was of particular interest to solder technologists because thermal cycling environments are a predominant source of solder joint failures in electronic assemblies. Observations of through hole solder joints in the MC2918 Firing Set from the B61 AAU did not reveal signs of catastrophic failure. Quantitative analyses of the microstructural metrics of intermetallic compound layer thickness and Pb-rich phase particle distributions indicated solder joint aging that was commensurate with the accelerated aging environment. The effects of stress-enhanced coarsening of the Pb-rich phase were also documented.

  2. Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2011-09-01

    Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.

  3. Characterization and modeling of microstructural evolution of near-eutectic tin-silver-copper solder joints

    NASA Astrophysics Data System (ADS)

    Zbrzezny, Adam R.

    Near-eutectic Sn-Ag-Cu (SAC) solders are currently considered as major lead-free replacement candidates for Sn-Pb eutectic alloys in microelectronics applications. In this thesis, the microstructural thermal stability including recrystallization, grain growth behavior, Pb and Au contamination effects and interaction of the SAC solder with Cu and Ni substrates were investigated. The true eutectic composition of the Sn-Ag-Cu alloy was verified to be Sn3.5Ag0.9Cu wt.%, and the eutectic melting temperature was determined to be 217.4 +/- 0.8°C. The system was classified as belonging to faceting (Cu6Sn5)-faceting (Ag3Sn)-nonfaceting (Sn matrix) ternary eutectic. The most significant consequence of Pb contamination was the formation of a quaternary eutectic phase (Sn-Ag-Cu-Pb) with a melting point at 176°C. Similarly, the presence of gold in the SAC alloy led to a development of a new quaternary phase (Sn-Ag-Cu-Au) melting at 204°C. Prolonged aging of SAC-4 wt.% Au on nickel resulted in the deposition of a new, previously unreported, intermetallic (IMC) layer, ((Au1-xCUx)6Sn 5, 15 wt.% of Au) on top of the existing (Cu1-yNi y)6Sn5 layer. The interfacial products that formed during soldering to copper were Cu6Sn5 and Cu3Sn. Soldering to nickel resulted in the formation of one layer, (Cu1-yNiy) 6Sn5, which was different from the expected Ni3Sn 4 layer. A small copper content in the SAC solder (0.7 wt.%) was sufficient to promote this thermodynamic shift. Intermetallic growth on Cu during solid state aging was established to be bulk diffusion controlled. The IMC layers in the SAC system grew at a slower rate than in the Sn-Pb system. It was found that the reliability of SAC solder joints on copper was considerably better than on nickel due to copper enrichment during reflow and subsequent Cu6Sn5 intermetallic precipitation. Enhanced copper and silver diffusion followed by tin recrystallization and grain growth, cavity nucleation and subsequent micro-crack linkage formed

  4. Electromigration and solid state aging of flip chip solder joints and analysis of tin whisker on lead-frame

    NASA Astrophysics Data System (ADS)

    Lee, Taekyeong

    Electromigration and solid state aging in flip chip joint, and whisker on lead frame of Pb-containing (eutectic SnPb) and Pb-free solders (SnAg 3.5, SnAg3.8Cu0.7, and SnCu0.7), have been studied systematically, using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), and synchrotron radiation. The high current density in flip chip joint drives the diffusion of atoms of eutectic SnPb and SnAgCu. A marker is used to measure the diffusion flux in a half cross-sectioned solder joint. SnAgCu shows higher resistance against electromigration than eutectic SnPb. In the half cross-sectioned solder joint, void growth is the dominant failure mechanism. However, the whole solder balls in the underfill show that the failure mechanism is a result from the dissolution of electroless Ni under bump metallization (UBM) of about 10 mum thickness. The growth rate between intermetallic compounds in molten and solid solders differed by four orders of magnitude. In liquid solder, the growth rate is about 1 mum/min; the growth rate in solid solder is only about 10 -4 mum/min. The difference is not resulting from factors of thermodynamics, which is the change of Gibbs free energy before and after intermetallic compound formation, but from kinetic factors, which is the rate of change of Gibbs free energy. Even though the difference in growth rate between eutectic SnPb and Pb-free solders during solid state aging was found, the reason behind such difference shown is unclear. The orientation and stress levels of whiskers are measured by white X-ray of synchrotron radiation. The growth direction is nearly parallel to one of the principal axes of tin. The compressive stress level is quite low because the residual stress is relaxed by the whisker growth.

  5. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions

    NASA Astrophysics Data System (ADS)

    Tan, Ai Ting; Tan, Ai Wen; Yusof, Farazila

    2015-06-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.

  6. Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging

    SciTech Connect

    Minor, Andrew M.; Morris, J.W., Jr.

    1999-12-16

    Au/Ni metallization has become increasingly common in microelectronic packaging when Cu pads are joined with Pb-Sn solder. The outermost Au layer serves to protect the pad from corrosion and oxidation and the Ni layer provides a diffusion barrier to inhibit detrimental growth of Cu-Sn intermetallics. As a result of reflowing eutectic Pb-Sn on top of Au/Ni metallization, the as-solidified joints have AuSn{sub 4} precipitates distributed throughout the bulk of the solder joint, and Ni{sub 3}Sn{sub 4} intermetallics at the interface. Recent work has shown that the Au-Sn redeposits onto the interface during aging, compromising the strength of the joint. The present work shows that the redeposited intermetallic layer is a ternary compound with stoichiometry Au{sub 0.5}Ni{sub 0.5}Sn{sub 4}. The growth of this intermetallic layer was investigated, and results show that the ternary compound is observed to grow after as little as 3 hours at 150 C and after 3 weeks at 150 C has grown to a thickness of 10 {micro}m. Additionally, methods for inhibiting the growth of the ternary layer were investigated and it was determined that multiple reflows, both with and without additional aging can substantially limit the thickness of the ternary layer.

  7. Microstructure coarsening during static annealing of 60Sn40Pb solder joints: I stereology

    NASA Astrophysics Data System (ADS)

    Jung, Kang; Conrad, Hans

    2001-10-01

    The phase size distributions (PSDs) of the Sn, Pb, and the combined Pb and Sn phases, and the shape factor δ were determined for as-reflowed 60Sn40Pb solder joints and following their annealing at 50°C to 150°C. The PSDs in all cases had a positive skew which was approximated by a log-normal function. The PSDs were time invariant and were in accord with the Bitti and Nunzio model for phase coarsening. The shape factor, δ, decreased with the mean of the combined Pb and Sn phase size, and with temperature. Whether or not δ affects the PSDs is not clear.

  8. Effect of Yttrium on the Fracture Strength of the Sn-1.0Ag-0.5Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Choi, Hyelim; Kaplan, Wayne D.; Choe, Heeman

    2016-04-01

    This is a preliminary investigation on the mechanical properties of Pb-free Sn-1.0Ag-0.5Cu solder joints containing 0.02 wt.% to 0.1 wt.% Y under a range of thermal aging and reflow conditions. Despite the significantly thicker intermetallic compound (IMC) formed at the solder joint, the 0.1 wt.% Y-doped joint exhibited a higher fracture strength than its baseline Sn-1.0Ag-0.5Cu counterpart under most aging and reflow conditions. This may be associated with the formation of Y-Cu IMCs formed at the interface between the solder and the Cu substrate, because the Y-Cu IMCs have recently been referred to as relatively `ductile' IMCs.

  9. Effect of Yttrium on the Fracture Strength of the Sn-1.0Ag-0.5Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Choi, Hyelim; Kaplan, Wayne D.; Choe, Heeman

    2016-07-01

    This is a preliminary investigation on the mechanical properties of Pb-free Sn-1.0Ag-0.5Cu solder joints containing 0.02 wt.% to 0.1 wt.% Y under a range of thermal aging and reflow conditions. Despite the significantly thicker intermetallic compound (IMC) formed at the solder joint, the 0.1 wt.% Y-doped joint exhibited a higher fracture strength than its baseline Sn-1.0Ag-0.5Cu counterpart under most aging and reflow conditions. This may be associated with the formation of Y-Cu IMCs formed at the interface between the solder and the Cu substrate, because the Y-Cu IMCs have recently been referred to as relatively `ductile' IMCs.

  10. Electromigration and thermomigration in lead-free tin-silver-copper and eutectic tin-lead flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Ou Yang, Fan-Yi

    Phase separation and microstructure change of eutectic SnPb and SnAgCu flip chip solder joint were investigated under thermomigration, electromigration, stressmigration and the combination of these effects. Different morphological behaviors under DC and AC electromigration were seen. Phase separation with Pb rich phase migration to the anode was observed when current density is below 1.6 x 104 A/cm2 at 100°C. For some cases, phase separation of Pb-rich phase and Su-rich phase as well as refinement of lamellar microstructure has also been observed. We propose that the refinement is due to recrystallization. On the other hand, time-dependent melting of eutectic SnPb flip chip solder joints has been observed to occur frequently with current density above 1.6 x 104 A/cm 2at 100°C. It has been found that it is due to joule heating of the on-chip Al interconnects. We found that electromigration has especially generated voids at the anode of the Al. This damage has greatly increased the resistance of the Al, which produces the heat needed to melt the solder joint. Owing to the line-to-bump configuration in flip chip solder joints, current crowding occurs when electrons enters into or exits from the solder bump. At the cathode contact, current crowding induced pancake-type void formation was observed widely. Furthermore, at the anode contact, we note that hillock or whisker forms. The cross-sectioned surface in SnPb showed dimple and bulge after electromigration, while that of SnAgCu remained flat. The difference is due to a larger back stress in the SnAgCu, consequently electromigration in SnAgCu is slower than that in SnPb. For thermomigration in eutectic SnPb flip chip solder joints, phase separation of Sn and Pb occurred, with Pb moving to the cold end. Both Sn and Pb have a stepwise concentration profile across solder bump. Refinement of lamellar microstructure was observed, indicating recrystallization. Also, thermomigration in eutectic SnAgCu flip chip solder

  11. Three Dimensional Characterization of Tin Crystallography and Cu6Sn5 Intermetallics in Solder Joints by Multiscale Tomography

    NASA Astrophysics Data System (ADS)

    Kirubanandham, A.; Lujan-Regalado, I.; Vallabhaneni, R.; Chawla, N.

    2016-07-01

    Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu6Sn5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu6Sn5 IMCs and the hollow hexagonal morphology type Cu6Sn5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.

  12. Effects of Ce and La Additions on the Microstructure and Mechanical Properties of Sn-9Zn Solder Joints

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Jen; Chuang, Tung-Han

    2010-02-01

    The effects of rare-earth elements on the microstructure and mechanical properties of Sn-9Zn alloys and solder joints in ball grid array packages with Ni/Au(ENIG) surface finishes have been investigated. Metallographic observations showed that (Ce0.8Zn0.2)Sn3 and (La0.9Zn0.1)Sn3 intermetallic compounds appeared in the solder matrix of Sn-9Zn-0.5Ce and Sn-9Zn-0.5La alloys, respectively. Both fiber- and hillock-shaped tin whiskers were inhibited in the Sn-9Zn-0.5Ce solder, while tin fibers were still observed on the surface of oxidized (La0.9Zn0.1)Sn3 intermetallics in Sn-9Zn-0.5La after air exposure at room temperature. Mechanical testing indicated that the tensile strength of Sn-9Zn alloys doped with Ce and La increased significantly, and the elongation decreased, in comparison with the undoped Sn-9Zn. The bonding strengths of the as-reflowed Sn-9Zn-0.5Ce and Sn-9Zn-0.5La solder joints were also improved. However, aging treatment at 100°C and 150°C caused degradation of ball shear strength in all specimens. During the reflowing and aging processes, AuZn8 intermetallic phases appeared at the interfaces of all solder joints. In addition, Zn-rich phases were observed to migrate from the solder matrix to the solder/pad interfaces of the aged specimens.

  13. New Failure Mode of Flip-Chip Solder Joints Related to the Metallization of an Organic Substrate

    NASA Astrophysics Data System (ADS)

    Jang, J. W.; Yoo, S. J.; Hwang, H. I.; Yuk, S. Y.; Kim, C. K.; Kim, S. J.; Han, J. S.; An, S. H.

    2015-10-01

    We report a new failure phenomenon during flip-chip die attach. After reflow, flip-chip bumps were separated between the Al and Ti layers on the Si die side. This was mainly observed at the Si die corner. Transmission electron microscopy images revealed corrosion of the Al layer at the edge of the solder bump metallization. The corrosion at the metallization edge exhibited a notch shape with high stress concentration factor. The organic substrate had Cu metallization with an organic solderable preservative (OSP) coating layer, where a small amount of Cl ions were detected. A solder bump separation mechanism is suggested based on the reaction between Al and Cl, related to the flow of soldering flux. During reflow, the flux will dissolve the Cl-containing OSP layer and flow up to the Al layer on the Si die side. Then, the Cl-dissolved flux will actively react with Al, forming AlCl3. During cooling, solder bumps at the Si die corner will separate through the location of Al corrosion. This demonstrated that the chemistry of the substrate metallization can affect the thermomechanical reliability of flip-chip solder joints.

  14. Cytotoxicity and genotoxicity of orthodontic bands with or without silver soldered joints.

    PubMed

    Gonçalves, Tatiana Siqueira; Menezes, Luciane Macedo de; Trindade, Cristiano; Machado, Miriana da Silva; Thomas, Philip; Fenech, Michael; Henriques, João Antonio Pêgas

    2014-03-01

    Stainless steel bands, with or without silver soldered joints, are routinely used in orthodontics. However, little is known about the toxic biological effects of these appliances. The aims of this study were to evaluate the cytotoxic, cytostatic, genotoxic and DNA damage-inducing effects of non-soldered bands (NSB) and silver soldered bands (SSB) on the HepG2 and HOK cell lines and to quantify the amount of ions released by the bands. The 24-h metallic eluates of NSBs and SSBs were quantified by atomic absorption spectrophotometry. An MTT reduction assay was performed to evaluate the cytotoxicity, alkaline and modified comet assays were employed to measure genotoxicity and oxidative DNA damage effects, and cytokinesis-block micronucleus cytome (CBMN-Cyt) assays were used to verify DNA damage, cytostasis and cytotoxicity. Ag, Cd, Cr, Cu and Zn were detected in SSB medium samples, and Fe and Ni were detected in both the SSB and NSB medium samples. The SSB group induced stronger cytotoxic effects than the NSB group in both evaluated cell lines. NSB and SSB induced genotoxicity as evaluated by comet assays; stronger effects were observed in the SSB group. Both groups induced similar increases in the number of oxidative DNA lesions, as detected by the FPG and Endo III enzymes. Nucleoplasmic bridges, biomarkers of DNA misrepair and/or telomere end fusions, were significantly elevated in the SSB group. The SSB eluates showed higher amounts of Ni and Fe than NSB, and all the quantified ions were detected in SSB eluates, including Cd. The SSB eluates were more cytotoxic and genotoxic than the NSB samples. Based on these results, we propose that other brands, materials and techniques should be further investigated for the future manufacture of orthodontic appliances. PMID:24495929

  15. Microstructural study on Kirkendall void formation in Sn-containing/Cu solder joints during solid-state aging.

    PubMed

    Liu, Zhi-Quan; Shang, Pan-Ju; Tan, Feifei; Li, Douxing

    2013-08-01

    Kirkendall void formation at the solder/metallization interface is an important reliability concern for Cu conductors and under-bump metallization in microelectronic packaging industry, whose mechanism is still hard to be understood for different individual cases. In the present work, two typical solder/Cu-diffusing couples, eutectic SnIn/Cu and SnBi/Cu, were studied by scanning/transmission electron microscopy to investigate the microstructural evolution and voiding process after soldering and then solid-state aging. It was concluded that Kirkendall voids formed between two sublayers within Cu2(In,Sn) phase in eutectic SnIn/Cu solder joint, whereas they appeared at the Cu3Sn/Cu interface or within Cu3Sn for eutectic SnBi/Cu solder joint. Besides the effect of impurity elements, the morphological difference within one intermetallic compound layer could change the diffusing rates of reactive species, hence resulting in void formation in the reaction zone. PMID:23920185

  16. Effect of Pd Thickness on the Interfacial Reaction and Shear Strength in Solder Joints Between Sn-3.0Ag-0.5Cu Solder and Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) Surface Finish

    NASA Astrophysics Data System (ADS)

    Kim, Young Min; Park, Jin-Young; Kim, Young-Ho

    2012-04-01

    Intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu (SAC) solders and electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish and the mechanical strength of the solder joints were investigated at various Pd thicknesses (0 μm to 0.5 μm). The solder joints were fabricated on the ENEPIG surface finish with SAC solder via reflow soldering under various conditions. The (Cu,Ni)6Sn5 phase formed at the SAC/ENEPIG interface after reflow in all samples. When samples were reflowed at 260°C for 5 s, only (Cu,Ni)6Sn5 was observed at the solder interfaces in samples with Pd thicknesses of 0.05 μm or less. However, the (Pd,Ni)Sn4 phase formed on (Cu,Ni)6Sn5 when the Pd thickness increased to 0.1 μm or greater. A thick and continuous (Pd,Ni)Sn4 layer formed over the (Cu,Ni)6Sn5 layer, especially when the Pd thickness was 0.3 μm or greater. High-speed ball shear test results showed that the interfacial strengths of the SAC/ENEPIG solder joints decreased under high strain rate due to weak interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 interfaces when the Pd thickness was greater than 0.3 μm. In the samples reflowed at 260°C for 20 s, only (Cu,Ni)6Sn5 formed at the solder interfaces and the (Pd,Ni)Sn4 phase was not observed in the solder interfaces, regardless of Pd thickness. The shear strength of the SAC/ENIG solder joints was the lowest of the joints, and the mechanical strength of the SAC/ENEPIG solder joints was enhanced as the Pd thickness increased to 0.1 μm and maintained a nearly constant value when the Pd thickness was greater than 0.1 μm. No adverse effect on the shear strength values was observed due to the interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 since the (Pd,Ni)Sn4 phase was already separated from the (Cu,Ni)6Sn5 interface. These results indicate that the interfacial microstructures and mechanical strength of solder joints strongly depend on the Pd thickness and reflow conditions.

  17. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints

    SciTech Connect

    Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N.

    2010-04-15

    The volume, size, and dispersion of porosity in solder joints are known to affect mechanical performance and reliability. Most of the techniques used to characterize the three-dimensional (3D) nature of these defects are destructive. With the enhancements in high resolution computed tomography (CT), the detection limits of intrinsic microstructures have been significantly improved. Furthermore, the 3D microstructure of the material can be used in finite element models to understand their effect on microscopic deformation. In this paper we describe a technique utilizing high resolution (< 1 {mu}m) X-ray tomography for the three-dimensional (3D) visualization of pores in Sn-3.9Ag-0.7Cu/Cu joints. The characteristics of reflow porosity, including volume fraction and distribution, were investigated for two reflow profiles. The size and distribution of porosity size were visualized in 3D for four different solder joints. In addition, the 3D virtual microstructure was incorporated into a finite element model to quantify the effect of voids on the lap shear behavior of a solder joint. The presence, size, and location of voids significantly increased the severity of strain localization at the solder/copper interface.

  18. Mechanical Behavior of Sn-3.0Ag-0.5Cu/Cu Solder Joints After Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Chung, Chin-Sung; Kim, Ho-Kyung

    2016-01-01

    The tensile impact behavior of lead-free Sn-3Ag-0.5Cu/Cu solder joints aged at 413 K and 453 K for times ranging from 24 h to 1000 h has been investigated in this study. The activation energy for growth of the intermetallic compound (IMC) layer was estimated and compared with literature values. Additionally, the tensile strength of solder joints with IMC thickness of 17.6 μm was found to be more sensitive to the strain rate as compared with solder joints with thinner IMC layers. Equations representing the relationships among the effective stress, strain rate, aging time, and aging temperature as well as IMC thickness were established using matrix laboratory (MATLAB) software. These equations show that the tensile strength decreases with increase in the IMC thickness to about 8 μm, after which it becomes nearly constant when the IMC thickness is between approximately 8 μm and 14 μm, before decreasing significantly when the IMC thickness exceeds 14 μm. The main reason for these characteristics was excessive increase in the IMC thickness of solder joints, causing a change in the stress concentration of the tensile load from the protruding region to the inside of the IMC layer at the same tested strain rate.

  19. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    NASA Astrophysics Data System (ADS)

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates

  20. Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints

    SciTech Connect

    Jung, Yong; Yu, Jin

    2014-02-28

    Effects of electric current flow on the Kirkendall void formation at solder joints were investigated using Sn-3.5Ag/Cu joints specially designed to have localized nucleation of Kirkendall voids at the Cu{sub 3}Sn/Cu interface. Under the current density of 1 × 10{sup 4} A/cm{sup 2}, kinetics of Kirkendall void growth and intermetallic compound thickening were affected by the electromigration (EM), and both showed the polarity effect. Cu{sub 6}Sn{sub 5} showed a strong susceptibility to the polarity effect, while Cu{sub 3}Sn did not. The electromigration force induced additional tensile (or compressive) stress at the cathode (or anode), which accelerated (or decelerated) the void growth. From the measurements of the fraction of void at the Cu{sub 3}Sn/Cu interface on SEM micrographs and analysis of the kinetics of void growth, the magnitude of the local stress induced by EM was estimated to be 9 MPa at the anode and −7 MPa at the cathode.

  1. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-04-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  2. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  3. Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages

    NASA Astrophysics Data System (ADS)

    Talebanpour, B.; Huang, Z.; Chen, Z.; Dutta, I.

    2016-01-01

    In 3-dimensional (3D) packages, a stack of dies is vertically connected to each other using through-silicon vias and very thin solder micro-bumps. The thinness of the micro-bumps results in joints with a very high volumetric proportion of intermetallic compounds (IMCs), rendering them much more brittle compared to conventional joints. Because of this, the reliability of micro-bumps, and the dependence thereof on the proportion of IMC in the joint, is of substantial concern. In this paper, the growth kinetics of IMCs in thin Sn-3Ag-0.5Cu joints attached to Cu substrates were analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints were obtained. Modified compact mixed mode fracture mechanics samples, with adhesive solder joints between massive Cu substrates, having similar thickness and IMC content as actual micro-bumps, were produced. The effects of IMC proportion and strain rate on fracture toughness and mechanisms were investigated. It was found that the fracture toughness G C decreased with decreasing joint thickness ( h Joint). In addition, the fracture toughness decreased with increasing strain rate. Aging also promoted alternation of the crack path between the two joint-substrate interfaces, possibly proffering a mechanism to enhance fracture toughness.

  4. Solder Reflow Failures in Electronic Components During Manual Soldering

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander; Greenwell, Chris; Felt, Frederick

    2008-01-01

    This viewgraph presentation reviews the solder reflow failures in electronic components that occur during manual soldering. It discusses the specifics of manual-soldering-induced failures in plastic devices with internal solder joints. The failure analysis turned up that molten solder had squeezed up to the die surface along the die molding compound interface, and the dice were not protected with glassivation allowing solder to short gate and source to the drain contact. The failure analysis concluded that the parts failed due to overheating during manual soldering.

  5. In vivo evaluation of the genotoxic effects of Hyrax auxiliary orthodontic appliances containing silver-soldered joints.

    PubMed

    Gonçalves, Tatiana Siqueira; Menezes, Luciane Macedo de; Trindade, Cristiano; Thomas, Philip; Fenechc, Michael; Henriques, João Antonio Pêgas

    2015-09-01

    Auxiliary appliances consisting of silver-soldered joints may be present in the patient's oral cavity for a long time. The aim of this study was to investigate, in vivo, the potential genotoxic effects of Hyrax-type maxillary expanders containing silver-soldered joints on the cells of the buccal mucosa. Buccal cells were collected from 20 patients and processed to perform the buccal comet assay (BCA) and the buccal micronucleus cytome (BMCyt) assay, to investigate DNA and chromosomal damage, respectively. For the BCA, patients were evaluated before and 14 days after the appliances were installed. For the BMCyt assay, the patients were evaluated longitudinally; before the insertion of the appliance and after one, six, and twelve months. The BCA showed significant increases in damage frequency and damage index in exfoliated buccal cells, following insertion of the appliance. For the BMCyt assay, the endpoints related to cell proliferation, cell death, and chromosomal damage (micronuclei and nuclear buds) resulted in no significant differences over the 12-month study period. In conclusion, the use of orthodontic appliances containing silver-soldered joints can significantly increase DNA damage as measured by the BCA. PMID:26338539

  6. Crystal Plasticity Finite-Element Analysis of Deformation Behavior in Multiple-Grained Lead-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Darbandi, P.; Bieler, T. R.; Pourboghrat, F.; Lee, Tae-kyu

    2013-02-01

    The elastic and plastic anisotropy of the tin phase in a Pb-free tin-based solder joint has a very important effect on the reliability of solder joints. The crystal plasticity finite-element (CPFE) method takes into account the effect of anisotropy, and it can be used to solve crystal mechanical deformation problems under complicated external and internal boundary conditions imposed by inter- and intragrain micromechanical interactions. In this study, experimental lap-shear test results from the literature are used to calibrate the CPFE model. The spatial neighbor orientation relationships of the crystals were assessed by studying four different sets of orientations using a very simple model to establish a basis for further development of the model. Average shear strain and Schmid factor analyses were applied to study the activity of slip systems. Further optimization of model parameters using comparisons with experiments will be needed to identify more suitable rules for stress evolution among the 10 slip systems in Sn. By suppression of some of the slip systems the CPFE model is able to simulate heterogeneous deformation phenomena that are similar to those observed in experiments. This work establishes a basis for an incremental model development strategy based upon experiments, modeling, and comparative analysis to establish model parameters that could predict the slip processes that lead to damage evolution in lead-free solder joints.

  7. Effects of Rapid Solidification Process and 0.1 wt.% Pr Addition on Properties of Sn-9Zn Alloy and Cu/Solder/Cu Joints

    NASA Astrophysics Data System (ADS)

    Zhao, Guoji; Jing, Yanxia; Sheng, Guangmin; Chen, Jianhua

    2016-04-01

    Effects of 0.1 wt.% Pr addition and rapid solidification process on Sn-9Zn solder alloy were investigated. Solder characteristics of the as-solidified and rapidly solidified Sn-9Zn-0.1Pr alloys were analyzed in comparison with those of the as-solidified Sn-9Zn alloy. Mechanical properties and interfacial microstructure of solder/Cu joints obtained using these solders were comparatively studied. By comparison with the as-solidified Sn-9Zn alloy, the wettability of the solder was obviously improved with 0.1 wt.% Pr addition, and the melting behavior of the solder was promoted due to the rapid solidification process. The corrosion resistance of Sn-9Zn-0.1Pr alloy was improved due to the refined microstructure resulting from 0.1 wt.% Pr addition and rapid solidification. The growth of IMCs at the interface of Sn-9Zn-0.1Pr/Cu joints was depressed in some degree. Rapid solidification process promoted the interfacial reaction during soldering and improved the bonding strength of joints.

  8. Effect of current crowding and Joule heating on electromigration-induced failure in flip chip composite solder joints tested at room temperature

    SciTech Connect

    Nah, J.W.; Suh, J.O.; Tu, K.N.

    2005-07-01

    The electromigration of flip chip solder joints consisting of 97Pb-3Sn and 37Pb-63Sn composite solders was studied under high current densities at room temperature. The mean time to failure and failure modes were found to be strongly dependent on the change in current density. The composite solder joints did not fail after 1 month stressed at 4.07x10{sup 4} A/cm{sup 2}, but failed after just 10 h of current stressing at 4.58x10{sup 4} A/cm{sup 2}. At a slightly higher current stressing of 5.00x10{sup 4} A/cm{sup 2}, the composite solder joints failed after only 0.6 h due to melting. Precipitation and growth of Cu{sub 6}Sn{sub 5} at the cathode caused the Cu under bump metallurgy to be quickly consumed and resulted in void formation at the contact area. The void reduced the contact area and displaced the electrical path, affecting the current crowding and Joule heating inside the solder bump. Significant Joule heating inside solder bumps can cause melting of the solder and quick failure. The effect of void propagation on current crowding and Joule heating was confirmed by simulation.

  9. Effects of Rapid Solidification Process and 0.1 wt.% Pr Addition on Properties of Sn-9Zn Alloy and Cu/Solder/Cu Joints

    NASA Astrophysics Data System (ADS)

    Zhao, Guoji; Jing, Yanxia; Sheng, Guangmin; Chen, Jianhua

    2016-05-01

    Effects of 0.1 wt.% Pr addition and rapid solidification process on Sn-9Zn solder alloy were investigated. Solder characteristics of the as-solidified and rapidly solidified Sn-9Zn-0.1Pr alloys were analyzed in comparison with those of the as-solidified Sn-9Zn alloy. Mechanical properties and interfacial microstructure of solder/Cu joints obtained using these solders were comparatively studied. By comparison with the as-solidified Sn-9Zn alloy, the wettability of the solder was obviously improved with 0.1 wt.% Pr addition, and the melting behavior of the solder was promoted due to the rapid solidification process. The corrosion resistance of Sn-9Zn-0.1Pr alloy was improved due to the refined microstructure resulting from 0.1 wt.% Pr addition and rapid solidification. The growth of IMCs at the interface of Sn-9Zn-0.1Pr/Cu joints was depressed in some degree. Rapid solidification process promoted the interfacial reaction during soldering and improved the bonding strength of joints.

  10. Soldered solar arrays

    NASA Astrophysics Data System (ADS)

    Allen, H. C.

    1982-06-01

    The ability of soldered interconnects to withstand a combination of long life and severe environmental conditions was investigated. Improvements in joint life from the use of solder mixes appropriate to low temperature conditons were studied. Solder samples were placed in a 150 C oven for 5 weeks (= 12 yr at 80 C, or 24 at 70 C according to Arrhenius's rule). Conventional and high solder melting point array samples underwent 1000 thermal cycles between -186 and 100 C. Results show that conventional and lead rich soldered arrays can survive 10 yr geostationary orbit missions.

  11. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-04-01

    Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.

  12. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints.

    PubMed

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-01-01

    Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature. PMID:27086863

  13. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    PubMed Central

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-01-01

    Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature. PMID:27086863

  14. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    DOE PAGESBeta

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-04-18

    In this paper we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in themore » grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.« less

  15. Analysis of a short beam with application to solder joints: could larger stand-off heights relieve stress?

    NASA Astrophysics Data System (ADS)

    Suhir, Ephraim

    2015-08-01

    Physically meaningful and easy-to-use analytical (mathematical) stress model is developed for a short beam with clamped and known-in-advance offset ends. The analysis is limited to elastic deformations. While the classical Timoshenko short-beam theory seeks the beam's deflection caused by the combined bending and shear deformations for the given loading, an inverse problem is considered here: the lateral force is sought for the given ends offset. In short beams this force is larger than in long beams, since, in order to achieve the given displacement (offset), the applied force has to overcome both bending and shear resistance of the beam. It is envisioned that short beams could adequately mimic the state of stress in solder joint interconnections, including ball-grid-array (BGA) systems, with large, compared to conventional joints, stand-off heights. When the package/printed-circuit-board (PCB) assembly is subjected to the change in temperature, the thermal expansion (contraction) mismatch of the package and the PCB results in an easily predictable relative displacement (offset) of the ends of the solder joint. This offset can be determined from the known external thermal mismatch strain (determined as the product of the difference in the coefficients of thermal expansion and the change in temperature) and the position of the joint with respect to the mid-cross-section of the assembly. The maximum normal and shearing stresses could be viewed as suitable criteria of the beam's (joint's) material long-term reliability. It is shown that these stresses can be brought down by employing beam-like joints, i.e., joints with an increased stand-off height compared to conventional joints. It is imperative, of course, that, if such joints are employed, there is still enough interfacial real estate, so that the BGA bonding strength is not compromised. On the other hand, owing to the lower stress level, reliability assurance might be much less of a challenge than in the case of

  16. Drop Reliability of Epoxy-contained Sn-58 wt.%Bi Solder Joint with ENIG and ENEPIG Surface Finish Under Temperature and Humidity Test

    NASA Astrophysics Data System (ADS)

    Myung, Woo-Ram; Kim, Yongil; Kim, Kyung-Yeol; Jung, Seung-Boo

    2016-04-01

    The influence of two kinds of surface finish, namely electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG), on the interfacial reactions and drop reliability of epoxy-enhanced Sn-58 wt.%Bi solder has been investigated after temperature-humidity storage tests. The chemical composition and morphology of intermetallic compounds (IMCs) were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electron probe microanalysis. Also, the mechanical reliability of solder joints was evaluated using board-level drop tests. The Sn-Bi epoxy solder/ENEPIG joint exhibited higher IMC growth rate than the Sn-Bi epoxy solder/ENIG joint. After 500 h at 85°C/85% RH storage condition, new IMCs were formed on the Ni3Sn4 layer in samples with both surface finishes. The results of board-level drop tests showed that the number of drops was higher for the ENIG than the ENEPIG surface finish. Solder joint fracture occurred along the interface between the solder and IMC layer for the ENIG surface finish. However, with the ENEPIG surface finish, the crack propagated between the IMCs.

  17. Drop Reliability of Epoxy-contained Sn-58 wt.%Bi Solder Joint with ENIG and ENEPIG Surface Finish Under Temperature and Humidity Test

    NASA Astrophysics Data System (ADS)

    Myung, Woo-Ram; Kim, Yongil; Kim, Kyung-Yeol; Jung, Seung-Boo

    2016-07-01

    The influence of two kinds of surface finish, namely electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG), on the interfacial reactions and drop reliability of epoxy-enhanced Sn-58 wt.%Bi solder has been investigated after temperature-humidity storage tests. The chemical composition and morphology of intermetallic compounds (IMCs) were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electron probe microanalysis. Also, the mechanical reliability of solder joints was evaluated using board-level drop tests. The Sn-Bi epoxy solder/ENEPIG joint exhibited higher IMC growth rate than the Sn-Bi epoxy solder/ENIG joint. After 500 h at 85°C/85% RH storage condition, new IMCs were formed on the Ni3Sn4 layer in samples with both surface finishes. The results of board-level drop tests showed that the number of drops was higher for the ENIG than the ENEPIG surface finish. Solder joint fracture occurred along the interface between the solder and IMC layer for the ENIG surface finish. However, with the ENEPIG surface finish, the crack propagated between the IMCs.

  18. Characterization of Cu3P phase in Sn3.0Ag0.5Cu0.5P/Cu solder joints

    NASA Astrophysics Data System (ADS)

    Chen, Jian-xun; Zhao, Xing-ke; Zou, Xu-chen; Huang, Ji-hua; Hu, Hai-chun; Luo, Hai-lian

    2014-01-01

    This article reports the effects of phosphorus addition on the melting behavior, microstructure, and mechanical properties of Sn3.0Ag0.5Cu solder. The melting behavior of the solder alloys was determined by differential scanning calorimetry. The interfacial microstructure and phase composition of solder/Cu joints were studied by scanning electron microscopy and energy dispersive spectrometry. Thermodynamics of Cu-P phase formation at the interface between Sn3.0Ag0.5Cu0.5P solder and the Cu substrate was characterized. The results indicate that P addition into Sn3.0Ag0.5Cu solder can change the microstructure and cause the appearance of rod-like Cu3P phase which is distributed randomly in the solder bulk. The Sn3.0Ag0.5Cu0.5P joint shows a mixture of ductile and brittle fracture after shear testing. Meanwhile, the solidus temperature of Sn3.0Ag0.5Cu solder is slightly enhanced with P addition.

  19. Study of the thermal stress in a Pb-free half-bump solder joint under current stressing

    SciTech Connect

    Wu, B. Y.; Chan, Y. C.; Zhong, H. W.; Alam, M. O.; Lai, J. K. L.

    2007-06-04

    The thermal stress in a Sn3.5Ag1Cu half-bump solder joint under a 3.82x10{sup 8} A/m{sup 2} current stressing was analyzed using a coupled-field simulation. Substantial thermal stress accumulated around the Al-to-solder interface, especially in the Ni+(Ni,Cu){sub 3}Sn{sub 4} layer, where a maximal stress of 138 MPa was identified. The stress gradient in the Ni layer was about 1.67x10{sup 13} Pa/m, resulting in a stress migration force of 1.82x10{sup -16} N, which is comparable to the electromigration force, 2.82x10{sup -16} N. Dissolution of the Ni+(Ni,Cu){sub 3}Sn{sub 4} layer, void formation with cracks at the anode side, and extrusions at the cathode side were observed.

  20. Investigation on the Microstructure, Interfacial IMC Layer, and Mechanical Properties of Cu/Sn-0.7Cu-xNi/Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ge, Jinguo; Zhang, Yaocheng; Dai, Jun; Liu, Haixiang; Xiang, Jicen

    2016-04-01

    Sn-0.7Cu-xNi composite solder has been fabricated via mechanical mixing of different weight percentages of Ni particles with Sn-0.7Cu solder paste, and the effect of the Ni concentration on the microstructure, wettability, and tensile properties of Cu/Sn-0.7Cu-xNi/Cu solder joints investigated. The results show that refined dot-shaped particles of intermetallic compounds (IMCs) are uniformly dispersed in a primary β-Sn matrix in the Cu/Sn-0.7Cu-(0.05-0.1)Ni/Cu solder joints. The interfacial IMC layer thickness increased slightly when adding Ni content to 0.05 wt.%, then rapidly when further increasing the Ni concentration to 0.4 wt.%. Excellent wettability with bright appearance was obtained for the Sn-0.7Cu-0.05Ni solder due to diminished interfacial tension. The tensile properties improved after adding Ni content to 0.05 wt.% due to the presence of the refined dot-like IMC particles, in agreement with theoretical predictions based on the combination of dispersion and grain-refinement strengthening mechanisms. Refined microstructure and enhanced mechanical properties were obtained for the Cu/Sn-0.7Cu-0.05Ni/Cu solder joint.

  1. Investigation on the Microstructure, Interfacial IMC Layer, and Mechanical Properties of Cu/Sn-0.7Cu- xNi/Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ge, Jinguo; Zhang, Yaocheng; Dai, Jun; Liu, Haixiang; Xiang, Jicen

    2016-07-01

    Sn-0.7Cu- xNi composite solder has been fabricated via mechanical mixing of different weight percentages of Ni particles with Sn-0.7Cu solder paste, and the effect of the Ni concentration on the microstructure, wettability, and tensile properties of Cu/Sn-0.7Cu- xNi/Cu solder joints investigated. The results show that refined dot-shaped particles of intermetallic compounds (IMCs) are uniformly dispersed in a primary β-Sn matrix in the Cu/Sn-0.7Cu-(0.05-0.1)Ni/Cu solder joints. The interfacial IMC layer thickness increased slightly when adding Ni content to 0.05 wt.%, then rapidly when further increasing the Ni concentration to 0.4 wt.%. Excellent wettability with bright appearance was obtained for the Sn-0.7Cu-0.05Ni solder due to diminished interfacial tension. The tensile properties improved after adding Ni content to 0.05 wt.% due to the presence of the refined dot-like IMC particles, in agreement with theoretical predictions based on the combination of dispersion and grain-refinement strengthening mechanisms. Refined microstructure and enhanced mechanical properties were obtained for the Cu/Sn-0.7Cu-0.05Ni/Cu solder joint.

  2. Growth Behavior of Intermetallic Compounds in Cu/Sn3.0Ag0.5Cu Solder Joints with Different Rates of Cooling

    NASA Astrophysics Data System (ADS)

    Yang, Linmei; Zhang, Z. F.

    2015-01-01

    The growth behavior of intermetallic compounds (IMC) in Cu/Sn3.0Ag0.5Cu solder joints, including the interfacial Cu6Sn5 layer and Ag3Sn, and Cu6Sn5 in the solder, were investigated when different cooling methods—quenched water, cooling in air, and cooling in a furnace after reflow—were used. For the solder joint quenched in water, no obvious Cu6Sn5 or Ag3Sn was detected in the solder, and the thickness of interfacial Cu6Sn5 layer was slightly thinner than that of the joint cooled in air. On the basis of results from scanning electron microscopy and energy-dispersive spectrometry, a mechanism is proposed for growth of IMC in Sn3.0Ag0.5Cu solder during solidification. The rate of cooling has a substantial effect on the morphology and size of Ag3Sn, which evolved into large plate-like shapes when the joint was cooled slowly in a furnace. However, the morphology of Ag3Sn was branch-like or particle-like when the joint was cooled in air. This is attributed to re-growth of Ag3Sn grains via substantial atomic diffusion during the high-temperature stage of furnace cooling.

  3. Laser soldering of Sn-Ag solder

    SciTech Connect

    Felipe, T.S. de; O`Laughlin, D.

    1994-12-31

    In recent years, there has been pressure from federal and state environmental agencies to find substitutes for Pb-containing solders. Our research team has been studying SnAg solder as a possible alternative. in comparison to Sn-Pb solder, SnAg poses less of an environmental threat and can be used for higher temperature applications such as in avionics or under the hood in automobiles. Our study also compares the processes of laser and IR reflow soldering and their effects on microstructure, microstructure stability, and mechanical and thermomechanical properties of joints. Several laser soldered joints were produced by varying beam power and scan rate. Microhardness was measured and joint microstructure analyzed in order to find the optimum parameters. Laser soldered joints with optimum parameters were then exposed to temperatures between 40{degrees}C and 190{degrees}C for times up to 300 days along with conventional IR reflowed joints. The purpose was to determine the long term microstructural stability and mechanical reliability of the joints for the two processes. The results obtained show that there is a processing window where good quality laser solder joints can be produced. Our study also revealed that, initially, laser-produced joints differed significantly in microstructural details and were superior to IR reflowed joints in both microhardness and microstructure. As the samples were aged, it was observed that the microstructures and microhardnesses became increasingly similar. Finally, after significant aging, voids were found at the intermetallic layers formed at Cu or Cu alloy substrates and the joints began to fail.

  4. Methodology for analyzing stress states during in-situ thermomechanical cycling in individual lead free solder joints using synchrotron radiation

    SciTech Connect

    Zhou, Bite; Bieler, Thomas R.; Lee , Tae-Kyu; Liu, Kuo-Chuan

    2010-07-22

    To examine how a lead-free solder joint deforms in a thermal cycling environment, both the elastic and plastic stress and strain behavior must be understood. Methods to identify evolution of the internal strain (stress) state during thermal cycling are described. A slice of a package containing a single row of solder joints was thermally cycled from 0 C to 100 C with a period of about 1 h with concurrent acquisition of transmission Laue patterns using synchrotron radiation. These results indicated that most joints are single crystals, with some being multicrystals with no more than a few Sn grain orientations. Laue patterns were analyzed to estimate local strains in different crystal directions at different temperatures during a thermal cycle. While the strains perpendicular to various crystal planes all vary in a similar way, the magnitude of strain varies. The specimens were subsequently given several hundred additional thermal cycles and measured again to assess changes in the crystal orientations. These results show that modest changes in crystal orientations occur during thermal cycling.

  5. Early stage of material movements in eutectic SnPb solder joint undergoing current stressing at 150{degree}C.

    SciTech Connect

    Ho, C. E.; Lee, A.; Subramanian, K. N.; Liu, W.; Michigan State Univ.

    2007-07-10

    X-ray fluorescence spectroscopy was used to study movements of Sn and Pb in the eutectic SnPb solder joint undergoing electromigration with a current density of 10{sup 4} A/cm{sup 2} at 150 C. During early stages of current stressing, Sn moves toward the anode faster than Pb. However, on continued application of current stressing, both Sn and Pb will continue to accumulate at the anode. Such accumulation of conductive species facilitates the formation of hillock with associated valley near the cathode.

  6. Single Image Camera Calibration in Close Range Photogrammetry for Solder Joint Analysis

    NASA Astrophysics Data System (ADS)

    Heinemann, D.; Knabner, S.; Baumgarten, D.

    2016-06-01

    Printed Circuit Boards (PCB) play an important role in the manufacturing of electronic devices. To ensure a correct function of the PCBs a certain amount of solder paste is needed during the placement of components. The aim of the current research is to develop an real-time, closed-loop solution for the analysis of the printing process where solder is printed onto PCBs. Close range photogrammetry allows for determination of the solder volume and a subsequent correction if necessary. Photogrammetry is an image based method for three dimensional reconstruction from two dimensional image data of an object. A precise camera calibration is indispensable for an accurate reconstruction. In our certain application it is not possible to use calibration methods with two dimensional calibration targets. Therefore a special calibration target was developed and manufactured, which allows for single image camera calibration.

  7. Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene.

    PubMed

    Ko, Yong-Ho; Lee, Jong-Dae; Yoon, Taeshik; Lee, Chang-Woo; Kim, Taek-Soo

    2016-03-01

    The immoderate growth of intermetallic compounds (IMCs) formed at the interface of a solder metal and the substrate during soldering can degrade the mechanical properties and reliability of a solder joint in electronic packaging. Therefore, it is critical to control IMC growth at the solder joints between the solder and the substrate. In this study, we investigated the control of interfacial reactions and IMC growth by the layer-by-layer transfer of graphene during the reflow process at the interface between Sn-3.0Ag-0.5Cu (in wt %) lead-free solder and Cu. As the number of graphene layers transferred onto the surface of the Cu substrate increased, the thickness of the total IMC (Cu6Sn5 and Cu3Sn) layer decreased. After 10 repetitions of the reflow process for 50 s above 217 °C, the melting temperature of Sn-3.0Ag-0.5Cu, with a peak temperature of 250 °C, the increase in thickness of the total IMC layer at the interface with multiple layers of graphene was decreased by more than 20% compared to that at the interface of bare Cu without graphene. Furthermore, the average diameter of the Cu6Sn5 scallops at the interface with multiple layers of graphene was smaller than that at the interface without graphene. Despite 10 repetitions of the reflow process, the growth of Cu3Sn at the interface with multiple layers of graphene was suppressed by more than 20% compared with that at the interface without graphene. The multiple layers of graphene at the interface between the solder metal and the Cu substrate hindered the diffusion of Cu atoms from the Cu substrate and suppressed the reactions between Cu and Sn in the solder. Thus, the multiple layers of graphene transferred at the interface between dissimilar metals can control the interfacial reaction and IMC growth occurring at the joining interface. PMID:26856638

  8. An evaluation of the spring finger solder joints on SA1358-10 and SA2052-4 connector assemblies (MC3617,W87).

    SciTech Connect

    Kilgo, Alice C.; Vianco, Paul Thomas; Hlava, Paul Frank; Zender, Gary L.

    2006-08-01

    The SA1358-10 and SA2052-4 circular JT Type plug connectors are used on a number of nuclear weapons and Joint Test Assembly (JTA) systems. Prototype units were evaluated for the following specific defects associated with the 95Sn-5Sb (Sn-Sb, wt.%) solder joint used to attach the beryllium-copper (BeCu) spring fingers to the aluminum (Al) connector shell: (1) extended cracking within the fillet; (2) remelting of the solder joint during the follow-on, soldering step that attached the EMR adapter ring to the connector shell (and/or soldering the EMR shell to the adapter ring) that used the lower melting temperature 63Sn-37Pb (Sn-Pb) alloy; and (3) spalling of the Cd (Cr) layer overplating layer from the fillet surface. Several pedigrees of connectors were evaluated, which represented older fielded units as well as those assemblies that were recently constructed at Kansas City Plant. The solder joints were evaluated that were in place on connectors made with the current soldering process as well as an alternative induction soldering process for attaching the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely reflected the different extents to which the connector was mated to its counterpart assembly. In all cases, the spring finger solder joints on the SA1358-10 connectors were remelted as a result of the subsequent EMR adapter ring attachment process. Spalling of the Cd (Cr) overplating layer was also observed for these connectors, which was a consequence of the remelting activity. On the other hand, the SA2052-4 connector did not exhibit evidence of

  9. Interfacial Phenomena in Al/Al, Al/Cu, and Cu/Cu Joints Soldered Using an Al-Zn Alloy with Ag or Cu Additions

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    The studies of soldered joints were carried out in systems: Al/solder/Al, Al/solder/Cu, Cu/solder/Cu, where the solder was (Al-Zn)EUT, (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Ag and (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Cu addition. Brazing was performed at 500 °C for 3 min. The EDS analysis indicated that the composition of the layers starting from the Cu pad was CuZn, Cu5Zn8, and CuZn4, respectively. Wetting tests were performed at 500 °C for 3, 8, 15, and 30 min, respectively. Thickness of the layers and their kinetics of growth were measured based on the SEM micrographs. The formation of interlayers was not observed from the side of Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  10. Lead-free solder

    DOEpatents

    Anderson, Iver E.; Terpstra, Robert L.

    2001-05-15

    A Sn--Ag--Cu eutectic alloy is modified with one or more low level and low cost alloy additions to enhance high temperature microstructural stability and thermal-mechanical fatigue strength without decreasing solderability. Purposeful fourth or fifth element additions in the collective amount not exceeding about 1 weight % (wt. %) are added to Sn--Ag--Cu eutectic solder alloy based on the ternary eutectic Sn--4.7%Ag--1.7%Cu (wt. %) and are selected from the group consisting essentially of Ni, Fe, and like-acting elements as modifiers of the intermetallic interface between the solder and substrate to improve high temperature solder joint microstructural stability and solder joint thermal-mechanical fatigue strength.

  11. Detecting Defective Solder Bonds

    NASA Technical Reports Server (NTRS)

    Paulson, R.; Barney, J.; Decker, H. J.

    1984-01-01

    Method is noncontact and nondestructive. Technique detects solder bonds in solar array of other large circuit board, using thermal-imaging camera. Board placed between heat lamp and camera. Poor joints indiated by "cold" spots on the infrared image.

  12. Effect of Thermal Aging on the Mechanical Properties of Sn3.0Ag0.5Cu/Cu Solder Joints Under High Strain Rate Conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2015-07-01

    Shear tests with velocities between 0.5 m/s and 2.5 m/s were conducted to investigate the deformation characteristics of 0.76 mm lead-free Sn-3Ag-0.5Cu solder ball joints after thermal aging at 373 K up to 1000 h. A scanning electron microscope equipped with energy dispersive spectroscopy was then used to examine the fracture surfaces and microstructures of the solder joints. The results showed that the main failure mode of the solder joints was the brittle interfacial fracture mode with cleavage failure in the intermetallic compound (IMC). The maximum shear strength and the fracture toughness ( K C) of the solder joint decreased substantially after aging for the initial aging time, after which they decreased gradually with further aging or an increase in the strain rate. The evolution of the IMC layer when it was thicker and had coarser nodules due to thermal aging was the primary cause of the reduction in the shear strength and fracture toughness in this study.

  13. A Novel Conditional Probability Density Distribution Surface for the Analysis of the Drop Life of Solder Joints Under Board Level Drop Impact

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Lei, YongPing; Lin, Jian; Fu, HanGuang; Wu, Zhongwei

    2016-01-01

    The scattering of fatigue life data is a common problem and usually described using the normal distribution or Weibull distribution. For solder joints under drop impact, due to the complicated stress distribution, the relationship between the stress and the drop life is so far unknown. Furthermore, it is important to establish a function describing the change in standard deviation for solder joints under different drop impact levels. Therefore, in this study, a novel conditional probability density distribution surface (CPDDS) was established for the analysis of the drop life of solder joints. The relationship between the drop impact acceleration and the drop life is proposed, which comprehensively considers the stress distribution. A novel exponential model was adopted for describing the change of the standard deviation with the impact acceleration (0 → +∞). To validate the model, the drop life of Sn-3.0Ag-0.5Cu solder joints was analyzed. The probability density curve of the logarithm of the fatigue life distribution can be easily obtained for a certain acceleration level fixed on the acceleration level axis of the CPDDS. The P- A- N curve was also obtained using the functions μ( A) and σ( A), which can reflect the regularity of the life data for an overall reliability P.

  14. Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint

    NASA Astrophysics Data System (ADS)

    Mokhtari, Omid; Nishikawa, Hiroshi

    2014-11-01

    In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.

  15. Thermal cycling life prediction of Sn-3.0Ag-0.5Cu solder joint using type-I censored data.

    PubMed

    Mi, Jinhua; Li, Yan-Feng; Yang, Yuan-Jian; Peng, Weiwen; Huang, Hong-Zhong

    2014-01-01

    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products. PMID:25121138

  16. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    PubMed Central

    Mi, Jinhua; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-01-01

    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products. PMID:25121138

  17. IMC Growth at the Interface of Sn-2.0Ag-2.5Zn Solder Joints with Cu, Ni, and Ni-W Substrates

    NASA Astrophysics Data System (ADS)

    Liang, Jiaxing; Wang, Haozhe; Hu, Anmin; Li, Ming

    2014-11-01

    Growth of intermetallic compounds (IMC) at the interface of Sn-2.0Ag-2.5Zn solder joints with Cu, Ni, and Ni-W substrates have been investigated. For the Cu substrate, a Cu5Zn8 IMC layer with Ag3Sn particles on top was observed at the interface; this acted as a barrier layer preventing further growth of Cu-Sn IMC. For the Ni substrate, a thin Ni3Sn4 film was observed between the solder and the Ni layer; the thickness of the film increased slowly and steadily with aging. For the Ni-W substrate, a thin Ni3Sn4 film was observed between the solder and Ni-W layer. During the aging process a thin layer of the Ni-W substrate was transformed into a bright layer, and the thickness of bright layer increased with aging.

  18. Structure and lithium dynamics of Li2AuSn2--a ternary stannide with condensed AuSn4/2 tetrahedra.

    PubMed

    Wu, Zhiyun; Mosel, Bernd D; Eckert, Hellmut; Hoffmann, Rolf-Dieter; Pöttgen, Rainer

    2004-03-19

    The new stannide Li(2)AuSn(2) was prepared by reaction of the elements in a sealed tantalum tube in a resistance furnace at 970 K followed by annealing at 720 K for five days. Li(2)AuSn(2) was investigated by X-ray diffraction on powders and single crystals and the structure was refined from single-crystal data: Z=4, I4(1)/amd, a=455.60(7), c=1957.4(4) pm, wR2=0.0681, 278 F(2) values, 10 parameters. The gold atoms display a slightly distorted tetrahedral tin coordination with Au-Sn distances of 273 pm. These tetrahedra are condensed through common corners leading to the formation of two-dimensional AuSn(4/2) layers. The latter are connected in the third dimension through Sn-Sn bonds (296 pm). The lithium atoms fill distorted hexagonal channels formed by the three-dimensional [AuSn(2)] network. Modestly small (7)Li Knight shifts are measured by solid-state NMR spectroscopy that are consistent with a nearly complete state of lithium ionization. The noncubic local symmetry at the tin site is reflected by a nuclear electric quadrupolar splitting in the (119)Sn Mössbauer spectra and a small chemical shift anisotropy evident from (119)Sn solid-state NMR spectroscopy. Variable-temperature static (7)Li solid-state NMR spectra reveal motional narrowing effects at temperatures above 200 K, revealing lithium atomic mobility on the kHz time scale. Detailed lineshape as well as temperature-dependent spin lattice relaxation time measurements indicate an activation energy of lithium motion of 27 kJ mol(-1). PMID:15034899

  19. Au-Sn SLID Bonding: A Reliable HT Interconnect and Die Attach Technology

    NASA Astrophysics Data System (ADS)

    Tollefsen, Torleif André; Larsson, Andreas; Taklo, Maaike Margrete Visser; Neels, Antonia; Maeder, Xavier; Høydalsvik, Kristin; Breiby, Dag W.; Aasmundtveit, Knut

    2013-04-01

    Au-Sn solid-liquid interdiffusion (SLID) bonding is an established reliable high temperature (HT) die attach and interconnect technology. This article presents the life cycle of an optimized HT Au-Sn SLID bond, from fabrication, via thermal treatment, to mechanical rupture. The layered structure of a strong and uniform virgin bond was identified by X-ray diffraction to be Au/ζ (Au0.85Sn0.15)/Au. During HT exposure, it was transformed to Au/β (Au1.8Sn0.2)/Au. After HT exposure, the die shear strength was reduced by 50 pct, from 14 Pa to 70 MPa, which is still remarkably high. Fractographic studies revealed a change in fracture mode; it was changed from a combination of adhesive Au/Ni and cohesive SiC fracture to a cohesive β-phase fracture. Design rules for high quality Au-Sn SLID bonds are given.

  20. Blocking hillock and whisker growth by intermetallic compound formation in Sn-0.7Cu flip chip solder joints under electromigration

    NASA Astrophysics Data System (ADS)

    Liang, S. W.; Chen, Chih; Han, J. K.; Xu, Luhua; Tu, K. N.; Lai, Yi-Shao

    2010-05-01

    Mass extrusion occurs in electromigration at the anode in cross-sectioned Sn-0.7Cu flip-chip solder joints. In a pair of joints, the hillock squeezed out at the anode on the board side is more serious than the whisker grown at the anode on the chip side. The difference of mass extrusion has been found to be affected by the amount of intermetallic compound (IMC) formation in the solder bump. It is found that when a large amount of Cu-Sn IMCs form in the grain boundaries of Sn grains, small hillocks are extruded on the anode end. It is proposed that the excessive IMC formation may be able to block the diffusion path of Sn atoms, so the growth of both the Sn whiskers and hillocks are retarded.

  1. Heat Lamps Solder Solar Array Quickly

    NASA Technical Reports Server (NTRS)

    Coyle, P. J.; Crouthamel, M. S.

    1982-01-01

    Interconnection tabs in a nine-solar-cell array have been soldered simultaneously with radiant heat. Cells and tabs are held in position for soldering by sandwiching them between compliant silicone-rubber vacuum platen and transparent polyimide sealing membrane. Heat lamps warm cells, producing smooth, flat solder joints of high quality.

  2. Low-Cycle Fatigue Behavior of 95.8Sn-3.5Ag-0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Li, G. Y.; Shi, X. Q.

    2013-01-01

    Low-cycle fatigue (LCF) behavior of 95.8Sn-3.5Ag-0.7Cu solder joints was investigated over a range of test temperatures (25°C, 75°C, and 125°C), frequencies (0.001 Hz, 0.01 Hz, and 0.1 Hz), and strain ranges (0.78%, 1.6%, and 3.1%). Effects of temperature and frequency on the LCF life were studied. Results show that the LCF lifetime decreases with an increase in test temperature or a decrease of test frequency, which is attributed to the longer exposure time to creep and the stress relaxation mechanism during fatigue testing. A modified Coffin-Manson model considering effects of temperature and frequency on the LCF life is proposed. The fatigue exponent and ductility coefficient were found to be influenced by both the temperature and frequency. By fitting the experimental data, the mathematical relations between the fatigue exponent and temperature, and ductility coefficient and temperature, were analyzed. Scanning electron microscopy (SEM) of the cross-sections and fracture surfaces of failed specimens at different temperature and frequency was applied to verify the failure mechanisms.

  3. ZnO-Au-SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting.

    PubMed

    Li, Jing-Mei; Cheng, Hao-Yun; Chiu, Yi-Hsuan; Hsu, Yung-Jung

    2016-08-25

    For the first time a ZnO nanorod-based Z-scheme heterostructure system was proposed and realized for efficient photoelectrochemical water splitting. The samples were prepared by depositing a thin layer of SnO2 on the Au surface of Au particle-decorated ZnO nanorods. For ZnO-Au-SnO2 nanorods, the embedded Au can mediate interfacial charge transfer by promoting electron transfer from the conduction band of SnO2 to the valence band of ZnO. This vectorial charge transfer resulted in the situation that the photoexcited electrons accumulated at ZnO while the photogenerated holes concentrated at SnO2, giving ZnO-Au-SnO2 substantially high redox powers. Time-resolved photoluminescence spectra suggested that the interfacial charge transfer across the ZnO/Au/SnO2 interface was significantly improved as a result of the Z-scheme charge transfer mechanism. With the substantially high redox powers and significantly improved interfacial charge transfer, ZnO-Au-SnO2 nanorods performed much better as a photoanode in photoelectrochemical water splitting than pristine ZnO, plasmonic Au-decorated ZnO and type-II SnO2-coated ZnO nanorods did. The present study has provided a viable approach to exploit Z-scheme photoanodes in the design of efficient artificial photosynthesis systems for solar energy conversion. PMID:27527337

  4. Soldering Tested in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Pettegrew, Richard D.; Watson, J. Kevin; Down, Robert S.; Haylett, Daniel R.

    2005-01-01

    Whether used occasionally for contingency repair or routinely in nominal repair operations, soldering will become increasingly important to the success of future long-duration human space missions. As a result, it will be critical to have a thorough understanding of the service characteristics of solder joints produced in reduced-gravity environments. The National Center for Space Exploration Research (via the Research for Design program), the NASA Glenn Research Center, and the NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole (see the drawing and image on the preceding figure) and surface-mounted devices are being investigated. This effort (the low-gravity portion being conducted on NASA s KC-135 research aircraft) uses the soldering hardware currently available on the International Space Station. The experiment involves manual soldering by a contingent of test operators, including both highly skilled technicians and less skilled individuals to provide a skill mix that might be encountered in space mission crews. The experiment uses both flux-cored solder and solid-core solder with an externally applied flux. Other experimental parameters include the type of flux, gravitational level (nominally zero,

  5. Pursuing low joint resistivity in Cu-stabilized REBa2Cu3O δ coated conductor tapes by the ultrasonic weld-solder hybrid method

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Kim, Jong-min; Dedicatoria, Marlon J.

    2016-01-01

    Development of a coated conductor tape joint with good quality and low joint resistivity, R sj, in terms of transport and mechanical properties, was attempted by direct bonding at the interface of the Cu-Cu stabilizers in overlapped GdBCO CC tapes. In this study, we attempted to achieve a low R sj by introducing hybrid joining, soldering and ultrasonic welding (UW), and its mechanism was analyzed theoretically. Coated conductor tapes were experimentally joined using various methods of soldering, UW, and combinations of the two. As a result, a much lower R sj of about 57 nΩ · cm2 was obtained for RCE-DR-processed GdBCO CC tape joints using the hybrid joining method. The mechanical properties of the jointed CC tapes were also evaluated at room temperature and 77 K under self-field. Load-displacement curves of joined CC tapes followed the curve of the single CC tape. Critical current and joint resistance, R j, of hybrid-joined CC tape were retained after double bending at room temperature up to 20 mm bending diameter.

  6. Effect of firing conditions on thick film microstructure and solder joint strength for low-temperature, co-fired ceramic substrates

    SciTech Connect

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.

    2000-01-04

    Low-temperature, co-fired ceramics (LTCC) are the substrate material-of-choice for a growing number of multi-chip module (MCM) applications. Unlike the longer-standing hybrid microcircuit technology based upon alumina substrates, the manufacturability and reliability of thick film solder joints on LTCC substrates have not been widely studied. An investigation was undertaken to fully characterize solder joints on these substrates. A surface mount test vehicle with Daisy chain electrical connections was designed and built with Dupont{trademark} 951 tape. The Dupont{trademark} 4569 thick film ink (Au76-Pt21-Pd3 wt.%) was used to establish the surface conductor pattern. The conductor pattern was fired onto the LTCC substrate in a matrix of processing conditions that included: (1) double versus triple prints, (2) dielectric window versus no window, and (3) three firing temperatures (800 C, 875 C and 950 C). Sn63-Pb37 solder paste with an RMA flux was screen printed onto the circuit boards. The appropriate packages, which included five sizes of chip capacitors and four sizes of leadless ceramic chip carriers, were placed on the circuit boards. The test vehicles were oven reflowed under a N{sub 2} atmosphere. Nonsoldered pads were removed from the test vehicles and the porosity of their thick film layers was measured using quantitative image analysis in both the transverse and short transverse directions. A significant dependence on firing temperature was recorded for porosity. The double printed substrates without a dielectric window revealed a thick film porosity of 31.2% at 800 C, 26.2% at 875 C and 20.4% at 950 C. In contrast, the thick film porosity of the triple printed substrates with a dielectric window is 24.1% at 800 C, 23.2% at 875 C and 17.6% at 950 C. These observations were compared with the shear strength of the as-fabricated chip capacitor solder joints to determine the effect of firing conditions on solder joint integrity. The denser films from the higher

  7. Bonding nature of rare-earth-containing lead-free solders

    NASA Astrophysics Data System (ADS)

    Ramirez, Ainissa G.; Mavoori, Hareesh; Jin, Sungho

    2002-01-01

    The ability of rare-earth-containing lead-free solders to wet and bond to silica was investigated. Small additions of Lu (0.5-2 wt. %) added to eutectic Sn-Ag or Au-Sn solder render it directly solderable to a silicon oxide surface. The bonding is attributed to the migration of the rare-earth element to the solder-silica interface for chemical reaction and the creation of an interfacial layer that contains a rare-earth oxide. It was found that additions of rare-earth materials did not significantly modify the solidification microstructure or the melting point. Such oxide-bondable solders can be useful for assembly of various optical communication devices.

  8. Microstructural influences on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Goldstein, J.L.F.; Mei, Z.

    1993-04-01

    Intent of this book is to review analytic methods for predicting behavior of solder joints, based on continuum mechanics. The solder is treated as a continuous, homogeneous body, or composite of such bodies, whose mechanical behavior is uniform and governed by simple constitutive equations. The microstructure of a solder joint influences its mechanical properties in 3 ways: it governs deformation and failure; common solders deform inhomogeneously; and common solders are microstructurally unstable. The variety of microstructures often found in solder joints are briefly reviewed, and some of the ways are discussed in which the microstructure influences the common types of high-temperature mechanical behavior. 25 figs, 40 refs.

  9. Wetting behavior of alternative solder alloys

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  10. Laser soldering of Sn plated brass integrator assembly housings

    SciTech Connect

    Keicher, D.M.; Poulter, G.A.; Sorensen, N.R.

    1993-09-01

    The high conductivity provided by solder closure joints of component housings is sometimes required to ensure electrical shielding of the components contained within. However, using a soldering iron to produce the solder joints can lead to charring of the insulating materials within the housing. To overcome this problem, the localized heating characteristics of laser soldering can be exploited. Feasibility of laser soldering Sn plated brass housings with a CW Nd:YAG laser has been investigated. It has been determined that laser soldering of these housings using a low solids solder flux is a viable technique and will minimize the amount of heat input to the enclosed electronic components. Metallographic analysis has shown good wetting of the solder on the housing components. Accelerated aging experiments indicate that no significant corrosion potential due to solder flux residues exists. Although a low solids flux was used to make the joints, initial results indicate that a fluxless technique can be developed to eliminate fluxes completely.

  11. Laser soldering of Sn plated brass integrator assembly housings

    NASA Astrophysics Data System (ADS)

    Keicher, D. M.; Poulter, G. A.; Sorensen, N. R.

    1993-09-01

    The high conductivity provided by solder closure joints of component housings is sometimes required to ensure electrical shielding of the components contained within. However, using a soldering iron to produce the solder joints can lead to charring of the insulating materials within the housing. To overcome this problem, the localized heating characteristics of laser soldering can be exploited. The feasibility of laser soldering Sn plated brass housings with a CW Nd:YAG laser has been investigated. It has been determined that laser soldering of these housings using a low solids solder flux is a viable technique and will minimize the amount of heat input to the enclosed electronic components. Metallographic analysis has shown good wetting of the solder on the housing components. Accelerated aging experiments indicate that no significant corrosion potential due to solder flux residues exists. Although a low solids flux was used to make the joints, initial results indicate that a fluxless technique can be developed to eliminate fluxes completely.

  12. Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Lin, Shih-kang; Chang, Hao-miao; Cho, Cheng-liang; Liu, Yu-chen; Kuo, Yi-kai

    2015-07-01

    Three-dimensional (3D) integrated circuits (ICs) are the most important packaging technology for next-generation semiconductors. Cu-to-Cu throughsilicon via interconnections with micro-bumps are key components in the fabrication of 3D ICs. However, significant reliability concerns have been raised due to the formation of brittle intermetallic compounds in the entire 3D IC joints. This study proposes a Ga-based Cu-to-Cu bonding technology with Pt under bump metallurgy (UBM). A systematic analysis of reactive wetting between Ga solders and polycrystalline, single-crystalline, and Ptcoated Cu substrates was conducted. Pt UBM as a wetting layer was identified to be a key component for Ga-based Cu-to-Cu bonding. Pt-coated Cu substrates were bonded using Ga solders with various Ga-to-Pt ratios ( n) at 300℃. When n ≥ 4, the Cu/Pt/Ga/Pt/Cu interface evolves to Cu/facecentered cubic (fcc)/γ1-Cu9Ga4/fcc/Cu, Cu/fcc/γ1-Cu9Ga4 + Ga7Pt3/fcc/Cu, and finally Cu/fcc + Ga7Pt3/Cu structures. The desired ductile solid solution joint formed with discrete Ga7Pt3 precipitates. When n ≤ 1, a Cu/Ga7Pt3/Cu joint formed without Cu actively participating in the reactions. The reaction mechanism and microstructure evolution were elaborated with the aid of CALPHAD thermodynamic modeling. [Figure not available: see fulltext.

  13. The Role of Elastic and Plastic Anisotropy of Sn in Recrystallization and Damage Evolution During Thermal Cycling in SAC305 Solder Joints

    SciTech Connect

    Bieler, Thomas R.; Zhou, Bite; Blair, Lauren; Zamiri, Amir; Darbandi, Payam; Pourboghrat, Farhang; Lee, Tae-Kyu; Liu, Kuo-Chuan

    2013-04-08

    Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.

  14. Microstructural Evolution and Mechanical Properties in (AuSn)eut-Cu Interconnections

    NASA Astrophysics Data System (ADS)

    Dong, Hongqun; Vuorinen, Vesa; Laurila, Tomi; Paulasto-Kröckel, Mervi

    2016-06-01

    The interfacial reactions between the widely employed solder Au-20wt.%Sn and the common contact metallizations (e.g. Ni, Cu and Pt) are normally complex and not well determined. In order to identify the proper contactor for Au-20wt.%Sn solder, the present study focuses on (1) rationalizing the interfacial reaction mechanisms of Au-20wt.%Sn|Cu as well as (2) measuring the mechanical properties of individual intermetallics formed at the interface. The evolution of interfacial reaction products were rationalized by using the experimental results in combination with the calculated Au-Cu-Sn phase diagram information. It was found that the growth of the AuCu interfacial intermetallic layer was diffusion-controlled. The diffusion path of Au-20wt.%Sn|Cu at 150°C was proposed. The hardness and indentation modulus of the interfacial reaction products were measured using nanoindentation tests. The results revealed a significant influence of the Cu solubility on the mechanical properties of (Au,Cu)Sn and (Au,Cu)5Sn, i.e. their hardness and contact modulus increased with the increase in the amount of Cu. Furthermore, results obtained here for the Au-20wt.%Sn|Cu joints were compared to those from Au-20wt.%Sn|Ni in order to assess the similarities and differences between these widely used interconnection metallization systems.

  15. In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Ouyang, Fan-Yi; Kao, C.-L.

    2011-12-01

    In this study, we investigated the phenomenon of thermomigration in 96.5Sn-3Ag-0.5Cu flip chip solder joints at an ambient temperature of 150 °C. We observed mass protrusion on the chip side (hot end), indicating that Sn atoms moved to the hot end, and void formation on the substrate side (cold end). The diffusion markers also moved to the substrate side, in the same direction of the vacancy flux, indicating that the latter played a dominant role during the thermomigration process. The molar heat of transport (Q*) of the Sn atoms was 3.38 kJ/mol.

  16. Fluxless laser soldering of radar housings

    SciTech Connect

    Keicher, D.M.; Hosking, F.M.

    1990-01-01

    Laser soldering of electronic components is a rapidly maturing technology and has been found to be particularly useful in the attachment of very fine pitch surface mount devices. Conversely, very little progress has been made to extend this technology to other soldering applications. It was the intention of this study to explore the feasibility of utilizing laser soldering to produce hermetic closure joints in radar packages. In producing hermetic joints, several requirements had to be met. It was essential to have a process that would eliminate the potential for entrapment of corrosive flux residues within the radar unit. In addition, it was desirable to create higher strength solder joints than could be produced by conventional step solder techniques which require lower temperature solders to be used in the final closure process. Further, solder mixing of the closure joint solder and solders used on components inside the radar was to be avoided. To fulfill the requirements, the localized heating characteristics of laser soldering made it an obvious choice for this application.

  17. Rapid diagnosis of electromigration induced failure time of Pb-free flip chip solder joints by high resolution synchrotron radiation laminography

    NASA Astrophysics Data System (ADS)

    Tian, Tian; Xu, Feng; Kyu Han, Jung; Choi, Daechul; Cheng, Yin; Helfen, Lukas; Di Michiel, Marco; Baumbach, Tilo; Tu, K. N.

    2011-08-01

    We performed a rapid diagnosis of electromigration induced void nucleation and growth in Pb-free flip chip solder joints. Quantitative measurements of the growth rate of voids during the stressing by 1.0 × 104 A/cm2 and 7.5 × 103 A/cm2 at 125 °C were conducted by synchrotron radiation high resolution x-ray laminography. The results were analyzed by the statistical model of Weibull distribution function [W. Weibull, ASME Trans. J. Appl. Mech. 18(3), 293 (1951)] of lifetime data. The Johnson-Mehl-Avrami phase transformation theory is proposed to provide a physical link to the statistical model and to estimate the lifetime of the joints at early stages.

  18. Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates

    NASA Astrophysics Data System (ADS)

    Sona, Mrunali; Prabhu, K. Narayan

    2016-04-01

    The effect of reflow time on wetting behavior of Sn-2.5Ag-0.5Cu lead-free solder on bare and nickel-coated copper substrates has been investigated. The solder alloy was reflowed at 270°C for various reflow times of 10 s, 100 s, 300 s, and 500 s. On bare copper substrate, the intermetallic compound (IMC) thickness increased with increase in reflow time, whereas on Ni-coated Cu substrate, the IMC thickness increased up to 300 s followed by a drop for solder alloy reflowed for 500 s. The spreading behavior of the solder alloy was categorized into capillary, gravity (diffusion), and viscous zones. Gravity zone was obtained from 3.8 ± 0.43 s to 38.97 ± 3.38 s and from 5.99 ± 0.5 s to 77.82 ± 8.84 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. Sn-2.5Ag-0.5Cu solder alloy was also reflowed for the period corresponding to the end of the gravity zone (40 s and 80 s on bare and Ni-coated Cu, respectively). The joint strength was maximum at reflow time of 40 s and 80 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. The dynamic contact angle at the end of the gravity (diffusion) zone (θ gz) was found to be a better parameter compared with the stabilized contact angle (θ f) to assess the effect of the wettability of the liquid solder on the microstructure and joint strength. The present investigation reveals the significance of the gravity zone in assessment of optimum reflow time for lead-free solder alloys.

  19. Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates

    NASA Astrophysics Data System (ADS)

    Sona, Mrunali; Prabhu, K. Narayan

    2016-07-01

    The effect of reflow time on wetting behavior of Sn-2.5Ag-0.5Cu lead-free solder on bare and nickel-coated copper substrates has been investigated. The solder alloy was reflowed at 270°C for various reflow times of 10 s, 100 s, 300 s, and 500 s. On bare copper substrate, the intermetallic compound (IMC) thickness increased with increase in reflow time, whereas on Ni-coated Cu substrate, the IMC thickness increased up to 300 s followed by a drop for solder alloy reflowed for 500 s. The spreading behavior of the solder alloy was categorized into capillary, gravity (diffusion), and viscous zones. Gravity zone was obtained from 3.8 ± 0.43 s to 38.97 ± 3.38 s and from 5.99 ± 0.5 s to 77.82 ± 8.84 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. Sn-2.5Ag-0.5Cu solder alloy was also reflowed for the period corresponding to the end of the gravity zone (40 s and 80 s on bare and Ni-coated Cu, respectively). The joint strength was maximum at reflow time of 40 s and 80 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. The dynamic contact angle at the end of the gravity (diffusion) zone ( θ gz) was found to be a better parameter compared with the stabilized contact angle ( θ f) to assess the effect of the wettability of the liquid solder on the microstructure and joint strength. The present investigation reveals the significance of the gravity zone in assessment of optimum reflow time for lead-free solder alloys.

  20. Solder poisoning

    MedlinePlus

    ... in solder that can be harmful are: Antimony Bismuth Cadmium Copper Ethylene glycol Lead Mild acids Silver ... of the bones and kidney failure Symptoms for bismuth: Diarrhea Eye irritation Gum disease ( gingivitis ) Kidney damage ...

  1. Microstructural Evolution of SAC305 Solder Joints in Wafer Level Chip-Scale Packaging (WLCSP) with Continuous and Interrupted Accelerated Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Zhou, Bite; Lee, Tae-Kyu; Bieler, Thomas

    2016-02-01

    Four high-strain design wafer level chip scale packages were given accelerated thermal cycling with a 10°C/min ramp rate and 10 min hold times between 0°C and 100°C to examine the effects of continuous and interrupted thermal cycling on the number of cycles to failure. The interruptions given two of the samples were the result of periodic examinations using electron backscattered pattern mapping, leading to room temperature aging of 30 days-2.5 years after increments of about 100 cycles at several stages of the cycling history. The continuous thermal cycling resulted in solder joints with a much larger degree of recrystallization, whereas the interrupted thermal cycling tests led to much less recrystallization, which was more localized near the package side, and the crack was more localized near the interface and had less branching. The failure mode for both conditions was still the same, with cracks nucleating along the high angle grain boundaries formed during recrystallization. In conditions where there were few recrystallized grains, recovery led to formation of subgrains that strengthened the solder, and the higher strength led to a larger driving force for crack growth through the solder, leading to failure after less than half of the cycles in the continuous accelerated thermal cycling condition. This work shows that there is a critical point where sufficient strain energy accumulation will trigger recrystallization, but this point depends on the rate of strain accumulation in each cycle and various recovery processes, which further depends on local crystal orientations, stress state evolution, and specific activated slip and twinning systems.

  2. Microstructural Evolution of SAC305 Solder Joints in Wafer Level Chip-Scale Packaging (WLCSP) with Continuous and Interrupted Accelerated Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Zhou, Bite; Lee, Tae-Kyu; Bieler, Thomas

    2016-06-01

    Four high-strain design wafer level chip scale packages were given accelerated thermal cycling with a 10°C/min ramp rate and 10 min hold times between 0°C and 100°C to examine the effects of continuous and interrupted thermal cycling on the number of cycles to failure. The interruptions given two of the samples were the result of periodic examinations using electron backscattered pattern mapping, leading to room temperature aging of 30 days-2.5 years after increments of about 100 cycles at several stages of the cycling history. The continuous thermal cycling resulted in solder joints with a much larger degree of recrystallization, whereas the interrupted thermal cycling tests led to much less recrystallization, which was more localized near the package side, and the crack was more localized near the interface and had less branching. The failure mode for both conditions was still the same, with cracks nucleating along the high angle grain boundaries formed during recrystallization. In conditions where there were few recrystallized grains, recovery led to formation of subgrains that strengthened the solder, and the higher strength led to a larger driving force for crack growth through the solder, leading to failure after less than half of the cycles in the continuous accelerated thermal cycling condition. This work shows that there is a critical point where sufficient strain energy accumulation will trigger recrystallization, but this point depends on the rate of strain accumulation in each cycle and various recovery processes, which further depends on local crystal orientations, stress state evolution, and specific activated slip and twinning systems.

  3. Identification of Au-Sn phase in Ag3Sn alloys containing gold.

    PubMed

    Malhotra, M L; Lawless, K R

    1975-03-01

    Substitution of gold in part for silver in Ag3Sn alloys is found to result in two separate phases: gamma (Ag3Sn particles) grains with a uniform distribution of gold within the grain and an Au-Sn phase in a form of ring surrounding the gamma grain. The thickness of this ring increases with increasing gold concentration. The phases were identified by using the techniques of x-ray diffraction, optical metallography, scanning electron microscopy, and x-ray energy dispersive spectroscopy. PMID:1176478

  4. 24 CFR 3280.605 - Joints and connections.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and copper tubing shall be inserted to the full depth of the solder cup or welding sockets of each... threads only. (3) Solder joints. Solder joints for tubing shall be made with approved or listed solder..., made with solder having not more than 0.2 percent lead. (4) Plastic pipe, fittings and joints....

  5. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based x-ray polychromatic microdiffraction

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Tamura, N.; Kunz, M.; Tu, K. N.; Lai, Yi-Shao

    2009-07-01

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron x-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the β-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was builtup as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of β-Sn derived from the electromigration data is in good agreement with the calculated value.

  6. Influence of Cyclic Strain-Hardening Exponent on Fatigue Ductility Exponent for a Sn-Ag-Cu Micro-Solder Joint

    NASA Astrophysics Data System (ADS)

    Kanda, Yoshihiko; Kariya, Yoshiharu; Oto, Yuji

    2012-03-01

    The fatigue ductility exponent in the Coffin-Manson law for a Sn-Ag-Cu micro-solder joint was investigated in terms of the cyclic strain-hardening property and the inelastic strain energy in fracture for isothermal fatigue. The fatigue ductility exponent was found to increase with temperature and holding time under strain at high temperature. This exponent is closely related to the cyclic strain-hardening exponent, which displays the opposite behavior in that it decreases with increasing temperature and with coarsening of intermetallic compound particles while holding under strain at high temperature. This result differs from the creep damage mechanism (grain boundary fracture), which is a primary reason for the significant reduction in fatigue life for all strain ranges for large-size specimens.

  7. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    SciTech Connect

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-05-15

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the {beta}-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of {beta}-Sn derived from the electromigration data is in good agreement with the calculated value.

  8. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    SciTech Connect

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-12-01

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the Beta-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of Beta-Sn derived from the electromigration data is in good agreement with the calculated value.

  9. Inspection criteria ensure quality control of parallel gap soldering

    NASA Technical Reports Server (NTRS)

    Burka, J. A.

    1968-01-01

    Investigation of parallel gap soldering of electrical leads resulted in recommendation on material preparation, equipment, process control, and visual inspection criteria to ensure reliable solder joints. The recommendations will minimize problems in heat-dwell time, amount of solder, bridging conductors, and damage of circuitry.

  10. Age-aware solder performance models : level 2 milestone completion.

    SciTech Connect

    Neilsen, Michael K.; Vianco, Paul Thomas; Neidigk, Matthew Aaron; Holm, Elizabeth Ann

    2010-09-01

    Legislated requirements and industry standards are replacing eutectic lead-tin (Pb-Sn) solders with lead-free (Pb-free) solders in future component designs and in replacements and retrofits. Since Pb-free solders have not yet seen service for long periods, their long-term behavior is poorly characterized. Because understanding the reliability of Pb-free solders is critical to supporting the next generation of circuit board designs, it is imperative that we develop, validate and exercise a solder lifetime model that can capture the thermomechanical response of Pb-free solder joints in stockpile components. To this end, an ASC Level 2 milestone was identified for fiscal year 2010: Milestone 3605: Utilize experimentally validated constitutive model for lead-free solder to simulate aging and reliability of solder joints in stockpile components. This report documents the completion of this milestone, including evidence that the milestone completion criteria were met and a summary of the milestone Program Review.

  11. Soldering of complex multilayer printed boards

    NASA Astrophysics Data System (ADS)

    Garrigue, Jean-Marie; Braun, Jean-Francois

    1990-09-01

    The soldering limits of complex multilayer printed boards used for spaceborne electronic equipment are presented. 6400 configurations related to board design, component's lead characteristics and manual and wave soldering parameters, are tested. Choices and recommendations are suggested to overcome these limits. Quality and reliability aspects of the soldered joints are broached, and research topics are proposed. Soldering problems are found to develop beyond 8 to 10 layers of circuits in components with connection conductivities of less than 1 to 2 W per cm over temperature in degrees centigrade.

  12. Characterization of solder flow on PWB surfaces

    SciTech Connect

    Hosking, F.M.; Yost, F.G.

    1995-07-01

    Different solderability tests have been developed to determine the wetting behavior of solder on metallic surfaces. None offer an exact measure of capillary flow associated with conventional mixed technology soldering. With shrinking package designs, increasing reliability requirements, and the emergence of new soldering technologies, there is a growing need to better understand and predict the flow of solder on printed wiring board (PWB) surfaces. Sandia National Laboratories has developed a capillary flow solderability test, through a joint effort with the National Center for Manufacturing Sciences, that considers this fundamental wetting issue for surface mount technology. The test geometry consists of a metal strip (width, {delta}) connected to a circular metal pad (radius, r{sub c}). Test methodology, experimental results, and validation of a flow model are presented in this paper.

  13. Solderability Study of RABiTS-Based YBCO Coated Conductors

    SciTech Connect

    Zhang, Yifei; Duckworth, Robert C; Ha, Tam T; Gouge, Michael J

    2011-01-01

    The solderability of commercially available YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) coated conductors that were made from Rolling Assisted Biaxially Textured Substrates (RABiTS)-based templates was studied. The coated conductors, also known as second-generation (2G) high temperature superconductor (HTS) wires (in the geometry of flat tapes about 4 mm wide), were laminated with copper, brass, or stainless steel strips as stabilizers. To understand the factors that influence their solderability, surface profilometry and scanning electron microscopy were used to characterize the wire surfaces. The solderability of three solders, 52In48Sn, 67Bi33In, and 100In (wt.%), was evaluated using a standard test (IPC/ECA J-STD-002) and with two different commercial fluxes. It was found that the solderability varied with the solder and flux but the three different wires showed similar solderability for a fixed combination of solder and flux. Solder joints of the 2G wires were fabricated using the tools and the procedures recommended by the HTS wire manufacturer. The solder joints were made in a lap-joint geometry and with the superconducting sides of the two wires face-to-face. The electrical resistances of the solder joints were measured at 77 K, and the results were analyzed to qualify the soldering materials and evaluate the soldering process. It was concluded that although the selection of soldering materials affected the resistance of a solder joint, the resistivity of the stabilizer was the dominant factor.

  14. The low-temperature form of calcium gold stannide, CaAuSn.

    PubMed

    Lin, Qisheng; Corbett, John D

    2014-08-01

    The EuAuGe-type CaAuSn phase has been synthesized and single-crystal X-ray diffraction analysis reveals that it has an orthorhombic symmetry (space group Imm2), with a = 4.5261 (7) Å, b = 7.1356 (11) Å and c = 7.8147 (11) Å. The structure features puckered layers that are connected by homoatomic Au-Au and Sn-Sn interlayer bonds. This structure is one of the two parent structures of its high-temperature polymorph (ca 873 K), which is an intergrowth structure of the EuAuGe- and SrMgSi-type structures in a 2:3 ratio. PMID:25093357

  15. The low-temperature form of calcium gold stannide, CaAuSn

    SciTech Connect

    Lin, Qisheng; Corbett, John D

    2014-07-19

    The EuAuGe-type CaAuSn phase has been synthesized and single-crystal X-ray diffraction analysis reveals that it has an ortho­rhom­bic symmetry (space group Imm2), with a = 4.5261 (7) Å, b = 7.1356 (11) Å and c = 7.8147 (11) Å. The structure features puckered layers that are connected by homoatomic Au-Au and Sn-Sn inter­layer bonds. This structure is one of the two parent structures of its high-temperature polymorph (ca 873 K), which is an inter­growth structure of the EuAuGe- and SrMgSi-type structures in a 2:3 ratio.

  16. 24 CFR 3280.605 - Joints and connections.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of the fitting. Plastic pipe and copper tubing shall be inserted to the full depth of the solder cup... approved type and applied to male threads only. (3) Solder joints. Solder joints for tubing shall be made with approved or listed solder type fittings. Surfaces to be soldered shall be cleaned bright....

  17. 24 CFR 3280.605 - Joints and connections.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of the fitting. Plastic pipe and copper tubing shall be inserted to the full depth of the solder cup... approved type and applied to male threads only. (3) Solder joints. Solder joints for tubing shall be made with approved or listed solder type fittings. Surfaces to be soldered shall be cleaned bright....

  18. Solder Creep-Fatigue Interactions with Flexible Leaded Part

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Wen, L. C.

    1994-01-01

    In most electronic packaging applications it is not a single high stress event that breaks a component solder joint; rather it is repeated or prolonged load applications that result in fatigue or creep failure of the solder. The principal strain in solder joints is caused by differential expansion between the part and its mounting environment due to hanges in temperature (thermal cycles) and/or due to temperature gradients between the part and the board.

  19. The influence of microstructure on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Reynolds, H.L.

    1996-06-01

    Solder joints in microelectronics devices consist of low-melting solder compositions that wet and join metal contacts and are, ordinarily, used at high homologous temperatures in the as-solidified condition. Differences in solidification rate and substrate interactions have the consequence that even solder joints of similar compositions exhibit a wide range of microstructures. The variation in microstructure causes a variation in properties; in particular, the high-temperature creep properties that govern much of the mechanical behavior of the solder may differ significantly from joint to joint. The present paper reviews the varieties of microstructure that are found in common solder joints, and describes some of the ways in which microstructural changes affect mechanical properties and joint reliability.

  20. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-02-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  1. A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys

    NASA Astrophysics Data System (ADS)

    Xu, Yantong; Ke, Xi; Yu, Changchun; Liu, Shaofang; Zhao, Jie; Cui, Guofeng; Higgins, Drew; Chen, Zhongwei; Li, Qing; Wu, Gang

    2014-11-01

    We report a novel strategy for the fabrication of nanoporous gold (NPG) films. The fabrication process involves the electrodeposition of a gold-tin alloy, followed by subsequent chemical dealloying of tin. Scanning electron microscopy (SEM) images show a bicontinuous nanoporous structure formed on the substrates after chemical dealloying. Energy dispersive x-ray (EDX) analysis indicates that there are no impurities in the Au-Sn alloy film with an average composition of 58 at. % Au and 42 at. % Sn. After dealloying, only gold remains in the NPG film indicating the effectiveness of this technique. X-ray diffraction (XRD) results reveal that the as-prepared Au-Sn alloy film is composed of two phases (Au5Sn and AuSn), while the NPG film is composed of a single phase (Au). We demonstrate that this approach enables the fabrication of NPG films, either freestanding or supported on various conductive substrates such as copper foil, stainless steel sheet and nickel foam. The resulting NPG electrode exhibits enhanced electrocatalytic activity toward both H2O2 reduction and methanol oxidation compared to the polished Au disc electrode. Our strategy provides a general method to fabricate high quality NPG films on conductive substrates, which will broaden the application potential of NPG or NPG-based materials in various fields such as catalysis, optics and sensor technology.

  2. Low-temperature magnetic, thermodynamic, and transport properties of antiferromagnetic CeAuSn single crystals

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Fritsch, V.; Pilawa, B.; Yang, C. C.; Merz, M.; Löhneysen, H. v.

    2015-04-01

    We present measurements of the magnetization M , specific heat C , resistivity ρ , and magnetoresistance MR of single-crystalline hexagonal CeAuSn for temperature down to T =1.6 K and in magnetic field up to B =12 T . Antiferromagnetic ordering at TN=4.4 K is observed as previously found for polycrystalline samples. A strong magnetic easy-plane anisotropy of M for B perpendicular and parallel to the c direction is found with M⊥/M||≈15 in B =0.1 T around TN, which is attributed to crystal-electric-field anisotropy. The analysis of the magnetic susceptibility indicates ferromagnetic correlations above TN. Measurements of M (T ) under hydrostatic pressure P show that TN(P ) increases linearly with P at a small rate of 0.035 K/kbar up to 4 kbar and gradually saturates approaching P =16 kbar . Zero-field Δ C /T , the phonon contribution to C being subtracted, is proportional to T2 below TN indicating a gapless spin-wave spectrum. It is found that all Δ C (T ,B )/T curves for B =0 -9 T cross at the same temperature, providing an example of a particularly well defined isosbestic point in a very narrow region around Tiso=6.6 K . Finally, ρ (T ) and MR experiments with current perpendicular and parallel to B allow us to separate orbital effects from the Zeeman splitting.

  3. Soldering instrument safety improvements

    DOEpatents

    Kosslow, William J.; Giron, Ronald W.

    1996-01-01

    A safe soldering device includes a retractable heat shield which can be moved between a first position in which the solder tip of the device is exposed for soldering operation and a second position in which the solder tip is covered by the heat shield. Preferably, the heat shield is biased towards the second position and may be locked in the first position for ease of use. When the soldering device is equipped with a vacuum system, the heat shield may serve to guide the flow of gases and heat from the solder tip away from the work area. The heat shield is preferably made of non-heatsinking plastic.

  4. Advanced soldering processes

    SciTech Connect

    Jellison, J.L.; Golden, J.; Frear, D.R.; Hosking, F.M.; Keicher, D.M.; Yost, F.G.

    1993-02-20

    Advanced soldering processes are discussed in a complete manner. The ability to meet the needs of electronic manufacturing, while addressing the environmental issues are challenging goals. Government regulations mandate the elimination of most solvents in solder flux removal. Alternative approaches to promoting wetting are discussed. Inert atmosphere soldering, acid vapor fluxless soldering, atomic and ionic hydrogen as reactive atmospheres, fluxless laser soldering in a controlled atmosphere are offered as soldering mechanisms for the future. Laser are discussed as alternate heat sources. Various types of lasers, advantages of lasers, and fiber optic beam delivery are considered.

  5. Microsoldering using a YAG laser: on lead-free solder

    NASA Astrophysics Data System (ADS)

    Nakahara, Sumio; Kamata, Tatsuya; Yoneda, Noriyuki; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2000-11-01

    Solderability of conventional Sn-37Pb solder pastes and Pb- free alloys (Sn-43Bi and Sn-2Ag-5Bi-0.5Cu) were examined on micro soldering using a YAG laser. Experiments were performed in order to determine the range of soldering parameters of a laser power density and an irradiation time for obtaining an appropriate wettability based on a visual inspection by a Japanese Industrial Standard. And the laser soldering processes were monitored by measuring temperature change inside solder joint (solder and Cu pad) and on a surface of a chip component. Next joining strength of chip components for surface mounting soldered on printed circuit board (glass epoxy) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics at different power density and materials were examined around thermal shock test by the gas phase method. As a result, characteristics of Sn-Ag-Bi-Cu (Pb-free) solder paste are equivalent to that of Sn-Pb solder paste.

  6. Solder flow on narrow copper strips

    SciTech Connect

    Hosking, F.M.; Yost, F.G.; Holm, E.A.; Michael, J.R.

    1996-07-01

    Various solderability tests have been developed over the years to quantify the wetting behavior of solder on metallic surfaces. None offer an exact measure of capillary flow normally associated with conventional plated-through-hole and surface mount soldering. With shrinking package designs, increasing reliability requirements, and the emergence of new soldering technologies, there is a growing need to better understand and predict the flow of solder on printed wiring board (PWB) surfaces. Sandia National Laboratories has developed a capillary flow solderability test, through a joint effort with the National Center for Manufacturing Sciences, that considers this fundamental wetting issue for surface mount technology. The test geometry consists of a metal strip (width, {delta}) connected to a circular metal pad (radius, r{sub c}). Solder flow from the pad onto the strip depends on the geometric relationship between {delta} and r{sub c}. Test methodology, experimental results, and validation of a flow model are presented in this paper. 17 refs., 11 figs., 4 tabs.

  7. Prototyping lead-free solders on hand-soldered, through-hole circuit boards

    SciTech Connect

    Vianco, P.T.; Mizik, P.M.

    1993-12-31

    The lead-free solders 96.5Sn-3.5Ag (wt %), 95.5Sn-4.0Cu-0.5Ag, 91. 84Sn-3.33Ag-4.83Bi were used in the assembly of a through-hole circuit board to determine the feasibility of their suitability in hand soldering processes. Prototypes assembled with 63Sn-37Pb solder were manufactured to serve as control units. Implementation of the lead-free alloys were performed with a rosin-based, mildly activated (RMA) flux and a 700{degree}F soldering tip. A procedure was developed to remove the tin-lead finish from the leaded components and replace it with a 100Sn hot dipped coating. Assembly feasibility was demonstrated for all three lead-free solders. Defect counts were greater than observed with the tin-lead control alloy; however, the number of defects diminished with experience gained by the operator. Visual examination of the solder joints indicated satisfactory wetting of both the device leads and circuit board land with no apparent damage to the underlying laminate nor to the device packages. Cross sections of the lead-free solder joints showed that the were more susceptible to void formation within the holes than was the case with the tin-lead solder. Some cracking was observed at the interface between the Sn-Ag-Bi solder and the copper lands; the relatively high strength of this solder and fast cooling rate of the hand assembly process was believed responsible for this defect.

  8. Evaluation of temperatures attained by electronic components during various manual soldering operations

    NASA Astrophysics Data System (ADS)

    Dunn, B. D.; Hilbrands, G.; Nielsen, P. J.

    1983-03-01

    After component-failure analyses showed that defective spacecraft devices were overheated during soldering, it was verified that quality-assurance personnel omitted to control pretinning-bath and soldering iron temperatures, so data were acquired under controlled processing conditions. Component temperature rises were recorded during degolding, pretinning, soldering and the reworking of soldered joints. Results show that existing ESA specifications for manual soldering and repair ensure that the maximum temperature ratings ascribed to standard spacecraft components are not exceeded. Application of heat sinks to certain delicate components during degolding is essential, and it can be advantageous to apply them during pretinning and other soldering operations.

  9. Whisker Formation on SAC305 Soldered Assemblies

    NASA Astrophysics Data System (ADS)

    Meschter, S.; Snugovsky, P.; Bagheri, Z.; Kosiba, E.; Romansky, M.; Kennedy, J.; Snugovsky, L.; Perovic, D.

    2014-11-01

    This article describes the results of a whisker formation study on SAC305 assemblies, evaluating the effects of lead-frame materials and cleanliness in different environments: low-stress simulated power cycling (50-85°C thermal cycling), thermal shock (-55°C to 85°C), and high temperature/high humidity (85°C/85% RH). Cleaned and contaminated small outline transistors, large leaded quad flat packs (QFP), plastic leaded chip carrier packages, and solder balls with and without rare earth elements (REE) were soldered to custom designed test boards with Sn3Ag0.5Cu (SAC305) solder. After assembly, all the boards were cleaned, and half of them were recontaminated (1.56 µg/cm2 Cl-). Whisker length, diameter, and density were measured. Detailed metallurgical analysis on components before assembly and on solder joints before and after testing was performed. It was found that whiskers grow from solder joint fillets, where the thickness is less than 25 µm, unless REE was present. The influence of lead-frame and solder ball material, microstructure, cleanliness, and environment on whisker characteristics is discussed. This article provides detailed metallurgical observations and select whisker length data obtained during this multiyear testing program.

  10. Soldering of Carbon Materials Using Transition Metal Rich Alloys.

    PubMed

    Burda, Marek; Lekawa-Raus, Agnieszka; Gruszczyk, Andrzej; Koziol, Krzysztof K K

    2015-08-25

    Joining of carbon materials via soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent (2.5-5%) of transition metal such as chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and electrically conductive joints between carbon materials and, when supported by a simple two-step technique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon-solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon-alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials. PMID:26256042

  11. Process characterization and control of hand-soldered printed wiring assemblies

    SciTech Connect

    Cheray, D.L.; Mandl, R.G.

    1993-09-01

    A designed experiment was conducted to characterize the hand soldering process parameters for manufacturing printed wiring assemblies (PWAs). Component tinning was identified as the most important parameter in hand soldering. After tinning, the soldering iron tip temperature of 700{degrees}F and the choice of operators influence solder joint quality more than any other parameters. Cleaning and flux/flux core have little impact on the quality of the solder joint. The need for component cleaning prior to assembly must be evaluated for each component.

  12. Application of Au-Sn eutectic bonding in hermetic radio-frequency microelectromechanical system wafer level packaging

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Choa, Sung-Hoon; Kim, Woonbae; Hwang, Junsik; Ham, Sukjin; Moon, Changyoul

    2006-03-01

    Development of packaging is one of the critical issues toward realizing commercialization of radio-frequency-microelectromechanical system (RF-MEMS) devices. The RF-MEMS package should be designed to have small size, hermetic protection, good RF performance, and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low-temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at temperatures below 300°C is used. Au-Sn multilayer metallization with a square loop of 70 µm in width is performed. The electrical feed-through is achieved by the vertical through-hole via filling with electroplated Cu. The size of the MEMS package is 1 mm × 1 mm × 700 µm. The shear strength and hermeticity of the package satisfies the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  13. Hybrid microcircuit board assembly with lead-free solders

    SciTech Connect

    Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    2000-01-11

    An assessment was made of the manufacturability of hybrid microcircuit test vehicles assembled using three Pb-free solder compositions 96.5Sn--3.5Ag (wt.%), 91.84Sn--3.33Ag--4.83Bi, and 86.85Sn--3.15Ag--5.0Bi--5.0Au. The test vehicle substrate was 96% alumina; the thick film conductor composition was 76Au--21Pt--3Pd. Excellent registration between the LCCC or chip capacitor packages and the thick film solder pads was observed. Reduced wetting of bare (Au-coated) LCCC castellations was eliminated by hot solder dipping the I/Os prior to assembly of the circuit card. The Pb-free solders were slightly more susceptible to void formation, but not to a degree that would significantly impact joint functionality. Microstructural damage, while noted in the Sn-Pb solder joints, was not observed in the Pb-free interconnects.

  14. Mechanical Solder Characterisation Under High Strain Rate Conditions

    NASA Astrophysics Data System (ADS)

    Meier, Karsten; Roellig, Mike; Wiese, Steffen; Wolter, Klaus-Juergen

    2010-11-01

    Using a setup for high strain rate tensile experiments the mechanical behavior of two lead-free tin based solders is investigated. The first alloy is SnAg1.3Cu0.5Ni. The second alloy has a higher silver content but no addition of Ni. Solder joints are the main electrical, thermal and mechanical interconnection technology on the first and second interconnection level. With the recent rise of 3D packaging technologies many novel interconnection ideas are proposed with innovative or visionary nature. Copper pillar, stud bump, intermetallic (SLID) and even spring like joints are presented in a number of projects. However, soldering will remain one of the important interconnect technologies. Knowing the mechanical properties of solder joints is important for any reliability assessment, especially when it comes to vibration and mechanical shock associated with mobile applications. Taking the ongoing miniaturization and linked changes in solder joint microstructure and mechanical behavior into account the need for experimental work on that issue is not satisfied. The tests are accomplished utilizing miniature bulk specimens to match the microstructure of real solder joints as close as possible. The dogbone shaped bulk specimens have a crucial diameter of 1 mm, which is close to BGA solder joints. Experiments were done in the strain rate range from 20 s-1 to 600 s-1. Solder strengthening has been observed with increased strain rate for both SAC solder alloys. The yield stress increases by about 100% in the investigated strain rate range. The yield level differs strongly. A high speed camera system was used to assist the evaluation process of the stress and strain data. Besides the stress and strain data extracted from the experiment the ultimate fracture strain is determined and the fracture surfaces are evaluated using SEM technique considering rate dependency.

  15. Fluxless laser soldering for electronic packaging

    SciTech Connect

    Hosking, F.M.; Keicher, D.M.

    1991-12-31

    Conventional soldering typically requires the use of reactive fluxes to promote wetting. The resulting flux residues are removed primarily with halogenated or chlorofluorocarbon (CFC) solvents. With the mandated phaseout of CFCs by the year 2000, there has been a concentrated effort to develop alternative, environmentally compatible manufacturing and cleaning technologies that will satisfy the restrictions placed on CFCs, but still yield high quality product. Sandia National Laboratories is currently evaluating a variety of alternative fluxless soldering technologies which can be applied to electronic packaging. Laser soldering in a controlled atmosphere has shown great potential as an environmentally compatible process. The effects of laser heating with a 100 watt CW Nd:YAG laser, joint design, and base/filler metal reactions on achieving fluxless wetting with good metallurgical bonds were examined. Satisfactory Ni-Au plated Kovar{reg_sign} solder joints were made with 80In-15Pb-5Ag and 63Sn-37Pb (wt. %) solder alloys in a slightly reducing cover gas. Wetting generally increased with increasing laser power, decreasing laser beam spot size, and decreasing part travel speed. The materials and processing interaction effects are identified and discussed.

  16. Fluxless laser soldering for electronic packaging

    SciTech Connect

    Hosking, F M; Keicher, D M

    1991-01-01

    Conventional soldering typically requires the use of reactive fluxes to promote wetting. The resulting flux residues are removed primarily with halogenated or chlorofluorocarbon (CFC) solvents. With the mandated phaseout of CFCs by the year 2000, there has been a concentrated effort to develop alternative, environmentally compatible manufacturing and cleaning technologies that will satisfy the restrictions placed on CFCs, but still yield high quality product. Sandia National Laboratories is currently evaluating a variety of alternative fluxless soldering technologies which can be applied to electronic packaging. Laser soldering in a controlled atmosphere has shown great potential as an environmentally compatible process. The effects of laser heating with a 100 watt CW Nd:YAG laser, joint design, and base/filler metal reactions on achieving fluxless wetting with good metallurgical bonds were examined. Satisfactory Ni-Au plated Kovar{reg sign} solder joints were made with 80In-15Pb-5Ag and 63Sn-37Pb (wt. %) solder alloys in a slightly reducing cover gas. Wetting generally increased with increasing laser power, decreasing laser beam spot size, and decreasing part travel speed. The materials and processing interaction effects are identified and discussed.

  17. Solderability test system

    DOEpatents

    Yost, Fred; Hosking, Floyd M.; Jellison, James L.; Short, Bruce; Giversen, Terri; Reed, Jimmy R.

    1998-01-01

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.

  18. Solderability test system

    DOEpatents

    Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.

    1998-10-27

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.

  19. A novel method for direct solder bump pull testing using lead-free solders

    NASA Astrophysics Data System (ADS)

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  20. Soldering In Space Investigation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This video captures Mike Fincke melting solder during the first set of planned In-Space Soldering Investigation (ISSI) experiments onboard the International Space Station (ISS). In the video, Fincke touches the tip of the soldering iron to a wire wrapped with rosin-core solder. Review of the experiment video revealed melting kinetics, wetting characteristics, and equilibrium shape attainment of the solder charge. The main photograph shows the results of feeding solder wire onto a heated surface. Here the solder is still attached with the spool seen floating in the foreground of the image. The inset photograph at right, shows a set of three simple melting experiments in which the solder, not affected by gravity, achieved an unexpected equilibrium football shape on the wire. Samples returned to Earth were examined for porosity and flux distribution as well as micro structural development. ISSI's purpose was to find out how solder behaves in a weightless environment and promote our knowledge of fabrication and repair techniques that might be employed during extended space exploration missions.

  1. Soldering In Space Investigation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This video captures Mike Fincke melting solder during the first set of planned In-Space Soldering Investigation (ISSI) experiments onboard the International Space Station (ISS). In the video, Fincke touches the tip of the soldering iron to a wire wrapped with rosin-core solder.Review of the experiment video revealed melting kinetics, wetting characteristics, and equilibrium shape attainment of the solder charge. The main photograph shows the results of feeding solder wire onto a heated surface. Here the solder is still attached with the spool seen floating in the foreground of the image. The inset photograph at right, shows a set of three simple melting experiments in which the solder, not affected by gravity, achieved an unexpected equilibrium football shape on the wire. Samples returned to Earth were examined for porosity and flux distribution as well as micro structural development. ISSI's purpose was to find out how solder behaves in a weightless environment and promote our knowledge of fabrication and repair techniques that might be employed during extended space exploration missions.

  2. Pull strength evaluation of Sn-Pb solder joints made to Au-Pt-Pd and Au thick film structures on low-temperature co-fired ceramic -final report for the MC4652 crypto-coded switch (W80).

    SciTech Connect

    Uribe, Fernando; Vianco, Paul Thomas; Zender, Gary L.

    2006-06-01

    A study was performed that examined the microstructure and mechanical properties of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to thick film layers on low-temperature co-fired (LTCC) substrates. The thick film layers were combinations of the Dupont{trademark} 4596 (Au-Pt-Pd) conductor and Dupont{trademark} 5742 (Au) conductor, the latter having been deposited between the 4596 layer and LTCC substrate. Single (1x) and triple (3x) thicknesses of the 4596 layer were evaluated. Three footprint sizes were evaluated of the 5742 thick film. The solder joints exhibited excellent solderability of both the copper (Cu) lead and thick film surface. In all test sample configurations, the 5742 thick film prevented side wall cracking of the vias. The pull strengths were in the range of 3.4-4.0 lbs, which were only slightly lower than historical values for alumina (Al{sub 2}O{sub 3}) substrates. General (qualitative) observations: (a) The pull strength was maximized when the total number of thick film layers was between two and three. Fewer that two layers did not develop as strong of a bond at the thick film/LTCC interface; more than three layers and of increased footprint area, developed higher residual stresses at the thick film/LTCC interface and in the underlying LTCC material that weakened the joint. (b) Minimizing the area of the weaker 4596/LTCC interface (e.g., larger 5742 area) improved pull strength. Specific observations: (a) In the presence of vias and the need for the 3x 4596 thick film, the preferred 4596:5742 ratio was 1.0:0.5. (b) For those LTCC components that require the 3x 4596 layer, but do not have vias, it is preferred to refrain from using the 5742 layer. (c) In the absence of vias, the highest strength was realized with a 1x thick 5742 layer, a 1x thick 4596 layer, and a footprint ratio of 1.0:1.0.

  3. Thermal Stress of Surface Oxide Layer on Micro Solder Bumps During Reflow

    NASA Astrophysics Data System (ADS)

    Key Chung, C.; Zhu, Z. X.; Kao, C. R.

    2015-02-01

    Micro-bumps are now being developed with diameters smaller than 10 μm. At these dimensions, only very small amounts of solder are used to form the interconnections. Surface oxidation of such small micro-bumps is a critical issue. The key question is whether the oxide film on the solder bumps acts as a barrier to formation of solder joints. In this work, the mechanical stability of the oxide layer on solder bumps was investigated. Solder bumps with 35- μm radii were heated for different times. Auger electron spectroscopy was used to determine the thickness of the oxide layer on the solder bumps. Solder bumps with known oxide layer thicknesses were then heated in a low-oxygen environment (<50 ppm) until they melted. The mechanical stability of the oxide layer was observed by use of a high-speed camera. Results showed that a 14-nm-thick oxide layer on a solder bump of radius 35 μm was able to withstand the molten solder without cracking, leading to a non-wetting solder joint. A thermal stress model of the surface oxide layer revealed that the stress varied substantially with bump size and temperature, and increased almost linearly with temperature. Upon melting, the thermal stress on the oxide increased abruptly, because of the higher thermal expansion of molten solder compared with its solid state. On the basis of the experimental results and the thermal stress model of the oxide film, the maximum oxide thickness that can be tolerated to form a solder joint was determined, e.g. 14 nm oxide can support liquid solder, and thus lead to a non-wetting condition. This work provided a new method of determination of the maximum stress of oxide film for solder joint formation.

  4. Mask-less deposition of Au-SnO2 nanocomposites on CMOS MEMS platform for ethanol detection.

    PubMed

    Santra, S; Sinha, A K; De Luca, A; Ali, S Z; Udrea, F; Guha, P K; Ray, S K; Gardner, J W

    2016-03-29

    Here we report on the mask-less deposition of Au-SnO2 nanocomposites with a silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) micro electro mechanical system (MEMS) platform through the use of dip pen nanolithography (DPN) to create a low-cost ethanol sensor. MEMS technology is used in order to achieve low power consumption, by the employment of a membrane structure formed using deep reactive ion etching technique. The device consists of an embedded tungsten micro-heater with gold interdigitated electrodes on top of the SOI membrane. The tungsten micro-heater is used to raise the membrane temperature up to its operating temperature and the electrodes are used to measure the resistance of the nanocomposite sensing layer. The CMOS MEMS devices have high electro-thermal efficiency, with 8.2 °C temperature increase per mW power of consumption. The sensing material (Au-SnO2 nanocomposite) was synthesised starting from SnO nanoplates, then Au nanoparticles were attached chemically to the surface of SnO nanoplates, finally the mixture was heated at 700 °C in an oven in air for 4 h. This composite material was sonicated for 2 h in terpineol to make a viscous homogeneous slurry and then 'written' directly across the electrode area using the DPN technique without any mask. The devices were characterised by exposure to ethanol vapour in humid air in the concentration range of 100-1000 ppm. The sensitivity varied from 1.2 to 0.27 ppm(-1) for 100-1000 ppm of ethanol at 10% relative humid air. Selectivity measurements showed that the sensors were selective towards ethanol when they were exposed to acetone and toluene. PMID:26890414

  5. Mask-less deposition of Au-SnO2 nanocomposites on CMOS MEMS platform for ethanol detection

    NASA Astrophysics Data System (ADS)

    Santra, S.; Sinha, A. K.; De Luca, A.; Ali, S. Z.; Udrea, F.; Guha, P. K.; Ray, S. K.; Gardner, J. W.

    2016-03-01

    Here we report on the mask-less deposition of Au-SnO2 nanocomposites with a silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) micro electro mechanical system (MEMS) platform through the use of dip pen nanolithography (DPN) to create a low-cost ethanol sensor. MEMS technology is used in order to achieve low power consumption, by the employment of a membrane structure formed using deep reactive ion etching technique. The device consists of an embedded tungsten micro-heater with gold interdigitated electrodes on top of the SOI membrane. The tungsten micro-heater is used to raise the membrane temperature up to its operating temperature and the electrodes are used to measure the resistance of the nanocomposite sensing layer. The CMOS MEMS devices have high electro-thermal efficiency, with 8.2 °C temperature increase per mW power of consumption. The sensing material (Au-SnO2 nanocomposite) was synthesised starting from SnO nanoplates, then Au nanoparticles were attached chemically to the surface of SnO nanoplates, finally the mixture was heated at 700 °C in an oven in air for 4 h. This composite material was sonicated for 2 h in terpineol to make a viscous homogeneous slurry and then ‘written’ directly across the electrode area using the DPN technique without any mask. The devices were characterised by exposure to ethanol vapour in humid air in the concentration range of 100-1000 ppm. The sensitivity varied from 1.2 to 0.27 ppm-1 for 100-1000 ppm of ethanol at 10% relative humid air. Selectivity measurements showed that the sensors were selective towards ethanol when they were exposed to acetone and toluene.

  6. Reduced oxide soldering activation (ROSA) PWB solderability testing

    SciTech Connect

    Hernandez, C.L.; Hosking, F.M.; Reed, J.; Tench, D.M.; White, J.

    1996-02-01

    The effect of ROSA pretreatment on the solderability of environmentally stressed PWB test coupons was investigated. The PWB surface finish was an electroplated, reflowed solder. Test results demonstrated the ability to recover plated-through-hole fill of steam aged samples with solder after ROSA processing. ROSA offers an alternative method for restoring the solderability of aged PWB surfaces.

  7. Electromigration enhanced kinetics of copper-tin intermetallic compounds in lead-free solder joints and copper low-k dual damascene processing using step and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Chao, Huang-Lin

    This dissertation constitutes two major sections. In the first major section, a kinetic analysis was established to investigate the electromigration (EM), enhanced intermetallic compound (IMC) growth and void formation for Sn-based Pb-free solder joints to Cu under bump metallization (UBM). The model takes into account the interfacial intermetallic reaction, Cu-Sn interdiffusion, and current stressing. A new approach was developed to derive atomic diffusivities and effective charge numbers based on Simulated Annealing (SA) in conjunction with the kinetic model. The finite difference (FD) kinetic model based on this approach accurately predicted the intermetallic compound growth when compared to empirical observation. The ultimate electromigration failure of the solder joints was caused by extensive void formation at the intermetallic interface. The void formation mechanism was analyzed by modeling the vacancy transport under electromigration. The effects of current density and Cu diffusivity in Sn solder were also investigated with the kinetic model. The second major section describes the integration of Step and Flash Imprint Lithography (S-FILRTM) into an industry standard Cu/low-k dual damascene process. The yield on a Back End Of the Line (BEOL) test vehicle that contains standard test structures such as via chains with 120 nm vias was established by electrical tests. S-FIL shows promise as a cost effective solution to patterning sub 45 nm features and is capable of simultaneously patterning two levels of interconnect structures, which provides a low cost BEOL process. The critical processing step in the integration is the reactive ion etching (RIE) process that transfers the multilevel patterns to the inter-level dielectrics (ILD). An in-situ, multistep etch process was developed that gives excellent pattern structures in two industry standard Chemical Vapor Deposited (CVD) low-k dielectrics. The etch process showed excellent pattern fidelity and a wide process

  8. Nanocopper Based Solder-Free Electronic Assembly

    NASA Astrophysics Data System (ADS)

    Schnabl, K.; Wentlent, L.; Mootoo, K.; Khasawneh, S.; Zinn, A. A.; Beddow, J.; Hauptfleisch, E.; Blass, D.; Borgesen, P.

    2014-12-01

    CuantumFuse nano copper material has been used to assemble functional LED test boards and a small camera board with a 48 pad CMOS sensor quad-flat no-lead chip and a 10 in flexible electronics demo. Drop-in replacement of solder, by use of stencil printing and standard surface mount technology equipment, has been demonstrated. Applications in space and commercial systems are currently under consideration. The stable copper-nanoparticle paste has been examined and characterized by scanning electron microscopy and high-resolution transmission electron microscopy; this has shown that the joints are nanocrystalline but with substantial porosity. Assessment of reliability is expected to be complicated by this and by the effects of thermal and strain-enhanced coarsening of pores. Strength, creep, and fatigue properties were measured and results are discussed with reference to our understanding of solder reliability to assess the potential of this nano-copper based solder alternative.

  9. Intelligent laser soldering inspection and process control

    NASA Technical Reports Server (NTRS)

    Vanzetti, Riccardo

    1987-01-01

    Component assembly on printed circuitry keeps making giant strides toward denser packaging and smaller dimensions. From a single layer to multilayer, from through holes to surface mounted components and tape applied bonds, unrelenting progress results in new, difficult problems in assembling, soldering, inspecting and controlling the manufacturing process of the new electronics. Among the major problems are the variables introduced by human operators. The small dimensions and the tight assembly tolerances are now successfully met by machines which are faster and more precise than the human hand. The same is true for soldering. But visual inspection of the solder joints is now so severely limited by the ever shrinking area accessible to the human eye that the inspector's diagnosis cannot be trusted any longer. Solutions to correcting these problems are discussed.

  10. Removing Dross From Molten Solder

    NASA Technical Reports Server (NTRS)

    Webb, Winston S.

    1990-01-01

    Automatic device helps to assure good solder connections. Machine wipes dross away from area on surface of molten solder in pot. Sweeps across surface of molten solder somewhat in manner of windshield wiper. Each cycle of operation triggered by pulse from external robot. Equipment used wherever precise, automated soldering must be done to military specifications.

  11. An Evaluation of Prototype Circuit Boards Assembled with a Sn-Ag Bi Solder

    SciTech Connect

    ARTAKI,I.; RAY,U.; REJENT,JEROME A.; VIANCO,PAUL T.

    1999-09-01

    An evaluation was performed which examined the aging of surface mount solder joints assembled with 91.84Sn-3.33Ag-4.83Bi solder. Defect analysis of the as-fabricated test vehicles revealed excellent solderability, good package alignment, and a minimum number of voids. Continuous DC electrical monitoring of the solder joints did not reveal opens during as many as 10,000 thermal cycles (0 C, 100 C). The solder joints exhibited no significant degradation through 2500 cycles, based upon an absence of microstructural damage and sustained shear and pull strengths of chip capacitors and J-leaded solder joints, respectively. Thermal cycles of 5000 and 10,000 resulted in some surface cracking of the solder fillets and coatings. In a few cases, deeper cracks were observed in the thinner reaches of several solder fillets. There was no deformation or cracking in the solder located in the gap between the package I/O and the circuit board pad nor in the interior of the fillets, both locations that would raise concerns of joint mechanical integrity. A drop in the chip capacitor shear strength was attributed to crack growth near the top of the fillet.

  12. Direct-soldering 6061 aluminum alloys with ultrasonic coating.

    PubMed

    Ding, Min; Zhang, Pei-lei; Zhang, Zhen-yu; Yao, Shun

    2010-02-01

    In this study, the authors applied furnace soldering with ultrasonic coating method to solder 6061 aluminum alloy and investigated the effects of both coating time and soldering temperature on its properties. The following results were obtained: firstly, the solder region mainly composed of four kinds of microstructure zones: rich Sn zone, rich-Pb zone, Sn-Pb eutectic phase and rich Al zone. Meanwhile, the microanalysis identified a continuous reaction product at the alumina-solder interface as a rich-Pb zone. Therefore, the joint strength changed with soldering time and soldering temperature. Secondly, the tensile data had significantly greater variability, with values ranging from 13.99MPa to 24.74MPa. The highest value was obtained for the samples coated with Sn-Pb-Zn alloy for 45s. Fractures occurred along the solder-alumina interface for the 6061 aluminum alloy with its surface including hybrid tough fracture of dimple and tear ridge. The interface could initially strip at the rich Bi zone with the effect of shear stress. PMID:19900830

  13. Solder Bonding for Power Transistors

    NASA Technical Reports Server (NTRS)

    Snytsheuvel, H. A.; Mandel, H.

    1985-01-01

    Indium solder boosts power rating and facilitates circuit changes. Efficient heat conduction from power transistor to heat sink provided by layer of indium solder. Low melting point of indium solder (141 degrees C) allows power transistor to be removed, if circuit must be reworked, without disturbing other components mounted with ordinary solder that melts at 181 degrees C. Solder allows devices operated at higher power levels than does conventional attachment by screws.

  14. Laser forward transfer of solder paste for microelectronics fabrication

    NASA Astrophysics Data System (ADS)

    Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Ray C.; Kim, Heungsoo; Piqué, Alberto

    2015-03-01

    The progressive miniaturization of electronic devices requires an ever-increasing density of interconnects attached via solder joints. As a consequence, the overall size and spacing (or pitch) of these solder joint interconnects keeps shrinking. When the pitch between interconnects decreases below 200 μm, current technologies, such as stencil printing, find themselves reaching their resolution limit. Laser direct-write (LDW) techniques based on laser-induced forward transfer (LIFT) of functional materials offer unique advantages and capabilities for the printing of solder pastes. At NRL, we have demonstrated the successful transfer, patterning, and subsequent reflow of commercial Pb-free solder pastes using LIFT. Transfers were achieved both with the donor substrate in contact with the receiving substrate and across a 25 μm gap, such that the donor substrate does not make contact with the receiving substrate. We demonstrate the transfer of solder paste features down to 25 μm in diameter and as large as a few hundred microns, although neither represents the ultimate limit of the LIFT process in terms of spatial dimensions. Solder paste was transferred onto circular copper pads as small as 30 μm and subsequently reflowed, in order to demonstrate that the solder and flux were not adversely affected by the LIFT process.

  15. Environmentally compatible solder materials for thick film hybrid assemblies

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Rejent, J.A.; Hernandez, C.L.

    1997-02-01

    New soldering materials and processes have been developed over the last several years to address a variety of environmental issues. One of the primary efforts by the electronics industry has involved the development of alternative solders to replace the traditional lead-containing alloys. Sandia National Laboratories is developing such alternative solder materials for printed circuit board and hybrid microcircuit (HMC) applications. This paper describes the work associated with low residue, lead-free soldering of thick film HMC`s. The response of the different materials to wetting, aging, and mechanical test conditions was investigated. Hybrid test vehicles were designed and fabricated with a variety of chip capacitors and leadless ceramic chip carriers to conduct thermal, electrical continuity, and mechanical evaluations of prototype joints. Microstructural development along the solder and thick film interface, after isothermal solid state aging over a range of elevated temperatures and times, was quantified using microanalytical techniques. Flux residues on soldered samples were stressed (temperature-humidity aged) to identify potential corrosion problems. Mechanical tests also supported the development of a solder joint lifetime prediction model. Progress of this effort is summarized.

  16. Solder extrusion pressure bonding process and bonded products produced thereby

    DOEpatents

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  17. Solder extrusion pressure bonding process and bonded products produced thereby

    DOEpatents

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.

    1992-01-01

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  18. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1990-01-01

    An automatic dross removal apparatus is disclosed for removing dross from the surface of a solder bath in an automated electric component handling system. A rotatable wiper blade is positioned adjacent the solder bath which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit causes a motor to rotate the wiper arm one full rotational cycle each time a pulse is received from a robot controller as a component approaches the solder bath.

  19. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1992-01-01

    An automatic dross removal apparatus (10) is disclosed for removing dross from the surface of a solder bath (22) in an automated electric component handling system. A rotatable wiper blade (14) is positioned adjacent the solder bath (22) which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit (34) causes a motor (32) to rotate the wiper arm (14) one full rotational cycle each time a pulse is received from a robot controller (44) as a component approaches the solder bath (22).

  20. Threshold current density of electromigration in eutectic SnPb solder

    SciTech Connect

    Yeh, Y.T.; Chou, C.K.; Hsu, Y.C.; Chen Chih; Tu, K.N.

    2005-05-16

    Electromigration has emerged as an important reliability issue in the microelectronics packaging industry since the dimension of solder joints has continued to shrink. In this letter, we report a technique that enables the precise measurement of the important parameters of solder electromigration, such as activation energy, critical length, threshold current density, effective charge numbers, and electromigration rate. Patterned Cu/Ti films in a Si trench were employed for eutectic SnPb solder to be reflowed on, and thus solder Blech specimens were fabricated. Atomic force microscope was used to measure the depletion volume caused by electromigration on the cathode end. The threshold current density is estimated to be 8.5x10{sup 3} A/cm{sup 2} at 100 deg. C, which relates directly to the maximum allowable current that a solder joint can carry without electromigration damage. This technique facilitates the scientifically systematic investigation of electromigration in solders.

  1. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  2. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  3. Microstructural Characterization and Mechanical Performance of Wafer-Level SLID Bonded Au-Sn and Cu-Sn Seal Rings for MEMS Encapsulation

    NASA Astrophysics Data System (ADS)

    Rautiainen, Antti; Xu, Hongbo; Österlund, Elmeri; Li, Jue; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2015-11-01

    Special applications, such as microelectromechanical systems (MEMS), often require hermetic sealing in order to achieve a desired operation. Solid-liquid interdiffusion (SLID) bonding is an attractive method for encapsulating MEMS devices at the wafer-level, providing, e.g., high re-melt temperatures and tolerance for topographical variations. Several different SLID bond solutions have been investigated; however, there are only a limited number of published reliability studies available. In this paper, wafer-level Au-Sn and Cu-Sn SLID seal rings were mechanically characterized with shear and tensile tests. The evolution of bond microstructures and consequent effects on mechanical reliability were evaluated with a mixed flow gas test, a high temperature storage test and a thermal shock (TS) test. Virgin samples showed high mechanical strength. The Au-Sn system, with a thin Ni layer between the TiW adhesion layer and the bond, demonstrated a shear strength of 170 MPa. Cu-Sn, with a Cu-Cu3Sn-Cu structure, exhibited a shear strength of 275 MPa. Statistically significant decreases in strength were identified after reliability tests. The shear strength of the Au-Sn bond with an (AuSn + Au5Sn)eut structure decreased 40% in a corrosive environment. After 3000 TS cycles, the tensile strength of the Cu-Sn bond reduced by 45%. Fracture surface analysis revealed through-bond failures that were not observed previously. In cross-sectional analysis, vertical cracks were observed, which may contribute to the decrease in tensile strength.

  4. Control of Surface Plasmon Resonance of Au/SnO2 by Modification with Ag and Cu for Photoinduced Reactions under Visible-Light Irradiation over a Wide Range.

    PubMed

    Tanaka, Atsuhiro; Hashimoto, Keiji; Kominami, Hiroshi

    2016-03-18

    Gold particles supported on tin(IV) oxide (0.2 wt% Au/SnO2) were modified with copper and silver by the multistep photodeposition method. Absorption around λ=550 nm, attributed to surface plasmon resonance (SPR) of Au, gradually shifted to longer wavelengths on modification with Cu and finally reached λ=620 nm at 0.8 wt% Cu. On the other hand, the absorption shifted to shorter wavelength with increasing amount of Ag and reached λ=450 nm at 0.8 wt% Ag. These Cu- and Ag-modified 0.2 wt% Au/SnO2 materials (Cu-Au/SnO2 and Ag-Au/SnO2) and 1.0 wt% Au/SnO2 were used for mineralization of formic acid to carbon dioxide in aqueous suspension under irradiation with visible light from a xenon lamp and three kinds of light-emitting diodes with different wavelengths. The reaction rates for the mineralization of formic acid over these materials depend on the wavelength of light. Apparent quantum efficiencies of Cu-Au/SnO2, Au/SnO2, and Ag-Au/SnO2 reached 5.5% at 625 nm, 5.8% at 525 nm, and 5.1% at 450 nm, respectively. These photocatalysts can also be used for selective oxidation of alcohols to corresponding carbonyl compounds in aqueous solution under visible-light irradiation. Broad responses to visible light in formic acid mineralization and selective alcohol oxidation were achieved when the three materials were used simultaneously. PMID:26880569

  5. Effect of Ni and Pd Addition on Mechanical, Thermodynamic, and Electronic Properties of AuSn4-Based Intermetallics: A Density Functional Investigation

    NASA Astrophysics Data System (ADS)

    Tian, Yali; Zhou, Wei; Wu, Ping

    2016-05-01

    The effects of Ni and Pd addition on the mechanical, thermodynamic, and electronic properties of AuSn4-based intermetallic compounds (IMCs) have been investigated by first-principles calculations to reveal the essence of Au embrittlement. Three kinds of doped (namely Ni-doped, Pd-doped, and Ni/Pd-codoped) IMCs are considered in this work. The polycrystalline elastic properties are deduced from single-crystal elastic constants. It is found that the doped systems together with nondoped AuSn4 are all ductile phases. For Ni-doped AuSn4, the modulus, hardness, brittleness, Debye temperature, and minimum thermal conductivity increase with the Ni fraction, but this is not the case for the Pd-doped material, since Au0.75Pd0.25Sn4 is the more brittle phase. For Au0.5Pd0.25Ni0.25Sn4, the mechanical, thermodynamic, and electronic properties are similar to those of Au0.5Pd0.5Sn4.

  6. Effect of Ni and Pd Addition on Mechanical, Thermodynamic, and Electronic Properties of AuSn4-Based Intermetallics: A Density Functional Investigation

    NASA Astrophysics Data System (ADS)

    Tian, Yali; Zhou, Wei; Wu, Ping

    2016-08-01

    The effects of Ni and Pd addition on the mechanical, thermodynamic, and electronic properties of AuSn4-based intermetallic compounds (IMCs) have been investigated by first-principles calculations to reveal the essence of Au embrittlement. Three kinds of doped (namely Ni-doped, Pd-doped, and Ni/Pd-codoped) IMCs are considered in this work. The polycrystalline elastic properties are deduced from single-crystal elastic constants. It is found that the doped systems together with nondoped AuSn4 are all ductile phases. For Ni-doped AuSn4, the modulus, hardness, brittleness, Debye temperature, and minimum thermal conductivity increase with the Ni fraction, but this is not the case for the Pd-doped material, since Au0.75Pd0.25Sn4 is the more brittle phase. For Au0.5Pd0.25Ni0.25Sn4, the mechanical, thermodynamic, and electronic properties are similar to those of Au0.5Pd0.5Sn4.

  7. Microstructure and Solderability of Zn-6Al- xSn Solders

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Hu, Wei; Yan, Xin; Lei, Yongping

    2015-04-01

    The eutectic point of Zn-6Al alloy is 381°C, and the peritectic reaction of Zn-Al-Sn alloy occurs at 280°C. In order to find an alloy with an appropriate melting point between 280°C and 340°C, Zn-6Al-5Sn, Zn-6Al-10Sn, Zn-6Al-15Sn, and Zn-6Al-20Sn alloys were prepared. The microstructure, melting behavior, and wettability of the Zn-6Al- xSn solder alloys were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and the sessile drop method. The results show that the alloys were composed of Zn-rich phase, Zn-Al structure, Sn-Zn-Al peritectic structure, and Sn-Zn eutectic structure. The progressive decrease of the liquidus temperature of the Zn-6Al- xSn solders was confirmed by the DSC results in the order: Zn-6Al-5Sn, Zn-6Al-10Sn, Zn-6Al-15Sn, Zn-6Al-20Sn. A decrease of the wetting angle, selected for evaluation of the solderability of the Zn-6Al- xSn solders, was observed in the same order. The cross-section of a solder joint on a Cu substrate was examined by SEM coupled with energy-dispersive x-ray (EDS) analysis.

  8. Wetting studies of lead-free solders on lead-free PWB finishes

    NASA Astrophysics Data System (ADS)

    Sattiraju, Seshagirirao Venkata

    as-received, aged and after multiple reflow cycles on Sn PWB test coupons to understand their effect on the growth of oxides and intermetallic compounds. Sn is the best finish in the as-received, unaged condition with all the Pb-free solders tested. It loses its solderability after extended storage and after multiple reflow cycles. The Sn finish is also cheaper compared to other alternatives such as Ag and Ni/Au finishes. Ni/Au and Ag finishes appear to be equal after multiple reflow cycles with all Pb-free solders tested. Halo formation was observed on Ni/Au board finishes with certain solder alloys. Many investigations such as line scans and spot chemical analysis were conducted on the halo to understand the mechanism involved. It was concluded that the halo formation was due to the formation of the Au-Sn intermetallic compounds. Finally, growth of intermetallic compounds at different aging temperatures for different combinations of solders and finishes has been studied and is reported. It appears that the modeling of the growth of IMCs on Sn and Ag PWB finishes based on a completely parabolic growth model may be insufficient. Diffusion is the predominant mechanism for the growth of the Ni-Sn IMCs. NiAu finish has the least thickness of the total intermetallic layer.

  9. Development of a soft-soldering system for aluminum

    NASA Astrophysics Data System (ADS)

    Falke, W. L.; Lee, A. Y.; Neumeier, L. A.

    1983-03-01

    The method employs application of a thin nickel copper alloy coating to the substrate, which enables the tin lead solders to wet readily and spread over the areas to be joined. The aluminum substrate is mechanically or chemically cleaned to facilitate bonding to a minute layer of zinc that is subsequently applied, with an electroless zincate solution. The nickel copper alloy (30 to 70 pct Ni) coating is then applied electrolytically over the zinc, using immersion cell or brush coating techniques. Development of acetate electrolytes has permitted deposition of the proper alloys coatings. The coated areas can then be readily joined with conventional tin lead solders and fluxs. The joints so formed are ductile, strong, and relatively corrosion resistant, and exhibit strengths equivalent to those formed on copper and brass when the same solders and fluxes are used. The method has also been employed to soft solder magnesium alloys.

  10. Solder fatigue reduction in point focus photovoltaic concentrator modules

    SciTech Connect

    Hund, T.D.; Burchett, S.N.

    1991-01-01

    Solder fatigue tests have been conducted on point focus photovoltaic concentration cell assemblies to identify a baseline fatigue life and to quantify the fatigue life improvements that result using a copper-molybdenum-copper low-expansion insert between the solar cell and copper heat spreader. Solder microstructural changes and fatigue crack growth were identified using cross sections and ultrasonic scans of the fatigue solder joints. The Coffin-Manson and Total Strain fatigue models for low-cycle fatigue were evaluated for use in fatigue life predictions. Since both of these models require strain calculations, two strain calculation methods were compared: hand-calculated shear strain and a finite element method shear strain. At present, the available theoretical models for low-cycle solder fatigue are limited in their ability to predict failure; consequently, extensive thermal cycling is continuing to define the fatigue life for point focus photovoltaic cell assemblies. 9 refs., 9 figs., 2 tabs.

  11. A new active solder for joining electronic components

    SciTech Connect

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.; LUGSCHEIDER,E.; RASS,I.; HILLEN,F.

    2000-05-11

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  12. Thermomigration: An experimental damage mechanics study on nanoelectronic lead free solder alloys

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Mohd Foad

    This dissertation focuses on experimental study of thermomigration in lead-free solder alloys. Thermomigration in microelectronic solder joints was not a concern until significant miniaturization of electronics devices required to run high current densities with smaller solder joint sizes. High current density induces electromigration and Joule heating at the same time. The imbalance of Joule heating generated at top and bottom of solder joint causes a temperature gradient which is large enough to induce thermomigration damage. In the literature, most studies report electromigration induced damage without considering the influence of thermomigration, thus the effect of electromigration and thermomigration can not be individually identified. This dissertation studies the experimental damage mechanics of thermomigration without electromigration by studying formation and destruction of intermetallic compound, and vacancy migration due to diffusion driving forces. Microstructural degradation and hardness testing were used to quantify thermomigration induced damage. After studying material science and physics behind the thermomigration process, using test vehicles, the combined effects of electromigration and thermomigration were studied experimentally. The studies were repeated at a subzero temperatures to see the effect of low temperature on thermomigration and electromigration, and reliability of nanoelectronic solder joints. A new time to failure equation is proposed to show a threshold temperature below which diffusion slows down significantly. By ensuring the solder operating temperature is well kept below the threshold value by proper thermal management, the solder joint life can be extended.

  13. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers

    SciTech Connect

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

    2009-10-29

    The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  14. Synthesis of Au/SnO{sub 2} core-shell structure nanoparticles by a microwave-assisted method and their optical properties

    SciTech Connect

    Yu, Yeon-Tae; Dutta, Prabir

    2011-02-15

    Au/SnO{sub 2} core-shell structure nanoparticles were synthesized using the microwave hydrothermal method. The optical and morphological properties of these particles were examined and compared with those obtained by the conventional hydrothermal method. In microwave preparation, the peak position of the UV-visible plasmon absorption band of Au nanoparticles was red-shifted from 520 to 543 nm, due to the formation of an SnO{sub 2} shell. An SnO{sub 2} shell formation was complete within 5 min. The thickness of the SnO{sub 2} shell was 10-12 nm, and the primary particle size of SnO{sub 2} crystallites was 3-5 nm. For the core-shell particles prepared by a conventional hydrothermal method, the shell formed over the entire synthesis period and was not as crystalline as those produced, using the microwave method. The relationship between the morphological and spectroscopic properties and the crystallinity of the SnO{sub 2} shell are discussed. -- Graphical abstract: In microwave preparation, the peak position of UV-visible absorption band of Au nanoparticles was red-shifted from 520 to 543 nm, due to the formation of an SnO{sub 2} shell with high crystallinity. Display Omitted Research highlights: > Au/SnO{sub 2} core-shell structure NPs were synthesized by the microwave-assisted method. > The peak position of an SP band of Au/SnO{sub 2} colloid was red-shifted till 543 nm. > The particles size of an SnO{sub 2} in the shell layer was 3-5 nm. > The crystallinity of an SnO{sub 2} shell was increased by the microwave hydrothermal reaction.

  15. Silver nanosintering: a lead-free alternative to soldering

    NASA Astrophysics Data System (ADS)

    Maruyama, Minoru; Matsubayashi, Ryo; Iwakuro, Hiroaki; Isoda, Seiji; Komatsu, Teruo

    2008-07-01

    We propose a lead-free silver paste as a replacement for a high-temperature lead-rich solder used for electronics. The pastes tested here contain a small amount of solvent, but primarily consist of silver powder and alkoxide-passivated silver nanoparticles that undergo nanosintering when heated. The pastes were used to connect silicon diode chips to copper bases at 350°C in nitrogen ambient without external pressure. The resulting diode packages had electrical and thermal properties about equal to those with lead-solder joints. The mechanical strengths also were comparable to the lead joint. These properties make this nanosilver paste the first viable lead-free alternative to a lead solder.

  16. Relationship between morphologies and orientations of Cu{sub 6}Sn{sub 5} grains in Sn3.0Ag0.5Cu solder joints on different Cu pads

    SciTech Connect

    Tian, Yanhong Zhang, Rui; Hang, Chunjin; Niu, Lina; Wang, Chunqing

    2014-02-15

    The morphologies and orientations of Cu{sub 6}Sn{sub 5} intermetallic compounds in the Sn3.0Ag0.5Cu solder joints both on polycrystalline and single crystal Cu pads under different peak reflow temperatures and times above liquids were investigated. The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified. At the interface of Sn3.0Ag0.5Cu/polycrystalline Cu pad, scalloped Cu{sub 6}Sn{sub 5} intermetallic compounds formed at 250 °C and roof shape Cu{sub 6}Sn{sub 5} formed at 300 °C. Both scalloped Cu{sub 6}Sn{sub 5} and roof shape Cu{sub 6}Sn{sub 5} had a preferred orientation of (0001) plane being parallel to polycrystalline Cu pad surface. Besides, the percentage of large angle grain boundaries increased as the peak reflow temperature rose. At the interface of Sn3.0Ag0.5Cu/(111) single crystal Cu pad, the Cu{sub 6}Sn{sub 5} intermetallic compounds were mainly scallop-type at 250 °C and were prism type at 300 °C. The prismatic Cu{sub 6}Sn{sub 5} grains grew along the three preferred directions with the inter-angles of 60° on (111) single crystal Cu pad while along two perpendicular directions on (100) single crystal Cu pad. The orientation relationship between Cu{sub 6}Sn{sub 5} grains and the single crystal Cu pads was investigated by electron backscatter diffraction technology. In addition, two types of hollowed Cu{sub 6}Sn{sub 5} intermetallic compounds were found inside the joints of polycrystalline Cu pads. The long hexagonal Cu{sub 6}Sn{sub 5} strips were observed in the joints reflowing at 250 °C while the hollowed Cu{sub 6}Sn{sub 5} strips with the ‘▪’ shape cross-sections appeared at 300 °C, which was attributed to the different grain growth rates of different Cu{sub 6}Sn{sub 5} crystal faces. - Highlights: • The orientation of interfacial Cu{sub 6}Sn{sub 5} grains was obtained by EBSD technology. • Two types of hollowed Cu{sub 6}Sn{sub 5} strips were found at different temperatures. • The formation

  17. Development of aluminum, manganese, and zinc-doped tin-silver-copper-X solders for electronic assembly

    NASA Astrophysics Data System (ADS)

    Boesenberg, Adam James

    The global electronic assembly community is striving for a robust replacement for leaded solders due to increased environmental regulations. A family of Pb-free solder alloys based on Sn-Ag-Cu (SAC) compositions has shown promise; but reliability issues in certain assembly and operating environments have arisen. Elemental (X) additions (Al, Mn, Zn) to SAC3595 were developed recently for better control of heterogeneous nucleation in solder joint solidification. Cu substrate solderability of these SAC+X alloys was investigated at concentrations between 0.01-0.25 wt. % using globule wetting balance tests due to concern about increased oxidation during reflow. Asymmetric four point bend (AFPB) tests were conducted on as-soldered and thermally aged specimens to investigate correlation between decreased shear strength and extended aging time; a common phenomenon seen in solder joints in service. Composition dependence of these X additions also was explored in simplified Cu joints by differential scanning calorimetry (DSC) and joint microstructure analysis to determine the coupling between undercooling and solidification morphology on single and multiple reflow cycles. Interesting observations by methods such as x-ray diffraction (XRD) and nano-indentation of SAC solder joints with aluminum elemental additions led to promising results and provided a possible solution to promoting heterogeneous nucleation and high reliability in these solder alloys.

  18. Assessment of Solder Interconnect Integrity in Dismantled Electronic Components from N57 and B61 Tube-Type Radars

    SciTech Connect

    Rejent, J.A.; Vianco, P.T.; Woodrum, R.A.

    1999-07-01

    Aging analyses were performed on solder joints from two radar units: (1) a laboratory, N57 tube-type radar unit and (2) a field-returned, B61-0, tube-type radar unit. The cumulative temperature environments experienced by the units during aging were calculated from the intermetallic compound layer thickness and the mean Pb-rich phase particle size metrics for solder joints in the units, assuming an aging time of 35 years for both radars. Baseline aging metrics were obtained from a laboratory test vehicle assembled at AS/FM and T; the aging kinetics of both metrics were calculated from isothermal aging experiments. The N57 radar unit interconnect board solder joints exhibited very little aging. The eyelet solder joints did show cracking that most likely occurred at the time of assembly. The eyelet, SA1126 connector solder joints, showed some delamination between the Cu pad and underlying laminate. The B61 field-returned radar solder joints showed a nominal degree of aging. Cracking of the eyelet solder joints was observed. The Pb-rich phase particle measurements indicated additional aging of the interconnects as a result of residual stresses. Cracking of the terminal pole connector, pin-to-pin solder joint was observed; but it was not believed to jeopardize the electrical functionality of the interconnect. Extending the stockpile lifetime of the B61 tube-type radar by an additional 20 years would not be impacted by the reliability of the solder joints with respect to further growth of the intermetallic compound layer. Additional coarsening of the Pb-rich phase will increase the joints' sensitivity to thermomechanical fatigue.

  19. Solder extrusion pressure bonding process and bonded products produced thereby

    SciTech Connect

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1990-12-31

    Production of soldiered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about {minus}40{degrees}C and 110{degrees}C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  20. Breakthrough: Lead-free Solder

    SciTech Connect

    Anderson, Iver

    2012-01-01

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  1. Breakthrough: Lead-free Solder

    ScienceCinema

    Anderson, Iver

    2013-03-01

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  2. 21 CFR 189.240 - Lead solders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lead solders. 189.240 Section 189.240 Food and...-Contact Surfaces § 189.240 Lead solders. (a) Lead solders are alloys of metals that include lead and are... in can solder is deemed to be adulterated in violation of the Federal Food, Drug, and Cosmetic...

  3. Solder creep-fatigue interactions with flexible leaded parts

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.

    1992-01-01

    With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.

  4. Experimental Methods in Reduced-gravity Soldering Research

    NASA Technical Reports Server (NTRS)

    Pettegrew, Richard D.; Struk, Peter M.; Watson, John K.; Haylett, Daniel R.

    2002-01-01

    The National Center for Microgravity Research, NASA Glenn Research Center, and NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. An improved understanding of the effects of the acceleration environment is important to application of soldering during current and future human space missions. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole and surface mounted devices are being investigated. This paper focuses on the experimental methodology employed in this project and the results of macroscopic sample examination. The specific soldering process, sample configurations, materials, and equipment were selected to be consistent with those currently on-orbit. Other apparatus was incorporated to meet requirements imposed by operation onboard NASA's KC-135 research aircraft and instrumentation was provided to monitor both the atmospheric and acceleration environments. The contingent of test operators was selected to include both highly skilled technicians and less skilled individuals to provide a population cross-section that would be representative of the skill mix that might be encountered in space mission crews.

  5. Effects of Aging Treatment on Mechanical Properties of Sn-58Bi Epoxy Solder on ENEPIG-Surface-Finished PCB

    NASA Astrophysics Data System (ADS)

    Kim, Jungsoo; Myung, Woo-Ram; Jung, Seung-Boo

    2016-07-01

    The mechanical properties of Sn-58Bi epoxy solder were evaluated by low-speed shear testing as functions of aging time and temperature. To determine the effects of epoxy, the interfacial reaction and mechanical properties of both Sn-58Bi and Sn-58Bi epoxy solder were investigated after aging treatment. The chemical composition and growth kinetics of the intermetallic compound (IMC) formed at the interface between Sn-58Bi solder and electroless nickel electroless palladium immersion gold (ENEPIG) surface finish were analyzed. Sn-58Bi solder paste was applied by stencil-printing on flame retardant-4 substrate, then reflowed. Reflowed samples were aged at 85°C, 95°C, 105°C, and 115°C for up to 1000 h. (Ni,Pd)3Sn4 IMC formed between Sn-58Bi solder and ENEPIG surface finish after reflow. Ni3Sn4 and Ni3P IMCs formed at the interface between (Ni,Pd)3Sn4 IMC and ENEPIG surface finish after aging at 115°C for 300 h. The overall IMC growth rate of Sn-58Bi solder joint was higher than that of Sn-58Bi epoxy solder joint during aging. The shear strength of Sn-58Bi epoxy solder was about 2.4 times higher than that of Sn-58Bi solder due to the blocking effect of epoxy, and the shear strength decreased with increasing aging time.

  6. METHOD FOR SOLDERING NORMALLY NON-SOLDERABLE ARTICLES

    DOEpatents

    McGuire, J.C.

    1959-11-24

    Methods are presented for coating and joining materials which are considered difficult to solder by utilizing an abrasive wheel and applying a bar of a suitable coating material, such as Wood's metal, to the rotating wheel to fill the cavities of the abrasive wheel and load the wheel with the coating material. The surface of the base material is then rubbed against the loaded rotating wheel, thereby coating the surface with the soft coating metal. The coating is a cohesive bonded layer and holds the base metal as tenaciously as a solder holds to easily solderable metals.

  7. Compatibility of lead-free solders with lead containing surface finishes as a reliability issue in electronic assemblies

    SciTech Connect

    Vianco, P.; Rejent, J.; Artaki, I.; Ray, U.; Finley, D.; Jackson, A.

    1996-03-01

    Enhanced performance goals and environmental restrictions have heightened the consideration for use of alternative solders as replacements for the traditional tin-lead (Sn-Pb) eutectic and near-eutectic alloys. However, the implementation of non-Pb bearing surface finishes may lag behind solder alloy development. A study was performed which examined the effect(s) of Pb contamination on the performance of Sn-Ag-Bi and Sn-Ag-Cu-Sb lead-free solders by the controlled addition of 63Sn-37Pb solder at levels of 0.5 {minus} 8.0 wt.%. Thermal analysis and ring-in-plug shear strength studies were conducted on bulk solder properties. Circuit board prototype studies centered on the performance of 20I/O SOIC gull wing joints. Both alloys exhibited declines in their melting temperatures with greater Sn-Pb additions. The ring-in-plug shear strength of the Sn-Ag-Cu-Sb solder increased slightly with Sn-Pb levels while the Sn-Ag-Bi alloy experienced a strength loss. The mechanical behavior of the SOIC (Small Outline Integrated Circuit) Sn-Ag-Bi solder joints reproduced the strength levels were insensitive to 10,106 thermal cycles. The Sn-Ag-Cu-Sb solder showed a slight decrease in the gull wing joint strengths that was sensitive to the Pb content of the surface finish.

  8. Low-temperature solder for joining large cryogenic structures. [cooling cools for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Sandefur, P. G., Jr.

    1980-01-01

    Three joining methods were considered for use in fabricating cooling coils for the National Transonic Facility. After analysis and preliminary testing, soldering was chosen as the cooling coil joining technique over mechanical force fit and brazing techniques. Charpy V-Notch tests, cyclic thermal tests (ambient to 77.8 K) and tensile tests at cryogenic temperatures were performed on solder joints to evaluate their structural integrity. It was determined that low temperature solder can be used to ensure good fin-to-tube contact for cooling-coil applications.

  9. Requirements for soldered electrical connections

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This publication is applicable to NASA programs involving solder connections for flight hardware, mission essential support equipment, and elements thereof. This publication sets forth hand and wave soldering requirements for reliable electrical connections. The prime consideration is the physical integrity of solder connections. Special requirements may exist which are not in conformance with the requirements of this publication. Design documentation contains the detail for these requirements, and they take precedence over conflicting portions of this publication when they are approved in writing by the procuring NASA installation.

  10. Reliability of lead-free solders in electronic packaging technology

    NASA Astrophysics Data System (ADS)

    Choi, Woojin

    The electromigration of flip chip solder bump (eutetic SnPb) has been studied at temperatures of 100, 125 and 150°C and current densities of 1.9 to 2.75 x 104 A/cm2. The under-bump-metallization on the chip side is thin film Al/Ni(V)/Cu and on the board side is thick Cu. By simulation, we found that current crowding occurs at the corner on the chip side where the electrons enter the solder ball. We are able to match this simulation to the real electromigration damage in the sample. The experimental result showed that voids initiated from the position of current crowding and propagated across the interface between UBM and the solder ball. The Cu-Sn intermetallic compounds formed during the reflow is known to adhere well to the thin film UBM, but they detached from the UBM after current stressing. Therefore, the UBM itself becomes part of the reliability problem of the flip chip solder joint under electromigration. Currently there is a renewed interest in Sn whisker growth owing to the introduction of Pb-free solder in electronic manufacturing. The leadframe is electroplated or finished with a layer of Pb-free solder. The solder is typically pure Sn or eutectic SnCu (0.7 atomic % Cu). It is a serious reliability concern in the use of the eutectic SnCu solder as leadframe surface finish due to the growth of long whiskers on it. The origin of the driving force of compressive stress can be mechanical, thermal, and chemical. Among them, the chemical force is the most important contribution to the whisker growth and its origin is due to the reaction between Sn and Cu to form intermetallic compound (IMC) at room temperature. For whisker or hillock growth, the surface cannot be free of oxide and it must be covered with oxide and the oxide must be a protective one so that it removes effectively all the vacancy sources and sinks on the surface. Hence, only those metals, which grow protective oxides such as Al and Sn, are known to have hillock growth or whisker growth. We

  11. Mechanism of Reaction Between Nd and Ga in Sn-Zn-0.5Ga- xNd Solder

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Xue, Song-bai; Shen, Yi-Fu; Long, Fei; Zhu, Hong

    2014-09-01

    The mechanism of reaction between Nd and Ga in Sn-Zn-0.5Ga- xNd solder was investigated in order to enhance the reliability of soldered joints. It was found that, after aging treatment at ambient temperature and 125°C for over 3000 h, no Sn whisker growth was observed in Sn-9Zn-0.5Ga-0.08Nd soldered joints. X-ray diffraction (XRD) analysis and thermodynamic calculations indicated that Ga reacted with Nd instead of Sn-Nd intermetallic compound (IMC), eliminating Sn whisker growth. Shear force testing was carried out, and the results indicated that Sn-9Zn-0.5Ga-0.08Nd solder still had excellent mechanical properties after aging treatment. This new discovery can provide a novel approach to develop high-reliability solder without risk of Sn whiskers.

  12. Microstructure and Mechanical Properties of Tin-Bismuth Solder Reinforced by Aluminum Borate Whiskers

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wei, Hongmei; He, Peng; Lin, Tiesong; Lu, Fengjiao

    2015-10-01

    Tin-bismuth solder has emerged as a promising lead-free alternative to tin-lead solder, especially for low-temperature packaging applications. However, the intrinsic brittleness of tin-bismuth solder alloy, aggravated by the coarse bismuth-rich phase and the thick interfacial intermetallic layer, notably limits the mechanical performance of the bonded joints. In this work, the microstructure and mechanical performance of solder joints were improved by adding 3.2 vol.% aluminum borate whiskers to the tin-bismuth solder alloy. This whisker-reinforced composite solder was fabricated through a simple process. Typically, 25- μm to 75- μm tin-bismuth particles were mixed with a small amount of aluminum borate whiskers with diameter of 0.5 μm to 1.5 μm and length of 5 μm to 15 μm. The addition of whiskers restrained the formation of coarse brittle bismuth-rich phase and decreased the lamellar spacing from 0.84 μm to 7.94 μm to the range of 0.22 μm to 1.80 μm. Moreover, the growth rate of the interfacial intermetallic layer during the remelting treatment decreased as well. The joint shear strength increased from 19.4 MPa to 24.7 MPa, and only declined by 4.9% (average, -5.9% to 15.8%) after the tenth remelting, while the shear strength of the joint without whiskers declined by 31.5% (average, 10.1-44.1%). The solder alloy was reinforced because of their high strength and high modulus and also the refinement effect on the solder alloy microstructure.

  13. Welding, brazing, and soldering handbook

    NASA Technical Reports Server (NTRS)

    Kilgore, A. B.; Koehler, M. L.; Metzler, J. W.; Sturges, S. R.

    1969-01-01

    Handbook gives information on the selection and application of welding, brazing, and soldering techniques for joining various metals. Summary descriptions of processes, criteria for process selection, and advantages of different methods are given.

  14. [Leaching behavior of heavy metal elements in lead-free solders].

    PubMed

    Zhao, Jie; Meng, Xian-ming; Chen, Chen; Zang, Hua-xun; Ma, Hai-Tao

    2008-08-01

    Leaching behavior of heavy metal elements from Sn-3.5 Ag-0.5 Cu, Sn-3.5 Ag, Sn-0.5 Cu lead-free solders and their joints were investigated in typical acid, alkaline and saline corrosion solutions. It is found that for solder alloys, significant leaching of Sn was observed in NaCl saline solution, about two orders of magnitude higher than that in acid and alkaline solution. However, in the case of solder joints, more leaching of Sn was observed in acid solution from Sn-3.5 Ag/Cu and Sn-0.5 Cu/Cu joints, and in NaOH alkaline solution for Sn-3.5 Ag - 0.5 Cu joint. PMID:18839597

  15. Solder Interconnect Predictor (SIP) Software v. 0.5

    Energy Science and Technology Software Center (ESTSC)

    2008-11-19

    This software tool was developed for predicting the fatigue damage in a wide variety of 63Sn-37Pb solder joints used in electronics applications. This tool is based upon the unified creep plasticity damage model CompSIR developed at Sandia National Laboratories. The software can be used as a design tool for predicting the long term reliability of consumer, military and space electronics. Both service as well as accelerated testing environments can be addressed by the user. Themore » mesh generating function provides the user with the greater versatility to explore different package and I/O configurations. For example, different solder joint geometries can be investigated to determine the effects of workmanship quality on reliability. Graphical user interfaces provide the user with easy data input screens as well as results profiles.« less

  16. Solder Interconnect Predictor (SIP) Software v. 0.5

    SciTech Connect

    VIANCO, PAUL; NEILSEN, MICHAEL; & REJENT, JEROME

    2008-11-19

    This software tool was developed for predicting the fatigue damage in a wide variety of 63Sn-37Pb solder joints used in electronics applications. This tool is based upon the unified creep plasticity damage model CompSIR developed at Sandia National Laboratories. The software can be used as a design tool for predicting the long term reliability of consumer, military and space electronics. Both service as well as accelerated testing environments can be addressed by the user. The mesh generating function provides the user with the greater versatility to explore different package and I/O configurations. For example, different solder joint geometries can be investigated to determine the effects of workmanship quality on reliability. Graphical user interfaces provide the user with easy data input screens as well as results profiles.

  17. Soldered joints—an essential component of demountable high temperature superconducting fusion magnets

    NASA Astrophysics Data System (ADS)

    Tsui, Yeekin; Surrey, Elizabeth; Hampshire, Damian

    2016-07-01

    Demountable superconducting magnet coils would offer significant benefits to commercial nuclear fusion power plants. Whether large pressed joints or large soldered joints provide the solution for demountable fusion magnets, a critical component or building block for both will be the many, smaller-scale joints that enable the supercurrent to leave the superconducting layer, cross the superconducting tape and pass into the solder that lies between the tape and the conductor that eventually provides one of the demountable surfaces. This paper considers the electrical and thermal properties of this essential component part of demountable high temperature superconducting (HTS) joints by considering the fabrication and properties of jointed HTSs consisting of a thin layer of solder (In52Sn48 or Pb38Sn62) sandwiched between two rare-earth-Ba2Cu3O7 (REBCO) second generation HTS coated conductors (CCs). The HTS joints are analysed using numerical modelling, critical current and resistivity measurements on the joints from 300 to 4.2 K in applied magnetic fields up to 12 T, as well as scanning electron microscopy studies. Our results show that the copper/silver layers significantly reduce the heating in the joints to less than a few hundred mK. When the REBCO alone is superconducting, the joint resistivity (R J) predominantly has two sources, the solder layer and an interfacial resistivity at the REBCO/silver interface (∼25 nΩ cm2) in the as-supplied CCs which together have a very weak magnetoresistance in fields up to 12 T. We achieved excellent reproducibility in the R J of the In52Sn48 soldered joints of better than 10% at temperatures below T c of the REBCO layer which can be compared to variations of more than two orders of magnitude in the literature. We also show that demountable joints in fusion energy magnets are viable and need only add a few percent to the total cryogenic cost for a fusion tokamak.

  18. Morphological evolution of voids by surface drift diffusion driven by capillary, electromigration, and thermal-stress gradients induced by steady-state heat flow in passivated metallic thin films and flip chip solder joints. I. Theory

    NASA Astrophysics Data System (ADS)

    Ogurtani, Tarik Omer; Akyildiz, Oncu

    2008-07-01

    The morphological evolution of intragranular voids induced by surface drift diffusion under the actions of capillary and electromigration (EM) forces and thermal-stress gradients (TSGs) associated with steady-state heat flow is investigated in passivated metallic thin films and flip chip solder joints via computer simulation using the front-tracking method. In the mesoscopic nonequilibrium thermodynamic formulation of the generalized driving forces for the thermal-stress-induced surface drift diffusion, not only the usual elastic strain energy density contribution but also the elastic dipole tensor interaction (EDTI) between the thermal-stress field and the mobile atomic species (monovacancies) are considered using the concept of elastic interaction energy promoted in unified linear instability analysis (ULISA) [T. O. Ogurtani, Phys. Rev. B 74, 155422 (2006)]. According to extensive computer experiments performed on voids, which are initially cylindrical in shape, two completely different and topographically distinct behaviors are observed during the development of quasistationary state void surface morphologies, even in the presence of strong EM forces. These behaviors strictly depend on whether or not heat flux crowding occurs in the regions between the void surface layer and the sidewalls of the interconnect lines due to proximity effects of the insulating boundaries. In both morphological cases, however, one also observes two well-defined regimes, namely, the EM and TSG dominated regimes in EM versus EDTI parametric space. In the case of the TSG dominated regime, the void center of gravity (centroid) exhibits uniform displacement (drift) velocity proportional and opposite to the induced TSG exactly as predicted by ULISA theory. These domains are bounded by a threshold level curve for the EDTI parameter, above which an extremely sharp crack tip nucleation and propagation occurs in the highly localized minima in the triaxial stress regions (i.e., hot spots

  19. Modeling the solid-state reaction between Sn-Pb solder and a porous substrate coating

    SciTech Connect

    Erickson, K.L.; Hopkins, P.L.; Vianco, P.T.

    1998-11-01

    Solder joints in hybrid microelectronic circuit electronics are formed between the solder alloy and the noble metal thick film conductor that has been printed and fired onto the ceramic. Although the noble metal conductors provide excellent solderability at the time of manufacture, they are susceptible to solid-state reactions with Sn or other constituents of the solder. The reaction products consist of one or more intermetallic compounds (IMC). The integrity of these solder joints can be jeopardized by formation of IMC layers, which can have thermal and mechanical properties that are substantially different from the solder and substrate and which can consume the conductor layer by solid-state reaction. Analytical models predicting IMC growth for a variety of conditions are needed to improve predictions of long-term joint reliability and manufacturing processes. This paper discusses initial 2-D results from a coupled experimental and computational effort to develop a mathematical model and computer code that will ultimately predict 3-D results from a coupled experimental and computational effort to develop a mathematical model and computer code that will ultimately predict 3-D intermetallic growth in porous substrate-solder systems. The numerical model is based on an implicit interface tracking approach developed for diffusion-reaction analyses in complicated geometries. To illustrate the implicit approach with a real system, the 2-D calculations were based on the reaction couple formed between 63Sn-37Pb solder and 76Au-21Pt-3Pd substrates. Physical constants in the model were evaluated from experimental data. Consumption of the thick film was predicted as a function of time and compared with data from independent experiments.

  20. Economical solder connections to thin films

    NASA Technical Reports Server (NTRS)

    Bass, J. A.; Gaddy, E. M.

    1979-01-01

    Soldering procedure, successfully tested for attaching leads to silicon solar cells, cover-glasses, is simple, inexpensive, and very effective in forming stable connection. Procedure uses solder of indium alloyed with either silver or tin.

  1. 21 CFR 189.240 - Lead solders.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Lead solders. 189.240 Section 189.240 Food and... Addition to Human Food Through Food-Contact Surfaces § 189.240 Lead solders. (a) Lead solders are alloys of... container that makes use of lead in can solder is deemed to be adulterated in violation of the Federal...

  2. 21 CFR 189.240 - Lead solders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Lead solders. 189.240 Section 189.240 Food and... Addition to Human Food Through Food-Contact Surfaces § 189.240 Lead solders. (a) Lead solders are alloys of... container that makes use of lead in can solder is deemed to be adulterated in violation of the Federal...

  3. 21 CFR 189.240 - Lead solders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Lead solders. 189.240 Section 189.240 Food and... Addition to Human Food Through Food-Contact Surfaces § 189.240 Lead solders. (a) Lead solders are alloys of... container that makes use of lead in can solder is deemed to be adulterated in violation of the Federal...

  4. Modified Spot Welder Solders Flat Cables

    NASA Technical Reports Server (NTRS)

    Haehner, Carl L.

    1992-01-01

    Soldering device, essentially modified spot welder, melts high-melting-temperature solders without damaging plastic insulation on flat electrical cables. Solder preform rests on exposed conductor of cable, under connector pin. Electrodes press pin/preform/conductor sandwich together and supply pulse of current to melt preform, bonding pin to conductor. Anvil acts as support and heat sink. Device used to solder flexible ribbon cables to subminiature pin connectors.

  5. In Situ Study on Current Density Distribution and Its Effect on Interfacial Reaction in a Soldering Process

    NASA Astrophysics Data System (ADS)

    Qu, Lin; Zhao, Ning; Ma, Haitao; Zhao, Huijing; Huang, Mingliang

    2015-01-01

    The interfacial reaction in Cu/Sn/Cu solder joint during liquid-solid eletromigration (EM) was in situ studied using synchrotron radiation real-time imaging technology. The current density distribution in the solder joint was analyzed with the finite element method (FEM). The relationships among solder shape, current density distribution, Cu dissolution, and the formation and dissolution of interfacial intermetallic compound (IMC) were revealed. The current promoted dissolution of the cathode IMC and growth of the anode IMC and suppressed the dissolution of anode Cu. The change of interfacial IMC had little effect on the current density distribution; however, the dissolution of cathode Cu, which changed the solder shape, had a significant effect on the current density distribution. The dissolution of cathode Cu under forward current and cathode IMC under reverse current and the growth of anode IMC under forward current was faster where the current density was higher. The synchrotron radiation real-time imaging technology can not only in situ observe the change of solder shape, the dissolution and growth behavior of interfacial IMC and the dissolution behavior of substrate in a soldering process but also provide data needed for numerical simulation of current density distribution in a solder joint.

  6. Mechanical properties of Pb-free solder alloys on thick film hybrid microcircuits

    SciTech Connect

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.; Hosking, F.M.

    1998-03-10

    The technology drivers of the electronics industry continue to be systems miniaturization and reliability, in addition to addressing a variety of important environmental issues. Although the Sn-Pb eutectic alloy is widely used as a joining material in the electronics industry, it has drawn environmental concern due to its Pb content. The solder acts both as an electrical and mechanical connection within the different packaging levels in an electronic device. New Pb-free solders are being developed at Sandia National Laboratories. The alloys are based on the Sn-Ag alloy, having Bi and Au additions. Prototype hybrid microcircuit (HMC) test vehicles have been assembled to evaluate Pb-free solders for Au-Pt-Pd thick film soldering. The test components consist of a variety of dummy chip capacitors and leadless ceramic chip carriers (LCCC`s). The mechanical properties of the joints were evaluated. The reflow profiles and the solid state intermetallic formation reaction will also be presented. Improved solder joint manufacturability and increased fatigue resistance solder alloys are the goals of these materials.

  7. NASA-DoD Lower Process Temperature Lead-Free Solder Project Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2014-01-01

    This project is a follow-on effort to the Joint Council on Aging AircraftJoint Group on Pollution Prevention (JCAAJG-PP) Pb-free Solder Project and NASA-DoD Lead-Free Electronics Project which were the first projects to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community. This effort would continue to build on the results from the JCAAJG-PP Lead-Free Solder Project and NASA-DoD Lead-Free Electronics Project while focusing on a particular failure mechanism currently plaguing Pb-free assemblies, pad cratering.The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. Pad Cratering is a latent defect that may occur during assembly, rework, and post assembly handling and testing.

  8. Detection of power losses in busbar solder contacts by electroluminescence imaging of solar cells

    NASA Astrophysics Data System (ADS)

    Gazuz, Vladimir; Buerhop, Claudia

    2011-11-01

    Soldered contacts between busbar and interconnected ribbon can be missing or defective due to production or exploitation of solar cells. This causes an increase of total series resistance and thus more power losses in soldered solar cells or whole modules. There are many conventional methods for checking missing solder joints such as optical or mechanical; however they are quite complicated for practical application. We present a new method for quantitative and qualitative checking of the solar cell solder contacts. This method is based on analysis of the line-scan diagrams of the electroluminescence images of a solar cell's area by applying the appropriate voltage between front side and backside. As a theoretical justification we have used the equation for calculation of the electroluminescence emission and the equations for calculation of the voltage distribution and of series resistance in the solar cell's busbar.

  9. Joining of melt-textured YBCO using Tm123 powder as a solder

    NASA Astrophysics Data System (ADS)

    Prikhna, T. A.; Gawalek, W.; Moshchil, V. E.; Sergienko, N. V.; Sverdun, V. B.; Surzhenko, A. B.; Wendt, M.; Litzkendorf, D.; Habisreuther, T.; Vlasenko, A. V.

    2003-04-01

    Model experiments on joining of melt-textured YBa 2Cu 3O 7- δ (MT-YBCO) using rings cut from bulk single domain give the strong proof that the critical current density through the soldered seam obtained using a Tm123 powder as a solder is at the same level as that through the MT-YBCO (34 kA/cm 2 at 77 K in the 0 T field) and that the proposed comparatively short soldering process allows us to obtain soldered bulk with the even higher jc (up to 2.5 T fields at 77 K) than that of the initial unbroken one. The seam structure (including the twinned one) slaved the structure of the jointed MT-YBCO.

  10. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    PubMed

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa. PMID:26964943

  11. 21 CFR 189.240 - Lead solders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lead solders. 189.240 Section 189.240 Food and... Addition to Human Food Through Food-Contact Surfaces § 189.240 Lead solders. (a) Lead solders are alloys of metals that include lead and are used in the construction of metal food cans. (b) Food packaged in...

  12. 16 CFR 501.8 - Solder.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Solder. 501.8 Section 501.8 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.8 Solder. Solder and brazing alloys containing precious metals when packaged and labeled...

  13. 16 CFR 501.8 - Solder.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Solder. 501.8 Section 501.8 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.8 Solder. Solder and brazing alloys containing precious metals when packaged and labeled...

  14. 16 CFR 501.8 - Solder.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Solder. 501.8 Section 501.8 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.8 Solder. Solder and brazing alloys containing precious metals when packaged and labeled...

  15. 16 CFR 501.8 - Solder.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Solder. 501.8 Section 501.8 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.8 Solder. Solder and brazing alloys containing precious metals when packaged and labeled...

  16. 16 CFR 501.8 - Solder.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Solder. 501.8 Section 501.8 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.8 Solder. Solder and brazing alloys containing precious metals when packaged and labeled...

  17. Microstructural evolution of a lead-free solder alloy Sn-Bi-Ag-Cu prepared by mechanical alloying during thermal shock and aging

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Wu, C. M. L.; Lai, J. K. L.; Chan, Y. C.

    2000-08-01

    In a previous study, a lead-free solder, Sn-6Bi-2Ag-0.5Cu, was developed by mechanical alloying. The alloy shows great potential as a lead-free solder system. In the present work, the microstructural evolution during thermal shock and aging was examined. In the as-soldered joints small bismuth (1 µm to 2 µm) and Ag3Sn (1 µm) particles were finely dispersed in a nearly pure tin matrix with a small amount of η-Cu6Sn5 phase in the bulk of solder. During thermal shock and aging microstructural evolution occurred with Cu-Sn intermetallic compound (IMC) layer growth at interface, bismuth phase coarsening and Ag3Sn phase coarsening. The microstructure of the solder appeared to be stable at high temperature. The shear strength of the present solder joint is higher than that of Sn-37Pb and Sn-3.5Ag solders. Shear failure occurred Cu-Sn IMC layer-solder interface and in the bulk of solder.

  18. Application of ESEM to fluxless soldering.

    PubMed

    Koopman, N

    1993-08-01

    The ESEM is ideally suited to study soldering processes. We have used it to observe solder reflow and joining in ambient gases. It reproduces effects of atmospheric pressure reflow in a hot stage light microscope, but with much better clarity and depth of field. Compared to a regular SEM, the ESEM offers advantages of atmosphere control and ability to observe the solder samples without carbon or gold coating. These coatings could interfere with the oxidation/reduction reactions which occur at the solder/ambient gas interface. Very thin surface films, especially oxide layers, dramatically influence the flow of liquid solder and the ability of solder to wet or join to another surface. Fluxless processes in particular are ideally suited for study in the ESEM. We have used the ESEM to observe dynamic fluxless soldering and have recorded events on videotape for later stop-action still pictures and slow motion photography. Examples of these processes are shown to illustrate the ESEM capability. Included are solder deformation structure, balling reflow of eutectic solder in hydrogen, balling reflow of eutectic solder in nitrogen, joining of two solder disks in nitrogen, and dynamic melting and freezing of an off-eutectic dendritic alloy. All of these are observed in the absence of flux. PMID:8400444

  19. Solder Mounting Technologies for Electronic Packaging

    SciTech Connect

    VIANCO, PAUL T.

    1999-09-23

    Soldering provides a cost-effective means for attaching electronic packages to circuit boards using both small scale and large scale manufacturing processes. Soldering processes accommodate through-hole leaded components as well as surface mount packages, including the newer area array packages such as the Ball Grid Arrays (BGA), Chip Scale Packages (CSP), and Flip Chip Technology. The versatility of soldering is attributed to the variety of available solder alloy compositions, substrate material methodologies, and different manufacturing processes. For example, low melting temperature solders are used with temperature sensitive materials and components. On the other hand, higher melting temperature solders provide reliable interconnects for electronics used in high temperature service. Automated soldering techniques can support large-volume manufacturing processes, while providing high reliability electronic products at a reasonable cost.

  20. Application of CO2 laser for electronic components soldering

    NASA Astrophysics Data System (ADS)

    Mascorro-Pantoja, J.; Soto-Bernal, J. J.; Nieto-Pérez, M.; Gonzalez-Mota, R.; Rosales-Candelas, I.

    2011-10-01

    Laser provides a high controllable and localized spot for soldering joint formation and this is a valuable tool in Sn/Pb Soldering process on electronic industry, in recent years, laser beam welding has become an emerging welding technique, the use of laser in welding area is a high efficiency method. A 60 Watts CO2 continuous laser was used on this study, during welding experimental results indicated the laser could significantly improve speed and weld quality. In this work, the welding interactions of CO2 laser with Sn/Pb wire have been investigated in details through varying the energy ratios of laser. And at the same time, the effect of distance from laser spot to material.

  1. Instantaneous fluxless bonding of Au with Pb-Sn solder in ambient atmosphere

    SciTech Connect

    Lee, T.K.; Zhang, Sam; Wong, C.C.; Tan, A.C.

    2005-08-01

    A fluxless bonding technique has been developed as a method of flip-chip bonding for microelectronic packaging. The fluxless bonding technique can be achieved instantaneously in an ambient environment between metallic stud bumps and predefined molten solder. This paper describes the mechanics of the bonding action and verifies the effectiveness of this bonding method through wetting balance tests and scanning electron microscope and energy dispersive x-ray analysis. This technique has been demonstrated by using a gold stud bump to break the tin oxide layer over molten solder. This allows for a fast, solid liquid interdiffusion between gold (Au) and the fresh molten eutectic lead-tin (Pb-Sn) solder for joint formation during solidification. This bonding method has been successfully tested with 130-{mu}m-pitch flip-chip bond pads on a joint-in-via flex substrate architecture.

  2. Effects of Bonding Conditions on Bondability Using Zn/Al/Zn Clad Solder

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Ikeda, O.; Oda, Y.; Hata, S.; Kuroki, K.; Kuroda, H.; Hirose, A.

    2015-12-01

    Three-layer Zn/Al/Zn clad solders have been developed for high-temperature die attachment. The clad structure is used to improve the wettability and bondability of Zn-Al eutectic solder by preventing Al oxidation. The effects of the bonding conditions on the bondability with Zn/Al/Zn clad solder were investigated. Bonding was achieved in the temperature range from 385°C to 420°C under N2 atmosphere with oxygen concentration below 100 ppm. However, the bonding strength of the joint formed under N2 + 4% H2 atmosphere was almost 0 MPa, and stripe defects and air gaps remained in the bond layer. To improve the bondability under N2 + 4% H2 and expand the application range, a five-layer Cu/Zn/Al/Zn/Cu clad solder was developed in an attempt to prevent the Zn layers from being oxidized by the outer Cu layers. Cross-sectional observation of the Cu/Zn/Al/Zn/Cu clad solder revealed that the surface was covered by a Cu layer, and that Cu5Zn8 layers grew between the Cu and Zn layers. This clad solder exhibited high shear strength of over 80 MPa when formed under N2 + 4% H2 atmosphere, and no stripe defects or air gaps were observed in the bond layer.

  3. NTF: Soldering Technology Development for Cryogenics

    NASA Technical Reports Server (NTRS)

    Hall, E. T., Jr.

    1985-01-01

    The advent of the National Transonic Facility (NTF) brought about a new application for an old joining method, soldering. Soldering for use at cryogenic temperatures requires that solders remain ductile and free from tin-pest (grey tin), have toughness to withstand aerodynamic loads associated with flight research, and maintain their surface finishes. Solders are used to attach 347 Stainless-Steel tubing in surface grooves of models. The solder must fill up the gap and metallurgically bound to the tubing and model. Cryogenic temperatures require that only specific materials for models can be used, including: Vasco Max 200 CVM, lescalloy A-286 Vac Arc, pH 13-8 Mo. Solders identified for testing at this time are: 50% Sn - 49.5% Pb - 0.5% Sb, 95% Sn - 5% Sb, 50% In 50% Pb, and 37.5% Sn - 37.5% Pb - 25% In. With these materials and solders, it is necessary to determine their solderability. After solderability is determined, tube/groove specimens are fabricated and stressed under cryogenic temperatures. Compatible solders are then used for acutual models.

  4. Mechanical Shock Behavior of Environmentally-Benign Lead-free Solders

    NASA Astrophysics Data System (ADS)

    Yazzie, Kyle

    The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or by accidental dropping. In this study, the mechanical shock behavior of Sn and Sn-Ag-Cu alloys was systematically analyzed over the strain rate range 10-3 -- 30 s-1 in bulk samples, and over 10-3 -- 12 s-1 on the single solder joint level. More importantly, the influences of solder microstructure and intermetallic compounds (IMC) on mechanical shock resistance were quantified. A thorough microstructural characterization of Sn-rich alloys was conducted using synchrotron x-ray computed tomography. The three-dimensional morphology and distribution of contiguous phases and precipitates was analyzed. A multiscale approach was utilized to characterize Sn-rich phases on the microscale with x-ray tomography and focused ion beam tomography to characterize nanoscale precipitates. A high strain rate servohydraulic test system was developed in conjunction with a modified tensile specimen geometry and a high speed camera for quantifying deformation. The effect of microstructure and applied strain rate on the local strain and strain rate distributions were quantified using digital image correlation. Necking behavior was analyzed using a novel mirror fixture, and the triaxial stresses associated with necking were corrected using a self-consistent method to obtain the true stress-true strain constitutive behavior. Fracture mechanisms were quantified as a function of strain rate. Finally, the relationship between solder microstructure and intermetallic compound layer thickness with the mechanical shock resistance of Sn-3.8Ag-0.7Cu solder joints was characterized. It was found that at low strain rates the dynamic

  5. Effects of Ga Addition on Interfacial Reactions Between Sn-Based Solders and Ni

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Hong; Li, Kuan-Ting

    2016-07-01

    The use of Ga as a micro-alloying element in Sn-based solders can change the microstructure of solder joints to improve the mechanical properties, and even suppress the interfacial intermetallic compound (IMC) growth. This research investigated the effects of Ga addition (0.2-1 wt.%Ga) on the IMC formation and morphological evolution in the Sn-based solder joints with Ni substrate. In the soldering reaction at 250°C and with less than 0.2 wt.%Ga addition, the formed phase was Ni3Sn4. When the Ga addition increased to 0.5 wt.%, it changed to a thin Ni2Ga3 layer of ˜1 μm thick, which stably existed at the interface in the initial 1-h reaction. Subsequently, the whole Ni2Ga3 layer detached from the Ni substrate and drifted into the molten solder. The Ni3Sn4 phase became dominant in the later stage. Notably, the Ga addition significantly reduced the grain size of Ni3Sn4, resulting in the massive spalling of Ni3Sn4 grains. With 1 wt.%Ga addition, the Ni2Ga3 layer remained very thin with no significant growth, and it stably existed at the interface for more than 10 h. In addition, the solid-state reactions were examined at temperatures of 160°C to 200°C. With addition of 0.5 wt.%Ga, the Ni3Sn4 phase dominated the whole reaction. By contrast, with increasing to 1 wt.%Ga, only a thin Ni2Ga3 layer was found even after aging at 160°C for more than 1200 h. The 1 wt.%Ga addition in solder can effectively inhibit the Ni3Sn4 formation in soldering and the long-term aging process.

  6. Laser Assisted Soldering: Effects of Hydration on Solder-Tissue Adhesion

    NASA Astrophysics Data System (ADS)

    Chan, Eric K.; Brown, Dennis T.; Kovach, Ian S.; Welch, Ashley J.

    1998-10-01

    Wound stabilization is critical in early wound healing. Other than superficial skin wounds, most tissue repair is exposed to a hydrated environment postoperatively. To simulate the stability of laser-soldered tissue in a wet environment, we studied the effects of hydration on laser soldered rat dermis and baboon articular cartilage. In this in vitro study, we used a solder composed of human serum albumin, sodium hyaluronate, and Indocyanine Green. A 2 (mu) L solder droplet was deposited on each tissue specimen and then the solder was irradiated with a scanning laser beam (808 nm and 27 W/cm2). After photocoagulation, each tissue specimen was cut into two halves dividing the solder. One half was reserved as control while the other half was soaked in saline for a designated period before fixation (1 h, 1, 2, and 7 days). All tissue specimens were prepared for scanning electron microscopy (SEM). SEM examinations revealed nonuniform coagulation across the solder thickness for most of the specimens, likely a result of the temperature gradient generated by laser heating. Closer to the laser beam, the uppermost region of the solder formed a dense coagulum. The solder aggregated into small globules in the region anterior to the solder-tissue interface. All cartilage specimens soaked in saline suffered coagulum detachment from tissue surface. We noted a high concentration of the protein globules in the detached coagulum. These globules were likely responsible for solder detachment from the cartilage surface. Solder adhered better to the dermis than to cartilage. The dermal layer of the skin, composed of collagen matrix, provided a better entrapment of the solder than the smooth surface of articular cartilage. Insufficient laser heating of solder formed protein globules. Unstable solder-tissue fusion was likely a result of these globules being detached from tissue substrate when the specimen was submerged in a hydrated environment. The solder-tissue bonding was compromised

  7. Electromigration-induced back stress in critical solder length for three-dimensional integrated circuits

    SciTech Connect

    Huang, Y. T.; Hsu, H. H.; Wu, Albert T.

    2014-01-21

    Because of the miniaturization of electronic devices, the reliability of electromigration has become a major concern when shrinking the solder dimensions in flip-chip joints. Fast reaction between solders and electrodes causes intermetallic compounds (IMCs) to form, which grow rapidly and occupy entire joints when solder volumes decrease. In this study, U-grooves were fabricated on Si chips as test vehicles. An electrode-solder-electrode sandwich structure was fabricated by using lithography and electroplating. Gaps exhibiting well-defined dimensions were filled with Sn3.5Ag solders. The gaps between the copper electrodes in the test sample were limited to less than 15 μm to simulate microbumps. The samples were stressed at various current densities at 100 °C, 125 °C, and 150 °C. The morphological changes of the IMCs were observed, and the dimensions of the IMCs were measured to determine the kinetic growth of IMCs. Therefore, this study focused on the influence of back stress caused by microstructural evolution in microbumps.

  8. Electromigration-induced back stress in critical solder length for three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Huang, Y. T.; Hsu, H. H.; Wu, Albert T.

    2014-01-01

    Because of the miniaturization of electronic devices, the reliability of electromigration has become a major concern when shrinking the solder dimensions in flip-chip joints. Fast reaction between solders and electrodes causes intermetallic compounds (IMCs) to form, which grow rapidly and occupy entire joints when solder volumes decrease. In this study, U-grooves were fabricated on Si chips as test vehicles. An electrode-solder-electrode sandwich structure was fabricated by using lithography and electroplating. Gaps exhibiting well-defined dimensions were filled with Sn3.5Ag solders. The gaps between the copper electrodes in the test sample were limited to less than 15 μm to simulate microbumps. The samples were stressed at various current densities at 100 °C, 125 °C, and 150 °C. The morphological changes of the IMCs were observed, and the dimensions of the IMCs were measured to determine the kinetic growth of IMCs. Therefore, this study focused on the influence of back stress caused by microstructural evolution in microbumps.

  9. Tin soldering of aluminum and its alloys

    NASA Technical Reports Server (NTRS)

    Gallo, Gino

    1921-01-01

    A method is presented for soldering aluminum to other metals. The method adopted consists of a galvanic application to the surface of the light-metal parts to be soldered, of a layer of another metal, which, without reacting electrolytically on the aluminum, adheres strongly to the surface to which it is applied, and is, on the other hand, adapted to receive the soft solder. The metal found to meet the criteria best was iron.

  10. Development of Sn-Ag-Cu-X Solders for Electronic Assembly by Micro-Alloying with Al

    SciTech Connect

    Boesenberg, Adam; Anderson, Iver; Harringa, Joel

    2012-03-10

    Of Pb-free solder choices, an array of solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic (T eut = 217°C) composition have emerged with potential for broad use, including ball grid array (BGA) joints that cool slowly. This work investigated minor substitutional additions of Al (<0.25 wt.%) to Sn-3.5Ag-0.95Cu (SAC3595) solders to promote more consistent solder joint microstructures and to avoid deleterious product phases, e.g., Ag3Sn “blades,” for BGA cooling rates, since such Al additions to SAC had already demonstrated excellent thermal aging stability. Consistent with past work, blade formation was suppressed for increased Al content (>0.05Al), but the suppression effect faded for >0.20Al. Undercooling suppression did not correlate specifically with blade suppression since it became significant at 0.10Al and increased continuously with greater Al to 0.25Al. Surprisingly, an intermediate range of Al content (0.10 wt.% to 0.20 wt.% Al) promoted formation of significant populations of 2-μm to 5-μm faceted Cu-Al particles, identified as Cu33Al17, that clustered at the top of the solder joint matrix and exhibited extraordinary hardness. Clustering of Cu33Al17 was attributed to its buoyancy, from a lower density than Sn liquid, and its early position in the nucleation sequence within the solder matrix, permitting unrestricted migration to the top interface. Joint microstructures and implications for the full nucleation sequence for these SAC + Al solder joints are discussed, along with possible benefits from the clustered particles for improved thermal cycling resistance.

  11. Die Soldering in Aluminium Die Casting

    SciTech Connect

    Han, Q.; Kenik, E.A.; Viswanathan, S.

    2000-03-15

    Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-rich phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.

  12. Solderability of surface mount devices

    NASA Astrophysics Data System (ADS)

    Holder, Nanette S.

    1993-06-01

    As electronic products become much smaller, a limiting factor in the reduction of product size has been the size of the electronic components which make up the product. The leads of the current electronic components are inserted onto a printed circuit board through holes. Due to the use of wire leads, it becomes more difficult to decrease the size of the components. A new method was created to mount components directly to the surface of the printed circuit board. This new technique is surface mount technology. A concern over the use of this is experienced by the military. Since the leads are not inserted through the board and crimped before soldering as conventional components are mounted, there is some regard as to whether the components can be mounted securely to the board. Due to the high forces that many munitions experience when dispensed, it is imperative that the electronic components be soldered to the circuits boards so they will not slip out of place or fall from the board. The military also requires many munitions to lie dormant in storage warehouses for up to 20 years. When the munition is needed, it must perform reliably. Little work has been done to study the effects of this long-term storage on these surface mount devices, particularly on the ability of different soldering techniques used to attach surface mount components to printed circuit boards to withstand damaging effects of long-term storage.

  13. X-ray laminography analysis of ultra-fine-pitch solder connections on ultrathin boards

    NASA Astrophysics Data System (ADS)

    Adams, John A.

    1991-07-01

    As the demand increases for smaller, more powerful new products, design engineers are pressed to increase component densities while simultaneously reducing the size of interconnects. Almost every new product contains more solder joints per square inch than the previous one. New quad flatpack and TAB designs as small as 25 micron leads on 50 micron centers are in the prototype stage. Direct 'chip-on-board' (COB) components placed on a grid of solder bumps with a diameter of 75 microns and a grid of 200 microns are routinely being produced. Future plans include designs with a 25 micron diameter on 50 micron centers which are currently in development. Devices consisting of chips stacked upon chips and interconnected with solder or tungsten wires are increasingly included in new designs. Manufacturers have also begun to produce assemblies on very thin circuit boards with components on both sides. Several technologies have been applied in an effort to provide solder paste and post- reflow inspection. X-ray inspection has proven most effective at determining component placement and solder joint integrity. With its ability to pass freely through circuit board materials and extract detailed structural information from hidden and visible solder joints, the x-ray has proven more adept at assembled board inspection than other automated methods such as laser, ultrasonic, thermal and camera-based systems. This paper addresses the inspection and process control of ultra-thin boards with ultra fine pitch interconnects using x-ray laminography. In addition, the advantages and disadvantages of integrating various fine pitch technologies into the circuit board assembly process are reviewed.

  14. Effects of hydration on laser soldering

    NASA Astrophysics Data System (ADS)

    Chan, Eric K.; Brown, Dennis T.; Kovach, Ian S.; Welch, Ashley J.

    1997-05-01

    Laser welding with albumin-based tissue solder has been investigated as an alternative to surgical suturing. Many surgical procedures require the soldered tissues to be in a hydrated environment. We have studied the effects of hydration on laser soldered rat dermis and baboon articular cartilage in vitro. The solder is composed of human serum albumin, sodium hyaluronate and indocyanine green. We used a micro-pipette to deposit 2 (mu) l of solder on each tissue specimen. An 808 nm cw laser beam with irradiance of 27 W/cm2 was scanned 4 times over the same solder area at a constant speed of 0.84 mm/sec. After photo-coagulation, each tissue specimen was cut into two halves at the center of the solder, perpendicular to the direction of the scanning laser beam. One half was reserved as control while the other half was soaked in phosphate buffered saline for a designated hydration period. The hydration periods were 1 hr, 1, 2, and 7 days. All tissue specimens were fixed in glutaraldahyde, then prepared for scanning electron microcopy analysis. For most of the specimens, there was non-uniform coagulation across the thickness of the solder. Closer to the laser beam, the upper solder region formed a more dense coagulum. While the region closer to solder-tissue interface, the solder aggregated into small globules. This non-uniform coagulation was likely caused by non-uniform energy distribution during photocoagulation. The protein globules and coagulum seem to be responsible for the solder attachment from the specimen surface. However, we have noted that the solder detached from the cartilage substrate as early as after 1 hr of hydration. On the other hand, the solder attached to the dermis much better than to cartilage. This may be explained by the difference in surface roughness of the two tissue types. The dermal layer of the skin is composed of collagen matrix which may provide a better entrapment of the solder than the smooth surface of articular cartilage.

  15. Low temperature solder process to join a copper tube to a silicon wafer

    NASA Astrophysics Data System (ADS)

    Versteeg, Christo; Scarpim de Souza, Marcio

    2014-06-01

    With the application for wafer level packages, which could be Complementary Metal-Oxide-Semiconductor (CMOS) based, and which requires a reduced atmosphere, a copper tube connection to a vacuum pump and the package is proposed. The method evaluated uses laser assisted brazing of a solder, to join the copper tube to a silicon wafer. The method was applied to a silicon wafer coated with a metallic interface to bond to the solder. The hermeticity of the joint was tested with a helium leak rate tester and the bonding energy thermal extent was verified with a thin layer of indium that melted wherever the substrate temperature rose above its melting temperature.

  16. Shear and Pull Testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu Underbump Metallization During Aging

    NASA Astrophysics Data System (ADS)

    Wang, Kai-Jheng; Duh, Jenq-Gong

    2009-12-01

    Ti/Ni(V)/Cu underbump metallization (UBM) is widely used in flip-chip technology today. The advantages of Ti/Ni(V)/Cu UBM are a low reaction rate with solder and the lack of a magnetic effect during sputtering. Sn atoms diffuse into the Ni(V) layer to form a Sn-rich phase, the so-called Sn-patch, during reflow and aging. In this study, the relationship between interfacial reaction and mechanical properties of the solder joints with Ti/Ni(V)/Cu UBM was evaluated. Sn-3.0Ag-0.5Cu solder was reflowed on sputtered Ti/Ni(V)/Cu UBM, and then the reflowed samples were aged at 125°C and 200°C, respectively. (Cu,Ni)6Sn5 was formed and grew gradually at the interface of the solder joints during aging at 125°C. The Sn-patch replaced the Ni(V) layer, and (Ni,Cu)3Sn4 was thus formed between (Cu,Ni)6Sn5 and the Sn-patch at 200°C. The Sn-patch, composed of Ni and V2Sn3 after reflow, was transformed to V2Sn3 and amorphous Sn during aging. Shear and pull tests were applied to evaluate the solder joints under various heat treatments. The shear force of the solder joints remained at 421 mN, yet the pull force decreased after aging at 125°C. Both the shear and pull forces of the solder joints decreased during aging at 200°C. The effects of aging temperature on the mechanical properties of solder joint were investigated and discussed.

  17. Nano-soldering to single atomic layer

    DOEpatents

    Girit, Caglar O.; Zettl, Alexander K.

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  18. Experiments and Demonstrations with Soldering Guns.

    ERIC Educational Resources Information Center

    Henry, Dennis C.; Danielson, Sarah A.

    1993-01-01

    Discusses the essential electrical characteristics of a particular model of soldering gun. Presents four classroom demonstrations that utilize the soldering gun to test the following geometrics of wire loops as electromagnets: (1) the original tip; (2) a single circular loop; (3) a Helmholtz coil; and (4) the solenoid. (MDH)

  19. An Accelerated Method for Soldering Testing

    SciTech Connect

    Han, Qingyou; Xu, Hanbing; Ried, Paul; Olson, Paul

    2007-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations have been applied to simulate the die casting conditions such as high pressure and high molten metal velocity on the pin. The soldering tendency of steels and coated pins has been examined. The results suggest that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to between 30-60 times. Coatings significantly reduce the soldering tendency. For purposes of this study, several commercial coatings from Balzers demonstrated the potential for increasing the service life of core pins between 15 and 180 times.

  20. Solderability enhancement of copper through chemical etching

    SciTech Connect

    Stevenson, J.O.; Guilinger, T.R.; Hosking, F.M.; Yost, F.G.; Sorensen, N.R.

    1995-05-01

    Sandia National Laboratories has established a Cooperative Research and Development Agreement with consortium members of the National Center for Manufacturing Sciences (NCMS) to develop fundamental generic technology in the area of printed wiring board materials and surface finishes. Improved solderability of copper substrates is an important component of the Sandia-NCMS program. The authors are investigating the effects of surface roughness on the wettability and solderability behavior of several different types of copper board finishes. In this paper, the authors present roughness and solderability characterizations for a variety of chemically-etched copper substrates. Initial testing on six chemical etches demonstrate that surface roughness can be greatly enhanced through chemical etching. Noticeable improvements in solder wettability were observed to accompany increases in roughness. A number of different algorithms and measures of roughness were used to gain insight into surface morphologies that lead to improved solderability.

  1. Microstructural characterization and mechanical property of active soldering anodized 6061 Al alloy using Sn-3.5Ag-xTi active solders

    SciTech Connect

    Wang, Wei-Lin Tsai, Yi-Chia

    2012-06-15

    Active solders Sn-3.5Ag-xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn-3.5Ag-xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on the titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 {+-} 0.64 MPa. The maximum bonding strength reached 22.24 {+-} 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti phases at the joint interfaces. - Highlights: Black-Right-Pointing-Pointer Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn-3.5Ag. Black-Right-Pointing-Pointer The maximum bonding strength occurs at 3 wt.% Ti addition. Black-Right-Pointing-Pointer The Ti reacts with anodized Al oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti at joint interface.

  2. Investigation of Low-temperature Solders for Cryogenic Wind Tunnel Models

    NASA Technical Reports Server (NTRS)

    Firth, G. C.; Watkins, V. E., Jr.

    1985-01-01

    The advent of high Reynolds number cryogenic wind tunnels has forced alteration of manufacturing and assembly techniques and eliminated usage of many materials associated with conventional wind tunnel models. One of the techniques affected is soldering. Solder alloys commonly used for wind tunnel models are susceptible to low-temperature embrittlement and phase transformation. The low-temperature performance of several solder alloys is being examined during research and development activities being conducted in support of design and fabrication of cryogenic wind tunnel models. Among the properties examined during these tests are shear strength, surface quality, joint stability, and durability when subjected to dynamic loading. Results of these tests and experiences with recent models are summarized.

  3. Properties of Cerium Containing Lead Free Solder

    NASA Astrophysics Data System (ADS)

    Xie, Huxiao

    With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace amount of rare-earth (RE) elements has been discovered and investigated. In previous work from Prof. Chawla's group, it has been shown that cerium (Ce)-based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit desirable attributes of microstructural refinement and enhanced ductility relative to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of RESn3 was believed to be directly responsible for the enhanced ductility in RE-containing SAC solder by allowing microscopic voids to nucleate throughout the solder volume, this cavitation-based mechanism needs to be validated experimentally and numerically. Additionally, since the previous study has exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a replacement to conventional SAC alloys, in this study, the proposed objective focuses on the in in-depth understanding of mechanism of enhanced ductility in Ce-based SAC alloy and possible issues associated with integration of this new class of solder into electronic industry, including: (a) study of long-term thermal and mechanical stability on industrial metallization, (b) examine the role of solder volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu alloys, (c) conduct experiments of new solder alloys in the form of mechanical shock and electromigration. The research of this new class alloys will be conducted in industrially relevant conditions, and the results would serve as the first step toward integration of these new, next generation solders into the industry.

  4. Thermophysical Characteristics of the Protective Coating of the Soldering Rod

    NASA Astrophysics Data System (ADS)

    Shtennikov, V. N.

    2015-01-01

    An analytical dependence of the change in the soldering temperature on the material, thickness of the soldering rod protective coating, and the time of soldering is obtained. The relation derived allows one to ensure the needed temperature of contact soldering of electronic and electrical-engineering components and, consequently, their high quality.

  5. An Evaluation Method for Tensile Characteristics of Cu/Sn IMCs Using Miniature Composite Solder Specimen

    NASA Astrophysics Data System (ADS)

    Ohguchi, Ken-ichi; Kurosawa, Kengo

    2016-06-01

    In design of electronic packages, finite-element method (FEM) analysis for evaluating the strength and reliability of solder joints should be conducted with consideration of the presence of Cu/Sn intermetallic compounds (IMCs) generated at the interface between solder and copper wiring. To conduct such analysis accurately, the deformation characteristics of Cu/Sn IMCs must be clarified by conducting tensile tests. This paper describes a method to evaluate tensile characteristics of Cu/Sn IMCs. The method employs a composite specimen with first outer layer of Cu, second layer of Cu/Sn IMCs, and core of Sn-3.0Ag-0.5Cu lead-free solder. The specimen is made by a method in which a copper-plated solder specimen is heat treated at 453 K to generate Cu/Sn IMCs between the solder and copper. Tensile tests were conducted using the composite specimen. After the tests, the fracture appearance and characteristics of the stress-strain relations of the specimens were investigated. Based on the results, a numerical method based on the rule of mixtures (ROM) is proposed to estimate the stress-strain relation of Cu/Sn IMCs under tensile loading.

  6. An Evaluation Method for Tensile Characteristics of Cu/Sn IMCs Using Miniature Composite Solder Specimen

    NASA Astrophysics Data System (ADS)

    Ohguchi, Ken-ichi; Kurosawa, Kengo

    2016-03-01

    In design of electronic packages, finite-element method (FEM) analysis for evaluating the strength and reliability of solder joints should be conducted with consideration of the presence of Cu/Sn intermetallic compounds (IMCs) generated at the interface between solder and copper wiring. To conduct such analysis accurately, the deformation characteristics of Cu/Sn IMCs must be clarified by conducting tensile tests. This paper describes a method to evaluate tensile characteristics of Cu/Sn IMCs. The method employs a composite specimen with first outer layer of Cu, second layer of Cu/Sn IMCs, and core of Sn-3.0Ag-0.5Cu lead-free solder. The specimen is made by a method in which a copper-plated solder specimen is heat treated at 453 K to generate Cu/Sn IMCs between the solder and copper. Tensile tests were conducted using the composite specimen. After the tests, the fracture appearance and characteristics of the stress-strain relations of the specimens were investigated. Based on the results, a numerical method based on the rule of mixtures (ROM) is proposed to estimate the stress-strain relation of Cu/Sn IMCs under tensile loading.

  7. Analysis of lead free tin-silver-copper and tin-lead solder wetting reactions

    NASA Astrophysics Data System (ADS)

    Anson, Scott J.

    Lead free electronics soldering is driven by a combination of health and environmental concerns, international legislation and marketing pressure by lead free electronics manufacturing competitors. Since July 1, 2006, companies that do not comply with the European Union legislation are not able to sell circuit assemblies with lead solder in the European Union. China has developed its own regulations, based on the European Union documents with a compliance date of March 1, 2007. Extensive testing by the electronics community has determined that the Sn - Ag - Cu (SAC) family of alloys is the preferred choice for lead free Surface Mount Technology (SMT) soldering. The 96.5Sn/3.0Ag/0.5Cu alloy was used in this study. Lead free soldering requires an increase in reflow peak temperatures which further aggravates component moisture sensitivity risks and thereby decreases assembly yield. Prior research has revealed an enhanced solder spreading phenomena at lower peak temperature and shorter time above liquidus with 63Sn/37Pb solder. This current research investigated solder wetting reactions in 63Sn/37Pb and 96.5Sn/3.0Ag/0.5Cu (SAC305) using materials and manufacturing systems that are industry relevant. The objective was to advance the knowledge base of metal wetting while developing a reflow assembly process that minimized the component defect rates. The components are damaged during reflow by popcorn delamination, which is the result of moisture absorption and subsequent rapid evaporation. A classical Design Of Experiments (DOE) approach was used, with wetted area as the response variable. Outside of the DOE, substrate dissolution depth, and substrate surface new phase formation (reaction product) distance from the triple line (solder wetting front) and reaction product thickness in the solder joint (under the solder) were also analyzed. The samples were analyzed for correlation of reflow peak temperature, reflow Time Above Liquidus (TAL), wetted area, reaction product

  8. Microstructure and interfacial reactions of soldering magnesium alloy AZ31B

    SciTech Connect

    Liu Liming; Wu Zhonghui

    2010-01-15

    In this paper, economic and innoxious solder alloys with low melting temperature were designed for AZ31B. Their chemical composition and relevant parameters were investigated for a high-performance structure of bonding region. Results of microstructure observation showed that Zn-enriched phases disappeared and {alpha}-Mg existed in the joints in the form of coarse dendrites by increasing the concentration of Mg in the solder alloys. Water cooling with a high cooling rate was adopted in experiments. Experimental research showed that high cooling rate restricted the grains of {alpha}-Mg as the equiaxed dendrites, which was about 1/5 of the coarse dendrite but their number was more than 40-50 times. Both morphology with typical fracture and the analysis on X-ray diffraction fracture indicated that equiaxed dendrites significantly improved the mechanical property of the joints. Necking phenomenon occurred in the bonding region was in favor of the improvement of joint shear strength.

  9. 24 CFR 3280.605 - Joints and connections.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and connections. (a) Tightness. Joints and connections in the plumbing system shall be gastight and... connected to a public water system, made with solder having not more than 0.2 percent lead. (4) Plastic...

  10. An evaluation of the blind lap joint for the surface mount attachment of chip components

    NASA Astrophysics Data System (ADS)

    Vianco, P. T.; Dalporto, J. F.

    Blind lap solder joints were used to attach leadless ceramic chip resistors to polyimidequartz circuit boards. Hand soldering and vapor phase reflow techniques were evaluated. The solder was 62Sn-36Pb-2Ag (wt. percent). The integrity of the solder joints was assessed by microstructural examination and room temperature shear tests. These analyses were performed on as-fabricated circuit boards as well as an those samples exposed to thermal cycling (308 cycles; -55 to 125 C; 6 C/min ramps; 120 min hold periods;) or thermal shock (100 cycles, -55 C to 125 C; liquid-to-liquid transfer; 10 min hold periods). In all cases, microscopy revealed no cracks within the solder joints. The shear strengths of the joints were 13.4 lb (59 N), as-fabricated; 10.5 lb (47 N), 308 thermal cycles; and 14.0 lb (62 N), 100 thermal shock cycles. All values were well within acceptability limits for the particular application. Measurements of the intermetallic compound thicknesses at the copper land/solder interface indicated that the additional heating cycle of the hand soldering step decreased the layer thickness as compared to non-hand soldered joints. The successful implementation of the blind lap joint can provide increased device densities on circuit boards by reducing bonding pad extension beyond the ceramic chip foot print.

  11. Laser Assisted Soldering: Effects of Hydration on Solder-Tissue Adhesion

    SciTech Connect

    Chan, E.K.; Welch, A.J.; Brown, D.T.; Kovach, I.S.

    1998-10-01

    Wound stabilization is critical in early wound healing. Other than superficial skin wounds, most tissue repair is exposed to a hydrated environment postoperatively. To simulate the stability of laser-soldered tissue in a wet environment, we studied the effects of hydration on laser soldered rat dermis and baboon articular cartilage. In this {ital in vitro} study, we used a solder composed of human serum albumin, sodium hyaluronate, and Indocyanine Green. A 2 {mu}L solder droplet was deposited on each tissue specimen and then the solder was irradiated with a scanning laser beam (808 nm and 27thinspW/cm{sup 2}). After photocoagulation, each tissue specimen was cut into two halves dividing the solder. One half was reserved as control while the other half was soaked in saline for a designated period before fixation (1 h, 1, 2, and 7 days). All tissue specimens were prepared for scanning electron microscopy (SEM). SEM examinations revealed nonuniform coagulation across the solder thickness for most of the specimens, likely a result of the temperature gradient generated by laser heating. Closer to the laser beam, the uppermost region of the solder formed a dense coagulum. The solder aggregated into small globules in the region anterior to the solder-tissue interface. All cartilage specimens soaked in saline suffered coagulum detachment from tissue surface. We noted a high concentration of the protein globules in the detached coagulum. These globules were likely responsible for solder detachment from the cartilage surface. Solder adhered better to the dermis than to cartilage. The dermal layer of the skin, composed of collagen matrix, provided a better entrapment of the solder than the smooth surface of articular cartilage. Insufficient laser heating of solder formed protein globules. Unstable solder-tissue fusion was likely a result of these globules being detached from tissue substrate when the specimen was submerged in a hydrated environment. The solder-tissue bonding

  12. Highly reliable hard-soldered 1.6kW QCW laser diode stack packaging platform

    NASA Astrophysics Data System (ADS)

    Rosenberg, Paul; Reichert, Patrick; Du, Jihua; Fouksman, Michael; Zhou, Hailong; McNulty, John; Tolman, Sherry; Luong, Calvin

    2007-02-01

    We describe the performance and reliability of multi-bar diode stacks assembled with hard solder attachment of the laser diode bar to the conduction-cooled package substrate. The primary stack package design is based on a modular platform that makes use of common piece parts to incorporate anywhere from 2-7 bars, operating at peak powers of 80W/bar to 200W/bar. In assembling monolithic type diode stack packages, it is typical to use a soft solder material such as indium for P-side bar attachment into the package. Due to its low melting point and low yield stress, indium can provide a solder joint that transfers low stress to the laser bar. However, during CW and QCW operation, indium is prone to migration that can cause device failure due to a number of well-known mechanisms. This shortcoming of soft-solder bar attachment can limit the number of shots the stack delivers over its operating life. By replacing the soft solder typically used for P-side attachment with a hard solder, it is possible to greatly reduce or eliminate certain failure modes, thereby increasing the operating life of the part. We demonstrate lifetime of > 1E9 shots at 80 W/bar, 250 us/40 Hz pulses, and 50C package operating temperature.

  13. Evaluation of the Bondability of the Epoxy-Enhanced Sn-58Bi Solder with ENIG and ENEPIG Surface Finishes

    NASA Astrophysics Data System (ADS)

    Myung, Woo-Ram; Kim, Yongil; Jung, Seung-Boo

    2015-11-01

    The effect of different surface finishes, electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG), on the mechanical properties of Sn-58Bi bumps made with solder paste enhanced with epoxy were investigated. The microstructure and fracture surfaces were observed with scanning electron microscopy, and the compositions of the IMC and solder were measured using energy dispersive spectrometry and an electron probe micro-analyzer (EPMA). To evaluate the mechanical properties, low-speed shear tests and board-level drop tests were performed. The result of the shear tests showed that the bonding strength of the epoxy-enhanced Sn-58Bi solder bumps was higher than that of Sn-58Bi solder for all surface finishes, because of the epoxy surrounding the solder, and the fracture surfaces of epoxy-enhanced Sn-58Bi indicated ductile fracture in the solder joint. However, the result of the drop tests showed that samples with the ENIG and ENEPIG surface finishes had lower drop numbers compared to the sample without these surface finishes. The lower performance resulted from insufficient ejection of epoxy from the ENIG and ENEPIG surface finishes during reflow, which reduced the interfacial bonding area.

  14. Alining Solder Pads on a Solar Cell

    NASA Technical Reports Server (NTRS)

    Lazzery, A. G.

    1984-01-01

    Mechanism consisting of stylus and hand-operated lever incorporated into screening machine to precisely register front and back solder pads during solar-cell assembly. Technique may interest those assembling solar cells manually for research or prototype work.

  15. High temperature solder device for flat cables

    NASA Technical Reports Server (NTRS)

    Haehner, Carl L. (Inventor)

    1992-01-01

    A high temperature solder device for flat cables includes a microwelder, an anvil which acts as a heat sink and supports a flexible flat ribbon cable that is to be connected to a multiple pin connector. The microwelder is made from a modified commercially available resistance welding machine such as the Split Tip Electrode microwelder by Weltek, which consists of two separate electrode halves with a removable dielectric spacer in between. The microwelder is not used to weld the items together, but to provide a controlled compressive force on, and energy pulse to, a solder preform placed between a pin of the connector and a conductor of the flexible flat ribbon cable. When the microwelder is operated, an electric pulse will flow down one electrode, through the solder preform and back up the other electrode. This pulse of electrical energy will cause the solder preform to heat up and melt, joining the pin and conductor.

  16. Induction soldering of photovoltaic system components

    DOEpatents

    Kumaria, Shashwat; de Leon, Briccio

    2015-11-17

    A method comprises positioning a pair of photovoltaic wafers in a side-by-side arrangement. An interconnect is placed on the pair of wafers such that the interconnect overlaps both wafers of the pair, solder material being provided between the interconnect and the respective wafers. A solder head is then located adjacent the interconnect, and the coil is energized to effect inductive heating of the solder material. The solder head comprises an induction coil shaped to define an eye, and a magnetic field concentrator located at least partially in the eye of the coil. The magnetic field concentrator defines a passage extending axially through the eye of the coil, and may be of a material with a high magnetic permeability.

  17. Integrated environmentally compatible soldering technologies. Final report

    SciTech Connect

    Hosking, F.M.; Frear, D.R.; Iman, R.L.; Keicher, D.M.; Lopez, E.P.; Peebles, H.C.; Sorensen, N.R.; Vianco, P.T.

    1994-05-01

    Chemical fluxes are typically used during conventional electronic soldering to enhance solder wettability. Most fluxes contain very reactive, hazardous constituents that require special storage and handling. Corrosive flux residues that remain on soldered parts can severely degrade product reliability. The residues are removed with chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or other hazardous solvents that contribute to ozone depletion, release volatile organic compounds into the atmosphere, or add to the solvent waste stream. Alternative materials and processes that offer the potential for the reduction or elimination of cleaning are being developed to address these environmental issues. Timing of the effort is critical, since the targeted chemicals will soon be heavily taxed or banned. DOE`s Office of Environmental Restoration and Waste Management (DOE/EM) has supported Sandia National Laboratories` Environmentally Conscious Manufacturing Integrated Demonstration (ECMID). Part of the ECM program involves the integration of several environmentally compatible soldering technologies for assembling electronics devices. Fluxless or {open_quotes}low-residue/no clean{close_quotes} soldering technologies (conventional and ablative laser processing, controlled atmospheres, ultrasonic tinning, protective coatings, and environmentally compatible fluxes) have been demonstrated at Sandia (SNL/NM), the University of California at Berkeley, and Allied Signal Aerospace-Kansas City Division (AS-KCD). The university demonstrations were directed under the guidance of Sandia staff. Results of the FY93 Soldering ID are presented in this report.

  18. SNL initiatives in electronic fluxless soldering

    SciTech Connect

    Hosking, F.M.; Frear, D.R.; Vianco, P.T.; Keicher, D.M.

    1991-01-01

    Conventional soldering of electronic components generally requires the application of a chemical flux to promote solder wetting and flow. Chlorofluorocarbons (CFC) and halogenated solvents are normally used to remove the resulting flux residues. While such practice has been routinely accepted throughout the electronics industry, the environmental impact of hazardous solvents on ozone depletion will eventually limit or prevent their use. Solvent substitution or alternative technologies must be developed to meet these goals. Sandia National Laboratories, Albuquerque has a comprehensive environmentally conscious electronics manufacturing program underway that is funded by the DOE Office of Technology Development. Primary elements of the integrated task are the characterization and development of alternative fluxless soldering technologies that would eliminate circuit board cleaning associated with flux residue removal. Storage and handling of hazardous solvents and mixed solvent-flux waste would be consequently reduced during electronics soldering. This paper will report on the progress of the SNL fluxless soldering initiative. Emphasis is placed on the use of controlled atmospheres, laser heating, and ultrasonic soldering.

  19. PWB solder wettability after simulated storage

    SciTech Connect

    Hernandez, C.L.; Hosking, F.M.

    1996-03-01

    A new solderability test method has been developed at Sandia National Laboratories that simulates the capillary flow physics of solders on circuit board surfaces. The solderability test geometry was incorporated on a circuit board prototype that was developed for a National Center for Manufacturing Sciences (NCMS) program. The work was conducted under a cooperative research and development agreement between Sandia National Laboratories, NCMS, and several PWB fabricators (AT&T, IBM, Texas Instruments, United Technologies/Hamilton Standard and Hughes Aircraft) to advance PWB interconnect technology. The test was used to investigate the effects of environmental prestressing on the solderability of printed wiring board (PWB) copper finishes. Aging was performed in a controlled chamber representing a typical indoor industrial environment. Solderability testing on as-fabricated and exposed copper samples was performed with the Sn-Pb eutectic solder at four different reflow temperatures (215, 230, 245 and 260{degrees}C). Rosin mildly activated (RMA), low solids (LS), and citric acid-based (CA) fluxes were included in the evaluation. Under baseline conditions, capillary flow was minimal at the lowest temperatures with all fluxes. Wetting increased with temperature at both baseline and prestressing conditions. Poor wetting, however, was observed at all temperatures with the LS flux. Capillary flow is effectively restored with the CA flux.

  20. Use of organic solderability preservatives on solderability retention of copper after accelerated aging

    SciTech Connect

    Hernandez, C.L.; Sorensen, N.R.; Lucero, S.J.

    1997-02-01

    Organic solderability preservatives (OSP`s) have been used by the electronics industry for some time to maintain the solderability of circuit boards and components. Since solderability affects both manufacturing efficiency and product reliability, there is significant interest in maintaining good solder wettability. There is often a considerable time interval between the initial fabrication of a circuit board or component and its use at the assembly level. Parts are often stored under a variety of conditions, in many cases not well controlled. Solder wettability can deteriorate during storage, especially in harsh environments. This paper describes the ongoing efforts at Sandia National Laboratories to quantify solder watability on bare and aged copper surfaces. Benzotriazole and imidazole were applied to electronic grade copper to retard aging effects on solderability. The coupons were introduced into Sandia`s Facility for Atmospheric Corrosion Testing (FACT) to simulate aging in a typical indoor industrial environment. H{sub 2}S, NO{sub 2} and Cl{sub 2} mixed gas was introduced into the test cell and maintained at 35{degrees}C and 70% relative humidity for test periods of one day to two weeks. The OSP`s generally performed better than bare Cu, although solderability diminished with increasing exposure times.

  1. Refinement of the Microstructure of Sn-Ag-Bi-In Solder, by Addition of SiC Nanoparticles, to Reduce Electromigration Damage Under High Electric Current

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Nagao, Shijo; Sugahara, Tohru; Suganuma, Katsuaki; Ueshima, Minoru; Albrecht, Hans-Juergen; Wilke, Klaus; Strogies, Joerg

    2014-12-01

    The trends of miniaturization, multi-functionality, and high performance in advanced electronic devices require higher densities of I/O gates and reduced area of soldering of interconnections. This increases the electric current density flowing through the interconnections, increasing the risk of interconnection failure caused by electromigration (EM). Accelerated directional atomic diffusion in solder materials under high current induces substantial growth of intermetallic compounds (IMCs) at the anode, and also void and crack formation at the cathode. In the work discussed in this paper, addition of SiC nanoparticles to Sn-Ag-Bi-In (SABI) lead-free solder refined its microstructure and improved its EM reliability under high current stress. Electron backscattering diffraction analysis revealed that the added SiC nanoparticles refined solder grain size after typical reflow. Under current stress, SABI joints with added nano-SiC had lifetimes almost twice as long as those without. Comparison of results from high-temperature aging revealed direct current affected evolution of the microstructure. Observations of IMC growth indicated that diffusion of Cu in the SiC composite solder may not have been reduced. During current flow, however, only narrow voids were formed in solder containing SiC, thus preventing the current crowding caused by bulky voids in the solder without SiC.

  2. Laser-welded vs soldered nonprecious alloy dental bridges: a comparative study.

    PubMed

    Apotheker, H; Nishimura, I; Seerattan, C

    1984-01-01

    The high cost of gold alloy has caused the dental profession to begin substituting nonprecious alloy for the framework in porcelain fused to metal bridges. Especially in long-span bridges it may be advantageous to make multiple castings and then join them for a better fit. As opposed to the highly successful soldering of gold, soldered nonprecious alloy bridges have a great failure rate in the mouth. Removal of and remaking of the bridges is thus the result. This study compares nonprecious units that have been laser-welded with those conventionally soldered. Seven identical bridges of three units were cast in a popular alloy composed of 74-78% nickel, 12-15% chromium, 4-6% molybdenum, and 1.8% maximum beryllium. One served as a control, while the remaining six were all cut in the same place. Of these, three were soldered with a gas oxygen torch. The other three were welded with a Nd-YAG laser. Better and stronger joints unlikely to fracture in the mouth were found with the laser-welded specimen. PMID:6147733

  3. Physical and metallurgical considerations of failures of soldered bars in bar attachment systems for implant overdentures: a review of the literature.

    PubMed

    Waddell, J Neil; Payne, Alan G T; Swain, Michael V

    2006-10-01

    The purpose of this literature review was to identify the etiological factors of failure of soldered bars in bar attachment systems for removable implant overdentures. A search of MEDLINE using the key words "bar attachment systems" was performed of English language peer-reviewed journals published between 1975 and 2005. Clinical studies of implant overdentures with prosthodontic maintenance complications of bar attachment systems were identified to establish the perceived etiology of failure. A further search of MEDLINE using the key words "solder joint" was also performed of the fixed prosthodontic literature to identify specific factors affecting the strength, fatigue resistance, and quality of gold solder joints used for bar attachment systems. The first search on bar attachment systems produced evidence of low failure rates of interabutment bars, but higher failure rates of bars where distal cantilever extensions were used. There were no explanations or descriptions of the nature of those failures in the clinical studies reviewed. The second search on fixed prosthodontic literature identified multiple factors that could potentially relate to the failed solder joints with bar attachments. Two potential sites of failure in bar attachments with distal cantilevers were identified, and a simple estimate of the tensile stresses at the solder joints was performed. The values found are comparable to the fatigue failure stresses reported in the searched literature. PMID:17052473

  4. Thermal resistances of solder-boss/potting compound combinations

    NASA Technical Reports Server (NTRS)

    Veilleux, E. D.

    1968-01-01

    Formulas, which can be used as a design tool, are derived to calculate the thermal resistance of solder-boss/potting compound combinations, for different depths of a solder boss, in electronic cordwood modules. Since the solder boss is the heat source, its shape and position will affect the thermal resistance of the surrounding potting compound.

  5. Efforts to Develop a 300°C Solder

    SciTech Connect

    Norann, Randy A

    2015-01-25

    This paper covers the efforts made to find a 300°C electrical solder solution for geothermal well monitoring and logging tools by Perma Works LLC. This paper covers: why a high temperature solder is needed, what makes for a good solder, testing flux, testing conductive epoxy and testing intermetallic bonds. Future areas of research are suggested.

  6. Evaluation of no-clean solder process designed to eliminate the use of ozone-depleting chemicals

    SciTech Connect

    Paffett, M.T.; Farr, J.D.; Rogers, Y.C.; Hutchinson, W.B.

    1993-10-01

    This paper summarizes the LANL contributions to a joint Motorola/SNLA/LANL cooperative research and development agreement study on the reliability of an alternative solder process that is intended to reduce or eliminate the use of ozone-depleting chemicals in the manufacture of printed wire boards (PWBs). This process is termed self-cleaning because of the nature of the thermal chemistry associated with the adipic and formic acid components used in place of traditional solder rosin fluxes. Traditional rosin fluxes used in military electronic hardware applications are cleaned (by requirement) using chlorofluorohydrocarbons. The LANL contribution centers around analytical determination of PWB cleanliness after soldering using the self-cleaning method. Results of these analytical determinations involving primarily surface analysis of boards following temperature, temperature and humidity, and long-term storage testing are described with representative data. It is concluded that the self-cleaning process leaves behind levels of solid residue that are visually and analytically observable using most of these surface analysis techniques. The materials compatibility of electronic components soldered using the self-cleaning soldering process is more fully described in the project report issued by SNLA that encompasses the complete project with statistical lifetime and accelerated aging studies. Analytical surface specificity and suggestions for further work are also given.

  7. Microwave Tissue Soldering for Immediate Wound Closure

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Plan, Chau T.; Byerly, Diane; Dusl, John; Sognier, Marguerite A.

    2011-01-01

    A novel approach for the immediate sealing of traumatic wounds is under development. A portable microwave generator and handheld antenna are used to seal wounds, binding the edges of the wound together using a biodegradable protein sealant or solder. This method could be used for repairing wounds in emergency settings, by restoring the wound surface to its original strength within minutes. This technique could also be utilized for surgical purposes involving solid visceral organs (i.e., liver, spleen, and kidney) that currently do not respond well to ordinary surgical procedures. A miniaturized microwave generator and a handheld antenna are used to deliver microwave energy to the protein solder, which is applied to the wound. The antenna can be of several alternative designs optimized for placement either in contact with or proximity to the protein solder covering the wound. In either case, optimization of the design includes the matching of impedances to maximize the energy delivered to the protein solder and wound at a chosen frequency. For certain applications, an antenna could be designed that would emit power only when it is in direct contact with the wound. The optimum frequency or frequencies for a specific application would depend on the required depth of penetration of the microwave energy. In fact, a computational simulation for each specific application could be performed, which would then match the characteristics of the antenna with the protein solder and tissue to best effect wound closure. An additional area of interest with potential benefit that remains to be validated is whether microwave energy can effectively kill bacteria in and around the wound. Thus, this may be an efficient method for simultaneously sterilizing and closing wounds. Using microwave energy to seal wounds has a number of advantages over lasers, which are currently in experimental use in some hospitals. Laser tissue welding is unsuitable for emergency use because its large, bulky

  8. ESD Test Apparatus for Soldering Irons

    NASA Technical Reports Server (NTRS)

    Sancho, Jose; Esser, Robert

    2013-01-01

    ESDA (Electrostatic Discharge Association) ESD STM 13.1-2000 requires frequent testing of the voltage leakage from the tip of a soldering iron and the resistance from the tip of the soldering iron to the common point ground. Without this test apparatus, the process is time-consuming and requires several wires, alligator clips, or test probes, as well as additional equipment. Soldering iron tips must be tested for electrostatic discharge risks frequently, and this typically takes a lot of time in setup and testing. This device enables the operator to execute the full test in one minute or less. This innovation is a simple apparatus that plugs into a digital multimeter (DMM) and the Common Point Ground (CPG) reference. It enables the user to perform two of the electrostatic discharge tests required in ESD STM 13.1-2000. The device consists of a small black box with two prongs sticking out of one end, two inputs on the opposite end (one of the inputs is used to connect the reference CPG to the DMM), and a metal tab on one side. Inside the box are wires, several washers of various materials, and assembly hardware (nuts and screws/bolts). The device is a passive electronic component that is plugged into a DMM. The operator sets the DMM to read voltage. The operator places the heated tip of the soldering iron onto the metal tab with a small amount of solder to ensure a complete connection. The voltage is read and recorded. The operator switches the DMM to read resistance. The operator places the heated tip of the soldering iron onto the metal tab with a small amount of solder to ensure a complete connection. The resistance is recorded. If the recorded voltage and resistance are below a number stated in ESDA ESD STM 13.1-2000, the test is considered to pass. The device includes all the necessary wiring internal to its body so the operator does not need to do any independent wiring, except for grounding. It uses a stack of high-thermal-resistance washers to minimize the

  9. An Accelerated Method for Testing Soldering Tendency of Core Pins

    SciTech Connect

    Han, Qingyou; Xu, Hanbing; Ried, Paul; Olson, Paul

    2010-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations has been used to simulate the die casting conditions such as high pressure and high impingement speed of molten metal on the pin. Soldering tendency of steels and coated pins has been examined. The results indicate that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to 30-60 times. Coating significantly reduces the soldering tendency of the core pins.

  10. Submicron accuracy optimization for laser beam soldering processes

    NASA Astrophysics Data System (ADS)

    Beckert, Erik; Burkhardt, Thomas; Hornaff, Marcel; Kamm, Andreas; Scheidig, Ingo; Stiehl, Cornelia; Eberhardt, Ramona; Tünnermann, Andreas

    2010-02-01

    Laser beam soldering is a packaging technology alternative to polymeric adhesive bonding in terms of stability and functionality. Nevertheless, when packaging especially micro optical and MOEMS systems this technology has to fulfil stringent requirements for accuracy in the micron and submicron range. Investigating the assembly of several laser optical systems it has been shown that micron accuracy and submicron reproducibility can be reached when using design-of-experiment optimized solder processes that are based on applying liquid solder drops ("Solder Bumping") onto wettable metalized joining surfaces of optical components. The soldered assemblies were subject to thermal cycles and vibration/ shock test also.

  11. Solder flow over fine line PWB surface finishes

    SciTech Connect

    Hosking, F.M.; Hernandez, C.L.

    1998-08-01

    The rapid advancement of interconnect technology has stimulated the development of alternative printed wiring board (PWB) surface finishes to enhance the solderability of standard copper and solder-coated surfaces. These new finishes are based on either metallic or organic chemistries. As part of an ongoing solderability study, Sandia National Laboratories has investigated the solder flow behavior of two azole-based organic solderability preservations, immersion Au, immersion Ag, electroless Pd, and electroless Pd/Ni on fine line copper features. The coated substrates were solder tested in the as-fabricated and environmentally-stressed conditions. Samples were processed through an inerted reflow machine. The azole-based coatings generally provided the most effective protection after aging. Thin Pd over Cu yielded the best wetting results of the metallic coatings, with complete dissolution of the Pd overcoat and wetting of the underlying Cu by the flowing solder. Limited wetting was measured on the thicker Pd and Pd over Ni finishes, which were not completely dissolved by the molten solder. The immersion Au and Ag finishes yielded the lowest wetted lengths, respectively. These general differences in solderability were directly attributed to the type of surface finish which the solder came in contact with. The effects of circuit geometry, surface finish, stressing, and solder processing conditions are discussed.

  12. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  13. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  14. Capillary flow of solder on chemically roughened PWB surfaces

    SciTech Connect

    Hosking, F.M.; Stevenson, J.O.; Yost, F.G.

    1996-02-01

    The Center for Solder Science and Technology at Sandia National Laboratories has developed a solderability test for evaluating fundamental solder flow over PWB (printed wiring boards) surface finishes. The work supports a cooperative research and development agreement between Sandia, the National Center for Manufacturing Sciences (NCMS), and several industrial partners. An important facet of the effort involved the ``engineering`` of copper surfaces through mechanical and chemical roughening. The roughened topography enhances solder flow, especially over very fine features. In this paper, we describe how etching with different chemical solutions can affect solder flow on a specially designed ball grid array test vehicle (BGATV). The effects of circuit geometry, solution concentration, and etching time are discussed. Surface roughness and solder flow data are presented to support the roughening premise. Noticeable improvements in solder wettability were observed on uniformly etched surfaces having relatively steep peak-to-valley slopes.

  15. Mechanical Properties and Electrochemical Corrosion Behavior of Al/Sn-9Zn- xAg/Cu Joints

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Huang, Y. Z.; Ma, H. T.; Zhao, J.

    2011-03-01

    The effect of Ag content on the wetting behavior of Sn-9Zn- xAg on aluminum and copper substrates during soldering, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn- xAg/Cu solder joints, were investigated in the present work. Tiny Zn and coarsened dendritic AgZn3 regions were distributed in the Sn matrix in the bulk Sn-9Zn- xAg solders, and the amount of Zn decreased while that of AgZn3 increased with increasing Ag content. The wettability of Sn-9Zn-1.5Ag solder on Cu substrate was better than those of the other Sn-9Zn- xAg solders but worse than that of Sn-9Zn solder. The wettability of Sn-9Zn-1.5Ag on the Al substrate was also better than those of the other Sn-9Zn- xAg solders, and even better than that of Sn-9Zn solder. The Al/Sn-9Zn/Cu joint had the highest shear strength, and the shear strength of the Al/Sn-9Zn- xAg/Cu ( x = 0 wt.% to 3 wt.%) joints gradually decreased with increasing Ag content. The corrosion resistance of the Sn-9Zn- xAg solders in Al/Sn-9Zn- xAg/Cu joints in 5% NaCl solution was improved compared with that of Sn-9Zn. The corrosion potential of Sn-9Zn- xAg solders continuously increased with increasing Ag content from 0 wt.% to 2 wt.% but then decreased for Sn-9Zn-3Ag. The addition of Ag resulted in the formation of the AgZn3 phase and in a reduction of the amount of the eutectic Zn phase in the solder matrix; therefore, the corrosion resistance of the Al/Sn-9Zn- xAg/Cu joints was improved.

  16. Multilead, Vaporization-Cooled Soldering Heat Sink

    NASA Technical Reports Server (NTRS)

    Rice, John

    1995-01-01

    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  17. Arc spraying solderable tabs to glass

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1981-01-01

    Tabs suitable for electrical or mechanical connections in solar cells and integrated circuits are made by spraying technique. Solder wets copper, copper bonds to aluminum, and aluminum adheres to glass. Arc spraying is automated and integrated with encapsulation, eliminating hand tabbing, improving reliability, and reducing cost.

  18. 40 CFR 141.43 - Prohibition on use of lead pipes, solder, and flux.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., solder, and flux. 141.43 Section 141.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., solder, and flux. (a) In general—(1) Prohibition. Any pipe, solder, or flux, which is used after June 19...) When used with respect to solders and flux refers to solders and flux containing not more than...

  19. 40 CFR 141.43 - Prohibition on use of lead pipes, solder, and flux.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., solder, and flux. 141.43 Section 141.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., solder, and flux. (a) In general—(1) Prohibition. Any pipe, solder, or flux, which is used after June 19...) When used with respect to solders and flux refers to solders and flux containing not more than...

  20. 40 CFR 141.43 - Prohibition on use of lead pipes, solder, and flux.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., solder, and flux. 141.43 Section 141.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., solder, and flux. (a) In general—(1) Prohibition. Any pipe, solder, or flux, which is used after June 19...) When used with respect to solders and flux refers to solders and flux containing not more than...

  1. 40 CFR 141.43 - Prohibition on use of lead pipes, solder, and flux.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., solder, and flux. 141.43 Section 141.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., solder, and flux. (a) In general—(1) Prohibition. Any pipe, solder, or flux, which is used after June 19...) When used with respect to solders and flux refers to solders and flux containing not more than...

  2. Creep deformation behavior of Sn-3.5Ag solder/Cu couple at small length scales

    SciTech Connect

    Kerr, M.; Chawla, N

    2004-09-06

    In order to adequately characterize the behavior of solder balls in electronic devices, the mechanical behavior of solder joints needs to be studied at small length scales. The creep behavior of single solder ball Sn-Ag/Cu solder joints was studied in shear, at 25, 60, 95, and 130 deg. C, using a microforce testing system. A change in the creep stress exponent with increasing stress was observed and explained in terms of a threshold stress for bypass of Ag{sub 3}Sn particles by dislocations. The stress exponent was also temperature dependent, exhibiting an increase in exponent of two from lower to higher temperature. The activation energy for creep was found to be temperature dependant, correlating with self-diffusion of pure Sn at high temperatures, and dislocation core diffusion of pure Sn at lower temperatures. Normalizing the creep rate for activation energy and the temperature-dependence of shear modulus allowed for unification of the creep data. Microstructure characterization, including preliminary TEM analysis, and fractographic analysis were conducted in order to fully describe the creep behavior of the material.

  3. Microwave Tissue Soldering for Immediate Wound Closure

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Byerly, Diane; Dusl, John; Sognier, Marguerite A.; Carl, James

    2011-01-01

    A novel approach for the immediate sealing of traumatic wounds is under development. A portable microwave generator and handheld antenna are used to seal wounds, binding the edges of the wound together using a biodegradable protein sealant or solder. This method could be used for repairing wounds in emergency settings by restoring the wound surface to its original strength within minutes. This technique could also be utilized for surgical purposes involving solid visceral organs (i.e., liver, spleen, and kidney) that currently do not respond well to ordinary surgical procedures. A miniaturized microwave generator and a handheld antenna are used to deliver microwave energy to the protein solder, which is applied to the wound. The antenna can be of several alternative designs optimized for placement either in contact with or in proximity to the protein solder covering the wound. In either case, optimization of the design includes the matching of impedances to maximize the energy delivered to the protein solder and wound at a chosen frequency. For certain applications, an antenna could be designed that would emit power only when it is in direct contact with the wound. The optimum frequency or frequencies for a specific application would depend on the required depth of penetration of the microwave energy. In fact, a computational simulation for each specific application could be performed, which would then match the characteristics of the antenna with the protein solder and tissue to best effect wound closure. An additional area of interest with potential benefit that remains to be validated is whether microwave energy can effectively kill bacteria in and around the wound. Thus, this may be an efficient method for simultaneously sterilizing and closing wounds.

  4. Investigation of the development of cracks in solder joints

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Vinson, R. J.

    1969-01-01

    Study consisted of an analytical approach, in which a mathematical model of existing printed circuit board component mounting techniques was analyzed, and an empirical investigation was performed to determine the extent of damage caused by temperature cycling of the printed circuit boards.

  5. Interfacial Reaction Between Sn3.0Ag0.5Cu Solder and ENEPIG for Fine Pitch BGA by Stencil Printing

    NASA Astrophysics Data System (ADS)

    Liu, Ziyu; Cai, Jian; Wang, Qian; He, Xi; Chen, Yu

    2014-09-01

    In this work, solder balls in ball grid array packaging technology with the pitch of 300 μm were fabricated by stencil printing solder paste and then reflowed at high temperature. In order to evaluate the quality of solder ball after printing and reflowing processes, the mechanical performance of the joint between the solder balls and the pad was measured by shear test and the electrical resistance was tested after assembly of the substrate and printed circuit board. A comparative study of pad size on the interfacial reaction between solder paste and surface finish of electroless nickel-electroless palladium-immersion gold on the organic substrate was performed and then analyzed by observing the microstructure at the interface. Large discontinuous (Cu,Ni)6Sn5 was found at the interface of the solder with the pad size of 120 μm, while spalled (Pd,Ni)Sn4 and thin (Cu,Ni)6Sn5 layer appeared for a pad size of 140 μm. The IMC (intermetallic compounds) was determined by the residual Cu concentration, the Pd concentration in the solder, and the Ni2SnP barrier layer morphology at the interface, which were significantly influenced by the pad size. A reaction model during the reflow was proposed to illustrate the growth of the IMC and the relationship between the IMC and the pad size. With Pd concentration higher than the solubility of Pd in the solder, spalled (Pd,Ni)Sn4 took shape along the interface. The solubility of Pd was influenced by Ni concentration; however, the Ni diffusion from the substrate was largely dependent on the barrier layer Ni2SnP. Furthermore, the Ni diffusion also impacted the growth and morphology of (Cu,Ni)6Sn5, which was not only limited by the Cu concentration.

  6. Soldering in a Reduced Gravity Environment (SoRGE)

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.

    2012-01-01

    Future long-duration human exploration missions will be challenged by constraints on mass and volume allocations available for spare parts. Addressing this challenge will be critical to the success of these missions. As a result, it is necessary to consider new approaches to spacecraft maintenance and repair that reduce the need for large replacement components. Currently, crew members on the International Space Station (ISS) recover from faults by removing and replacing, using backup systems, or living without the function of Orbital Replacement Units (ORUs). These ORUs are returned to a depot where the root cause of the failure is determined and the ORU is repaired. The crew has some limited repair capability with the Modulation/DeModulation (MDM) ORU, where circuit cards are removed and replace in faulty units. The next step to reducing the size of the items being replaced would be to implement component-level repair. This mode of repair has been implemented by the U.S. Navy in an operational environment and is now part of their standard approach for maintenance. It is appropriate to consider whether this approach can be adapted for future spaceflight operations. To this end, the Soldering in a Reduced Gravity Environment (SoRGE) experiment studied the effect of gravity on the formation of solder joints on electronic circuit boards. This document describes the SoRGE experiment, the analysis methods, and results to date. This document will also contain comments from the crew regarding their experience conducting the SoRGE experiment as well as recommendations for future improvements. Finally, this document will discuss the plans for the SoRGE samples which remain on ISS.

  7. Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution

    NASA Astrophysics Data System (ADS)

    Choudhury, Soud Farhan; Ladani, Leila

    2016-04-01

    As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.

  8. Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution

    NASA Astrophysics Data System (ADS)

    Choudhury, Soud Farhan; Ladani, Leila

    2016-07-01

    As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.

  9. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    SciTech Connect

    Dias, Marcelino; Costa, Thiago; Rocha, Otávio; Spinelli, José E.; Cheung, Noé; Garcia, Amauri

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  10. Effect of Thick Film Firing Conditions on the Solderability and Structure of Au-Pt-Pd Conductor for Low-Temperature, Co-Fired Ceramic Substrates

    SciTech Connect

    Hernandez, C.L; Vianco, P.T.

    1999-03-16

    Low-temperature, co-fired ceramics (LTCC) are the substrate material-of-choice for a growing number of multi-chip module (MCM) applications. Unlike the longer-standing hybrid microcircuit technology based upon alumina substrates, the manufacturability and reliability of thick film solder joints on LTCC substrates have not been widely studied. An investigation was undertaken to fully characterize such solder joints. A surface mount test vehicle with Daisy chain electrical connections was designed and built with Dupont{trademark} 951 tape. The Dupont{trademark} 4569 thick film ink (Au76-Pt21 -Pd3 wt.%) was used to establish the surface conductor pattern. The conductor pattern was fired onto the LTCC substrate in a matrix of process conditions that included: (1) double versus triple prints, (2) dielectric frame versus no frame, and (3) three firing temperatures (800 C, 875 C and 950 C). Pads were examined from the test vehicles. The porosity of the thick film layers was measured using quantitative image analysis in both the transverse and short transverse directions. A significant dependence on firing temperature was recorded for porosity. Solder paste comprised of Sn63-Pb37 powder with an RMA flux was screen printed onto the circuit boards. The appropriate components, which included chip capacitors of sizes 0805 up to 2225 and 50 mil pitch, leadless ceramic chip carriers having sizes of 16 I/O to 68 I/O, were then placed on the circuit boards. The test vehicles were oven reflowed under a N{sub 2} atmosphere. The solderability of the thick film pads was also observed to be sensitive to the firing conditions. Solderability appeared to degrade by the added processing steps needed for the triple print and dielectric window depositions. However, the primary factor in solderability was the firing temperature. Solderability was poorer when the firing temperature was higher.

  11. Issues in the replacement of lead-bearing solders

    NASA Astrophysics Data System (ADS)

    Vianco, Paul T.; Frear, Darrel R.

    1993-07-01

    The use of soft solders, particularly those containing lead, dates back nearly 5,000 years. Solders similar to the materials used to seal the aqueducts of ancient Rome are now an important building block in the manufacture of high-speed computer assemblies. This history attests to the technological versatility of soft solders and, in particular, the solder alloys that contain lead. However, the health effects of prolonged exposure to lead have also been documented; measures to limit human exposure—at the work place and indirectly through the environment—are being considered. The successful introduction of lead-free solders into future electronic products will rely heavily upon their solderability, which can be evaluated by test procedures such as the meniscometer/wetting balance technique and the capillary flow test.

  12. Investigation of Solder Cracking Problems on Printed Circuit Boards

    NASA Technical Reports Server (NTRS)

    Berkebile, M. J.

    1967-01-01

    A Solder Committee designated to investigate a solder cracking phenomena occurring on the SATURN electrical/electronic hardware found the cause to be induced stress in the soldered connections rather than faulty soldering techniques. The design of the printed circuit (PC) board assemblies did not allow for thermal expansion of the boards that occurred during normal operation. The difference between the thermal expansion properties of the boards and component lead materials caused stress and cracking in the soldered connections. The failure mechanism and various PC boards component mounting configurations are examined in this report. Effective rework techniques using flanged tubelets, copper tubelets, and soft copper wiring are detailed. Future design considerations to provide adequate strain relief in mounting configurations are included to ensure successful solder terminations.

  13. Capillary flow solderability test for printed wiring boards

    SciTech Connect

    Hosking, F.M.; Yost, F.G.; Hernandez, C.L.; Sackinger, S.J.

    1994-04-01

    This report describes a new technique for evaluating capillary flow solderability on printed circuit boards. The test involves the flow of molten solder from a pad onto different-sized conductor lines. It simulates the spreading dynamics of either plated-through-hole (PTH) or surface mount technology (SMT) soldering. A standard procedure has been developed for the test. Preliminary experiments were conducted and the results demonstrate test feasibility. Test procedures and results are presented in this report.

  14. Study of heating capacity of focused IR light soldering systems.

    PubMed

    Anguiano, C; Félix, M; Medel, A; Bravo, M; Salazar, D; Márquez, H

    2013-10-01

    An experimental study about four optical setups used for developing a Focused IR Light Soldering System (FILSS) for Surface Mount Technology (SMT) lead-free electronic devices specifically for Ball Grid Arrays (BGA) is presented. An analysis of irradiance and infrared thermography at BGA surface is presented, as well as heat transfer by radiation and conduction process from the surface of the BGA to the solder balls. The results of this work show that the heating provided by our proposed optical setups, measured at the BGA under soldering process, meets the high temperature and uniform thermal distribution requirements, which are defined by the reflow solder method for SMT devices. PMID:24104296

  15. High temperature solder alloys for underhood applications: Final report

    SciTech Connect

    Kern, J.A.; Drewien, C.A.; Yost, F.G.; Sackinger, S.; Weiser, M.W.

    1996-06-01

    In this continued study, the microstructural evolution and peel strength as a function of thermal aging were evaluated for four Sn-Ag solders deposited on double layered Ag-Pt metallization. Additionally, activation energies for intermetallic growth over the temperature range of 134 to 190{degrees}C were obtained through thickness measurements of the Ag-Sn intermetallic that formed at the solder-metallization interface. It was found that Bi-containing solders yielded higher activation energies for the intermetallic growth, leading to thicker intermetallic layers at 175 and 190{degrees}C for times of 542 and 20.5 hrs, respectively, than the solders free of Bi. Complete reaction of the solder with the metallization occurred and lower peel strengths were measured on the Bi-containing solders. In all solder systems, a Ag-Sn intermetallic thickness of greater than {approximately}7 {mu}m contributed to lower peel strength values. The Ag-Sn binary eutectic composition and the Ag-Sn-Cu ternary eutectic composition solders yielded lower activation energies for intermetallic formation, less microstructural change with time, and higher peel strengths; these solder systems were resilient to the effects of temperatures up to 175{degrees}C. Accelerated isothermal aging studies provide useful criteria for recommendation of materials systems. The Sn-Ag and Sn-Ag-Cu eutectic compositions should be considered for future service life and reliability studies based upon their performance in this study.

  16. Solderability preservation through the use of organic inhibitors

    SciTech Connect

    Sorensen, N.R.; Hosking, F.M.

    1994-12-01

    Organic inhibitors can be used to prevent corrosion of metals and have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper, but provides a vast improvement relative to oxidized copper.

  17. Aging, stressing and solderability of electroplated and electroless copper

    SciTech Connect

    Sorensen, N.R.; Hosking, F.M.

    1995-08-01

    Organic inhibitors can be used to prevent corrosion of metals have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by the molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper but provides a vast improvement relative to oxidized copper.

  18. A New Copper Alloy Film for Barrierless Si Metallization and Solder Bump Flip-Chip Application

    NASA Astrophysics Data System (ADS)

    Lin, Chon-Hsin

    2013-05-01

    In this study, a copper alloy, Cu(MnNx), film is developed by cosputtering Cu and Mn on a barrierless Si substrate within an Ar/N2 gas atmosphere. The resulting alloy film exhibits good thermal stability and adhesion to the substrate with no noticeable interactions between the film and the substrate after annealing at 700 °C for 1 h, indicating that the film is thermally stable. The alloy film shall be able to replace both the wetting and diffusion layers for the flip-chip solder joints in conventional under bump metallurgy to reduce the manufacturing cost. We also observe that the Cu(MnNx) alloy exhibits a solder ability comparable to that of pure Cu and a dissolution rate lower than that of pure Cu by at least one order of magnitude. The alloy's consumption rate is comparable to that of Ni, rendering the alloy a candidate material in both barrierless Si metallization and solder bump flip-chip application.

  19. Mechanical Properties and Microstructure Investigation of Lead Free Solder

    NASA Technical Reports Server (NTRS)

    Wang, Qing; Gail, William F.; Johnson, R. Wayne; Strickland, Mark; Blanche, Jim

    2005-01-01

    While the electronics industry appears to be focusing on Sn-Ag-Cu as the alloy of choice for lead free electronics assembly, ,the exact composition varies by geographic region, supplier and user. Add to that dissolved copper and silver from the printed circuit board traces and surface finish, and there can be significant variation in the final solder joint composition. A systematic study of the mechanical and microstructural properties of Sn-Ag-Cu alloys with Ag varying from 2wt% to 4wt% and Cu varying from 0.5wt% to lSwt%, was undertaken in this research study. Different sample preparation techniques (water quenched, oil quenched and water quenched followed by reflow) were explored and the resulting microstructure compared to that of a typical reflowed lead free chip scale package (CSP) solder joint. Tensile properties (modulus, 0.2% yield strength and the ultimate tensile strength) and creep behavior of selected alloy compositions (Sn-4Ag-1 X u , Sn-4Ag-OSCu, Sn- 2Ag-1 X u , Sn-2Ag-OSCu, Sn-3.5Ag-O.SCu) were determined for three conditions: as- cast; aged for 100 hours at 125OC; and aged for 250 hours at 125OC. There was no significant difference in Young's Modulus as a function of alloy composition. After an initial decrease in modulus after 100 hours at 125"C, there was an insignificant change with further aging. The distribution of 0.2% strain yield stress and ultimate tensile strength as a function of alloy composition was more significant and decreased with aging time and temperature. The microstructures of these alloys were examined using light and scanning electron microscopy (LM and SEM) respectively and SEM based energy dispersive x-ray spectroscopy (EDS). Fracture surface and cross-section analysis were performed on the specimens after creep testing. The creep testing results and the effect of high temperature aging on mechanical properties is presented for the oil quenched samples. In general the microstructure of oil quenched specimen exhibited a

  20. Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn–Bi solder alloy

    SciTech Connect

    Silva, Bismarck Luiz; Reinhart, Guillaume; Nguyen-Thi, Henri; Mangelinck-Noël, Nathalie; Garcia, Amauri; Spinelli, José Eduardo

    2015-09-15

    Sn–Bi solders may be applied for electronic applications where low-temperature soldering is required, i.e., sensitive components, step soldering and soldering LEDs. In spite of their potential to cover such applications, the mechanical response of soldered joints of Sn–Bi alloys in some cases does not meet the strength requirements due to inappropriate resulting microstructures. Hence, careful examination and control of as-soldered microstructures become necessary with a view to pre-programming reliable final properties. The present study aims to investigate the effects of solidification thermal parameters (growth rate — V{sub L} and cooling rate — T-dot{sub L}) on the microstructure of the Sn–52 wt.%Bi solder solidified under unsteady-state conditions. Samples were obtained by upward directional solidification (DS), followed by characterization through metallography and scanning electron microscopy (SEM). The microstructures are shown to be formed by Sn-rich dendrites decorated with Bi precipitates surrounded by a complex regular eutectic mixture, with alternated Bi-rich and Sn-rich phases. Experimental correlations of primary (λ{sub 1}), secondary (λ{sub 2}), tertiary (λ{sub 3}) dendritic and eutectic spacings (λ{sub coarse} and λ{sub fine}) with cooling rate and growth rate are established. Two ranges of lamellar eutectic sizes were determined, described by two experimental equations λ = 1.1 V{sub L}{sup −1/2} and λ = 0.67 V{sub L}{sup −1/2}. The onset of tertiary branches within the dendritic array along the Sn–52 wt.%Bi alloy DS casting is shown to occur for cooling rates lower than 1.5 °C/s. - Highlights: • The Sn–52 wt.%Bi solder was shown to have two eutectic sizes. • The fishbone eutectic is preferably located adjacent to the Bi-rich lamellar phases. • The onset of tertiary dendritic branches in Sn–Bi is associated with T-dot{sub L} < 1.5 °C/s. • Higher eutectic fraction and λ{sub 3} provoked a reverse increase in

  1. Effects of Microstructure and Loading on Fracture of Sn-3.8Ag-0.7Cu Joints on Cu Substrates with ENIG Surface Finish

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-12-01

    When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure [interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.

  2. Microstructure, mechanical and oxidation behavior of RE-containing lead-free solders

    NASA Astrophysics Data System (ADS)

    Dudek, Martha A.

    Pb-free solders pose new challenges associated with their incorporation and reliability during service of electronic components. Recently, a new class of alloys containing rare-earth (RE) elements has been discovered. In this study, solder alloys containing lanthanum (La), cerium (Ce) and yttrium (Y) were developed and characterized. It was found that small additions of La and Ce to Sn-Ag-Cu alloys significantly improved their ductility. This has direct implications for mechanical shock and drop reliability. Microstructure characterization of solder and solder/Cu joints containing Sn-3.9Ag-0.7Cu-XRE (X = 0, 0.1, 0.5 and 2 weight percent) was conducted using optical microscopy, scanning electron microscopy and transmission electron microscopy. It was found that RE elements refined the solder microstructure. A serial-sectioning 3D reconstruction process was used to visualize the RE-containing intermetallics. Solidification of these alloys was studied using differential scanning calorimetry. The melting point of Sn-3.9Ag-0.7Cu did not change with the incorporation of RE elements. Additionally, the effect of RE content on shear and creep of lap-shear joints was studied. It was found that additions of La and Ce up to 0.5 weight percent improved the elongation of Sn-3.9Ag-0.7Cu. Y-containing alloys did not show an improvement. Creep tests were conducted at 60, 95 and 120 degrees Celsius. RE content did not markedly alter the creep behavior. Due to RE's high affinity for oxygen, oxidation of RE-containing alloys may affect their mechanical performance. Thus, the effect of 2 weight percent Ce, La or Y on the oxidation behavior was studied at 60, 95 and 130 degrees Celsius. All alloys exhibited parabolic oxidation kinetics. La and Y-containing alloys oxidized significantly faster than the Ce-containing alloy. Sn whiskering was observed to take place during oxidation, likely due to the compressive stresses developed during oxidation. Serial-sectioning with a focused ion beam

  3. The In-Space Soldering Investigation: Research Conducted on the International Space Station in Support of NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fincke, M.; Sergre, P. N.; Ogle, J. A.; Funkhouser, G.; Parris, F.; Murphy, L.; Gillies, D.; Hua, F.

    2004-01-01

    Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still. internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.

  4. The In-Space Soldering Investigation: To Date Analysis of Experiments Conducted on the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Gillies, D. C.; Hua, F.; Anilkumar, A.

    2006-01-01

    Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still, internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.

  5. (abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.

  6. Bonding Low-density Nanoporous Metal Foams Using Sputtered Solder

    SciTech Connect

    Bono, M; Cervantes, O; Akaba, C; Hamza, A; Foreman, R; Teslich, N

    2007-08-21

    could benefit from the bonding technology developed in this study, such as small-scale lightweight structural members, high-strength thermal insulating layers for electronics, and micro-scale mechanical dampers, to name but a few. Each of these applications requires one or more small metal foam components precisely bonded to a substrate. Several methods for bonding metal foam components have been developed by previous researchers. Macroscopic metal foam parts have been successfully bonded by laser welding to create T-sections and butt joints. Ultrasonic welding has been used to join aluminum sheet metal to aluminum foam for structural applications. These methods work well for bonding large foam components, but reducing these methods to a smaller length scale would be challenging. One method that has shown great potential for bonding layers of metal foams to substrates is a brazing process that uses a sputter-deposited interface material. Shirzadi et al.[9] have demonstrated bonds between stainless steel foam and a stainless steel substrate using a layer of copper-titanium filler metal that is sputtered onto the interface surfaces. The foam pieces that they bonded were approximately 10 mm in diameter and 10 mm thick with a cell size of approximately 200 {micro}m. After depositing the filler material, pressing the materials together, and heating them with an induction heater, bonds were achieved without causing significant damage to the foam. The current study also uses a sputter-deposited interface material to bond foam to a substrate. However, in contrast to previous work, the current study examines bonding microscale pieces of fragile nanoporous metal foam. In this study, a method is developed to bond a thin sheet of fragile, low-density nanoporous copper foam to an aluminum foil substrate of thickness 40 {micro}m. By sputter depositing an indium-silver alloy onto the foam and the substrate, a solder joint with a thickness of less than 2 {micro}m was achieved.

  7. Laser-activated protein solder for peripheral nerve repair

    NASA Astrophysics Data System (ADS)

    Trickett, Rodney I.; Lauto, Antonio; Dawes, Judith M.; Owen, Earl R.

    1995-05-01

    A 100 micrometers core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the albumin based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 +/- 5 min. (n equals 20) compared to 23 +/- 9 min. (n equals 10) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 +/- 5 g, while microsutured nerves had a tensile strength of 40 +/- 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study is under way comparing laser solder repaired tibial nerves to conventional microsuture repair. At the time of submission 15 laser soldered nerves and 7 sutured nerves were characterized at 3 months and showed successful regeneration with compound muscle action potentials of 27 +/- 8 mV and 29 +/- 8 mW respectively. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  8. Isothermal Ageing of SnAgCu Solder Alloys: Three-Dimensional Morphometry Analysis of Microstructural Evolution and Its Effects on Mechanical Response

    NASA Astrophysics Data System (ADS)

    Maleki, Milad; Cugnoni, Joë; Botsis, John

    2014-04-01

    Due to the high homologous temperature and fast cooling rates, the microstructures of SnAgCu (SAC) solders are in a meta-stable state in most applications, which is the cause of significant microstructural evolution and continuous variation in the mechanical behavior of the joints during service. The link between microstructures evolution and deformation behavior of Sn-4.0Ag-0.5Cu solder during isothermal ageing is investigated. The evolution of the microstructures in SAC solders are visualized at different scales in 3D by using a combination of synchrotron x-ray and focused ion beam/scanning electron microscopy tomography techniques at different states of ageing. The results show that, although the grain structure, morphology of dendrites, and overall volume fraction of intermetallics remain almost constant during ageing, considerable coarsening occurs in the Ag3Sn and Cu6Sn5 phases to lower the interfacial energy. The change in the morphometrics of sub-micron intermetallics is quantified by 3D statistical analyses and the kinetic of coarsening is discussed. The mechanical behavior of SAC solders is experimentally measured and shows a continuous reduction in the yield resistance of solder during ageing. For comparison, the mechanical properties and grain structure of β-tin are evaluated at different annealing conditions. Finally, the strengthening effect due to the intermetallics at different ageing states is evaluated by comparing the deformation behaviors of SAC solder and β-tin with similar grain size and composition. The relationship between the morphology and the strengthening effect due to intermetallics particles is discussed and the causes for the strength degradation in SAC solder during ageing are identified.

  9. Cost comparison modeling between current solder sphere attachment technology and solder jetting technology

    SciTech Connect

    Davidson, R.N.

    1996-10-01

    By predicting the total life-cycle cost of owning and operating production equipment, it becomes possible for processors to make accurate and intelligent decisions regarding major capitol equipment investments as well as determining the most cost effective manufacturing processes and environments. Cost of Ownership (COO) is a decision making technique based on inputting the total costs of acquiring, operating and maintaining production equipment. All quantitative economic and production data can be modeled and processed using COO software programs such as the Cost of Ownership Luminator program TWO COOL{trademark}. This report investigated the Cost of Ownership differences between the current state-of-the-art solder ball attachment process and a prototype solder jetting process developed by Sandia National Laboratories. The prototype jetting process is a novel and unique approach to address the anticipated high rate ball grid array (BGA) production requirements currently forecasted for the next decade. The jetting process, which is both economically and environmentally attractive eliminates the solder sphere fabrication step, the solder flux application step as well as the furnace reflow and post cleaning operations.

  10. Development of lead-free solders for hybrid microcircuits

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Frear, D.R.; Robinson, D.G.

    1996-01-01

    Extensive work has been conducted by industry to develop lead-free solders for electronics applications. The driving force behind this effort is pressure to ban or tax the use of lead-bearing solders. There has been further interest to reduce the use of hazardous chemical cleaners. Lead-free soldering and low-residue, ``no clean`` assembly processing are being considered as solutions to these environmental issues. Most of the work has been directed toward commercial and military printed wiring board (PWB) technology, although similar problems confront the hybrid microcircuit (HMC) industry, where the development of lead-free HMC solders is generally lagging. Sandia National Laboratories is responsible for designing a variety of critical, high reliability hybrid components for radars. Sandia has consequently initiated a project, as part of its Environmentally Conscious Manufacturing program, to develop low-residue, lead-free soldering for HMCs. This paper discusses the progress of that work.

  11. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, Janda K. G.; Jellison, James L.; Staley, David J.

    1995-01-01

    A system for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs.

  12. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, J.K.G.; Jellison, J.L.; Staley, D.J.

    1995-04-25

    A system is disclosed for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs. 1 fig.

  13. A Study of Solder Alloy Ductility for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Lupinacci, A.; Shapiro, A. A.; Suh, J-O.; Minor, A. M.

    2013-01-01

    For aerospace applications it is important to understand the mechanical performance of components at the extreme temperature conditions seen in service. For solder alloys used in microelectronics, cryogenic temperatures can prove problematic. At low temperatures Sn-based solders undergo a ductile to brittle transition that leads to brittle cracks, which can result in catastrophic failure of electronic components, assemblies and spacecraft payloads. As industrial processes begin to move away from Pb-Sn solder, it is even more critical to characterize the behavior of alternative Sn-based solders. Here we report on initial investigations using a modified Charpy test apparatus to characterize the ductile to brittle transformation temperature of nine different solder systems.

  14. In Situ TEM Observations of Cu6Sn5 Polymorphic Transformations in Reaction Layers Between Sn-0.7Cu Solders and Cu Substrates

    NASA Astrophysics Data System (ADS)

    Nogita, K.; Mohd Salleh, M. A. A.; Tanaka, E.; Zeng, G.; McDonald, S. D.; Matsumura, S.

    2016-07-01

    Direct evidence of the relationship between the polymorphic phase transformation from monoclinic Cu6Sn5 to hexagonal Cu6Sn5 and stress accumulation/release in Cu6Sn5, formed at the interface between Sn-0.7Cu lead-free solder and their Cu substrates, has been obtained. To explore this challenging phenomenon, we developed an in situ heating/isothermal observation technique in ultrahigh-voltage transmission electron microscopy that enables the observation of thick samples (around 0.5 μm) for solder joints, including Cu/Cu3Sn/Cu6Sn5/Sn-0.7Cu solder interfaces prepared by a focused ion beam milling technique. The results show evidence of stress creation and release events by imaging bend contours that may arise due to the polymorphic transformations of the Cu6Sn5 phase and the associated volumetric change.

  15. Laser beam soldering of fine-pitch technology packages with solid solder deposits

    NASA Astrophysics Data System (ADS)

    Pucher, Hans-Joerg; Glasmacher, Mathias; Geiger, Manfred

    1996-04-01

    Micro electronics is a key technology attracting the attention of information, communication, automation and data processing technologies. Ongoing miniaturization combined with an increasing number of I/Os has inevitably lead to ever finer lead geometries. Therefore the demands put upon the surface mount technology are increasing continuously. Processing of high lead count fine pitch packages, for example those which are applied in high-capacity computers, has not increased the demands put upon the assembly process only, but also on the connecting techniques. By reflow soldering with laser beam radiation the benefits from the tool `laser beam' are used extensively, for example contact and force free processing, strictly localized heating and the good controllability thereof, formation of fine crystalline and homogeneous structures, etc. Within the scope of this paper the fundamentals of laser beam soldering are discussed for fine pitch lead frames (pitch 300 micrometers ) for plastic packages, made by a modified CuFe2P alloy with a 5 micrometers Sn90Pb plating, on solid solder depths (Sn63Pb) performed by the so called High-Pad process. These investigations are unique in the field of laser beam soldering and are carried out by means of a Nd:YAG-laser. A pyrometer is used for detection of the emission of the temperature radiation of the joining area for process control. The additional use of a high-speed camera gives a detailed description of the melting and wetting process. The influence of laser beam parameters and the volume of the solid solder deposits on the joining result are presented.

  16. Microstructural effects on constitutive and fatigue fracture behavior of TinSilverCopper solder

    NASA Astrophysics Data System (ADS)

    Tucker, Jonathon P.

    As microelectronic package construction becomes more diverse and complex, the need for accurate, geometry-independent material constitutive and failure models increases. Evaluations of packages based on accelerated environmental tests (such as accelerated thermal cycling or power cycling) only provide package-dependent reliability information. In addition, extrapolations of such test data to life predictions under field conditions are often empirical. Besides geometry, accelerated environmental test data must account for microstructural factors such as alloy composition or isothermal aging condition, resulting in expensive experimental variation. In this work, displacement-controlled, creep, and fatigue lap shear tests are conducted on specially designed SnAgCu test specimens with microstructures representative to those found in commercial microelectronic packages. The data are used to develop constitutive and fatigue fracture material models capable of describing deformation and fracture behavior for the relevant temperature and strain rate ranges. Furthermore, insight is provided into the microstructural variation of solder joints and the subsequent effect on material behavior. These models are appropriate for application to packages of any geometrical construction. The first focus of the thesis is on Pb-mixed SnAgCu solder alloys. During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of SnPb and SnAgCu often result from either mixed assemblies or rework. Three alloys of 1, 5 and 20 weight percent Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn37Pb components mixed with Sn3.0Ag0.5Cu. Displacement-controlled (constant strain rate) and creep tests were performed at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. Rate-dependent constitutive models for Pb

  17. Microstructural effects on constitutive and fatigue fracture behavior of TinSilverCopper solder

    NASA Astrophysics Data System (ADS)

    Tucker, Jonathon P.

    As microelectronic package construction becomes more diverse and complex, the need for accurate, geometry-independent material constitutive and failure models increases. Evaluations of packages based on accelerated environmental tests (such as accelerated thermal cycling or power cycling) only provide package-dependent reliability information. In addition, extrapolations of such test data to life predictions under field conditions are often empirical. Besides geometry, accelerated environmental test data must account for microstructural factors such as alloy composition or isothermal aging condition, resulting in expensive experimental variation. In this work, displacement-controlled, creep, and fatigue lap shear tests are conducted on specially designed SnAgCu test specimens with microstructures representative to those found in commercial microelectronic packages. The data are used to develop constitutive and fatigue fracture material models capable of describing deformation and fracture behavior for the relevant temperature and strain rate ranges. Furthermore, insight is provided into the microstructural variation of solder joints and the subsequent effect on material behavior. These models are appropriate for application to packages of any geometrical construction. The first focus of the thesis is on Pb-mixed SnAgCu solder alloys. During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of SnPb and SnAgCu often result from either mixed assemblies or rework. Three alloys of 1, 5 and 20 weight percent Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn37Pb components mixed with Sn3.0Ag0.5Cu. Displacement-controlled (constant strain rate) and creep tests were performed at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. Rate-dependent constitutive models for Pb

  18. Printability Optimization For Fine Pitch Solder Bonding

    SciTech Connect

    Kwon, Sang-Hyun; Lee, Chang-Woo; Yoo, Sehoon

    2011-01-17

    Effect of metal mask and pad design on solder printability was evaluated by DOE in this study. The process parameters were stencil thickness, squeegee angle, squeegee speed, mask separating speed, and pad angle of PCB. The main process parameters for printability were stencil thickness and squeegee angle. The response surface showed that maximum printability of 1005 chip was achieved at the stencil thickness of 0.12 mm while the maximum printability of 0603 and 0402 chip was obtained at the stencil thickness of 0.05 mm. The bonding strength of the MLCC chips was also directly related with the printability.

  19. Development of the bus joint for the ITER Central Solenoid

    SciTech Connect

    Martovetsky, Nicolai N; Irick, David Kim; Kenney, Steven J

    2013-01-01

    The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

  20. Passive alignment and soldering technique for optical components

    NASA Astrophysics Data System (ADS)

    Faidel, Heinrich; Gronloh, Bastian; Winzen, Matthias; Liermann, Erik; Esser, Dominik; Morasch, Valentin; Luttmann, Jörg; Leers, Michael; Hoffmann, Dieter

    2012-03-01

    The passive-alignment-packaging technique presented in this work provides a method for mounting tolerance-insensitive optical components e.g. non-linear crystals by means of mechanical stops. The requested tolerances for the angle deviation are +/-100 μrad and for the position tolerance +/-100 μm. Only the angle tolerances were investigated, because they are more critical. The measurements were carried out with an autocollimator. Fused silica components were used for test series. A solder investigation was carried out. Different types of solder were tested. Due to good solderability on air and low induced stress in optical components, Sn based solders were indicated as the most suitable solders. In addition several concepts of reflow soldering configuration were realized. In the first iteration a system with only the alignment of the yaw angle was implemented. The deviation for all materials after the thermal and mechanical cycling was within the tolerances. The solderability of BBO and LBO crystals was investigated and concepts for mounting were developed.

  1. Utilization of Pb-free solders in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Selvaduray, Guna S.

    2003-01-01

    Soldering of components within a package plays an important role in providing electrical interconnection, mechanical integrity and thermal dissipation. MEMS packages present challenges that are more complex than microelectronic packages because they are far more sensitive to shock and vibration and also require precision alignment. Soldering is used at two major levels within a MEMS package: at the die attach level and at the component attach level. Emerging environmental regulations worldwide, notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the inherent toxicity of Pb. This has provided the driving force for development and deployment of Pb-free solder alloys. A relatively large number of Pb-free solder alloys have been proposed by various researchers and companies. Some of these alloys have also been patented. After several years of research, the solder alloy system that has emerged is based on Sn as a major component. The electronics industry has identified different compositions for different specific uses, such as wave soldering, surface mount reflow, etc. The factors that affect choice of an appropriate Pb-free solder can be divided into two major categories, those related to manufacturing, and those related to long term reliability and performance.

  2. Teaching minority middle-school students to solder

    NASA Astrophysics Data System (ADS)

    Reardon, James; Gates, Billy J., Jr.

    2014-03-01

    We aspired to teach minority middle school students to solder. We found that important variables affecting our ability to do so included: student-to-teacher ratio, venue of instruction, relationships with community partners, and understanding of the structure of the student's worldview. Once the effects of these variables had been understood, we found the students readily learned to solder. We now want to see whether the acquisition of the skill of soldering leads the students to be more interested in technical careers and in going to college. Supported by an APS Outreach Mini-grant.

  3. Solder technology in the manufacturing of electronic products

    SciTech Connect

    Vianco, P.T.

    1993-08-01

    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  4. Precision dispensing of small volumes of albumin solder for laser-assisted wound closure

    NASA Astrophysics Data System (ADS)

    Sorg, Brian S.; McNally-Heintzelman, Karen M.; Chan, Eric K.; Frederickson, Christopher J.; Welch, Ashley J.

    1999-06-01

    Recent laser-tissue soldering work in our lab has demonstrated the feasibility of building a solder bond from individually coagulated small droplets using a precision pipette for the deposition of the solder droplets. This method of using small, precise volumes of solder to build a bond may result in stronger and more reproducible bonds than coagulating an equivalent large volume of solder all at once. We have investigated the technique further in this study. The solder was dispensed onto the intimal side of a bovine aorta substrate and irradiated with an 808nm diode laser. A bond was created across an incision in the tissue substrate by alternately dispensing and coagulating each small volume of solder, or by coagulating a single large equivalent volume. Acute strength analysis was performed on the solder bond. Future work will concentrate on testing a bench-top solder dispensing device and investigating the feasibility of turning the deice into a prototype tool for clinical applications.

  5. High temperature solder alloys for underhood applications. Progress report

    SciTech Connect

    Drewien, C.A.; Yost, F.G.; Sackinger, S.; Kern, J.; Weiser, M.W.

    1995-02-01

    Under a cooperative research and development agreement with General Motors Corporation, lead-free solder systems including the flux, metallization, and solder are being developed for high temperature, underhood applications. Six tin-rich solders, five silver-rich metallizations, and four fluxes were screened using an experimental matrix whereby every combination was used to make sessile drops via hot plate or Heller oven processing. The contact angle, sessile drop appearance, and in some instances the microstructure was evaluated to determine combinations that would yield contact angles of less than 30{degrees}, well-formed sessile drops, and fine, uniform microstructures. Four solders, one metallization, and one flux were selected and will be used for further aging and mechanical property studies.

  6. Ultrafine-Grain and Isotropic Cu/SAC305/Cu Solder Interconnects Fabricated by High-Intensity Ultrasound-Assisted Solidification

    NASA Astrophysics Data System (ADS)

    Ji, Hongjun; Wang, Qiang; Li, Mingyu; Wang, Chunqing

    2014-07-01

    With the miniaturization of portable electronic devices, the size of solder joint interconnects is decreasing to micrometer levels. These joints possess only several or even one or two grains, resulting in anisotropy and failure issues. Direct ultrasound-assisted solidification of Cu/SAC305/Cu interconnects for grain refinement and fabrication of isotropic solder joints is presented herein. These joints consist of many β-Sn grains. The average cross-sectional area of the Sn-rich phase is significantly reduced by up to 99% when compared with conventional as-reflowed samples. The ultrasonic power density exhibits a threshold value for affecting the microstructures. Below 200 W cm-2, the β-Sn grains were refined and had circular shape. The Ag3Sn phase grew in a manner similar to branched coral to sizes reaching 30 μm, or as rods aggregated together with Cu6Sn5 tube fragments. Above 200 W cm-2, the microstructures were coarsened and Ag3Sn had plate-like shape. The thickness of Cu6Sn5 intermetallic layers at the Cu/solder interfaces was reduced by more than 26%. The relationships among the ultrasonic power, nucleation rate, local temperature drop, and pressure were identified. At the highest power density of 267 W cm-2, the nucleation rate was about 4.05 × 1014 m-3 s-1, the local temperature drop was 248 K, and the local pressure was on the order of several GPa.

  7. Improving the Reliability of Si Die Attachment with Zn-Sn-Based High-Temperature Pb-Free Solder Using a TiN Diffusion Barrier

    NASA Astrophysics Data System (ADS)

    Kim, Seongjun; Kim, Keun-Soo; Kim, Sun-Sik; Suganuma, Katsuaki; Izuta, Goro

    2009-12-01

    The thermal fatigue reliability of Si die-attached joints with Zn-30wt.%Sn, high-temperature, Pb-free solder was investigated, focusing on the interfacial microstructure and joining strength of a Cu/solder/Cu joint during thermal cycling. A sound die attachment on an aluminum nitride (AlN) direct-bonded copper (DBC) substrate was achieved by forming Cu-Zn intermetallic compound (IMC) layers at the interface with the Cu of the substrate. During the thermal cycling test performed between -40°C and 125°C, thermal fatigue cracks were induced by the growth of Cu-Zn IMCs at the interface with the Cu. A thin titanium nitride (TiN) film was applied to suppress the formation of Cu-Zn IMCs. Adequate joint formation was accomplished by using an Au/TiN-coated DBC substrate, and only the TiN layer was observed at both interfaces. In conjunction with the TiN diffusion barrier, the Si die-attached joint created with Zn-30wt.%Sn solder exhibited a stable interfacial microstructure during thermal cycling. No microstructural changes, such as IMC formation, grain growth or formation of fatigue cracks, were observed, and the joining strength was maintained even after 2000 cycles.

  8. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1987-10-23

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.

  9. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1989-05-09

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  10. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, Timothy J.; Ginley, David S.; Zipperian, Thomas E.

    1989-01-01

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  11. Soldering in prosthodontics--an overview, part I.

    PubMed

    Byrne, Gerard

    2011-04-01

    The fit of fixed multiunit dental prostheses (FDP), traditionally termed fixed partial dentures (FPDs), is an ongoing problem. Poorly fitting restorations may hasten mechanical failure, due to abutment caries or screw failure. Soldering and welding play an important role in trying to overcome misfit of fixed multiunit prostheses. The term FPD will be used to denote multiunit fixed dental prostheses in this review. This is the first of a series of articles that review the state of the art and science of soldering and welding in relation to the fit of cemented or screw-retained multiunit prostheses. A comprehensive archive of background information and scientific findings is presented. Texts in dental materials and prosthodontics were reviewed. Scientific data were drawn from the numerous laboratory studies up to and including 2009. The background, theory, terminology, and working principles, along with the applied research, are presented. This first article focuses on soldering principles and dimensional accuracy in soldering. There is some discussion and suggestions for future research and development. Soldering may improve dimensional accuracy or reduce the distortion of multiunit fixed prostheses. Many variables can affect the outcome in soldering technique. Research science has developed some helpful guidelines. Research projects are disconnected and limited in scope. PMID:21323788

  12. Lead-free solder technology transfer from ASE Americas

    SciTech Connect

    FTHENAKIS,V.

    1999-10-19

    To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a Pb

  13. Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Bieler, Thomas R.; Kim, Choong-Un

    2016-01-01

    The mechanical stability and thermo-mechanical fatigue performance of solder joints with low silver content Sn-1.0Ag-0.5Cu (wt.%) (SAC105) alloy based on different cooling rates are investigated in high G level shock environment and thermal cycling conditions. The cooling rate-controlled samples ranging from 1°C/min to 75°C/min cooling rate, not only show differences in microstructure, where a fine poly-granular microstructure develops in the case of fast cooling versus normal cooling, but also show various shock performances based on the microstructure changes. The fast cooling rate improves the high G shock performance by over 90% compared to the normal cooled SAC105 alloy air-cooling environment commonly used after assembly reflow. The microstructure effect on thermal cycling performance is also discussed, which is analyzed based on the Sn grain orientation, interconnect stability, and solder joint bulk microstructure.

  14. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    SciTech Connect

    Sujan, G.K. Haseeb, A.S.M.A. Afifi, A.B.M.

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  15. Evaluation of Electroplated Co-P Film as Diffusion Barrier Between In-48Sn Solder and SiC-Dispersed Bi2Te3 Thermoelectric Material

    NASA Astrophysics Data System (ADS)

    Li, Siyang; Yang, Donghua; Tan, Qing; Li, Liangliang

    2015-06-01

    The diffusion barrier property of Co-P film as a buffer layer between SiC-dispersed Bi2Te3 bulk material and In-48Sn solder was investigated. A Co-P film with thickness of ~6 µm was electroplated on SiC-dispersed Bi2Te3 substrate, joined with In-48Sn solder by a reflow process, and annealed at 100°C for up to 625 h. The formation and growth kinetics of intermetallic compounds (IMCs) at the interface between the In-48Sn and substrate were studied using transmission electron microscopy and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The results showed that crystalline Co(In,Sn)3 formed as an irregular layer adjacent to the solder side at the solder/Co-P interface due to diffusion of Co towards the solder, and a small amount of amorphous Co45P13In12Sn30 appeared at the Co-P side because of diffusion of In and Sn into Co-P. The growth of Co(In,Sn)3 and Co45P13In12Sn30 during solid-state aging was slow, being controlled by interfacial reaction and diffusion, respectively. For comparison, In-48Sn/Bi2Te3-SiC joints were prepared and the IMCs in the joints analyzed. Without a diffusion barrier, In penetrated rapidly into the substrate, which led to the formation of amorphous In x Bi y phase in crystalline In4Te3 matrix. These IMCs grew quickly with prolongation of the annealing time, and their growth was governed by volume diffusion of elements. The experimental data demonstrate that electroplated Co-P film is an effective diffusion barrier for use in Bi2Te3-based thermoelectric modules.

  16. Effect of Current Density and Plating Time on Cu Electroplating in TSV and Low Alpha Solder Bumping

    NASA Astrophysics Data System (ADS)

    Jung, Do-Hyun; Sharma, Ashutosh; Kim, Keong-Heum; Choo, Yong-Chul; Jung, Jae-Pil

    2015-03-01

    In this study, copper filling in through-silicon via (TSV) by pulse periodic reverse electroplating and low alpha solder bumping on Cu-filled TSVs was investigated. The via diameter and depth of TSV were 60 and 120 µm, respectively. The experimental results indicated that the thickness of electrodeposited copper layer increased with increasing cathodic current density and plating time. The electroplated Cu in TSV showed a typical bottom-up filling. A defectless, complete, and fast 100% Cu-filled TSV was achieved at cathodic and anodic current densities of -8 and 16 mA/cm2 for a plating time of 4 h, respectively. A sound low alpha solder ball, Sn-1.0 wt.% Ag-0.5 wt.% Cu (SAC 105) with a diameter of 83 µm and height of 66 µm was reflow processed at 245 °C on Cu-filled TSV. The Cu/solder joint interface was subjected to high temperature aging at 85 °C for 150 h, which showed an excellent bonding characteristic with minimum Cu-Sn intermetallic compounds growth.

  17. Reducing the emission of ozone depleting chemicals through use of a self-cleaning soldering process

    SciTech Connect

    Lichtenberg, L.; Martin, G.; Van Buren, P.; Iman, R.; Paffett, M.T.

    1991-12-31

    Motorola has jointed with Sandia and Los Alamos National Laboratories to perform work under a Cooperative Research and Development Agreement (CRADA) to reduce the use of CFC`s and other ozone depleting printing wiring board (PWB) cleaning solvents. This study evaluated the use of a new soldering process that uses dilute adipic acid in lieu of rosin flux. The process consumes the adipic acid in lieu of rosin flux. The process consumes the adipic acid during the soldering process and precludes the need for subsequent cleaning with ozone depleting solvents. This paper presents results from a series of designed experiments that evaluated PWB cleanliness as a function of various levels of machine control parameters. The study included a comprehensive hardware reliability evaluation, which included environmental conditioning, cleanliness testing, surface chemical analysis, surface insulation resistance testing, along with electrical, mechanical and long term storage testing. The results of this study that the new process produces quality, reliable hardware over a wide range of processing parameters. Adoption of this process, which eliminates the need for supplemental cleaning, will have a positive impact on many environmental problems, including depletion of the ozone layer.

  18. Reducing the emission of ozone depleting chemicals through use of a self-cleaning soldering process

    SciTech Connect

    Lichtenberg, L.; Martin, G.; Van Buren, P. . Government Electronics Group); Iman, R. ); Paffett, M.T. )

    1991-01-01

    Motorola has jointed with Sandia and Los Alamos National Laboratories to perform work under a Cooperative Research and Development Agreement (CRADA) to reduce the use of CFC's and other ozone depleting printing wiring board (PWB) cleaning solvents. This study evaluated the use of a new soldering process that uses dilute adipic acid in lieu of rosin flux. The process consumes the adipic acid in lieu of rosin flux. The process consumes the adipic acid during the soldering process and precludes the need for subsequent cleaning with ozone depleting solvents. This paper presents results from a series of designed experiments that evaluated PWB cleanliness as a function of various levels of machine control parameters. The study included a comprehensive hardware reliability evaluation, which included environmental conditioning, cleanliness testing, surface chemical analysis, surface insulation resistance testing, along with electrical, mechanical and long term storage testing. The results of this study that the new process produces quality, reliable hardware over a wide range of processing parameters. Adoption of this process, which eliminates the need for supplemental cleaning, will have a positive impact on many environmental problems, including depletion of the ozone layer.

  19. Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Lin, T. Y.; Liao, C. N.; Wu, Albert T.

    2012-01-01

    The intermetallic compound SnTe rapidly formed at interfaces between p-type bismuth telluride (Bi0.5Sb1.5Te3) thermoelectric materials and lead-free solders. The intermetallic compound influences the mechanical properties of the joints and the reliability of the thermoelectric modules. Various lead-free solder alloys, Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu, and Sn-2.5Ag-2Ni, were used to investigate the interfacial reactions. The results thus obtained show that Ag and Cu preferentially diffused into the Te-rich phase in Bi0.5Sb1.5Te3, so layers of Ag-Te and Cu-Te compounds could not form an effective diffusion barrier. Electroless nickel-phosphorus was plated at the interfaces to serve as a diffusion barrier, and the (Cu,Ni)6Sn5 compound formed instead of SnTe. Furthermore, the intermetallic compound NiTe formed between nickel- phosphorus and Bi0.5Sb1.5Te3 and also served as a diffusion barrier. A plot of thickness as a function of annealing time yielded the growth kinetics of the intermetallic compounds in the thermoelectric material systems. The activation energy for the growth of the NiTe intermetallic compound is 111 kJ/mol.

  20. Properties of ternary Sn-Ag-Bi solder alloys. Part 2: Wettability and mechanical properties analyses

    SciTech Connect

    Vianco, P.T.; Rejent, J.A.

    1999-10-01

    Bismuth additions of 1% to 10% were made to the 96.5Sn-3.5Ag (wt.%) alloy in a study to develop a Sn-Ag-Bi ternary composition. Thermal properties and microstructural analyses of selected alloy compositions were reported in Part 1. Wettability and mechanical properties are described in this paper. Contact angle measurements demonstrated that Bi additions improved wetting/spreading performance on Cu; a minimum contact angle of 31 {+-} 4{degree} was observed with 4.83 wt.% Bi addition. Increasing the Bi content of the ternary alloy raised the Cu/solder/Cu solder joint shear strength to 81 MPa as determined by the ring-and-plug tests. TEM analysis of the 91.84Sn-3.33Ag-4.83Bi composition presented in Part 1 indicated that the strength improvement was attributed to solid-solution and precipitation strengthening effects by the Bi addition residing in the Sn-rich phase. Microhardness measurements of the Sn-Ag-Bi alloy, as a function of Bi content, reached maximum values of 30 (Knoop, 50 g) and 110 (Knoop, 5g) for Bi contents greater than approximately 4--5 wt.%.

  1. Microbial leaching of waste solder for recovery of metal.

    PubMed

    Hocheng, H; Hong, T; Jadhav, U

    2014-05-01

    This study proposes an environment-friendly bioleaching process for recovery of metals from solders. Tin-copper (Sn-Cu), tin-copper-silver (Sn-Cu-Ag), and tin-lead (Sn-Pb) solders were used in the current study. The culture supernatant of Aspergillus niger removed metals faster than the culture supernatant of Acidithiobacillus ferrooxidans. Also, the metal removal by A. niger culture supernatant is faster for Sn-Cu-Ag solder as compared to other solder types. The effect of various process parameters such as shaking speed, temperature, volume of culture supernatant, and increased solder weight on bioleaching of metals was studied. About 99 (±1.75) % metal dissolution was achieved in 60 h, at 200-rpm shaking speed, 30 °C temperature, and by using 100-ml A. niger culture supernatant. An optimum solder weight for bioleaching was found to be 5 g/l. Addition of sodium hydroxide (NaOH) and sodium chloride (NaCl) in the bioleached solution from Sn-Cu-Ag precipitated tin (85 ± 0.35 %) and silver (80 ± 0.08 %), respectively. Passing of hydrogen sulfide (H2S) gas at pH 8.1 selectively precipitated lead (57.18 ± 0.13 %) from the Sn-Pb bioleached solution. The proposed innovative bioleaching process provides an alternative technology for recycling waste solders to conserve resources and protect environment. PMID:24634142

  2. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; Peng, Jianke; Fu, Li; Wang, Xincheng; Xie, Yan

    2016-04-01

    In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  3. Development of a new Pb-free solder: Sn-Ag-Cu

    SciTech Connect

    Miller, C.M.

    1995-02-10

    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217{degrees}C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  4. Comparison of Sn-Ag-Cu Solder Alloy Intermetallic Compound Growth Under Different Thermal Excursions for Fine-Pitch Flip-Chip Assemblies

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Liu, Xi; Chow, Justin; Wu, Yi Ping; Sitaraman, Suresh K.

    2013-08-01

    The intermetallic compound (IMC) evolution in Cu pad/Sn-Ag-Cu solder interface and Sn-Ag-Cu solder/Ni pad interface was investigated using thermal shock experiments with 100- μm-pitch flip-chip assemblies. The experiments show that low standoff height of solder joints and high thermomechanical stress play a great role in the interfacial IMC microstructure evolution under thermal shock, and strong cross-reaction of pad metallurgies is evident in the intermetallic growth. Furthermore, by comparing the IMC growth during thermal aging and thermal shock, it was found that thermal shock accelerates IMC growth and that kinetic models based on thermal aging experiments underpredict IMC growth in thermal shock experiments. Therefore, new diffusion kinetic parameters were determined for the growth of (Cu,Ni)6Sn5 using thermal shock experiments, and the Cu diffusion coefficient through the IMC layer was calculated to be 0.2028 μm2/h under thermal shock. Finite-element models also show that the solder stresses are higher under thermal shock, which could explain why the IMC growth is faster and greater under thermal shock cycling as opposed to thermal aging.

  5. Three-dimensional (3D) microstructural characterization and quantification of reflow porosity in Sn-rich alloy/copper joints by X-ray tomography

    SciTech Connect

    Jiang Ling; Chawla, Nikhilesh; Pacheco, Mario; Noveski, Vladimir

    2011-10-15

    In this paper high resolution X-ray tomography was used to characterize reflow porosity in Sn-3.9Ag-0.7Cu/Cu solder joints. The combination of two segmentation techniques was applied for the three-dimensional (3D) visualization of pores in the joints and the quantification on the characteristics of reflow porosity, including pore size, volume fraction and morphology. The size, morphology and distribution of porosity were visualized in 3D for three different solder joints. Since the results are relatively similar for all three, only the results of one joint are presented. Solder reflow porosity was mostly spherical, segregated along the solder/Cu interface, and had an average pore size of 30 {mu}m in diameter. A few large pores (larger than 100 {mu}m in diameter) were present, some of which had lower sphericity, i.e., they were more irregular. The presence of these large pores may significantly influence the mechanical behavior of solder joints. - Highlights: {yields} Non-destructive 3D characterization and quantification of porosity in Pb-free solders by X-ray tomography {yields} Two new image analysis and reconstruction tools are presented that can be used by the community at large {yields} Pore size, volume fraction, and sphericity, is critical to understanding microstructure and modeling of these systems.

  6. Nano copper based high temperature solder alternative

    NASA Astrophysics Data System (ADS)

    Sharma, Akshay

    Nano Cu an alternative to high temperature solder is developed by the Advance Technological Center at the Lockheed Martin Corporation. A printable paste of Cu nano particles is developed with an ability to fuse at 200°C in reflow oven. After reflow the deposited material has nano crystalline and nano porous structure which affects its properties. Accelerated test are performed on nano Cu deposition having nano porous and nano crystalline structure for assessment and prediction of reliability. Nano Cu assemblies with different bond layer thickness are sheared to calculate the strength of the material and are correlated with the porous and crystalline structure of nano Cu. Thermal and isothermal fatigue test are performed on nano Cu to see the dependency of life on stress and further surface of failed assemblies were observed to determine the type of failure. Creep test at RT are performed to find the type of creep mechanism and how they are affected when subjected to high temperature. TEM, SEM, X-ray, C-SAM and optical microscopy is done on the nano Cu sample for structure and surface analysis.

  7. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  8. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  9. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  10. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  11. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  12. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  13. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  14. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  15. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  16. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  17. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  18. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  19. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  20. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  1. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  2. Voltage current property of two HTS tapes connected by ordinary Sn Pb solder

    NASA Astrophysics Data System (ADS)

    Gu, C.; Zhuang, C.; Qu, T. M.; Han, Z.

    2005-10-01

    The V-I property of two HTS tapes connected by ordinary Sn-Pb solder has been studied both numerically and experimentally. Two basic joint structures: "shake hand" and "pray hand" with different overlapped length are studied. By means of a Finite Element Analysis package ANSYS, not only the entire V-I curve from 0 to 2Ic can be obtained but also the detail of current distribution along the HTS tape can be simulated. The numerical approach is based on a 2D electric field analysis, where the conductivity of the HTS material is simulated in terms of a power law E-J relation. The simulated results are compared with the experimental data obtained from the commonly used four-probe method. We found that from the energy dissipation point of view, the "pray hand" structure is more appropriate for use in the high current region.

  3. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  4. Effects of solder temperature on pin through-hole during wave soldering: thermal-fluid structure interaction analysis.

    PubMed

    Aziz, M S Abdul; Abdullah, M Z; Khor, C Y

    2014-01-01

    An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183(°)C) < T < 643.15 K (370(°)C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry. PMID:25225638

  5. Effects of Solder Temperature on Pin Through-Hole during Wave Soldering: Thermal-Fluid Structure Interaction Analysis

    PubMed Central

    Abdul Aziz, M. S.; Abdullah, M. Z.; Khor, C. Y.

    2014-01-01

    An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183°C) < T < 643.15 K (370°C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry. PMID:25225638

  6. Development of alternatives to lead-bearing solders

    SciTech Connect

    Vianco, P.T.

    1993-07-01

    Soldering technology, using tin-lead alloys has had a significant role in the packaging of highly functional, low cost electronic devices. The elimination of lead from all manufactured products, whether through legislation or tax incentives, will impact the electronics community which uses lead-containing solders. In response to these proposed measures, the National Center for Manufacturing Sciences has established a multi-year program involving participants from industry, academia, and the national laboratories with the objective to identify potential replacements for lead-bearing solders. Selection of candidate alloys is based upon the analysis of materials properties, manufacturability, modeling codes for reliability prediction, as well as toxicological properties and resource availability, data developed in the program.

  7. Materials chemistry. Composition-matched molecular "solders" for semiconductors.

    PubMed

    Dolzhnikov, Dmitriy S; Zhang, Hao; Jang, Jaeyoung; Son, Jae Sung; Panthani, Matthew G; Shibata, Tomohiro; Chattopadhyay, Soma; Talapin, Dmitri V

    2015-01-23

    We propose a general strategy to synthesize largely unexplored soluble chalcogenidometallates of cadmium, lead, and bismuth. These compounds can be used as "solders" for semiconductors widely used in photovoltaics and thermoelectrics. The addition of solder helped to bond crystal surfaces and link nano- or mesoscale particles together. For example, CdSe nanocrystals with Na2Cd2Se3 solder was used as a soluble precursor for CdSe films with electron mobilities exceeding 300 square centimeters per volt-second. CdTe, PbTe, and Bi2Te3 powders were molded into various shapes in the presence of a small additive of composition-matched chalcogenidometallate or chalcogel, thus opening new design spaces for semiconductor technologies. PMID:25569110

  8. Solder wetting kinetics in narrow V-grooves

    SciTech Connect

    Yost, F.G.; Rye, R.R.; Mann, J.A. Jr.

    1997-12-01

    Experiments are performed to observe capillary flow in grooves cut into copper surfaces. Flow kinetics of two liquids, 1-heptanol and eutectic Sn-Pb solder, are modeled with modified Washburn kinetics and compared to flow data. It is shown that both liquids flow parabolically in narrow V-grooves, and the data scale as predicted by the modified Washburn model. The early portions of the flow kinetics are characterized by curvature in the length vs time relationship which is not accounted for in the modified Washburn model. This effect is interpreted in terms of a dynamic contact angle. It is concluded that under conditions of rapid flow, solder spreading can be understood as a simple fluid flow process. Slower kinetics, e.g. solder droplet spreading on flat surfaces, may be affected by subsidiary chemical processes such as reaction.

  9. Materials and mechanics issues of solder alloy applications

    NASA Astrophysics Data System (ADS)

    Kinsman, Ken; Frear, Darrel R.; Jones, Wendell B.

    1990-09-01

    The key conclusion out of the Solder Mechanics Workshop is that, overall, the technical and scientific community does not know as much quantitatively about solder behavior as we had hoped. The good news, however, is that the microelectronics user community, which is largely served by solder activities, has come to terms with the current environment through active participation in the workshop. The air has been cleared. As a technical community, we have a better idea of what our priorities for continued research are. A much more detailed overview of the workshop will be available shortly in monograph form. Individual chapters will be written by authors present at the workshop and will emphasize background material (e.g., literature critiques) and detail the technical consensus on critical issues central to the workshop. The book will be available through TMS and will be the first volume in a new series of technical monographs sponsored by the society's Electronic, Magnetic and Photonic Materials Division.

  10. Drinking Water Contamination Due To Lead-based Solder

    NASA Astrophysics Data System (ADS)

    Garcia, N.; Bartelt, E.; Cuff, K. E.

    2004-12-01

    The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.

  11. A ban on use of lead-bearing solders: Implications for the electronics industry

    SciTech Connect

    Vianco, P.T.; Yost, F.G.

    1992-04-01

    This white paper addresses the issue of banning lead from solders used in electronics manufacturing. The current efforts by legislative bodies and regulatory agencies to curtail the use of lead in manufactured goods, including solders, are described. In response to a ban on lead or the imposition of a tax which makes lead uneconomical for use in solder alloys, alternative technologies including lead-free solders and conductive epoxies are presented. The recommendation is made that both users and producers of solder materials join together as partners in a consortium to address this issue in a timely and cost-effective manner.

  12. Preparation of Sn—Ag—In ternary solder bumps by electroplating in sequence and reliability

    NASA Astrophysics Data System (ADS)

    Dongliang, Wang; Yuan, Yuan; Le, Luo

    2011-08-01

    This paper describes a technique that can obtain ternary Sn—Ag—In solder bumps with fine pitch and homogenous composition distribution. The mainfeature of this process is that tin-silver and indium are electroplated on copper under bump metallization (UBM) in sequence. After an accurate reflow process, Sn1.8Ag9.4In solder bumps are obtained. It is found that the intermetallic compounds (IMCs) between Sn—Ag—In solder and Cu grow with the reflow time, which results in an increase in Ag concentration in the solder area. So during solidification, more Ag2In nucleates and strengthens the solder.

  13. Sn-Ag-Cu and Sn-Cu solders: Interfacial reactions with platinum

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Kim, Young-Ho

    2004-06-01

    The interfacial reaction and intermetallic formation at the interface between tin solders containing a small amount of copper with platinum were investigated in this study. Sn-0.7Cu and Sn-1.7Cu solders were reacted with platinum by dipping Pt/Ti/Si specimens into the molten solder at 260°C. Sn-3.8Ag-0.7Cu solder was reacted with platinum by reflowing solder paste on a Pt/Ti/Si substrate at 250°C. PtSn4 intermetallic formed in all specimens while Cu6Sn5 interfacial intermetallic was not observed at the solder/platinum interfaces in any specimens. A parabolic relationship existed between the thickness of the Pt-Sn intermetallic and reaction time, which indicates the intermetallic formation in the solder/platinum interface is diffusion controlled.

  14. Soldering and brazing safety guide: A handbook on space practice for those involved in soldering and brazing

    NASA Astrophysics Data System (ADS)

    This manual provides those involved in welding and brazing with effective safety procedures for use in performance of their jobs. Hazards exist in four types of general soldering and brazing processes: (1) cleaning; (2) application of flux; (3) application of heat and filler metal; and (4) residue cleaning. Most hazards during those operations can be avoided by using care, proper ventilation, protective clothing and equipment. Specific process hazards for various methods of brazing and soldering are treated. Methods to check ventilation are presented as well as a check of personal hygiene and good maintenance practices are stressed. Several emergency first aid treatments are described.

  15. Perpendicular Growth Characteristics of Cu-Sn Intermetallic Compounds at the Surface of 99Sn-1Cu/Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwen; Liu, Changqing; Wu, Yiping; An, Bing

    2015-12-01

    The growth of intermetallic compounds (IMCs) on the free surface of 99Sn-1Cu solder joints perpendicular to the interdiffusion direction has been investigated in this work. The specimens were specifically designed and polished to reveal a flat free surface at the solder/Cu interface for investigation. After aging at 175°C for progressively increased durations, the height of the perpendicular IMCs was examined and found to follow a parabolic law with aging duration that could be expressed as y = 0.11√ t, where t is the aging duration in hours and y is the height of the perpendicular IMCs in μm. For comparison, the planar growth of IMCs along the interdiffusion direction was also investigated in 99Sn-1Cu/Cu solder joints. After prolonged aging at 175°C, the thickness of the planar interfacial IMC layers also increased parabolically with aging duration and could be expressed as h_{{IMC}} = 0.27√ t + 4.6, where h is the thickness in μm and t is the time in hours. It was found that both the planar and perpendicular growth of the IMCs were diffusion-controlled processes, but the perpendicular growth of the IMCs was much slower than their planar growth due to the longer diffusion distance. It is proposed that Cu3Sn forms prior to the formation of Cu6Sn5 in the perpendicular IMCs, being the reverse order compared with the planar IMC growth.

  16. Recycling of lead solder dross, Generated from PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Lucheva, Biserka; Tsonev, Tsonio; Iliev, Peter

    2011-08-01

    The main purpose of this work is to analyze lead solder dross, a waste product from manufacturing of printed circuit boards by wave soldering, and to develop an effective and environmentally sound technology for its recycling. A methodology for determination of the content and chemical composition of the metal and oxide phases of the dross is developed. Two methods for recycling of lead solder dross were examined—carbothermal reduction and recycling using boron-containing substances. The influence of various factors on the metal yield was studied and the optimal parameters of the recycling process are defined. The comparison between them under the same parameters-temperature and retention time, showed that recycling of dross with a mixture of borax and boric acid in a 1:2 ratio provides higher metal yield (93%). The recycling of this hazardous waste under developed technology gets glassy slag and solder, which after correction of the chemical composition can be used again for production of PCB.

  17. IMPACT OF LEAD AND OTHER METALLIC SOLDERS ON WATER QUALITY

    EPA Science Inventory

    A study of the relationship between water quality at the consumer's taps and the corrosion of lead solder was conducted under actual field conditions in 90 homes supplied by public water in the South Huntington Water District (New York) and at l4 houses supplied by private wells ...

  18. 28. VIEW OF THE SOLDERING NICHE FORMED WITH BRICKS. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW OF THE SOLDERING NICHE FORMED WITH BRICKS. THE BACK OF THE NICHE IS CEMENT FINISHED. THE BOTTOM HAS A 1 INCH THICK ASBESTOS SHELF. THIS PHOTO WAS TAKEN AT THE 3RD FLOOR. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA

  19. Horizon shells and BMS-like soldering transformations

    NASA Astrophysics Data System (ADS)

    Blau, Matthias; O'Loughlin, Martin

    2016-03-01

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  20. Robot End Effector To Place and Solder Solar Cells

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1982-01-01

    Encapsulated in robot end effector is RF induction-heating coil for heating solar cell while in transit. Holes in encapsulant permit end of unit to act as vacuum pickup to grip solar cell. Use of RF induction heating allows cell to be heated without requiring direct mechanical and thermal contact of bonding tool such as soldering iron.

  1. A constitutive model for Sn-Pb solder.

    SciTech Connect

    Neilsen, Michael K.; Vianco, Paul Thomas; Boyce, Brad Lee

    2010-10-01

    A unified creep plasticity damage (UCPD) model for Sn-Pb solder is developed in this paper. Stephens and Frear (1999) studied the creep behavior of near-eutectic 60Sn-40Pb solder subjected to low strain rates and found that the inelastic (creep and plastic) strain rate could be accurately described using a hyperbolic Sine function of the applied effective stress. A recently developed high-rate servo-hydraulic method was employed to characterize the temperature and strain-rate dependent stress-strain behavior of eutectic Sn-Pb solder over a wide range of strain rates (10{sup -4} to 10{sup 2} per second). The steady state inelastic strain rate data from these latest experiments were also accurately captured by the hyperbolic Sine equation developed by Stephens and Frear. Thus, this equation was used as the basis for the UCPD model for Sn-Pb solder developed in this paper. Stephens, J.J., and Frear, D.R., Metallurgical and Materials Transactions A, Volume 30A, pp. 1301-1313, May 1999.

  2. Fundamentals of wetting and spreading with emphasis on soldering

    SciTech Connect

    Yost, F.G.

    1991-01-01

    Soldering is often referred to as a mature technology whose fundamentals were established long ago. Yet a multitude of soldering problems persist, not the least of which are related to the wetting and spreading of solder. The Buff-Goodrich approach to thermodynamics of capillarity is utilized in a review of basic wetting principles. These thermodynamics allow a very compact formulation of capillary phenomena which is used to calculate various meniscus shapes and wetting forces. These shapes and forces lend themselves to experimental techniques, such as the sessile drop and the Wilhelmy plate, for measuring useful surface and interfacial energies. The familiar equations of Young, Wilhelmy, and Neumann are all derived with this approach. The force-energy duality of surface energy is discussed and the force method is developed and used to derive the Herring relations for anisotropic surfaces. The importance of contact angle hysteresis which results from surface roughness and chemical inhomogeneity is presented and Young's equation is modified to reflect these ever present effects. Finally, an analysis of wetting with simultaneous metallurigical reaction is given and used to discuss solder wetting phenomena. 60 refs., 13 figs.

  3. Microstructure and Sn Crystal Orientation Evolution in Sn-3.5Ag Lead-Free Solders in High-Temperature Packaging Applications

    NASA Astrophysics Data System (ADS)

    Zhou, Bite; Muralidharan, Govindarajan; Kurumadalli, Kanth; Parish, Chad M.; Leslie, Scott; Bieler, Thomas R.

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high-temperature packaging applications is of significant interest in power electronics for the next-generation electric grid. Large-area (2.5 mm × 2.5 mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5°C and 200°C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction in the scanning electron microscope. Comparisons were made between the observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution observed due to thermal cycling suggested a continuous recrystallization mechanism. Recrystallization behavior was correlated with dislocation slip activities.

  4. Microstructure and Sn crystal orientation evolution in Sn-3.5Ag lead-free solders in high temperature packaging applications

    SciTech Connect

    Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth; Parish, Chad M; Leslie, Dr Scott; Bieler, T. R.

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallization behavior was correlated with dislocation slip activities.

  5. Fluxless flip chip bonding processes and aerial fluxless bonding technology

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook

    New fluxless flip chip processes of Sn-rich non-eutectic Au-Sn solder bumps were developed using vacuum deposition and electroplating technique. It is believed that this is the first report that non-eutectic Au-Sn flip chip solder bonding is achieved without the use of flux. In order to make 200mum diameter and 10mum thick Au-Sn solder bump 0.03mum of Cr, 10mum of Sn and 0.3mum of Au were vacuum deposited on the Si wafer through the high carbon steal stencil mask. Nearly void-free solder bumps with small grains of AuSn4 intermetallic compound were achieved. The re-melting temperature of solder bumps was measured to be 220°C. In the second part, first, the fluxless bonding process was performed in hydrogen environment with electroplated 4 mm x 4mm Au-Sn multi-layer chips if electroplating technique is compatible with our process. High quality and nearly void free solder joint was successfully achieved with this new process. After proving compatibility of the process, tall electroplated Sn/Au bumps (50 mum) were produced by photolithography method using Su-8 photoresist. The bumps in the chip were flip chip bonded to the borosilicate glass wafer coated with Cr (0.03 mum) and Au (0.05 mum) pads without using any flux. Fluxless and lead-free bonding technology in air ambient based on non eutectic 5 at. % Au-95 at. % Sn and eutectic 57 at. %Sn-43 at. % Bi with Au capping layer have been developed and studied. To understand the fluxless bonding principles in air ambient, phase formation mechanism of Au-Sn intermetallics embedded in Bi matrix has been postulated. The Au-Sn intermetallic-capping layer covers most outer surface of the samples and inhibits formation of oxide layer due to the minimizing exposure of (beta-Sn) phase to the air. In conclusion, new-lead free and fluxless bonding processes for flip chip packages were developed. In this work, Sn-rich Au-Sn flip chip solder bumps using vacuum deposition and electroplating process were successfully produced. It is

  6. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    NASA Astrophysics Data System (ADS)

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.

    2016-04-01

    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  7. Wettability and Reaction between Solder and Silver Busbar during the Tabbing Process for Silicon Photovoltaic Modules

    NASA Astrophysics Data System (ADS)

    Lee, Beom-Yong; Hoang, Thi-Lien; Cho, Sung-Bin; Huh, Joo-Youl; Lee, Young-Sik

    2012-10-01

    The soldering quality of a Cu ribbon onto the Ag busbars of solar cells is one of the key factors affecting the cell-to-module loss and durability of a silicon photovoltaic module. In this study, we examined the effects of the surface chemistry and morphology of the screen-printed Ag busbars on the solder wettability and bonding uniformity of the Cu ribbon over the length of the busbar during the tabbing process. The surface of the as-fired Ag busbar was covered by a thin glass layer originating from the glass frit contained in the Ag paste. The presence of the thin glass layer significantly decreased the wettability of the solder, leading to the formation of voided regions at the solder/busbar interface. Although it had only a minor influence on solder wettability, increasing the roughness of the busbar surface resulted in the formation of more voided regions at the solder/busbar interface.

  8. Evaluation of advanced microelectronic fluxless solder-bump contacts for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Mandal, R. P.

    1976-01-01

    Technology for interconnecting monolithic integrated circuit chips with other components is investigated. The advantages and disadvantages of the current flip-chip approach as compared to other interconnection methods are outlined. A fluxless solder-bump contact technology is evaluated. Multiple solder-bump contacts were formed on silicon integrated circuit chips. The solder-bumps, comprised of a rigid nickel under layer and a compliant solder overlayer, were electroformed onto gold device pads with the aid of thick dry film photomasks. Different solder alloys and the use of conductive epoxy for bonding were explored. Fluxless solder-bump bond quality and reliability were evaluated by measuring the effects of centrifuge, thermal cycling, and high temperature storage on bond visual characteristics, bond electrical continuity, and bond shear tests. The applicability and suitability of this technology for hybrid microelectronic packaging is discussed.

  9. Effects of pre-stressing and flux on the flow of solder on PWB copper surfaces

    SciTech Connect

    Hernandez, C.L.; Hosking, F.M.

    1994-12-31

    A variety of test methods are available to evaluate the solderability of printed wiring board [PWB] surface finishes. A new test has been developed which better simulates the capillary flow physics of typical solder assembly processing, especially surface mount soldering. The work was conducted under a cooperative research and development agreement between Sandia National Laboratories, the National Center for Manufacturing Sciences, and several PWB fabricators (AT&T, IBM, Texas Instruments, and United Technologies Corporation/Hamilton Standard) to advance PWB interconnect systems technology. Particular attention has been given at Sandia to characterizing the effects of accelerated aging in a simulated indoor industrial environment on subsequent PWB solderability. The program`s baseline surface finish was copper. Solderability testing on ``as-fabricated`` and ``pre-stressed copper`` pad-strip geometries was performed with Sn-Pb eutectic solder and three different fluxes at four different reflow temperatures.

  10. Detecting nonuniformity in small welds and solder seams using optical correlation and electronic processing.

    PubMed

    Wagner, J W

    1981-10-15

    Using holographic matched filtering and electronic processing, small variations in surface displacement along the seam of a hermetic microcircuit package can be detected when the seam is stressed. Destructive analysis of a solder-sealed package reveals a strong correlation between optical signal variations and nonuniformity of solder adhesion and wetting along the seam. The technique promises potential application as a means of nondestructively inspecting for flaws in small welded or soldered seams. PMID:20372226

  11. Conversion from solvent rinsable fluxes to aqueous rinsable fluxes for hot oil solder leveling

    NASA Astrophysics Data System (ADS)

    1992-03-01

    A water rinsable flux was evaluated for hot oil solder leveling of printed wiring boards. The previously used rosin-activated flux required a solvent containing a chlorinated hydrocarbon for removing the flux residues after soldering. The water rinsable flux requires hot water or a solution of hot detergent for removing flux residues after smoldering. The water rinsable flux produced an acceptable soldered surface. Flux residues were removed by either hot water (120 F) or a solution of hot detergent (120 F).

  12. Role of Ag in the formation of interfacial intermetallic phases in Sn-Zn soldering

    NASA Astrophysics Data System (ADS)

    Song, Jenn-Ming; Liu, Pei-Chi; Shih, Chia-Ling; Lin, Kwang-Lung

    2005-09-01

    This study explored the effect of Ag as the substrate or alloying element of solders on the interfacial reaction in Sn-Zn soldering. Results show that instead of Ag-Sn compounds, ζ-AgZn and γ-Ag5Zn8 form at the Sn-Zn/Ag interface. The addition of Ag in Sn-Zn solders leads to the precipitation of ɛ-AgZn3 from the liquid solder on preformed interfacial intermetallics. The morphology of this additional AgZn3 is closely related to the solidification process of Ag-Zn intermetallics and the under intermetallic layer.

  13. Thermally Conductive Metal-Tube/Carbon-Composite Joints

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.

    2004-01-01

    An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.

  14. Predicted ball grid array thermal response during reflow soldering

    SciTech Connect

    Voth, T.E.; Bergman, T.L.

    1995-12-31

    A numerical model is developed to predict the detailed thermomechanical response of a BGA assembly during reflow soldering. The governing coupled solid mechanics and heat diffusion equations are solved using a commercially available finite element package. Reported predictions illustrate the system`s sensitivity to both thermal and mechanical processing conditions, as well as component thermal properties. Specifically, assemblies with components of high thermal conductivity show the greatest sensitivity to mechanical loading conditions.

  15. Microstructures and Mechanical Properties of Sn-0.1Ag-0.7Cu-(Co, Ni, and Nd) Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Zhou, Jian; Xue, Feng; Bai, Jing; Yao, Yao

    2015-02-01

    The influences of minor alloying elements Co, Ni, and Nd on the microstructures and mechanical properties of Sn-0.1Ag-0.7Cu (SAC0107) solder were investigated. The results show that the microstructures of SAC0107 alloy mainly consisted of primary Sn-rich phases and eutectic phases composed of Ag3Sn and Cu6Sn5 phases dispersed in a Sn matrix. With Co or Ni additions, the amount of primary Sn-rich phase reduced and IMCs dispersed more uniformly in the Sn matrix. The elements of Co and Ni were concentrated in (Co x Cu1- x )6Sn5 and (Ni x Cu1- x )6Sn5 intermetallic compounds (IMCs), respectively, and they also entered the IMC layer between solder alloys and Cu substrate during soldering. Shear strength of the joints all increased by adding Co, Ni, and Nd elements. Different from the Co and Nd additions, the addition of the Ni element also markedly improved the tensile strength and elongation of SAC0107 alloys.

  16. Mechanisms of Soldering Formation on Coated Core Pins

    NASA Astrophysics Data System (ADS)

    Song, Jie; Denouden, Tony; Han, Qingyou

    2012-02-01

    Die soldering is one of the major casting defects during the high-pressure die casting (HPDC) process, causing dimensional inaccuracy of the castings and increased downtimes of the HPDC machine. In this study, we analyzed actually failed core pins to determine the mechanism of soldering and its procedures. The results show that the soldering process starts from a local coating failure, involves a series of intermetallic phase formation from reactions between molten aluminum alloys and the H13 steel pin, and accelerates when an aluminum-rich, face-centered cubic (fcc) phase is formed between the intermetallic phases. It is the formation of the aluminum-rich fcc phase in the reaction region that joins the core pin with the casting, resulting in the sticking of the casting to the core pin. When undercuts are formed on the core pin, the ejection of castings from the die will lead to either a core pin failure or damages to the casting being ejected.

  17. Cartan's soldered spaces and conservation laws in physics

    NASA Astrophysics Data System (ADS)

    Kouneiher, Joseph; Barbachoux, Cécile

    2015-06-01

    In this paper, we will introduce a generalized soldering p-forms geometry, which can be the right framework to describe many new approaches and concepts in modern physics. Here we will treat some aspects of the theory of local cohomology in fields theory or more precisely the theory of soldering-form conservation laws in physics. We provide some illustrative applications, primarily taken from the Einstein equations of general theory of relativity and Yang-Mills theory. This theory can be considered to be a generalization of Noether's theory of conserved current to differential forms of any degree. An essential result of this, is that the conservation of the energy-momentum in general relativity, is linked to the fact that the vacuum field equations are equivalent to the integrability conditions of a first-order system of differential equations. We also apply the idea of the soldered space and the integrability conditions to the case of Yang-Mills theory. The mathematical framework, where these intuitive considerations would fit naturally, can be used to describe also the dynamics of changing manifolds.

  18. Laser-assisted solder closure of bronchial stumps

    NASA Astrophysics Data System (ADS)

    Oz, Mehmet C.; Williams, Matthew R.; Moscarelli, Richard D.; Kaynar, Murat; Fras, Christian I.; Libutti, Steven K.; Smith, Hillary; Setton, Adrianne J.; Treat, Michael R.; Nowygrod, Roman

    1992-06-01

    Broncho-pleural fistula is a difficult clinical problem without a simple solution. Laser-assisted solder techniques potentially offer a means to precisely fix tissue glues into the fistulae through a bronchoscopic approach. Using a canine model, secondary bronchi were sealed with cryoprecipitate made from solvent/detergent treated plasma (treated to inactivate membrane enveloped virus) mixed with indocyanine green (absorption 805 nm). Diode laser energy (emission 808 nm, 7.3 W/cm2) was applied to the solder until desiccation was observed. Leakage pressures ranged between 18 - 86 mmHg with a mean of 46 +/- 24 mmHg. Laser-assisted solder techniques provide a reliably strong seal over leaking bronchial stumps and use of dye enhancement prevents undesired collateral thermal injury to surrounding bronchial tissue. Solvent/detergent plasma, prepared by methods shown to inactivate large quantities of HIV, HBV, and HCV, is an effective source of cyroprecipitate and should allow widespread use of pooled human material in a clinical setting.

  19. Microstructure and in situ observation of undercooling for nucleation of b-Sn relevant to lead-free solder alloys

    SciTech Connect

    Elmer, J. W.; Specht, Eliot D; Kumar, Mukul

    2010-01-01

    Difficult nucleation of b-Sn during solidification of tin and tin-based lead-free solder alloys can result in high degrees of undercooling of the liquid prior to solidification. The undercooling can produce solder joints with large grains, anisotropic behavior, and undesirable mechanical properties. This paper describes our examination of the amount of undercooling of tin on both graphite (non-wetting) and copper (wetting) surfaces using in situ x-ray diffraction. The microstructure was further characterized by optical microscopy, scanning electron microscopy, and electron backscattering diffraction imaging microscopy. Undercoolings as high as 61C were observed for Sn solidified on graphite, while lower undercoolings, up to 30C, were observed for Sn solidified on copper. The microstructure of the high purity Sn sample solidified on graphite showed very few grains in the cross-section, while the commercially pure Sn sample solidified with only one grain and was twinned. Tin solidified on copper contained significant amounts of copper in the tin, intermetallic phase formation at the interface, and a eutectic microstructure.

  20. Microstructure and In Situ Observations of Undercooling for Nucleation of [beta]-Sn Relevant to Lead-Free Solder Alloys

    SciTech Connect

    Elmer, John W.; Specht, Eliot D.; Kumar, Mukul

    2010-03-16

    Difficult nucleation of {beta}-Sn during solidification of tin and tin-based lead-free solder alloys can result in high degrees of undercooling of the liquid prior to solidification. The undercooling can produce solder joints with large grains, anisotropic behavior, and undesirable mechanical properties. This paper describes our examination of the amount of undercooling of tin on both graphite (non-wetting) and copper (wetting) surfaces using in situ x-ray diffraction. The microstructure was further characterized by optical microscopy, scanning electron microscopy, and electron backscattering diffraction imaging microscopy. Undercoolings as high as 61 C were observed for Sn solidified on graphite, while lower undercoolings, up to 30 C, were observed for Sn solidified on copper. The microstructure of the high purity Sn sample solidified on graphite showed very few grains in the cross-section, while the commercially pure Sn sample solidified with only one grain and was twinned. Tin solidified on copper contained significant amounts of copper in the tin, intermetallic phase formation at the interface, and a eutectic microstructure.

  1. Dural reconstruction by fascia using a temperature-controlled CO2 laser soldering system

    NASA Astrophysics Data System (ADS)

    Forer, Boaz; Vasilyev, Tamar; Brosh, Tamar; Kariv, Naam; Gil, Ziv; Fliss, Dan M.; Katzir, Abraham

    2005-04-01

    Conventional methods for dura repair are normally based on sutures or stitches. These methods have several disadvantages: (1) The dura is often brittle, and the standard procedures are difficult and time consuming. (2) The seal is leaky. (3) The introduction of a foreign body (e.g. sutures) may cause an inflammatory response. In order to overcome these difficulties we used a temperature controlled fiber optic based CO2 laser soldering system. In a set of in vitro experiments we generated a hole of diameter 10 mm in the dura of a pig corpse, covered the hole with a segment of fascia, and soldered the fascia to the edges of the hole, using 47% bovine albumin as a solder. The soldering was carried out spot by spot, and each spot was heated to 65° C for 3-6 seconds. The soldered dura was removed and the burst pressure of the soldered patch was measured. The average value for microscopic muscular side soldering was 194 mm Hg. This is much higher than the maximal physiological pressure of the CSF fluid in the brain, which is 15 mm Hg. In a set of in vivo experiments, fascia patches were soldered on holes in five farm pigs. The long term results of these experiments were very promising. In conclusion, we have developed an advanced technique for dural reconstruction, which will find important clinical applications.

  2. Intermetallic compound layer growth kinetics in non-lead bearing solders

    SciTech Connect

    Vianco, P.T.; Kilgo, A.C.; Grant, R.

    1995-04-01

    The introduction of alternative, non-lead bearing solders into electronic assemblies requires a thorough investigation of product manufacturability and reliability. Both of these attributes can be impacted by the excessive growth of intermetallic compound (IMC) layers at the solder/substrate interface. An extensive study has documented the stoichiometry and solid state growth kinetics of IMC layers formed between copper and the lead-free solders: 96.5Sn-3.5Ag (wt.%), 95Sn-5Sb, 100Sn, and 58Bi-42Sn. Aging temperatures were 70--205 C for the Sn-based solders and 55--120 C for the Bi-rich solder. Time periods were 1--400 days for all of the alloys. The Sn/Cu, Sn-Ag/Cu, and Sn-Sb/Cu IMC layers exhibited sub-layers of Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn; the latter composition was present only following prolonged aging times or higher temperatures. The total layer growth exhibited a time exponent of n = 0.5 at low temperatures and a value of n = 0.42 at higher temperatures in each of the solder/Cu systems. Similar growth kinetics were observed with the low temperature 58Bi-42Sn solder; however, a considerably more complex sub-layer structure was observed. The kinetic data will be discussed with respect to predicting IMC layer growth based upon solder composition.

  3. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  4. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  5. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  6. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  7. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  8. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    PubMed

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding. PMID:26738200

  9. Microstructural Evaluation and Comparison of Solder Samples Processed Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Hua, F.; Anilkumar, A. V.

    2008-01-01

    Samples from the In-Space Soldering Investigation (ISSI), conducted aboard the International Space Station (ISS), are being examined for post-solidification microstructural development and porosity distribution. In this preliminary study, the internal structures of two ISSI processed samples are compared. In one case 10cm of rosin-core solder was wrapped around a coupon wire and melted by conduction, whereas, in the other a comparable length of solder was melted directly onto the hot wire; in both cases the molten solder formed ellipsoidal blobs, a shape that was maintained during subsequent solidification. In the former case, there is clear evidence of porosity throughout the sample, and an accumulation of larger pores near the hot end that implies thermocapillary induced migration and eventual coalescence of the flux vapor bubbles. In the second context, when solder was fed onto the wire. a part of the flux constituting the solder core is introduced into and remains within the liquid solder ball, becoming entombed upon solidification. In both cases the consequential porosity, particularly at a solder/contact interface, is very undesirable. In addition to compromising the desired electrical and thermal conductivity, it promotes mechanical failure.

  10. Method and apparatus for jetting, manufacturing and attaching uniform solder balls

    DOEpatents

    Yost, F.G.; Frear, D.R.; Schmale, D.T.

    1999-01-05

    An apparatus and process are disclosed for jetting molten solder in the form of balls directly onto all the metallized interconnects lands for a ball grid array package in one step with no solder paste required. Molten solder is jetted out of a grid of holes using a piston attached to a piezoelectric crystal. When voltage is applied to the crystal it expands forcing the piston to extrude a desired volume of solder through holes in the aperture plate. When the voltage is decreased the piston reverses motion creating an instability in the molten solder at the aperture plate surface and thereby forming spherical solder balls that fall onto a metallized substrate. The molten solder balls land on the substrate and form a metallurgical bond with the metallized lands. The size of the solder balls is determined by a combination of the size of the holes in the aperture plate, the duration of the piston pulse, and the displacement of the piston. The layout of the balls is dictated by the location of the hooks in the grid. Changes in ball size and layout can be easily accomplished by changing the grid plate. This invention also allows simple preparation of uniform balls for subsequent supply to BGA users. 7 figs.

  11. Method and apparatus for jetting, manufacturing and attaching uniform solder balls

    SciTech Connect

    Yost, Frederick G.; Frear, Darrel R.; Schmale, David T.

    1999-01-01

    An apparatus and process for jetting molten solder in the form of balls directly onto all the metallized interconnects lands for a ball grid array package in one step with no solder paste required. Molten solder is jetted out of a grid of holes using a piston attached to a piezoelectric crystal. When voltage is applied to the crystal it expands forcing the piston to extrude a desired volume of solder through holes in the aperture plate. When the voltage is decreased the piston reverses motion creating an instability in the molten solder at the aperture plate surface and thereby forming spherical solder balls that fall onto a metallized substrate. The molten solder balls land on the substrate and form a metallurgical bond with the metallized lands. The size of the solder balls is determined by a combination of the size of the holes in the aperture plate, the duration of the piston pulse, and the displacement of the piston. The layout of the balls is dictated by the location of the hooks in the grid. Changes in ball size and layout can be easily accomplished by changing the grid plate. This invention also allows simple preparation of uniform balls for subsequent supply to BGA users.

  12. New multicomponent solder alloys of low melting pointfor low-cost commercial electronic assembly

    NASA Astrophysics Data System (ADS)

    Al-Ganainy, G. S.; Sakr, M. S.

    2003-09-01

    The requirements of the telecommunications, automobile, electronics and aircraft industries for non-toxic solders with melting points close to that of near-eutectic Pb-Sn alloys has led to the development of new Sn-Zn-In solder alloys. Differential thermal analysis (DTA) shows melting points of 198, 195, 190 and 185 +/- 2 °C for the alloys Sn-9Zn, Sn-9Zn-2In, Sn-9Zn-4In and Sn-9Zn-6In, respectively. An equation that fits the data relating the melting point to the In content in the solders is derived. The X-ray diffraction patterns are analyzed to determine the phases that exist in each solder. The stress-strain curves are studied in the temperature range from 90 to 130 °C for all the solders except for those that contain 4 wt% of In, where the temperature range continues to 150 °C. The work-hardening parameters, y (the yield stress), f (the fracture stress), and the parabolic work-hardening coefficient X, increase with increasing indium content in the solders at all working temperatures. They decrease with increasing working temperature for each solder, and show two relaxation stages only for the Sn-9Zn-4In solder around a temperature of 120 °C. (

  13. The effects of long-term storage on the solderability of immersion silver coatings.

    SciTech Connect

    Buttry, R. Wayne; Lopez, Edwin Paul; Martin, Joseph; Vianco, Paul Thomas; Lucero, Samuel J.; Rejent, Jerome Andrew

    2006-04-01

    The solderability of an immersion Ag finish was evaluated after the exposure of test specimens to a Battelle Class II environment, which accelerates the storage conditions of light industrial surroundings. The solderability metric was the contact angle, (?C), as determined by the meniscometer/wetting balance technique. Auger surface and depth profile analyses were utilized to identify changes in the coating chemistry. The solderability test results indicate that there was no appreciable loss in solderability when the immersion Ag coated coupons were packaged in vapor phase corrosion (VPC) inhibitor bags and/or inhibitor bags with VPC inhibitor paper and aged for 8 hours, 1 week or 2 weeks in the Battelle Class II environment. An increase in surface carbon concentration after aging did not appear to significantly affect solderability.

  14. The Resistance and Strength of Soft Solder Splices between Conductors in MICE Coils

    SciTech Connect

    Wu, Hong; Pan, Heng; Green, Michael A; Dietderich, Dan; Gartner, T. E.; Higley, Hugh C; Mentink, M.; Xu, FengYu; Trillaud, F.; Liu, X. K.; Wang, Li; Zheng, S. X.; Tam, D.G.

    2010-08-03

    Two of the three types of MICE magnets will have splices within their coils. The MICE coupling coils may have as many as fifteen one-meter long splices within them. Each of the MICE focusing coils may have a couple of 0.25-meter long conductor splices. Equations for the calculation of resistance of soldered lap splices of various types are presented. This paper presents resistance measurements of soldered lap splices of various lengths. Measured splice resistance is shown for one-meter long splices as a function of the fabrication method. Another important consideration is the strength of the splices. The measured breaking stress of splices of various lengths is presented in this paper. Tin-lead solders and tin-silver solders were used for the splices that were tested. From the data given in this report, the authors recommend that the use of lead free solders be avoided for low temperature coils.

  15. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    SciTech Connect

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  16. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  17. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  18. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  19. Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn-Ag solder and Au/electroless Ni(P)/Cu bond pad

    NASA Astrophysics Data System (ADS)

    Alam, M. O.; Chan, Y. C.; Tu, K. N.

    2003-09-01

    In this work, shear strengths of the solder joints for Sn-Ag eutectic alloy with the Au/electroless Ni(P)/Cu bond pad were measured for three different electroless Ni(P) layers. Sn-Ag eutectic solder alloy was kept in molten condition (240 °C) on the Au/electroless Ni(P)/Cu bond pad for different time periods ranging from 0.5 min to 180 min to render the ultimate interfacial reaction and the consecutive shear strength. After the shear test, fracture surfaces were investigated by scanning electron microscopy equipped with energy dispersed x ray. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces. It was found that formation of crystalline phosphorous-rich Ni layer at the solder interface of Au/electroless Ni(P)/Cu bond pad with Sn-Ag eutectic alloy deteriorates the mechanical strength of the joints significantly. It was also noticed that such weak P-rich Ni layer appears quickly for high-P content electroless Ni(P) layer. However, when this P-rich Ni layer disappears from a prolonged reaction, the shear strength increases again.

  20. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945