Science.gov

Sample records for auni aasmaa lya

  1. Fabrication of Au/Ni Multilayered Nanowires by Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Saidin, N. U.; Kok, K. Y.; Ng, I. K.; Ilias, S. H.

    2013-04-01

    Electrochemical deposition of Au/Ni multilayered nanowires using template-assisted growth technique from electrolyte containing nickel chloride and gold solution was studied in details. 60 μm-thick anodized aluminum oxide (AAO) with pore diameter of 200 nm was used as the template. Chronopotentiometry experiments were first carried out to determine the deposition conditions and the growth rate of individual Au and Ni layers. Scanning electron microscopy results revealed that the pore channels of AAO were completely filled with Au/Ni multisegmented nanowires. By selectively removing the Ni segments in the multilayered nanowires, high-yield of pure gold nanorods were obtained. Detailed studies on the nanostructures obtained were carried out using various microscopy and probe-based techniques for structural, morphological and chemical characterizations.

  2. An Exploration of Catalytic Chemistry on Au/Ni(111)

    SciTech Connect

    Sylvia T. Ceyer

    2011-12-09

    This project explored the catalytic oxidation chemistry that can be effected on a Au/Ni(111) surface alloy. A Au/Ni(111) surface alloy is a Ni(111) surface on which less than 60% of the Ni atoms are replaced at random positions by Au atoms. The alloy is produced by vapor deposition of a small amount of Au onto Ni single crystals. The Au atoms do not result in an epitaxial Au overlayer or in the condensation of the Au into droplets. Instead, Au atoms displace and then replace Ni atoms on a Ni(111) surface, even though Au is immiscible in bulk Ni. The two dimensional structure of the clean Ni surface is preserved. This alloy is found to stabilize an adsorbed peroxo-like O2 species that is shown to be the critical reactant in the low temperature catalytic oxidation of CO and that is suspected to be the critical reactant in other oxidation reactions. This investigation revealed a new, practically important catalyst for CO oxidation that has since been patented.

  3. Solid-state dewetting of Au/Ni bilayers: The effect of alloying on morphology evolution

    SciTech Connect

    Herz, A.; Wang, D. Kups, Th.; Schaaf, P.

    2014-07-28

    The solid-state dewetting of thin Au/Ni bilayers deposited onto SiO{sub 2}/Si substrates is investigated. A rapid thermal treatment is used to induce the dewetting process by an increase in temperature. The evolution of the (111) peaks of X-ray diffraction reveals a characteristic change due to mixing of Au and Ni. At low temperature, the Au-Ni thin film is found to break up at the phase boundaries and growing voids are shown to be surrounded by a Ni-rich phase. Branch-like void growth is observed. Upon annealing at increasing temperatures, Au-Ni solid solutions are formed well above the bulk equilibrium solubility of Au and Ni. It is found that this metastable phase formation makes the Au-Ni thin film less vulnerable to rupturing. Moreover, growth mode of still evolving voids changes into a more regular, faceted one due to alloying. Finally, it is shown that annealing above the miscibility gap forms supersaturated, well-oriented Au-Ni solid solution agglomerates via dewetting.

  4. Solid-state dewetting of Au/Ni bilayers: The effect of alloying on morphology evolution

    NASA Astrophysics Data System (ADS)

    Herz, A.; Wang, D.; Kups, Th.; Schaaf, P.

    2014-07-01

    The solid-state dewetting of thin Au/Ni bilayers deposited onto SiO2/Si substrates is investigated. A rapid thermal treatment is used to induce the dewetting process by an increase in temperature. The evolution of the (111) peaks of X-ray diffraction reveals a characteristic change due to mixing of Au and Ni. At low temperature, the Au-Ni thin film is found to break up at the phase boundaries and growing voids are shown to be surrounded by a Ni-rich phase. Branch-like void growth is observed. Upon annealing at increasing temperatures, Au-Ni solid solutions are formed well above the bulk equilibrium solubility of Au and Ni. It is found that this metastable phase formation makes the Au-Ni thin film less vulnerable to rupturing. Moreover, growth mode of still evolving voids changes into a more regular, faceted one due to alloying. Finally, it is shown that annealing above the miscibility gap forms supersaturated, well-oriented Au-Ni solid solution agglomerates via dewetting.

  5. Sclerometric study of galvanic AuNi and AuCo coatings

    NASA Astrophysics Data System (ADS)

    Shugurov, A. R.; Panin, A. V.; Shesterikov, E. V.

    2011-03-01

    Mechanisms of wear in galvanic AuNi and AuCo coatings have been studied using the methods of sclerometry and atomic force microscopy. It is demonstrated that the scratch test at a small load can be used for a comparative analysis of the resistance of metal coatings to abrasive wear. It is established that a developed surface relief related to the formation of grain agglomerates provides for a higher wear resistance of AuCo coatings as compared to that of smooth AuNi films, which is explained by dissipation of the elastic energy of the contact interaction of the sclerometric indenter with the sample surface.

  6. lya distribution and its asymptotics in nucleation theory

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.

    2014-02-01

    A model of condensation-decay rate constants that are linear with respect to the number of monomers in the nucleus is considered. In a particular case of stable growth, this model leads to an exact solution of discrete kinetic equations of the theory of heterogeneous nucleation in the form of the Pólya distribution function. An asymptotic solution in the region of large nucleus sizes that satisfies the normalization condition and provides correct mean nucleus size has been found. It is shown that, in terms of the logarithmic invariant size, the obtained distribution has a universal time-independent form. The obtained solution, being more general than the double-exponent distribution used previously, describes both Gaussian and asymmetric distributions depending on the rate constant of condensation on a bare core. The obtained results are useful for modeling processes in some systems, in particular, the growth of linear chains, two-dimensional clusters, and filamentary nanocrystals.

  7. Improvement of the wear resistance of electroplated Au-Ni coatings by Zr ion bombardment of Ni-B sublayer

    SciTech Connect

    Lyazgin, Alexander Shugurov, Artur Sergeev, Viktor Neufeld, Vasily; Panin, Alexey; Shesterikov, Evgeny

    2015-10-27

    The effect of bombardment of the Ni-B sublayer by Zr ion beams on the surface morphology and tribomechanical properties of Au-Ni coatings was investigated. It was found that the treatment has no significant effect on the surface roughness and grain size of the Au-Ni coatings, while it provides essential reducing of their friction coefficient and improvement of wear resistance. It is shown that increased wear resistance of these coatings was caused by their strain hardening resulted from localization of plastic strain. The optimal Zr fluence were determined that provide the maximum reduction of linear wear of the coatings.

  8. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    SciTech Connect

    Herz, A. E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D. E-mail: dong.wang@tu-ilmenau.de; Schaaf, P.; Friák, M.; Holec, D.; Šob, M.; Schneeweiss, O.

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  9. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    NASA Astrophysics Data System (ADS)

    Herz, A.; Friák, M.; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D.; Holec, D.; Šob, M.; Schneeweiss, O.; Schaaf, P.

    2015-08-01

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that {100} faceting planes of the equilibrated particles are enriched with Ni and {111} faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  10. Studying Language Change Using Price Equation and Pólya-urn Dynamics

    PubMed Central

    Gong, Tao; Shuai, Lan; Tamariz, Mónica; Jäger, Gerhard

    2012-01-01

    Language change takes place primarily via diffusion of linguistic variants in a population of individuals. Identifying selective pressures on this process is important not only to construe and predict changes, but also to inform theories of evolutionary dynamics of socio-cultural factors. In this paper, we advocate the Price equation from evolutionary biology and the Pólya-urn dynamics from contagion studies as efficient ways to discover selective pressures. Using the Price equation to process the simulation results of a computer model that follows the Pólya-urn dynamics, we analyze theoretically a variety of factors that could affect language change, including variant prestige, transmission error, individual influence and preference, and social structure. Among these factors, variant prestige is identified as the sole selective pressure, whereas others help modulate the degree of diffusion only if variant prestige is involved. This multidisciplinary study discerns the primary and complementary roles of linguistic, individual learning, and socio-cultural factors in language change, and offers insight into empirical studies of language change. PMID:22427981

  11. HILBERT-PÓLYA Conjecture, Zeta Functions and Bosonic Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Andrade, Julio C.

    2013-07-01

    The original Hilbert and Pólya conjecture is the assertion that the nontrivial zeros of the Riemann zeta function can be the spectrum of a self-adjoint operator. So far no such operator was found. However, the suggestion of Hilbert and Pólya, in the context of spectral theory, can be extended to approach other problems and so it is natural to ask if there is a quantum mechanical system related to other sequences of numbers which are originated and motivated by Number Theory. In this paper, we show that the functional integrals associated with a hypothetical class of physical systems described by self-adjoint operators associated with bosonic fields whose spectra is given by three different sequence of numbers cannot be constructed. The common feature of the sequence of numbers considered here, which causes the impossibility of zeta regularizations, is that the various Dirichlet series attached to such sequences — such as those which are sums over "primes" of (norm P)-s have a natural boundary, i.e. they cannot be continued beyond the line Re(s) = 0. The main argument is that once the regularized determinant of a Laplacian is meromorphic in s, it follows that the series considered above cannot be a regularized determinant. In other words, we show that the generating functional of connected Schwinger functions of the associated quantum field theories cannot be constructed.

  12. Tensile properties of thin Au-Ni brazes between strong base materials

    SciTech Connect

    Tolle, M.C.; Kassner, M.E. )

    1991-12-01

    It has long been known that when relatively strong base materials are joined by thin, soft, interlayer metals such as with brazing or various solid state joining processes, the ultimate tensile strength (UTS) of the bond may be several factors higher than the UTS of the bulk, or unconstrained, interlayer metals. However, earlier work reported by the authors confirmed that delayed or creep'' failure of the bond may occur at stresses much less than the UTS. It was found that for thin silver interlayers, prepared by brazing and physical vapor deposition (PVD), joining elastically deforming base materials (i.e. no measurable plastic deformation occurs in the base metal at the applied stresses), the ambient (and near-ambient) temperature time to failure is controlled by the creep rate of the silver interlayer which is determined by the effective stress within the interlayer. The plastic deformation within the interlayer causes cavity nucleation which continues until the concentration of nuclei is sufficiently high to lead to instability and eventual failure. The delayed failure may be accelerated by base material creep resulting from the effective stress in the base material. Plastic deformation in the base metal causes corresponding deformation in the interlayer, and cavities nucleate as with elastic base metal case. The delayed failure phenomenon was confirmed by the authors only for silver interlayers; other compositions were not tested. In this study, maraging steel was joined with an Au-Ni braze alloy with 57.5 at. % Au and 42.5 at. % Ni. The microstructure is expected to be a refined two-phase (spinodal) alloy with higher strength than the PVD silver of our previous investigation.

  13. Tensile properties of thin Au-Ni brazes between strong base materials

    SciTech Connect

    Tolle, M.C.; Kassner, M.E.

    1991-12-01

    It has long been known that when relatively strong base materials are joined by thin, soft, interlayer metals such as with brazing or various solid state joining processes, the ultimate tensile strength (UTS) of the bond may be several factors higher than the UTS of the bulk, or unconstrained, interlayer metals. However, earlier work reported by the authors confirmed that delayed or ``creep`` failure of the bond may occur at stresses much less than the UTS. It was found that for thin silver interlayers, prepared by brazing and physical vapor deposition (PVD), joining elastically deforming base materials (i.e. no measurable plastic deformation occurs in the base metal at the applied stresses), the ambient (and near-ambient) temperature time to failure is controlled by the creep rate of the silver interlayer which is determined by the effective stress within the interlayer. The plastic deformation within the interlayer causes cavity nucleation which continues until the concentration of nuclei is sufficiently high to lead to instability and eventual failure. The delayed failure may be accelerated by base material creep resulting from the effective stress in the base material. Plastic deformation in the base metal causes corresponding deformation in the interlayer, and cavities nucleate as with elastic base metal case. The delayed failure phenomenon was confirmed by the authors only for silver interlayers; other compositions were not tested. In this study, maraging steel was joined with an Au-Ni braze alloy with 57.5 at. % Au and 42.5 at. % Ni. The microstructure is expected to be a refined two-phase (spinodal) alloy with higher strength than the PVD silver of our previous investigation.

  14. Mechanical properties of compositionally-modulated Au--Ni thin films: nanoindentation and micro-cantilever beam deflection experiments

    SciTech Connect

    Baker, S.P.; Nix, W.D. )

    1994-12-01

    The mechanical properties of compositionally-modulated Au--Ni films were investigated by sub-micrometer depth-sensing indentation and by deflection of micrometer-scale cantilever beams. Films prepared by sputter deposition with composition wavelengths between 0.9 and 4.0 nm were investigated. Strength was found to be high and invariant with composition wavelength. Experimental and data analysis methods were developed to provide more accurate and precise measurements of elastic stiffness. Large enhancements in stiffness (the supermodulus effect'') were [ital not] observed. Rather, relatively small but significant minima were observed at a composition wavelength of about 1.6 nm by both techniques. These variations were found to be strongly correlated with variations in the average lattice parameter normal to the plane of the film. Both structural and mechanical property variations are consistent with a simple model in which the film consists of bulk-like Au and Ni layers with interfaces of constant thickness.

  15. Correlation function for generalized Pólya urns: Finite-size scaling analysis

    NASA Astrophysics Data System (ADS)

    Mori, Shintaro; Hisakado, Masato

    2015-11-01

    We describe a universality class for the transitions of a generalized Pólya urn by studying the asymptotic behavior of the normalized correlation function C (t ) using finite-size scaling analysis. X (1 ),X (2 ),... are the successive additions of a red (blue) ball [X (t )=1 (0 )] at stage t and C (t )≡Cov[X (1 ),X (t +1 )]/Var[X (1 )] . Furthermore, z (t ) =∑s=1tX (s ) /t represents the successive proportions of red balls in an urn to which, at the (t +1 )th stage, a red ball is added [X (t +1 )=1 ] with probability q [z (t )]=(tanh{J [2 z (t )-1 ]+h }+1 )/2 ,J ≥0 , and a blue ball is added [X (t +1 )=0 ] with probability 1 -q [z (t )] . A boundary [Jc(h ) ,h ] exists in the (J ,h ) plane between a region with one stable fixed point and another region with two stable fixed points for q (z ) . C (t ) ˜c +c'.tl -1 with c =0 (>0 ) for J Jc) , and l is the (larger) value of the slope(s) of q (z ) at the stable fixed point(s). On the boundary J =Jc(h ) ,C (t ) ≃c +c'.(lnt) -α' and c =0 (c >0 ) ,α'=1 /2 (1 ) for h =0 (h ≠0 ) . The system shows a continuous phase transition for h =0 and C (t ) behaves as C (t ) ≃(lnt) -α'g [(1 -l ) lnt ] with a universal function g (x ) and a length scale 1 /(1 -l ) with respect to lnt . β =ν||.α' holds with β =1 /2 and ν||=1 .

  16. The Enhanced Catalytic Activities of Asymmetric Au-Ni Nanoparticle Decorated Halloysite-Based Nanocomposite for the Degradation of Organic Dyes.

    PubMed

    Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing

    2016-12-01

    Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet. PMID:26852228

  17. The Enhanced Catalytic Activities of Asymmetric Au-Ni Nanoparticle Decorated Halloysite-Based Nanocomposite for the Degradation of Organic Dyes

    NASA Astrophysics Data System (ADS)

    Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing

    2016-02-01

    Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet.

  18. Embedded-atom-method effective-pair-interaction study of the structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions

    SciTech Connect

    Asta, M.; Foiles, S.M.

    1996-02-01

    The structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions have been studied using a computational approach which combines an embedded-atom-method (EAM) description of alloy energetics with a second-order-expansion (SOE) treatment of compositional and displacive disorder. It is discussed in detail how the SOE approach allows the EAM expression for the energy of a substitutional alloy to be cast in the form of a generalized lattice-gas Hamiltonian containing effective pair interactions with arbitrary range. Furthermore, we show how the SOE-EAM method can be combined with either mean-field or Monte Carlo statistical mechanics techniques in order to calculate short-range-order (SRO) parameters, average nearest-neighbor bond lengths, and alloy thermodynamic properties which include contributions from static displacive relaxations and dynamic atomic vibrations. We demonstrate that the contributions to alloy heats of mixing arising from displacive relaxations can be sizeable, and that the neglect of these terms can lead to large overestimations of calculated phase-transition temperatures. The effects of vibrational free-energy contributions on the results of composition-temperature phase diagram calculations are estimated to be relatively small for the phase-separating alloy systems considered in this study. It is shown that within the SOE approach displacive effects can act only to displace the peak in the Fourier-transformed SRO parameter away from Brillouin-zone-boundary special points and towards the origin. Consistent with this result, we show that the unusual SRO observed in diffuse scattering experiments for Au-Ni solid solutions can be understood as arising from a competition between chemical and displacive driving forces which favor ordering and clustering, respectively. {copyright} {ital 1996 The American Physical Society.}

  19. Pioneer 10 and Voyager Observations of the Interstellar Medium in Scattered Emission of the H 584 A and H Lya 1216 A Lines

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.; Judge, D. L.; Jessen, J. M.

    1984-01-01

    The combination of Pioneer photometric and Voyager spectrometric observations of EUV interstellar-interplanetary emissions in the region beyond 5 AU have been applied to a determination of atomic hydrogen and helium densities. These density estimates obtained from direct measurement of scattered radiation depend on absolute calibration of the instruments, in the same way as other earlier determinations based on the same method. However. we have combined the spacecraft data with daily full sun averages of the H Lya 1216 A line obtained by the Solar Mesospheric Explorer (SME) satellite, to obtain a measure of atomic hydrogen density independent of instrument absolute calibration. The method depends on observations of long and short term temporal variability of the solar line over a 1 year period, and the fact that the ISM is optically thick. The density estimates from preliminary work on these observations are (H) = 0.12 cm(sup 2) and (He) = .016 cm(sup 2), giving a density ratio close to the cosmic abundance value, in contrast to some earlier results indicating a depletion of atomic hydrogen. We have obtained estimates of galactic background emissions in the signals of both spacecraft.

  20. Effects of alloying and local order in AuNi contacts for Ohmic radio frequency micro electro mechanical systems switches via multi-scale simulation

    NASA Astrophysics Data System (ADS)

    Gaddy, Benjamin E.; Kingon, Angus I.; Irving, Douglas L.

    2013-05-01

    Ohmic RF-MEMS switches hold much promise for low power wireless communication, but long-term degradation currently plagues their reliable use. Failure in these devices occurs at the contact and is complicated by the fact that the same asperities that bear the mechanical load are also important to the flow of electrical current needed for signal processing. Materials selection holds the key to overcoming the barriers that prevent widespread use. Current efforts in materials selection have been based on the material's (or alloy's) ability to resist oxidation as well as its room-temperature properties, such as hardness and electrical conductivity. No ideal solution has yet been found via this route. This may be due, in part, to the fact that the in-use changes to the local environment of the asperity are not included in the selection criteria. For example, Joule heating would be expected to raise the local temperature of the asperity and impose a non-equilibrium thermal gradient in the same region expected to respond to mechanical actuation. We propose that these conditions should be considered in the selection process, as they would be expected to alter mechanical, electrical, and chemical mechanisms in the vicinity of the surface. To this end, we simulate the actuation of an Ohmic radio frequency micro electro mechanical systems switch by using a multi-scale method to model a current-carrying asperity in contact with a polycrystalline substrate. Our method couples continuum solutions of electrical and thermal transport equations to an underlying molecular dynamics simulation. We present simulations of gold-nickel asperities and substrates in order to evaluate the influence of alloying and local order on the early stages of contact actuation. The room temperature response of these materials is compared to the response of the material when a voltage is applied. Au-Ni interactions are accounted for through modification of the existing Zhou embedded atom method

  1. Discovery of a Giant Lya Emitter Near the Reionization Epoch

    SciTech Connect

    Ouchi, Masami; Ono, Yoshiaki; Egami, Eiichi; Saito, Tomoki; Oguri, Masamune; McCarthy, Patrick J.; Farrah, Duncan; Kashikawa, Nobunari; Momcheva, Ivelina; Shimasaku, Kazuhiro; Nakanishi, Kouichiro; Furusawa, Hisanori; Akiyama, Masayuki; Dunlop, James S.; Mortier, Angela M.J.; Okamura, Sadanori; Hayashi, Masao; Cirasuolo, Michele; Dressler, Alan; Iye, Masanori; Jarvis, Matt.J.

    2008-08-01

    We report the discovery of a giant Ly{alpha} emitter (LAE) with a Spitzer/IRAC counterpart near the reionization epoch at z = 6.595. The giant LAE is found from the extensive 1 deg{sup 2} Subaru narrow-band survey for z = 6.6 LAEs in the Subaru/XMM-Newton Deep Survey (SXDS) field, and subsequently identified by deep spectroscopy of Keck/DEIMOS and Magellan/IMACS. Among our 207 LAE candidates, this LAE is not only the brightest narrow-band object with L(Ly{alpha}) = 3.9 {+-} 0.2 x 10{sup 43} erg s{sup -1} in our survey volume of 10{sup 6} Mpc{sup 3}, but also a spatially extended Ly{alpha} nebula with the largest isophotal area whose major axis is at least {approx_equal} 3-inches. This object is more likely to be a large Ly{alpha} nebula with a size of {approx}> 17-kpc than to be a strongly-lensed galaxy by a foreground object. Our Keck spectrum with medium-high spectral and spatial resolutions suggests that the velocity width is v{sub FWHM} = 251 {+-} 21 km s{sup -1}, and that the line-center velocity changes by {approx_equal} 60 km s{sup -1} in a 10-kpc range. The stellar mass and star-formation rate are estimated to be 0.9-5.0 x 10{sup 10}M{sub {circle_dot}} and > 34 M{sub {circle_dot}}yr{sup -1}, respectively, from the combination of deep optical to infrared images of Subaru, UKIDSS-Ultra Deep Survey, and Spitzer/IRAC. Although the nature of this object is not yet clearly understood, this could be an important object for studying cooling clouds accreting onto a massive halo, or forming-massive galaxies with significant outflows contributing to cosmic reionization and metal enrichment of inter-galactic medium.

  2. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    NASA Astrophysics Data System (ADS)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.

  3. Structure and Reactivity Investigations on Supported Bimetallic Au-Ni Catalysts Used for Hydrocarbon Steam Reforming

    SciTech Connect

    Chin, Ya-Huei; King, David L.; Roh, Hyun-Seog; Wang, Yong; Heald, S.

    2006-12-10

    The addition of small quantities of gold to the surface of supported nickel catalysts has been described as a means to retard carbon formation during hydrocarbon steam reforming. Calculations by others have indicated that gold locates at the most catalytically active (step and edge) sites that also serve as nucleation sites for carbon formation. In this paper we describe experiments to characterize the Ni-Au interactions on bimetallic Au-Ni/MgAl2O4 catalysts at various Ni and Au loadings. The catalyst structure was investigated using EXAFS/XANES spectroscopy and adsorption-desorption measurements with H2 and N2O. Evidence for surface alloy formation is provided in the Ni K and Au LIII edge EXAFS measurements of Au-promoted 8.8%Ni/MgAl2O4, especially at Au loadings ?0.2 wt.%. At higher Au concentrations, there is evidence for a combination of alloy and segregated Au species. H2 chemisorption and N2O temperature programmed desorption (TPD) measurements showed a significant decrease in total surface sites, or surface site reactivity, on Au modified Ni/MgAl2O4 catalyst. The XANES structure is consistent with perturbation of the electronic structure of both the Ni and Au atoms as a result of alloy formation. TGA studies with steam/n-butane feed confirmed the ability of Au to retard coke deposition under low S/C reforming conditions, although carbon formation was not fully suppressed. When testing for methane steam reforming, a lower initial activity and deactivation rate resulted from Au promotion of the Ni catalyst. However, both catalysts showed a declining activity with time. The lack of a direct correlation between the surface characterization results and catalytic activity is most likely a result of decreasing effectiveness of the surface alloy with increasing temperature.

  4. Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys

    SciTech Connect

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.

  5. BRIGHT Lights, BIG City: Massive Galaxies, Giant Ly-A Nebulae, and Proto-Clusters

    SciTech Connect

    van Breugel, W; Reuland, M; de Vries, W; Stanford, A; Dey, A; Kurk, J; Venemans, B; Rottgering, H; Miley, G; De Breuck, C; Dopita, M; Sutherland, R; Bland-Hawthorn, J

    2002-08-01

    High redshift radio galaxies are great cosmological tools for pinpointing the most massive objects in the early Universe: massive forming galaxies, active super-massive black holes and proto-clusters. They report on deep narrow-band imaging and spectroscopic observations of several z > 2 radio galaxy fields to investigate the nature of giant Ly-{alpha} nebulae centered on the galaxies and to search for over-dense regions around them. They discuss the possible implications for our understanding of the formation and evolution of massive galaxies and galaxy clusters.

  6. VizieR Online Data Catalog: 1D Lya forest power spectrum (Palanque-Delabrouille+, 2013)

    NASA Astrophysics Data System (ADS)

    Palanque-Delabrouille, N.; Yeche, C.; Borde, A.; Le Goff, J.-M.; Rossi, G.; Viel, M.; Aubourg, E.; Bailey, S.; Bautista, J.; Blomqvist, M.; Bolton, A.; Bolton, J. S.; Busca, N. G.; Carithers, B.; Croft, R. A. C.; Dawson, K. S.; Delubac, T.; Font-Ribera, A.; Ho, S.; Kirkby, D.; Lee, K.-G.; Margala, D.; Miralda-Escude, J.; Muna, D.; Myers, A. D.; Noterdaeme, P.; Paris, I.; Petitjean, P.; Pieri, M. M.; Rich, J.; Rollinde, E.; Ross, N. P.; Schlegel, D. J.; Schneider, D. P.; Slosar, A.; Weinberg, D. H.

    2013-09-01

    The files contain the data describing the measured 1D power spectrum and the correlations between bins from the BOSS Lyman-alpha data. table4a.dat and table5a.dat: P1D results obtained with the Fourier transform and the likelihood method respectively, for each k and z bin. cct4b*.dat and cct5b*.dat: Correlation matrices between k bins for each z bin, for the Fourier transform and the likelihood method respectively. There are 12 HDUs, one for each redshift bin from =2.2 (HDU 1, table[45]b1.dat) to =4.4 (HDU 12, table[45]b12.dat). Each HDU contains a binary table with 35 bins x 35 entries for the Fourier transform method, and 32 bins x 32 entries for the likelihood method. The tables contain the correlation coefficients. The scale ki corresponding to entry (or bin) i can be read in the corresponding entry of table4a.dat or table5a.dat. (30 data files).

  7. Lya intensity mapping: current observational results from SDSS/BOSS and its future potential.

    NASA Astrophysics Data System (ADS)

    Croft, Rupert A.; Miralda-Escudé, Jordi; Zheng, Zheng

    2016-01-01

    Over the past 10 years, widefield optical survey telescopes have taken several million fiber spectra of objects in the night sky. This enormous dataset can be used to carry out optical intensity mapping measurements right now, as well as informing and motivating future dedicated instruments. Using cross-correlation techniques have made measurements of the large-scale structure of the Universe in the hydrogen Lyman-alpha line from SDSS/BOSS fiber spectra. We compare our results to the structure expected in the LambdaCDM cosmological model, and make the first global estimate of the Lyman-alpha luminosity density of the Universe. We discuss how lessons learned during our analysis can be applied to future experiments, and which observational tracers will be useful for further applications of these techniques. We also show how intensity mapping could dramatically enhance our ability to make measurements of new effects in galaxy clustering, such as general and special relativistic distortions.

  8. New observations directly measuring the full continuous sizes of high redshift damped Lya systems

    NASA Astrophysics Data System (ADS)

    Cooke, Jeff; O'Meara, John

    2016-01-01

    The formation and evolution of galaxies requires large reservoirs of cold, neutral gas. The damped Lyman-α systems (DLAs), seen in absorption towards distant quasars and gamma ray bursts, are predicted to be the dominant reservoirs for this gas. Detailed properties of DLAs have been studied extensively for decades with great success. However, their size, fundamental in understanding their nature, has remained elusive, as quasar and gamma ray burst sightlines only probe comparatively tiny areas of the foreground DLAs. Here, we introduce a new approach to measure the full extent of DLAs in the sightlines to extended background sources. We present the discovery of z ~ 2 DLAs with column densities as high as log N(HI) = 21.1 ±0.4 cm-2 covering 90-100% of the luminous extent of background galaxies. Estimates of the sizes of the background galaxies range from a minimum of a few kpc2, to ˜100 kpc2, and demonstrate that high-column density neutral gas can span continuous areas 108-1010 times larger than previously explored in quasar or gamma ray burst sightlines. The DLAs are from our pilot survey that searches Lyman break and Lyman continuum galaxies at high redshift. The low luminosities, large sizes, and mass contents (~106-109 M⊙) implied by the early data suggest that DLAs contain the necessary fuel for galaxies, with many systems consistent with relatively massive, low-luminosity primeval galaxies.

  9. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles.

    PubMed

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-01-01

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:26307983

  10. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles

    PubMed Central

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-01-01

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:26307983

  11. Electrical characteristics of Au/Ni Schottky diodes on cleaved m-plane surfaces of free-standing n-GaN substrates

    NASA Astrophysics Data System (ADS)

    Naganawa, Moe; Aoki, Toshichika; Mishima, Tomoyoshi; Shiojima, Kenji

    2016-04-01

    We report electrical characteristics of 12 Ni Schottky contacts formed on an m-plane surface, which is a cleaved side surface of a c-plane free-standing n-GaN wafer. We observed a variety of distributions of surface steps with heights up to 5 nm in the contact area. The Schottky barrier heights obtained from current-voltage, capacitance-voltage, and photoresponce results distribute in a small range of 0.67-0.79 eV. The n-value is as good as 1.01 to 1.04. Independent of the step height, the barrier height and n-value variations are nearly absent. One possible reason for this is that the step facets consist of an m-plane. We found that the cleaving method can be utilized to form Schottky contacts on m-plane n-GaN surfaces in order to reveal the basic characteristics.

  12. The Agatston Urban Nutrition Initiative: Working to Reverse the Obesity Epidemic through Academically Based Community Service

    ERIC Educational Resources Information Center

    Johnston, Francis E.

    2009-01-01

    The Agatston Urban Nutrition Initiative (AUNI) presents a fruitful partnership between faculty and students at a premier research university and members of the surrounding community aimed at addressing the problem of childhood obesity. AUNI uses a problem-solving approach to learning by focusing course activities, including service-learning, on…

  13. The Coffee-Milk Mixture Problem Revisited

    ERIC Educational Resources Information Center

    Marion, Charles F.

    2015-01-01

    This analysis of a problem that is frequently posed at professional development workshops, in print, and on the Web--the coffee-milk mixture riddle--illustrates the timeless advice of George Pólya's masterpiece on problem solving in mathematics, "How to Solve It." In his book, Pólya recommends that problems previously solved and put…

  14. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance.

    PubMed

    Zhu, Qi-Long; Li, Jun; Xu, Qiang

    2013-07-17

    AuNi alloy nanoparticles were successfully immobilized to MIL-101 with size and location control for the first time by double solvents method (DSM) combined with a liquid-phase concentration-controlled reduction strategy. When an overwhelming reduction approach was employed, the uniform 3D distribution of the ultrafine AuNi nanoparticles (NPs) encapsulated in the pores of MIL-101 was achieved, as demonstrated by TEM and electron tomographic measurements, which brings light to new opportunities in the fabrication of ultrafine non-noble metal-based NPs throughout the interior pores of MOFs. The ultrafine AuNi alloy NPs inside the mesoporous MIL-101 exerted exceedingly high activity for hydrogen generation from the catalytic hydrolysis of ammonia borane. PMID:23805877

  15. Coupling the emission of ionizing radiation and Lyman alpha

    NASA Astrophysics Data System (ADS)

    Scarlata, Claudia; Hayes, Matthew; Miller, Brendan P.; Pushnig, Johannes; Jansson, Gustav

    2016-01-01

    The class of objects that reionized the intergalactic hydrogen remains an observational and theoretical challenge. Recently, the shape of the Lyman-alpha (Lya) emission line profile has been proposed as a way to pre-select Lyman Continuum (LyC) leaking galaxies. We present results of deep spectroscopic observations obtained with the Cosmic Origin Spectrograph on the HST of a sample of 4 Lya-emitting galaxies at z~0.3, chosen to be candidate LyC leaking galaxies, on the grounds of blueshifted peaks of Lya emission/symmetric extended Lya wings. We do not detect ionizing radiation escaping from these objects, with upper 3sigma limits on the absolute escape fraction of LyC photons between 14 and 2%.

  16. Spectro-polarimetry of a Lyman-alpha Nebula at z=3.09

    NASA Astrophysics Data System (ADS)

    Beck, Melanie; Scarlata, Claudia; Hayes, Matthew

    2015-01-01

    We present a follow-up study to the imaging polarimetry performed by Hayes, Scarlata & Siana (2011) on one of the largest Lyman-alpha (Lya) nebula currently known, dubbed LAB1. We obtain deep, spatially resolved spectro-polarimetric measurements of LAB1, whose extended Lya emission is likely due to Lya photons produced from a powerful star-forming galaxy and scattered at large radii by the surrounding neutral gas. However, questions still remain on the precise nature of the kinematics in the system. We find spectrally integrated polarization consistent with our prior imaging results. We find wavelength dependent polarization consistent with zero at line center and rising to approximately 12% in the wing of the line profile which supports the idea of a large scale outflow. We discuss how the detected wavelength dependence of the Lya polarization can help in constraining the geometry of the scattering nebula.

  17. eLARS - extending the Lyman Alpha Reference Sample

    NASA Astrophysics Data System (ADS)

    Oestlin, Goeran

    2013-10-01

    Despite its pivotal importance in high-z astrophysics, Lyman alpha {LyA} imaging is a relatively unexplored territory, due to its reliance on HST for far UV imaging. Our team has pioneered systematic LyA imaging in the local universe and developed techniques for producing photometrically accurate images using HST. We recently finished LARS, the first systematic LyA imaging study of 14 UV+H-alpha selected starbursts in the local universe. We found further evidence for LyA variation on physical scales from 30 pc to several kpc, often in a manner uncorrelated with the UV continuum, H-alpha or the galaxy in general. Specifically, we find that when LyA is bright and when a lot of LyA manages to escape, it is always found in the form of a large scale halo. This is, in all such cases, more extended than the UV or H-alpha emission, but rarely symmetric.While these results are fascinating, LARS consists of extreme starbursts that contribute only a small fraction of the total UV and star-formation density at low and intermediate {z 2} redshifts. Given the importance of the LyA line for finding galaxies and for galaxy evolution studies it is imperative to now generalize the investigation and produce a fully representative quantitative framework. We here propose to image a sample of 28 local galaxies, dominated by more disk like objects {c.f. the irregular objects of LARS}, and the kind of objects than dominate the local FUV luminosity function. Specifically, we will investigate the effects of geometry and galaxy orientation of the emergent LyA emission.

  18. The achievement of low contact resistance to indium phosphide: The roles of Ni, Au, Ge, and combinations thereof

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1992-01-01

    We have investigated the electrical and metallurgical behavior of Ni, Au-Ni, and Au-Ge-Ni contacts on n-InP. We have found that very low values of contact resistivity rho(sub c) in the E-7 omega-sq cm range are obtained with Ni-only contacts. We show that the addition of Au to Ni contact metallization effects an additional order of magnitude reduction in rho(sub c). Ultra-low contact resistivities in the E-8 omega-sq cm range are obtained with both the Au-Ni and the Au-Ge-Ni systems, effectively eliminating the need for the presence of Ge in the Au-Ge-Ni system. The formation of various nickel phosphides at the metal-InP interface is shown to be responsible for the observed rho(sub c) values in the Ni and Au-Ni systems. We show, finally, that the order in which the constituents of Au-Ni and Au-Ge-Ni contacts are deposited has a significant bearing on the composition of the reaction products formed at the metal-InP interface and therefore on the contact resistivity at that interface.

  19. Determination of local atomic arrangements in a bulk-immiscible surface alloy

    NASA Astrophysics Data System (ADS)

    Witkowski, Kristine Rose

    Surface alloys are two-dimensional phases confined to near-surface regions, and are known to form from atomic species that are immiscible in the bulk. In order to achieve a better understanding of this phenomenon, it is necessary to be able to accurately determine the bond lengths present within the surface alloy. The present work focuses on surface alloying in the bulk-immiscible Au-Ni system, which forms surface alloy phases that are amongst the most studied to date. First principles electronic density functional theory calculations were conducted for both "monomer" (single Au atom), and "dimer" (pair of Au atoms) surface alloying models for the Au-Ni(110) surface. Both of the models exhibited surface interlayer contractions and expansions similar to those reported for a Ni(110) surface. The resulting atomic positions corresponded to Au-Ni bond lengths of 2.61-2.80 A in the monomer model and 2.54-2.84 A in the dimer model. Surface extended x-ray absorption fine structure (SEXAFS) measurements were taken from Au-Co11Ni89(110) surface alloys. The software program FEFF8 was used in combination with the first principles calculated atomic positions for the surface alloy models to simulate the SEXAFS from each of the surface alloy models. Fits were conducted from these models resulting in the determination of Au-Ni bond lengths of 2.55-2.74 A with the monomer model, and 2.46-2.76 A with the dimer model. The present work features the first theoretical first principles study of all of the sub-monolayer structures of the Au-Ni(110) system. This work was also the first to employ DFT calculated atomic positions as initial models for simulating theoretical SEXAFS spectra to assist in the fitting of experimental measurements. In doing this, the theoretical calculations allowed for a much better starting point in the fits, while the results from the fits gave an indication to the strengths and weaknesses of the surface calculations, since they highlighted an apparent slight

  20. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  1. Multi-component nanorods for vaccination applications

    NASA Astrophysics Data System (ADS)

    Salem, A. K.; Hung, C. F.; Kim, T. W.; Wu, T. C.; Searson, P. C.; Leong, K. W.

    2005-04-01

    Immune responses from Au/Ni nanorods prepared by electrochemical deposition in alumina templates are evaluated in C57BL/6 mice. When the nanorods are bombarded into skin, they generate a strong CD8 T-cell and antibody response. When pcDNA3 is bound to the Ni segment of the nanorod, it provides a strong immunostimulatory adjuvant effect to the antigen bound on the Au segment.

  2. Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands

    NASA Astrophysics Data System (ADS)

    Kang, Zhiwen; Chen, Jiajie; Ho, Ho-Pui

    2016-05-01

    Surface-enhanced Raman scattering (SERS) typically requires hot-spots generated in nano-fabricated plasmonic structures. Here we report a highly versatile approach based on the use of random gold nano-island substrates (AuNIS). Hot spots are produced through the entrapment of colloidal plasmonic nano-crystals at the interface between AuNIS and a microbubble, which is generated from the localized plasmonic absorption of a focused laser beam. The entrapment strength is strongly dependent on the shape of the microbubble, which is in turn affected by the surface wetting characteristics of the AuNIS with respect to the solvent composition. The laser power intensity required to trigger microbubble-induced SERS is as low as 200 μW μm-2. Experimental results indicate that the SERS limit of detection (LOD) for molecules of 4-MBA (with -SH bonds) is 10-12 M, R6G or RhB (without -SH bonds) is 10-7 M. The proposed strategy has potential applications in low-cost lab-on-chip devices for the label-free detection of chemical and biological molecules.

  3. Tailoring characteristic thermal stability of Ni-Au binary nanocrystals via structure and composition engineering: theoretical insights into structural evolution and atomic inter-diffusion

    SciTech Connect

    Li, Bangquan; Wang, Hailong; Xing, Guozhong; Wang, Rongming E-mail: rmwang@ustb.edu.cn

    2014-11-15

    We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs. The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.

  4. Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands.

    PubMed

    Kang, Zhiwen; Chen, Jiajie; Ho, Ho-Pui

    2016-05-21

    Surface-enhanced Raman scattering (SERS) typically requires hot-spots generated in nano-fabricated plasmonic structures. Here we report a highly versatile approach based on the use of random gold nano-island substrates (AuNIS). Hot spots are produced through the entrapment of colloidal plasmonic nano-crystals at the interface between AuNIS and a microbubble, which is generated from the localized plasmonic absorption of a focused laser beam. The entrapment strength is strongly dependent on the shape of the microbubble, which is in turn affected by the surface wetting characteristics of the AuNIS with respect to the solvent composition. The laser power intensity required to trigger microbubble-induced SERS is as low as 200 μW μm(-2). Experimental results indicate that the SERS limit of detection (LOD) for molecules of 4-MBA (with -SH bonds) is 10(-12) M, R6G or RhB (without -SH bonds) is 10(-7) M. The proposed strategy has potential applications in low-cost lab-on-chip devices for the label-free detection of chemical and biological molecules. PMID:27125956

  5. ZEN and the Search for High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Willis, J. P.

    2006-01-01

    We present the ZEN (z equals nine) survey: a deep, narrow J-band search for proto-galactic Lya emission at redshifts z=9. In the first phase of the survey, dubbed ZEN1, we combine an exceptionally deep image of the Hubble Deep Field South, obtained using a narrow band filter centred on the wavelength 1.187 microns, with existing deep, broad band images covering optical to near infrared wavelengths. Candidate z=9 Lya-emitting galaxies display a significant narrow band excess relative to the Js-band that are undetected at optical wavelengths. We detect no sources consistent with this criterion to the 90% point source flux limit of the NB image, F_NB = 3.28e-18 ergs/s/cm2. The survey selection function indicates that we have sampled a volume of approximately 340 h^{-3} Mpc3 to a Lya emission luminosity of 10e43 h^{-2} ergs/s. When compared to the predicted properties of z=9 galaxies based upon no evolution of observed z=6 Lya-emitting galaxies, the `volume shortfall' of the current survey, i.e. the volume required to detect this putative population, is a factor of at least 8 to 10. We also discuss continuing narrow J-band imaging surveys that will reduce the volume shortfall factor to the point where the no-evolution prediction from z=6 is probed in a meaningful manner.

  6. Development of an Acculturation Measure for Latino Youth.

    ERIC Educational Resources Information Center

    Pillen, Michelle B.; Hoewing-Roberson, Renee C.

    As part of a substance abuse prevention project, a measure was developed in both English and Spanish to measure levels of acculturation among members of a Latino youth population for later comparison of acculturation with high-risk behaviors. The Latino Youth Acculturation Scale (LYAS) consists of 23 items. Eleven items deal with language use of…

  7. Ultra-High Resolution Observations of the Upper Chromosphere: First Results From the NRL VAULT Sounding Rocket Payload

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Korendyke, C. M.; Dere, K. P.; Klimchuk, J. A.

    2001-05-01

    The Very high resolution Advanced ULtraviolet Telescope (VAULT) is a new spectroscopic imaging instrument. The instrument was launched on May 7, 1999 as a sounding rocket payload. The goal of the first VAULT flight was to obtain sub-arcsecond images of the Sun in the light of Lya (1216 Å). VAULT directly imaged an active region plage, fliaments and the fine structures in the supergranule boundaries and network with the unprecented spatial resolution of 0.33 arcseconds. We present the VAULT images and the first results from the comparison of the Lya data to observations from other instruments and in particular with a sequence of TRACE 171 Å images taken during the VAULT flight.

  8. Lyman-Alpha Observations of High Radial Velocity Stars

    NASA Astrophysics Data System (ADS)

    Bookbinder, Jay

    1990-12-01

    H I LYMAN -ALPHA (LY-A) IS ONE OF THE MOST IMPORTANT LINES EMITTED BY PLASMA IN THE TEMPERATURE RANGE OF 7000 TO 10 TO THE FIFTH POWER K IN LATE-TYPE STARS. IT IS A MAJOR COMPONENT OF THE TOTAL RADIATIVE LOSS RATE, AND IT PLAYS A CRUCIAL ROLE IN DETERMINING THE ATMOSPHERIC STRUCTURE AND IN FLUORESCING OTHER UV LINES. YET IT IS ALSO THE LEAST STUDIED MAJOR LINE IN THE FAR UV, BECAUSE MOST OF THE LINE FLUX IS ABSORBED BY THE ISM ALONG THE LINE OF SIGHT AND BECAUSE IT IS STRONGLY COMTAMINATED BY THE GEOCORONAL BACKGROUND. A KNOWLEDGE OF THE Ly-A PROFILE IS ALSO IMPORTANT FOR STUDIES OF DEUTERIUM IN THE INTERSTELLAR MEDIUM. BY OBSERVING HIGH RADIAL VELOCITY STARS WE WILL OBTAIN FOR THE FIRST TIME HIGH RESOLUTION SPECTRA OF THE CORE OF A STELLAR H I LYMAN-A EMISSION LINE PROFILE.

  9. Spatiotemporal dynamics of the biological interface between cancer and the microenvironment: a fractal anomalous diffusion model with microenvironment plasticity

    PubMed Central

    2012-01-01

    Background The invasion-metastasis cascade of cancer involves a process of parallel progression. A biological interface (module) in which cells is linked with ECM (extracellular matrix) by CAMs (cell adhesion molecules) has been proposed as a tool for tracing cancer spatiotemporal dynamics. Methods A mathematical model was established to simulate cancer cell migration. Human uterine leiomyoma specimens, in vitro cell migration assay, quantitative real-time PCR, western blotting, dynamic viscosity, and an in vivo C57BL6 mouse model were used to verify the predictive findings of our model. Results The return to origin probability (RTOP) and its related CAM expression ratio in tumors, so-called "tumor self-seeding", gradually decreased with increased tumor size, and approached the 3D Pólya random walk constant (0.340537) in a periodic structure. The biphasic pattern of cancer cell migration revealed that cancer cells initially grew together and subsequently began spreading. A higher viscosity of fillers applied to the cancer surface was associated with a significantly greater inhibitory effect on cancer migration, in accordance with the Stokes-Einstein equation. Conclusion The positional probability and cell-CAM-ECM interface (module) in the fractal framework helped us decipher cancer spatiotemporal dynamics; in addition we modeled the methods of cancer control by manipulating the microenvironment plasticity or inhibiting the CAM expression to the Pólya random walk, Pólya constant. PMID:22889191

  10. Dense Sampling and Large Volume: The Structure of the Intergalactic Medium from 50,000 SDSS3 BOSS Quasar Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Croft, Rupert A.; Arnau, E.; Aubourg, E.; Bailey, S.; Bechtold, J.; Bhardwaj, V.; Bolton, A.; Borde, A.; Brinkmann, J.; Busca, N.; Carithers, W.; Cen, R.; Charlassier, R.; Cortes, M.; Dall'Aglio, A.; Cristiani, S.; Dawson, K.; Delubac, T.; Font-Ribera, A.; Hamilton, J.; Ho, S.; Lee, K.; LeGoff, J.; Kirkby, D.; Lundgren, B.; Menard, B.; Miralda-Escude, J.; Palanque-Delabrouille, N.; Myers, A.; Paris, I.; Peirani, S.; Petitjean, P.; Pieri, M.; Rich, J.; Rollinde, E.; Ross, N.; Schlegel, D.; Skibba, R.; Slosar, A.; Suzuki, N.; Trac, H.; Vikas, S.; Viel, M.; Wake, D.; Weinberg, D.; White, M.; Yeche, C.

    2012-01-01

    The BOSS quasar spectra analyzed so far contain over a quarter billion pixels of information on the intervening intergalactic medium. The statistical power of BOSS has previously enabled 10% of the eventual full dataset to yield the first measurements of three dimensional large-scale structure in the Lya forest (Slosar et al 2011). Here we present results from a sample several times larger, covering several topics in cosmology and intergalactic medium science which are qualitatively transformed by the dense sampling (20 quasars per square degree) and enormous sky area. These include new constraints on cosmology and the neutrino mass from a Lya forest power spectrum measurement using 20 times more spectra than the largest previously published analysis (from SDSS), a new catalog of metal absorbers and a stacking analysis which has uncovered many metal species never before seen in the intergalactic medium. Cross-correlations of quasars, galaxies, metal lines and Lyman series absorption provide us with a wide variety of probes, including of cosmology, quasar host masses, lifetimes, and absorber galaxy masses. We show several of these results. We also show through correlation function analysis that the prime task, of making a BAO detection from Lya forest clustering, (the first BAO constraint between z=1 and the CMB) is well on the way to completion.

  11. The Sub-arcsecond Structure Of The Upper Chromosphere: Results From The 2nd Flight Of The Nrl Vault Sounding Rocket Payload

    NASA Astrophysics Data System (ADS)

    Sanchez-Andrade Nuno, Bruno; Vourlidas, A.; Korendyke, C.

    2009-05-01

    The Very high Angular resolution ULtraviolet Telescope (VAULT) is an Lya spectroheliograph flown on a sounding rocket. The payload is capable of obtaining Lya filtergrams with a spatial resolution of around 0.33'' ( 200 km) over an extended field of view (535'' x 235'') . The instrument is tuned to the Ly-a line because it forms at the boundary of the upper chromosphere low corona. On its last flight, on 14 June 2002, VAULT observed an area around NOAA AR 9997 & 9998 with a rich variety of features: quiet Sun network, limb spicules, filaments, prominences and plage. The observing campaign incorporated a wide variety of ground-based and space-borne instruments. The level 0.9 VAULT data is open and available from http://wwwsolar.nrl.navy.mil/rockets/vault .We have recently releseased SolarSoft-compatible software for easy access and processing of the data. This contribution showcases the data capabilities and availability. We present contrast-enhanced images by means of wavelet image processing. The images reveal in extraordinary detail the dynamics of the smallest solar scales (200-300 km). We observe flows along thin threads on the prominence, exploding events on the plage and even in the quiet sun regions.

  12. Science Data Management for WSO-UV

    NASA Astrophysics Data System (ADS)

    Gomez De Castro, Ana; Sachkov, Mikhail; Marcos-Arenal, Pablo; Belén Perea Abarca, G.; Malkov, Oleg

    2016-07-01

    WSO-UV is a 170 primary space telescope that will work in the ultraviolet range (115-315 nm) of the spectrum providing instrumentation for spectroscopy and imaging. WSO-UV is a cornerstone project of the astronomical program of the Russian Space Agency with launch date 2021. Spain and Mexico participate in the project. Scientific observation with WSO-UV will be open to the world wide scientific community after the 1st year of mission. WSO-UV will handle three scientific programs: core, national and open. The core program will be run during the first two years of the mission and will provide unique results that will affect all branches of astrophysics. WSO-UV will be equipped with a camera for very deep imaging in the Hydrogen Lyman-alpha (Lya) line and will be orbiting in a High Earth Orbit (geosynchronous). As a result, it will provide the deepest images ever obtained in this fundamental tracer (Lya is the strongest spectral line in the Universe). In this talk, we describe the strategy for the Lya survey and the foreseen output products and data distribution policy.

  13. Cosmological implications of baryon acoustic oscillation (BAO) measurements

    NASA Astrophysics Data System (ADS)

    Vazquez, Jose; BOSS Collaboration

    2015-04-01

    We present constraints on cosmological parameters and tests of dark models from the combination of baryon acoustic oscillation (BAO) with cosmic microwave background (CMB) data and a reanalysis of Type Ia supernova (SN) data. In particular, we take of high-precision BAO measurements from galaxy clustering the Lyman-a forest (LyaF) in the SDSS-III Baryon Oscillation Survey (BOSS). show that the flat LCDM model, that best describes the CMB data alone, is discrepant at 95% with the LyaF measurements. Hence, in order to reconcile them we consider models with more unusual histories of the dark energy, matter, or radiation components. In part we want to know what our combined data can place on interesting physical, such as neutrino masses, extra relativistic species, or dark energy that is dynamically significant at early times. But we also want to see whether any of these alternative models can resolve the discrepancy with the LyaF measurements at z = 2.34.

  14. Cosmology from the BOSS Lyman-Alpha Forest

    NASA Astrophysics Data System (ADS)

    Font-Ribera, Andreu; SDSS-III Collaboration

    2015-01-01

    After six years of observations, the Baryon Oscillation Spectroscopic Survey (BOSS) ended last summer, and recently made its data public (SDSS Data Release 12). During these years, it has used the SDSS telescope to obtain spectra of 1.5 million galaxies to get very accurate measurements of the Baryon Acoustic Oscillations (BAO) scale at redshift z ~0.5. At the same time, BOSS observed over 184 000 high redshift quasars (z>2.15) with the goal of detecting the BAO feature in the clustering of the intergalactic medium, using a technique known as the Lyman alpha forest (LyaF).In this talk I will overview several results from the LyaF working group in BOSS, including the measurement of BAO at z=2.4 both from the auto-correlation of the LyaF (Delubac et al. 2014), and from its cross-correlation with quasars (Font-Ribera et al. 2014). From the combination of these studies we are able to measure the expansion rate of the Universe 11 billion years ago with a 2% uncertainty.

  15. Tribo-induced melting and temperature gradients at sliding asperity contacts

    NASA Astrophysics Data System (ADS)

    Krim, J.; Pan, L.; Lichtenwalner, D. J.; Kingon, A. I.

    2012-02-01

    Tribo-induced nanoscale surface melting mechanisms have been investigated by means of a combined QCM-STM technique [1] for a range of Au and Au-Ni alloys with varying compositional percentages and phases. The QCM-STM setup allows studies to be performed at sliding speeds of up to m/s, and also reveals valuable information concerning tip-substrate temperature gradients.[3] A transition from solid-solid to solid-``liquid like'' contact was observed for each sample at sufficiently high asperity sliding speeds. Pure gold, solid-solution and two-phase Au-Ni (20 at.% Ni) alloys were compared, which are materials of great relevance to MEMS RF switch technology.[2] The transition points agree favorably with theoretical predictions for their surface melting characteristics. We acknowledge NSF and AFOSR support for this research. [4pt] [1] B. D. Dawson, S. M. Lee, and J. Krim, Phys. Rev. Lett. 103, 205502 (2009) [0pt] [2] Zhenyin Yang; Lichtenwalner, D.J.; Morris, A.S.; Krim, J.; Kingon, A.I, Journal of Microelectromechanical Systems, April 2009, Volume: 18 Issue:2, 287-295 [0pt] [3] C.G. Dunkle, I.B. Altfeder, A.A. Voevodin, J. Jones, J. Krim and P.Taborek, J. Appl. Phys., 107, art#114903, (2010)

  16. Optofluidic guiding, valving, switching and mixing based on plasmonic heating in a random gold nanoisland substrate.

    PubMed

    Chen, Jiajie; Kang, Zhiwen; Wang, Guanghui; Loo, Jacky Fong Chuen; Kong, Siu Kai; Ho, Ho-Pui

    2015-06-01

    We present a versatile optofluidic flow manipulation scheme based on plasmonic heating in a random gold nanoisland substrate (Au-NIS). With its highly efficient conversion of optical power to hydrodynamic actuation, the reported substrate is used for laser-controlled optofluidic manipulation. It is the first time that microfluidic flow guiding, valving, and mixing within the same functional substrate has been realised. Plasmonic heating provides power for guiding the sample flow inside a microfluidic channel at controlled speed and transport of small particles or living cells is demonstrated. We have also made a laser-actuated microfluidic valve through controlling the surface wettability of the sample/Au-NIS interface. When the laser power density is sufficiently high to generate a bubble, localized convection around the bubble can lead to efficient sample mixing within a microfluidic chamber. The reported Au-NIS scheme practically offers a programmable functional surface on which users have the freedom to control the wetting characteristics with a focused laser beam. We have verified that this optofluidic approach induces insignificant degradation in cell viability. The reported scheme therefore offers a wide range of application possibilities in microfluidics and biomedical engineering, particularly those operated under a low Reynolds number. PMID:25963226

  17. Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging

    SciTech Connect

    Minor, Andrew M.; Morris, J.W., Jr.

    1999-12-16

    Au/Ni metallization has become increasingly common in microelectronic packaging when Cu pads are joined with Pb-Sn solder. The outermost Au layer serves to protect the pad from corrosion and oxidation and the Ni layer provides a diffusion barrier to inhibit detrimental growth of Cu-Sn intermetallics. As a result of reflowing eutectic Pb-Sn on top of Au/Ni metallization, the as-solidified joints have AuSn{sub 4} precipitates distributed throughout the bulk of the solder joint, and Ni{sub 3}Sn{sub 4} intermetallics at the interface. Recent work has shown that the Au-Sn redeposits onto the interface during aging, compromising the strength of the joint. The present work shows that the redeposited intermetallic layer is a ternary compound with stoichiometry Au{sub 0.5}Ni{sub 0.5}Sn{sub 4}. The growth of this intermetallic layer was investigated, and results show that the ternary compound is observed to grow after as little as 3 hours at 150 C and after 3 weeks at 150 C has grown to a thickness of 10 {micro}m. Additionally, methods for inhibiting the growth of the ternary layer were investigated and it was determined that multiple reflows, both with and without additional aging can substantially limit the thickness of the ternary layer.

  18. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    NASA Astrophysics Data System (ADS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-12-01

    The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we increase the coverage of the IB metal dopants, we found that not only Au, but Cu and Ag can increase its S tolerance. We therefore propose that alloying can increase its S tolerance and alloying with Au would be a better way to increase the resistance to sulfur poisoning of the Ni anode as compared with the pure Ni and the Ag- or, Cu-doped Ni materials.

  19. Morphology, stresses, and surface reactivity of nanoporous gold synthesized from nanostructured precursor alloys

    NASA Astrophysics Data System (ADS)

    Rouya, Eric

    Nanoporous metallic materials (NMMs) are generally synthesized using dealloying, whereby the more reactive component is dissolved from a homogeneous alloy in a suitable electrolyte, and the more noble metal atoms simultaneously diffuse into 3-D clusters, forming a bi-continuous network of interconnected ligaments. Nanoporous gold (NPG) in particular is a well-known NMM; it is inert, bio-compatible, and capable of developing large surface areas with 1--100nm pores. While several studies have demonstrated its potential usefulness in fuel cell and sensing devices, its structural, mechanical, and electrocatalytic properties still require further investigation, particularly if NPG is synthesized from precursor alloy films exhibiting metastable nanostructures. In this dissertation, the electrodeposition (ECD) process, microstrucural characteristics, and metatstability of Au-Ni precursor alloys are investigated. The stresses evolved during Au-Ni alloy nucleation and growth are investigated in situ and correlated with microstructural and electrochemical data in order to identify the various stress-inducing mechanisms. In situ stresses generated during Au-Ni and Au-Ag dealloying were investigated, and additionally correlated with the growth stresses. Finally, the surface area and electrocatalytic properties of NPG are characterized using a variety of electrochemical techniques. Potentiostatically electrodeposited Au1-x-Nix (x: 0--90at%) films form a continuous series of metastable solid solutions and exhibit a nanocrystalline morphology, with ˜10--20 nm grains, the size of which decreases with increasing Ni content. The formation of a metastable structure was interpreted in terms of the limited surface diffusivities of adatoms at the growing interface and atomic volume differences (˜15%). Internal stresses generated during ECD of Ni-rich films can be explained assuming a 3-D Volmer-Weber growth mode, where the stress is initially compressive, then transitions into tension

  20. Seeing the Lyman-Alpha Forest for the Trees: Constraints on the Thermal State of the IGM from SDSS-III/BOSS

    NASA Astrophysics Data System (ADS)

    Lee, Khee-Gan

    The Lyman-alpha (Lya) forest in the line-of-sight to distant quasars is an important probe of the intergalactic medium (IGM). The thermal properties of the IGM can provide insight the reionization history of the universe, as well as indirectly constraining energy sources in the universe such as galaxies and quasars. This thesis is concerned primarily with studying the IGM using moderate quality Lya forest data sets from large-scale spectroscopic surveys, such as the Sloan Digital Sky Survey (SDSS) and the Baryon Oscillations Spectroscopic Survey (BOSS). In Chapter 1, we study the potential of SDSS Lya forest data to study the IGM. Using simulated mock spectra, we show that the flux probability distribution function (PDF) of SDSS data can place interesting constraints on the spatially-averaged temperature-density relation (TDR) of the IGM. We also introduce the threshold probability functions, a one-dimensional two-point statistic adapted from material sciences that can be applied to SDSS data to detect ˜ 50 Mpc IGM thermal inhomogeneities arising from He II reionization. Chapter 2 discusses the effect of continuum biases in the TDR measured from high-resolution Lyalpha forest spectra in the context of recent evidence for an inverted (gamma < 1) TDR. We argue that forward modeling of continuum errors in mock spectra are necessary to make robust estimates of the TDR. Motivated by the importance of accurate continuum estimation in Lya forest analysis, Chapter 3 introduces the mean-flux regulated/principal component analysis (MF-PCA) continuum estimation technique. We show using mock spectra that this technique can achieve continuum accuracies of < 10% and < 4% in noisy spectra of S/N ˜ 2 and S/N ˜ 5, respectively. We have also publicly released ˜ 13,000 continua from SDSS Data Release 7. In Chapter 4, we measure the flux PDF from BOSS, drawing from an overall sample of ˜ 30,000 Lya forest sightlines. This uses a novel procedure for optimally combining the

  1. Lyman alpha emitting galaxies at high redshift: Direct detection of young galaxies in a young universe

    NASA Astrophysics Data System (ADS)

    Dawson, Steven Arthur

    An early result of galaxy formation theory was the prediction that the copious ionizing radiation produced in nascent galaxies undergoing their first starbursts should in turn produce a strong Lya emission line. We report on our efforts to detect and characterize primeval galaxies by searching for this expected Lya signature with two observational techniques: serendipitous slit spectroscopy, and narrowband imaging selection. In Part I, we describe our serendipitous slit spectroscopy survey of the Hubble Deep Field and its environs, which resulted in a catalog of 74 spectroscopic redshifts spanning 0.10 < z < 5.77, including a galaxy cluster at z = 0.85 and five galaxies at z > 5. Follow-up observations at higher resolution resulted in the additional serendipitous detection of a strong Lya-emitting galaxy at z = 5.190 (ES1). At the time of its discovery, ES1 was one of only nine known galaxies at z > 5, and was the sixth most distant known galaxy. The unprecedented spectral purity of the observation offers evidence for a galaxy-scale outflow with a. velocity of v > 300 km s -1 , consistent with wind speeds observed in powerful local starbursts (typically 10 2 to 10 3 km s -1 ), and with simulations of the late- stage evolution of Lya emission in star-forming systems. Our final serendipitous detection is the remarkable source CXOHDFN J123635.6+621424, which is both the highest redshift known spiral galaxy, and a rare example of a high redshift, hard X-ray-emitting Type II AGN. Significantly, all of these results were acquired with no direct allocation of telescope time. In Part II, we report on our implementation of narrowband imaging selection, with which we traded redshift coverage for survey volume, focusing on the systematic study of galaxies at a particular epoch in favor of chasing that rare, most-distant object. This effort resulted in a catalog of 76 z [approximate] 4.5 Lya-emitting galaxies spectroscopically-confirmed in campaigns of Keck/LRIS and Keck

  2. Sliding contacts on printed circuit boards and wear behavior

    NASA Astrophysics Data System (ADS)

    Le Solleu, J.-P.

    2010-04-01

    Automotive suppliers use since decades printed circuit boards (PCB) gold plating pads, as direct contact interface for low current sliding contacts. Several gold plating processes are available on the market, providing various wear behaviour. Some specific galvanic hard gold (AuCo or AuNi). plating was developed on PCB's. This specific plating generates extra costs due to the material quantity and also the process complexity. In a cost driven industry, the challenge is to use a standard low cost PCB for systems requesting high reliability performances. After a brief overview of standard PCB manufacturing processes and especially gold plating processes, the global experimental results of wear behaviour of three different gold plating technologies will be exposed and an explanation of the correlation between surface key parameters and wear out will be provided.

  3. Au-Sn SLID Bonding: A Reliable HT Interconnect and Die Attach Technology

    NASA Astrophysics Data System (ADS)

    Tollefsen, Torleif André; Larsson, Andreas; Taklo, Maaike Margrete Visser; Neels, Antonia; Maeder, Xavier; Høydalsvik, Kristin; Breiby, Dag W.; Aasmundtveit, Knut

    2013-04-01

    Au-Sn solid-liquid interdiffusion (SLID) bonding is an established reliable high temperature (HT) die attach and interconnect technology. This article presents the life cycle of an optimized HT Au-Sn SLID bond, from fabrication, via thermal treatment, to mechanical rupture. The layered structure of a strong and uniform virgin bond was identified by X-ray diffraction to be Au/ζ (Au0.85Sn0.15)/Au. During HT exposure, it was transformed to Au/β (Au1.8Sn0.2)/Au. After HT exposure, the die shear strength was reduced by 50 pct, from 14 Pa to 70 MPa, which is still remarkably high. Fractographic studies revealed a change in fracture mode; it was changed from a combination of adhesive Au/Ni and cohesive SiC fracture to a cohesive β-phase fracture. Design rules for high quality Au-Sn SLID bonds are given.

  4. Thermal stability and adhesion of low-emissivity electroplated Au coatings.

    SciTech Connect

    Jorenby, Jeff W.; Hachman, John T., Jr.; Yang, Nancy Y. C.; Chames, Jeffrey M.; Clift, W. Miles

    2010-12-01

    We are developing a low-emissivity thermal management coating system to minimize radiative heat losses under a high-vacuum environment. Good adhesion, low outgassing, and good thermal stability of the coating material are essential elements for a long-life, reliable thermal management device. The system of electroplated Au coating on the adhesion-enhancing Wood's Ni strike and 304L substrate was selected due to its low emissivity and low surface chemical reactivity. The physical and chemical properties, interface bonding, thermal aging, and compatibility of the above Au/Ni/304L system were examined extensively. The study shows that the as-plated electroplated Au and Ni samples contain submicron columnar grains, stringers of nanopores, and/or H{sub 2} gas bubbles, as expected. The grain structure of Au and Ni are thermally stable up to 250 C for 63 days. The interface bonding is strong, which can be attributed to good mechanical locking among the Au, the 304L, and the porous Ni strike. However, thermal instability of the nanopore structure (i.e., pore coalescence and coarsening due to vacancy and/or entrapped gaseous phase diffusion) and Ni diffusion were observed. In addition, the study also found that prebaking 304L in the furnace at {ge} 1 x 10{sup -4} Torr promotes surface Cr-oxides on the 304L surface, which reduces the effectiveness of the intended H-removal. The extent of the pore coalescence and coarsening and their effect on the long-term system integrity and outgassing are yet to be understood. Mitigating system outgassing and improving Au adhesion require a further understanding of the process-structure-system performance relationships within the electroplated Au/Ni/304L system.

  5. Nonclassical degrees of freedom in the Riemann Hamiltonian.

    PubMed

    Srednicki, Mark

    2011-09-01

    The Hilbert-Pólya conjecture states that the imaginary parts of the zeros of the Riemann zeta function are eigenvalues of a quantum Hamiltonian. If so, conjectures by Katz and Sarnak put this Hamiltonian in the Altland-Zirnbauer universality class C. This implies that the system must have a nonclassical two-valued degree of freedom. In such a system, the dominant primitive periodic orbits contribute to the density of states with a phase factor of -1. This resolves a previously mysterious sign problem with the oscillatory contributions to the density of the Riemann zeros. PMID:21981482

  6. A New Proof of the Expected Frequency Spectrum under the Standard Neutral Model

    PubMed Central

    Hudson, Richard R.

    2015-01-01

    The sample frequency spectrum is an informative and frequently employed approach for summarizing DNA variation data. Under the standard neutral model the expectation of the sample frequency spectrum has been derived by at least two distinct approaches. One relies on using results from diffusion approximations to the Wright-Fisher Model. The other is based on Pólya urn models that correspond to the standard coalescent model. A new proof of the expected frequency spectrum is presented here. It is a proof by induction and does not require diffusion results and does not require the somewhat complex sums and combinatorics of the derivations based on urn models. PMID:26197064

  7. A New Proof of the Expected Frequency Spectrum under the Standard Neutral Model.

    PubMed

    Hudson, Richard R

    2015-01-01

    The sample frequency spectrum is an informative and frequently employed approach for summarizing DNA variation data. Under the standard neutral model the expectation of the sample frequency spectrum has been derived by at least two distinct approaches. One relies on using results from diffusion approximations to the Wright-Fisher Model. The other is based on Pólya urn models that correspond to the standard coalescent model. A new proof of the expected frequency spectrum is presented here. It is a proof by induction and does not require diffusion results and does not require the somewhat complex sums and combinatorics of the derivations based on urn models. PMID:26197064

  8. Riemann Zeta Zeros and Prime Number Spectra in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, B. F.; Svaiter, N. F.

    2013-10-01

    The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line Re(s) = 1/2. Hilbert and Pólya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Using the construction of the so-called super-zeta functions or secondary zeta functions built over the Riemann nontrivial zeros and the regularity property of one of this function at the origin, we show that it is possible to extend the Hilbert-Pólya conjecture to systems with countably infinite number of degrees of freedom. The sequence of the nontrivial zeros of the Riemann zeta function can be interpreted as the spectrum of a self-adjoint operator of some hypothetical system described by the functional approach to quantum field theory. However, if one considers the same situation with numerical sequences whose asymptotic distributions are not "far away" from the asymptotic distribution of prime numbers, the associated functional integral cannot be constructed. Finally, we discuss possible relations between the asymptotic behavior of a sequence and the analytic domain of the associated zeta function.

  9. Dynamic colour and utilizable white fluorescence from Eu/Tb ions codoped lithium-yttrium-aluminium-silicate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Lifan; Liu, Xiao; Chen, Baojie; Bun Pun, Edwin Yue; Lin, Hai

    2012-03-01

    A group of dynamic-colour white fluorescences with various colour temperatures that can be applied to circadian lighting are achieved in Eu/Tb-codoped lithium-yttrium-aluminium-silicate (LYAS) glasses, which can be attributed to the simultaneous generation of three primary colours emitting from Eu3+ (red), Eu2+ (blue) and Tb3+ (green) by varying the ultraviolet (UV) radiation wavelength. Fluorescence colour coordinates pass through the whole white region of the CIE x, y chromaticity diagram when the UV excitation wavelength is increased from 300 to 370 nm. A favourable white light with colour coordinates (0.338, 0.298) close to the equal energy white is obtained under 360 nm excitation. These results indicate that the Eu/Tb-codoped LYAS glasses are a promising candidate to develop white lighting devices under the excitation of commercial UV light-emitting diodes, and a smart lighting system based on rare-earth doped glasses will be a potential illumination source offering controllability of the colour temperature that can adjust to specific environments and requirements, and benefit human health, well-being and productivity.

  10. Cosmological implications of baryon acoustic oscillation measurements

    NASA Astrophysics Data System (ADS)

    Aubourg, Éric; Bailey, Stephen; Bautista, Julian E.; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S.; Bovy, Jo; Brewington, Howard; Brinkmann, J.; Brownstein, Joel R.; Burden, Angela; Busca, Nicolás G.; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Croft, Rupert A. C.; Cuesta, Antonio J.; Dawson, Kyle S.; Delubac, Timothée; Eisenstein, Daniel J.; Font-Ribera, Andreu; Ge, Jian; Le Goff, J.-M.; Gontcho, Satya Gontcho A.; Gott, J. Richard; Gunn, James E.; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S.; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H.; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K.; Miralda-Escudé, Jordi; Myers, Adam D.; Nichol, Robert C.; Noterdaeme, Pasquier; Nuza, Sebastián E.; Olmstead, Matthew D.; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Pieri, Matthew M.; Prada, Francisco; Reid, Beth; Rich, James; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G.; Samushia, Lado; Santos, Ricardo Tanausú Génova; Scóccola, Claudia G.; Schlegel, David J.; Schneider, Donald P.; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A.; Slosar, Anže; Strauss, Michael A.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A.; Weaver, Benjamin A.; Weinberg, David H.; Wood-Vasey, W. M.; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo; BOSS Collaboration

    2015-12-01

    We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an "inverse distance ladder" yields a measurement of H0=67.3 ±1.1 km s-1 Mpc-1 , with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Λ CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ ), our BAO +SN +CMB combination yields matter density Ωm=0.301 ±0.008 and curvature Ωk=-0.003 ±0.003 . When we allow more general forms of evolving dark energy, the BAO +SN +CMB parameter constraints are always consistent with flat Λ CDM values at ≈1 σ . While the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2 - 2.5 σ ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, ∑mν<0.56 eV (95% confidence), improving to ∑mν<0.25 eV if we include the

  11. Evolution of HI from Z=5 to the present

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, L. J.

    2002-01-01

    Studies of damped Lya systems provide us with a good measure of the evolution of the HI column density distribution function and the contribution to the comoving mass density in neutral gas out to redshifts of z = 5 . The column density distribution function at high redshift steepens for the highest column density HI absorbers, though the contribution to the comoving mass density of neutral gas remains fiat from 2 < z < 5 . Results from studies at z < 2 are finding substantial numbers of damped absorbers identified from MgII absorption, compared to previous blind surveys. These results indicate that the contribution to the comoving mass density in neutral gas may be constant from z 0 to z 5. Details of recent work in the redshift range z < 2 work is covered elsewhere in this volume (see D. Nestor). We review here recent results for the redshift range 2 < z < 5.

  12. Detection of a white dwarf in a visual binary system

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1992-01-01

    The F6 giant HD 160365 was detected to have a white dwarf companion about 8 arcsec south of the star. The UV energy distribution observed with IUE shows that the white dwarf has an effective temperature of 23,000 +/- 2000 K. If log g = 8 the Lya profile indicates an effective temperature around 24,500 K. Using the theoretical models by Wesemael et al. (1980) one finds a visual magnitude of m(V) about 16.5. For T(eff) = 24,500 K one expects for a white dwarf a luminosity of log L/L(solar) about 1.3 and M(V) about 10.67. This gives a distance modulus for the system of m(V) - M(V) = 5.83 and an absolute magnitude M(V)= 0.3 for the giant.

  13. Chromospheric, transition layer and X-ray emission for stars with different rotational velocities

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1982-01-01

    In agreement with previous findings for the MgII k line emission in F stars an increase of Lya and transition layer emission with increasing V sub r sin i, if v sub r sin i greater than 30 km/sec. was not found. For V sub r sin i 30 km/sec., the measured line intensities are consistent with an increase in emission with increasing V sub r sin i. Such a relation between emission and rotation for single stars is also in agreement with X-ray observations. For the young F stars in the Hyades we find generally enhanced emission independently of rotational velocities. The enhancement is most pronounced for low excitation lines.

  14. The Golden-Thompson inequality: Historical aspects and random matrix applications

    SciTech Connect

    Forrester, Peter J. Thompson, Colin J.

    2014-02-15

    The Golden-Thompson inequality, Tr (e{sup A+B}) ⩽ Tr (e{sup A}e{sup B}) for A, B Hermitian matrices, appeared in independent works by Golden and Thompson published in 1965. Both of these were motivated by considerations in statistical mechanics. In recent years the Golden-Thompson inequality has found applications to random matrix theory. In this article, we detail some historical aspects relating to Thompson's work, giving in particular a hitherto unpublished proof due to Dyson, and correspondence with Pólya. We show too how the 2 × 2 case relates to hyperbolic geometry, and how the original inequality holds true with the trace operation replaced by any unitarily invariant norm. In relation to the random matrix applications, we review its use in the derivation of concentration type lemmas for sums of random matrices due to Ahlswede-Winter, and Oliveira, generalizing various classical results.

  15. The Golden-Thompson inequality: Historical aspects and random matrix applications

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Thompson, Colin J.

    2014-02-01

    The Golden-Thompson inequality, Tr (eA+B) ⩽ Tr (eAeB) for A, B Hermitian matrices, appeared in independent works by Golden and Thompson published in 1965. Both of these were motivated by considerations in statistical mechanics. In recent years the Golden-Thompson inequality has found applications to random matrix theory. In this article, we detail some historical aspects relating to Thompson's work, giving in particular a hitherto unpublished proof due to Dyson, and correspondence with Pólya. We show too how the 2 × 2 case relates to hyperbolic geometry, and how the original inequality holds true with the trace operation replaced by any unitarily invariant norm. In relation to the random matrix applications, we review its use in the derivation of concentration type lemmas for sums of random matrices due to Ahlswede-Winter, and Oliveira, generalizing various classical results.

  16. Securing a Detection of the Bulk of the Missing Baryons

    NASA Astrophysics Data System (ADS)

    Nicastro, Fabrizio

    2010-09-01

    We propose to optimize the use of X-ray and FUV observatories to settle unambiguously one of the most controversial and open problems of modern astrophysics: the existence of the Missing Baryons in a Warm-Hot Intergalactic Medium (WHIM). We will do this by targeting a 500 ks Chandra-LETG observation on the best available tracers of the bulk (~80%) of the Missing Baryons in the Universe: two intergalactic absorption systems recently detected through Broad HI Lya and triple-OVI absorption, respectively, in a moderate S/N HST-COS spectrum of the bright and relatively high-redshift (z>0.4) blazar 1ES 1553+113. The proposed observation is carefully designed to finally secure a detection of the WHIM and to obtain a first robust estimate of its metal content.

  17. Erosion by a one-dimensional random walk

    NASA Astrophysics Data System (ADS)

    Chisholm, Rebecca H.; Hughes, Barry D.; Landman, Kerry A.

    2014-08-01

    We consider a model introduced by Baker et al. [Phys. Rev. E 88, 042113 (2013), 10.1103/PhysRevE.88.042113] of a single lattice random walker moving on a domain of allowed sites, surrounded by blocked sites. The walker enlarges the allowed domain by eroding the boundary at its random encounters with blocked boundary sites: attempts to step onto blocked sites succeed with a given probability and convert these sites to allowed sites. The model interpolates continuously between the Pólya random walker on the one-dimensional lattice and a "blind" walker who attempts freely, but always aborts, moves to blocked sites. We obtain some exact results about the walker's location and the rate of erosion.

  18. A Predictive Approach to Nonparametric Inference for Adaptive Sequential Sampling of Psychophysical Experiments

    PubMed Central

    Benner, Philipp; Elze, Tobias

    2012-01-01

    We present a predictive account on adaptive sequential sampling of stimulus-response relations in psychophysical experiments. Our discussion applies to experimental situations with ordinal stimuli when there is only weak structural knowledge available such that parametric modeling is no option. By introducing a certain form of partial exchangeability, we successively develop a hierarchical Bayesian model based on a mixture of Pólya urn processes. Suitable utility measures permit us to optimize the overall experimental sampling process. We provide several measures that are either based on simple count statistics or more elaborate information theoretic quantities. The actual computation of information theoretic utilities often turns out to be infeasible. This is not the case with our sampling method, which relies on an efficient algorithm to compute exact solutions of our posterior predictions and utility measures. Finally, we demonstrate the advantages of our framework on a hypothetical sampling problem. PMID:22822269

  19. Non-Selective Evolution of Growing Populations

    PubMed Central

    Jung, Heinrich; Frey, Erwin

    2015-01-01

    Non-selective effects, like genetic drift, are an important factor in modern conceptions of evolution, and have been extensively studied for constant population sizes (Kimura, 1955; Otto and Whitlock, 1997). Here, we consider non-selective evolution in the case of growing populations that are of small size and have varying trait compositions (e.g. after a population bottleneck). We find that, in these conditions, populations never fixate to a trait, but tend to a random limit composition, and that the distribution of compositions “freezes” to a steady state. This final state is crucially influenced by the initial conditions. We obtain these findings from a combined theoretical and experimental approach, using multiple mixed subpopulations of two Pseudomonas putida strains in non-selective growth conditions (Matthijs et al, 2009) as model system. The experimental results for the population dynamics match the theoretical predictions based on the Pólya urn model (Eggenberger and Pólya, 1923) for all analyzed parameter regimes. In summary, we show that exponential growth stops genetic drift. This result contrasts with previous theoretical analyses of non-selective evolution (e.g. genetic drift), which investigated how traits spread and eventually take over populations (fixate) (Kimura, 1955; Otto and Whitlock, 1997). Moreover, our work highlights how deeply growth influences non-selective evolution, and how it plays a key role in maintaining genetic variability. Consequently, it is of particular importance in life-cycles models (Melbinger et al, 2010; Cremer et al, 2011; Cremer et al, 2012) of periodically shrinking and expanding populations. PMID:26274606

  20. Mapping Baryons in the Halo of NGC 1097

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2012-10-01

    We propose observing 5 background QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of 53-183 kpc. NGC 1097 is a bright {-21.1} spiral galaxy that has the highest surface density of background, UV-bright QSOs in the nearby Universe. The galaxy hosts a low luminosity AGN at its core, surrounded by a ring of intense star-forming regions; there is also evidence from stellar tidal streams that the galaxy has recently cannibalized a number of dwarf galaxies, and a companion dwarf elliptical is still clearly merging with the outer disk. We aim to examine the physical conditions of gas that fills the halo of such an active galaxy. We will search primarily for Lya and SiIV absorption lines in the spectra of the background QSOs, as well as weak NV from hot gas. At the lowest impact parameters, we may also be able to find absorption lines from low ionization species. Our goals are to test whether the halo of NGC 1097 contains the same distribution of Lyman-alpha forest clouds seen at higher redshifts out to large distances from galaxies, and determine how the HI column density, covering fraction, and temperature of the gas decline with radius in a single galaxy halo. We will examine whether the velocities of the absorbers are consistent with those expected from gas co-rotating in the dark matter halo of the galaxy, or whether there exists a distribution of velocities that might indicate outflows from the galactic disk or from the central AGN, or, alternatively, from inflows from the IGM. Our map of Lya and SiIV around NGC 1097 will provide an important template for understanding the origin of higher redshift QSO absorption line systems.

  1. The VAULT2.0 Observing Campaign: A Comprehensive Investigation of the Chromosphere-Corona Interface at Sub-arcsecond scales

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Korendyke, C.; Tun-Beltran, S. D.; Ugarte-Urra, I.; Morrill, J. S.; Warren, H. P.; Young, P.; De Pontieu, B.; Gauzzi, G.; Reardon, K.

    2014-12-01

    We report the first results from an observing campaign in support of the VAULT2.0 sounding rocket launch on September 30, 2014. VAULT2.0 is a Lya (1216Å) spectroheliograph capable of 0.3" (~250 km) spatial resolution. The objective of the VAULT2.0 project is the study of the chromosphere-corona interface. This interface has acquired renewed emphasis over the last few years, thanks to high-resolution observations from Hinode/SOT and EIS instruments and the Lya imaging from the two VAULT flights. The observations have shown that the upper chromosphere may play a more important role in heating the corona and in affecting EUV observations that previously thought: (1) by supplying the mass via Type-II spicules and, (2) by absorbing coronal emission. Many of the required clues for further progress are located in sub-arcsecond structures with temperatures between 10000 and 50000 K, a regime not accessible by Hinode or SDO. Lyman-alpha observations are, therefore, ideal, for filling in this gap. The observing campaign in support of the VAULT2.0 is closely coordinated with the Hinode and IRIS missions to study the mass/energy flow from the chromosphere to the corona with joint observations of type-II spicules, and the magnetic connectivity of coronal loops using the full imaging and spectral capabilities of IRIS, Hinode and SDO. Several ground-based observatories also provide important observations (IBIS, BBSO, SOLIS). The VAULT2.0 project is funded by the NASA LCAS program.

  2. Stellar Calibration of the WIC and SI Imagers and the GEO Photometers on IMAGE/FUV

    NASA Technical Reports Server (NTRS)

    Gladstone, R.; Mende, S. B.; Frey, H. U.; Geller, S. P.; Immel, T. J.; Lampton, M.; Gerard, J.-C.; Spann, J.; Habraken, S.; Renotte, E.; Jamar, C.; Rochus, P.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The FUV instrument on the IMAGE spacecraft comprises three wide-field imagers, the Wide-Band Imaging Camera (WIC) of observing N2 Lyman-Birge-Hopfield (LBH) (140-190 nm) emissions and the Spectrographic Imager (SI), which has a 121.8 nm channel for observing red-shifted HI Lya photons and a 135.6 run channel for observing 01 135.6 nm emissions. In addition, three HI Lya photometers (GEO) are used to monitor the geocorona. The fields of view are 17 degrees x 17 degrees for the WIC imagers, 15 degrees x 15 degrees for the two SI imagers, and 10 diameter for the three GEO photometers. As the IMAGE spacecraft spins every 120 seconds, the GEO photometers sweep out circles on the sky (at 0 degrees and plus or minus 30 degrees with respect to the spacecraft spin plane), and the WIC and SI imagers use the Time Delay Integration (TDI) method to construct images centered on the Earth. Many FUV-bright stars are seen in the WIC, SI and even the GEO data. WE have used archived International Ultraviolet Explorer (IUE) far-ultraviolet flux spectra for 22 of the brightest of these stars to help refine the FUV instrumental sensitivities. The stars chosen range in spectral type form B0V to A11V, with magnitudes ranging from V- 1.3 (a Cru) to V=4.7 (G Cen) (although many more fainter stars are also seen). The initial results of this stellar calibration will be presented and compared with the pre-flight and dayglow modeling results.

  3. The VAULT2.0 Observing Campaign: The First Comprehensive Investigation of the Chromosphere-Corona Interface at Sub-arcsecond scales

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Korendyke, C.; Tun, S.; Ugarte-Urra, I.; Chua, D. H.; Morrill, J. S.; Warren, H. P.; Young, P.; Landi, E.; De Pontieu, B.; Cauzzi, G.; Reardon, K.

    2013-12-01

    We report the first results from an observing campaign in support of the VAULT2.0 sounding rocket launch. VAULT2.0 is a Lya (1216Å) spectroheliograph capable of 0.3' (~250 km) spatial resolution. The objective of the VAULT2.0 project is the study of the chromosphere-corona interface. This interface has acquired renewed emphasis over the last few years, thanks to high-resolution observations from Hinode/SOT and EIS instruments and the Lya imaging from the two VAULT flights. The observations have shown that the upper chromosphere may play a more important role in heating the corona and in affecting EUV observations that previously thought: (1) by supplying the mass via Type-II spicules and, (2) by absorbing coronal emission. Many of the required clues for further progress are located in sub-arcsecond structures with temperatures between 10000 and 50000 K, a regime not accessible by Hinode or SDO. Lyman-alpha observations are, therefore, ideal, for filling in this gap. The observing campaign in support of the VAULT2.0 is closely coordinated with the Hinode and IRIS missions to study the mass/energy flow from the chromosphere to the corona with joint observations of type-II spicules, and the magnetic connectivity of coronal loops using the full imaging and spectral capabilities of IRIS, Hinode and SDO. Several ground-based observatories also provide important observations (IBIS, BBSO, SOLIS). The VAULT2.0 project is funded by the NASA LCAS program. The upgraded payload, VAULT2.0, is ideally suited to address this questions because it observes in a unique line, unavailable elsewhere, it's the only other space telescope with spatial resolution comparable to that of the Hinode instruments, and the science objectives are well suited to the short time span of a rocket flight.

  4. Low-resolution VLT Spectroscopy of GRBs 991216, 011211, 021211 and 030328

    NASA Technical Reports Server (NTRS)

    Vreeswijk, P. M.; Smette, A.; Fruchter, A. S.; Palazzi, E.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Kaper, L.; Pian, E.; Masetti, N.

    2005-01-01

    We present low-resolution VLT spectroscopy of the aftergiow position of the gamma ray bursts 991216, 011211, 021211 and 030328. The spectmm of GRB 991216 shows two probable absorption systems at z = 0.80 and z = 1.02, where the highest redshift most likely reflects the distance to the host galaxy. A third, more uncertain, system may be detected at z = 0.77. HST imaging of the field obtained 4 months later, show two amorphous regions of emission, one at the projected OT position, the presumed host galaxy at z = 1.02, and the other 0"6 away. All significant lines in the spectrum of GRB 011211 are identified with lines originating in a single absorption system at z = 2.142 plus or minus 0.002, the redshift of the GRB 011211 host galaxy. We also detect Lya in the host, for which we fit a neutral hydrogen column density of log N(HI)=20.4 plus or minus 0.2, which indicates that it is a damped Lya system. For GRB021211, we detect a single emission line in a spectrum tens of days after the burst, which we identify as [OII] at z = 1.006. The galaxy l"5 away from the afterglow location has z = 0.800, and is therefore unrelated to the GRB. Finally, for GRB030328 at least two absorption systems are required to explain all significant lines: one at z = 1.522, the likely redshift of the GRB, and the other at z = 1.295. For the latter system we only detect two lines, and we consider the reality of this system to be uncertain.

  5. A Potential Paradigm Shift in our Understanding of Helium Reionization

    NASA Astrophysics Data System (ADS)

    Worseck, Gabor

    2014-10-01

    The advent of GALEX and COS have revolutionized studies of HeII reionization. Observations of the FUV-brightest QSOs have resulted in a order-of-magnitude increase in science-grade HeII Lya absorption spectra in the HST archive. The clear picture emerging is that COS has successfully pinpointed the end of HeII reionization at z~2.7. Based on this, and our team's state-of-the-art radiative transfer simulations, one expects complete Gunn-Peterson absorption at higher redshifts. However, surprisingly, our analysis of the three existing sightlines at z>3.5 reveals high-transmission regions consistent with expectations for a reionized IGM, in striking conflict with the models. Explaining these measurements may require invoking other exotic sources of hard photons at high-z, which would amount to a paradigm shift in our understanding of HeII reionization, with concomitant implications for HI reionization. The unequivocal path forward is COS spectra of more QSOs at z>3.5, deep into the reionization era, to put this tentative result on firm statistical footing. We request 24 orbits to obtain science-grade COS far-UV spectra of the 3 brightest HeII QSOs at z>3.5, which will double the HeII pathlength at high-z and test tantalizing indications that HeII reionization began at z>4 and lasted over 1 Gyr. These spectra are complemented by ancillary data from 8m telescopes, including echelle spectra of the coeval HI Lya forest, and our dedicated survey for QSOs in the foreground of each HeII sightline. Our targets are the only viable sources probing z>3.5 in a reasonable orbit request, and it is critical to HST's legacy to solve this riddle before the mission ends.

  6. 4U 1626-67 as Seen by Suzaku Before and After the 2008 Torque Reversal

    NASA Technical Reports Server (NTRS)

    Camero-Arranz, A.; Pottschmidt, K.; Finger, M. H.; Ikhsanov, N. R.; Wilson-Hodge, C. A.; Marcu, D. M.

    2012-01-01

    Aims. The accretion-powered pulsar 4U 1626-67 experienced a new torque reversal at the beginning of 2008, after about 18 years of steadily spinning down. The main goal of the present work is to study this recent torque reversal that occurred in 2008 February. Methods. We present a spectral analysis of this source using two pointed observations performed by Suzaku in 2006 March and in 2010 September. Results. We confirm with Suzaku the presence of a strong emission-line complex centered on 1 keV, with the strongest line being the hydrogen-like Ne Lya at 1.025(3) keV. We were able to resolve this complex with up to seven emission lines. A dramatic increase of the intensity of the Ne Lya line after the 2008 torque reversal occurred, with the equivalent width of this line reaching almost the same value measured by ASCA in 1993. We also report on the detection of a cyclotron line feature centered at approximately 37 keV. In spite of the fact that an increase of the X-ray luminosity (0.5-100keV) of a factor of approximately 2.8 occurred between these two observations, no significant change in the energy of the cyclotron line feature was observed. However, the intensity of the approximately 1 keV line complex increased by an overall factor of approximately 8. Conclusions. Our results favor a scenario in which the neutron star in 4U 1626-67 accretes material from a geometrically thin disk during both the spin-up and spin-down phases.

  7. A nonmagmatic origin of group-IIE iron meteorites

    NASA Astrophysics Data System (ADS)

    Wasson, J. T.; Wang, J.

    1986-05-01

    New neutron activation data on 10 elements in 12 IIE and IIE-related irons lead to a reclassification of several irons. Seymchan and Lonaconing are removed from IIE, and Leshan added. Four IIE members are designated IIE-An to call attention to some anomalous properties. The eight normal IIE members define element-Ni trends generally similar to those in the nonmagmatic group IAB; the small negative slopes on W-Ni and Ir-Ni diagrams are strongly indicative of a nonmagmatic origin of the IIE irons. It is proposed that IIE irons like IAB irons originated as individual pools of impact-produced melt in the near-surface region of a chondritic parent body. The positive As-Ni and Au-Ni trends are the only evidence suggesting fractional crystallization, but their slopes are lower than those in magmatic group IIIAB, and only slightly higher than those of Cu and Sb in IAB. It is suggested that the S and C contents of the IIE precursor materials were much lower than those of the IAB precursors, thus higher temperatures were required to generate enough metallic melt to segregate into pools. These higher temperatures are also reflected in the nonchondritic compositions of the silicate inclusions.

  8. Mechanical properties of materials with nanometer scale microstructures. Progress report, 1 April 1989 to Present

    SciTech Connect

    Nix, W.D.

    1991-07-01

    For the past two years we have been engaged in a program of research on the mechanical properties of a variety of new materials with nanometer scale microstructures. These materials have been developed recently using vapor phase synthesis techniques and are available in the form of compositionally-modulated (multilayered) thin film materials and ultrafine-grained (nanocrystalline) solids. They have interesting microstructures and mechanical properties that may lead to new applications for these materials. In this report we give a brief summary of some of the results we have obtained to date in the course of this research. Other, more detailed, descriptions of some of this work can be found in the papers that we have published. These are listed at the end of this report along with a listing of the oral presentations we have given. We report briefly on our studies of the elastic properties of metallic multilayered thin films. Using indentation and microbeam deflection techniques, we have found that Au/Ni multilayers do not show supermodulus effects, contrary to some previous reports based on bulge test results. However, we have discovered large and significant substrate interaction stresses in these films which depend systematically on the composition modulation wavelength. We believe that these residual stresses may have led to bulge testing errors which in turn led to erroneous reports of supermodulus effects.

  9. Mechanical properties of materials with nanometer scale microstructures

    SciTech Connect

    Nix, W.D.

    1991-07-01

    For the past two years we have been engaged in a program of research on the mechanical properties of a variety of new materials with nanometer scale microstructures. These materials have been developed recently using vapor phase synthesis techniques and are available in the form of compositionally-modulated (multilayered) thin film materials and ultrafine-grained (nanocrystalline) solids. They have interesting microstructures and mechanical properties that may lead to new applications for these materials. In this report we give a brief summary of some of the results we have obtained to date in the course of this research. Other, more detailed, descriptions of some of this work can be found in the papers that we have published. These are listed at the end of this report along with a listing of the oral presentations we have given. We report briefly on our studies of the elastic properties of metallic multilayered thin films. Using indentation and microbeam deflection techniques, we have found that Au/Ni multilayers do not show supermodulus effects, contrary to some previous reports based on bulge test results. However, we have discovered large and significant substrate interaction stresses in these films which depend systematically on the composition modulation wavelength. We believe that these residual stresses may have led to bulge testing errors which in turn led to erroneous reports of supermodulus effects.

  10. A nonmagmatic origin of group-IIE iron meteorites

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.; Wang, J.

    1986-01-01

    New neutron activation data on 10 elements in 12 IIE and IIE-related irons lead to a reclassification of several irons. Seymchan and Lonaconing are removed from IIE, and Leshan added. Four IIE members are designated IIE-An to call attention to some anomalous properties. The eight normal IIE members define element-Ni trends generally similar to those in the nonmagmatic group IAB; the small negative slopes on W-Ni and Ir-Ni diagrams are strongly indicative of a nonmagmatic origin of the IIE irons. It is proposed that IIE irons like IAB irons originated as individual pools of impact-produced melt in the near-surface region of a chondritic parent body. The positive As-Ni and Au-Ni trends are the only evidence suggesting fractional crystallization, but their slopes are lower than those in magmatic group IIIAB, and only slightly higher than those of Cu and Sb in IAB. It is suggested that the S and C contents of the IIE precursor materials were much lower than those of the IAB precursors, thus higher temperatures were required to generate enough metallic melt to segregate into pools. These higher temperatures are also reflected in the nonchondritic compositions of the silicate inclusions.

  11. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands.

    PubMed

    Broere, Daniël L J; Modder, Dieuwertje K; Blokker, Eva; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-02-12

    The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to Au(I) followed by homoleptic metalation of the NO pocket with Ni(II) affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically coupled ligand-centered radicals and a double intramolecular d(8)-d(10) interaction, as supported by spectroscopic, single-crystal X-ray diffraction, and computational data. A corresponding cationic dinuclear Au-Ni analogue with a stronger d(8)-d(10) interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au-Ni-Au complex facilitates electrocatalytic C-X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox-active ligand framework, an available coordination site at gold, and the nature of the nickel-gold interaction appear to be essential for this reactivity. PMID:26762546

  12. Oxygen reduction of several gold alloys in 1-molar potassium hydroxide

    NASA Technical Reports Server (NTRS)

    Miller, R. O.

    1975-01-01

    With rotated disk-and-ring equipment, polarograms and other electrochemical measurements were made of oxygen reduction in 1-molar potassium hydroxide on an equiatomic gold-copper (Au-Cu) alloy and a Au-Cu alloy doped with either indium (In) or cobalt (Co) and on Au doped with either nickel (Ni) or platinum (Pt). The results were compared with those for pure Au and pure Pt. The two-electron reaction dominated on all Au alloys as it did on Au. The polarographic results at lower polarization potentials were compared, assuming exclusively a two-step reduction. A qualified ranking of cathodic electrocatalytic activity on the freshly polished reduced disks was indicated: anodized Au Au-Cu-In Au-Cu Au-Cu-Co is equivalent or equal to Au-Pt Au-Ni. Aging in distilled water improved the electrocatalytic efficiency of Au-Cu-Co, Au-Cu, and (to a lesser extent) Au-Cu-In.

  13. LaAlO3/Si capacitors: Comparison of different molecular beam deposition conditions and their impact on electrical properties

    NASA Astrophysics Data System (ADS)

    Pelloquin, Sylvain; Saint-Girons, Guillaume; Baboux, Nicolas; Albertini, David; Hourani, Waël; Penuelas, Jose; Grenet, Geneviève; Plossu, Carole; Hollinger, Guy

    2013-01-01

    A study of the structural and electrical properties of amorphous LaAlO3 (LAO)/Si thin films fabricated by molecular beam deposition (MBD) is presented. Two substrate preparation procedures have been explored namely a high temperature substrate preparation technique—leading to a step and terraces surface morphology—and a chemical HF-based surface cleaning. The LAO deposition conditions were improved by introducing atomic plasma-prepared oxygen instead of classical molecular O2 in the chamber. An Au/Ni stack was used as the top electrode for its electrical characteristics. The physico-chemical properties (surface topography, thickness homogeneity, LAO/Si interface quality) and electrical performance (capacitance and current versus voltage and TunA current topography) of the samples were systematically evaluated. Deposition conditions (substrate temperature of 550 °C, oxygen partial pressure settled at 10-6 Torr, and 550 W of power applied to the O2 plasma) and post-depositions treatments were investigated to optimize the dielectric constant (κ) and leakage currents density (JGate at |VGate| = |VFB - 1|). In the best reproducible conditions, we obtained a LAO/Si layer with a dielectric constant of 16, an equivalent oxide thickness of 8.7 Å, and JGate ≈ 10-2A/cm2. This confirms the importance of LaAlO3 as an alternative high-κ for ITRS sub-22 nm technology node.

  14. Complement Deposition on Nanoparticles Can Modulate Immune Responses by Macrophage, B and T Cells.

    PubMed

    Pondman, Kirsten M; Tsolaki, Anthony G; Paudyal, Basudev; Shamji, Mohamed H; Switzer, Amy; Pathan, Ansar A; Abozaid, Suhair M; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday

    2016-01-01

    Nanoparticles are attractive drug delivery vehicles for targeted organ-specific as well as systemic therapy. However, their interaction with the immune system offers an intriguing challenge to the success of nanotherapeutics in vivo. Recently, we showed that pristine and derivatised carbon nanotubes (CNT) can activate complement mainly via the classical pathway leading to enhanced uptake by phagocytic cells, and transcriptional down-regulation of pro-inflammatory cytokines. Here, we report the interaction of complement-activating CC-CNT and RNA-CNT, and non-complement-activating gold-nickel (Au-Ni) nanowires with cell lines representing macrophage, B and T cells. Complement deposition considerably enhanced uptake of CNTs by immune cells known to overexpress complement receptors. Real-Time qPCR and multiplex array analyses showed complement-dependent down-regulation of TNF-α and IL-1β and up-regulation of IL-12 by CMC- and RNA-CNTs, in addition to revealing IL-10 as a crucial regulator during nanoparticle-immune cell interaction. It appears that complement system can recognize molecular patterns differentially displayed by nanoparticles and thus, modulate subsequent processing of nanoparticles by antigen capturing and antigen presenting cells, which can shape innate and adaptive immune axes. PMID:27301184

  15. Selection of Optical Cavity Surface Coatings for 1micron Laser Based Missions

    NASA Technical Reports Server (NTRS)

    Hedgeland, Randy J.; Straka, Sharon; Matsumura, Mark; Hammerbacher, Joseph

    2004-01-01

    The particulate surface cleanliness level on several coatings for aluminum and beryllium substrates were examined for use in the optical cavities of high pulse energy Nd:YAG Q-switched, diode-pumped lasers for space flight applications. Because of the high intensity of the lasers, any contaminants in the laser beam path could damage optical coatings and limit the instrument mission objectives at the operating wavelength of 1 micron (micrometer). Our goal was to achieve an EST-STD-CC1246D Level 100 particulate distribution or better to ensure particulate redistribution during launch would not adversely affect the performance objectives. Tapelifts were performed to quantify the amount of particles using in-house developed procedures. The primary candidate coatings included chromate conversion coating aluminum (Al), uncoated Al electroless Nickel (Ni) on Al, Ni-gold (Au) on Al, anodized Al, and gold (Au)/Ni on Beryllium (Be). The results indicate that there were advantages in Ni and Au coating applications for the two major substrates, Al and Be, when considering applications that need to meet launch environments.

  16. Using multivariate analyses to compare subsets of electrodes and potentials within an electrode array for predicting sugar concentrations in mixed solutions.

    SciTech Connect

    Stork, Christopher Lyle; Steen, William Arthur

    2008-04-01

    A non-selective electrode array is presented for the quantification of fructose, galactose, and glucose in mixed solutions. A unique feature of this electrode array relative to other published work is the wide diversity of electrode materials incorporated within the array, being constructed of 41 different metals and metal alloys. Cyclic voltammograms were acquired for solutions containing a single sugar at varying concentrations, and the correlation between current and sugar concentration was calculated as a function of potential and electrode array element. The correlation plots identified potential regions and electrodes that scaled most linearly with sugar concentration, and the number of electrodes used in building predictive models was reduced to 15. Partial least squares regression models relating electrochemical response to sugar concentration were constructed using data from single electrodes and multiple electrodes within the array, and the predictive abilities of these models were rigorously compared using a non-parametric Wilcoxon test. Models using single electrodes (Pt:Rh (90:10) for fructose, Au:Ni (82:18) for galactose, and Au for glucose) were judged to be statistically superior or indistinguishable from those built with multiple electrodes. Additionally, for each sugar, interval partial least squares regression successfully identified a subset of potentials within a given electrode that generated a model of statistically equivalent predictive ability relative to the full potential model. While including data from multiple electrodes offered no benefit in predicting sugar concentration, use of the array afforded the versatility and flexibility of selecting the best single electrode for each sugar.

  17. Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts

    PubMed Central

    2013-01-01

    We have fabricated the vertically aligned coaxial or longitudinal heterostructure GaN/InGaN nanowires. The GaN nanowires are first vertically grown by vapor–liquid-solid mechanism using Au/Ni bi-metal catalysts. The GaN nanowires are single crystal grown in the [0001] direction, with a length and diameter of 1 to 10 μm and 100 nm, respectively. The vertical GaN/InGaN coaxial heterostructure nanowires (COHN) are then fabricated by the subsequent deposition of 2 nm of InxGa1-xN shell on the surface of GaN nanowires. The vertical GaN/InGaN longitudinal heterostructure nanowires (LOHN) are also fabricated by subsequent growth of an InGaN layer on the vertically aligned GaN nanowires using the catalyst. The photoluminescence from the COHN and LOHN indicates that the optical properties of GaN nanowires can be tuned by the formation of a coaxial or longitudinal InGaN layer. Our study demonstrates that the bi-metal catalysts are useful for growing vertical as well as heterostructure GaN nanowires. These vertically aligned GaN/InGaN heterostructure nanowires may be useful for the development of high-performance optoelectronic devices. PMID:23803283

  18. Solution conformation of the synthetic bovine proenkephalin-A209-237 by 1H NMR spectroscopy.

    PubMed

    Kieffer, B; Dillmann, B; Lefèvre, J F; Goumon, Y; Aunis, D; Metz-Boutigue, M H

    1998-12-11

    Proenkephalin-A has been described to generate enkephalins, opoid peptides, and several derived peptides, which display various biological effects, including antinociception and immunological enhancement. Recently, we have isolated from bovine chromaffin granules a new antibacterial peptide, named enkelytin, which corresponds to the bisphosphorylated form of PEAP209-237 (Goumon, Y., Strub, J. M., Moniatte, M., Nullans, G., Poteur, L., Hubert, P., Van Dorsselaer, A., Aunis, D., and Metz-Boutigue, M. H. (1996) Eur. J. Biochem. 235, 516-525). In this paper, the three-dimensional solution structure of synthetic PEAP209-237 was investigated by NMR. These studies indicate that this peptide, which is unstructured in water, folds into an alpha-helical structure in trifluoroethanol/water (1/1). NMR data revealed two possible three-dimensional models of PEAP209-237. In both models, the proline residue Pro-227 induces a 90 degrees hinge between two alpha-helical segments (Ser-215 to Ser-221 and Glu-228 to Arg-232) leading to an overall L-shaped structure for the molecule. The negative charge of PEAP209-237 and the low amphipathy of the two alpha-helical segments imply new mechanisms to explain the antibacterial activity of enkelytin. PMID:9837932

  19. Synthesis of p-type GaN nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-08-01

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo

  20. Gas phase selective hydrogenation over oxide supported Ni-Au.

    PubMed

    Cárdenas-Lizana, Fernando; Keane, Mark A

    2015-11-14

    The chemoselective continuous gas phase (T = 573 K; P = 1 atm) hydrogenation of nitroarenes (p-chloronitrobenzene (p-CNB) and m-dinitrobenzene (m-DNB)) has been investigated over a series of oxide (Al2O3 and TiO2) supported Au and Ni-Au (1 : 10 mol ratio; 0.1-1 mol% Au) catalysts. Monometallic supported Au with mean particle size 3-9 nm promoted exclusive formation of p-chloroaniline (p-CAN) and m-nitroaniline (m-NAN). Selective hydrogenation rate was higher over smaller Au particles and can be attributed to increased surface hydrogen (from TPD measurements) at higher metal dispersion. (S)TEM analysis has confirmed an equivalent metal particle size for the supported bimetallics at the same Au loading where TPR indicates Ni-Au interaction and EDX surface mapping established Ni in close proximity to Au on isolated nanoparticles with a composition (Au/Ni) close to the bulk value (= 10). Increased spillover hydrogen due to the incorporation of Ni in the bimetallics resulted in elevated -NO2 group reduction rate. Full selectivity to p-CAN was maintained over all the bimetallic catalysts. Conversion of m-DNB over the lower loaded Ni-Au/Al2O3 generated m-NAN as sole product. An increase in Ni content (0.01 → 0.1 mol%) or a switch from Al2O3 to TiO2 as support resulted in full -NO2 reduction (to m-phenylenediamine). Our results demonstrate the viability of Ni-promotion of Au in the continuous production of functionalised anilines. PMID:25752655

  1. Single-crystal γ-MnS nanowires conformally coated with carbon.

    PubMed

    Beltran-Huarac, Juan; Resto, Oscar; Carpena-Nuñez, Jennifer; Jadwisienczak, Wojciech M; Fonseca, Luis F; Weiner, Brad R; Morell, Gerardo

    2014-01-22

    We report for the first time the fabrication of single-crystal metastable manganese sulfide nanowires (γ-MnS NWs) conformally coated with graphitic carbon via chemical vapor deposition technique using a single-step route. Advanced spectroscopy and electron microscopy techniques were applied to elucidate the composition and structure of these NWs at the nanoscale, including Raman, XRD, SEM, HRTEM, EELS, EDS, and SAED. No evidence of α-MnS and β-MnS allotropes was found. The γ-MnS/C NWs have hexagonal cross-section and high aspect ratio (∼1000) on a large scale. The mechanical properties of individual γ-MnS/C NWs were examined via in situ uniaxial compression tests in a TEM-AFM. The results show that γ-MnS/C NWs are brittle with a Young's modulus of 65 GPa. The growth mechanism proposed suggests that the bottom-up fabrication of γ-MnS/C NWs is governed by vapor-liquid-solid mechanism catalyzed by bimetallic Au-Ni nanoparticles. The electrochemical performance of γ-MnS/C NWs as an anode material in lithium-ion batteries indicates that they outperform the cycling stability of stable micro-sized α-MnS, with an initial capacity of 1036 mAh g(-1) and a reversible capacity exceeding 503 mAh g(-1) after 25 cycles. This research advances the integration of carbon materials and metal sulfide nanostructures, bringing forth new avenues for potential miniaturization strategies to fabricate 1D core/shell heterostructures with intriguing bifunctional properties that can be used as building blocks in nanodevices. PMID:24392737

  2. COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells

    PubMed Central

    Marban, Céline; Redel, Laetitia; Suzanne, Stella; Van Lint, Carine; Lecestre, Dominique; Chasserot-Golaz, Sylvette; Leid, Mark; Aunis, Dominique; Schaeffer, Evelyne; Rohr, Olivier

    2005-01-01

    Human immunodeficiency virus type 1 (HIV-1) gene transcription is characterized by two temporally distinct phases. While the initial phase relies solely on cellular transcription factors, the subsequent phase is activated by the viral Tat transactivator. We have previously reported that the subsequent phase of viral gene transcription can be repressed by the chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2 (CTIP2) in human microglial cells [O. Rohr, D. Lecestre, S. Chasserot-Golaz, C. Marban, D. Avram, D. Aunis, M. Leid and E. Schaeffer (2003), J. Virol., 77, 5415–5427]. Here, we demonstrate that CTIP proteins also repress the initial phase of HIV-1 gene transcription, mainly supported by the cellular transcription factors Sp1 and COUP-TF in microglial cells. We report that CTIP2 represses Sp1- and COUP-TF-mediated activation of HIV-1 gene transcription and viral replication as a result of physical interactions with COUP-TF and Sp1 in microglial nuclei. Using laser confocal microscopy CTIP2 was found to colocalize with Sp1, COUP-TF and the heterochromatin-associated protein Hp1α, which is mainly detected in transcriptionally repressed heterochromatic region. Moreover, we describe that CTIP2 can be recruited to the HIV-1 promoter via its association with Sp1 bound to the GC-box sequences of the long terminal repeat (LTR). Since our findings demonstrate that CTIP2 interacts with the HIV-1 proximal promoter, it is likely that CTIP2 promotes HIV-1 gene silencing by forcing transcriptionally repressed heterochromatic environment to the viral LTR region. PMID:15849318

  3. Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon. Degree awarded by Colorado Univ., Boulder, CO

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1997-01-01

    The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.

  4. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    PubMed

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-01

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute). PMID:23455517

  5. LaAlO{sub 3}/Si capacitors: Comparison of different molecular beam deposition conditions and their impact on electrical properties

    SciTech Connect

    Pelloquin, Sylvain; Baboux, Nicolas; Albertini, David; Hourani, Waeel; Plossu, Carole; Saint-Girons, Guillaume; Penuelas, Jose; Grenet, Genevieve; Hollinger, Guy

    2013-01-21

    A study of the structural and electrical properties of amorphous LaAlO{sub 3} (LAO)/Si thin films fabricated by molecular beam deposition (MBD) is presented. Two substrate preparation procedures have been explored namely a high temperature substrate preparation technique-leading to a step and terraces surface morphology-and a chemical HF-based surface cleaning. The LAO deposition conditions were improved by introducing atomic plasma-prepared oxygen instead of classical molecular O{sub 2} in the chamber. An Au/Ni stack was used as the top electrode for its electrical characteristics. The physico-chemical properties (surface topography, thickness homogeneity, LAO/Si interface quality) and electrical performance (capacitance and current versus voltage and TunA current topography) of the samples were systematically evaluated. Deposition conditions (substrate temperature of 550 Degree-Sign C, oxygen partial pressure settled at 10{sup -6} Torr, and 550 W of power applied to the O{sub 2} plasma) and post-depositions treatments were investigated to optimize the dielectric constant ({kappa}) and leakage currents density (J{sub Gate} at Double-Vertical-Line V{sub Gate} Double-Vertical-Line = Double-Vertical-Line V{sub FB}- 1 Double-Vertical-Line ). In the best reproducible conditions, we obtained a LAO/Si layer with a dielectric constant of 16, an equivalent oxide thickness of 8.7 A, and J{sub Gate} Almost-Equal-To 10{sup -2}A/cm{sup 2}. This confirms the importance of LaAlO{sub 3} as an alternative high-{kappa} for ITRS sub-22 nm technology node.

  6. Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Prabhakar, Vedavvathi

    Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These

  7. Absorption-line measurements of AGN outflows

    NASA Astrophysics Data System (ADS)

    Fields, Dale L.

    Investigations into the elemental abundances in two nearby active galaxies, the narrow-line Seyfert 1 Markarian 1044 and the Seyfert 1 Markarian 279, are reported. Spectra from three space-based observatories HST, FUSE, and CHANDRA, are used to measure absorption lines in material outflowing from the nucleus. I make multi-wavelength comparisons to better convert the ionic column densities into elemental column densities which can then be used to determine abundances (metallicities). Narrow-line Seyfert 1 galaxies are known to have extreme values of a number of properties compared to active galactic nuclei (AGNs) as a class. In particular, emission-line studies have suggested that NLS1s are unusually metal-rich compared to broad-line AGNs of comparable luminosity. To test these suggestions I perform absorption-line studies on the NLS1 Markarian 1044, a nearby and bright AGN. I use lines of H I, C IV, N V, and O VI to properly make the photoionization correction through the software Cloudy and determine abundances of Carbon, Nitrogen and Oxygen. I find two results. The first is that Markarian 1044 has a bulk metallicity greater than five times solar. The second is that the N/C ratio in Markarian 1044 is consistent with a solar mixture. This is in direct contradiction of extrapolations from local H II regions which state N/ C should scale with bulk metallicity. This implies a different enrichment history in Markarian 1044 than in the Galactic disk. I also report discovery of three new low-redshift Lya forest lines with log N HI >= 12:77 in the spectrum of Markarian 1044. This number is consistent with the 2.6 expected Lya forest lines in the path length to Markarian 1044. I also investigate the CHANDRA X-ray spectrum of Markarian 279, a broad-line Seyfert 1. I use a new code, PHASE, to self-consistently model the entire absorption spectrum simultaneously. Using solely the X-ray spectrum I am able to determine the physical parameters of this absorber to a degree only

  8. The transport of angular momentum by gravitational instabilities and Rossby vortices in accretion disks

    NASA Astrophysics Data System (ADS)

    Currier, Nathaniel W.

    We propose a model for the birth of spiral galaxies and the supermassive black holes (SMBHs) at their centers. It all starts when a galaxy-mass gas condensation collapses to ~ 200 × the background density. It experiences weak tidal torques from similar condensations, which establish its spin parameter l. It forms a Lyman-a (Lya) cloud, then undergoes an inviscid, angular-momentum- preserving collapse to a Mestel disk with a flat rotation curve (FRCD). A FRCD has v ~ const, M Lya clouds provide the cloud's radius, mass and l. Upon collapse, these variables uniquely determine the mass, size, rotational velocities, and SMBH masses of spiral galaxies. We predict infant galaxy FRCs go all the way to the center. Following the FRCD, the black hole's mass ( MBH ~- 3 × 10 7 [Special characters omitted.] ) comes from the galaxy's innermost 3 pc, which is the radius where gas retains heat long enough to form an accretion disk instead of stars. We invoke two mechanisms to drive accretion: The self- gravity instability (SGI) and the Rossby vortex instability (RVI). Both mechanisms transport angular momentum coherently, so they easily dominate turbulent mechanisms wherever the disk is thin. The popular magneto-rotational instability (MRI) is semi-coherent, but it's not required for our model, so we leave it for further study. We use a 2-D Eulerian hydro code to simulate the SGI and RVI in both FRCDs and Keplerian disks. We explore the triggers of these instabilities, namely, the Toomre parameter Q in SGI-unstable FRCDs and pressure jumps in RVI-unstable Keplerian disks. We confirm that Q [Special characters omitted.] 1 triggers the SGI in FRCDs and that D P/P [Special characters omitted.] 5 generates robust Rossby vortices in Keplerian disks. We also find that these instabilities interact in the transition region between these two types of disks. We relate all this to our self-consistent model

  9. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    PubMed Central

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  10. Quantifying velocity, strain rate and stress distribution in coalescing salt sheets for safer drilling

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; van Harmelen, A.

    2015-03-01

    Reaching sub-salt hydrocarbon targets in the deeper part of the Gulf of Mexico requires drilling through a salt canopy. The suture zones in the salt canopy are potential drilling hazards due to anomalous pressure behaviour of entrapped sediments. The Pólya vector field of coalescing salt sheets inside the canopy is used to explain suture formation and distinguish between upright and inclined suture contacts. Our analytical models, based on complex potentials, provide exact solutions for multiple source flows as they compete for space when spreading into the viscous continuum of the salt canopy. The velocity gradient tensor yields the strain rate tensor, which is used to map the principal strain rate magnitude inside the canopy. Quantification of one of the principal strain rates is sufficient because the plane deformation assumption ensures the two principal strain rates are equal in magnitude (but of opposite sign); the third principal dimension can have neither strain nor deviatoric stress. Visualization of the locations where the principal stress vanishes or peaks (with highs and lows) is useful for pre-drilling plans because such peaks must be avoided and the stress-free locations provide the safer drilling sites. A case study-of the Walker Ridge region-demonstrates the practical application of our new method.

  11. Measurements of K Shell Emission of Highly Charged Ions with the XRS at EBIT

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott; Beiersdorfer, P.; Boyce, K.; Brown, G. V.; Chen, H.; Kahn, S.; Kelley, R.; Kilbourne, C. A.

    2004-01-01

    The XRS/EBIT is a 32 channel microcalorimeter spectrometer operating at the electron beam ion trap (EBIT) facility at Lawrence Livermore National Laboratory. The system contains a flight candidate detector array from the XRS instrument for the Astro-E2 mission. The detector array in the XRS/EBIT is functionally identical to the flight array integrated into the XRS instrument and benefits from the enormous amount of calibration data from the XRS program. Since the XRSEBIT was upgraded with the new detector array in October 2003, the system has been used for a number of experiments including a survey of the K shell emission from He-like and H-like O, Ne, Ar, Fe, Ni and Kr as well as for L shell emission to measure the 3C/3D line ratio in Ni. Here we present some basic operational parameters of the instrument as well as direct excitation and simulated maxwellian spectra of He-like and E-like Fe. We show that the XRS instrument can resolve the Lyal and Lya2 lines from each other as well as from the dielectronic recombination satellites in thermal H-like Fe. We also show exactly how well the XRS instrument on Astro-E2 will resolve the thermal He-like triplet in collisionally excited Fe. This work was funded under NASA's Research Opportunities in Space Science program.

  12. Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.; Auchere, F.

    2016-01-01

    The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of <1 minute were discovered (see the poster by Kubo et al., Pa-13). We focused on an active region and investigated the short (<30 s) time variations and relation to the coronal structure observed by SDO/AIA. We compared the Ly(alpha) time variations at footpoints of coronal magnetic fields observed by AIA 211 Å (approx.2 MK) and AIA 171 Å (0.6 MK), and non-loop regions. As the result, we found the <30 s Ly(alpha) time variations had more in the footpoint regions. On the other hand, the <30 s time variations had no dependency on the temperature of the loop.

  13. Stochastic and empirical models of the absolute asymmetric synthesis by the Soai-autocatalysis.

    PubMed

    Barabás, Béla; Zucchi, Claudia; Maioli, Marco; Micskei, Károly; Pályi, Gyula

    2015-02-01

    Absolute asymmetric synthesis (AAS) is the preparation of pure (or excess of one) enantiomer of a chiral compound from achiral precursor(s) by a chemical reaction, without enantiopure chiral additive and/or without applied asymmetric physical field. Only one well-characterized example of AAS is known today: the Soai-autocatalysis. In an attempt at clarification of the mechanism of this particular reaction we have undertaken empirical and stochastic analysis of several parallel AAS experiments. Our results show that the initial steps of the reaction might be controlled by simple normal distribution ("coin tossing") formalism. Advanced stages of the reaction, however, appear to be of a more complicated nature. Symmetric beta distribution formalism could not be brought into correspondence with the experimental observations. A bimodal beta distribution algorithm provided suitable agreement with the experimental data. The parameters of this bimodal beta function were determined by a Pólya-urn experiment (simulated by computer). Interestingly, parameters of the resulting bimodal beta function give a golden section ratio. These results show, that in this highly interesting autocatalysis two or even perhaps three catalytic cycles are cooperating. An attempt at constructing a "designed" Soai-type reaction system has also been made. PMID:25644371

  14. Interface-enforced complexation between copolymer blocks.

    PubMed

    Steinschulte, Alexander A; Xu, Weinan; Draber, Fabian; Hebbeker, Pascal; Jung, Andre; Bogdanovski, Dimitri; Schneider, Stefanie; Tsukruk, Vladimir V; Plamper, Felix A

    2015-05-14

    Binary diblock copolymers and corresponding ternary miktoarm stars are studied at oil-water interfaces. All polymers contain oil-soluble poly(propylene oxide) PPO, water-soluble poly(dimethylaminoethyl methacrylate) PDMAEMA and/or poly(ethylene oxide) PEO. The features of their Langmuir compression isotherms are well related to the ones of the corresponding homopolymers. Within the Langmuir-trough, PEO-b-PPO acts as the most effective amphiphile compared to the other PPO-containing copolymers. In contrast, the compression isotherms show a complexation of PPO and PDMAEMA for PPO-b-PDMAEMA and the star, reducing their overall amphiphilicity. Such complex formation between the blocks of PPO-b-PDMAEMA is prevented in bulk water but facilitated at the interface. The weakly-interacting blocks of PPO-b-PDMAEMA form a complex due to their enhanced proximity in such confined environments. Scanning force microscopy and Monte Carlo simulations with varying confinement support our results, which are regarded as compliant with the mathematical random walk theorem by Pólya. Finally, the results are expected to be of relevance for e.g. emulsion formulation and macromolecular engineering. PMID:25807174

  15. The Distribution of Word Matches Between Markovian Sequences with Periodic Boundary Conditions

    PubMed Central

    Leopardi, Paul; Forêt, Sylvain

    2014-01-01

    Abstract Word match counts have traditionally been proposed as an alignment-free measure of similarity for biological sequences. The D2 statistic, which simply counts the number of exact word matches between two sequences, is a useful test bed for developing rigorous mathematical results, which can then be extended to more biologically useful measures. The distributional properties of the D2 statistic under the null hypothesis of identically and independently distributed letters have been studied extensively, but no comprehensive study of the D2 distribution for biologically more realistic higher-order Markovian sequences exists. Here we derive exact formulas for the mean and variance of the D2 statistic for Markovian sequences of any order, and demonstrate through Monte Carlo simulations that the entire distribution is accurately characterized by a Pólya-Aeppli distribution for sequence lengths of biological interest. The approach is novel in that Markovian dependency is defined for sequences with periodic boundary conditions, and this enables exact analytic formulas for the mean and variance to be derived. We also carry out a preliminary comparison between the approximate D2 distribution computed with the theoretical mean and variance under a Markovian hypothesis and an empirical D2 distribution from the human genome. PMID:24160839

  16. Determining the number of isomers in X-, XY-, XYZ-, and XYZU-substituted D2 d allenes: Additive schemes for calculating enthalpies of vaporization

    NASA Astrophysics Data System (ADS)

    Nilov, D. Yu.; Smolyakov, V. M.

    2015-02-01

    Using Pólya's theorem, cycle indices are derived that identify the chiral and achiral substitution isomers of an allene (1,2-propadiene). Equations of symmetry that allow us to determine the number of isomers in a series and arrange the isomers according to families, depending on the number of substitution sites, are obtained. Eight- and nine-constant additive schemes based on the similarity between subgraphs in the molecular graphs (MGs) of a series of 120 molecules of X-, XY-, XYZ-, and XYZU-substituted allenes and the expansion of polygonal numbers (triangular, tetrahedral, and others) of a Pascal triangle are devised. Enthalpies of vaporization L NBP are calculated for 21 XY- and 120 XYZU-substituted allenes, respectively, not yet studied experimentally. It is shown that each coefficient of the scheme (the number of ways for superpositioning subgraphs with lengths i 1, i 2, ⋯ on molecular graphs of allene) is a result of partitioning triangular, tetrahedral, or four-dimensional tetrahedral numbers of a Pascal triangle.

  17. The problem-solving approach in the teaching of number theory

    NASA Astrophysics Data System (ADS)

    Toh, Pee Choon; Hoong Leong, Yew; Toh, Tin Lam; Dindyal, Jaguthsing; Quek, Khiok Seng; Guan Tay, Eng; Him Ho, Foo

    2014-02-01

    Mathematical problem solving is the mainstay of the mathematics curriculum for Singapore schools. In the preparation of prospective mathematics teachers, the authors, who are mathematics teacher educators, deem it important that pre-service mathematics teachers experience non-routine problem solving and acquire an attitude that predisposes them to adopt a Pólya-style approach in learning mathematics. The Practical Worksheet is an instructional scaffold we adopted to help our pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. The Worksheet was initially used in a design experiment aimed at teaching problem solving in a secondary school. In this paper, we describe an application and adaptation of the MProSE (Mathematical Problem Solving for Everyone) design experiment to a university level number theory course for pre-service mathematics teachers. The goal of the enterprise was to help the pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. Our analysis of the pre-service mathematics teachers' work shows that the MProSE design holds promise for mathematics courses at the tertiary level.

  18. Asymptotic Statistics of Cycles in Surrogate-Spatial Permutations

    NASA Astrophysics Data System (ADS)

    Bogachev, Leonid V.; Zeindler, Dirk

    2015-02-01

    We propose an extension of the Ewens measure on permutations by choosing the cycle weights to be asymptotically proportional to the degree of the symmetric group. This model is primarily motivated by a natural approximation to the so-called spatial random permutations recently studied by Betz and Ueltschi (hence the name "surrogate-spatial"), but it is of substantial interest in its own right. We show that under the suitable (thermodynamic) limit both measures have the similar critical behaviour of the cycle statistics characterized by the emergence of infinitely long cycles. Moreover, using a greater analytic tractability of the surrogate-spatial model, we obtain a number of new results about the asymptotic distribution of the cycle lengths (both small and large) in the full range of subcritical, critical, and supercritical domains. In particular, in the supercritical regime there is a parametric "phase transition" from the Poisson-Dirichlet limiting distribution of ordered cycles to the occurrence of a single giant cycle. Our techniques are based on the asymptotic analysis of the corresponding generating functions using Pólya's Enumeration Theorem and complex variable methods.

  19. COS observations below 1150Angstrom with R > 10, 000: Calibrations for a new G130M/1222 central wavelength

    NASA Astrophysics Data System (ADS)

    Penton, Steven

    2011-10-01

    We fully calibrate a new COS/G130M wavelength setting in this program. This setting, G130M/1222, places Geocoronal Lya on the detector gap {to mitigate FUV detector gain sag} and covers the astrophysically important UV bandpass of 1065-1327 Angstrom. At the focus mechanism position requested {-850}, this mode provides 4-10 times the resolution of the G130M/1055 and G130M/1096 central wavelength settings at the same sensitivity. The sensitivity, waveband, and increased resolution of the G130M/1222 central wavelength {R=17,000 at 1065 Angstrom, 15,000 at 1222 Angstrom, and 12,000 at 1369 Angstrom} is beneficial to many UV scientific studies, including, but not limited to, molecular hydrogen in planetary nebulae and translucent clouds, the HeII lyman-alpha forest in the epoch of HeII re-ionization, AGN intrinsic absorbers and high-ionization outflows, low-redshift IGM, galaxy halos, galaxy feedback, and the WHIM using O VI, MgX, NeVIII, Lyman beta, and other important atomic and molecular transitions. At 1100 Angstrom, this mode has 10 times the effective area of FUSE {per channel} with almost non-existent detector background. This program is designed to completely calibrate this wavelength setting with minimal use of STScI personnel and resources.

  20. Superluminal motion (review)

    NASA Astrophysics Data System (ADS)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  1. A COS Survey of the Low-Redshift Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Danforth, Charles; Pieri, M.; Shull, J. M.; Keeney, B. A.; Stevans, M. L.; Stocke, J. T.; Savage, B. D.; Green, J. C.

    2013-01-01

    In three years of science operations onboard HST, the Cosmic OriginsSpectrograph has generated an archive of far-ultraviolet AGN spectra of unprecedented breadth, depth, and quality. COS was designed to be sensitive to many important diagnostic lines in the far-UV (1135-1800A) in the low-redshift, "local" universe: Lya (z<0.47), Lyb (0.1

  2. Spectral Energy Distribution Fitting of Hetdex Pilot Survey Ly-alpha Emitters in Cosmos and Goods-N

    NASA Technical Reports Server (NTRS)

    Hagen, Alex; Ciardullo, Robin; Cronwall, Caryl; Acquaviva, Viviana; Bridge, Joanna; Zeimann, Gregory R.; Blanc, Guillermo; Bond, Nicholas; Finkelstein, Steven L.; Song, Mimi; Gawiser, Eric; Fox, Derek B.; Gebhardt, Henry; Malz, A. I; Schneider, Donald P.; Drory, Niv; Gebhardt, Karl; Hill, Gary J.

    2014-01-01

    We use broadband photometry extending from the rest-frame UV to the near-IR to fit the individual spectral energy distributions of 63 bright (L(Ly-alpha) greater than 10(exp 43) erg s(exp -1) Ly-alpha emitting galaxies (LAEs) in the redshift range 1.9 less than z less than 3.6. We find that these LAEs are quite heterogeneous, with stellar masses that span over three orders of magnitude, from 7.5 greater than logM/solar mass less than 10.5. Moreover, although most LAEs have small amounts of extinction, some high-mass objects have stellar reddenings as large as E(B - V ) is approximately 0.4. Interestingly, in dusty objects the optical depths for Ly-alpha and the UV continuum are always similar, indicating that Lya photons are not undergoing many scatters before escaping their galaxy. In contrast, the ratio of optical depths in low-reddening systems can vary widely, illustrating the diverse nature of the systems. Finally, we show that in the star-formation-rate-log-mass diagram, our LAEs fall above the "main-sequence" defined by z is approximately 3 continuum selected star-forming galaxies. In this respect, they are similar to submillimeter-selected galaxies, although most LAEs have much lower mass.

  3. Direct spectroscopic observation of ion deceleration accompanying laser plasma-wall interaction

    NASA Astrophysics Data System (ADS)

    Renner, O.; Krouský, E.; Liska, R.; Šmíd, M.; Larroche, O.; Dalimier, E.; Rosmej, F. B.

    2010-08-01

    Interactions of plasma jets with solid surfaces are extensively studied in context with development of future fusion devices. In experiments carried out on the iodine laser system PALS, the energetic ions were produced at double-foil Al/Mg targets irradiated by one or two counter-propagating laser beams. The plasma jets from the rear surface of the laser-exploded Al foil streamed towards the Mg target representing the wall preheated by the action of the high-energy photons, particle and/or laser beams. Instead of being trapped by the cold secondary-target material, the forward-accelerated Al ions collided with the counter-propagating matter ejected from the wall. The environmental conditions in near-wall plasmas were analyzed with the high-resolution x-ray spectroscopy and temporally-resolved x-ray imaging. The deceleration of the incident Al ions in the near-wall region was directly observed and quantitatively characterized via Doppler shifts of the J-satellite from the Al Lya spectral group. The interaction scenario was modelled using the 2D arbitrary Lagrangian Eulerian hydrocode PALE and the multifluid code MULTIF.

  4. Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression

    PubMed Central

    Montesinos-López, Osval A.; Montesinos-López, Abelardo; Crossa, José; Burgueño, Juan; Eskridge, Kent

    2015-01-01

    Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link. PMID:26290569

  5. Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.

    PubMed

    Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Burgueño, Juan; Eskridge, Kent

    2015-10-01

    Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link. PMID:26290569

  6. Intrinsic diffusion simulation for single-phase multicomponent systems and its application for the analysis of the Darken-Manning and jump frequency formalisms

    NASA Astrophysics Data System (ADS)

    Kulkarni, Nagraj Sheshgiri

    A multicomponent, single-phase, diffusion simulation based on Darken's treatment of intrinsic diffusion has been developed, which provides all the information available from an intrinsic diffusion experiment, including composition profiles and diffusion paths, lattice shifts and velocities, intrinsic and interdiffusion fluxes, as well as fluxes and mean velocities in different frames of reference. The various steps involved in the simulation are discussed and the self-consistency of the simulation is tested with the aid of model systems having constant and variable molar volumes. After an examination of the historical development of the Darken-Manning theories and a brief discussion of previous tests in the literature, a systematic procedure for the comprehensive assessment of these theories is proposed in which the intrinsic diffusion simulation developed in this work occupies a central role. This procedure is then utilized to perform an assessment of the Darken-Manning relations for four binary systems: Ag-Cd, Au-Ni, Cu-Zn and Cu-Ni. It is shown that the Darken-Manning relations that provide the connection between the tracer, intrinsic and interdiffusion coefficients, are unsatisfactory. Hence, it is suggested that the development of multicomponent diffusion databases, which often use the Darken relations for the evaluation of the phenomenological coefficients, may be compromised. As an alternative to the traditional phenomenological formalism of multicomponent diffusion, a kinetic formalism based on atom jump frequencies is proposed. An expression for the intrinsic flux in terms of an unbiased and a biased component is derived. It is demonstrated with the aid of the simulation for the Cu-Zn system, that the biased flux may be evaluated from the experimental intrinsic flux and the unbiased flux (obtained from the tracer jump frequency). An unbiased jump frequency formalism that utilizes effective rather than tracer jump frequencies and avoids the complexities

  7. Evolution in the Continuum Morphological Properties of Ly alpha-Emitting Galaxies from Z=3.1 to Z=2.1

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Gawiser, Eric; Guaita, Lucia; Padilla, Nelson; Gronwall, Chile Caryl; Ciardullo, Robin; Lai, Kamson

    2011-01-01

    We present a rest-frame ultraviolet morphological analysis of 108 z = 2.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S) and compare it to a similar sample of 171 LAEs at z = 3.1 . Using Hubble Space Telescope (HST) images taken as part of the Galaxy Evolution From Morphology and SEDs survey, Great Observatories Origins Deep Survey, and Hubble Ultradeep Field surveys, we measure the size and photometric component distributions, where photo- metric components are defined as distinct clumps of UV-continuum emission. At both redshifts, the majority of LAEs have observed half-light radii < 2 kpc, but the median half-light radius rises from 0.97 kpc at z = 3.1 to 1.41 kpc at z = 2.1. A similar evolution is seen in the sizes of individual rest-UV components, but there is no evidence for evolution in the number of mUlti-component systems. In the z = 2.1 LAE sample, we see clear correlations between the LAE size and other physical properties derived from its SED. LAEs are found to be larger for galaxies with larger stellar mass, larger star formation rate, and larger dust obscuration, but there is no evidence for a trend between equivalent width and half-light radius at either redshift. The presence of these correlations suggests that a wide range of objects are being selected by LAE surveys at that redshift, including a significant fraction of objects for which a massive and moderately extended population of old stars underlies the young starburst giving rise to the Lya emission.

  8. Panoramic Views of Cluster Evolution Since z = 3

    NASA Astrophysics Data System (ADS)

    Kodama, Tadayuki; Tanaka, M.; Tanaka, Ichi; Kajisawa, M.

    2007-05-01

    We have been conducting PISCES project (Panoramic Imaging and Spectroscopy of Cluster Evolution with Subaru) with making use of the wide-field imaging capability of Subaru. Our motivations are first to map out large scale structure and local environment of galaxies therein, and then to investigate the variation in galaxy properties as a function of environment and mass. We have completed multi-colour imaging of 8 distant clusters between 0.42) by wide-field near-infrared imaging of proto-clusters around radio loud galaxies, some of which are known to show a large number of Lya/Ha emitters at the same redshift of the radio galaxies. We have seen clear excess of near-infrared selected galaxies (including DRG) around many of the radio galaxies, suggesting that these are indeed likely to be proto-clusters with not only young emitters but also evolved populations. Spatial distribution of such NIR selected galaxies is filamentary and track similar structures traced by the emitters, but showing little individual overlap. The above two wide-field studies of dense environments and their surroundings will tell us galaxy evolution during the course of cluster assembly over more than 80 per cent of the age of the Universe.

  9. Land cover change using an energy transition paradigm in a statistical mechanics approach

    NASA Astrophysics Data System (ADS)

    Zachary, Daniel S.

    2013-10-01

    This paper explores a statistical mechanics approach as a means to better understand specific land cover changes on a continental scale. Integrated assessment models are used to calculate the impact of anthropogenic emissions via the coupling of technoeconomic and earth/atmospheric system models and they have often overlooked or oversimplified the evolution of land cover change. Different time scales and the uncertainties inherent in long term projections of land cover make their coupling to integrated assessment models difficult. The mainstream approach to land cover modelling is rule-based methodology and this necessarily implies that decision mechanisms are often removed from the physical geospatial realities, therefore a number of questions remain: How much of the predictive power of land cover change can be linked to the physical situation as opposed to social and policy realities? Can land cover change be understood using a statistical approach that includes only economic drivers and the availability of resources? In this paper, we use an energy transition paradigm as a means to predict this change. A cost function is applied to developed land covers for urban and agricultural areas. The counting of area is addressed using specific examples of a Pólya process involving Maxwell-Boltzmann and Bose-Einstein statistics. We apply an iterative counting method and compare the simulated statistics with fractional land cover data with a multi-national database. An energy level paradigm is used as a basis in a flow model for land cover change. The model is compared with tabulated land cover change in Europe for the period 1990-2000. The model post-predicts changes for each nation. When strong extraneous factors are absent, the model shows promise in reproducing data and can provide a means to test hypothesis for the standard rules-based algorithms.

  10. The development of a culture of problem solving with secondary students through heuristic strategies

    NASA Astrophysics Data System (ADS)

    Eisenmann, Petr; Novotná, Jarmila; Přibyl, Jiří; Břehovský, Jiří

    2015-12-01

    The article reports the results of a longitudinal research study conducted in three mathematics classes in Czech schools with 62 pupils aged 12-18 years. The pupils were exposed to the use of selected heuristic strategies in mathematical problem solving for a period of 16 months. This was done through solving problems where the solution was the most efficient if heuristic strategies were used. The authors conducted a two-dimensional classification of the use of heuristic strategies based on the work of Pólya (2004) and Schoenfeld (1985). We developed a tool that allows for the description of a pupil's ability to solve problems. Named, the Culture of Problem Solving (CPS), this tool consists of four components: intelligence, text comprehension, creativity and the ability to use existing knowledge. The pupils' success rate in problem solving and the changes in some of the CPS factors pre- and post-experiment were monitored. The pupils appeared to considerably improve in the creativity component. In addition, the results indicate a positive change in the students' attitude to problem solving. As far as the teachers participating in the experiment are concerned, a significant change was in their teaching style to a more constructivist, inquiry-based approach, as well as their willingness to accept a student's non-standard approach to solving a problem. Another important outcome of the research was the identification of the heuristic strategies that can be taught via long-term guided solutions of suitable problems and those that cannot. Those that can be taught include systematic experimentation, guess-check-revise and introduction of an auxiliary element. Those that cannot be taught (or can only be taught with difficulty) include the strategies of specification and generalization and analogy.

  11. FISM-P: A Model of the Vacuum Ultraviolet Irradiance Spectrum for Atmospheric Studies at Mars and Beyond

    NASA Astrophysics Data System (ADS)

    Thiemann, E.; Eparvier, F. G.; Chamberlin, P. C.

    2014-12-01

    The MAVEN probe includes the EUV instrument, which will be used to produce a model of the vacuum ultraviolet (VUV: 0-190 nm) spectrum at Mars. This VUV irradiance model is an iteration of the Flare Irradiance Spectral Model (FISM), an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution with a 1 minute time cadence. This latest iteration is called FISM-P, where the '-P' suffix stands for 'planetary', and estimates mean daily irradiances from 0.1 to 190 nm for every planet in the solar system from 1948 to the present through weighted interpolation of earth measured proxies. In addition to daily irradiances, planetary 1-minute (flaring) irradiances are available if the planet is positioned such that the flaring emissions are observed by instruments at Earth or MAVEN EUV at Mars. FISM is optimized to use the best available proxies for each layer of the solar atmosphere (chromosphere, transition region, cool corona, and hot corona). FISM-P uses both interpolated earth proxies (the MgII core-to-wing ratio, H Ly-a and F10.7) and, when available, the MAVEN EUV measurements (H Ly-α, 17-22 nm, and 0-6 nm) for improved accuracy at Mars. FISM has already been successfully used as an input for ionospheric and thermospheric models for Earth, Mars, as well as comparisons of photoelectrons at Earth and Mars, and surface charging of the moon. FISM-P now provides the capability for similar studies throughout the solar system; and the in situ VUV measurements by MAVEN EUV will result in the most accurate VUV spectrum to date at Mars.

  12. Lyman Alpha-emitting Galaxies at z = 2.1: Characterizing the Progenitors of Typical Present-day Galaxies

    NASA Astrophysics Data System (ADS)

    Gawiser, Eric J.; Guaita, L.; Padilla, N.; Francke, H.; Bond, N. A.; Gronwall, C.; Ciardullo, R.; Sinawa, S.; Feldmeier, J. J.; MUSYC Collaboration

    2010-01-01

    We discovered a sample of 261 Lyman alpha emitting (LAE) galaxies at z=2.1 in an ultra-deep 3727A narrow-band MUSYC image of the Extended Chandra Deep Field-South. LAEs were selected to have rest-frame equivalent widths >20A and emission line fluxes >3.7x10-17 ergs/cm2/s, corresponding to L_Lya>1.2x1042 ergs/s. 3% of the original candidates were detected in X-rays by Chandra, and 7% were detected in the rest-frame far-UV by GALEX; these objects were eliminated to minimize contamination by AGN and low-redshift galaxies. Our sample has median rest-frame EW=40A, and only a few galaxies have rest-frame EW bigger than 200A. Our results show that the luminosity function of LAEs at z=2.1 is consistent with that of LAEs at z=3.1 but with number density a factor of 1.8+-0.3 higher. We used the rest frame UV luminosity to estimate a median star formation rate of 4 Msun/yr. Clustering analysis reveals that LAEs at z=2.1 have r0=3+-0.5 Mpc, corresponding to b=1.0+-0.2, the lowest clustering bias of any high-redshift galaxy population. This implies that z=2.1 LAEs reside in dark matter halos with masses 1010 Msun, which are the lowest-mass halos yet probed at this redshift. We used the Sheth-Tormen conditional mass function to study the descendants of these LAEs and found that their typical present-day descendants are local galaxies with sub-L* and L* luminosities, like the Milky Way. We gratefully acknowledge grant support for this research from NSF, DOE, and NASA.

  13. Emergence of q-statistical functions in a generalized binomial distribution with strong correlations

    NASA Astrophysics Data System (ADS)

    Ruiz, G.; Tsallis, C.

    2015-05-01

    We study a symmetric generalization pk ( N ) ( η , α ) of the binomial distribution recently introduced by Bergeron et al., where η ∈ [0, 1] denotes the win probability and α is a positive parameter. This generalization is based on q-exponential generating functions ( eq gen z ≡ [ 1 + ( 1 - qgen ) z ] 1 / ( 1 - q gen ) ; e1 z = e z ) where qgen = 1 + 1/α. The numerical calculation of the probability distribution function of the number of wins k, related to the number of realizations N, strongly approaches a discrete qdisc-Gaussian distribution, for win-loss equiprobability (i.e., η = 1/2) and all values of α. Asymptotic N → ∞ distribution is in fact a qatt-Gaussian eq att - β z 2 , where qatt = 1 - 2/(α - 2) and β = (2α - 4). The behavior of the scaled quantity k/Nγ is discussed as well. For γ < 1, a large-deviation-like property showing a qldl-exponential decay is found, where qldl = 1 + 1/(ηα). For η = 1/2, qldl and qatt are related through 1/(qldl - 1) + 1/(qatt - 1) = 1, ∀α. For γ = 1, the law of large numbers is violated, and we consistently study the large-deviations with respect to the probability of the N → ∞ limit distribution, yielding a power law, although not exactly a qLD-exponential decay. All q-statistical parameters which emerge are univocally defined by (η, α). Finally, we discuss the analytical connection with the Pólya urn problem.

  14. Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P.; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M.; Larsson, Josefin; Lundqvist, Peter; Panagia, Nino; Pun, Chun S. J.; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John T.; Wheeler, J. Craig

    2010-01-01

    The young remnant of supernova 1987A (SN 1987A) offers an unprecedented glimpse into the hydrodynamics and kinetics of fast astrophysical shocks. We have been monitoring SN 1987A with the Hubble Space Telescope (HST) since it was launched. The recent repair of the Space Telescope Imaging Spectrograph (STIS) allows us to compare observations in 2004, just before its demise, with those in 2010, shortly after its resuscitation by NASA astronauts. We find that the Ly-alpha and H-alpha lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We report evidence for nearly coherent, resonant scattering of Lya photons (to blueshifts approximately -12,000 km /s) from hotspots on the equatorial ring. We also report emission to the red of Ly-alpha that we attribute to N v lambda lambda 1239,1243 Angstrom line emission. These lines are detectable because, unlike hydrogen atoms, N4+ ions emit hundreds of photons before they are ionized. The profiles of the N v lines differ markedly from that of H-alpha. We attribute this to scattering of N4+ ions by magnetic fields in the ionized plasma. Thus, N v emission provides a unique probe of the isotropization zone of the collisionless shock. Observations with the recently installed Cosmic Origins Spectrograph (COS) will enable us to observe the N v lambda lambda 1239,1243 Angstrom line profiles with much higher signal-to-noise ratios than possible with STIS and may reveal lines of other highly ionized species (such as C IVlambda lambda 1548,1551 Angstrom) that will test our explanation for the N v emission

  15. The Cosmic Origins Spectrograph

    NASA Technical Reports Server (NTRS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V; Andrews, John; Morse, Jon

    2010-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  16. Colliding Planetary and Stellar Winds: Charge Exchange and Metal Absorption in Hot Jupiter Exospheres

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene

    2012-10-01

    Hot Jupiters unleash photoevaporative winds that are powered by ionizing radiation from their parent stars. Spectral signatures of such winds have been observed with HST STIS and COS in various UV absorption lines from H I, O I, C II, Mg II, and Si III. Interpretation of these absorption signatures is still debated, and the metal line observations have seen little modeling. Absorption by H I Lyman-alpha occurs at velocities of +/- 100 km/s; such large velocities are difficult to explain because thermal outflows from hot Jupiters have speeds < 30 km/s. Holmstrom et al. {2009} proposed that the anomalously energetic H I arises from charge exchange between planetary H I and protons from the incident stellar wind. If true, then basic quantities-e.g., the planetary mass loss rate, which we hope to infer from the HST data-would need re-calculation to account for the influence of the stellar wind. Charge exchange has not yet been integrated into models of photoevaporative winds. We propose to carry out hydrodynamic simulations of colliding planetary and stellar winds, including charge exchange, that would explain the HST Ly-a observations, thereby clarifying how the inferred planetary mass loss rate depends on stellar wind parameters. We also propose to incorporate photoionization heating by metals, and radiative line cooling by metals, both of which have not been simultaneously treated. The goal will be to reproduce the many HST line spectra of neutral and ionized metals and determine their import for the metallicity and mass loss rate of the planetary wind.

  17. Teaching and Learning Science in Hungary, 1867-1945: Schools, Personalities, Influences

    NASA Astrophysics Data System (ADS)

    Frank, Tibor

    2012-03-01

    The article provides an overview of the development of teaching science in Hungary during both the time of the dual monarchy and the newly established independent Hungary after 1920. The integration of Hungary into the Austro-Hungarian Monarchy (1867-1918) strengthened the effect of German speaking European science, the results of which were quickly channelled into the Hungarian school system at all levels. The Hungarian Academy as well as the University of Budapest (today Eötvös Loránd University) played a leading role in the „nationalization" of European science in the educational system. Scientific developments in Hungary strengthened the position of rational and secular thinking in a highly religious society and contributed to the erosion of the mental power of the church tradition, particularly that of the Roman Catholic Church. Toward World War I, influenced by the Protestant Churches, the Jewish tradition, and agnosticism, the public picture of science became more international, occasionally ready to consider challenges of the accepted world view, and sometimes less dogmatic. Leading Hungarian figures with an international reputation who played a decisive role in making science part of Hungarian thinking included the physicists Baron Loránd Eötvös and Sándor Mikola, the mathematicians László Rácz and George Pólya as well as a host of others in related fields. Emigration, mostly Jewish, after World War I, contributed to the curtailment of efforts to teach science effectively as some of the best people left Hungary for, mostly, Germany, Britain, and the United States. However, the interwar school system, the Hungarian version of the German Gymnasium, continued to disseminate scientific thought in Hungarian education. Much of the information was foreign and appeared simply in translation—but an impressive array of indigeneous scientific results paved the way to a larger educated middle class then in the making.

  18. A Study of PG Quasar-Driven Outflows with COS

    NASA Astrophysics Data System (ADS)

    Hamann, Frederick

    2013-10-01

    Quasar outflows are an important part of the quasar phenomenon, but many questions remain about their energetics, physical properties and the role they might play in providing feedback to host galaxy evolution. We searched our own COS far-UV observations from the QUEST survey and other large COS programs to find a sample of 6 bright PG quasars with broad {FWHM > 400 km/s} high velocity {v > 1000 km/s} absorption lines that clearly form in quasar-driven winds. These quasars can fill an important gap in our understanding between local Seyferts with low-speed winds and high-redshift quasars with extreme BAL outflows. They are also well-studied at other wavelengths, with some evidence for the quasars driving galaxy-scale blowouts and shutting down star formation. But almost nothing is known about the quasar outflows themselves. We propose a detailed study of these 6 outflow quasars using new COS FUV observations to 1} expand the existing wavelength coverage across critical lines that are diagnostic of the outflow physical conditions, kinetic energies, and metallicities, and 2} check for line variability as an indicator of the outflow structure and locations. This quasar sample includes unusual cases with many low-abundance {PV 1118,1128 and SIV 1063} and excited-state lines {SIV 1073*, CIII* 1175, CII* 1335} that will provide unprecedented constraints on the outflow properties, plus the first known OVI-only mini-BAL outflow {no lower ions detected} for which we will cover NeVIII 770,780 to probe the highest ionization gas. The high FUV sensitivity of COS is uniquely able to measure this wide range of outflow lines in low-redshift quasars with no Lya forest contamination.

  19. Virtual libraries of tetrapyrrole macrocycles. Combinatorics, isomers, product distributions, and data mining.

    PubMed

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2011-09-26

    A software program (PorphyrinViLiGe) has been developed to enumerate the type and relative amounts of substituted tetrapyrrole macrocycles in a virtual library formed by one of four different classes of reactions. The classes include (1) 4-fold reaction of n disubstituted heterocycles (e.g., pyrroles or diiminoisoindolines) to form β-substituted porphyrins, β-substituted tetraazaporphyrins, or α- or β-substituted phthalocyanines; (2) combination of m aminoketones and n diones to form m × n pyrroles, which upon 4-fold reaction give β-substituted porphyrins; (3) derivatization of an 8-point tetrapyrrole scaffold with n reagents, and (4) 4-fold reaction of n aldehydes and pyrrole to form meso-substituted porphyrins. The program accommodates variable ratios of reactants, reversible or irreversible reaction (reaction classes 1 and 2), and degenerate modes of formation. Pólya's theorem (for enumeration of cyclic entities) has also been implemented and provides validation for reaction classes 3 and 4. The output includes the number and identity of distinct reaction-accessible substituent combinations, the number and identity of isomers thereof, and the theoretical mass spectrum. Provisions for data mining enable assessment of the number of products having a chosen pattern of substituents. Examples include derivatization of an octa-substituted phthalocyanine with eight reagents to afford a library of 2,099,728 members (yet only 6435 distinct substituent combinations) and reversible reaction of six distinct disubstituted pyrroles to afford 2649 members (yet only 126 distinct substituent combinations). In general, libraries of substituted tetrapyrrole macrocycles occupy a synthetically accessible region of chemical space that is rich in isomers (>99% or 95% for the two examples, respectively). PMID:21866949

  20. Galaxy Proto-clusters as an Interface Between Structure, Cluster, and Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Kuan

    2016-01-01

    Proto-clusters, the progenitor large-scale structures of present day galaxy clusters, are unique laboratories to study dark matter assembly, cosmic baryon cycle, galaxy growth, and environmental impact on galaxy evolution. In this dissertation talk, I will present our recent progress in this subject, both theoretical and observational. Using a set of cosmological N-body simulations and semi-analytic galaxy models, we extract the mass, size, and overdensity evolution for ˜3000 simulated clusters from z=8 to z=0. In line with the scenario of cosmic downsizing, the models predict that the fraction of cosmic star formation rate occurs in (proto-)clusters increases from <1% at z=0 to 20-30% at z=8. This result demonstrates that the seemingly sharp distinction when discussing field and cluster galaxy evolution has to be blurred at high redshift, and a significant fraction of cosmic reionization was done by cluster progenitors. Observationally, we focus on the epoch of z≈2 when the first cluster scale halos (1014 M⊙) were about to form. We perform a systematic proto-cluster search using a photometric redshift catalog in the COSMOS field, revealing a large sample of 36 candidate proto-clusters at 1.6Lya blobs, a 2 times higher median stellar mass of NIR selected galaxies with photometric redshift, and a significantly enhanced intergalactic gas revealed in the Lyα absorption maps of Lee et al. (2014, 2015). With these results, I will discuss proto-clusters in the context of

  1. Simulating the growth of a disk galaxy and its supermassive black hole in a cosmological context

    NASA Astrophysics Data System (ADS)

    Levine, Robyn

    Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmological scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Ly-a forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting completely

  2. SPHEREx: Understanding the Origin and Evolution of Galaxies Through the Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael B.; SPHEREx Science Team

    2016-01-01

    The near IR extragalactic background light (EBL) encodes the integrated light production over cosmic history, so traces the total emission from all galaxies along the line of sight up to ancient first-light objects present during the epoch of reionization (EOR). The EBL can be constrained both through direct photometric measurements and through measurements of anisotropies in the EBL which take advantage of the fact that extragalactic populations produce fluctuations with distinct spatial and spectral characteristics from local foregrounds. Because the amplitude of the linear clustering signal is proportional to the total photon emission, large-scale EBL anisotropies are an important tracer of star formation history. In particular, EBL anisotropies trace the underlying clustering of faint emission sources, such as low mass objects present during the EOR, dwarf galaxies, and intra-halo light (IHL), all of which are components not readily detected in point source surveys. The fluctuation amplitude measured independently by a number of recent experiments exceeds that expected from the large-scale clustering of known galaxy populations, indicating the presence of a large integrated brightness from these faint and diffuse components. SPHEREx, a mission in NASA's Small Explorer (SMEX) program that was selected for Phase A in July 2015, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division: to probe the origin and destiny of our Universe; to explore whether planets around other stars could harbor life; and to explore the origin and evolution of galaxies. SPHEREx will produce extremely deep maps of the ~200 square degrees around the celestial poles in lambda/d lambda~40 bins. These will be ideal for EBL anisotropy measurements, either by averaging into broad spectral bands, or as a possible science enhancement option, by performing tomography of cosmic large scale structure using line tracers such as Lya, Ha, Hb, O

  3. Espectroscopia infravermelha de núcleos ativos de galáxias: resultados adicionais

    NASA Astrophysics Data System (ADS)

    Rodríguez Ardila, A.; Viegas, S.; Pastoria, M. G.

    2003-08-01

    Apresentamos resultados parciais de um levantamento espectroscópico na região do infravermelho próximo (NIR) realizado em 30 núcleos ativos de galáxias (AGN), incluindo vários objetos selecionados do catálogo PG com z de até 0.55. O objetivo é estudar a natureza do contínuo observado e as condições físicas do gas emissor. Todas as fontes de tipo 1 apresentam uma mudança na inclinação do contínuo na região de 1.2mm, associada ao término da contribuição do contínuo emitido pelo AGN e ao início da contribuição do contínuo emitido pela poeira quente atribuída ao tórus que rodeia a fonte central. O índice espectral associado à segunda contribuição varia apreciavelmente de objeto para objeto. Este resultado é comparado com distribuições espectrais de energia preditas por modelos de toroides para testar a validez do modelo unificado. A partir das linhas de FeII observado nos espectros deriva-se, pela primeira vez nessa região espectral, um template empírico de FeII para estudar a intensidade e a origem dessa emissão. A intensidade do FeII é estudada em conjunto com aquela da região visível e comparada às predições de modelos teóricos que incluem fluorescência de Lya, excitação colisional e auto-fluorescência como mecanismos dominantes de exitação. Encontra-se que os dois primeiros processos dominam na formação do espectro de FeII observado. Indicadores de avermelhamento, entre eles Brg/Pab, Pab/Pag, Pab/Pad e [FeII] 1.257/1.644 mm são utilizados para mapear a distribuição de poeira nas regiões emissoras de linhas. Encontra-se valores de extinção Av~3 associados ao último indicador e valores significativamente menores (Av~1.5) para os restantes, o que sugere que o [FeII] se forma em uma região separada da maior parte do gás emissor de linhas estreitas.

  4. Hubble/COS Observations of Intergalactic Gas Toward PKS 0405-123

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael; Danforth, C.; Froning, C.; Green, J.; Keeney, B.; Stocke, J.; Yao, Y.; Savage, B.; Narayanan, A.; Sembach, K.

    2010-01-01

    We present an overview of far-UV Hubble Space Telescope observations (1150-1780 A, at 17 km/s resolution) taken by the Cosmic Origins Spectrograph (COS) of the QSO PKS 0405-123 at redshift zem = 0.5726 and FUV flux 3.5x10-14 erg/s/cm2/A. This spectrum illustrates the the power of COS for studying metal-enriched gas between the galaxies, distributed throughout the multiphase intergalactic medium (IGM). We used 7 orbits with 9 FP-split positions, obtained S/N = 35-45 over much of the G130M band (1150-1440 A), and detected numerous absorption features of hydrogen (Lya, Lyb) and heavy-element probes of metallicity. Ions that can be studied include lines (O VI, N V, Ne VIII) sensitive to hot gas produced by strong shocks produced in gravitational inflows to the Cosmic Web, in circumgalactic gas, and in galactic winds. The high S/N allows a search for broad Ly-alpha possibly associated with O VI in hot gas (105 to 106 K). This sight line also intercepts a high-velocity cloud seen in Si III at 110-170 km/s (LSR) and b = -37.55 in the Galactic halo. In the absorption system at z = 0.495, the Ne VIII doublet (770.41, 780.32 A) shifts into the COS band, allowing us to probe the warm-hot IGM at log T = 5.5-6.0, several times deeper than previous (STIS) studies (Prochaska et al. 2004; Howk et al. 2009). In other posters, members of the COS science team describe the detection of O VI absorbers at redshifts z = 0.16710, 0.18292, 0.36156, 0.36332, and 0.49501, including a Lyman Limit system at z = 0.16710 with log N(HI) = 16.45 +/- 0.05. The high S/N observations allow us to measure important ions previously not detected and to evaluate the kinematical relationships and physical conditions among the detected ions.

  5. Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey -- GOODS-North Field, Late Visits of SNe Search

    NASA Astrophysics Data System (ADS)

    Faber, Sandra

    2012-10-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey {CANDELS}is designed to document the |*|rst third of galactic evolution from z =8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IRand ACS. It will also find the first Type Ia SNe beyond z > 1.5 andestablish their accuracy as standard candles for cosmology. Fivepremier multi-wavelength sky regions selected from the SpitzerExtragalactic Deep Survey {SEDS} provide complementary IRAC imagingdata down to 26.5 AB mag, a unique resource for stellar masses at allredshifts. The use of |*|ve widely separated |*|elds mitigates cosmicvariance and yields statistically robust and complete samples ofgalaxies down to 10^9 solar masses out to z 8.The program merges two originally separate MCT proposals. The Faberprogram incorporates a |*|Wide|*| imaging survey in three separate fieldsto 2 orbit depth over 0.2 sq. degrees, plus a |*|Deep|*| imaging surveyto 12 orbit depth in the two GOODS regions over 0.04 sq. degrees.When combined with ultra-deep imaging from the Hubble Ultradeep Fieldprogram {GO 11563}, the result is a three-tiered strategy that ef|*|cientlysamples both bright/rare and faint/common extragalactic objects. TheFerguson program adds an extensive high-redshift Type Ia SNe search,plus ultraviolet "daytime" UVIS exposures in GOODS-N to exploit theCVZ opportunity in that field.This program, GO 12060, is part of the GOODS-S Deep survey. Special Deepscience highlights include: * Detection and counts of early galaxies to z 7-8 as revealed by red-sensitive WFC3-IR images beyond the Lya break - Measurement of the luminosity function of infant galaxies down to 10^9 solar masses out to z = 7-8 - Measurement of the faint-end LF slope to assess the contribution of faint galaxies to cosmic reionization * The physics of early star formation - Propertes of the earliest star-forming regions - sizes, star-formation rates, stellar masses and radiation densities, dust contents - In concert with Spitzer

  6. Consequences of planetary migration: Kuiper belt dynamics and atmospheric escape from hot Jupiters

    NASA Astrophysics Data System (ADS)

    Murray-Clay, Ruth Ann

    resonant Kuiper belt objects by a migrating Neptune remains effective if the bulk of the primordial disk was locked in bodies having sizes [Special characters omitted.] km and if the fraction of disk mass in objects with sizes [Special characters omitted.] 1000 km was less than a few percent. Coagulation simulations produce a size distribution of primordial planetesimals that easily satisfies these constraints. We conclude that stochasticity did not interfere with Neptune's ability to capture and retain KBOs in first-order resonances during its migration. (3) Photoionization heating from UV radiation incident on the atmospheres of hot Jupiters drives planetary mass loss. Observations of stellar Lyman- a absorption at high velocities (±100 km s -1 ) have suggested that the hot Jupiter HD 209458b is losing atomic hydrogen. We show that mass loss takes the form of a hydrodynamic ("Parker") wind, emitted either from the planet's dayside during lulls in the stellar wind, or from the nightside when heat is transported there by horizontal flows. A hot Jupiter loses at most ~0.06% of its mass during its host star's pre-main-sequence phase and ~0.6% of its mass during the star's main sequence lifetime. At no stage do planetary winds reach velocities of ±100 km s -1 . We conclude that while UV radiation does indeed drive winds from hot Jupiters, such winds cannot significantly alter planet ary masses during any evolutionary stage, nor can they generate the observed decrements in Lya flux in HD 209458b.

  7. Meta-Analysis of Suicide-Related Behavior or Ideation in Child, Adolescent, and Adult Patients Treated with Atomoxetine

    PubMed Central

    Wietecha, Linda A.; Wang, Shufang; Buchanan, Andrew S.; Kelsey, Douglas K.

    2014-01-01

    and 9 adult clinical trials completed between 1998 and 2011. Ten pediatric (Studies HFBD, HFBK, LYAC, LYAS, LYAT, LYAW, LYAX, LYBG, LYBI, and LYBP) and two adult trials (Studies LYAA and LYAO) were conducted before the requirement to post trials at initiation (ongoing as of July 1, 2005) and, therefore, do not have a registration number. The registration numbers for the 13 pediatric trials meeting this requirement are: NCT00191698 (LYBX), NCT00486122 (LYCC), NCT00386581 (LYCZ), NCT00485459 (S010), NCT00191542 (LY15), NCT00191295 (LYBC), NCT00191906 (LYCK), NCT00192023 (LYCY), NCT00191945 (LYDM), NCT00546910 (LYDV), NCT00406354 (LYDW), NCT00380692 (S017), and NCT00607919 (LYEB). For the seven adult trials, the registration numbers are: NCT00190931 (LYBV), NCT00190957 (LYBY), NCT00190736 (LYCU), NCT00190775 (LYCW), NCT00190879 (LYDQ), NCT00510276 (LYDZ), and NCT00962104 (LYEE). PMID:25019647

  8. Optical Sensing and Trapping Based on Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Kang, Zhiwen

    PNOTs. The system consists of an array of graded plasmonic nano-disks (NDs) with individual elements coded with different resonant wavelengths according to their dimensions. Thus, by switching the wavelength and rotating the polarization of the excitation source, the target nanoparticles trapped by the device can be manipulated from one ND to another. 3D FDTD simulation and MST calculation are utilized to demonstrate the operation of this idea. Our results reveal that the target experiences a trapping potential strength as high as 5000 kBT/W/microm 2, maximum optical torque of ~336 pN˙nm/W/microm2, and the total active volume may reach ~106 nm3. The potential applications in terms of optical sensing are also discussed. In the final design, for which experimental demonstration has been conducted, we show that PNOTs are achievable with random plasmonic nano-islands. Two laser beams having wavelengths of 633 nm and 785 nm are utilized to stimulate the PNOTs and excite the Raman signals simultaneously. The PNOTs are formed by annealing of a thermal evaporated gold film. This so-called nano-island substrate (Au-NIS) has a resonant peak close to 633 nm. The target is photochemical synthesized silver nanodecadedrons (AgNDs) functionalized with 4-Mercaptobenzoic acid (4-MBA) and the resonant peak of these AgNDs is far away from 633 nm and 785 nm. As the target is trapped to the hot-spots when the PNOTs are active, the near-field intensity is enhanced significantly, which results in the emergence of SERS signals, i.e. confirming the expected outcome of SERS upon nanotrapping by the PNOTs. This process is also elucidated numerically through 3D FDTD simulation and MST calculation. Furthermore, the target can be released as the PNOTs become inactive, i.e. disappearance of the SERS signal. Therefore, this design offers not only a robust avenue for monitoring trapping events in PNOTs, but also a reproducible "trap-and-sense" platform for bio-detection. (Abstract shortened by UMI.)

  9. Silicate-bearing IIE Irons: Early Mixing and Differentiation in a Core-Mantle Environment and Shock Resetting of Ages

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.

    1995-09-01

    The small group of IIE irons [1] are important since many contain silicate inclusions. A wide variety of inclusions occur in Netscha vo [2], Techado [3], Watson [4], Elga, Kodaikanal, Weekeroo Station, and Colomera [5,6]. Miles contains uncharacterized silicate inclusions [7]. Most siderophile elements do not follow fractional crystallization trends, suggesting formation by impact [1]. Ages from 3.67-4.51 Ga [see 8] are taken by some authors [4] as the time of silicate-metal mixing. I have conducted petrographic studies on silicate inclusions of all silicate-bearing IIE's except Elga and propose an alternative history of heating, melting, silicate differentiation and metal-silicate mixing ~4.55 Ga ago in a core-mantle environment followed by shock heating and chronometer resetting. The chondritic IIE precursor was probably not identical to H chondrites [1,3]. Mafic silicate compositions in "primitive" IIE's (Netschaevo, Techado) and Delta 17O in all silicate-bearing IIE's (0.59+/-0.08 [3,4,9,10]) are less than or overlap H chondrites. The IIE body was heated to >=900 degrees C, metamorphosing and partially melting the mantle and forming a small Fe,Ni-FeS core ~4.55 Ga ago. Slow metallographic cooling rates (1-100 degrees C/Ma [1,3]) for IIE's with unaltered metal (e.g., Techado, Weekeroo Station, Miles) and fractional crystallization trends for some elements (e.g., Au-Ni) support a core origin, not a near-surface, impact model. Comparison of other siderophile element trends in IAB, IIICD and IIE indicate similar origins [1], but IAB and IIICD may also have originated in cores [11,12]. Silicates differentiated in the mantle and/or after mixing with metal. The degree of differentiation increases from Netschaevo (unmelted, chondritic clasts [2]) to Techado (unmelted silicates; Fe,Ni-FeS melting [3]) to Watson (nearly-total melting; no silicate differentiation; Fe,Ni-FeS lost [4]) to Miles and Weekeroo Station (opx-cpx-plag partial melts [5]) to Kodaikanal, Colomera

  10. Application of Bred Vectors To Data Assimilation

    NASA Astrophysics Data System (ADS)

    Corazza, M.; Kalnay, E.; Patil, Dj

    We introduced a statistic, the BV-dimension, to measure the effective local finite-time dimensionality of the atmosphere. We show that this dimension is often quite low, and suggest that this finding has important implications for data assimilation and the accuracy of weather forecasting (Patil et al, 2001). The original database for this study was the forecasts of the NCEP global ensemble forecasting system. The initial differences between the control forecast and the per- turbed forecasts are called bred vectors. The control and perturbed initial conditions valid at time t=n(t are evolved using the forecast model until time t=(n+1) (t. The differences between the perturbed and the control forecasts are scaled down to their initial amplitude, and constitute the bred vectors valid at (n+1) (t. Their growth rate is typically about 1.5/day. The bred vectors are similar by construction to leading Lya- punov vectors except that they have small but finite amplitude, and they are valid at finite times. The original NCEP ensemble data set has 5 independent bred vectors. We define a local bred vector at each grid point by choosing the 5 by 5 grid points centered at the grid point (a region of about 1100km by 1100km), and using the north-south and east- west velocity components at 500mb pressure level to form a 50 dimensional column vector. Since we have k=5 global bred vectors, we also have k local bred vectors at each grid point. We estimate the effective dimensionality of the subspace spanned by the local bred vectors by performing a singular value decomposition (EOF analysis). The k local bred vector columns form a 50xk matrix M. The singular values s(i) of M measure the extent to which the k column unit vectors making up the matrix M point in the direction of v(i). We define the bred vector dimension as BVDIM={Sum[s(i)]}^2/{Sum[s(i)]^2} For example, if 4 out of the 5 vectors lie along v, and one lies along v, the BV- dimension would be BVDIM[sqrt(4), 1, 0

  11. Physics Computing '92: Proceedings of the 4th International Conference

    NASA Astrophysics Data System (ADS)

    de Groot, Robert A.; Nadrchal, Jaroslav

    1993-04-01

    Transputer Arrays * Distribution of Ions Reflected on Rough Surfaces * The Study of Step Density Distribution During Molecular Beam Epitaxy Growth: Monte Carlo Computer Simulation * Towards a Formal Approach to the Construction of Large-scale Scientific Applications Software * Correlated Random Walk and Discrete Modelling of Propagation through Inhomogeneous Media * Teaching Plasma Physics Simulation * A Theoretical Determination of the Au-Ni Phase Diagram * Boson and Fermion Kinetics in One-dimensional Lattices * Computational Physics Course on the Technical University * Symbolic Computations in Simulation Code Development and Femtosecond-pulse Laser-plasma Interaction Studies * Computer Algebra and Integrated Computing Systems in Education of Physical Sciences * Coordinated System of Programs for Undergraduate Physics Instruction * Program Package MIRIAM and Atomic Physics of Extreme Systems * High Energy Physics Simulation on the T_Node * The Chapman-Kolmogorov Equation as Representation of Huygens' Principle and the Monolithic Self-consistent Numerical Modelling of Lasers * Authoring System for Simulation Developments * Molecular Dynamics Study of Ion Charge Effects in the Structure of Ionic Crystals * A Computational Physics Introductory Course * Computer Calculation of Substrate Temperature Field in MBE System * Multimagnetical Simulation of the Ising Model in Two and Three Dimensions * Failure of the CTRW Treatment of the Quasicoherent Excitation Transfer * Implementation of a Parallel Conjugate Gradient Method for Simulation of Elastic Light Scattering * Algorithms for Study of Thin Film Growth * Algorithms and Programs for Physics Teaching in Romanian Technical Universities * Multicanonical Simulation of 1st order Transitions: Interface Tension of the 2D 7-State Potts Model * Two Numerical Methods for the Calculation of Periodic Orbits in Hamiltonian Systems * Chaotic Behavior in a Probabilistic Cellular Automata? * Wave Optics Computing by a Networked-based Vector