Science.gov

Sample records for au111 electrode surfaces

  1. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.

    PubMed

    Wen, Bao-Ying; Jin, Xi; Li, Yue; Wang, Ya-Hao; Li, Chao-Yu; Liang, Miao-Miao; Panneerselvam, Rajapandiyan; Xu, Qing-Chi; Wu, De-Yin; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-06-21

    For the first time, we used the electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) technique to in situ characterize the adsorption behaviour of four DNA bases (adenine, guanine, thymine, and cytosine) on atomically flat Au(111) electrode surfaces. The spectroscopic results of the various molecules reveal similar features, such as the adsorption-induced reconstruction of the Au(111) surface and the drastic Raman intensity reduction of the ring breathing modes after the lifting reconstruction. As a preliminary study of the photo-induced charge transfer (PICT) mechanism, the in situ spectroscopic results obtained on single crystal surfaces are excellently illustrated with electrochemical data. PMID:27001527

  2. Correction: Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.

    PubMed

    Wen, Bao-Ying; Jin, Xi; Li, Yue; Wang, Ya-Hao; Li, Chao-Yu; Liang, Miao-Miao; Panneerselvam, Rajapandiyan; Xu, Qing-Chi; Wu, De-Yin; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-06-21

    Correction for 'Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces' by Bao-Ying Wen et al., Analyst, 2016, DOI: 10.1039/c6an00180g. PMID:27082242

  3. Interaction of HNCO with Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Farkas, A. P.; Berkó, A.; Solymosi, F.

    2012-08-01

    The surface chemistry of isocyanic acid, HNCO, and its dissociation product, NCO, was studied on clean, O-dosed and Ar ion bombarded Au(111) surfaces. The techniques used are high resolution energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). The structure of Ar ion etched surface is explored by scanning tunneling microscopy (STM). HNCO adsorbs molecularly on Au(111) surface at 100 K yielding strong losses at 1390, 2270 and 3230 cm- 1. The weakly adsorbed HNCO desorbs in two peaks characterized by Tp = 130 and 145 K. The dissociation of the chemisorbed HNCO occurs at 150 K to give NCO species characterized by a vibration at 2185 cm- 1. The dissociation process is facilitated by the presence of preadsorbed O and by defect sites on Au(111) produced by Ar ion bombardment. In the latter case the loss feature of NCO appeared at 2130 cm- 1. Isocyanate on Au(111) surface was found to be more stable than on the single crystal surfaces of Pt-group metals. Results are compared with those obtained on supported Au catalysts.

  4. Electrodeposited bismuth monolayers on Au(111) electrodes. Comparison of surface X-ray scattering, scanning tunneling microscopy, and atomic force microscopy lattice structures

    SciTech Connect

    Chen, C.H.; Kepler, K.D.; Gewirth, A.A. ); Ocko, B.M.; Wang, J. )

    1993-07-15

    Surface X-ray scattering (SXS) and scanning tunneling microscope (STM) studies have been carried out to determine the structure of electrochemically deposited Bi monolayers on a Au(111) electrode. Between 10 and 190 mV (relative to bulk deposition), a uniaxially commensurate rectangular phase is formed in which the Bi coverage decreases from 0.646 to 0.616 relative to a gold monolayer. A 25% coverage (2 [times] 2) phase is stable between 200 and 280 mV. The structures determined by SXS and STM are in agreement with those determined previously by AFM. 15 refs., 5 figs.

  5. In situ real-time study on potential induced structure change at Au(111) and Au(100) single crystal electrode/sulfuric acid solution interfaces by surface x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kondo, Toshihiro; Zegenhagen, Jörg; Takakusagi, Satoru; Uosaki, Kohei

    2015-01-01

    Surface X-ray scattering (SXS) measurements were carried out to monitor the potential induced structure changes such as surface reconstruction lifting, adsorption of oxygen species, formation of surface oxide bilayer, reduction of surface oxide, and surface reconstruction at Au(111)/H2SO4 and Au(100)/H2SO4 interfaces in situ in real time using intense high energy X-ray. The phase transition of the reconstruction/lifting, adsorption of oxygen species, and surface oxide formation/reduction at the Au(100) electrode proceed much slower, slightly slower, and faster, respectively, than at the Au(111) electrode.

  6. Potential-step chronocoulometric investigation of the surface coverages of coadsorbed Bi and hydroxide on Au(111) electrodes

    SciTech Connect

    Niece, B.K.; Gewirth, A.A.

    1996-10-02

    Bi underpotentially deposited on Au(111) has been studied using potential-step chronocoulometry to determine the actual surface coverage of Bi. In the potential region where this system exhibits catalytic activity for the electroreduction of peroxide to water, the observed coverage is 0.25 monolayer (ML), which agrees well with the coverage of the reported (2 x 2) Bi overlayer observed by scanning probe microscopy in this region. At more cathodic potentials, the coverage increases to 0.67 ML. This coverage agrees with the expected based on the (p x {radical}3) structure proposed from scanning tunneling microscopy, atomic force microscopy, and SXS measurements in this region. The electrosorption valency calculated based on these coverages is 3, indicating that the Bi is fully discharged on the surface. Potential-step chronocoulometry has been used at various pH values to determine the surface coverage of hydroxide anion in the presence of underpotentially deposited (upd) Bi. The coverage is negligible in the absence of upd Bi and at potentials where the Bi adlayer condenses. It rises to a peak of 0.17 ML in the region where the coverage is 0.25 ML, indicating that OH{sup -} is coadsorbed with the Bi. 30 refs., 10 figs.

  7. Do Methanethiol Adsorbates on the Au(111) Surface Dissociate?

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ge; Hagelberg, Frank

    2006-07-01

    The interaction of methanethiol molecules CH3SH with the Au(111) surface is investigated, and it is found for the first time that the S-H bond remains intact when the methanethiol molecules are adsorbed on the regular Au(111) surface. However, it breaks if defects are present in the Au(111) surface. At low coverage, the fcc region is favored for S atom adsorption, but at saturated coverage the adsorption energies at various sites are almost isoenergetic. The presented calculations show that a methanethiol layer on the regular Au(111) surface does not dimerize.

  8. A study of the influence of halide adsorption on a reconstructed Au(111) electrode by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Friedrich, A.; Shannon, C.; Pettinger, B.

    1991-07-01

    Optical second harmonic generation (SHG) rotational anisotropy measurements were employed to study the influence of specifically adsorbed anions on the reconstructed Au(111)-(1 × 23) surface. Azimuthal rotation of the gold electrode at different potentials yields for the unreconstructed Au(111)-(1 × 1) surface the well-known three-fold symmetry pattern, while for the reconstructed Au(111)-(1 × 23) an additional one-fold symmetry pattern is observed, which leads to an assignment of Cs-symmetry for this surface. Due to the observation of this symmetry change Cs → C3v it is possible to monitor in situ the reversible transition between Au(111)-(1 × 23) and Au(111)-(1 × 1). While in perclorate solution the phase transition occurs over a wide potential region, in halide containing solution the same phase transition is restricted to the sharp potential region typical for the halide adsorption.

  9. Self-assembly of alkanols on Au(111) surfaces.

    PubMed

    Zhang, Hai-Ming; Yan, Jia-Wei; Xie, Zhao-Xiong; Mao, Bing-Wei; Xu, Xin

    2006-05-15

    Self-assembled monolayers (SAMs) of alkanols (1-C(N)H(2N+1)OH) with varying carbon-chain lengths (N = 10-30) have been systematically studied by means of scanning tunneling microscopy (STM) at the interfaces between alkanol solutions (or liquids) and Au(111) surfaces. The carbon skeletons were found to lie flat on the surfaces. This orientation is consistent with SAMs of alkanols on highly oriented pyrolytic graphite (HOPG) and MoS2 surfaces, and also with alkanes on reconstructed Au(111) surfaces. This result differs from a prior report, which claimed that 1-decanol molecules (N = 10) stood on their ends with the OH polar groups facing the gold substrate. Compared to alkanes, the replacement of one terminal CH3 group with an OH group introduces new bonding features for alkanols owing to the feasibility of forming hydrogen bonds. While SAMs of long-chain alkanols (N > 18) resemble those of alkanes, in which the aliphatic chains make a greater contribution, hydrogen bonding plays a more important role in the formation of SAMs of short-chain alkanols. Thus, in addition to the titled lamellar structure, a herringbone-like structure, seldom seen in SAMs of alkanes, is dominant in alkanol SAMs for values of N < 18. The odd-even effect present in alkane SAMs is also present in alkanol SAMs. Thus, the odd N alkanols (alkanols with an odd number of carbon atoms) adopt perpendicular lamellar structures owing to the favorable interactions of the CH3 terminal groups, similar to the result observed for odd alkanes. In contrast to alkanes on Au(111) surfaces, for which no SAMs on an unreconstructed gold substrate were observed, alkanols are capable of forming SAMs on either the reconstructed or the unreconstructed gold surfaces. Structural models for the packing of alkanol molecules on Au(111) surfaces have been proposed, which successfully explain these experimental observations. PMID:16534826

  10. Chlorine adsorption on Au(111): chlorine overlayer or surface chloride?

    PubMed

    Gao, Weiwei; Baker, Thomas A; Zhou, Ling; Pinnaduwage, Dilini S; Kaxiras, Efthimios; Friend, Cynthia M

    2008-03-19

    We report the first scanning tunneling microscope (STM) investigation, combined with density functional theory calculations, to resolve controversy regarding the bonding and structure of chlorine adsorbed on Au(111). STM experiments are carried out at 120 K to overcome instability caused by mobile species upon chlorine adsorption at room temperature. Chlorine adsorption initially lifts the herringbone reconstruction. At low coverages (<0.33 ML), chlorine binds to the top of Au(111)-(1 x 1) surface and leads to formation of an overlayer with (square root(3) x square root(3))R30 degree structure at 0.33 ML. At higher coverages, packing chlorine into an overlayer structure is no longer favored. Gold atoms incorporate into a complex superlattice of a Au-Cl surface compound. PMID:18290645

  11. Building chessboard-like supramolecular structures on Au(111) surfaces.

    PubMed

    Dou, Ruifen; Yang, Yu; Zhang, Ping; Zhong, Dingyong; Fuchs, Harald; Wang, Yue; Chi, Lifeng

    2015-09-25

    We investigate an anthracene derivative, 3(5)-(9-anthryl) pyrazole (ANP), self-assembled on the Au(111) surface by means of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. A chessboard-like network structure composed of ANP molecules is found, covering the whole Au(111) substrate. Our STM results and DFT calculations reveal that the formation of chessboard-like networks originates from a basic unit cell, a tetramer structure, which is formed by four ANP molecules connected through C-H…N hydrogen bonds. The hydrogen bonds inside each tetramer and the molecule-substrate interaction are fundamentally important in providing a driving force for formation of the supramolecular networks. PMID:26314756

  12. Building chessboard-like supramolecular structures on Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Dou, Ruifen; Yang, Yu; Zhang, Ping; Zhong, Dingyong; Fuchs, Harald; Wang, Yue; Chi, Lifeng

    2015-09-01

    We investigate an anthracene derivative, 3(5)-(9-anthryl) pyrazole (ANP), self-assembled on the Au(111) surface by means of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. A chessboard-like network structure composed of ANP molecules is found, covering the whole Au(111) substrate. Our STM results and DFT calculations reveal that the formation of chessboard-like networks originates from a basic unit cell, a tetramer structure, which is formed by four ANP molecules connected through C-H…N hydrogen bonds. The hydrogen bonds inside each tetramer and the molecule-substrate interaction are fundamentally important in providing a driving force for formation of the supramolecular networks.

  13. Self-assembly of flagellin on Au(111) surfaces.

    PubMed

    González Orive, Alejandro; Pissinis, Diego E; Diaz, Carolina; Miñán, Alejandro; Benítez, Guillermo A; Rubert, Aldo; Daza Millone, Antonieta; Rumbo, Martin; Hernández Creus, Alberto; Salvarezza, Roberto C; Schilardi, Patricia L

    2014-11-01

    The adsorption of flagellin monomers from Pseudomonas fluorescens on Au(111) has been studied by Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), X-ray Photoelectron Spectroscopy (XPS), Surface Plasmon Resonance (SPR), and electrochemical techniques. Results show that flagellin monomers spontaneously self-assemble forming a monolayer thick protein film bounded to the Au surface by the more hydrophobic subunit and exposed to the environment the hydrophilic subunit. The films are conductive and allow allocation of electrochemically active cytochrome C. The self-assembled films could be used as biological platforms to build 3D complex molecular structures on planar metal surfaces and to functionalize metal nanoparticles. PMID:25112916

  14. Rotationally inelastic gas--surface scattering: HCl from Au(111)

    SciTech Connect

    Lykke, K.R.; Kay, B.D. )

    1990-02-15

    A quantum-resolved molecular beam--surface scattering study of HCl scattered from Au(111) is described. The HCl is detected in a quantum-resolved manner via (2+1) resonant enhanced multiphoton ionization (REMPI). Greater than 85% of the incident HCl molecules are in a single-quantum state ({ital v}=0, {ital J}=0) with a narrow velocity distribution ({Delta}{upsilon}/{upsilon}{lt}0.10). The scattered HCl is strongly peaked about the specular angle, and both its final velocity and rotational distributions are indicative of direct inelastic scattering. The scattered rotational distributions exhibit features characteristic of rotational rainbows and have a mean rotational energy that displays a bilinear dependence upon the incident normal kinetic energy and surface temperature. The final velocity distributions are largely insensitive to the rotational level and indicate that the energy loss to phonons is small ({lt}20%). Analysis of the scattered data indicates an orientation-averaged attractive well depth of {similar to}5 kcal/mol for the HCl--Au(111) interaction.

  15. Surface charge--induced ordering of the au(111) surface.

    PubMed

    Wang, J; Davenport, A J; Isaacs, H S; Ocko, B M

    1992-03-13

    Synchrotron surface x-ray scattering (SXS) studies have been carried out at the Au(lll)/electrolyte interface to determine the influence of surface charge on the microscopic arrangement of gold surface atoms. At the electrochemical interface, the surface charge density can be continuously varied by controlling the applied potential. The top layer of gold atoms undergoes a reversible phase transition between the (1 x 1) bulk termination and a (23 x radical3) reconstructed phase on changing the electrode potential. In order to differentiate the respective roles of surface charge and adsorbates, studies were carried out in 0.1 M NaF, NaCl, and NaBr solutions. The phase transition occurs at an induced surface charge density of 0.07 +/- 0.02 electron per atom in all three solutions. PMID:17801231

  16. Adsorption Structures and Electronic Properties of 1,4-Phenylene Diisocyanide on the Au(111) Surface

    SciTech Connect

    White, M.G.; Zhou, J.; Acharya, D.; Camillone III, N.; Sutter, P.

    2011-01-10

    The adsorption structures and electronic properties of 1,4-phenylene diisocyanide (PDI) on a Au(111) surface have been studied using temperature programmed desorption (TPD), two-photon photoemission (2PPE), and scanning tunneling microscopy (STM). As deposited at 95 K, PDI molecules form disordered islands and short one-dimensional chains on Au(111) terraces. The work function decreases with increasing PDI coverage, and an occupied electronic state appears at 0.88 eV below the Fermi level. Annealing to 300 K causes the PDI molecules to reorganize on the surface and form ordered, one-dimensional molecular chains that extend for many tens of nanometers across the Au(111) terraces. The repeating structure of the molecular chains is consistent with a recently proposed [-Au-PDI-]{sub n} structure in which PDI molecules lie parallel to the surface and are interconnected by Au adatoms released from the Au(111) surface. The formation of the molecular chains is accompanied by a large drop in the work function which we attribute to an increase in the number and magnitude of interfacial dipoles. The electronic structure of the molecular chains is also characterized by occupied and unoccupied states at -0.88 eV below and +3.32 eV above the Fermi level, respectively. The latter are most prominent after annealing a PDI/Au(111) surface to 300 K, indicating that they are associated with interfacial states of the one-dimensional molecular chains.

  17. Headgroup dimerization in methanethiol monolayers on the Au(111) surface: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ge; Williams, Quinton L.; Hagelberg, Frank

    2007-08-01

    A long-standing controversy related to the dimer pattern formed by S atoms in methanethiol (CH3SH) on the Au(111) surface has been resolved using density functional theory. Here, dimerization of methanethiol adsorbates on the Au(111) surface is established by computational modeling. For methylthiolate (CH3S) , it is shown that the S atoms do not dimerize at high coverage but reveal a dimer pattern at intermediate coverage. Molecular dynamics simulation at high coverage demonstrates that the observed dialkyl disulfide species are formed during the desorption process, and thus are not attached to the surface.

  18. Electronic modulations in a single wall carbon nanotube induced by the Au(111) surface reconstruction

    SciTech Connect

    Clair, Sylvain; Shin, Hyung-Joon; Kim, Yousoo E-mail: maki@riken.jp; Kawai, Maki E-mail: maki@riken.jp

    2015-02-02

    The structural and electronic structure of single wall carbon nanotubes adsorbed on Au(111) has been investigated by low-temperature scanning tunneling microscopy and spectroscopy. The nanotubes were dry deposited in situ in ultrahigh vacuum onto a perfectly clean substrate. In some cases, the native herringbone reconstruction of the Au(111) surface interacted directly with adsorbed nanotubes and produced long-range periodic oscillations in their local density of states, corresponding to charge transfer modulations along the tube axis. This effect, however, was observed not systematically for all tubes and only for semiconducting tubes.

  19. PM-IRRAS Studies of DMPC Bilayers Supported on Au(111) Electrodes Modified with Hydrophilic Monolayers of Thioglucose.

    PubMed

    Matyszewska, Dorota; Bilewicz, Renata; Su, ZhangFei; Abbasi, Fatemah; Leitch, J Jay; Lipkowski, Jacek

    2016-02-23

    A phospholipid bilayer composed of 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (d54-DMPC) was deposited onto the Au(111) electrode modified with a self-assembled monolayer of 1-thio-β-d-glucose (β-Tg) via the Langmuir-Blodgett and Langmuir-Schaefer (LB-LS) techniques. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to characterize structural and orientational changes in this model biological membrane on a hydrophilic surface modified gold electrode. The results of the spectroscopic measurements showed that the tilt angle of acyl chains obtained for deuterated DMPC bilayers supported on the β-Tg-modified gold is significantly lower than that reported previously for DMPC bilayers deposited directly on Au(111) electrodes. Moreover, tilt angles of ∼18° were obtained for d54-DMPC bilayers on β-Tg self-assembled monolayers (SAMs) at positive potentials, which are similar to the values calculated for h-DMPC deposited on bare gold in the desorbed state and to those observed for a stack of hydrated DMPC bilayers. This data confirms that the β-thioglucose SAM promotes the formation of a water cushion that separates the phospholipid bilayer from the metal surface. As a result, the DMPC polar heads are not in direct contact with the electrode and can adopt a zigzag configuration, which strengthens the chain-chain interactions and allows for an overall decrease in the tilt of the acyl chains. These novel supported model membranes may be especially useful in studies pertaining to the incorporation of peptides and proteins into phospholipid bilayers. PMID:26829620

  20. Self-Assembly of Thiol Adsorbates on the Au(111)surface

    NASA Astrophysics Data System (ADS)

    Hagelberg, Frank; Williams, Quinton; Zhou, Jian-Ge

    2007-03-01

    A long-standing controversy related to the dimer pattern formed by methanethiol (CH3SH) and methylthiolate (CH3S) on the Au(111) surface has been resolved using density functional theory within periodic boundary conditions. It is found that the S atoms of methanethiol adsorbates on the Au(111) surface form Van der Waals dimers. For methylthiolate, it is shown that no dimerization occurs at high coverage. At intermediate coverage, however, a Van der Waals dimer pattern emerges. The presence of defects in the Au(111) surface does not change this conclusion. Molecular dynamics simulation at high coverage demonstrates that the observed dialkyl disulfide species emerge during the desorption process, and thus are not attached to the surface. A meta-stable monomer pattern has been shown to be only marginally higher in adsorption energy than the dimer configuration which explains the observed fragility of the dimers. For the understanding of these results, it is of crucial importance that methanethiol molecules, contrary to a widely held assumption, remain stable when deposited on clean Au(111) surfaces /1, 2/. In the presence of defects, however, methanethiol adsorbates dissociate and form methylthiolate. /1/ I. Rzeznicka, J. Lee, P. Maksymovych, J. Yates, Jr., J. Phys. Chem. B109, 15992 (2005). /2/ J. Zhou, F. Hagelberg, Phys. Rev. Lett. 97, 45505 (2006).

  1. Structure and Dynamics of the Au(111) Surface in an Electrochemical Enviroment

    NASA Astrophysics Data System (ADS)

    Collini, John; Liu, Yihua; McDonough, Bryanne; Pierce, Michael; You, Hoydoo; Komanicky, Vladimir; Barbour, Andi

    The Au(111) surface possesses a well-known herringbone surface reconstruction pattern. However, the character of the reconstruction's response to external variables is not completely understood due to the limited amount of kinetics and dynamics studies of the surface in different environments. Here, we present in-situ x-ray scattering measurements from the Advanced Photon Source at Argonne National Laboratory of the Au(111) surface in a controllable electrochemical environment of weak NaF solution. Crystal truncation rod (CTR) measurements were taken to examine how the average surface properties and overall structure change with cell voltage. X-ray photon correlation spectroscopy (XPCS) measurements were also taken to examine how the dynamics of the surface change with voltage. The relation between applied potential, average kinetics, and microstate dynamics will be discussed. Funding provided by Research Corporation for Science Advancement. Work done at the Advanced Photon Source supported by the U.S. Department of Energy.

  2. Gold-Adatom-Mediated Bonding in Self-Assembled Short-Chain Alkanethiolate Species on the Au(111) Surface

    SciTech Connect

    Maksymovych, P.; Sorescu, D.C.; Yates, J.T., Jr.

    2006-10-06

    Microscopic evidence for Au-adatom-induced self-assembly of alkanethiolate species on the Au(111) surface is presented. Based on STM measurements and density-functional theory calculations, a new model for the low-coverage self-assembled monolayer of alkanethiolate on the Au(111) surface is developed, which involves the adsorbate complexes incorporating Au adatoms. It is also concluded that the Au(111) herringbone reconstruction is lifted by the alkanethiolate self-assembly because the reconstructed surface layer provides reactive Au adatoms that drive self-assembly.

  3. Self-assembly of methanethiol on the reconstructed Au(111) surface

    NASA Astrophysics Data System (ADS)

    Nenchev, Georgi; Diaconescu, Bogdan; Hagelberg, Frank; Pohl, Karsten

    2009-08-01

    We present a combined experimental and theoretical study of molecular methanethiol (CH3SH) adsorption on the reconstructed Au(111) surface in the temperature range between 90 and 300 K in UHV. We find that the simplest thiol molecules form two stable self-assembled monolayer (SAM) structures that are created by distinct processes. Below 120 K, a solid rectangular phase, preserving the herringbone reconstruction, emerges from individual chains of spontaneously formed dimers. At higher adsorption temperatures below 170 K, a close-packed phase forms via dissociative CH3SH adsorption and the formation of Au adatoms that are not incorporated into the SAM. We show that the combination of a strong substrate-mediated interaction with nondissociative dimerization and temperature activated removal of the Au(111) reconstruction drives the large-scale assembly of molecular CH3SH into two distinct phases.

  4. Synthesis of TiO2 Nanoparticles on the Au(111) Surface

    SciTech Connect

    Biener, J; Farfan-Arribas, E; Biener, M M; Friend, C M; Madix, R J

    2005-01-11

    The growth of titanium oxide nanoparticles on reconstructed Au(111) surfaces was investigated by scanning tunneling microscopy and X-ray photoelectron spectroscopy. Ti was deposited by physical vapor deposition at 300 K. Regular arrays of titanium nanoparticles form by preferential nucleation of Ti at the elbow sites of the herringbone reconstruction. Titanium oxide clusters were synthesized by subsequent exposure to O{sub 2} at 300 K. Two- and three-dimensional titanium oxide nanocrystallites form during annealing in the temperature range from 600 to 900 K. At the same time, the Au(111) surface assumes a serrated, <110> oriented step-edge morphology, suggesting step-edge pinning by titanium oxide nanoparticles. The oxidation state of these titanium oxide nanoparticles varies with annealing temperature. Specifically, annealing to 900 K results in the formation of stoichiometric TiO{sub 2} nanocrystals as judged by the observed XPS binding energies. Nano-dispersed TiO{sub 2} on Au(111) is an ideal system to test the various models explaining the enhanced catalytic reactivity of supported Au nanoparticles.

  5. Snapshots of crystal growth. Nanoclusters of organic conductors on Au(111) surfaces

    SciTech Connect

    Schott, J.H.; Ward, M.D. )

    1994-07-27

    Mono- and multilayer crystalline nanoclusters of tetrathiafulvalene-tetracyanoquinodimethane (TTF)-(TCNQ), a low-dimensional organic conductor in the bulk form, can be formed readily on Au(111) surfaces by vapor phase sublimation under ambient conditions. Scanning tunneling microscopy of monolayer (TTF)(TCNQ) films reveals a two-dimensional density of states (DOS) that is consistent with the arrangement of TTF and TCNQ molecules in the ac face of bulk (TTF)(TCNQ), in which the molecular planes are nearly parallel to the Au(111) substrate. In contrast, clusters with thicknesses corresponding to two or three molecular layers exhibit a transformation to a highly anisotropic DOS that can be attributed to interlayer molecular overlap in segregated TTF and TCNQ molecular chains along the c axis, which can be described as molecular wires'. The orientation of the crystalline (TTF)(TCNQ) clusters is preserved throughout the crystal growth sequence, leading to meso- and macroscopic (TTF)(TCNQ) needles that are oriented perpendicular to the Au(111) substrate. 23 refs., 4 figs.

  6. Intermolecular interactions and substrate effects for an adamantane monolayer on a Au(111) surface

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Nguyen, Giang D.; Capaz, Rodrigo B.; Coh, Sinisa; Pechenezhskiy, Ivan V.; Hong, Xiaoping; Wang, Feng; Crommie, Michael F.; Saito, Susumu; Louie, Steven G.; Cohen, Marvin L.

    2013-12-01

    We study theoretically and experimentally the infrared (IR) spectrum of an adamantane monolayer on a Au(111) surface. Using a STM-based IR spectroscopy technique (IRSTM) we are able to measure both the nanoscale structure of an adamantane monolayer on Au(111) as well as its infrared spectrum, while DFT-based ab initio calculations allow us to interpret the microscopic vibrational dynamics revealed by our measurements. We find that the IR spectrum of an adamantane monolayer on Au(111) is substantially modified with respect to the gas-phase IR spectrum. The first modification is caused by the adamantane-adamantane interaction due to monolayer packing, and it reduces the IR intensity of the 2912 cm-1 peak (gas phase) by a factor of 3.5. The second modification originates from the adamantane-gold interaction, and it increases the IR intensity of the 2938 cm-1 peak (gas phase) by a factor of 2.6 and reduces its frequency by 276 cm-1. We expect that the techniques described here can be used for an independent estimate of substrate effects and intermolecular interactions in other diamondoid molecules and for other metallic substrates.

  7. Self-assembled monolayers of methylselenolate on the Au(111) surface: A combined STM and DFT study

    NASA Astrophysics Data System (ADS)

    El-Kareh, L.; Mehring, P.; Caciuc, V.; Atodiresei, N.; Beimborn, A.; Blügel, S.; Westphal, C.

    2014-01-01

    In this study scanning tunneling microscopy (STM) and density functional theory (DFT) were used to investigate the structural formation of methylselenolate (CH3Se) self-assembled monolayers (SAMs) on the Au(111) surface. SAMs were prepared by two different methods, from solution and by exposing the Au(111) surface to gaseous dimethyldiselenide (DMDSe). For methylselenolate (MSe) on the Au(111) surface, our STM measurements revealed the presence of (4 × √3) and (3 × 2√3) rectangular striped phases. These structures were verified by DFT calculations. For both phases, the DFT calculations clearly found a bridge adsorption geometry for MSe on Au(111). Furthermore, they provide information about the electronic structure of the MSe-SAMs.

  8. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): Incidence energy and surface temperature dependence

    SciTech Connect

    Shirhatti, Pranav R.; Werdecker, Jörn; Golibrzuch, Kai; Wodtke, Alec M.; Bartels, Christof

    2014-09-28

    We investigated the translational incidence energy (E{sub i}) and surface temperature (T{sub s}) dependence of CO vibrational excitation upon scattering from a clean Au(111) surface. We report absolute v = 0 → 1 excitation probabilities for E{sub i} between 0.16 and 0.84 eV and T{sub s} between 473 and 973 K. This is now only the second collision system where such comprehensive measurements are available – the first is NO on Au(111). For CO on Au(111), vibrational excitation occurs via direct inelastic scattering through electron hole pair mediated energy transfer – it is enhanced by incidence translation and the electronically non-adiabatic coupling is about 5 times weaker than in NO scattering from Au(111). Vibrational excitation via the trapping desorption channel dominates at E{sub i} = 0.16 eV and quickly disappears at higher E{sub i}.

  9. Oxidic copper on the Au(111) surface: A theoretical surface science approach

    NASA Astrophysics Data System (ADS)

    Lee, Taehun; Lee, Yonghyuk; Kang, Kisung; Soon, Aloysius

    Recently, via reactive Cu deposition in an oxygen ambience, high quality gold-supported cuprous oxide (Cu2O) ultrathin nanofilms have been prepared as a model system to further such catalytic studies. Nonetheless, an accurate atomic picture of these ultrathin Cu2O nanofilms, which largely depends on its immediate oxygen environment, is currently lacking. In this work, we perform density-functional theory (DFT) calculations using the Vienna ab initio Simulation Package in combination with ab initio atomistic thermodynamics to investigate stability of Cu2O thin films on Au(111) as a function of oxygen chemical potential. Our results indeed show that some of the surface structures suggested in Ref. are energetically more stable than the traditional copper oxide thin film structures on copper substrate, and elucidated the electronic structure of these ultrathin copper oxide films on gold, in comparison with available experimental data.

  10. Quantitative Subtractively Normalized Interfacial Fourier Transform Infrared Reflection Spectroscopy Study of the Adsorption of Adenine on Au(111) Electrodes.

    PubMed

    Prieto, Francisco; Su, Zhangfei; Leitch, J Jay; Rueda, Manuela; Lipkowski, Jacek

    2016-04-26

    Quantitative subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was used to determine the molecular orientation and identify the metal-molecular interactions responsible for the adsorption of adenine from the bulk electrolyte solution onto the surface of the Au(111) electrode. The recorded p-polarized IR spectra of the adsorbed species were subtracted from the collected s-polarized IR spectra to remove the IR contributions of the vibrational bands of the desorbed molecules that are located within the thin layer cavity of the spectroelectrochemical cell. The intense IR band around 1640 cm(-1), which is assigned to the pyrimidine ring stretching vibrations of the C5-C6 and C6-N10 bonds, and the IR band at 1380 cm(-1), which results from a combination of the ring stretching vibration of the C5-C7 bond and the in-plane CH bending vibration, were selected for the quantitative analysis measurements. The transition dipoles of these bands were evaluated by DFT calculations. Their orientations differed by 85 ± 5°. The tilt angles of adsorbed adenine molecules were calculated from the intensity of these two vibrations at different potentials. The results indicate that the molecular plane is tilted at an angle of 40° with respect to the surface normal of the electrode and rotates by 16° around its normal axis with increasing electrode potential. This orientation results from the chemical interaction between the N10 and gold atoms coupled with the π-π parallel stacking interactions between the adjacent adsorbed molecules. Furthermore, the changes in the molecular plane rotation with the electric field suggests that the N1 atom of adenine must also participate in the interaction between the molecule and metal. PMID:27040121

  11. Theoretical study of para-nitro-aniline adsorption on the Au(111) surface

    NASA Astrophysics Data System (ADS)

    Li, Cui; Monti, Susanna; Li, Xin; Rinkevicius, Zilvinas; Ågren, Hans; Carravetta, Vincenzo

    2016-07-01

    The electronic structure, bonding properties and dynamics of para-nitro-aniline (PNA) adsorbed on the Au(111) surface for a sub-monolayer coverge have been investigated by density-functional theory (DFT) static calculations and quantum molecular dynamics simulations. Four main adsorption geometries have been identified by DFT energy optimization with the gradient corrected PBE functional and accounting for the role of the van del Waals (vdW) interaction. Quantum dynamics calculations starting from the four different structures have been performed at room temperature to estimate the relative stability of the adsorbates and the presence of barriers for their interconversion. Quantum simulations suggest that the most stable adsorption geometry at room temperature is that of PNA with a slightly distorted molecular plane almost parallel to the Au(111) surface. In a second less populated configuration the PNA molecule interacts with the substrate by its NO2 group while the molecular plane is orthogonal to the surface. The N 1s electron photoemission spectrum has been simulated for the identified adsorbate geometries and a measurable variation of the absolute and relative chemical shift for the two nitrogen atoms in comparison with the known values for PNA in gas phase is predicted.

  12. Effects of chlorine and oxygen coverage on the structure of the Au(111) surface

    SciTech Connect

    Baker, Thomas A.; Friend, Cynthia M.; Kaxiras, Efthimios

    2009-02-28

    We investigate the effects of Cl and O coverage on the atomic structure of the Au(111) surface using density functional theory calculations. We find that the release and incorporation of gold atoms in the adsorbate layer becomes energetically favorable only at high coverages of either O or Cl (>0.66 ML (monolayer) for O and >0.33 ML for Cl), whereas adsorption without the incorporation of gold is favorable at lower coverages. The bonding between the adsorbate and gold substrate changes significantly with coverage, becoming more covalent (less ionic) at higher Cl and O coverage. This is based on the fact that at higher coverages there is less ionic charge transfer to the adsorbate, while the electron density in the region between the adsorbate and a surface gold atom is increased. Our results illustrate that the O and Cl coverage on Au(111) can dramatically affect its structure and bonding, which are important features in any application of gold involving these adsorbates.

  13. Scanning tunneling microscopy study of α,ω-dihexylsexithiophene adlayers on Au(111): a chiral separation induced by a surface.

    PubMed

    Song, Yonghai; Wang, Yu; Wan, Lingli; Ye, Shuhong; Hou, Haoqing; Wang, Li

    2012-08-01

    The self-assembly of α,ω-dihexylsexithiophene molecules on an Au(111) surface was examined by using scanning tunneling microscopy at room temperature, revealing the internal molecular structures of the sexithiophene backbones and the hexyl side chains. The α,ω-dihexylsexithiophene formed a large and well-ordered monolayer in which the molecule lay flatly on the Au(111) surface and was separated into two chiral domains. A detailed observation reveals that the admolecules were packed in one lamellae with their molecular axis aligned along the main axis of the Au(111) substrate with their hexyl chains deviated from <110> direction of the Au(111) substrate by 12 ± 0.5°. In contrast to the behavior in the three-dimensional bulk structure, flat-lying adsorption introduced molecular chirality: right- and left-handed molecules separate into domains of two different orientations, which are mirror symmetric with respect to the <121> direction of the Au(111) substrate. Details of the adlayer structure and the chiral self-assembly were discussed here. PMID:22849803

  14. Transition metal dimer on Au(111) surface: A first principle study

    NASA Astrophysics Data System (ADS)

    Sahoo, Suman Kalyan; Nigam, Sandeep; Sarkar, Pranab; Majumder, Chiranjib

    2012-06-01

    The adsorption behaviour of transition metal dimers M2 (M= Cu, Ag, Au) on the Au(111) surface have been studied using the density functional theory formalism. The projector augmented wave method under the spin polarized version of generalized gradient approximation scheme was employed to calculate the total energy. The results suggest that all dimers prefer to orient in parallel to the surface plane, where two M atoms are adsorbed on two nearby threefold fcc sites. We have investigated the chemical interaction between M atoms and Au surface through electronic density of state analysis. It is found that on deposition, the electronic density of states (EDOS) of M2 dimer becomes broader in comparison to their gas phase spectrum.

  15. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  16. Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface

    SciTech Connect

    Liu, Tianhui; Fu, Bina; Zhang, Dong H.

    2013-11-14

    The six-dimensional quantum dynamics calculations for the dissociative chemisorption of HCl on Au(111) are carried out using the time-dependent wave-packet approach, based on an accurate PES which was recently developed by neural network fitting to density functional theory energy points. The influence of vibrational excitation and rotational orientation of HCl on the reactivity is investigated by calculating the exact six-dimensional dissociation probabilities, as well as the four-dimensional fixed-site dissociation probabilities. The vibrational excitation of HCl enhances the reactivity and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. A new interesting site-averaged effect is found for the title molecule-surface system that one can essentially reproduce the six-dimensional dissociation probability by averaging the four-dimensional dissociation probabilities over 25 fixed sites.

  17. Selective electronalysis of peracetic acid in the presence of a large excess of H2O2 at Au(111)-like gold electrode.

    PubMed

    Awad, M I

    2012-06-12

    Peracetic acid (PAA) has been selectively electroanalyzed in the presence of a large excess of hydrogen peroxide (H(2)O(2)), about 500 fold that of PAA, using Au (111)-like gold electrode in acetate buffer solutions of pH 5.4. Au(111)-like gold electrode was prepared by a controlled reductive desorption of a previously assembled thiol, typically cysteine, monolayer onto the polycrystalline gold (poly-Au) electrode. Cysteine molecules were selectively removed from the Au(111) facets of the poly-Au electrode, keeping the other two facets (i.e., Au(110) and Au(100)) under the protection of the adsorbed cysteine. It has been found that Au(111)-like gold electrode positively shifts the reduction peak of PAA, while, fortunately, shifts the reduction peak of H(2)O(2) negatively, achieving a large potential separation (around 750 mV) between the two reduction peaks as compared with that (around 450 mV) obtained at the poly-Au electrode. This large potential separation between the two reduction peaks enabled the analysis of PAA in the presence of a large excess of H(2)O(2). In addition, the positive shift of the reduction peak of PAA gives the present method a high immunity against the interference of the dissolved oxygen. PMID:22632045

  18. Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures.

    PubMed

    Sun, Qiang; Cai, Liangliang; Ma, Honghong; Yuan, Chunxue; Xu, Wei

    2016-07-26

    On-surface C-C coupling reactions of molecular precursors with alkynyl functional groups demonstrate great potential for the controllable fabrication of low-dimensional carbon nanostructures/nanomaterials, such as carbyne, graphyne, and graphdiyne, which demand the incorporation of highly active sp-hybridized carbons. Recently, through a dehydrogenative homocoupling reaction of alkynes, the possibility was presented to fabricate surface nanostructures involving acetylenic linkages, while problems lie in the fact that different byproducts are inevitably formed when triggering the reactions at elevated temperatures. In this work, by delicately designing the molecular precursors with terminal alkynyl bromide, we introduce the dehalogenative homocoupling reactions on the surface. As a result, we successfully achieve the formation of dimer structures, one-dimensional molecular wires and two-dimensional molecular networks with acetylenic scaffoldings on an inert Au(111) surface, where the unexpected C-Au-C organometallic intermediates are also observed. This study further supplements the database of on-surface dehalogenative C-C coupling reactions, and more importantly, it provides us an alternative efficient way for incorporating the acetylenic scaffolding into low-dimensional surface nanostructures. PMID:27326451

  19. First-principles Investigation of the Stability of Surface Gold Oxides on Au(111)

    NASA Astrophysics Data System (ADS)

    Shi, Hongqing; Stampfl, Catherine

    2006-03-01

    In contrast to the long held view that gold is catalytically inert and as such uninteresting, it is now well known that Au is significantly more active than Pt in the catalytic oxidation of CO under basic environments. Au can also promote many other reactions in the form of nanoparticles on metal oxide and activated carbon supports [1].^ This has simulated huge efforts in an attempt to understand the mechanisms responsible for the high activity, including investigations into the nature of oxygen on gold surfaces [2]. In the present work we have investigated the relative stability of oxygen adsorbed on and under the Au(111) surface, as well as thin surface oxides. We identify structures in which the binding of atomic oxygen is stronger than that at under-coordinated surface Au atoms (e.g. at steps). To determine the stability of the structures for different pressure and temperature conditions, we use the approach of ab initio thermodynamics [3], which indicates that these structures should be stable under certain catalytic conditions. [1] Haruta, Catal. J. New. Mater. Electro. Sys. 7, 163 (2004). [2] R. Meyer, et al., Gold Bull. 37, 72 (2004), and references therein. [3] K. Reuter, C. Stampfl and M. Scheffler, in Handbook of Materials Modeling, Volume 1, Fundamental Models and Methods, Sidney Yip (Ed) 2005, 149-194; K. Reuter and M. Scheffler, Phys. Rev. B 65, 035406 (2002).

  20. Interplay between Self-Assembled Structures and Energy Level Alignment of Benzenediamine on Au(111) Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Guo; Neaton, Jeffrey

    2015-03-01

    Using van der Waals-corrected density functional theory (DFT) calculations, we study the adsorption of benzene-diamine (BDA) molecules on Au(111) surfaces. We find that at low surface coverage, the adsorbed molecules prefer to stay isolated from each other in a monomer phase, due to the inter-molecular dipole-dipole repulsions. However, when the coverage rises above a critical value of 0.9nm-2, the adsorbed molecules aggregate into linear structures via hydrogen bonding between amine groups, consistent with recent experiments [Haxton, Zhou, Tamblyn, et al, Phys. Rev. Lett. 111, 265701 (2013)]. Moreover, we find that these linear structures at high density considerably reduces the Au work function (relative to a monomer phase). Due to reduced surface polarization effects, we estimate that the resonance energy of the highest occupied molecular orbital of the adsorbed BDA molecule relative to the Au Fermi level is significantly lower than the monomer phase by more than 0.5 eV, consistent with the experimental measurements [DellAngela, Kladnik, and Cossaro, et al., Nano Lett. 10, 2470 (2010)]. This work supported by DOE (the JCAP under Award Number DE-SC000499 and the Molecular Foundry of LBNL), and computational resources provided by NERSC.

  1. Dynamical calculations for RHEED from a partially-ordered Cu 3Au(111) surface

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lordi, S.; Flynn, C. P.; Eades, J. A.

    1994-01-01

    A multislice formalism of Cowley and Moodie [Acta Cryst. 10 (1957) 609] with a recently developed edge patching method has been applied to the RHEED analyses on the order-disorder transition of the Cu 3Au(111) surfaces. The results give the RI- S relation as RI = 0.4 S2.224 ( RI — ratio of reflection intensities, S — long-range orde By combining the RI- T relation experimentally observable by RHEED with the simulated RI- S relation, the needed S- T relation for the transition can be resolved in a straightforward way. The results confirm what was suggested by the experiments [Mater. Res. Soc. Symp. Proc. 237 (1993) 517]: the intensities of the RHEED superstructure reflections from ordering of the Cu and Au is more than 90% sensitive to the outer monolayer alone, thus making RHEED valuable for studies of surface order. The results of the analyses on the attenuation of elastically scattered electrons inside crystal in RHEED are useful to RHEED-related surface analytical techniques: AES, REEL, EDS and RHEED-TRAXS. The investigation on the errors resulting from potential sampling has shown that choosing proper sampling rates in all three dimensions is important to the multislice simulation of RHEED.

  2. Surface-confined 2D polymerization of a brominated copper-tetraphenylporphyrin on Au(111).

    PubMed

    Smykalla, Lars; Shukrynau, Pavel; Korb, Marcus; Lang, Heinrich; Hietschold, Michael

    2015-03-01

    A coupling-limited approach for the Ullmann reaction-like on-surface synthesis of a two-dimensional covalent organic network starting from a halogenated metallo-porphyrin is demonstrated. Copper-octabromo-tetraphenylporphyrin molecules can diffuse and self-assemble when adsorbed on the inert Au(111) surface. Splitting-off of bromine atoms bonded at the macrocyclic core of the porphyrin starts at room temperature after the deposition and is monitored by X-ray photoelectron spectroscopy for different annealing steps. Direct coupling between the reactive carbon sites of the molecules is, however, hindered by the molecular shape. This leads initially to an ordered non-covalently interconnected supramolecular structure. Further heating to 300 °C and an additional hydrogen dissociation step is required to link the molecular macrocycles via a phenyl group and form large ordered polymeric networks. This approach leads to a close-packed covalently bonded network of overall good quality. The structures are characterized using scanning tunneling microscopy. Different kinds of lattice defects and, furthermore, the impact of polymerization on the HOMO-LUMO gap are discussed. Density functional theory calculations corroborate the interpretations and give further insight into the adsorption of the debrominated molecule on the surface and the geometry and coupling reaction of the polymeric structure. PMID:25672486

  3. Surface-confined 2D polymerization of a brominated copper-tetraphenylporphyrin on Au(111)

    NASA Astrophysics Data System (ADS)

    Smykalla, Lars; Shukrynau, Pavel; Korb, Marcus; Lang, Heinrich; Hietschold, Michael

    2015-02-01

    A coupling-limited approach for the Ullmann reaction-like on-surface synthesis of a two-dimensional covalent organic network starting from a halogenated metallo-porphyrin is demonstrated. Copper-octabromo-tetraphenylporphyrin molecules can diffuse and self-assemble when adsorbed on the inert Au(111) surface. Splitting-off of bromine atoms bonded at the macrocyclic core of the porphyrin starts at room temperature after the deposition and is monitored by X-ray photoelectron spectroscopy for different annealing steps. Direct coupling between the reactive carbon sites of the molecules is, however, hindered by the molecular shape. This leads initially to an ordered non-covalently interconnected supramolecular structure. Further heating to 300 °C and an additional hydrogen dissociation step is required to link the molecular macrocycles via a phenyl group and form large ordered polymeric networks. This approach leads to a close-packed covalently bonded network of overall good quality. The structures are characterized using scanning tunneling microscopy. Different kinds of lattice defects and, furthermore, the impact of polymerization on the HOMO-LUMO gap are discussed. Density functional theory calculations corroborate the interpretations and give further insight into the adsorption of the debrominated molecule on the surface and the geometry and coupling reaction of the polymeric structure.

  4. Correlated motion of electrons on the Au(111) surface: anomalous acoustic surface-plasmon dispersion and single-particle excitations.

    PubMed

    Vattuone, L; Smerieri, M; Langer, T; Tegenkamp, C; Pfnür, H; Silkin, V M; Chulkov, E V; Echenique, P M; Rocca, M

    2013-03-22

    The linear dispersion of the low-dimensional acoustic surface plasmon (ASP) opens perspectives in energy conversion, transport, and confinement far below optical frequencies. Although the ASP exists in a wide class of materials, ranging from metal surfaces and ultrathin films to graphene and topological insulators, its properties are still largely unexplored. Taking Au(111) as a model system, our combined experimental and theoretical study revealed an intriguing interplay between collective and single particle excitations, causing the ASP associated with the Shockley surface state to be embedded within the intraband transitions without losing its sharp character and linear dispersion. PMID:25166849

  5. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    PubMed

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state. PMID:17902711

  6. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    SciTech Connect

    Liu, Tianhui; Fu, Bina E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H. E-mail: zhangdh@dicp.ac.cn

    2014-04-14

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitation and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.

  7. In situ STM study of the adsorption and electropolymerization of o-, m-, and p-ethylaniline molecules on Au(111) electrode.

    PubMed

    Chen, Sihzih; Hwuang, Chonzan; Tu, HsinLing; Wu, ChunGuey; Yau, ShuehLin; Fan, LiangJen; Yang, YawWen

    2010-08-28

    Cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) were employed to study the adsorption and polymerization of the geometric isomers of ethylaniline (EA) on a Au(111) single-crystal electrode in 0.5 M H(2)SO(4). All three isomers, namely o-, m-, and p-EA, were adsorbed in highly ordered structures, identified as Au(111)-(4 x 2 square root(3))rect for m- and p-EA and (4 square root(3) x 4 square root(3))R30 degrees for o-EA, at the onset potentials (approximately 0.9 V [vs. reversible hydrogen electrode]) for electropolymerization. Raising the potential in excess of 0.9 V resulted in oxidation and polymerization of m- and o-EA, but decomposition of p-EA. Molecular-resolution STM imaging revealed that poly(m-EA) and poly(o-EA), denoted respectively as m- and o-PEA, exhibited distinctively different molecular shapes. More specifically, m-PEA molecules were predominantly linear and aligned preferentially in the 121 directions of the Au(111) surface; whereas o-PEA molecules were ill-defined in shape and in dimension. These differences in molecular conformation stemmed from unlike arrangements of adsorbed monomers at 0.9 V. Notably, m-EA were adsorbed in zigzags with two nearest neighbors separated by approximately 0.5 nm, which were spatially so similar to the backbones of m-PEA that m-EA molecules coupled readily when the potential was raised high enough to induce the oxidation of m-EA. In contrast, the arrangement of o-EA molecules was so different from the ideal configuration of its polymer that molecules coupled randomly to yield crooked polymer chains less than 20 nm in length. The effect of potential on the structure of m-PEA was examined also, revealing notable branching of linear m-PEA if the electrochemical potential was set at 1.1 V. PMID:20607178

  8. Fundamental studies of the chemisorption of organosulfur compounds on Au(111). Implications for molecular self-assembly on gold surfaces

    SciTech Connect

    Nuzzo, R.G.; Zegarski, B.R.; Dubois, L.H.

    1987-02-04

    Studies of the adsorption of methanethiol and dimethyl disulfide on an Au(111) surface under UHV conditions are described. Both adsorbates bind strongly, with the bonding of the disulfide being greatly favored. It is found that, under these conditions, the disulfide bond is dissociated to give a stable surface thiolate. Adsorption of methanethiol does not involve cleavage of the S-H bond. The implications of these results for solution adsorption experiments and the thermodynamics characterizing monolayer formation are discussed.

  9. Molecules with multiple switching units on a Au(111) surface: self-organization and single-molecule manipulation

    NASA Astrophysics Data System (ADS)

    Mielke, Johannes; Selvanathan, Sofia; Peters, Maike; Schwarz, Jutta; Hecht, Stefan; Grill, Leonhard

    2012-10-01

    Three different molecules, each containing two azobenzene switching units, were synthesized, successfully deposited onto a Au(111) surface by sublimation and studied by scanning tunneling microscopy at low temperatures. To investigate the influence of electronic coupling between the switching units as well as to the surface, the two azo moieties were connected either via π-conjugated para-phenylene or decoupling meta-phenylene bridges, and the number of tert-butyl groups was varied in the meta-phenylene-linked derivatives. Single molecules were found to be intact after deposition as identified by their characteristic appearance in STM images. Due to their mobility on the Au(111) surface at room temperature, the molecules spontaneously formed self-organized molecular arrangements that reflected their chemical structure. While lateral displacement of the molecules was accomplished by manipulation, trans-cis isomerization processes, typical for azobenzene switches, could not be induced.

  10. Spin-conserving and reversing photoemission from the surface states of Bi2Se3 and Au (111)

    NASA Astrophysics Data System (ADS)

    Ryoo, Ji Hoon; Park, Cheol-Hwan

    2016-02-01

    We present a theory based on first-principles calculations explaining (i) why the tunability of spin polarizations of photoelectrons from Bi2Se3 (111) depends on the band index and Bloch wave vector of the surface state and (ii) why such tunability is absent in the case of isosymmetric Au (111). The results provide not only an explanation for the recent, puzzling experimental observations but also a guide toward making highly-tunable spin-polarized electron sources from topological insulators.

  11. Approach to interfacial and intramolecular electron transfer of the diheme protein cytochrome c4 assembled on Au(111) surfaces.

    PubMed

    Chi, Qijin; Zhang, Jingdong; Arslan, Taner; Borg, Lotte; Pedersen, Gert W; Christensen, Hans E M; Nazmudtinov, Renat R; Ulstrup, Jens

    2010-04-29

    Intramolecular electron transfer (ET) between metal centers is a core feature of large protein complexes in photosynthesis, respiration, and redox enzyme catalysis. The number of microscopic redox potentials and ET rate constants is, however, prohibitive for experimental cooperative ET mapping, but two-center proteins are simple enough to offer complete communication networks. At the same time, multicenter redox proteins operate in membrane environments where conformational dynamics may lead to gated ET features different from conditions in homogeneous solution. The bacterial respiratory diheme protein Pseudomonas stutzeri cytochrome c(4) has been a target for intramolecular, interheme ET. We report here voltammetric and in situ scanning tunneling microscopy (STM) data for P. stutzeri cyt c(4) at single-crystal, atomically planar Au(111)-electrode surfaces modified by variable-length omega-mercapto-alkanoic carboxylic acids. As evidenced by in situ STM, the strongly dipolar protein is immobilized in a close to vertical orientation at this surface with the positively charged high-potential heme domain adjacent to the electrode. This orientation gives asymmetric voltammograms with two one-ET peaks in the cathodic direction and a single two-ET peak in the anodic direction. Intramolecular, interheme ET with high, 8,000-30,000 s(-1), rate constants is notably an essential part of this mechanism. The high rate constants are in striking contrast to ET reactions of P. stutzeri cyt c(4) with small reaction partners in homogeneous solution for which kinetic analysis clearly testifies to electrostatic cooperative effects but no intramolecular, interheme ET higher than 0.1-10 s(-1). This difference suggests a strong gating feature of the process. On the basis of the three-dimensional structure of P. stutzeri cyt c(4), gating is understandable due to the through-space, hydrogen-bonded electronic contact between the heme propionates which is highly sensitive to environmental

  12. In-situ X-ray diffraction and STM studies of bromide adsorption on Au(111) electrodes

    SciTech Connect

    Magnussen, O.M.; Ocko, B.M; Wang, J.X.; Adzic, R.R.

    1996-03-28

    The structure of bromide adlayers at the Au(111)-aqueous solution interface has been studied by in-situ surface X-ray scattering (SXS) and scanning tunneling microscopy (STM). Both techniques show the existence of a hexagonal close-packed adlayer phase above a critical potential and are in good quantitative agreement on the adlayer structural parameters. The bromide-bromide spacing changes continuously between 4.24 A at the critical potential and 4.03 A at a potential 300 mV more positive. The adlayer is rotated relative to the substrate by an angle dependent on potential and bromide concentration. The potential- dependent adlayer density corresponding to these structural results agrees well with Br surface excess densities from published electrochemical measurements. At very positive potentials a bromide-induced step-flow etching of the Au substrate is observed. The results are used to compare the different techniques and to discuss the adlayer structure, the phase behavior, and the halide-gold chemical interaction. 49 refs., 8 figs.

  13. Fullerene-derivative PC61BM forms three types of phase-pure monolayer on the surface of Au(111)

    NASA Astrophysics Data System (ADS)

    Li, Wen-Jie; Du, Ying-Ying; Zhang, Han-Jie; Chen, Guang-Hua; Sheng, Chun-Qi; Wu, Rui; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; He, Pi-Mo; Li, Hong-Nian

    2016-12-01

    We have studied the packing structures of C60-derivative PC61BM on the surface of Au(111) in ultrahigh vacuum using scanning tunneling microscopy. The Au(111) has a triangle-like reconstructed surface, which results in some packing structures different from those reported for low coverages. PC61BM can form three types of phase-pure monolayer, namely, the compact straight molecular double-row monolayer, the hexagonal-packing monolayer and the glassy monolayer. The different types of monolayer form for different molecular densities and different annealing temperatures. In addition to the already known inter-molecular interactions (Van de Waals interaction and hydrogen bond), the steric effect of the phenyl-butyric-acid-methyl-ester side tail plays conspicuous role in the molecular self-assembly at high coverages. The steric effect makes it difficult to prepare a hexagonal-packing monolayer at room temperature and decides the instability of the hexagonal-packing monolayer prepared by thermal annealing.

  14. Direct probing of the structure and electron transfer of fullerene/ferrocene hybrid on Au(111) electrodes by in situ electrochemical STM.

    PubMed

    Chen, Ting; Wang, Dong; Gan, Li-Hua; Matsuo, Yutaka; Gu, Jing-Ying; Yan, Hui-Juan; Nakamura, Eiichi; Wan, Li-Jun

    2014-02-26

    The electron donor-acceptor dyads are an emerging class of materials showing important applications in nonlinear optics, dye-sensitized solar cells, and molecular electronics. Investigation of their structure and electron transfer at the molecular level provides insights into the structure-property relationship and can benefit the design and preparation of electron donor-acceptor dyad materials. Herein, the interface adstructure and electron transfer of buckyferrocene Fe(C60Me5)Cp, a typical electron donor-acceptor dyad, is directly probed using in situ electrochemical scanning tunneling microscopy (STM) combined with theoretical simulations. It is found that the adsorption geometry and assembled structure of Fe(C60Me5)Cp is significantly affected by the electrochemical environments. In 0.1 M HClO4 solution, Fe(C60Me5)Cp forms well-ordered monolayers and multilayers on Au(111) surfaces with molecular dimer as the building block. In 0.1 M NaClO4 solution, typical six-fold symmetric close-packed monolayer with vertically adsorbed Fe(C60Me5)Cp is formed. Upon electrochemical oxidation, the oxidized Fe(C60Me5)Cp shows higher brightness in an STM image, which facilitates the direct visualization of the interfacial electrochemical electron transfer process. Theoretical simulation indicates that the electrode potential-activated, one-electron transfer from Fe(C60Me5)Cp to the electrode leads to the change of the delocalization character of the frontier orbital in the molecule, which is responsible for the STM image contrast change. This result is beneficial for understanding the structure and property of single electron donor-acceptor dyads. It also provides a direct approach to study the electron transfer of electron donor-acceptor compounds at the molecular level. PMID:24483295

  15. Molecular and electronic structure of osmium complexes confined to Au(111) surfaces using a self-assembled molecular bridge.

    PubMed

    de la Llave, Ezequiel; Herrera, Santiago E; Adam, Catherine; Méndez De Leo, Lucila P; Calvo, Ernesto J; Williams, Federico J

    2015-11-14

    The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge. PMID:26567676

  16. Molecular and electronic structure of osmium complexes confined to Au(111) surfaces using a self-assembled molecular bridge

    SciTech Connect

    Llave, Ezequiel de la; Herrera, Santiago E.; Adam, Catherine; Méndez De Leo, Lucila P.; Calvo, Ernesto J.; Williams, Federico J.

    2015-11-14

    The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.

  17. Molecular and electronic structure of osmium complexes confined to Au(111) surfaces using a self-assembled molecular bridge

    NASA Astrophysics Data System (ADS)

    de la Llave, Ezequiel; Herrera, Santiago E.; Adam, Catherine; Méndez De Leo, Lucila P.; Calvo, Ernesto J.; Williams, Federico J.

    2015-11-01

    The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.

  18. Redox-switching in a viologen-type adlayer: an electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study on Au(111)-(1×1) single crystal electrodes.

    PubMed

    Liu, Bo; Blaszczyk, Alfred; Mayor, Marcel; Wandlowski, Thomas

    2011-07-26

    We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1×1) electrode and covered by Au(60 nm)@SiO(2) core-shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+), V(+●), and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of ∼3 × 10(5), and up to 9 × 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces. PMID:21634391

  19. Monolayer Phases of a Dipolar Perylene Derivative on Au(111) and Surface Potential Build-Up in Multilayers.

    PubMed

    Niederhausen, Jens; Kersell, Heath R; Christodoulou, Christos; Heimel, Georg; Wonneberger, Henrike; Müllen, Klaus; Rabe, Jürgen P; Hla, Saw-Wai; Koch, Norbert

    2016-04-19

    9-(Bis-p-tert-octylphenyl)-amino-perylene-3,4-dicarboxy anhydride (BOPA-PDCA) is a strongly dipolar molecule representing a group of asymmetrically substituted perylenes that are employed in dye-sensitized solar cells and hold great promise for discotic liquid crystal applications. Thin BOPA-PDCA films with orientated dipole moments can potentially be used to tune the energy-level alignment in electronic devices and store information. To help assessing these prospects, we here elucidate the molecular self-assembly and electronic structure of BOPA-PCDA employing room temperature scanning tunneling microscopy and spectroscopy in combination with ultraviolet and X-ray photoelectron spectroscopies. BOPA-PCDA monolayers on Au(111) exclusively form in-plane antiferroelectric phases. The molecular arrangements, the increase of the average number of molecules per unit cell via ripening, and the rearrangement upon manipulation with the STM tip indicate an influence of the dipole moment on the molecular assembly and the rearrangement. A slightly preferred out-of-plane orientation of the molecules in the multilayer induces a surface potential of 1.2 eV. This resembles the giant surface potential effect that was reported for vacuum-deposited tris(8-hydroxyquinoline)aluminum and deemed applicable for data storage. Notably, the surface potential in the case of BOPA-PDCA can in part be reversibly removed by visible light irradiation. PMID:26991048

  20. STM Study of Au(111) Surface-Grafted Paramagnetic Macrocyclic Complexes [Ni2L(Hmba)](+) via Ambidentate Coligands.

    PubMed

    Salazar, Christian; Lach, Jochen; Rückerl, Florian; Baumann, Danny; Schimmel, Sebastian; Knupfer, Martin; Kersting, Berthold; Büchner, Bernd; Hess, Christian

    2016-05-10

    Molecular anchoring and electronic properties of macrocyclic complexes fixed on gold surfaces have been investigated mainly by using scanning tunnelling microscopy (STM) and complemented with X-ray photoelectron spectroscopy (XPS). Exchange-coupled macrocyclic complexes [Ni2L(Hmba)](+) were deposited via 4-mercaptobenzoate ligands on the surface of a Au(111) single crystal from a mM solution of the perchlorate salt [Ni2L(Hmba)]ClO4 in dichloromethane. The combined results from STM and XPS show the formation of large monolayers anchored via Au-S bonds with a height of about 1.5 nm. Two apparent granular structures are visible: one related to the dinickel molecular complexes (cationic structures) and a second one related to the counterions ClO4(-) which stabilize the monolayer. No type of short and long-range order is observed. STM tip-interaction with the monolayer reveals higher degradation after 8 h of measurement. Spectroscopy measurements suggest a gap of about 2.5 eV between HOMO and LUMO of the cationic structures and smaller gap in the areas related to the anionic structures. PMID:27093097

  1. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction

    NASA Astrophysics Data System (ADS)

    Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats

    2012-08-01

    We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.

  2. Electron emission spectra of thermal collisions of He metastable atoms with Au(111) and Pt(111) surfaces: Evidence for Penning ionization

    SciTech Connect

    Masuda, S.; Sasaki, K.; Sogo, M.; Aoki, M.; Morikawa, Y.

    2009-10-15

    Electron emission spectra obtained by thermal collisions of He*(2{sup 1}S and 2{sup 3}S) atoms with Au(111) and Pt(111) surfaces were measured to clarify the electronically excited atom-metal interactions. It has been recognized that the metastable atoms de-excite on ordinary noble- and transition-metal surfaces via resonance ionization (RI) followed by Auger neutralization (AN) without no indication of Penning ionization (PI). Our data show that this traditional criterion partially breaks down in the He*-Au(111) collision system. The local electronic states near the surface were examined by first-principles calculations using density functional theory. It reveals that the itinerant sp states are significantly spilled out toward the vacuum compared to the localized 5d states, and their asymptotic features play a crucial role in determining the branching ratio between PI and RI+AN.

  3. Electron emission spectra of thermal collisions of He metastable atoms with Au(111) and Pt(111) surfaces: Evidence for Penning ionization

    NASA Astrophysics Data System (ADS)

    Masuda, S.; Sasaki, K.; Sogo, M.; Aoki, M.; Morikawa, Y.

    2009-10-01

    Electron emission spectra obtained by thermal collisions of He∗(2S1 and 2S3 ) atoms with Au(111) and Pt(111) surfaces were measured to clarify the electronically excited atom-metal interactions. It has been recognized that the metastable atoms de-excite on ordinary noble- and transition-metal surfaces via resonance ionization (RI) followed by Auger neutralization (AN) without no indication of Penning ionization (PI). Our data show that this traditional criterion partially breaks down in the He∗-Au(111) collision system. The local electronic states near the surface were examined by first-principles calculations using density functional theory. It reveals that the itinerant sp states are significantly spilled out toward the vacuum compared to the localized 5d states, and their asymptotic features play a crucial role in determining the branching ratio between PI and RI+AN .

  4. Final rotational state distributions from NO(vi = 11) in collisions with Au(111): the magnitude of vibrational energy transfer depends on orientation in molecule-surface collisions.

    PubMed

    Krüger, Bastian C; Bartels, Nils; Wodtke, Alec M; Schäfer, Tim

    2016-06-01

    When NO molecules collide at a Au(111) surface, their interaction is controlled by several factors; especially important are the molecules' orientation with respect to the surface (N-first vs. O-first) and their distance of closest approach. In fact, the former may control the latter as N-first orientations are attractive and O-first orientations are repulsive. In this work, we employ electric fields to control the molecules' incidence orientation in combination with rotational rainbow scattering detection. Specifically, we report final rotational state distributions of oriented NO(vi = 11) molecules scattered from Au(111) for final vibrational states between vf = 4 and 11. For O-first collisions, the interaction potential is highly repulsive preventing the close approach and scattering results in high-J rainbows. By contrast, these rainbows are not seen for the more intimate collisions possible for attractive N-first orientations. In this way, we reveal the influence of orientation and the distance of closest approach on vibrational relaxation of NO(vi = 11) in collisions with a Au(111) surface. We also elucidate the influence of steering forces which cause the O-first oriented molecules to rotate to an N-first orientation during their approach to the surface. The experiments show that when NO collides at the surface with the N-atom first, on average more than half of the initial vibrational energy is lost; whereas O-first oriented collisions lose much less vibrational energy. These observations qualitatively confirm theoretical predictions of electronically non-adiabatic NO interactions at Au(111). PMID:27193070

  5. Effect of Dispersion on Surface Interactions of Cobalt(II) Octaethylporphyrin Monolayer on Au(111) and HOPG(0001) Substrates: a Comparative First Principles Study

    SciTech Connect

    Chilukuri, Bhaskar; Mazur, Ursula; Hipps, Kerry W.

    2014-07-21

    A density functional theory study of a cobalt(II) octaethylporphyrin (CoOEP) monolayer on Au(111) and HOPG(0001) surfaces was performed under periodic boundary conditions. Calculations with and without dispersion corrections are performed and the effect of van der Waals forces on the interface properties is analyzed. Calculations have determined that the CoOEP molecule tends to bind at the 3-fold and the 6-fold center sites on Au(111) and HOPG(0001), respectively. Geometric optimizations at the center binding sites have indicated that the porphyrin molecules (in the monolayer) lie flat on both substrates. Calculations also reveal that the CoOEP monolayer binds slightly more strongly to Au(111) than to HOPG(0001). Charge density difference plots disclose that charge is redistributed mostly around the porphyrin plane and the first layer of the substrates. Dispersion interactions cause a larger substrate to molecule charge pushback on Au(111) than on HOPG. CoOEP adsorption tends to lower the work functions of either substrate, qualitatively agreeing with the experimental photoelectron spectroscopic data. Comparison of the density of states (DOS) of the isolated CoOEP molecule with that on gold and HOPG substrates showed significant band shifts around the Fermi energy due to intermolecular orbital hybridization. Simulated STM images were plotted with the Tersoff–Hamann approach using the local density of states, which also agree with the experimental results. This study elucidates the role of dispersion for better describing porphyrin–substrate interactions. A DFT based overview of geometric, adsorption and electronic properties of a porphyrin monolayer on conductive surfaces is presented.

  6. Lifetime reduction of surface states at Cu, Ag, and Au(111) caused by impurity scattering

    NASA Astrophysics Data System (ADS)

    Heers, Swantje; Mavropoulos, Phivos; Lounis, Samir; Zeller, Rudolf; Blügel, Stefan

    2012-09-01

    We present density-functional results on the lifetime of the (111) surface state of the noble metals. We consider scattering on the Fermi surface caused by impurity atoms belonging to the 3d and 4sp series. The results are analyzed with respect to film thickness and with respect to separation of scattering into bulk or into surface states. While for impurities in the surface layer the overall trends are similar to the long-known bulk-state scattering, for adatom-induced scattering we find a surprising behavior with respect to the adatom atomic number. A plateau emerges in the scattering rate of the 3d adatoms, instead of a peak characteristic of the d resonance. Additionally, the scattering rate of 4sp adatoms changes in a zigzag pattern, contrary to a smooth parabolic increase following Linde's rule that is observed in bulk. We interpret these results in terms of the weaker charge screening and of interference effects induced by the lowering of symmetry at the surface.

  7. Constitutional Dynamics of Metal-Organic Motifs on a Au(111) Surface.

    PubMed

    Kong, Huihui; Zhang, Chi; Xie, Lei; Wang, Likun; Xu, Wei

    2016-06-13

    Constitutional dynamic chemistry (CDC), including both dynamic covalent chemistry and dynamic noncovalent chemistry, relies on reversible formation and breakage of bonds to achieve continuous changes in constitution by reorganization of components. In this regard, CDC is considered to be an efficient and appealing strategy for selective fabrication of surface nanostructures by virtue of dynamic diversity. Although constitutional dynamics of monolayered structures has been recently demonstrated at liquid/solid interfaces, most of molecular reorganization/reaction processes were thought to be irreversible under ultrahigh vacuum (UHV) conditions where CDC is therefore a challenge to be achieved. Here, we have successfully constructed a system that presents constitutional dynamics on a solid surface based on dynamic coordination chemistry, in which selective formation of metal-organic motifs is achieved under UHV conditions. The key to making this reversible switching successful is the molecule-substrate interaction as revealed by DFT calculations. PMID:27144822

  8. Studying Two-Dimensional Zeolites with the Tools of Surface Science: MFI Nanosheets on Au(111)

    DOE PAGESBeta

    J. D. Kestell; Zhong, J. Q.; Shete, M.; Waluyo, I.; Sadowski, J. T.; Stacchiola, D. J.; Tsapatsis, M.; Boscoboinik, J. A.

    2016-07-26

    While surface science has provided fundamental insights into a variety a materials, the most used catalysts in the industry, namely zeolites, still remain a challenge. The recent preparation of two-dimensional versions of MFI zeolite frameworks and the possibility of their deposition on electrically conductive supports provides for the first time a viable strategy to perform detailed studies on industrially relevant zeolites using the vast toolkit of surface science. In this work we demonstrate the use of infrared reflection absorption spectroscopy (IRRAS) and synchrotron-based x-ray photoelectron spectroscopy (XPS) to study these materials. Furthermore, polarization modulation IRRAS is used to study themore » adsorption of methanol and its effect in phonon vibrations of the zeolite framework. The possibility of using surface science methods, in particular under ambient pressure conditions, for the study of well-defined zeolites and other microporous structures opens new avenues to understand structural and mechanistic aspects of these materials as catalysts, adsorbents and molecular sieves.« less

  9. Measurement of the phason dispersion of misfit dislocations on the Au(111) surface.

    PubMed

    McIntosh, E M; Kole, P R; El-Batanouny, M; Chisnall, D M; Ellis, J; Allison, W

    2013-02-22

    We report measurements of the acoustic and optical phason dispersion curves associated with the lattice of partial dislocations on the reconstructed (111) surface of gold. Our measurements of these low energy (<0.5 meV) weakly dispersive modes have been enabled by the very high resolution of the novel helium spin-echo technique. The results presented here constitute the first measurement of the phason dispersion of misfit dislocations, and possibly of excitations associated with any type of crystalline dislocations. PMID:23473169

  10. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  11. Interaction of ionic liquids with noble metal surfaces: structure formation and stability of [OMIM][TFSA] and [EMIM][TFSA] on Au(111) and Ag(111).

    PubMed

    Uhl, Benedikt; Huang, Hsinhui; Alwast, Dorothea; Buchner, Florian; Behm, R Jürgen

    2015-10-01

    Aiming at a comprehensive understanding of the interaction of ionic liquids (ILs) with metal surfaces we have investigated the adsorption of two closely related ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][TFSA] and 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide [OMIM][TFSA], with two noble metal surfaces, Au(111) and Ag(111), under ultrahigh vacuum (UHV) conditions using scanning tunneling microscopy (STM). At room temperature, the ILs form a 2D liquid on either of the two surfaces, while at lower temperatures they condense into two-dimensional (2D) islands which exhibit ordered structures or a short-range ordered 2D glass structure. Comparison of the adlayer structures formed in the different adsorption systems and also with those determined recently for n-butyl-n-methylpyrrolidinium [TFSA](-) adlayers on Ag(111) and Au(111) (B. Uhl et al., Beilstein J. Nanotechnol., 2013, 4, 903) gains detailed insight into the adsorption geometry of the IL ions on the surface. The close similarity of the adlayer structures indicates that (i) the structure formation is dominated by the tendency to optimize the anion adsorption geometry, and that (ii) also in the present systems the cation adsorbs with the alkyl chain pointing up from the surface. PMID:26305417

  12. Comparing Ullmann Coupling on Noble Metal Surfaces: On-Surface Polymerization of 1,3,6,8-Tetrabromopyrene on Cu(111) and Au(111).

    PubMed

    Pham, Tuan Anh; Song, Fei; Nguyen, Manh-Thuong; Li, Zheshen; Studener, Florian; Stöhr, Meike

    2016-04-18

    The on-surface polymerization of 1,3,6,8-tetrabromopyrene (Br4 Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4 Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C-Cu-C bonds. After annealing at 473 K, the C-Cu-C bonds were converted to covalent C-C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self-assembled two-dimensional (2D) patterns stabilized by both Br-Br halogen and Br-H hydrogen bonds were observed upon deposition of Br4 Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C-Br bonds and the formation of disordered metal-coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4 Py on the different substrates. PMID:26879625

  13. Au enrichment and vertical relaxation of the Cu3Au (111 ) surface studied by normal-incidence x-ray standing waves

    NASA Astrophysics Data System (ADS)

    Bauer, O.; Schmitz, C. H.; Ikonomov, J.; Willenbockel, M.; Soubatch, S.; Tautz, F. S.; Sokolowski, M.

    2016-06-01

    We have investigated the Cu3Au (111 ) surface, prepared under ultrahigh vacuum conditions by sputtering and annealing, by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and normal incidence x-ray standing waves (NIXSW). We find the surface to be depleted with Cu and enriched with Au at the same time, yielding a nominal Cu:Au ratio of 0.61:0.39 in the topmost layer. The STM images reveal that the first layer is nearly closely filled with atoms and contains a small amount of vacancies with an area concentration of about 5 % . Together with the Au enrichment, these cause local short-range disorder of the Au p (2 ×2 ) reconstruction. From this data, the average stoichiometry of the p (2 ×2 ) surface unit cell is estimated at C u2.22A u1.44□0.20 (instead of C u3.00A u1.00□0.00 of the ideal surface; □ denotes an atomic vacancy site). From NIXSW we find a significant outward relaxation of both the Cu and Au atoms of the topmost layer by 0.28 Å and 0.33 Å, which corresponds to 13 % and 15 % of the (111) bulk layer spacing of C u3Au . We suggest that this originates from a widening of the first/second layer spacing, by 6.8 % and 8.8 % for the Cu and Au atoms, respectively, plus an additional rigid increase in the second/third layer spacing by 6.2 % . We explain this by steric repulsions between Au atoms of the topmost layer, replacing smaller Cu atoms, and Au atoms in the second layer in combination with disorder. Finally, a lateral reconstruction, similar to that on the Au(111) surface, but with a much larger periodicity of 290 Å, is identified from LEED.

  14. Electrochemical Potential Stabilization of Reconstructed Au(111) Structure by Monolayer Coverage with Graphene.

    PubMed

    Yasuda, Satoshi; Kumagai, Ryota; Nakashima, Koji; Murakoshi, Kei

    2015-09-01

    The electrochemical properties of a monolayer graphene grown on a Au(111) electrode were studied using cyclic voltammetry (CV) and electrochemical scanning tunneling microscopy (EC-STM). CV and EC-STM measurements in 0.1 M H2SO4 aqueous solution revealed that graphene grown on the reconstructed (22 × √3) Au(111) structure effectively inhibited potential-induced structural transitions between reconstructed (22 × √3) and unreconstructed (1 × 1), and the adsorption/desorption of SO4(2-) ions, which are intrinsic behavior of the bare Au(111) surface. The underlying reconstructed structure was significantly stabilized by covering with monolayer graphene over a wide potential range between -0.2 V and +1.35 V vs Ag/AgCl (saturated KCl), which is much wider than that for bare Au(111) (-0.2 to + 0.35 V vs Ag/AgCl (saturated KCl)). Such high stability has not been reported to date; therefore, these results are considered to be important for understanding the fundamentals of surface reconstruction and also serve to open a new branch of electrochemistry related to graphene/metal-electrolyte interfaces. PMID:26279244

  15. Van Der Waals-Corrected Density Functional Theory Simulation of Adsorption Processes on Noble-Metal Surfaces: Xe on Ag(111), Au(111), and Cu(111)

    NASA Astrophysics Data System (ADS)

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2016-02-01

    The DFT/vdW-WF2s1 method based on the generation of localized Wannier functions, recently developed to include the van der Waals interactions in the density functional theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe with noble-metal surfaces, namely Ag(111), Au(111), and Cu(111). The study is also repeated by adopting the DFT/vdW-QHO-WF variant relying on the quantum harmonic oscillator model which describes well many body effects. Comparison of the computed equilibrium binding energies and distances, and the C_3 coefficients characterizing the adatom-surface van der Waals interactions, with available experimental and theoretical reference data shows that the methods perform well and elucidates the importance of properly including screening effects. The results are also compared with those obtained by other vdW-corrected DFT schemes, including PBE-D, vdW-DF, vdW-DF2, rVV10, and by the simpler local density approximation and semi-local (PBE) generalized gradient approximation approaches.

  16. Atomic and molecular adsorption on Au(111)

    SciTech Connect

    Santiago-Rodríguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, María C.; Mavrikakis, Manos

    2014-09-01

    Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH3 < NO < CO < CH3 < HCO < NH2 < COOH < OH < HCOO < CNH2 < H < N < NH < NOH < COH < Cl,< HCO3 < CH2 < CN b HNO < O < F < S < C < CH. Although the atomic species preferred to bind at the three-fold fcc site, no tendency was observed in site preference for the molecular species and fragments. The intramolecular and adsorbate-surface vibrational frequencies were calculated for all the adsorbates on their most energetically stable adsorption site. Most of the theoretical binding energies and frequencies agreed with experimental values reported in the literature. In general, the values obtained with the PW91 functional are more accurate than RPBE in reproducing these experimental binding energies. The energies of the adsorbed species were used to calculate the thermochemical potential energy surfaces for decomposition of CO, NO, N2, NH3 and CH4, oxidation of CO, and hydrogenation of CO, CO2 and NO, giving insight into the thermochemistry of these reactions on gold nanoparticles. These potential energy surfaces demonstrated that: the decomposition of species is not energetically favorable on Au(111); the desorption of NH3, NO and CO are more favorable than their decomposition; the oxidation of CO and hydrogenation of CO and NO on Au(111) to form HCO and HNO, respectively, are also thermodynamically favorable.

  17. Growth and electronic properties of Ti nanoislands on Au(111)

    NASA Astrophysics Data System (ADS)

    Carrozzo, P.; Tumino, F.; Passoni, M.; Bottani, C. E.; Casari, C. S.; Li Bassi, A.

    2014-01-01

    The initial growth of titanium nanoislands on the reconstructed Au(111) surface was investigated by Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy (STM/STS). Ti atoms evaporated onto room temperature substrate start to nucleate preferentially at the elbows of the Au(111) herringbone reconstruction; however ordered nucleation is accompanied by an early occurrence of out-of-elbow islands. Titanium islands are irregularly shaped, composed of smaller sub-units as grains of about 1-2 nm2 and their growth leads to a distortion of the underlying gold surface. We observe a retarded coalescence of titanium first layer islands with respect to other similar systems. Comparing the experimental data with a diffusive model, quantitative information about the interlayer diffusion of the first two layers is obtained. STS spectra and differential conductivity maps show peculiar electronic features outlining an important interaction between Ti atoms and the Au(111) surface.

  18. X-ray Absorption Spectroscopy Characterization of Zn Underpotential Deposition on Au(111) from Phosphate Supporting Electrolyte

    SciTech Connect

    Lee, J R; O'Malley, R L; O'Connell, T J; Vollmer, A; Rayment, T

    2009-12-11

    Zn K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the structure of Zn monolayers prepared on Au(111) electrodes via underpotential deposition (UPD) from phosphate supporting electrolyte. Theoretical modeling of the XAS data indicates that the Zn adatoms adopt a commensurate ({radical}3x{radical}3)R30{sup o} ({mu}{sub sc} = 0.33) adlayer structure and reside within the 3-fold hollow sites of the Au(111) surface. Meanwhile, phosphate counter-ions co-adsorb on the UPD adlayer and bridge between the Zn adatoms in a ({radical}3x{radical}3)R30{sup o} ({mu}{sub sc} = 0.33) configuration, with each phosphorous atom residing above a vacant 3-fold hollow site of the Au(111). Significantly, this surface structure is invariant between the electrochemical potential for UPD adlayer formation and the onset of bulk Zn electrodeposition. Analysis of the Zn K-edge absorption onset also presents the possibility that the Zn adatoms do not fully discharge during the process of UPD, which had been proposed in prior voltammetric studies of the phosphate/Zn(UPD)/Au(111) system.

  19. Surface Structure and Chemical Switching of Thioctic Acid Adsorbed on Au(111) as Observed Using Near-Edge X-ray Absorption Fine Structure

    SciTech Connect

    Meulenberg, R W; van Buuren, T; Vance, A L; Terminello, L J; Willey, T M; Bostedt, C; Fadley, C S

    2004-01-06

    Thioctic acid (alpha-lipoic acid) is a molecule with a large disulfide-containing base, a short alkyl-chain with four CH{sub 2} units, and a carboxyl termination. Self-assembled monolayer (SAM) films of thioctic acid adsorbed on Au(111) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS) to determine film quality, bonding and morphology. Using standard preparation protocols for SAMs, that is, dissolving thioctic acid in ethanol and exposing gold to the solution, results in poor films. These films are highly disordered, contain a mixture of carboxyl and carboxylate terminations, have more than monolayer coverage, and exhibit unbound disulfide. Conversely, forming films by dissolving 1 mmol thioctic acid into 5% acetic acid in ethanol (as previously reported with carboxyl-terminated alkyl-thiols) forms ordered monolayers with small amounts of unbound sulfur. NEXAFS indicates tilted over endgroups with the carboxyl group normal on average 38{sup o} from the surface normal. Slight dichroism in other features indicates alkyl chains statistically more upright than prostrate on the surface. Reflection-absorption Fourier transform infrared (RA-FTIR) spectra indicate hydrogen bonding between neighboring molecules. In such well-formed monolayers, a stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. The carboxylate plane normal is now about 66{sup o} from sample normal, a much more upright orientation. Data indicate this reorientation may also cause a more upright orientation to the alkyl portion of the molecules.

  20. An accurate full-dimensional potential energy surface for H–Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption

    SciTech Connect

    Janke, Svenja M.; Auerbach, Daniel J.; Kandratsenka, Alexander; Wodtke, Alec M.

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H–Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  1. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.

    PubMed

    Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab. PMID:26429033

  2. Skyrmionic like spin-texture of Rashba electron scattering at magnetic adatoms deposited on the Au(111) surface

    NASA Astrophysics Data System (ADS)

    Lounis, Samir; Bringer, Andreas; Blügel, Stefan

    2010-03-01

    Surfaces are an inversion asymmetric environment. In combination with the spin-orbit interaction, surface electrons experience a Rashba effect, which leads to spin-split surface states [1]. Having an adatom on such a surface, surface states scatter at it. Interferences are created from which, surprisingly, the fingerprints of spin-orbit coupling cannot be seen with a scanning tunneling microscope (STM) [2]. Instead of a single adatom, Walls and Heller [3] proposed to use a corral of atoms to create extra spin-orbit coupling related modulations in the charge density. Resting on multiple scattering theory, we propose to visualize such effects using a spin-polarized STM considering either a single magnetic adatom or a corral of magnetic adatoms.[4pt] [1] S. Lashell, B.A. McDougall, E. Jensen, Phys. Rev. Lett.77, 3419 (1996).[0pt] [2] L. Petersen and P. Hedegård, Surf. Sci. 49, 459 (2000).[0pt] [3] J.D. Walls and E.J. Heller, Nano Letters 7, 3377 (2007).

  3. Layer by layer removal of Au atoms from passivated Au(111) surfaces using the scanning tunneling microscope: Nanoscale ``paint stripping''

    NASA Astrophysics Data System (ADS)

    Keel, J. M.; Yin, J.; Guo, Q.; Palmer, R. E.

    2002-04-01

    Layer by layer removal of gold atoms from the (111) surface of gold has been performed using the scanning tunneling microscope. The process is made possible by a chemisorbed self-assembled monolayer (SAM) of dodecanethiol molecules on the surface, which gives rise to a reduced bonding strength between the top two layers of gold atoms. The gold atoms and associated adsorbed molecules are peeled off and displaced laterally by the STM tip, and the size of the modified area (down to ˜10×10 nm) is more or less determined by the scan size.

  4. Vacuum synthesis of magnetic aluminum phthalocyanine on Au(111).

    PubMed

    Hong, I-Po; Li, Na; Zhang, Ya-Jie; Wang, Hao; Song, Huan-Jun; Bai, Mei-Lin; Zhou, Xiong; Li, Jian-Long; Gu, Gao-Chen; Zhang, Xue; Chen, Min; Gottfried, J Michael; Wang, Dong; Lü, Jing-Tao; Peng, Lian-Mao; Hou, Shi-Min; Berndt, Richard; Wu, Kai; Wang, Yong-Feng

    2016-08-16

    Air-unstable magnetic aluminum phthalocyanine (AlPc) molecules are prepared by an on-surface metalation reaction of phthalocyanine with aluminum (Al) atoms on Au(111) in ultrahigh vacuum. Experiments and density functional theory calculations show that an unpaired spin is located on the conjugated isoindole lobes of the molecule rather than at the Al position. PMID:27406881

  5. Surface morphologies, electronic structures, and Kondo effect of lanthanide(III)-phthalocyanine molecules on Au(111) by using STM, STS and FET properties for next generation devices.

    PubMed

    Katoh, Keiichi; Komeda, Tadahiro; Yamashita, Masahiro

    2010-05-28

    The crystal structures of double-decker single-molecule magnets (SMMs) LnPc(2) (Ln = Tb(III) and Dy(III); Pc = phthalocyanine) and non-SMM YPc(2) were determined by using single crystal X-ray diffraction analysis. The compounds are isomorphous to each other. The compounds have metal-centers (M(3+) = Tb, Dy, and Y) sandwiched by two Pc ligands via eight isoindole-nitrogen atoms in a square-antiprism fashion. The twist angle between the two Pc ligands is 41.4 degrees. Scanning tunneling microscopy (STM) was used to investigate the compounds adsorbed on a Au(111) surface, deposited by using thermal evaporation in ultra-high vacuum. Both MPc(2) with eight-lobes and MPc with four-lobes, which has lost one Pc ligand, were observed. In the scanning tunneling spectroscopy (STS) images of TbPc molecules at 4.8 K, a Kondo peak with a Kondo temperature (T(K)) of approximately 250 K was observed near the Fermi level (V = 0 V). On the other hand, DyPc, YPc and MPc(2) exhibited no Kondo peak. In order to understand the observed Kondo effect, the energy splitting of sublevels in a crystal field should be taken into consideration. As the next step in our studies on the SMM/Kondo effect in Tb-Pc derivatives, we investigated the electronic transport properties of Ln-Pc molecules as the active layer in top- and bottom-contact thin-film organic field effect transistor (OFETs) devices. Tb-Pc molecule devices exhibit p-type semiconducting properties with a hole mobility (mu(H)) of approximately 10(-4) cm(2) V(-1) s(-1). Interestingly, the Dy-Pc based devices exhibited ambipolar semiconducting properties with an electron mobility (mu(e)) of approximately 10(-5) and a hole mobility (mu(H)) of approximately 10(-4) cm(2) V(-1) s(-1). This behavior has important implications for the electronic structure of the molecules. PMID:20396817

  6. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    DOE PAGESBeta

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; Park, J. B.; Rodriguez, J. A.; Stacchiola, D. J.; Senanayake, S. D.

    2015-12-02

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. We prepared gold surfaces modified by pits, starting with a well-ordered Au(111) surface; we then used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Finally, pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with definedmore » defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.« less

  7. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    SciTech Connect

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; Park, J. B.; Rodriguez, J. A.; Stacchiola, D. J.; Senanayake, S. D.

    2015-12-02

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. We prepared gold surfaces modified by pits, starting with a well-ordered Au(111) surface; we then used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Finally, pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with defined defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.

  8. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    NASA Astrophysics Data System (ADS)

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; Park, J. B.; Rodriguez, J. A.; Stacchiola, D. J.; Senanayake, S. D.

    2016-08-01

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. Starting with a well-ordered Au(111) surface we prepared by ion sputtering gold surfaces modified by pits, used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with defined defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.

  9. Revisiting the S-Au(111) interaction: Static or Dynamic?

    SciTech Connect

    Biener, M M; Biener, J; Friend, C M

    2004-08-17

    The chemical inertness typically observed for Au does not imply a general inability to form stable bonds with non-metals but is rather a consequence of high reaction barriers. The Au-S interaction is probably the most intensively studied interaction of Au surfaces with non-metals as, for example, it plays an important role in Au ore formation, and controls the structure and dynamics of thiol-based self-assembled-monolayers (SAMs). In recent years a quite complex picture of the interaction of sulfur with Au(111) surfaces emerged, and a variety of S-induced surface structures was reported under different conditions. The majority of these structures were interpreted in terms of a static Au surface, where the positions of the Au atoms remain essentially unperturbed. Here we demonstrate that the Au(111) surface exhibits a very dynamic character upon interaction with adsorbed sulfur: low sulfur coverages modify the surface stress of the Au surface leading to lateral expansion of the surface layer; large-scale surface restructuring and incorporation of Au atoms into a growing two-dimensional AuS phase were observed with increasing sulfur coverage. These results provide new insight into the Au-S surface chemistry, and reveal the dynamic character of the Au(111) surface.

  10. Activated Dissociation of HCl on Au(111).

    PubMed

    Shirhatti, Pranav R; Geweke, Jan; Steinsiek, Christoph; Bartels, Christof; Rahinov, Igor; Auerbach, Daniel J; Wodtke, Alec M

    2016-04-01

    We report zero-coverage reaction probabilities (S0) for HCl dissociative adsorption on Au(111) obtained by the seeded molecular beam hot-nozzle method. For measurements at normal incidence with mean translational energies ranging from 0.94 to 2.56 eV (nozzle temperatures 296 to 1060 K), S0 increased from 6 × 10(-6) to 2 × 10(-2). S0 also increased with increasing nozzle temperature for fixed incidence energy associated with the motion normal to the surface. Accounting for the influence of the vibrational state population and translational energy distributions in the incident beam, we are able to compare the experimental results to recent theoretical predictions. These calculations, performed employing 6-D quantum dynamics on an electronically adiabatic potential energy surface obtained using density functional theory at the level of the generalized gradient approximation and the static surface approximation, severely overestimate the reaction probabilities when compared with our experimental results. We discuss some possible reasons for this large disagreement. PMID:26990513

  11. In situ x-ray scattering studies of the Au(111)/electrolyte interface

    SciTech Connect

    Wang, Jia; Ocko, B.M.; Davenport, A.J.; Isaacs, H.S.

    1991-01-01

    The adsorption of anions at the Au(111) electrode and the subsequent effect on the gold surface structure have been investigated using x-ray specular reflectivity and grazing incident angle diffraction techniques. The top layer of gold atoms undergoes a reversible phase transition between the (1{times}1) bulk termination and a (23{times}{radical}{bar 3}) reconstructed phase on changing the potential. The shifts of the phase transition potential in NaCland NaBr solutions from the one in NaF can be understood by the anion adsorption induced charge effect. The reconstruction formation rate increases in chloride and bromide solutions due to an increase in the surface mobility with anion adsorption. Adsorbed chloride and bromide monolayers can be monitored during a potential scan by the specular reflectivity.

  12. In situ x-ray scattering studies of the Au(111)/electrolyte interface

    SciTech Connect

    Wang, Jia; Ocko, B.M.; Davenport, A.J.; Isaacs, H.S.

    1991-12-31

    The adsorption of anions at the Au(111) electrode and the subsequent effect on the gold surface structure have been investigated using x-ray specular reflectivity and grazing incident angle diffraction techniques. The top layer of gold atoms undergoes a reversible phase transition between the (1{times}1) bulk termination and a (23{times}{radical}{bar 3}) reconstructed phase on changing the potential. The shifts of the phase transition potential in NaCland NaBr solutions from the one in NaF can be understood by the anion adsorption induced charge effect. The reconstruction formation rate increases in chloride and bromide solutions due to an increase in the surface mobility with anion adsorption. Adsorbed chloride and bromide monolayers can be monitored during a potential scan by the specular reflectivity.

  13. Temperature programmed desorption of weakly bound adsorbates on Au(111)

    NASA Astrophysics Data System (ADS)

    Engelhart, Daniel P.; Wagner, Roman J. V.; Meling, Artur; Wodtke, Alec M.; Schäfer, Tim

    2016-08-01

    We have performed temperature programmed desorption (TPD) experiments to analyze the desorption kinetics of Ar, Kr, Xe, C2H2, SF6, N2, NO and CO on Au(111). We report desorption activation energies (Edes), which are an excellent proxy for the binding energies. The derived binding energies scale with the polarizability of the molecules, consistent with the conclusion that the surface-adsorbate bonds arise due to dispersion forces. The reported results serve as a benchmark for theories of dispersion force interactions of molecules at metal surfaces.

  14. Oxygen-Driven Porous Film Formation of Single-Crystalline Ru Deposited on Au(111).

    PubMed

    Herd, Benjamin; Langsdorf, Daniel; Sack, Christian; He, Yunbin; Over, Herbert

    2016-05-31

    We examined the interaction of oxygen with ultrathin Ru layers deposited on a Au(111) substrate using scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low-energy electron diffraction. The deposition of pure Ru below one monolayer (ML) at room temperature leads to the formation of clusters on the Au(111) surface, preferentially located at the elbow sites of the herringbone reconstruction. Subsequent exposure of molecular oxygen to such a Ru-covered Au(111) surface at 680 K results in the growth of two-layer-thick Ru islands that are embedded in the top Au(111) layer. This structural reorganization of Ru is driven by the minimization of surface energy and mediated by a mobile RuOx species. Deposition of an increasing amount of Ru at 620 K (0.5-10 ML, ML = monolayer) leads to a rough Ru film on Au(111). Subsequent oxygen treatment (10(-5) mbar) at 680 K creates either a porous Ru film (<4 ML) or a flat RuO2(110) film (>6 ML) depending on the thickness of the Ru film. PMID:27173402

  15. Adsorption of oxygen on Au(111) by exposure to ozone

    NASA Astrophysics Data System (ADS)

    Saliba, N.; Parker, D. H.; Koel, B. E.

    1998-08-01

    Atomic oxygen coverages of up to 1.2 ML may be cleanly adsorbed on the Au(111) surface by exposure to O 3 at 300 K. We have studied the adsorbed oxygen layer by AES, XPS, HREELS, LEED, work function measurements and TPD. A plot of the O(519 eV)/Au(239 eV) AES ratio versus coverage is nearly linear, but a small change in slope occurs at ΘO=0.9 ML. LEED observations show no ordered superlattice for the oxygen overlayer for any coverage studied. One-dimensional ordering of the adlayer occurs at low coverages, and disordering of the substrate occurs at higher coverages. Adsorption of 1.0 ML of oxygen on Au(111) increases the work function by +0.80 eV, indicating electron transfer from the Au substrate into an oxygen adlayer. The O(1s) peak in XPS has a binding energy of 530.1 eV, showing only a small (0.3 eV) shift to a higher binding energy with increasing oxygen coverage. No shift was detected for the Au 4f 7/2 peak due to adsorption. All oxygen is removed by thermal desorption of O 2 to leave a clean Au(111) surface after heating to 600 K. TPD spectra initially show an O 2 desorption peak at 520 K at low ΘO, and the peak shifts to higher temperatures for increasing oxygen coverages up to ΘO=0.22 ML. Above this coverage, the peak shifts very slightly to higher temperatures, resulting in a peak at 550 K at ΘO=1.2 ML. Analysis of the TPD data indicates that the desorption of O 2 from Au(111) can be described by first-order kinetics with an activation energy for O 2 desorption of 30 kcal mol -1 near saturation coverage. We estimate a value for the Au-O bond dissociation energy D(Au-O) to be ˜56 kcal mol -1.

  16. Adsorption and thermal decomposition of 2-octylthieno[3,4-b]thiophene on Au(111).

    PubMed

    Park, Joon B; Zong, Kyukwan; Jeon, Il Chul; Hahn, Jae Ryang; Stacchiola, Dario; Starr, David; Müller, Kathrin; Noh, Jaegeun

    2012-10-15

    The adsorption and thermal stability of 2-octylthieno[3,4-b]thiophene (OTTP) on the Au(111) surfaces have been studied using scanning tunneling microscopy (STM), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). UHV-STM studies revealed that the vapor-deposited OTTP on Au(111) generated disordered adlayers with monolayer thickness even at saturation coverage. XPS and TPD studies indicated that OTTP molecules on Au(111) are stable up to 450 K and further heating of the sample resulted in thermal decomposition to produce H(2) and H(2)S via C-S bond scission in the thieno-thiophene rings. Dehydrogenation continues to occur above 600 K and the molecules were ultimately transformed to carbon clusters at 900 K. Highly resolved air-STM images showed that OTTP adlayers on Au(111) prepared from solution are composed of a well-ordered and low-coverage phase where the molecules lie flat on the surface, which can be assigned as a (9×2√33)R5° structure. Finally, based on analysis of STM, TPD, and XPS results, we propose a thermal decomposition mechanism of OTTP on Au(111) as a function of annealing temperature. PMID:22818203

  17. CO₂ electroreduction at bare and Cu-decorated Pd pseudomorphic layers: catalyst tuning by controlled and indirect supporting onto Au(111).

    PubMed

    Januszewska, Aneta; Jurczakowski, Rafal; Kulesza, Pawel J

    2014-12-01

    We report here the results of electrochemical studies on CO2 electroreduction at multilayered catalyst composed of the monatomic layer of copper covering palladium overlayers (0.8-10 monolayers) deposited on the well-defined Au(111) surface. These multilayered systems were obtained by successive underpotential deposition steps: Pd on Au(111) as well as Cu on Pd/Au(111). Low index orientation of Au substrate was chosen to compare Pd overlayers with bulk Pd(111), which is known to reduce CO2 to CO adsorbates in acidic solutions. The process of CO2 electroreduction was studied by using classical transient electrochemical methods. Catalytic activity of bare Pd layers was investigated in acidic and neutral solutions. In the latter case, much higher activity of Pd overlayers was observed. The results showed that the palladium layer thickness significantly changed the catalytic activities of both bare Pd overlayers and the one Cu monolayer covered electrodes toward CO2 electroreduction. Results show that catalytic activity can be finely tuned by using the multilayered near-surface-alloy approach. PMID:25350872

  18. Self-assembly of methanethiol on cluster arrays of Co/Au(111)

    NASA Astrophysics Data System (ADS)

    Nenchev, Georgi; Diaconescu, Bogdan; Pohl, Karsten

    2007-03-01

    Self-assembly on strained metallic interfaces is an attractive option for growing highly ordered multi-functional nanopatterns. We present a Variable Temperature STM and Auger Electron Spectroscopy study of selective adsorption of sulfur-terminated CH3SH molecules on the lattice of Co clusters on Au(111). We investigate the growth of a uniform network of Co on the reconstructed Au(111) surface, the temperature evolution of the island height and the termination, and the onset of surface alloying. Further we will show the evolution of morphology of the CH3SH film on Au (111) as a function of coverage and temperature, and the importance of the herringbone reconstruction for the SAM formation and orientation. Successful combination and control of these two processes leads to the creation of an ordered, stable patterned Co/CH3SH heterostructure with nanometer-sized unit cell.

  19. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: A combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface

    SciTech Connect

    Golibrzuch, Kai; Shirhatti, Pranav R.; Kandratsenka, Alexander; Wodtke, Alec M.; Bartels, Christof; Max Planck Institute for Biophysical Chemistry, Göttingen 37077 ; Rahinov, Igor; Auerbach, Daniel J.; Max Planck Institute for Biophysical Chemistry, Göttingen 37077; Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106

    2014-01-28

    We present a combined experimental and theoretical study of NO(v = 3 → 3, 2, 1) scattering from a Au(111) surface at incidence translational energies ranging from 0.1 to 1.2 eV. Experimentally, molecular beam–surface scattering is combined with vibrational overtone pumping and quantum-state selective detection of the recoiling molecules. Theoretically, we employ a recently developed first-principles approach, which employs an Independent Electron Surface Hopping (IESH) algorithm to model the nonadiabatic dynamics on a Newns-Anderson Hamiltonian derived from density functional theory. This approach has been successful when compared to previously reported NO/Au scattering data. The experiments presented here show that vibrational relaxation probabilities increase with incidence energy of translation. The theoretical simulations incorrectly predict high relaxation probabilities at low incidence translational energy. We show that this behavior originates from trajectories exhibiting multiple bounces at the surface, associated with deeper penetration and favored (N-down) molecular orientation, resulting in a higher average number of electronic hops and thus stronger vibrational relaxation. The experimentally observed narrow angular distributions suggest that mainly single-bounce collisions are important. Restricting the simulations by selecting only single-bounce trajectories improves agreement with experiment. The multiple bounce artifacts discovered in this work are also present in simulations employing electronic friction and even for electronically adiabatic simulations, meaning they are not a direct result of the IESH algorithm. This work demonstrates how even subtle errors in the adiabatic interaction potential, especially those that influence the interaction time of the molecule with the surface, can lead to an incorrect description of electronically nonadiabatic vibrational energy transfer in molecule-surface collisions.

  20. DFT study on cysteine adsorption mechanism on Au(111) and Au(110)

    SciTech Connect

    Buimaga-Iarinca, Luiza; Floare, Calin G.; Calborean, Adrian; Turcu, Ioan

    2013-11-13

    Periodic density functional theory calculations were used to investigate relevant aspects of adsorption mechanisms of cysteine dimers in protonated form on Au(111) and Au(110) surfaces. The projected densities of states are explicitly discussed for all main chemical groups of cysteine, i.e. the amino group (NH2), the thiol group (SH) and the carboxylic group (COOH) to identify differences in adsorption mechanism. Special emphasis is put on the analysis of changes in the electronic structure of molecules adsorbed on Au(111) and Au(110) surfaces as well as the accompanying charge transfer mechanisms at molecule-substrate interaction.

  1. Coverage Dependent Assembly of Anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Deloach, Andrew; Einstein, Theodore; Dougherty, Daniel

    A study of adsorbate-adsorbate and surface state mediated interactions of anthraquinone (AnQ) on Au(111) is presented. We utilize scanning tunneling microscopy (STM) to characterize the coverage dependence of AnQ structure formation. Ordered structures are observed up to a single monolayer (ML) and are found to be strongly dependent on molecular surface density. While the complete ML forms a well-ordered close-packed layer, for a narrow range of sub-ML coverages irregular close-packed islands are observed to coexist with a disordered pore network linking neighboring islands. This network displays a characteristic pore size and at lower coverages, the soliton walls of the herringbone reconstruction are shown to promote formation of distinct pore nanostructures. We will discuss these nanostructure formations in the context of surface mediated and more direct adsorbate interactions.

  2. Energetics and the magnetic state of Mn2 adsorbed on Au(111): Dimer bond distance dependence

    NASA Astrophysics Data System (ADS)

    López-Moreno, S.; Mejía-López, J.; Munoz, Francisco; Calles, A.; Morán-López, J. L.

    2016-04-01

    In this work we present a theoretical study of the adsorption Mn2 dimer on the Au(111) surface. Here we use the density functional theory to construct a map of adsorption energies, EA, of Mn2 on a Au(111) surface as a function of interatomic bond distance, dMn-Mn, among Mn atoms. We employed a 4×4 supercell of Au(111) surface which lead us to reach dMn-Mn values in the range from 2.6 to 6.8 Å. To make a full study of the adsorption energies we considered the antiferromagnetic (AFM) and ferromagnetic (FM) states of the Mn2 on the surface. The energy landscape contains local minima when the Mn atoms are adsorbed above triangular sites and barriers that the Mn adatoms have to overcome when they move across the Au(111) surface along various paths. Our results show that the lowest energy state corresponds to the state in which the Mn atoms are next-nearest neighbors and are antiferromagnetically coupled. Furthermore, all the local minima with higher bonding energy are also those in the antiferromagnetic state. Nevertheless we find a short interval in which the FM state has lower energy than the AFM one. Finally, scanning tunneling microscope simulations for various dimer configurations on surface are reported.

  3. Electron transport dynamics in redox-molecule-terminated branched oligomer wires on Au(111).

    PubMed

    Sakamoto, Ryota; Katagiri, Shunsuke; Maeda, Hiroaki; Nishimori, Yoshihiko; Miyashita, Seiji; Nishihara, Hiroshi

    2015-01-21

    Dendritic bis(terpyridine)iron(II) wires with terminal ferrocene units were synthesized on a Au(111) surface by stepwise coordination using a three-way terpyridine ligand, a ferrocene-modified terpyridine ligand, and Fe(II) ions. Potential-step chronoamperometry, which applied overpotentials to induce the redox of the terminal ferrocene, revealed an unusual electron-transport phenomenon. The current-time profile did not follow an exponential decay that is common for linear molecular wire systems. The nonexponentiality was more prominent in the forward electron-transport direction (from the terminal ferrocene to the gold electrode, oxidation) than in the reverse direction (from the gold electrode to the terminal ferrocenium, reduction). A plateau and a steep fall were observed in the former. We propose a simple electron transport mechanism based on intrawire electron hopping between two adjacent redox-active sites, and the numerical simulation thereof reproduced the series of "asymmetric" potential-step chronoamperometry results for both linear and branched bis(terpyridine)iron(II) wires. PMID:25514860

  4. The Role of d-Orbitals in the Rashba Splitting on Au(111) and Ag(111)

    NASA Astrophysics Data System (ADS)

    Lee, Hyungjun; Choi, Hyoung Joon

    2012-02-01

    We investigate the Rashba-type spin splitting in sp-derived Shockley surface states on (111) surfaces of noble metals, such as Au(111) and Ag(111), based on first-principles calculations including the spin-orbit interaction. By turning on and off l-dependent spin-orbit coupling one by one, we find that although the surface states on Au(111) have predominantly p-orbital character, the spin splitting in energy originates mainly from d-orbital character of the surface states. We also demonstrate that the spin splitting in surface states of both metallic surfaces of Au(111) and Ag(111) can be controlled by varying the sizes of d-orbital parts of the surface-state wave functions. These results show that in addition to difference in the atomic spin-orbit strength in Au and Ag, difference in d-orbital contributions to the surface states makes substantial difference in the sizes of the Rashba-type spin splitting in their surface electronic structures. This work was supported by the NRF of Korea (Grant Nos. 2009-0081204 and 2011-0018306) and KISTI Supercomputing Center (Project No. KSC-2011-C2-04).

  5. Pit Formation during the Self-Assembly of Dithiol Monolayers on Au(111)

    NASA Astrophysics Data System (ADS)

    Macdairmid, A. R.; Cappello, M. L.; Keeler, W. J.; Banks, J. T.; Gallagher, M. C.

    2000-03-01

    The formation of pits one gold atom deep during the growth of alkanethiol monolayers on Au(111), has been observed previously by others. Explanations for pit formation include etching of the substrate, or mass transport of gold atom + thiol molecule on the surface, due to changes in surface energy^1. We have investigated the structure of dithiothreitol (DTT) SAMs on Au(111). Ex situ STM measurements indicate similar pitting occurs during formation of the dithiol monolayer. The degree of pitting depends on exposure time, sample temperature during formation, and subsequent annealing of the sample. Pitting is enhanced considerasbly when DTT is coordinated with Ti, in fact DTT/Ti films exhibit considerable pit motion during STM imaging. ^1 F. Teran et al. Electrochimica Acta 44, 1053 (1998).

  6. Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)

    PubMed Central

    Tesch, Julia; Leicht, Philipp; Blumenschein, Felix; Gragnaniello, Luca; Fonin, Mikhail; Marsoner Steinkasserer, Lukas Eugen; Paulus, Beate; Voloshina, Elena; Dedkov, Yuriy

    2016-01-01

    We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that the parabolic dispersion of Au(111) and Ag(111) surface states remains unchanged with the band minimum shifted to higher energies for the regions of the metal surface covered by graphene, reflecting a rather weak interaction between graphene and the metal surface. The analysis of graphene-related scattering on single nanoflakes yields a linear dispersion relation E(k), with a slight p-doping for graphene/Au(111) and a larger n-doping for graphene/Ag(111). The obtained experimental data (doping level, band dispersions around EF, and Fermi velocity) are very well reproduced within DFT-D2/D3 approaches, which provide a detailed insight into the site-specific interaction between graphene and the underlying substrate. PMID:27002297

  7. Structure and electrocompression of electrodeposited iodine monolayers on Au(111)

    SciTech Connect

    Ocko, B.M.; Watson, G.M.; Wang, J. )

    1994-01-20

    The structure of electrodeposited iodine - from a potassium iodide (KI) electrolyte - at the Au(111) surface has been investigated using surface X-ray scattering (SXS) techniques. Two distinct incommensurate iodine monolayer phases are observed. In both of these phases the structures compress with increasing potential (electrocompression). In the lower potential phase a (px[radical]3) centered-rectangular iodine monolayer is observed in which the coverage ([theta]) increases from 36.6% to 40.9% (relative to the gold layer density) with increasing potential. At more positive potentials a rotated-hexagonal phase is formed, and [theta] increases from 41.5% to 44.5%. At the highest coverages, in both phases, the iodine-iodine nearest-neighbor spacing equals the van der Waals diameter of 4.3 [angstrom]. Analysis of the specular reflectivity gives an iodine-gold interlayer spacing of 2.35 [angstrom] and iodine coverages which are in good agreement with the in-plane diffraction results. 35 refs., 10 refs.

  8. Diffusion of the Linear CH3S-Au-SCH3 Complex on Au(111) from First Principles

    SciTech Connect

    Jiang, Deen; Dai, Sheng

    2009-01-01

    Recent experimental and computational advances have clearly established the importance of the linear alkylthiolate-Au-alkylthiolate (RS-Au-SR) complex at the interface between the thiolate groups and the gold surface. By using density functional theory-based first principles method, here we show that the elementary diffusion step of this linear complex on Au(111) has a barrier of only {approx}0.5 eV in the case of methylthiolate, indicating great mobility of the linear complex on Au(111). The role of this low barrier in the formation of a self-assembled monolayer of thiolate groups in the form of RS-Au-SR on Au(111) is discussed.

  9. Magnetic and electronic structure of Mn nanostructures on Ag(111) and Au(111)

    NASA Astrophysics Data System (ADS)

    Cardias, R.; Bezerra-Neto, M. M.; Ribeiro, M. S.; Bergman, A.; Szilva, A.; Eriksson, O.; Klautau, A. B.

    2016-01-01

    We present results of the electronic and magnetic structure of Mn nanowires adsorbed on Ag(111) and Au(111) surfaces. For finite Mn nanowires on Ag(111) and Au(111) surfaces, our ab initio results show that the large difference between the spin-orbit splitting of these two surfaces leads to completely different magnetic configurations. The magnetic ordering for Mn nanowires adsorbed on Ag(111) is governed by the strong exchange interaction between Mn adatoms. For Mn nano-chains on Au(111), the competition between Heisenberg and Dzyaloshinskii-Moriya interactions leads to a complex magnetic structure of the clusters considered here. Among the more conspicuous results we note a spin-spiral helical type for the nanowire with seven atoms, and a complex magnetic configuration incommensurate with the substrate lattice for a double-sized Mn wire. The effect of the structural relaxation is also investigated, showing sensitivity of the exchange interactions to the bond distance to the substrate. We also demonstrate that small changes in the band filling of these Mn chains results in drastically different changes of the interatomic exchange. Finally, we show that dispersion of the electronic energy spectrum is possible even in nanostructures with bounded spatial extension.

  10. From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111).

    PubMed

    Mette, Gerson; Sutter, Denys; Gurdal, Yeliz; Schnidrig, Stephan; Probst, Benjamin; Iannuzzi, Marcella; Hutter, Jürg; Alberto, Roger; Osterwalder, Jürg

    2016-04-14

    The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort. PMID:27006307

  11. Formation of Ordered 4-Fluorobenzenethiol Self-Assembled Monolayers on Au(111) from Vapor Phase Deposition.

    PubMed

    Kang, Hungu; Ito, Eisuke; Hara, Masahiko; Noh, Jaegeun

    2016-03-01

    Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of 4-fluorobenzenethiol (4-FBT) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature. The surface structure and thermal desorption properties of 4-FBT SAMs were examined by scanning tunneling microscopy (STM) and thermal desorption spectroscopy (TDS). STM imaging showed that 4-FBT SAMs formed in solution at room temperature mainly contained disordered phase with gold adatom islands, while those formed by ambient-pressure vapor deposition had well-ordered phase, which can be described as a (2 x 2√13)R45 degrees structure. In addition, thermal desorption spectroscopy (TDS) measurements showed that strong desorption peak for parent mass fragment (m/z = 128, FC6H5SH+) for 4-FBT SAMs on Au(111) was observed at 460 K, as a result of hydrogen abstract reaction of chemisorbed thiolates during desorption. PMID:27455712

  12. Kinetics of low-temperature CO oxidation on Au(111)

    NASA Astrophysics Data System (ADS)

    Thuening, Theodore; Walker, Joshua; Adams, Heather; Furlong, Octavio; Tysoe, Wilfred T.

    2016-06-01

    The oxidation of carbon monoxide on oxygen-modified Au(111) surfaces is studied using a combination of reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). TPD reveals that CO desorbs in two states with the low-temperature state have a peak temperature between ~ 130 and 150 K, and the higher-temperature state having a peak temperature that varies from ~ 175 to ~ 220 K depending on the initial oxygen and CO coverages. Infrared spectroscopy indicates that the low-temperature CO desorption state is predominantly associated with CO adsorbed on Auδ + sites, while the higher-temperature states are due to CO on Au0 sites. No additional vibrational features are detected indicating that CO reacts directly with adsorbed atomic oxygen on gold to form CO2. Estimates of the activation energy for CO2 formation suggest that they are in the same range and found for supported gold catalysts at reaction temperature below ~ 300 K.

  13. The Structure of Dithiol Monolayers on Au(111).

    NASA Astrophysics Data System (ADS)

    Gallagher, M. C.; Macdairmid, A. R.; Banks, J. T.

    2003-03-01

    Using scanning tunneling microscopy (STM), Auger electron spectroscopy (AES), and contact angle measurements, we have studied the properties of Dithiothreitol (DTT) and Dithioerythritol (DTE) monolayers adsorbed on Au(111). DTT and DTE are both O-H functionalized α - ω dithiols. DTT is a chiral form whereas DTE is achiral. For comparison we have also studied the structure of octanethiol (n-alkanethiol, n = 8) SAMs. Octanethiol forms the characteristic close packed 3x3 monolayer with c(4x2) superstructure. In contrast, STM measurements of DTT films indicate much of the layer is disordered, however regions with local c(23x3) symmetry are observed. AES indicates the sulphur coverage for both DTT and octanethiol films are similar. AES studies involving Ellman's reagent, a marker species, also suggest a significant fraction of the DTT molecules in the adlayer bind to the gold via two Au-S bonds. Based on these results, we propose a structural model in which the majority of DTT molecules bind to the gold surface via two Au-S bonds and the distance between these two bonds is 3 times the underlying Au lattice spacing. Any differences between DTT and DTE layers due to differences in molecular structure will also be discussed.

  14. Nucleation and growth of Fe and FeO nanoparticles and films on Au(111)

    SciTech Connect

    Khan, Neetha A.; Matranga, Christopher

    2008-02-01

    We have studied the formation of Fe and FeO nanoparticles and thin films on the reconstructed Au(111) surface. Scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and ion-scattering spectroscopy (ISS) were used to evaluate the structure and composition of Fe and FeO nanoparticles and films at different growth conditions. Iron grows as one monolayer high triangular particles on the Au(111) reconstruction. FeO was grown by exposing the Fe nanoparticles to molecular oxygen at 323 K, followed by annealing at 500-700 K. XPS results indicate that FeO is formed after room temperature oxidation. STM images show that well-ordered iron oxide particles form after annealing to 700 K. STM images also show evidence of a overlayer lattice with a short periodicity of 3.3 angstrom modulated by a larger periodicity of approximately 35 angstrom. The larger periodicity results from a moire pattern formed between the iron oxide overlayer and the underlying Au(111) surface.

  15. Substrate-controlled linking of molecular building blocks: Au(111) vs. Cu(111)

    NASA Astrophysics Data System (ADS)

    Koch, Matthias; Gille, Marie; Viertel, Andreas; Hecht, Stefan; Grill, Leonhard

    2014-09-01

    The coupling of dibromohexabenzocoronene (Br2-HBC) as a precursor molecule is investigated by scanning tunneling microscopy (STM) on two noble metal surfaces: Au(111) and Cu(111). It is found that the on-surface polymerization of molecular building blocks equipped with halogen atoms is strongly influenced by the choice of the substrate. While on Au(111) a heating step of up to 520 K is required to activate the molecules and form polymers, on Cu(111) the catalytic reactivity causes activation already below room temperature. Due to the different substrates, the intramolecular bonds in the polymers between the HBC units differ: The HBC molecules are covalently coupled on Au(111) while on Cu(111) a copper adatom mediates the bonding. This effect is proven by the comparison with gas phase calculations and by lateral manipulation with the STM tip. The choice of the substrate thus does not only define the activation temperature but also lead to different bonding strengths between the molecular building blocks.

  16. Interaction of CO with OH on Au(111): HCOO, CO3, and HOCO as Key Intermediates in the Water-Gas Shift Reaction

    SciTech Connect

    Senanayake, S.; Stacchiola, D; Liu, P; Mullins, C; Hrbek, J; Rodriguez, J

    2009-01-01

    We have investigated the role of formate (HCOO), carbonate (CO{sub 3}), and carboxyl (HOCO) species as possible intermediates in the OH{sub ads} + CO{sub gas} {yields} CO{sub 2,gas} + 0.5H{sub 2,gas} reaction on Au(111) using synchrotron-based core level photoemission, near-edge X-ray absorption fine structure (NEXAFS), and infrared absorption spectroscopy (IR). Adsorbed HCOO, CO{sub 3}, and OH species were prepared by adsorbing formic acid, carbon dioxide, and water on a Au(111) surface precovered with 0.2 ML of atomic oxygen, respectively. HCOOH interacts weakly with Au(111), but on O/Au(111) it dissociates its acidic H to yield adsorbed formate. The results of NEXAFS, IR, and density-functional calculations indicate that the formate adopts a bidentate configuration on Au(111). Since the HCOO groups are stable on Au(111) up to temperatures near 350 K, it is not likely that formate is a key intermediate for the OH{sub ads} + CO{sub gas} {yields} CO{sub 2,gas} + 0.5H{sub 2,gas} reaction at low temperatures. In fact, the formation of this species could lead eventually to surface poisoning. When compared to a formate species, a carbonate species formed by the reaction of CO{sub 2} with O/Au(111) has low stability, decomposing at temperatures between 100 and 125 K, and should not poison the gold surface. Neither HCOO nor CO{sub 3} was detected during the reaction of CO with OH on Au(111) at 90-120 K. The results of photoemission and IR spectroscopy point to HO {leftrightarrow} CO interactions, consistent with the formation of an unstable HOCO intermediate which has a very short lifetime on the gold surface. The possible mechanism for the low-temperature water-gas shift on gold catalysts is discussed in light of these results.

  17. Direct observation of adsorption geometry for the van der Waals adsorption of a single π-conjugated hydrocarbon molecule on Au(111)

    SciTech Connect

    Kim, Ju-Hyung; Jung, Jaehoon; Kim, Yousoo E-mail: ykim@riken.jp; Tahara, Kazukuni; Tobe, Yoshito E-mail: ykim@riken.jp; Kawai, Maki E-mail: ykim@riken.jp

    2014-02-21

    Weak van der Waals adsorption of π-conjugated hydrocarbon molecules onto the gold surface, Au(111), is one of the essential processes in constructing organic-metal interfaces in organic electronics. Here we provide a first direct observation of adsorption geometry of a single π-conjugated hydrocarbon molecule on Au(111) using an atomically resolved scanning tunneling microscopy study combined with van der Waals density functional methodology. For the purpose, we utilized a highly symmetric π-conjugated hydrocarbon molecule, dehydrobenzo[12]annulene (DBA), which has a definite three-fold symmetry, the same as the Au(111) surface. Interestingly, our observations on an atomically resolved scale clearly indicate that the DBA molecule has only one adsorption configuration on Au(111) in spite of the weak van der Waals adsorption system. Based on the precisely determined adsorption geometry of DBA/Au(111), our calculation results imply that even a very small contribution of the interfacial orbital interaction at the organic-metal interface can play a decisive role in constraining the adsorption geometry even in the van der Waals adsorption system of a π-conjugated hydrocarbon molecule on the noblest Au(111) surface. Our observations provide not only deeper insight into the weak adsorption process, but also new perspectives to organic electronics using π-conjugated hydrocarbon molecules on the Au surface.

  18. O2 reduction by lithium on Au(111) and Pt(111)

    SciTech Connect

    Xu, Ye; Shelton Jr, William Allison

    2010-01-01

    Lithium-oxygen has one of the highest specific energies among known electrochemical couples and holds the promise of substantially boosting the energy density of portable batteries. Mechanistic knowledge of oxygen electroreduction by Li is scarce at the present time, and the factors limiting the discharge and charge efficiencies of the Li-oxygen cathode are not understood. To shed light on the fundamental surface chemistry of this oxygen reduction reaction by Li (Li-ORR), we have performed periodic density functional theory calculations in conjunction with thermodynamic modeling for two metal surfaces, Au(111) and Pt(111). The inertness of Au(111) results in a low reversible potential of 1.51 V for initial O2 reduction via superoxide (LiO2). On Pt(111), initially the dissociative adsorption of O2 is rapid and reduction involves atomic O with a reversible potential of 1.76 V, whereas the associative LiO2 channel (at 1.93 V) is expected to dominate once O2 dissociation becomes hindered by surface species. On both Au(111) and Pt(111) the lithiation of O2 significantly weakens the O-O bond, and so the selectivity of the Li-ORR products is mainly to monoxides (LixO), not peroxides (LixO2). LixO units are energetically driven to form (LixO)n aggregates, and the interfaces between (LixO)n and the metal surfaces are found also to be active sites for stabilizing LiO2 and dissociating the O-O bond. During cycling, an oxygen reduction half-cycle is expected to begin with the reduction of atomic O instead of O2 at steady state. On Au(111) this occurs at 2.27 V, whereas the greater stability of O on Pt(111) lowers the reversible potential to a maximum of 1.93 V, being limited by the delithaition of (LixO)n products to atomic O. Therefore the intrinsic reactivity of Pt(111) renders it less effective for Li-ORR than Au(111).

  19. Competition between Hexagonal and Tetragonal Hexabromobenzene Packing on Au(111).

    PubMed

    Huang, Han; Tan, Zhiyu; He, Yanwei; Liu, Jian; Sun, Jiatao; Zhao, Kang; Zhou, Zhenhong; Tian, Guo; Wong, Swee Liang; Wee, Andrew Thye Shen

    2016-03-22

    Low-temperature scanning tunneling microscope investigations reveal that hexabromobenzene (HBB) molecules arrange in either hexagonally closely packed (hcp) [Formula: see text] or tetragonal [Formula: see text] structure on Au(111) dependent on a small substrate temperature difference around 300 K. The underlying mechanism is investigated by density functional theory calculations, which reveal that substrate-mediated intermolecular noncovalent C-Br···Br-C attractions induce hcp HBB islands, keeping the well-known Au(111)-22×√3 reconstruction intact. Upon deposition at 330 K, HBB molecules trap freely diffusing Au adatoms to form tetragonal islands. This enhances the attraction between HBB and Au(111) but partially reduces the intermolecular C-Br···Br-C attractions, altering the Au(111)-22×√3 reconstruction. In both cases, the HBB molecule adsorbs on a bridge site, forming a ∼15° angle between the C-Br direction and [112̅]Au, indicating the site-specific molecule-substrate interactions. We show that the competition between intermolecular and molecule-substrate interactions determines molecule packing at the subnanometer scale, which will be helpful for crystal engineering, functional materials, and organic electronics. PMID:26905460

  20. Investigation of Metal Free Naphthalocyanine Vapor Deposited on Au(111)

    SciTech Connect

    Wiggins, Bryan C.; Hipps, Kerry W.

    2014-02-27

    Naphthalocyanines (Ncs) are promising candidates for future components in electronic devices and applications. To maximize the efficiency of Nc devices, it is critical to understand their structural and electronic properties and how these are impacted by deposition methods. The formation of a metal free naphthalocyanine (H2Nc) self-assembled monolayer on a Au(111) crystal was investigated by scanning tunneling microscopy under ultra-high-vacuum conditions at room temperature. A rigorous purification and processing procedure was developed to produce high purity, low defect, and well-ordered monolayers. High-resolution STM images reveal epitaxial growth of H2Nc on Au(111) with the observed structure having a molecular spacing of 1.6 ± 0.05 nm, with molecules orientated slightly off (roughly 2.5°) the low density packing direction of Au(111). A commensurate structure having 4 molecules per unit cell and unit cell parameters of A = 3.25 ± 0.05 nm, B = 3.17 ± 0.05 nm, and α = 87.5 ± 2° is proposed. Orbital-mediated tunneling spectroscopy was used to examine the electronic properties of individual molecules within the thin film. The first ionization potential and electron affinity of H2Nc adsorbed on Au(111) were measured to be -0.68 ± 0.03 and 1.12 ± 0.02 eV, relative to the Fermi energy.

  1. From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111)

    NASA Astrophysics Data System (ADS)

    Mette, Gerson; Sutter, Denys; Gurdal, Yeliz; Schnidrig, Stephan; Probst, Benjamin; Iannuzzi, Marcella; Hutter, Jürg; Alberto, Roger; Osterwalder, Jürg

    2016-04-01

    The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting

  2. Growth of nanocrystalline MoO3 on Au(111) studied by in-situ STM

    SciTech Connect

    Biener, M M; Biener, J; Schalek, R; Friend, C M

    2004-04-22

    The growth of nanocrystalline MoO{sub 3} islands on Au(111) using physical vapor deposition of Mo has been studied by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The growth conditions affect the shape and distribution of the MoO{sub 3} nanostructures, providing a means of preparing materials with different percentages of edge sites that may have different chemical and physical properties than atoms in the interior of the nanostructures. MoO{sub 3} islands were prepared by physical vapor deposition of Mo and subsequent oxidation by NO{sub 2}exposure at temperatures between 450 K and 600 K. They exhibit a crystalline structure with a c(4x2) periodicity relative to unreconstructed Au(111). While the atomic-scale structure is identical to that of MoO{sub 3} islands prepared by chemical vapor deposition, we demonstrate that the distribution of MoO{sub 3} islands on the Au(111) surface reflects the distribution of Mo clusters prior to oxidation although the growth of MoO{sub 3} involves long-range mass transport via volatile MoO{sub 3} precursor species. The island morphology is kinetically controlled at 450 K, whereas an equilibrium shape is approached at higher preparation temperatures or after prolonged annealing at the elevated temperature. Mo deposition at or above 525 K leads to the formation of a Mo-Au surface alloy as indicated by the observation of embedded MoO{sub 3} islands after oxidation by NO{sub 2}. Au vacancy islands, formed when Mo and Au dealloy to produce vacancies, are observed for these growth conditions.

  3. Structure and dynamics of C60 molecules on Au(111)

    SciTech Connect

    Shin, Heekeun; Schwarze, A; Diehl, R D; Pussi, K; Colombier, A; Gaudry, E.; Ledieu, J; McGuirk, G M; Serkovic Loli, L N; Fournee, V; Wang, Lin-Lin; Schull, G; Berndt, R

    2014-06-01

    Earlier studies of C60 adsorption on Au(111) reported many interesting and complex features. We have performed coordinated low-energy electron diffraction, scanning tunneling microscopy (STM), and density functional theory studies to elucidate some of the details of the monolayer commensurate (2√3 × 2√3)R30° phase. We have identified the adsorption geometries of the two states that image as dim and bright in STM. These consist of a C60 molecule with a hexagon side down in a vacancy (hex-vac) and a C60 molecule with a carbon-carbon 6:6 bond down on a top site (6:6-top), respectively. We have studied the detailed geometries of these states and find that there is little distortion of the C60 molecules, but there is a rearrangement of the substrate near the C60 molecules. The two types of molecules differ in height, by about 0.7 Å, which accounts for most of the difference in their contrast in the STM images. The monolayer displays dynamical behavior, in which the molecules flip from bright to dim, and vice versa. We interpret this flipping as the result of the diffusion of vacancies in the surface layers of the substrate. Our measurements of the dynamics of this flipping from one state to the other indicate that the activation energy is 0.66 ± 0.03 eV for flips that involve nearest-neighbor C60 molecules, and 0.93 ± 0.03 for more distant flips. Based on calculated activation energies for vacancies diffusing in Au, we interpret these to be a result of surface vacancy diffusion and bulk vacancy diffusion. These results are compared to the similar system of Ag(111)-(2√3 × 2√3)R30°-C60. In both systems, the formation of the commensurate C60 monolayer produces a large number of vacancies in the top substrate layer that are highly mobile, effectively melting the interfacial metal layer at temperatures well below their normal melting temperatures.

  4. Adlayer structures of anthracenthiol on Au(111) after removal of covering multilayers with probe scan

    NASA Astrophysics Data System (ADS)

    Azzam, Waleed

    2016-05-01

    Self-assembled monolayers (SAMs) of anthracene-2-thiol (AnT) on Au(111) have been investigated using scanning tunneling microscopy (STM). A preparation of AnT-SAMs from ethanolic solutions results in a deposition of multilayer films. As a result, the general features that have been frequently observed for different systems of thiol-modified gold surfaces are hidden in AnT-SAMs. The thin overlayers on top of the chemisorbed anthracenethiolate monolayer are removed by the STM-tip after a repetitive scanning over the same part of the SAM at nondestructive imaging conditions. After ∼2 h of consecutive and continuous STM scanning, smooth AnT-SAM surfaces were formed. The polished surfaces contain vacancy depressions rather than the elevated gold islands which are typically formed after the adsorption of purely aromatic thiols such as AnT on Au(111). The STM data showed the coexistence of two distinct stable commensurate phases, namely, α and β. High-resolution STM images revealed a (√{ 3 } × 8) structure for the α phase and a (√{ 7 } × 4) R11° structure for the β phase whose unit cells contain, respectively, four and two molecules. The β phase was found to be 50% less densely packed than the α phase. The lower molecular density of the β phase should be correlated with a significantly larger tilt angle of the AnT molecular backbone with respect to the surface normal.

  5. Chiral assemblies of nickel lysinate via the corrosive adsorption of (S)-lysine on Ni/Au{111}

    NASA Astrophysics Data System (ADS)

    Wilson, K. E.; Baddeley, C. J.

    2014-11-01

    The adsorption of (S)-lysine onto submonolayer coverages of Ni on Au{111} was investigated by scanning tunnelling microscopy and reflection absorption infrared spectroscopy. Arrays of two-dimensional Ni nanoclusters were prepared on the Au{111} surface. The sticking probability of (S)-lysine was found to increase by an order of magnitude on Au surfaces templated by Ni compared to the clean Au surface. (S)-lysine corrodes Ni from the edges of clusters forming nickel lysinate complexes which self-assemble to form ordered molecular arrays. Below a threshold coverage, the Ni clusters are completely destroyed by (S)-lysine adsorption. Under these conditions, extensive restructuring of the Au steps is observed. The implications of our work for understanding the role of chiral modifiers in Ni catalysed enantioselective catalysis are discussed.

  6. Self-organization of S adatoms on Au(111): √3R30° rows at low coverage

    SciTech Connect

    Walen, Holly; Liu, Da-Jiang; Oh, Junepyo; Lim, Hyunseob; Kim, Yousoo; Evans, J. W.; Thiel, P. A.

    2015-07-07

    Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed clean surface at 300 K, then cooling to 5 K for observation. The rows adopt one of three orientations that are rotated by 30° from the close-packed directions of the Au(111) substrate, and adjacent S atoms in the rows are separated by √3 times the surface lattice constant, a. Monte Carlo simulations are performed on lattice-gas models, derived using a limited cluster expansion based on density functional theory energetics. Models which include long-range pairwise interactions (extending to 5a), plus selected trio interactions, successfully reproduce the linear rows of S atoms at reasonable temperatures.

  7. Barrier height formation in organic blends/metal interfaces: Case of tetrathiafulvalene-tetracyanoquinodimethane/Au(111)

    SciTech Connect

    Martínez, José I.; Abad, Enrique; Beltrán, Juan I.; Flores, Fernando; Ortega, José

    2013-12-07

    The interface between the tetrathiafulvalene/tetracyanoquinodimethane (TTF-TCNQ) organic blend and the Au(111) metal surface is analyzed by Density Functional Theory calculations, including the effect of the charging energies on the molecule transport gaps. Given the strong donor and acceptor characters of the TTF and TCNQ molecules, respectively, there is a strong intermolecular interaction, with a relatively high charge transfer between the two organic materials, and between the organic layer and the metal surface. We find that the TCNQ LUMO peak is very close to the Fermi level; due to the interaction with the metal surface, the organic molecular levels are broadened, creating an important induced density of interface states (IDIS). We show that the interface energy level alignment is controlled by the charge transfer between TTF, TCNQ, and Au, and by the molecular dipoles created in the molecules because of their deformations when adsorbed on Au(111). A generalization of the Unified-IDIS model, to explain how the interface energy levels alignment is achieved for the case of this blended donor/acceptor organic layer, is presented by introducing matrix equations associated with the Charge Neutrality Levels of both organic materials and with their intermixed screening properties.

  8. Barrier height formation in organic blends/metal interfaces: case of tetrathiafulvalene-tetracyanoquinodimethane/Au(111).

    PubMed

    Martínez, José I; Abad, Enrique; Beltrán, Juan I; Flores, Fernando; Ortega, José

    2013-12-01

    The interface between the tetrathiafulvalene/tetracyanoquinodimethane (TTF-TCNQ) organic blend and the Au(111) metal surface is analyzed by Density Functional Theory calculations, including the effect of the charging energies on the molecule transport gaps. Given the strong donor and acceptor characters of the TTF and TCNQ molecules, respectively, there is a strong intermolecular interaction, with a relatively high charge transfer between the two organic materials, and between the organic layer and the metal surface. We find that the TCNQ LUMO peak is very close to the Fermi level; due to the interaction with the metal surface, the organic molecular levels are broadened, creating an important induced density of interface states (IDIS). We show that the interface energy level alignment is controlled by the charge transfer between TTF, TCNQ, and Au, and by the molecular dipoles created in the molecules because of their deformations when adsorbed on Au(111). A generalization of the Unified-IDIS model, to explain how the interface energy levels alignment is achieved for the case of this blended donor/acceptor organic layer, is presented by introducing matrix equations associated with the Charge Neutrality Levels of both organic materials and with their intermixed screening properties. PMID:24320393

  9. Unequal-sphere packing model for simulation of the uniaxially compressed iodine adlayer on Au(111).

    PubMed

    Tkatchenko, Alexandre; Batina, Nikola

    2005-11-24

    A simple unequal-sphere packing (USP) model, based on pure geometrical principles, was applied to study the centered-rectangular iodine c(px radical3)R30 degrees adlayer on the Au(111) surface, well-known from surface X-ray structure (SXS), low energy electron diffraction (LEED), and scanning tunneling microscopy (STM) experiments. To reproduce the exact patterns observed in experiments, two selective conditions-minimum average adsorbate height and minimum adlayer roughness-were imposed. As a result, a series of adlayer patterns with c(px radical3)R30 degrees symmetry (2.3 < p < 3), with precise structural details, including atomic registry and identification of the p-bisector as the most likely trajectory for the iodine adatom movement during the so-called uniaxial compression phenomenon, were identified. In addition, using the same model, the difference between the iodine adlayer arranged in hexagonal and centered-rectangular c(px radical3)R30 degrees patterns, as in the case of Pt(111) and Au(111) surfaces, was investigated. Qualitative and quantitative comparison shows that iodine adatoms in these two arrangements differ significantly in atomic registry, distance from the substrate, and the adlayer corrugation. Our findings could be of special interest in the study of the nature of the iodine adatom bonding to different substrates (i.e., Au vs Pt). PMID:16853820

  10. Growth of Single- and Bilayer ZnO on Au(111) and Interaction with Copper

    SciTech Connect

    Deng, Xingyi; Yao, Kun; Sun, Keju; Li, Wei-Xue; Lee, Junseok; Matranga, Christopher

    2013-05-02

    The stoichiometric single- and bi-layer ZnO(0001) have been prepared by reactive deposition of Zn on Au(111) and studied in detail with X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. Both single- and bi-layer ZnO(0001) adopt a planar, graphite-like structure similar to freestanding ZnO(0001) due to the weak van der Waals interactions dominating their adhesion with the Au(111) substrate. At higher temperature, the single-layer ZnO(0001) converts gradually to bi-layer ZnO(0001) due to the twice stronger interaction between two ZnO layers than the interfacial adhesion of ZnO with Au substrate. It is found that Cu atoms on the surface of bi-layer ZnO(0001) are mobile with a diffusion barrier of 0.31 eV, and likely to agglomerate and form nanosized particles at low coverages; while Cu atoms tend to penetrate a single layer of ZnO(0001) with a barrier of 0.10 eV, resulting in a Cu free surface.

  11. Sulfidization of Au(111) from thioacetic acid: an experimental and theoretical study.

    PubMed

    Fischer, Jeison A; Zoldan, Vinícius C; Benitez, Guillermo; Rubert, Aldo A; Ramirez, Eduardo A; Carro, Pilar; Salvarezza, Roberto C; Pasa, André A; Vela, Maria E

    2012-10-30

    We have studied the adsorption of thioacetic acid (TAAH) on Au(111) from solution deposition. The close proximity of the SH groups to CO groups makes this molecule very attractive for exploring the effect of the functional group on the stability of the S-C and S-Au bonds. Although thioacetic acid was supposed to decompose slowly in water by hydrolysis supplying hydrogen sulfide, this behavior is not expected in nonpolar solvents such as toluene or hexane. Therefore, we have used these solvents for TAAH self-assembly on the Au(111) surface. The characterization of the adsorbates has been done by electrochemical techniques, X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM). We have found that even in nonpolar solvents thioacetic acid decomposes to S. The results have been discussed on the basis that the adsorbed species suffer a cleavage on the Au surface, leaving the S attached to it. The dissociation is a spontaneous process that reaches the final state very fast once it is energetically favorable, as can be interpreted from DFT calculations. The thioacetic acid adsorption reveals the strong effect that produces a functional group and the key role of the S-H bond cleavage in the self-assembly process. PMID:23002810

  12. Self-organization of S adatoms on Au(111): √3R30° rows at low coverage

    DOE PAGESBeta

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo; Lim, Hyunseob; Evans, J. W.; Kim, Yousoo; Thiel, P. A.

    2015-07-06

    Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed cleansurface at 300 K, then cooling to 5 K for observation. The rows adopt one of three orientations that are rotated by 30° from the close-packed directions of the Au(111) substrate, and adjacent S atoms in the rows are separated by √3 times the surface lattice constant, a. Monte Carlo simulations are performed on lattice-gas models, we derivedmore » using a limited cluster expansion based on density functional theory energetics. Furthermore, models which include long-range pairwise interactions (extending to 5a), plus selected trio interactions, successfully reproduce the linear rows of S atoms at reasonable temperatures.« less

  13. Self-organization of S adatoms on Au(111): √3R30° rows at low coverage

    SciTech Connect

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo; Lim, Hyunseob; Evans, J. W.; Kim, Yousoo; Thiel, P. A.

    2015-07-06

    Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed cleansurface at 300 K, then cooling to 5 K for observation. The rows adopt one of three orientations that are rotated by 30° from the close-packed directions of the Au(111) substrate, and adjacent S atoms in the rows are separated by √3 times the surface lattice constant, a. Monte Carlo simulations are performed on lattice-gas models, we derived using a limited cluster expansion based on density functional theory energetics. Furthermore, models which include long-range pairwise interactions (extending to 5a), plus selected trio interactions, successfully reproduce the linear rows of S atoms at reasonable temperatures.

  14. Methanethiolate Adsorption Site on Au(111): A Combined STM/DFT Study at the Single-Molecule Level

    SciTech Connect

    Maksymovych, P.; Sorescu, D.C.; Yates, J.T.

    2006-10-26

    The chemisorptive bonding of methanethiolate (CH3S) on the Au(111) surface has been investigated at a single-molecule level using low-temperature scanning tunneling microscopy (LT-STM) and density functional theory (DFT). The CH3S species were produced by STM-tip-induced dissociation of methanethiol (CH3SH) or dimethyl disulfide (CH3SSCH3) at 5 K. The adsorption site of an isolated CH3S species was assigned by comparing the experimental and calculated STM images. We conclude that the S-headgroup of chemisorbed CH3S adsorbs on the 2-fold coordinated bridge site between two Au atoms, consistent with theoretical predictions for CH3S on the nondefective Au(111) surface. Our assignment is also supported by the freezing of the tip-induced rotational dynamics of a single CH3SH molecule upon conversion to CH3S via deprotonation.

  15. The Adsorption of C60 fullerene molecules on Nanostructured Au (111)

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Guo, Quanmin; Palmer, Richard

    2009-03-01

    The sub-monolayer growth of C60 molecules on the Au (111) surface has been studied using STM in ultra high vacuum. The C60 molecules tend to form close-packed layers due to a strong inter-molecular interaction. However, within the close-packed layer, there are finer, secondary structures that are specific to each of all the three C60/Au interfacial structures ((23x23)R30 , in-phase (R0 ) and R14 ) observed [1]. This is a consequence of the molecule-substrate interaction and our findings demonstrate a much more complex structural variation at the molecule-substrate interface than previously assumed. Furthermore, within the R14 C60 layer, slightly darker molecules (30 pm lower) aligned along the ã11-2õdirection with a ˜6 nm spacing are observed and these molecules are arranged in a reasonably well-ordered two-dimensional lattice. C60 molecules are also found to decorate the elbow sites of the herringbone reconstructed Au(111) even at room, and when fullerenes are deposited to arrays of fabricated monolayer gold stripes (gold-fingers) [2], the molecules show step-specific attachment where the step edges with the (111) micro-facet are preferentially populated.[0pt] [1] X. Zhang, F. Yin, R. E. Palmer and Q. Guo, Surf. Sci. 602 (2008) 885-892.[0pt] [2] Q. Guo, F. Yin and R. E. Palmer, Small 1 (2005) 76-79.

  16. Theoretical study of coupling p-aminothiophenol to hydroazo- and azo-adducts on Au(111).

    PubMed

    Lang, Xiufeng; Liang, Yanhong; Liu, Siyan; Zhao, Shanshan; Lau, Woon-Ming

    2016-09-01

    Aminothiophenol/Au(111) has been adopted as an exemplary model in plasmonics research, including surface-enhanced Raman spectroscopy, due to its high plasmonic-induced spectral-signal enhancement. The present work was aimed at clarifying whether aminothiophenol on Au(111) is chemically stable in the absence of any photo- and plasmonic-induced effects. Briefly, first-principles calculations were employed to track the detailed mechanism of oxidative coupling of p-aminothiophenol (PATP) to its azo-adduct with an N = N bond, i.e., p,p'-dimercaptoazobenzene (DMAB). Our results show the following: first, in the presence of adsorbed O2, PATP fractures its N-H bond and transfers the hydrogen to a nearby oxygen. This pathway is more favorable than the transfer of H to Au, but the activation barrier of 0.9 eV is still too high for the reaction to occur in the absence of thermal-, photo-, or plasmonic-activation. If this bar can be lifted, two such dehydrogenated PATP can couple themselves to form an adduct with a N-N bond, i.e., p,p'-dimercaptohydroazobenzene (DMHAB), and this reaction is exoergic with an energy barrier of 0.57 eV. Again, this step is slow in the absence of moderate thermal activation or photo-/plasmonic-activation. Finally, dehydrogenation of DMHAB gives the azo-adduct of DMAB, and this reaction is spontaneous, with no energy barrier. PMID:27488103

  17. Environment-modulated Kondo phenomena in FePc/Au(111) adsorption systems

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zheng, Xiao; Yang, Jinlong

    2016-03-01

    Recent scanning tunneling microscopy experiments on electron transport through iron(II) phthalocyanine (FePc) molecules adsorbed on the Au(111) surface have revealed that the measured Kondo conductance signature depends strongly on the specific adsorption site. To understand the physical origin of experimental observations, particularly the variation of Kondo features with the molecular adsorption site, we employ a combined density functional theory (DFT) and hierarchical equations of motion (HEOM) approach to investigate the electronic structure and Kondo correlation in FePc/Au(111) composite systems. The calculation results indicate that, for the on-top adsorption configuration, the two degenerate spin-unpaired dπ orbitals on the Fe center are coupled indirectly through substrate band states, leading to the Fano-like antiresonance line shape in the d I /d V spectra, while for the bridge adsorption configuration, the environment-induced couplings are largely suppressed because of the two different spin-unpaired d orbitals. Therefore, our work suggests that the environment-induced coupling as an essential physical factor could greatly influence the Fano-Kondo features in magnetic molecule/metal composites, and the crucial role of local orbital degeneracy and symmetry is discovered. These findings provide important insights into the electron correlation effects in complex solid-state systems. The usefulness and practicality of the combined DFT+HEOM method is also highlighted.

  18. Oxidation of palladium on Au(111) and ZnO(0001) supports

    DOE PAGESBeta

    Lallo, J.; Tenney, S. A.; Kramer, A.; Sutter, P.; Batzill, M.

    2014-10-21

    The oxidation of supported Pd-deposits on Au(111) and ZnO(0001) single crystals has been studied by x- ray photoemission spectroscopy (XPS). Oxidation has been carried out ex-situ in a high-pressure cell with subsequent vacuum-transfer and characterization by XPS in ultrahigh vacuum (UHV), as well as using in-situ characterization by synchrotron based near-ambient pressure XPS. On Au(111) alloying of Pd with the substrate competes with oxidation and only sufficiently thick Pd films have been found to oxidize. For Pd on ZnO the oxidation conditions depend on the amount of deposited Pd. Thicker Pd deposits behave similar to bulk Pd, while thinner filmsmore » oxidize already at lower temperatures. Interestingly, for very small amounts of Pd, in-situ XPS shows full oxidation at room temperature and at less than 0.6 mbar O₂ pressure. This indicates a lowering of the kinetic barriers for oxidation of very small supported Pd-clusters. The formed oxide is, however, not stable in UHV and a slow reduction is observed. The instability of this oxide indicates that the Pd-oxide formed at the interface to ZnO may have different chemical properties compared to bulk PdO or surface oxides on Pd.« less

  19. Oxidation of palladium on Au(111) and ZnO(0001) supports

    SciTech Connect

    Lallo, J.; Tenney, S. A.; Kramer, A.; Sutter, P.; Batzill, M.

    2014-10-21

    The oxidation of supported Pd-deposits on Au(111) and ZnO(0001) single crystals has been studied by x- ray photoemission spectroscopy (XPS). Oxidation has been carried out ex-situ in a high-pressure cell with subsequent vacuum-transfer and characterization by XPS in ultrahigh vacuum (UHV), as well as using in-situ characterization by synchrotron based near-ambient pressure XPS. On Au(111) alloying of Pd with the substrate competes with oxidation and only sufficiently thick Pd films have been found to oxidize. For Pd on ZnO the oxidation conditions depend on the amount of deposited Pd. Thicker Pd deposits behave similar to bulk Pd, while thinner films oxidize already at lower temperatures. Interestingly, for very small amounts of Pd, in-situ XPS shows full oxidation at room temperature and at less than 0.6 mbar O₂ pressure. This indicates a lowering of the kinetic barriers for oxidation of very small supported Pd-clusters. The formed oxide is, however, not stable in UHV and a slow reduction is observed. The instability of this oxide indicates that the Pd-oxide formed at the interface to ZnO may have different chemical properties compared to bulk PdO or surface oxides on Pd.

  20. STM study of C60F18 high dipole moment molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M.; Sukhanov, L. P.; Svechnikov, N. Yu.; Stankevich, V. G.

    2015-11-01

    Scanning tunneling microscopy and spectroscopy studies of C60F18 molecules deposited on Au(111) are reported and compared to C60 molecules both at liquid helium temperature and room temperature (RT). Whereas adsorption and electronic properties of C60F18 single molecules were studied at low temperature (LT), self-assemblies were investigated at RT. In both cases, the fluorine atoms of the C60F18 molecules are pointed towards the surface. Individual C60F18 molecules on Au(111) have a HOMO-LUMO gap of 2.9 eV. The self-assembled islands exhibit a close-packed hexagonal lattice with amorphous borders. The comparison with C60 molecules clearly demonstrates the influence of the C60F18 electric dipole moment (EDM) on the electronic properties of single molecules and on the thermodynamics of self-assembled islands. Besides, the apparent height value of a separate molecule increases in a self-assembly environment as a result of a depolarization phenomenon.

  1. Ir-induced activation of Au towards CO adsorption: Ir films deposited on Au{111}

    NASA Astrophysics Data System (ADS)

    Zhang, Tianfu; Driver, Stephen M.; Pratt, Stephanie J.; Jenkins, Stephen J.; King, David A.

    2016-06-01

    We have investigated the interaction of CO with Ir/Au{111} bimetallic surfaces, and the influence of morphology changes as Ir moves sub-surface into the Au bulk, using reflection-absorption infrared spectroscopy (RAIRS). The presence of Ir stabilises CO on exposed regions of the Au surface at temperatures up to around 200 K: we attribute this to low-coordinated Au sites, probably associated with lifting of the clean-surface 'herringbone' reconstruction by Ir deposition. The highest density of active Au sites is obtained after annealing the bimetallic surface to 500-600 K: we attribute this to morphology changes associated with the movement of Ir into bulk Au.

  2. Ullmann coupling reaction of aryl chlorides on Au(111) using dosed Cu as a catalyst and the programmed growth of 2D covalent organic frameworks.

    PubMed

    Shi, Ke Ji; Zhang, Xin; Shu, Chen Hui; Li, Deng Yuan; Wu, Xin Yan; Liu, Pei Nian

    2016-07-01

    The efficiency of Ullmann reaction of aryl chlorides on an Au(111) surface has been substantially increased by using dosed Cu as a catalyst. The different reactivity of aryl bromides and aryl chlorides has been exploited to design a programmed, on-surface synthesis to form 2D covalent organic frameworks. PMID:27334002

  3. Elevated-pressure chemical reactivity of carbon monoxide over Au(111)

    NASA Astrophysics Data System (ADS)

    Peters, K. F.; Steadman, P.; Isern, H.; Alvarez, J.; Ferrer, S.

    2000-11-01

    A systematic study of elevated-pressure gas-surface interactions is presented. Surface X-ray diffraction is used to study the interaction of carbon monoxide with the Au(111)-reconstructed surface. Thirteen orders of magnitude difference in pressure are probed from ultrahigh vacuum up to 2 bar of CO. Several variables are shown to influence the gas-surface interaction, including pressure, temperature, X-ray exposure and sample electric potential in the presence of X-rays. At elevated pressures of CO, the interactions range from modest rearrangement to substantial lifting of the reconstruction. There is clear evidence of a thermally activated chemical reaction involving significant displacements of gold atoms. The reactions and atomic displacements are unexpected, based on prior vacuum and theoretical studies of CO/Au, thus revealing the considerable differences associated with high gas pressures.

  4. The formation of right-handed and left-handed chiral nanopores within a single domain during amino acid self-assembly on Au(111).

    PubMed

    Yang, Sena; Jeon, Aram; Driver, Russell W; Kim, Yeonwoo; Jeon, Eun Hee; Kim, Sehun; Lee, Hee-Seung; Lee, Hangil

    2016-05-25

    We report the formation of both right- and left-handed chiral nanopores within a single domain during the self-assembly of an amino acid derivative on an inert Au(111) surface using STM. DFT calculations employed to rationalize this unusual result identified that intermolecular interactions between chiral, windmill-shaped tetramers are crucial for self-assembly. PMID:27171609

  5. Interplay between fast diffusion and molecular interaction in the formation of self-assembled nanostructures of S-cysteine on Au(111).

    PubMed

    Mateo-Martí, E; Rogero, C; Gonzalez, C; Sobrado, J M; de Andrés, P L; Martin-Gago, J A

    2010-03-16

    We have studied the first stages leading to the formation of self-assembled monolayers of S-cysteine molecules adsorbed on a Au(111) surface. Density functional theory (DFT) calculations for the adsorption of individual cysteine molecules on Au(111) at room temperature show low-energy barriers all over the 2D Au(111) unit cell. As a consequence, cysteine molecules diffuse freely on the Au(111) surface and they can be regarded as a 2D molecular gas. The balance between molecule-molecule and molecule-substrate interactions induces molecular condensation and evaporation from the morphological surface structures (steps, reconstruction edges, etc.) as revealed by scanning tunnelling microscopy (STM) images. These processes lead progressively to the formation of a number of stable arrangements, not previously reported, such as single-molecular rows, trimers, and 2D islands. The condensation of these structures is driven by the aggregation of new molecules, stabilized by the formation of electrostatic interactions between adjacent NH(3)(+) and COO(-) groups, together with adsorption at a slightly more favorable quasi-top site of the herringbone Au reconstruction. PMID:20092363

  6. Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111).

    PubMed

    Geng, Feng; Zhang, Yang; Yu, Yunjie; Kuang, Yanmin; Liao, Yuan; Dong, Zhenchao; Hou, Jianguo

    2012-11-19

    We investigate the modulation of C60 monolayers on the nanocavity plasmonic (NCP) emission on Au(111) by tunneling electron excitation from a scanning tunneling microscope (STM) tip. STM induced luminescence spectra show not only suppressed emission, but also significant redshift of NCP emission bands on the C60 molecules relative to the bare metal surface. The redshift, together with the bias- and coverage-dependent emission feature, indicates that the C60 molecules act beyond a pure dielectric spacer, their electronic states are heavily involved in the inelastic tunneling process for plasmonic emission. A modified quantum cutoff relation is proposed to explain qualitatively the observed emission feature at both bias polarities. We also demonstrate molecularly resolved optical contrast on the C60 monolayer and discuss the contrast mechanism briefly. PMID:23187525

  7. Interfacial and intermolecular interactions determining the rotational orientation of C60 adsorbed on Au(111)

    NASA Astrophysics Data System (ADS)

    Paßens, Michael; Karthäuser, Silvia

    2015-12-01

    Close-packed monolayers of fullerenes on metallic substrates are very rich systems with respect to their rotational degrees of freedom and possible interactions with different adsorption sites or next neighbours. In this connection, we report in detail on the (2√3 × 2√3)R30°-superstructure of C60 with respect to the Au(111)-surface. We use molecular orbital imaging in systematic UHV-STM studies to reveal the delicate balance of interfacial and intermolecular interactions in this system. Thus, bright C60-molecules in 5:6-top and 6:6-top geometries are observed depending on the respective next neighbours. Moreover, tiny changes in the appearance of the unoccupied molecular orbitals of dim C60-molecules in hex-vac positions are identified which are caused by the respective interaction with the facets surrounding the Au-vacancy.

  8. Metal-organic extended 2D structures: Fe-PTCDA on Au(111).

    PubMed

    Alvarez, Lucía; Peláez, Samuel; Caillard, Renaud; Serena, Pedro A; Martín-Gago, José A; Méndez, Javier

    2010-07-30

    In this work we combine organic molecules of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with iron atoms on an Au (111) substrate in ultra-high vacuum conditions at different temperatures. By means of scanning tunnelling microscopy (STM) we study the formation of stable 2D metal-organic structures. We show that at certain growth conditions (temperature, time and coverage) stable 'ladder-like' nanostructures are obtained. These are the result of connecting together two metal-organic chains through PTCDA molecules placed perpendicularly, as rungs of a ladder. These structures, stable up to 450 K, can be extended in a 2D layer covering the entire surface and presenting different rotation domains. STM images at both polarities show a contrast reversal between the two molecules at the unit cell. By means of density functional theory (DFT) calculations, we confirm the stability of these structures and that their molecular orbitals are placed separately at the different molecules. PMID:20603531

  9. Probing the ultrafast electron transfer at the CuPc/Au(111) interface

    SciTech Connect

    Chen Wei; Wang Li; Qi Dongchen; Chen Shi; Gao Xingyu; Wee, Andrew Thye Shen

    2006-05-01

    Core-hole clock spectroscopy and near-edge x-ray-absorption fine structure measurements have been used to investigate the ultrafast electron transfer dynamics at the Copper(II) phthalocyanine (CuPc)/Au(111) interface. It was found that the strong electronic coupling between the first layer of CuPc molecules and Au(111) substrate favors ultrafast electron transfer from the lowest unoccupied molecular orbital of the CuPc molecules to the conduction band of Au(111) in the time scale of {approx}6 fs. In contrast, the intermolecular electron transfer within multilayers of CuPc molecules via the weak van der Waals interaction was much slower.

  10. THERMODYNAMIC PROPERTIES OF THE METALLIC SYSTEM Au(111)-(3×3)R30∘-Pd

    NASA Astrophysics Data System (ADS)

    Chadli, R.; Kheffache, S.; Khater, A.

    2016-02-01

    This work constitutes an analysis of the thermodynamic properties in the ordered metallic surface alloy system Au(111)-(3×3)R30∘-Pd. The equilibrium structural characteristics as well as the thermodynamic functions are examined by the matching method, associated with real space Green’s function formalism, evaluated in the harmonic approximation. Our numerical results, for this metallic system of surface alloy, show in particular a significant dependence between the thermodynamic properties and the coordination number and the values of the force constants.

  11. Characterization of one-dimensional molecular chains of 4,4'-biphenyl diisocyanide on Au(111) by scanning tunneling microscopy

    DOE PAGESBeta

    Zhou, Jing; Li, Yan; Zahl, Percy; Sutter, Peter; Stacchiola, Dario J.; White, Michael G.

    2015-03-14

    The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy (STM). When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [110] direction of the Au(111) substrate, butmore » exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free –NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions« less

  12. Characterization of one-dimensional molecular chains of 4,4'-biphenyl diisocyanide on Au(111) by scanning tunneling microscopy

    SciTech Connect

    Zhou, Jing; Li, Yan; Zahl, Percy; Sutter, Peter; Stacchiola, Dario J.; White, Michael G.

    2015-03-14

    The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy (STM). When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [110] direction of the Au(111) substrate, but exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free –NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions

  13. Emergence of chirality in hexagonally packed monolayers of hexapentyloxytriphenylene on Au(111): a joint experimental and theoretical study.

    PubMed

    Sleczkowski, Piotr; Katsonis, Nathalie; Kapitanchuk, Oleksiy; Marchenko, Alexandr; Mathevet, Fabrice; Croset, Bernard; Lacaze, Emmanuelle

    2014-11-11

    We investigate the expression of chirality in a monolayer formed spontaneously by 2,3,6,7,10,11-pentyloxytriphenylene (H5T) on Au(111). We resolve its interface morphology by combining scanning tunneling microscopy (STM) with theoretical calculations of intermolecular and interfacial interaction potentials. We observe two commensurate structures. While both of them belong to a hexagonal space group, analogical to the triangular symmetry of the molecule and the hexagonal symmetry of the substrate surface, they surprisingly reveal a 2D chiral character. The corresponding breaking of symmetry arises for two reasons. First it is due to the establishment of a large molecular density on the substrate, which leads to a rotation of the molecules with respect to the molecular network crystallographic axes to avoid steric repulsion between neighboring alkoxy chains. Second it is due to the molecule-substrate interactions, leading to commensurable large crystallographic cells associated with the large size of the molecule. As a consequence, molecular networks disoriented with respect to the high symmetry directions of the substrate are induced. The high simplicity of the intermolecular and molecule-substrate van der Waals interactions leading to these observations suggests a generic character for this kind of symmetry breaking. We demonstrate that, for similar molecular densities, only two kinds of molecular networks are stabilized by the molecule-substrate interactions. The most stable network favors the interfacial interactions between terminal alkoxy tails and Au(111). The metastable one favors a specific orientation of the triphenylene core with its symmetry axes collinear to the Au⟨110⟩. This specific orientation of the triphenylene cores with respect to Au(111) appears associated with an energy advantage larger by at least 0.26 eV with respect to the disoriented core. PMID:25317696

  14. UHV deposition and characterization of a mononuclear iron(III) β-diketonate complex on Au(111)

    PubMed Central

    Cimatti, Irene; Ninova, Silviya; Lanzilotto, Valeria; Malavolti, Luigi; Rigamonti, Luca; Cortigiani, Brunetto; Mannini, Matteo; Magnano, Elena; Bondino, Federica; Totti, Federico; Cornia, Andrea

    2014-01-01

    Summary The adsorption of the sterically hindered β-diketonate complex Fe(dpm)3, where Hdpm = dipivaloylmethane, on Au(111) was investigated by ultraviolet photoelectron spectroscopy (UPS) and scanning tunnelling microscopy (STM). The high volatility of the molecule limited the growth of the film to a few monolayers. While UPS evidenced the presence of the β-diketonate ligands on the surface, the integrity of the molecule on the surface could not be assessed. The low temperature STM images were more informative and at submonolayer coverage they showed the presence of regular domains characterized by a flat morphology and height of ≈0.3 nm. Along with these domains, tetra-lobed features adsorbed on the kinks of the herringbone were also observed. DFT-simulated images of the pristine molecule and its possible decomposition products allowed to assess the partial fragmentation of Fe(dpm)3 upon adsorption on the Au(111) surface. Structural features with intact molecules were only observed for the saturation coverage. An ex situ prepared thick film of the complex was also investigated by X-ray magnetic circular dichroism (XMCD) and features typical of high-spin iron(III) in octahedral environment were observed. PMID:25551042

  15. Preparation and structural characterization of RuS2 nanoislands on Au(111).

    PubMed

    Cai, Tanhong; Song, Zhen; Rodriguez, Jose A; Hrbek, Jan

    2004-07-28

    Among all the transition metal sulfides, ruthenium sulfide (RuS2) has been shown to be the most active catalyst for the hydrodesulfuriztion processes. Using X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM), we have found a novel approach for the preparation of RuS2 nanoislands on an Au(111) substrate. Chemical vapor deposition of Ru3(CO)12 leads to metallic Ru nanoclusters on the gold substrate. Although sulfidation has not been observed on extended Ru (0001) surface, Ru nanoclusters react with S2, forming ruthenium sulfide. While the majority of the sulfide is in the form of nanosized clusters that aggregate into clustered islands, a small fraction of the sulfide is seen as flat islands. When Ru3(CO)12 was deposited on a sulfur-modified gold substrate at elevated temperature, flat islands of ruthenium sulfide are formed exclusively. The flat islands are single-layer RuS2 nanocrystals with a (111) surface termination which exhibits an ordered array of sulfur vacancies. On such RuS2 (111) surfaces, excess sulfur is stable at low temperature and induces surface reconstruction, and desorbs at high temperature. The RuS2(111)/Au system provides an excellent model system for ruthenium sulfide catalysts. PMID:15264806

  16. Understanding domain symmetry in vanadium oxide phthalocyanine monolayers on Au (111)

    NASA Astrophysics Data System (ADS)

    Rochford, L. A.; Hancox, I.; Jones, T. S.

    2014-10-01

    Understanding the growth of organic semiconductors on solid surfaces is of key importance for the field of organic electronics. Non planar phthalocyanines have shown great promise in organic photovoltaic (OPV) applications, but little of the fundamental surface characterization to understand their structure and properties has been performed. Acquiring a deeper understanding of the molecule/substrate interaction in small molecule systems is a vital step in controlling structure/property relationships. Here we characterize the vanadium oxide phthalocyanine (VOPc)/Au (111) surface using a combination of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM), obtaining complex diffraction patterns which can be understood using two dimensional fast Fourier transform (2D-FFT) analysis of STM images. These measurements reveal coexistence of three symmetrically equivalent in-plane orientations with respect to the substrate, each of which is imaged simultaneously within a single area. Combining scanning probe and diffraction measurements allows symmetrically related domains to be visualized and structurally analyzed, providing fundamental information useful for the structural engineering of non-planar phthalocyanine interfaces.

  17. Vibrational energy transfer near a dissociative adsorption transition state: State-to-state study of HCl collisions at Au(111)

    NASA Astrophysics Data System (ADS)

    Geweke, Jan; Shirhatti, Pranav R.; Rahinov, Igor; Bartels, Christof; Wodtke, Alec M.

    2016-08-01

    In this work we seek to examine the nature of collisional energy transfer between HCl and Au(111) for nonreactive scattering events that sample geometries near the transition state for dissociative adsorption by varying both the vibrational and translational energy of the incident HCl molecules in the range near the dissociation barrier. Specifically, we report absolute vibrational excitation probabilities for HCl(v = 0 → 1) and HCl(v = 1 → 2) scattering from clean Au(111) as a function of surface temperature and incidence translational energy. The HCl(v = 2 → 3) channel could not be observed—presumably due to the onset of dissociation. The excitation probabilities can be decomposed into adiabatic and nonadiabatic contributions. We find that both contributions strongly increase with incidence vibrational state by a factor of 24 and 9, respectively. This suggests that V-T as well as V-EHP coupling can be enhanced near the transition state for dissociative adsorption at a metal surface. We also show that previously reported HCl(v = 0 → 1) excitation probabilities [Q. Ran et al., Phys. Rev. Lett. 98, 237601 (2007)]—50 times smaller than those reported here—were influenced by erroneous assignment of spectroscopic lines used in the data analysis.

  18. Vibrational energy transfer near a dissociative adsorption transition state: State-to-state study of HCl collisions at Au(111).

    PubMed

    Geweke, Jan; Shirhatti, Pranav R; Rahinov, Igor; Bartels, Christof; Wodtke, Alec M

    2016-08-01

    In this work we seek to examine the nature of collisional energy transfer between HCl and Au(111) for nonreactive scattering events that sample geometries near the transition state for dissociative adsorption by varying both the vibrational and translational energy of the incident HCl molecules in the range near the dissociation barrier. Specifically, we report absolute vibrational excitation probabilities for HCl(v = 0 → 1) and HCl(v = 1 → 2) scattering from clean Au(111) as a function of surface temperature and incidence translational energy. The HCl(v = 2 → 3) channel could not be observed-presumably due to the onset of dissociation. The excitation probabilities can be decomposed into adiabatic and nonadiabatic contributions. We find that both contributions strongly increase with incidence vibrational state by a factor of 24 and 9, respectively. This suggests that V-T as well as V-EHP coupling can be enhanced near the transition state for dissociative adsorption at a metal surface. We also show that previously reported HCl(v = 0 → 1) excitation probabilities [Q. Ran et al., Phys. Rev. Lett. 98, 237601 (2007)]-50 times smaller than those reported here-were influenced by erroneous assignment of spectroscopic lines used in the data analysis. PMID:27497574

  19. Tridentate benzylthiols on Au(111): control of self-assembly geometry.

    PubMed

    Mezour, Mohamed A; Perepichka, Iryna I; Ivasenko, Oleksandr; Lennox, R Bruce; Perepichka, Dmitrii F

    2015-03-21

    A set of hexasubstituted benzene derivatives with three thiol groups in the 1, 3, 5 positions and varied aliphatic substituents in the 2, 4, 6 positions (Me3-BTMT, Et3-BTMT, ODe3-BTMT) has been synthesized and self-assembled on Au(111). The resulting self-assembled monolayers (SAMs) are characterized by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and electrochemistry. The molecular orientation and long-range order are affected by the “gear effect” of the hexasubstituted benzene ring and van der Waals interactions between the physisorbed alkyl chains drive. Me3-BTMT adopts a standing up orientation which results in the highest molecular surface density but also the lowest degree of chemisorption (1 to 2 Au–S bonds per molecule). In contrast, Et3-BTMT favors a lying down orientation with a greater number of surface-bonded thiol groups (2 to 3) per molecule, associated with the peculiar geometry of this molecule. Finally, ODe3-BTMT adsorbs mainly in a lying down orientation, forming the SAM with the highest degree of chemisorption (all thiol groups are gold-bonded) and the lowest molecular areal density. PMID:25695677

  20. Mechanistic understanding of hydrogenation of acetaldehyde on Au(111): A DFT investigation

    NASA Astrophysics Data System (ADS)

    Meng, Qingsen; Shen, Yongli; Xu, Jing; Ma, Xinbin; Gong, Jinlong

    2012-11-01

    This paper describes the reaction pathways for hydrogenation of acetaldehyde on atomic hydrogen pre-adsorbed Au(111) employing density functional theory (DFT) calculations. All the surface species involved in the reaction scheme have low diffusion barriers, suggesting that the rearrangement and movement of these species on the surface are facile under reaction condition. The hydroxyethyl is proposed to be the intermediate for the hydrogenation of acetaldehyde, and the activation energy for its formation is 0.37 eV. Additionally, the coupling reaction of hydroxyethyl and acetaldehyde - resulting in the formation of the ethylidene ethylene glycol (CH3C*HOCH(CH3)OH) species - also readily occurs at the reaction condition. Two-dimensional (2-D) polyacetaldehyde ((CH3CHO)2) can be easily hydrogenated to ethylidene ethylene glycol or ethoxy hemiacetal (CH3CH2OCH(CH3)O*); the latter can be converted to ethanol and acetaldehyde via further hydrogenation. As the hydrogenation products of ethylidene ethylene glycol and ethoxy hemiacetal, ethoxyethanol (CH3CH2OCH(CH3)OH) can be deeply hydrogenated to hydroxyethyl and ethanol. Our calculations also suggest that the formation of an ethoxyl intermediate is not likely, which agrees with the experimental observation that no deuterated acetaldehydes have been detected in isotopic measurements.

  1. Conformations of polyaniline molecules adsorbed on Au(111) probed by in situ STM and ex situ XPS and NEXAFS.

    PubMed

    Lee, YiHui; Chang, ChinZen; Yau, ShuehLin; Fan, LiangJen; Yang, YawWen; Yang, LiangYueh Ou; Itaya, Kingo

    2009-05-13

    In situ scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) have been used to examine the conformation of a monolayer of polyaniline (PAN) molecules produced on a Au(111) single-crystal electrode by anodization at 1.0 V [vs reversible hydrogen electrode (RHE)] in 0.10 M H(2)SO(4) containing 0.030 M aniline. The as-produced PAN molecules took on a well-defined linear conformation stretching for 500 A or more, as shown by in situ and ex situ STM. The XPS and NEXAFS results indicated that the linear PAN seen at 1.0 V assumed the form of an emeraldine salt made of PAN chains and (bi)sulfate anions. Shifting the potential from 1.0 to 0.7 V altered the shape of the PAN molecules from straight to crooked, which was ascribed to restructuring of the Au(111) electrified interface on the basis of voltammetric and XPS results. In situ STM showed that further decreasing the potential to 0.5 V transformed the crooked PAN threads into a mostly linear form again, with preferential alignment and formation of some locally ordered structures. PAN molecules could be reduced from emeraldine to leucoemeraldine as the potential was decreased to 0.2 V or less. In situ STM showed that the fully reduced PAN molecules were straight but mysteriously shortened to approximately 50 A in length. The conformation of PAN did not recuperate when the potential was shifted positively to 1.0 V. PMID:19361217

  2. Structural Changes in Self-Catalyzed Adsorption of Carbon Monoxide on 1,4-Phenylene Diisocyanide Modified Au(111)

    DOE PAGESBeta

    Kestell, John; Boscoboinik, J. Anibal; Cheng, Lanxia; Garvey, Michael; Bennett, Dennis W.; Tysoe, Wilfred T.

    2015-07-23

    The self-accelerated adsorption of CO on 1,4-phenylene diisocyanide (PDI)-derived oligomers on Au(111) is explored by reflection–absorption infrared spectroscopy and scanning tunneling microscopy. PDI incorporates gold adatoms from the Au(111) surface to form one-dimensional —(Au–PDI)n— chains that can also connect between gold nanoparticles on mica to form a conductive pathway between them. CO adsorption occurs in two stages; it first adsorbs adjacent to the oligomers that move to optimize CO adsorption. Further CO exposure induces PDI decoordination to form Au–PDI adatom complexes thereby causing the conductivity of a PDI-linked gold nanoparticle array on mica to decrease to act as a chemicallymore » drive molecular switch. This simple system enables the adsorption process to be explored in detail. DFT calculations reveal that both the —(Au–PDI)n— oligomer chain and the Au–PDI adatom complex are stabilized by coadsorbed CO. A kinetic “foot-in-the-door” model is proposed in which fluctuations in PDI coordination allow CO to diffuse into the gap between gold adatoms to prevent the PDI from reattaching, thereby allowing additional CO to adsorb, to provide kinetic model for allosteric CO adsorption on PDI-covered gold.« less

  3. Structural Changes in Self-Catalyzed Adsorption of Carbon Monoxide on 1,4-Phenylene Diisocyanide Modified Au(111)

    SciTech Connect

    Kestell, John; Boscoboinik, J. Anibal; Cheng, Lanxia; Garvey, Michael; Bennett, Dennis W.; Tysoe, Wilfred T.

    2015-07-23

    The self-accelerated adsorption of CO on 1,4-phenylene diisocyanide (PDI)-derived oligomers on Au(111) is explored by reflection–absorption infrared spectroscopy and scanning tunneling microscopy. PDI incorporates gold adatoms from the Au(111) surface to form one-dimensional —(Au–PDI)n— chains that can also connect between gold nanoparticles on mica to form a conductive pathway between them. CO adsorption occurs in two stages; it first adsorbs adjacent to the oligomers that move to optimize CO adsorption. Further CO exposure induces PDI decoordination to form Au–PDI adatom complexes thereby causing the conductivity of a PDI-linked gold nanoparticle array on mica to decrease to act as a chemically drive molecular switch. This simple system enables the adsorption process to be explored in detail. DFT calculations reveal that both the —(Au–PDI)n— oligomer chain and the Au–PDI adatom complex are stabilized by coadsorbed CO. A kinetic “foot-in-the-door” model is proposed in which fluctuations in PDI coordination allow CO to diffuse into the gap between gold adatoms to prevent the PDI from reattaching, thereby allowing additional CO to adsorb, to provide kinetic model for allosteric CO adsorption on PDI-covered gold.

  4. Understanding the Kondo resonance in the d-CoPc/Au(111) adsorption system.

    PubMed

    Wang, Yu; Zheng, Xiao; Li, Bin; Yang, Jinlong

    2014-08-28

    By combining the density functional theory (DFT) and a hierarchical equations of motion (HEOM) approach, we investigate the Kondo phenomena in a composite system consisting of a dehydrogenated cobalt phthalocyanine molecule (d-CoPc) adsorbed on an Au(111) surface. DFT calculations are performed to determine the ground-state geometric and electronic structures of the adsorption system. It is found that the singly occupied dz(2) orbital of Co forms a localized spin, which could be screened by the substrate conduction electrons. This screening leads to the prominent Kondo features as observed in the scanning tunneling microscopy experiments. We then employ the HEOM approach to characterize the Kondo correlations of the adsorption system. The calculated temperature-dependent differential conductance spectra and the predicted Kondo temperature agree well with the experiments, and the universal Kondo scaling behavior is correctly reproduced. This work thus provides important insights into the relevant experiments, and it also highlights the applicability of the combined DFT+HEOM approach to the studies of strongly correlated condensed matter systems. PMID:25173036

  5. Understanding the Kondo resonance in the d-CoPc/Au(111) adsorption system

    SciTech Connect

    Wang, Yu; Zheng, Xiao Li, Bin; Yang, Jinlong

    2014-08-28

    By combining the density functional theory (DFT) and a hierarchical equations of motion (HEOM) approach, we investigate the Kondo phenomena in a composite system consisting of a dehydrogenated cobalt phthalocyanine molecule (d-CoPc) adsorbed on an Au(111) surface. DFT calculations are performed to determine the ground-state geometric and electronic structures of the adsorption system. It is found that the singly occupied d{sub z{sup 2}} orbital of Co forms a localized spin, which could be screened by the substrate conduction electrons. This screening leads to the prominent Kondo features as observed in the scanning tunneling microscopy experiments. We then employ the HEOM approach to characterize the Kondo correlations of the adsorption system. The calculated temperature-dependent differential conductance spectra and the predicted Kondo temperature agree well with the experiments, and the universal Kondo scaling behavior is correctly reproduced. This work thus provides important insights into the relevant experiments, and it also highlights the applicability of the combined DFT+HEOM approach to the studies of strongly correlated condensed matter systems.

  6. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    NASA Astrophysics Data System (ADS)

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  7. Understanding the Kondo resonance in the d-CoPc/Au(111) adsorption system

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zheng, Xiao; Li, Bin; Yang, Jinlong

    2014-08-01

    By combining the density functional theory (DFT) and a hierarchical equations of motion (HEOM) approach, we investigate the Kondo phenomena in a composite system consisting of a dehydrogenated cobalt phthalocyanine molecule (d-CoPc) adsorbed on an Au(111) surface. DFT calculations are performed to determine the ground-state geometric and electronic structures of the adsorption system. It is found that the singly occupied d_{z^2} orbital of Co forms a localized spin, which could be screened by the substrate conduction electrons. This screening leads to the prominent Kondo features as observed in the scanning tunneling microscopy experiments. We then employ the HEOM approach to characterize the Kondo correlations of the adsorption system. The calculated temperature-dependent differential conductance spectra and the predicted Kondo temperature agree well with the experiments, and the universal Kondo scaling behavior is correctly reproduced. This work thus provides important insights into the relevant experiments, and it also highlights the applicability of the combined DFT+HEOM approach to the studies of strongly correlated condensed matter systems.

  8. Molecular alligator clips: a theoretical study of adsorption of S, Se and S H on Au(111)

    NASA Astrophysics Data System (ADS)

    Mankefors, S.; Grigoriev, A.; Wendin, G.

    2003-08-01

    For the binding of thiols to Au, the Au-S interaction is decisive for the geometry, bonding strength and transmissivity of the metal-molecule interface. Using ab initio methods we investigate the adsorption of sulfur (S) on the Au(111) surface for different coverages between 0.25 and 1.0 monolayers (ML). Corresponding geometries with adsorbed Se are included to establish possible differences between S- and Se-based metal-molecule interfaces. We furthermore investigate hydrogenation of sulfur-covered Au(111) surfaces to establish the energetics and resulting geometry of adsorption of S-H groups on clean Au(111), using it as a simple model system. For the relatively low coverage of 0.25 ML the S and Se atoms are found to prefer the in-hollow sites, with Se displaying a substantially stronger bond. Increasing the coverage leads to depletion of available free charge in the gold surface, which weakens the bonds to the S (Se). Due to the more extensive hybridization, Se is more insensitive to the exact geometry, and the stacking fault position only costs 0.04 eV. At even higher coverage (0.75 ML) the adsorbed atoms hybridize internally and form triatomic molecules situated on top of the Au surface atoms. In S (Se) rich environments this turns out to be the most stable configuration investigated, while in S (Se) poor conditions the surface will adsorb all available S (Se). Forcing the system to adsorb atoms beyond this coverage increases the total energy. For all physically realizable coverages the Au-Se bond is found to be geq0.25 eV stronger than the corresponding Au-S bond. The Se bond also displays a higher degree of metallicity and should be expected to make a better head group for thiols, for example; this is relevant for both bonding and conductivity. Turning to the hydrogenated S systems we find that surfaces with a high coverage of S only weakly bind H at low partial hydrogenation, while H adsorption in systems with medium and low S concentrations is found to be

  9. Triazatriangulenium adlayers on Au(111): Superstructure as a function of alkyl side chain length

    NASA Astrophysics Data System (ADS)

    Lemke, Sonja; Ulrich, Sandra; Claußen, Frauke; Bloedorn, Andreas; Jung, Ulrich; Herges, Rainer; Magnussen, Olaf M.

    2015-02-01

    The structure of organic adlayers, formed by self-assembly of molecular platforms of triazatriangulenium ions on Au(111), was systematically studied by scanning tunneling microscopy as a function of the length of the lateral ligands for alkyl side chains from propyl to dodecyl. A series of hexagonally-ordered adlayers with spacings from 10.7 Å (propyl) to 13.6 Å (dodecyl) was found which are commensurate to the Au(111) substrate lattice, indicating localized bonding of the molecules to the metal.

  10. Adsorption phenomena of cubane-type tetranuclear Ni(II) complexes with neutral, thioether-functionalized ligands on Au(111)

    NASA Astrophysics Data System (ADS)

    Heß, Volkmar; Matthes, Frank; Bürgler, Daniel E.; Monakhov, Kirill Yu.; Besson, Claire; Kögerler, Paul; Ghisolfi, Alessio; Braunstein, Pierre; Schneider, Claus M.

    2015-11-01

    The controlled and intact deposition of molecules with specific properties onto surfaces is an emergent field impacting a wide range of applications including catalysis, molecular electronics, and quantum information processing. One strategy is to introduce grafting groups functionalized to anchor to a specific surface. While thiols and disulfides have proven to be quite effective in combination with gold surfaces, other S-containing groups have received much less attention. Here, we investigate the surface anchoring and organizing capabilities of novel charge-neutral heterocyclic thioether groups as ligands of polynuclear nickel(II) complexes. We report on the deposition of a cubane-type {Ni4} (= [Ni(μ3-Cl)Cl(HL·S)]4) single-molecule magnet from dichloromethane solution on a Au(111) surface, investigated by scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low-energy electron diffraction, both immediately after deposition and after subsequent post-annealing. The results provide strong evidence for partial decomposition of the coordination complex upon deposition on the Au(111) surface that, however, leaves the magnetic {Ni4Cl4n} (n = 1 or 2) core intact. Only post-annealing above 480 K induces further decomposition and fragmentation of the {Ni4Cl4n} core. The detailed insight into the chemisorption-induced decomposition pathway not only provides guidelines for the deposition of thioether-functionalized Ni(II) complexes on metallic surfaces but also reveals opportunities to use multidentate organic ligands decorated with thioether groups as transporters for highly unstable inorganic structures onto conducting surfaces, where they are stabilized retaining appealing electronic and magnetic properties.

  11. Surface characterization of platinum electrodes.

    PubMed

    Solla-Gullón, José; Rodríguez, Paramaconi; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2008-03-14

    The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes. PMID:18309392

  12. 1,6-hexanedithiol monolayers on Au(111): A multitechnique structural study

    SciTech Connect

    Leung, T.Y.B.; Gerstenberg, M.C.; Lavrich, D.J.; Scoles, G.; Schreiber, F.; Poirier, G.E.

    2000-01-25

    Monolayers of 1,6-hexanedithiol [HS(CH{sub 2}){sub 6}SH] deposited on Au(111) from the gas phase were characterized by scanning tunneling microscopy (STM), grazing incidence X-ray diffraction (GIXD), and low-energy atom diffraction (LEAD). Molecular resolution STM images suggest that the molecules lie prone in a striped arrangement with an inter-row spacing of 5 {angstrom}. For the films prepared at an elevated temperature, two uniaxial incommensurate phases were found by GIXD. With respect to the surface substrate net, the diffraction patterns of both phases can be described by rectangular (p x {radical}3) nets, where p is 4.24 {+-} 0.01 and 4.30 {+-} 0.01. These values of p correspond to spacings of 12.23 {+-} 0.04 and 12.40 {+-} 0.02 {angstrom} along the nearest-neighbor (NN) direction of the substrate, whereas the spacing along the next-nearest-neighbor direction is 5 {angstrom} in both cases. The LEAD patterns can be described by a 3 x 1 superlattice with respect to the mesh observed by GIXD. Lattice nonuniformity and angular broadening along the NN direction were observed by GIXD. The structure of the striped phases is consistent with the molecules being fully extended and flat on the surface with their molecular C-C-C plane parallel to the surface. Using different growth protocols, including liquid-phase deposition, the order of the striped phases was observed to change considerably; however, no evidence of nucleation of other ordered phases was found. Even if denser phases exist, the striped phases may act as effective kinetic traps preventing the transition to other denser phases. The results of both varied growth conditions and performed annealing experiments can be explained by the strong molecule/substrate interaction in the striped phases, which is a consequence of the strong, but not site-specific, interaction of both sulfur atoms with the gold surface.

  13. Construction of single-crystalline supramolecular networks of perchlorinated hexa-peri-hexabenzocoronene on Au(111).

    PubMed

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Lin, Xiao; Tan, Yuanzhi; Feng, Xinliang; Du, Shixuan; Müllen, Klaus; Gao, Hong-Jun

    2015-03-14

    The self-assembly of the perchlorinated hexa-peri-hexabenzocoronene (PCHBC) molecules on Au(111) has been studied by a low temperature scanning tunneling microscopy (STM) combining with density functional theory based first principle calculations. Highly ordered supramolecular networks with single domains limited by the terraces are formed on Au(111) substrate. High resolution images of the PCHBC molecules, confirmed by first principle simulations, are obtained. It reveals the close-packed arrangement of the PCHBC molecules on Au(111). The calculated charge distribution of PCHBC molecules shows the existence of attractive halogen-halogen interaction between neighboring molecules. Compared with the disordered adsorption of hexa-peri-hexabenzocoronene on Au(111), we conclude that the formation of attractive Cl∙∙∙Cl interactions between neighbors is the key factor to form the highly ordered, close-packed networks. Due to the steric hindrance resulted from the peripheral chlorine atoms, the PCHBC molecule is contorted and forms the doubly concave conformation, which is different from the hexa-peri-hexabenzocoronene with a planar structure. By using this supramolecular network as a template, we deposited C60 molecules on it at room temperature with low coverage. The STM images taken at low temperature show that the C60 molecules are mono-dispersed on the networks and adsorb on top of the PCHBC molecules, forming a typical concave-convex host-guest system. PMID:25770500

  14. Construction of single-crystalline supramolecular networks of perchlorinated hexa-peri-hexabenzocoronene on Au(111)

    SciTech Connect

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan E-mail: hjgao@iphy.ac.cn; Gao, Hong-Jun E-mail: hjgao@iphy.ac.cn; Lin, Xiao; Tan, Yuanzhi; Feng, Xinliang; Müllen, Klaus

    2015-03-14

    The self-assembly of the perchlorinated hexa-peri-hexabenzocoronene (PCHBC) molecules on Au(111) has been studied by a low temperature scanning tunneling microscopy (STM) combining with density functional theory based first principle calculations. Highly ordered supramolecular networks with single domains limited by the terraces are formed on Au(111) substrate. High resolution images of the PCHBC molecules, confirmed by first principle simulations, are obtained. It reveals the close-packed arrangement of the PCHBC molecules on Au(111). The calculated charge distribution of PCHBC molecules shows the existence of attractive halogen–halogen interaction between neighboring molecules. Compared with the disordered adsorption of hexa-peri-hexabenzocoronene on Au(111), we conclude that the formation of attractive ClCl interactions between neighbors is the key factor to form the highly ordered, close-packed networks. Due to the steric hindrance resulted from the peripheral chlorine atoms, the PCHBC molecule is contorted and forms the doubly concave conformation, which is different from the hexa-peri-hexabenzocoronene with a planar structure. By using this supramolecular network as a template, we deposited C{sub 60} molecules on it at room temperature with low coverage. The STM images taken at low temperature show that the C{sub 60} molecules are mono-dispersed on the networks and adsorb on top of the PCHBC molecules, forming a typical concave-convex host-guest system.

  15. Tridentate benzylthiols on Au(111): control of self-assembly geometry

    NASA Astrophysics Data System (ADS)

    Mezour, Mohamed A.; Perepichka, Iryna I.; Ivasenko, Oleksandr; Lennox, R. Bruce; Perepichka, Dmitrii F.

    2015-03-01

    A set of hexasubstituted benzene derivatives with three thiol groups in the 1, 3, 5 positions and varied aliphatic substituents in the 2, 4, 6 positions (Me3-BTMT, Et3-BTMT, ODe3-BTMT) has been synthesized and self-assembled on Au(111). The resulting self-assembled monolayers (SAMs) are characterized by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and electrochemistry. The molecular orientation and long-range order are affected by the ``gear effect'' of the hexasubstituted benzene ring and van der Waals interactions between the physisorbed alkyl chains drive. Me3-BTMT adopts a standing up orientation which results in the highest molecular surface density but also the lowest degree of chemisorption (1 to 2 Au-S bonds per molecule). In contrast, Et3-BTMT favors a lying down orientation with a greater number of surface-bonded thiol groups (2 to 3) per molecule, associated with the peculiar geometry of this molecule. Finally, ODe3-BTMT adsorbs mainly in a lying down orientation, forming the SAM with the highest degree of chemisorption (all thiol groups are gold-bonded) and the lowest molecular areal density.A set of hexasubstituted benzene derivatives with three thiol groups in the 1, 3, 5 positions and varied aliphatic substituents in the 2, 4, 6 positions (Me3-BTMT, Et3-BTMT, ODe3-BTMT) has been synthesized and self-assembled on Au(111). The resulting self-assembled monolayers (SAMs) are characterized by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and electrochemistry. The molecular orientation and long-range order are affected by the ``gear effect'' of the hexasubstituted benzene ring and van der Waals interactions between the physisorbed alkyl chains drive. Me3-BTMT adopts a standing up orientation which results in the highest molecular surface density but also the lowest degree of chemisorption (1 to 2 Au-S bonds per molecule). In contrast, Et3-BTMT favors a lying down orientation with a greater

  16. Communication: Energy transfer and reaction dynamics for DCl scattering on Au(111): An ab initio molecular dynamics study.

    PubMed

    Kolb, Brian; Guo, Hua

    2016-07-01

    Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment. PMID:27394092

  17. Communication: Energy transfer and reaction dynamics for DCl scattering on Au(111): An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kolb, Brian; Guo, Hua

    2016-07-01

    Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment.

  18. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    NASA Astrophysics Data System (ADS)

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen-Fei; Cooper, Valentino R.; Neaton, Jeffrey B.

    2016-03-01

    Using density functional theory (DFT) with a van der Waals density functional, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously studied monomeric phases. Moreover, using a model, which includes nonlocal polarization effects from the substrate and the neighboring molecules and incorporates many-body perturbation theory calculations within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. We find that, independent of coverage, the HOMO energy of the linear chain phase is lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy.

  19. Atomic-Scale Insight into Tautomeric Recognition, Separation, and Interconversion of Guanine Molecular Networks on Au(111).

    PubMed

    Zhang, Chi; Xie, Lei; Wang, Likun; Kong, Huihui; Tan, Qinggang; Xu, Wei

    2015-09-16

    Although tautomerization may directly affect the chemical or biological properties of molecules, real-space investigation on the tautomeric behaviors of organic molecules in a larger area of molecular networks has been scarcely reported. In this paper, we choose guanine (G) molecule as a model system. From the interplay of high-resolution scanning tunneling microscopy (STM) imaging and density functional theory (DFT) calculations, we have successfully achieved the tautomeric recognition, separation, and interconversion of G molecular networks (formed by two tautomeric forms G/9H and G/7H) with the aid of NaCl on the Au(111) surface in ultrahigh vacuum (UHV) conditions. Our results may serve as a prototypical system to provide important insights into tautomerization related issues, which should be intriguing to biochemistry, pharmaceutics, and other related fields. PMID:26322860

  20. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    DOE PAGESBeta

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen -Fei; Cooper, Valentino R.; Neaton, Jeffrey B.

    2016-03-24

    Using density functional theory (DFT) with van der Waals functionals, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously-studied monomeric phases. Moreover, using a model based on many-body perturbation theory within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. As a result, we find that, independent of coverage, the HOMO energy of the linear chain phase ismore » lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.« less

  1. The Effect of Ring Substitution Position on the Structural Conformation of Mercaptobenzoic Acid Self-Assembled Monolayers on Au(111)

    SciTech Connect

    Lee, J; Willey, T; Nilsson, J; Terminello, L; De Yoreo, J; van Buuren, T

    2006-04-12

    Near edge X-ray absorption fine structure (NEX-AFS) spectroscopy, photoemission spectroscopy (PES) and contact angle measurements have been used to examine the structure and bonding of self-assembled monolayers (SAMs) prepared on Au(111) from the positional isomers of mercaptobenzoic acid (MBA). The isomer of MBA and solvent chosen in SAM preparation has considerable bearing upon film morphology. Carbon K-edge NEXAFS measurements indicate that the monomers of 2-, 3- and 4-MBA have well-defined orientations within their respective SAMs. Monomers of 3- and 4-MBA assume an upright orientation on the Au substrates in monolayers prepared using an acetic acid in ethanol solvent. The aryl ring and carboxyl group of these molecules are tilted from the surface normal by a colatitudal angle of {approx} 30{sup o}. Preparation of 4-MBA SAMs using pure ethanol solvent, a more traditional means of synthesis, had no appreciable effect upon the monomer orientation. Nonetheless, S(2p) PES measurements illustrate that it results in extensive bilayer formation via carboxyl group hydrogen-bonding between 4-MBA monomers. In 2-MBA monolayers prepared using acetic acid/ethanol solvent, the monomers adopt a more prostrate orientation on the Au substrates, in which the aryl ring and carboxyl group of the molecules are tilted {approx} 50{sup o} from the surface normal. This configuration is consistent with an interaction between both the mercaptan sulfur and carboxyl group of 2-MBA with the underlying substrate. S(2p) and C(1s) PES experiments provide supporting evidence for a bidentate interaction between 2-MBA and Au(111).

  2. Adsorption studies of C6H6 on Cu (111), Ag (111), and Au (111) within dispersion corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Chwee, T. S.; Sullivan, M. B.

    2012-10-01

    The adsorption energies and changes in surface work functions for benzene on unreconstructed Cu(111), Ag (111), and Au (111) at low coverages have been studied within the framework of dispersion corrected Kohn-Sham density functional theory. Corrections to account for long range dispersive effects between the adsorbate and metal substrate were incorporated via the exchange-hole dipole moment method of Becke and Johnson [J. Chem. Phys. 123, 154101 (2005), 10.1063/1.2065267]. We show that the dispersion corrected calculations yield significantly improved adsorption energies and work function shifts that are in good agreement with experimental values.

  3. Characterization of one-dimensional molecular chains of 4,4′-biphenyl diisocyanide on Au(111) by scanning tunneling microscopy

    SciTech Connect

    Zhou, Jing; Li, Yan; Zahl, Percy; Sutter, Peter; Stacchiola, Dario J.; White, Michael G.

    2015-03-14

    The morphology and electronic structure of vapor deposited 4,4′-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy. When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [11{sup -}0] direction of the Au(111) substrate, but exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free —NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at −0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions.

  4. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    SciTech Connect

    Kroes, Geert-Jan Pavanello, Michele; Blanco-Rey, María; Alducin, Maite

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss

  5. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    NASA Astrophysics Data System (ADS)

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J.

    2014-08-01

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the

  6. Nanometer scale mechanical properties of Au(111) thin films

    SciTech Connect

    Salmeron, M.; Folch, A.; Neubauer, G.

    1992-11-01

    The mechanical properties of gold films of (111) orientation were studied as a function of load when contacted by a single asperity Pt-Rh alloy tip. The interaction forces were measured in the direction perpendicular to the surface. The contribution of various types of forces (van der Waals, capillarity from contaminants, and metallic adhesion) in the process of contact was determined. We investigated the elastic and plastic response of the gold film as a function of applied load by examination of the contact area in subsequent imaging with STM and AFM.

  7. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  8. A novel model for the (√3 × √3)R30° alkanethiolate-Au(111) phase based on alkanethiolate-Au adatom complexes.

    PubMed

    Carro, P; Torrelles, X; Salvarezza, R C

    2014-09-21

    Self-assembled monolayers of thiols on Au(111) have attracted considerable interest from the theoretical and experimental points of view as model systems for understanding the organization of molecules on metallic surfaces, and also as key elements in nanoscience and nanotechnology. Today, there is strong theoretical and experimental evidence indicating that the surface chemistry of these monolayers at high coverage involves dithiolate-adatom (RS-Auad-SR) species, showing the existence of the (3 × 4) and c(4 × 2) lattices usually observed by scanning tunneling microscopy. However, concealing the existence of dithiolate-Au adatom species with the presence of the paradigmatic (√3 × √3)R30° lattice, which dominates the structure of long alkanethiols, still remains a challenge. Here, we propose a novel (3√3 × 3√3)R30° structural model containing RS-Auad-SR moieties based on DFT calculations which reconciles most of the experimental data observed for the (√3 × √3)R30° lattice. Our results provide a unified picture of the surface chemistry of the thiol-Au(111) system. PMID:25093279

  9. Charge transfer interactions of a Ru(II) dye complex and related ligand molecules adsorbed on Au(111)

    SciTech Connect

    Britton, Andrew J.; Weston, Matthew; O'Shea, James N.; Taylor, J. Ben; Rienzo, Anna; Mayor, Louise C.

    2011-10-28

    The interaction of the dye molecule, N3 (cis-bis(isothiocyanato)bis(2,2{sup '}-bipyridyl-4,4{sup '}-dicarboxylato) -ruthenium(II)), and related ligand molecules with a Au(111) surface has been studied using synchrotron radiation-based electron spectroscopy. Resonant photoemission spectroscopy (RPES) and autoionization of the adsorbed molecules have been used to probe the coupling between the molecules and the substrate. Evidence of charge transfer from the states near the Fermi level of the gold substrate into the lowest unoccupied molecular orbital (LUMO) of the molecules is found in the monolayer RPES spectra of both isonicotinic acid and bi-isonicotinic acid (a ligand of N3), but not for the N3 molecule itself. Calibrated x-ray absorption spectroscopy and valence band spectra of the monolayers reveals that the LUMO crosses the Fermi level of the surface in all cases, showing that charge transfer is energetically possible both from and to the molecule. A core-hole clock analysis of the resonant photoemission reveals a charge transfer time of around 4 fs from the LUMO of the N3 dye molecule to the surface. The lack of charge transfer in the opposite direction is understood in terms of the lack of spatial overlap between the {pi}*-orbitals in the aromatic rings of the bi-isonicotinic acid ligands of N3 and the gold surface.

  10. Magnetism of CoPd self-organized alloy clusters on Au(111)

    NASA Astrophysics Data System (ADS)

    Ohresser, P.; Otero, E.; Wilhelm, F.; Rogalev, A.; Goyhenex, C.; Joly, L.; Bulou, H.; Romeo, M.; Speisser, V.; Arabski, J.; Schull, G.; Scheurer, F.

    2013-12-01

    Magnetic properties of gold-encapsulated CoxPd1-x self-organized nano-clusters on Au(111) are analyzed by x-ray magnetic circular dichroism for x = 0.5, 0.7, and 1.0. The clusters are superparamagnetic with a blocking temperature decreasing with increasing Pd concentration, due to a reduction of the out-of-plane anisotropy strength. No magnetic moment is detected on Pd in these clusters, within the detection limit, contrary to thick CoPd films. Both reduction of anisotropy and vanishing Pd moment are attributed to strain.

  11. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    SciTech Connect

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian; Pujals, Daniel Codorniu; Mikosch, Hans

    2014-07-28

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO{sub 2} gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

  12. Single-layer MoS2 on Au(111): Band gap renormalization and substrate interaction

    NASA Astrophysics Data System (ADS)

    Bruix, Albert; Miwa, Jill A.; Hauptmann, Nadine; Wegner, Daniel; Ulstrup, Søren; Grønborg, Signe S.; Sanders, Charlotte E.; Dendzik, Maciej; Grubišić Čabo, Antonija; Bianchi, Marco; Lauritsen, Jeppe V.; Khajetoorians, Alexander A.; Hammer, Bjørk; Hofmann, Philip

    2016-04-01

    The electronic structure of epitaxial single-layer MoS2 on Au(111) is investigated by angle-resolved photoemission spectroscopy, scanning tunneling spectroscopy, and first-principles calculations. While the band dispersion of the supported single layer is close to a free-standing layer in the vicinity of the valence-band maximum at K ¯ and the calculated electronic band gap on Au(111) is similar to that calculated for the free-standing layer, significant modifications to the band structure are observed at other points of the two-dimensional Brillouin zone: at Γ ¯, the valence-band maximum has a significantly higher binding energy than in the free MoS2 layer and the expected spin-degeneracy of the uppermost valence band at the M ¯ point cannot be observed. These band structure changes are reproduced by the calculations and can be explained by the detailed interaction of the out-of-plane MoS2 orbitals with the substrate.

  13. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  14. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  15. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  16. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  17. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  18. Formation, characterization, and stability of methaneselenolate monolayers on Au(111): an electrochemical high-resolution photoemission spectroscopy and DFT study.

    PubMed

    Cometto, F P; Calderón, C A; Morán, M; Ruano, G; Ascolani, H; Zampieri, G; Paredes-Olivera, P; Patrito, E M

    2014-04-01

    We investigated the mechanism of formation and stability of self-assembled monolayers (SAMs) of methaneselenolate on Au(111) prepared by the immersion method in ethanolic solutions of dimethyl diselenide (DMDSe). The adsorbed species were characterized by electrochemical measurements and high-resolution photoelectron spectroscopy (HR-XPS). The importance of the headgroup on formation mechanism and the stability of the SAMs was addressed by comparatively studying methaneselenolate (MSe) and methanethiolate (MT) monolayers. Density Functional Theory (DFT) calculations were performed to identify the elementary reaction steps in the mechanisms of formation and decomposition of the monolayers. Reductive desorption and HR-XPS measurements indicated that a MSe monolayer is formed at short immersion times by the cleavage of the Se-Se bond of DMDSe. However, the monolayer decomposes at long immersion times at room temperature, as evidenced by the appearance of atomic Se on the surface. The decomposition is more pronounced for MSe than for MT monolayers. The MSe monolayer stability can be greatly improved by two modifications in the preparation method: immersion at low temperatures (-20 °C) and the addition of a reducing agent to the forming solution. PMID:24645647

  19. Two-dimensional TiO x nanostructures on Au(111): a scanning tunneling microscopy and spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Tumino, F.; Carrozzo, P.; Mascaretti, L.; Casari, C. S.; Passoni, M.; Tosoni, S.; Bottani, C. E.; Li Bassi, A.

    2015-12-01

    We investigated the growth of titanium oxide two-dimensional nanostructures on Au(111), produced by Ti evaporation and post-deposition oxidation. Scanning tunneling microscopy and spectroscopy (STM and STS) and low-energy electron diffraction measurements characterized the morphological, structural and electronic properties of the observed structures. Five distinct TiO x phases were identified: the honeycomb and pinwheel phases appear as monolayer films wetting the gold surface, while nanocrystallites of the triangular, row and needle phases grow mainly over the honeycomb or pinwheel layers. Density Functional Theory investigation of the honeycomb structure supports a (2× 2) structural model based on a Ti-O bilayer having Ti 2 O 3 stoichiometry. The pinwheel phase was observed to evolve, for increasing coverage, from single triangular crystallites to a well-ordered film forming a (4\\sqrt{7}× 4\\sqrt{7})R19.1^\\circ superstructure, which can be interpreted within a moiré-like model. Structural characteristics of the other three phases were disclosed from the analysis of high-resolution STM measurements. STS measurements revealed a partial metallization of honeycomb and pinwheel and a semiconducting character of row and triangular phases.

  20. Advanced Materials for Neural Surface Electrodes

    PubMed Central

    Schendel, Amelia A.; Eliceiri, Kevin W.; Williams, Justin C.

    2015-01-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development. PMID:26392802

  1. Surface-enhanced Raman microspectroscopy at electrode surfaces

    SciTech Connect

    Hembree D.M. Jr.; Oswald, J.C.; Smyrl, N.R.

    1987-02-01

    Surface-enhanced Raman microspectroscopy has been developed as a technique for characterizing processes occurring at the electrode/electrolyte interface. A spectroelectrochemical cell was designed to obtain Raman spectra of electrochemical species with the use of microscope optics, which allowed unambiguous placement of laser focus at the electrode surface with spatial resolution on the order of 1 ..mu..m. It was also possible to visually inspect the surface morphology of the electrode with the use of the Raman microscope in the reflected-light mode. The capabilities of the spectroelectrochemical cell were demonstrated by observation of surface-enhanced Raman scattering (SERS) for a variety of model systems (pyridine, pyridinium ion, potassium cyanide) with the use of silver, copper, and nickel electrodes. The electrochemical behavior of a commercially important gold electroplating process is also reported.

  2. A study on the formation and thermal stability of 11-MUA SAMs on Au(111)/mica and on polycrystalline gold foils.

    PubMed

    Stettner, Johanna; Frank, Paul; Griesser, Thomas; Trimmel, Gregor; Schennach, Robert; Gilli, Eduard; Winkler, Adolf

    2009-02-01

    In this article we present a comprehensive study of 11-mercaptoundecanoic acid self-assembled monolayer (SAM) formation on gold surfaces. The SAMs were prepared in ethanolic solution, utilizing two different substrates: Au(111)/mica and polycrystalline gold foils. Several experimental methods (X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and atomic force microscopy) reveal a well-defined SAM. The main focus of this work, however, was to test the stability of these SAMs by thermal desorption spectroscopy. The spectra show different desorption peaks indicating different adsorption states and/or decomposition products on the surface. The assumed monolayer peak, which can be attributed to desorption of the intact molecule, is detected at 550 K. Further desorption peaks can be found, which result, e.g., from cracking of the S-C bond on the surface, depending on the substrate quality and on the residence time under ambient conditions. PMID:19119802

  3. Electronic Structure and Luminescence of Quasi-Freestanding MoS2 Nanopatches on Au(111)

    PubMed Central

    2016-01-01

    Monolayers of transition metal dichalcogenides are interesting materials for optoelectronic devices due to their direct electronic band gaps in the visible spectral range. Here, we grow single layers of MoS2 on Au(111) and find that nanometer-sized patches exhibit an electronic structure similar to their freestanding analogue. We ascribe the electronic decoupling from the Au substrate to the incorporation of vacancy islands underneath the intact MoS2 layer. Excitation of the patches by electrons from the tip of a scanning tunneling microscope leads to luminescence of the MoS2 junction and reflects the one-electron band structure of the quasi-freestanding layer. PMID:27459588

  4. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections

    SciTech Connect

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-03-28

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μ{sub B} distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of −1.45 and 1.45 eV.

  5. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections.

    PubMed

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-03-28

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μB distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of -1.45 and 1.45 eV. PMID:24697474

  6. Underpotential deposition of Cu on Au(111): Implications of the HB model

    NASA Astrophysics Data System (ADS)

    Blum, L.; Huckaby, Dale A.

    1994-05-01

    In recent papers a model for the underpotential deposition of Cu on Au(111) in the presence of bisulfate ions was proposed. In this model it was assumed that the bisulfate ions formed a square root of 3 times square root of 3 template. This template leaves a honeycomb lattice of free sites for the adsorption of copper. The clear implication is that the first peak has 2/3 of a monolayer of Cu. The second peak corresponds to the replacement of the bisulfate by copper in the adlayer. We showed also that the broad foot of the first peak is due to a second order hard hexagon like transition, which is seen experimentally by Itaya and Kolb. The interpretation, based on the STM and LEED observations, that the first peak corresponds to only 1/3 of a monolayer, is consistent with our model if it is the bisulfate ion that is actually seen in those experiments.

  7. Electronic Structure and Luminescence of Quasi-Freestanding MoS2 Nanopatches on Au(111).

    PubMed

    Krane, Nils; Lotze, Christian; Läger, Julia M; Reecht, Gaël; Franke, Katharina J

    2016-08-10

    Monolayers of transition metal dichalcogenides are interesting materials for optoelectronic devices due to their direct electronic band gaps in the visible spectral range. Here, we grow single layers of MoS2 on Au(111) and find that nanometer-sized patches exhibit an electronic structure similar to their freestanding analogue. We ascribe the electronic decoupling from the Au substrate to the incorporation of vacancy islands underneath the intact MoS2 layer. Excitation of the patches by electrons from the tip of a scanning tunneling microscope leads to luminescence of the MoS2 junction and reflects the one-electron band structure of the quasi-freestanding layer. PMID:27459588

  8. Identification of Non-Faradaic Processes by Measurement of the Electrochemical Peltier Heat during the Silver Underpotential Deposition on Au(111).

    PubMed

    Frittmann, Stefan; Halka, Vadym; Schuster, Rolf

    2016-04-01

    We measured the heat which is reversibly exchanged during the course of an electrochemical surface reaction, i.e., the deposition/dissolution of the first two monolayers of Ag on a Au(111) surface in (bi)sulfate and perchlorate containing electrolytes. The reversibly exchanged heat corresponds to the Peltier heat of the reaction and is linearly related to its entropy change, including also non-Faradaic side processes. Hence, the measurement of the Peltier heat provides thermodynamic information on the electrochemical processes which is complementary to the current-potential relations usually obtained by conventional electrochemical methods. From the variation of the molar Peltier heat during the various stages of the deposition reaction we inferred that co-adsorption processes of anions and Ag do not play a prominent role, while we find strong indications for a charge neutral substitution reaction of adsorbed anions by hydroxide, which would not show up in cyclic voltammetry. PMID:26916206

  9. Squeezing and stretching Pd thin films: A high-resolution STM study of Pd/Au(111) and Pd/Cu(111) bimetallics

    NASA Astrophysics Data System (ADS)

    Blecher, Mishan E.; Lewis, Emily A.; Pronschinske, Alex; Murphy, Colin J.; Mattera, Michael F. G.; Liriano, Melissa L.; Sykes, E. Charles H.

    2016-04-01

    Pd bimetallic alloys are promising catalysts, especially for heterogeneous reactions involving hydrogen, as they exhibit increased activity and reduced demand for expensive precious metals. Using scanning tunneling microscopy, we examine the structure of Pd thin films on Cu(111) and Au(111) and demonstrate compression and expansion, respectively, of the bulk Pd lattice constant in the film. The relative binding strength of H to the two surfaces, inferred via tip-induced diffusion barriers, suggests that the strain in these systems may alter adsorbate binding and corroborates well-known trends in d-band shifts calculated by the density functional theory. Modification to the topography and activity of Pd films based on the choice of substrate metal illustrates the value of bimetallic systems for designing less expensive, tunable catalysts.

  10. Structural reconstruction and spontaneous formation of Fe polynuclears: a self-assembly of Fe-porphyrin coordination chains on Au(111) revealed by scanning tunneling microscopy.

    PubMed

    Wang, Yuxu; Zhou, Kun; Shi, Ziliang; Ma, Yu-Qiang

    2016-06-01

    A self-assembled Fe-porphyrin coordination chain structure on a Au(111) surface is investigated by scanning tunneling microscopy (STM), revealing structural reconstruction resulting from an alternative change of molecular orientations and spontaneous formation of uniformly sized Fe polynuclears. The alternation of the molecular orientations is ascribed to the cooperation of the attractive coordination and the intermolecular steric repulsion as elucidated by high-resolution STM observations. Furthermore, chemical control experiments are carried out to determine the number of atoms in an Fe polynuclear, suggesting a tentative Fe dinuclear-module that serves not only as a coordination center to link porphyrin units together but also as a "dangling" site for further functionalization by a guest terpyridine ligand. The chain structure and the Fe polynuclears are stable up to 320 K as revealed by real-time STM scanning. Annealing at higher temperatures converts the chain structure into a two-dimensional coordination structure. PMID:27167835

  11. Self-assembly of mechanically interlocked and threaded rings: a HREELS and XPS study of thiol-functionalised catenane and rotaxane molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    De Nadaı̈, C.; Whelan, C. M.; Perollier, C.; Clarkson, G.; Leigh, D. A.; Caudano, R.; Rudolf, P.

    2000-05-01

    Thiol-functionalised catenane and rotaxane thin films were investigated in order to understand the self-assembly of such complex molecules on Au(111). Adsorption from the liquid phase at 300 K leads to the formation of overlayers without long-range order, as evidenced by high-resolution electron energy-loss spectroscopy (HREELS). As expected for thiol adsorption, the sulfur 2p binding energies determined by X-ray photoelectron spectroscopy (XPS) are consistent with the formation of thiolate surface intermediates. The properties of these films are explored as a function of annealing. Changes in vibrational spectra such as the emergence of a AuO band and variations in core-level binding energies and intensities reveal molecular rearrangement due to partial desorption. In addition, based on coherent domain sizes estimated by the angular width of the elastic beam intensity, annealing promotes long-range order within the adlayers.

  12. Electronic structure and electron dynamics at an organic molecule/metal interface: interface states of tetra-tert-butyl-imine/Au(111)

    NASA Astrophysics Data System (ADS)

    Hagen, Sebastian; Luo, Ying; Haag, Rainer; Wolf, Martin; Tegeder, Petra

    2010-12-01

    Time- and angle-resolved two-photon photoemission (2PPE) spectroscopies have been used to investigated the electronic structure, electron dynamics and localization at the interface between tetra-tert-butyl imine (TBI) and Au(111). At a TBI coverage of one monolayer (ML), the two highest occupied molecular orbitals, HOMO and HOMO-1, are observed at an energy of -1.9 and -2.6 eV below the Fermi level (EF), respectively, and coincide with the d-band features of the Au substrate. In the unoccupied electronic structure, the lowest unoccupied molecular orbital (LUMO) has been observed at 1.6 eV with respect to EF. In addition, two delocalized states that arise from the modified image potential at the TBI/metal interface have been identified. Their binding energies depend strongly on the adsorption structure of the TBI adlayer, which is coverage dependent in the submonolayer (<=1 ML) regime. Thus the binding energy of the lower interface state (IS) shifts from 3.5 eV at 1.0 ML to 4.0 eV at 0.5 ML, which is accompanied by a pronounced decrease in its lifetime from 100 fs to below 10 fs. This is a result of differences in the wave function overlap with electronic states of the Au(111) substrate at different binding energies. This study shows that in order to fully understand the electronic structure of organic adsorbates at metal surfaces, not only adsorbate- and substrate-induced electronic states have to be considered but also ISs, which are the result of a potential formed by the interaction between the adsorbate and the substrate.

  13. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  14. Experimental investigation of a thermionic converter with developed surface electrodes

    SciTech Connect

    Luke, J.R.; El-Genk, M.S.; Adrian, J.M.

    1997-01-01

    A thermionic converter with developed planar electrode surfaces is designed and tested. One of the electrodes has concentric circular grooves cut into its surface, while the other electrode surface is smooth. The grooves are 0.5 mm deep and 0.5 mm wide, having lands that are 1.0 mm wide. The experimental setup is flexible so that either the smooth or developed surface electrode can be operated as the emitter, with the other operating as the collector. The I-V characteristics and power output are compared for the two electrode arrangements. {copyright} {ital 1997 American Institute of Physics.}

  15. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, Martin P.; Welton, R. F.

    2011-09-26

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H{sup -} ion generation was increased by up to a factor of 5 by plasma electrode 'activation', without supplying additional Cs, by heating the collar to high temperature for several hours using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, optimum cesiation was produced (without additional Cs) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces. Such activation by accumulation of impurities on electrode surfaces can be a reason for H{sup -} emission enhancement in other so-called 'volume' negative ion sources.

  16. Interface Effects in Spin-crossover (SCO) Thin Films on Au(111)

    NASA Astrophysics Data System (ADS)

    Beniwal, Sumit; Zhang, Xin; Rosa, Patrick; Letard, Jean-Francois; Palamarciuc, Tatiana; Doudin, Bernard; Dowben, Peter; Enders, Axel

    2015-03-01

    Thin films of the SCO molecules [Fe(H2B(pz)2)2 (bipy)] on Au(111) are investigated. The growth mode is determined by low temperature scanning tunneling microscopy, whereas chemical and electronic properties are determined with X-ray photoemission spectroscopy (XPS) and inverse photoemission spectroscopy (IPES). The role of substrate in determining the electronic structure is determined from thickness and temperature dependent XPS. Thin films exhibit coexistence of Fe(II) and Fe(III) oxidation states, which is different from the Fe(II) oxidation state in bulk. The fraction of molecules in the Fe(II) state increases with film thickness, which suggests that the molecules at the interface are in the Fe(III) state. Cooling the films to 100 K triggers an irreversible transition from Fe(III) to Fe(II). This transition coincides with spin phase transition, where shift of the conduction band edge away from the Fermi level is observed in IPES. These results demonstrate that thin films of this complex have different phase transition behavior as compared to bulk-like samples and underline that substrate interaction is a powerful parameter to control their structural conformation, spin state as well as electronic properties.

  17. Electronic structure and excited state dynamics in a dicyanovinyl-substituted oligothiophene on Au(111).

    PubMed

    Bogner, Lea; Yang, Zechao; Corso, Martina; Fitzner, Roland; Bäuerle, Peter; Franke, Katharina J; Pascual, José Ignacio; Tegeder, Petra

    2015-10-28

    Dicyanovinyl (DCV)-substituted oligothiophenes are promising donor materials in vacuum-processed small-molecule organic solar cells. Here, we studied the structural and the electronic properties of DCV-dimethyl-pentathiophene (DCV5T-Me2) adsorbed on Au(111) from submonolayer to multilayer coverages. Using a multi-technique experimental approach (low-temperature scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), and two-photon photoemission (2PPE) spectroscopy), we determined the energetic position of several affinity levels as well as ionization potentials originating from the lowest unoccupied molecular orbitals (LUMO) and the highest occupied molecular orbitals (HOMO), evidencing a transport gap of 1.4 eV. Proof of an excitonic state was found to be a spectroscopic feature located at 0.6 eV below the LUMO affinity level. With increasing coverage photoemission from excitonic states gains importance. We were able to track the dynamics of several electronically excited states of multilayers by means of femtosecond time-resolved 2PPE. We resolved an intriguing relaxation dynamics involving four processes, ranging from sub-picosecond (ps) to several hundred ps time spans. These show a tendency to increase with increasing coverage. The present study provides important parameters such as energetic positions of transport levels as well as lifetimes of electronically excited states, which are essential for designing organic-molecule-based optoelectronic devices. PMID:26414934

  18. Ammonia adsorption on iron phthalocyanine on Au(111): Influence on adsorbate-substrate coupling and molecular spin

    SciTech Connect

    Isvoranu, Cristina; Ataman, Evren; Knudsen, Jan; Andersen, Jesper N.; Schnadt, Joachim; Wang Bin; Bocquet, Marie-Laure; Schulte, Karina

    2011-03-21

    The adsorption of ammonia on Au(111)-supported monolayers of iron phthalocyanine has been investigated by x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory calculations. The ammonia-induced changes of the x-ray photoemission lines show that a dative bond is formed between ammonia and the iron center of the phthalocyanine molecules, and that the local spin on the iron atom is quenched. This is confirmed by density functional theory, which also shows that the bond between the iron center of the metalorganic complex and the Au(111) substrate is weakened upon adsorption of ammonia. The experimental results further show that additional adsorption sites exist for ammonia on the iron phthalocyanine monolayer.

  19. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  20. LEED I/V determination of the structure of a MoO3 monolayer on Au(111): Testing the performance of the CMA-ES evolutionary strategy algorithm, differential evolution, a genetic algorithm and tensor LEED based structural optimization

    NASA Astrophysics Data System (ADS)

    Primorac, E.; Kuhlenbeck, H.; Freund, H.-J.

    2016-07-01

    The structure of a thin MoO3 layer on Au(111) with a c(4 × 2) superstructure was studied with LEED I/V analysis. As proposed previously (Quek et al., Surf. Sci. 577 (2005) L71), the atomic structure of the layer is similar to that of a MoO3 single layer as found in regular α-MoO3. The layer on Au(111) has a glide plane parallel to the short unit vector of the c(4 × 2) unit cell and the molybdenum atoms are bridge-bonded to two surface gold atoms with the structure of the gold surface being slightly distorted. The structural refinement of the structure was performed with the CMA-ES evolutionary strategy algorithm which could reach a Pendry R-factor of ∼ 0.044. In the second part the performance of CMA-ES is compared with that of the differential evolution method, a genetic algorithm and the Powell optimization algorithm employing I/V curves calculated with tensor LEED.

  1. Electron Transfer Mechanism in Gold Surface Modified with Self-Assembly Monolayers from First Principles

    NASA Astrophysics Data System (ADS)

    Lima, Filipe C. D. A.; Iost, Rodrigo M.; Crespilho, Frank N.; Caldas, Marília J.; Calzolari, Arrigo; Petrilli, Helena M.

    2013-03-01

    We report the investigation of electron tunneling mechanism of peptide ferrocenyl-glycylcystamine self-assembled monolayers (SAMs) onto Au (111) electrode surfaces. Recent experimental investigations showed that electron transfer in peptides can occur across long distances by separating the donor from the acceptor. This mechanism can be further fostered by the presence of electron donor terminations of Fc terminal units on SAMs but the charge transfer mechanism is still not clear. We study the interaction of the peptide ferrocenyl-glycylcystamine on the Au (111) from first principles calculations to evaluate the electron transfer mechanism. For this purpose, we used the Kohn Sham (KS) scheme for the Density Functional Theory (DFT) as implemented in the Quantum-ESPRESSO suit of codes, using Vandebilt ultrasoft pseudopotentials and GGA-PBE exchange correlation functional to evaluate the ground-state atomic and electronic structure of the system. The analysis of KS orbital at the Fermi Energy showed high electronic density localized in Fc molecules and the observation of a minor contribution from the solvent and counter ion. Based on the results, we infer evidences of electron tunneling mechanism from the molecule to the Au(111). We acknowledge FAPESP for grant support. Also, LCCA/USP, RICE and CENAPAD for computational resources.

  2. Structure and Electronic Properties of Polymer Chains and Graphene Nanoribbon Formed by Molecular Self-Assembly on Au(111)

    NASA Astrophysics Data System (ADS)

    Ma, Chuanxu; Fuentes-Cabrera, Miguel A.; Sumpter, Bobby G.; Hong, Kunlun; Li, An-Ping; Xiao, Zhongcan; Lu, Wenchang; Bernholc, J.

    Graphene nanoribbons (GNRs) with bandgaps are promising building blocks for ultra-fast electronics. Bottom-up synthesis of GNRs from aromatic hydrocarbon molecules has been proven to be an effective way to control GNR's width with atomically precise edge structures. Using scanning tunneling microscopy (STM), we study the formation of both linear polymer chains and narrow GNRs in the bottom-up self-assembly process with the DBBA molecules as the precursor on Au(111). The linear polymer chains are formed after the deposition of DBBA and 200 °C annealing for 30 min. The polymers can be converted to 7-AGNRs (seven-carbon wide armchair GNRs) after 400 °C annealing. Interestingly, second-layer polymer is seen to survive on the GNRs during the annealing process. This result indicates that the Au(111) substrate plays an important role in the dehydrogenation process and the formation of GNRs, which is confirmed by our DFT calculations. Electronically, the polymers show a bandgap of 3.4 eV, much larger than that of GNRs. After annealing at 500 °C for 30 min, wider GNRs can form: 14-AGNR, 21-AGNR. The 7-AGNR shows a typical edge state at -1.1 eV, while for 14-AGNR it is at -1.35 eV. Moreover, junctions of GNRs with different widths can be formed with pronounced boundary states.

  3. High resolution electrochemical STM : new structural results for underpotentially deposited Cu on Au(111) in acid sulfate solution.

    SciTech Connect

    Sieradzki, Karl; Vasiljevic, Natasa; Viyannalage, L.K.T.; Dimitrov, Nikolay

    2007-09-01

    Adsorption of sulfate assists Cu monolayer underpotential deposition (upd) on Au(111) in a unique way, rendering two distinct structural stages: (i) formation of a low-density Cu phase at coverage of 2/3 ML known as the ({radical}3 x {radical}3) R30{sup o} or honeycomb phase; (ii) formation of a complete monolayer, i.e., Cu-(1 x 1) phase pseudomorphic with respect to underlying Au(111) substrate. In this paper we present new structural in situ scanning tunneling microscopy (STM) results for this system. We show and discuss the STM imaging of the copper honeycomb superstructure probed underneath the co-adsorbed ({radical}3 x {radical}3)R30{sup o} sulfate adlayer in the low-density phase. High resolution imaging during the phase transition from the low to high density copper phase unambiguously shows the existence of an ordered sulfate structure p(2 x 2) on the pseudomorphic Cu-(1 x 1) layer. The new structure is seen during the co-existence of two copper phases as well as upon completion of the Cu-(1 x 1) monolayer. While supported by earlier chronocoulometric measurements in the same system, the new structural results raise questions that need to be addressed in a future work.

  4. GolP-CHARMM: First-Principles Based Force Fields for the Interaction of Proteins with Au(111) and Au(100).

    PubMed

    Wright, Louise B; Rodger, P Mark; Corni, Stefano; Walsh, Tiffany R

    2013-03-12

    Computational simulation of peptide adsorption at the aqueous gold interface is key to advancing the development of many applications based on gold nanoparticles, ranging from nanomedical devices to smart biomimetic materials. Here, we present a force field, GolP-CHARMM, designed to capture peptide adsorption at both the aqueous Au(111) and Au(100) interfaces. The force field, compatible with the bio-organic force field CHARMM, is parametrized using a combination of experimental and first-principles data. Like its predecessor, GolP (Iori, F.; et al. J. Comput. Chem.2009, 30, 1465), this force field contains terms to describe the dynamic polarization of gold atoms, chemisorbing species, and the interaction between sp(2) hybridized carbon atoms and gold. A systematic study of small molecule adsorption at both surfaces using the vdW-DF functional (Dion, M.; et al. Phys. Rev. Lett.2004, 92, 246401-1. Thonhauser, T.; et al. Phys. Rev. B2007, 76, 125112) is carried out to fit and test force field parameters and also, for the first time, gives unique insights into facet selectivity of gold binding in vacuo. Energetic and spatial trends observed in our DFT calculations are reproduced by the force field under the same conditions. Finally, we use the new force field to calculate adsorption energies, under aqueous conditions, for a representative set of amino acids. These data are found to agree with experimental findings. PMID:26587623

  5. Influence of molecular ordering on electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111)

    SciTech Connect

    Qi, Yabing; Liu, Xiaosong; Hendriksen, B.L.M.; Navarro, V.; Park, Jeong Y.; Ratera, Imma; Klopp, J.M.; Edder, C.; Himpsel, Franz J.; Frechet, J.M.J.; Haller, Eugene E.; Salmeron, Miquel

    2010-04-21

    The electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers (SAMs) on Au(111) were investigated using atomic force microscopy (AFM) and near edge x-ray absorption fine structure spectroscopy (NEXAFS). The sample surface was uniformly covered with a molecular film consisting of very small grains. Well-ordered and flat monolayer islands were formed after the sample was heated in nitrogen at 120 oC for 1 h. While lattice resolved AFM images revealed a crystalline phase in the islands, the area between islands showed no order. The islands exhibit substantial reduction (50percent) in friction, supporting the existence of good ordering. NEXAFS measurements revealed an average upright molecular orientation in the film, both before and after heating, with a narrower tilt-angle distribution for the heated fim. Conductance-AFM measurements revealed a two orders of magnitude higher conductivity on the ordered islands than on the disordered phase. We propose that the conductance enhancement is a result of a better pi-pi stacking between the trans-stilbene molecular units as a result of improved ordering in islands.

  6. Electrochemical, high-resolution photoemission spectroscopy and vdW-DFT study of the thermal stability of benzenethiol and benzeneselenol monolayers on Au(111).

    PubMed

    Cometto, F P; Patrito, E M; Paredes Olivera, P; Zampieri, G; Ascolani, H

    2012-09-25

    The preparation and thermal stability of benzenethiol and benzeneselenol self-assembled monolayers (SAMs) grown on Au(111) have been investigated by electrochemical experiments and high-resolution photoemission spectroscopy. Both techniques confirm the formation of monolayers with high packing densities (θ = 0.27-0.29 ML) and good degrees of order in both cases. Despite many similarities between the two SAMs, the thermal desorption is distinctly different: whereas the benzenethiol SAM desorbs in a single steplike process, the desorption of the benzeneselenol SAM occurs with a much lower activation energy and involves the cleavage of some Se-C bonds and a change in molecular configuration from standing up to lying down. This behavior is explained by considering the different nature of the bonding of the headgroup with the metal surface and with the phenyl ring. Density functional theory calculations show that the breakage of the Se-C bond has a lower activation energy barrier than the breakage of the S-C bond. PMID:22946792

  7. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  8. Surface-enhanced Raman spectroscopy of surfactants on silver electrodes

    SciTech Connect

    Sun, Soncheng; Birke, R.L.; Lombardi, J.R. )

    1990-03-08

    Surface-enhanced Raman spectroscopy (SERS) has been used to study different kinds of surfactants (cationic, anionic, and nonionic surfactants) adsorbed on a roughened Ag electrode. Spectral assignments are made for the SERS spectrum of cetylpyridinium chloride (CPC), and it is shown that the molecule is oriented with its pyridinium ring end-on at the electrode surface at potentials positive to the point of zero charge (pzc) on Ag.

  9. Charge transfer dynamics of 3,4,9,10-perylene-tetracarboxylic-dianhydride molecules on Au(111) probed by resonant photoemission spectroscopy.

    PubMed

    Cao, Liang; Wang, Yu-Zhan; Chen, Tie-Xin; Zhang, Wen-Hua; Yu, Xiao-Jiang; Ibrahim, Kurash; Wang, Jia-Ou; Qian, Hai-Jie; Xu, Fa-Qiang; Qi, Dong-Chen; Wee, Andrew T S

    2011-11-01

    Charge transfer dynamics across the lying-down 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) organic semiconductor molecules on Au(111) interface has been investigated using the core-hole clock implementation of resonant photoemission spectroscopy. It is found that the charge transfer time scale at the PTCDA∕Au(111) interface is much larger than the C 1s core-hole lifetime of 6 fs, indicating weak electronic coupling between PTCDA and the gold substrate due to the absence of chemical reaction and∕or bonding. PMID:22070311

  10. High surface area electrode for high efficient microbial electrosynthesis

    NASA Astrophysics Data System (ADS)

    Nie, Huarong; Cui, Mengmeng; Lu, Haiyun; Zhang, Tian; Russell, Thomas; Lovley, Derek

    2012-02-01

    Microbial electrosynthesis, a process in which microorganisms directly accept electrons from an electrode to convert carbon dioxide and water into multi carbon organic compounds, affords a novel route for the generation of valuable products from electricity or even wastewater. The surface area of the electrode is critical for high production. A biocompatible, highly conductive, three-dimensional cathode was fabricated from a carbon nanotube textile composite to support the microorganism to produce acetate from carbon dioxide. The high surface area and macroscale porous structure of the intertwined CNT coated textile ?bers provides easy microbe access. The production of acetate using this cathode is 5 fold larger than that using a planar graphite electrode with the same volume. Nickel-nanowire-modified carbon electrodes, fabricated by microwave welding, increased the surface area greatly, were able to absorb more bacteria and showed a 1.5 fold increase in performance

  11. Diaphragmatic activity induced by cortical stimulation: surface versus esophageal electrodes.

    PubMed

    Gea, J; Espadaler, J M; Guiu, R; Aran, X; Seoane, L; Broquetas, J M

    1993-02-01

    Evoked responses of the diaphragm can be induced by magnetic cortical stimulation and recorded by either surface or esophageal electrodes. The former recording system is tolerated better by the patient but has potential problems with the specificity of the diaphragmatic signal. This study compares the responses of the diaphragm to cortical stimulation that were recorded simultaneously with surface and esophageal electrodes on seven patients (61 +/- 4 yr) with chronic obstructive pulmonary diseases. Stimuli were delivered in three ventilatory conditions: at baseline, during deep breathing, and during voluntary panting. No differences were observed between results recorded by surface and esophageal electrodes [amplitude of the compound motor of the action potential (CMAP), 0.8 +/- 0.1 vs. 0.8 +/- 0.1 mV, NS; latency, 13.1 +/- 0.4 vs. 12.6 +/- 0.5 ms, NS]. In addition, significant correlations were found (CMAP, r = 0.77, P < 0.001; latency, r = 0.71, P = 0.002). The concordance analysis, however, indicated some dissimilarity between the recordings of the electrodes (CMAP, R1 = 0.31; latency, R1 = 0.26). These differences may be due to the area of the muscle mainly recorded by each electrode and/or to the additional activity from other muscles recorded by surface electrodes. On the other hand, the diaphragmatic responses observed in these patients with chronic obstructive pulmonary diseases were similar to those previously reported in healthy subjects. PMID:8458780

  12. Self-assembled monolayers of a bis(pyrazol-1-yl)pyridine-substituted thiol on Au(111).

    PubMed

    Shen, Cai; Haryono, Marco; Grohmann, Andreas; Buck, Manfred; Weidner, Tobias; Ballav, Nirmalya; Zharnikov, Michael

    2008-11-18

    Self-assembled monolayers (SAMs) of a bis(pyrazol-1-yl)pyridine-substituted thiol (bpp-SH) on Au (111)/mica were studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). Using substrates precoated with perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA), preparation at elevated temperatures yields highly ordered layers whose structure is described by a rectangular (5 x radical3) unit cell containing one molecule. The bis(pyrazol-1-yl)pyridine (bpp) units exhibit pi-stacking along the 112 direction, and they are tilted significantly. We conclude the three imine nitrogen atoms in the bpp headgroup adopt a trans,trans arrangement. PMID:18950209

  13. Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy.

    PubMed Central

    Wagner, P; Hegner, M; Kernen, P; Zaugg, F; Semenza, G

    1996-01-01

    We have worked out a procedure for covalent binding of native biomacromolecules on flat gold surfaces for scanning probe microscopy in aqueous buffer solutions and for other nanotechnological applications, such as the direct measurement of interaction forces between immobilized macromolecules, of their elastomechanical properties, etc. It is based on the covalent immobilization of amino group-containing biomolecules (e.g., proteins, phospholipids) onto atomically flat gold surfaces via omega-functionalized self-assembled monolayers. We present the synthesis of the parent compound, dithio-bis(succinimidylundecanoate) (DSU), and a detailed study of the chemical and physical properties of the monolayer it forms spontaneously on Au(111). Scanning tunneling microscopy and atomic force microscopy (AFM) revealed a monolayer arrangement with the well-known depressions that are known to stem from an etch process during the self-assembly. The total density of the omega-N-hydroxysuccinimidyl groups on atomically flat gold was 585 pmol/cm(2), as determined by chemisorption of (14)C-labeled DSU. This corresponded to approximately 75% of the maximum density of the omega-unsubstituted alkanethiol. Measurements of the kinetics of monolayer formation showed a very fast initial phase, with total coverage within 30 S. A subsequent slower rearrangement of the chemisorbed molecules, as indicated by AFM, led to a decrease in the number of monolayer depressions in approximately 60 min. The rate of hydrolysis of the omega-N-hydroxysuccinimide groups at the monolayer/water interface was found to be very slow, even at moderately alkaline pH values. Furthermore, the binding of low-molecular-weight amines and of a model protein was investigated in detail. Images FIGURE 1 FIGURE 2 FIGURE 9 PMID:9172730

  14. Chemical and morphological characteristics of lithium electrode surfaces

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D.; Vasquez, R. P.; Grunthaner, F. J.; Somoano, R. B.

    1981-01-01

    Lithium electrode surfaces were analyzed for chemical and morphological characteristics, using electron spectroscopy chemical analysis (ESCA) and scanning electron microscopy (SEM). Samples included lithium metal and lithium electrodes which were cycled in a 1.5 M lithium arsenic hexafluoride/two-methyl tetrahydrofuran electrolyte. Results show that the surface of the as-received lithium metal was already covered by a film composed of LiO2 and an Li2O/CO2 adduct with a thickness of approximately 100-200 A. No evidence of Ni3 was found. Upon exposure of the lithium electrode to a 1.5 M LiAsF6/2-Me-THF electrochemical environment, a second film was observed to form on the surface, consisting primarily of As, Si, and F, possibly in the form of lithium arsenic oxyfluorides or lithium fluorosilicates. It is suggested that the film formation may be attributed to salt degradation.

  15. Field-free junctions for surface electrode ion traps

    NASA Astrophysics Data System (ADS)

    Jordens, Robert; Schmied, R.; Blain, M. G.; Leibfried, D.; Wineland, D.

    2015-05-01

    Intersections between transport guides in a network of RF ion traps are a key ingredient to many implementations of scalable quantum information processing with trapped ions. Several junction architectures demonstrated so far are limited by varying radial secular frequencies, a reduced trap depth, or a non-vanishing RF field along the transport channel. We report on the design and progress in implementing a configurable microfabricated surface electrode Y-junction that employs switchable RF electrodes. An essentially RF-field-free pseudopotential guide between any two legs of the junction can be established by applying RF potential to a suitable pair of electrodes. The transport channel's height above the electrodes, its depth and radial curvature are constant to within 15%. Supported by IARPA, Sandia, NSA, ONR, and the NIST Quantum Information Program.

  16. Multilayer Interconnects for Microfabricated Surface Electrode Ion Traps

    NASA Astrophysics Data System (ADS)

    Amini, Jason; Seidelin, Signe; Wesenberg, Janus; Britton, Joe; Blakestad, Brad; Brown, Kenton; Epstein, Ryan; Home, Jonathan; Jost, John; Langer, Chris; Leibfried, Dietrich; Ozeri, Roee; Wineland, David

    2007-06-01

    Microfabricated surface electrode traps for ions are a promising technology for building scalable trapping geometries for quantum information processing. We have expanded upon our single layer gold-on-fused-silica surface electrode trap [1] to include a second patterned conducting layer under the trapping electrodes and have demonstrated the fabrication of this architecture using standard microfabrication techniques. The multilayer approach allows for a significant increase in multi-zone trapping complexity and permits improved trapping structures that are otherwise unattainable in single layer designs without vertical interconnects through the wafer. Using improved calculational methods [2], we are in the process of optimizing the planar designs to create modular elements that can be joined into larger multi-zone trapping structures. Work supported by DTO and NIST. 1. S. Seidelin et al., Phys. Rev. Lett. 96, 253003 (2006). Also, see the abstract by S. Seidelin. 2. See the abstract by J. H. Wesenberg.

  17. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    PubMed Central

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM

  18. Surface-Plasmon Enhanced Transparent Electrodes in Organic Photovoltaics

    SciTech Connect

    Reilly III, T. H.; van de Lagemaat, J.; Tenent, R. C.; Morfa, A. J.; Rowlen, K. L.

    2008-01-01

    Random silver nanohole films were created through colloidal lithography techniques and metal vapor deposition. The transparent electrodes were characterized by uv-visible spectroscopy and incorporated into an organic solar cell. The test cells were evaluated for solar power-conversion efficiency and incident photon-to-current conversion efficiency. The incident photon-to-current conversion efficiency spectra displayed evidence that a nanohole film with 92 nm diameter holes induces surface-plasmon-enhanced photoconversion. The nanohole silver films demonstrate a promising route to removing the indium tin oxide transparent electrode that is ubiquitous in organic optoelectronics.

  19. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chen, Shu-Ming; Chen, Ping-Xing; Wu, Wei

    2014-11-01

    An accurate and rapid method is proposed to optimize anharmonic linear surface-electrode ion trap design. Based on the method, we analyze the impact of the architectural parameters, including the width, number, and applied voltage of prerequisite active electrodes, on the number and spacing of trapped ions. Sets of optimal anharmonic trap design are given. Then the optimal designs are verified by using an ant colony optimization algorithm. The results show that the maximum ion position errors and maximum ion spacing errors are less than 1 μm up to 80. The mean of the maximum errors is nearly linear with respect to the number of trapped ions.

  20. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  1. Hot-rolling nanowire transparent electrodes for surface roughness minimization

    PubMed Central

    2014-01-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases. PMID:24994963

  2. Hot-rolling nanowire transparent electrodes for surface roughness minimization

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Khaligh, Hadi; Goldthorpe, Irene A.

    2014-06-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases.

  3. Effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Pugal, David; Kim, Kwang

    2014-03-01

    This study investigates the effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors. A physics-based mechanoelectrical transduction model was developed that takes into account the electrode surface profile (shape) by describing the polymer-electrode interface as a Koch fractal structure. Based on the model, the electrode surface effects were experimentally investigated in case of IPMCs with Pd-Pt electrodes. IPMCs with different electrode surface structures were fabricated through electroless plating process by appropriately controlling the synthesis parameters and conditions. The changes in the electrode surface morphology and the corresponding effects on the IPMC mechanoelectrical transduction were examined. Our experimental results indicate that increasing the dispersion of Pd particles near the membrane surface, and thus the polymer-electrode interfacial area, leads to a higher peak mechanoelectrically induced voltage of IPMC. However, the overall effect of the electrode surface structure is relatively low compared to the electromechanical transduction, which is in good agreement with theoretical prediction.

  4. High surface area, low weight composite nickel fiber electrodes

    NASA Technical Reports Server (NTRS)

    Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.

    1993-01-01

    The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.

  5. Cryogenic ion trapping systems with surface-electrode traps

    NASA Astrophysics Data System (ADS)

    Antohi, P. B.; Schuster, D.; Akselrod, G. M.; Labaziewicz, J.; Ge, Y.; Lin, Z.; Bakr, W. S.; Chuang, I. L.

    2009-01-01

    We present two simple cryogenic rf ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 h. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with S88r+ ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 min.

  6. A van der Waals density functional investigation of carboranethiol self-assembled monolayers on Au(111).

    PubMed

    Mete, Ersen; Yılmaz, Ayşen; Danışman, Mehmet Fatih

    2016-05-14

    Isolated and full monolayer adsorption of various carboranethiol (C2B10H12S) isomers on the gold(111) surface has been investigated using both the standard and van der Waals density functional theory calculations. The effect of different molecular dipole moment orientations on the low energy adlayer geometries, the binding characteristics and the electronic properties of the self-assembled monolayers of these isomers has been studied. Specifically, the binding energy and work function changes associated with different molecules show a correlation with their dipole moments. The adsorption is favored for the isomers with dipole moments parallel to the surface. Of the two possible unit cell structures, (5 × 5) was found to be more stable than . PMID:27108565

  7. Effect of multipactor conditioning on technical electrode surfaces

    SciTech Connect

    Graves, T. P.; Spektor, R.; Stout, P.

    2009-11-26

    Historically, multipactor conditioning has been utilized to remove surface contaminants from rf electrodes by electron-stimulated gas desorption, and such conditioning has been shown to reduce multipactor susceptibility. Multipactor threshold improvements are due to increasing E{sub 1}, the minimum energy for the secondary electron coefficient, {delta}>1, such that resonant electrons are incapable of producing discharge-sustaining secondary emission. Using an rf amplitude sweep technique, the evolution of the multipactor threshold is measured as a function of multipactor conditioning time for a series of technical electrode surfaces. Results show over +3 dB of threshold improvement in copper and gold electrodes, while the aluminum threshold actually decreases with conditioning exposure. Additionally, these conditioning results indicate the possible voltage region for transient-mode multipaction (TMM), which can cause significant risk to rf systems such as space satellite components for which in-situ conditioning is generally not possible. Experimental results and supporting Monte Carlo particle tracking simulation results are presented.

  8. Generation of solution plasma over a large electrode surface area

    NASA Astrophysics Data System (ADS)

    Saito, Genki; Nakasugi, Yuki; Akiyama, Tomohiro

    2015-07-01

    Solution plasma has been used in a variety of fields such as nanomaterials synthesis, the degradation of harmful substances, and solution analysis. However, as existing methods are ineffective in generating plasma over a large surface area, this study investigated the contact glow discharge electrolysis, in which the plasma was generated on the electrode surface. To clarify the condition of plasma generation, the effect of electrolyte concentration and temperature on plasma formation was studied. The electrical energy needed for plasma generation is higher than that needed to sustain a plasma, and when the electrolyte temperature was increased from 32 to 90 °C at 0.01 M NaOH solution, the electric power density for vapor formation decreased from 2005 to 774 W/cm2. From these results, we determined that pre-warming of the electrolyte is quite effective in generating plasma at lower power density. In addition, lower electrolyte concentrations required higher power density for vapor formation owing to lower solution conductivity. On the basis these results, a method for large-area and flat-plate plasma generation is proposed in which an initial small area of plasma generation is extended. When used with a plate electrode, a concentration of current to the edge of the plate meant that plasma could be formed by covering the edge of the electrode plate.

  9. Li{sup +}-ion neutralization on metal surfaces and thin films

    SciTech Connect

    Chen Lin; Shen Jie; Jia Juanjuan; Kandasamy, Thirunavukkarasu; Bobrov, Kirill; Guillemot, Laurent; Esaulov, Vladimir A.; Fuhr, Javier D.; Martiarena, Maria Luz

    2011-11-15

    Li{sup +} ions with energies ranging from 0.3 to 2 keV are scattered from Au(110) and Pd(100) surfaces and from ultrathin Ag film grown on Au(111) in order to study electron transfer phenomena. We find that neutralization occurs quite efficiently and find an anomalous ion energy dependence of the neutral fraction for Au(110) and Pd(100) surfaces previously noted for Au(111). The dependence of the neutral fraction on the azimuthal angle of the Au(110) and Pd(100) surfaces is reported. In the case of Ag monolayer on Au(111), results are similar to the case of the Ag(111) surface. To understand the anomalous ion energy dependence, we present a theoretical study using density functional theory (DFT) and a linearized rate equation approach, which allows us to follow the Li charge state evolution for the (111) surfaces of Ag, Au, and Cu, and for the Ag-covered Au(111) surface.

  10. Doping level influence on chemical surface of diamond electrodes

    NASA Astrophysics Data System (ADS)

    Azevedo, A. F.; Baldan, M. R.; Ferreira, N. G.

    2013-04-01

    The modification of surface bond termination promoted by the doping level on diamond electrodes is analyzed. The films were prepared by hot filament chemical vapor deposition technique using the standard mixture of H2/CH4 with an extra H2 flux passing through a bubbler containing different concentrations of B2O3 dissolved in methanol. Diamond morphology and quality were characterized by scanning electron microscopy and Raman scattering spectroscopy techniques while the changes in film surfaces were analyzed by contact angle, cyclic voltammetry and synchrotron X-ray photoelectron spectroscopy (XPS). The boron-doped diamond (BDD) films hydrophobicity, reversibility, and work potential window characteristics were related to their physical properties and chemical surface, as a function of the doping level. From the Mott-Schottky plots (MSP) and XPS analyzes, for the lightly (1018 cm-3) and highly (1020 cm-3) BDD films, the relationship between the BDD electrochemical responses and their surface bond terminations is discussed.