Science.gov

Sample records for aureus plasmid pi258

  1. Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258.

    PubMed Central

    Yoon, K P; Misra, T K; Silver, S

    1991-01-01

    Regulation of the cadA cadmium and zinc resistance determinant of Staphylococcus aureus plasmid pI258 was demonstrated by using gene fusions and direct measurements of transcription. In growth experiments, cells harboring the intact cadA operon were induced with different cations and challenged by an inhibitory concentration of ZnCl2, a substrate of the CadA resistance system. Uninduced cells did not grow for 8 h after Zn2+ addition, whereas induced cells grew in the presence Zn2+. Cd2+ was a strong inducer, and Bi3+ and Pb2+ also induced well; Co2+ and Zn2+ were weak inducers. A translational beta-lactamase fusion to the cadA gene showed the same induction specificity as that seen with growth experiments with the intact cadA operon. A short beta-lactamase transcriptional fusion to the cadC gene also showed the same pattern of induction, establishing that the cadC gene was not involved in regulation. In Northern (RNA) blot hybridization experiments, a cadmium-inducible, 2.6-kb, operon-length transcript was detected. Primer extension experiments determined that Cd(2+)-inducible transcription of the cadA operon begins at nucleotides 676 and 677 of the published sequence (G. Nucifora, L. Chu, T. K. Misra, and S. Silver, Proc. Natl. Acad. Sci. USA 86: 3544-3548, 1989). Images FIG. 6 FIG. 7 PMID:1938960

  2. Specific potassium binding stabilizes pI258 arsenate reductase from Staphylococcus aureus.

    PubMed

    Lah, Nina; Lah, Jurij; Zegers, Ingrid; Wyns, Lode; Messens, Joris

    2003-07-01

    Arsenate reductase (ArsC) from Staphylococcus aureus plasmid pI258 catalyzes the reduction of arsenate to arsenite and plays a role in bacterial heavy metal resistance. The high resolution x-ray structure of ArsC reveals the atomic details of the K+ binding site situated next to the catalytic P-loop structural motif of this redox enzyme. A full thermodynamic study of the binding characteristics of a series of monovalent cations (Li+, Na+, K+, Rb+, and Cs+) and their influence on the thermal stability of ArsC was performed with isothermal titration calorimetry, circular dichroism spectroscopy, and differential scanning calorimetry. Potassium has the largest affinity with a Ka of 3.8 x 10(3) m(-1), and the effectiveness of stabilization of ArsC by monovalent cations follows the binding affinity order: K+ > Rb+ > Cs+ > Na+ > Li+. A mutagenesis study on the K+ binding side chains showed that Asn-13 and Asp-65 are essential for potassium binding, but the impact on the stability of ArsC was the most extreme when mutating Ser-36. Additionally, the thermal stabilization by K+ is significantly reduced in the case of the ArsC E21A mutant, showing the importance of a Glu-21-coordinated water molecule in its contact with K+. Although potassium is not essential for catalysis, in its presence the kcat/KM increases with a factor of 5. Altogether, the interaction of K+ with specific residues in ArsC is an enthalpydriven process that stabilizes ArsC and increases the specific activity of this redox enzyme. PMID:12682056

  3. Stability of Penicillinase Plasmids in Staphylococcus aureus

    PubMed Central

    Johnston, L. H.; Dyke, K. G. H.

    1971-01-01

    The isolation of mutants of Staphylococcus aureus that are affected in the stability of penicillinase plasmids is described. One mutation is plasmid borne and results in nonreplication of the plasmid at 42 C. A second type of mutation is host-borne and gives rise to instability of both mcrI and mcrII penicillinase plasmids but not a tetracycline-resistant plasmid. Images PMID:4105036

  4. PENICILLINASE PLASMID DNA FROM Staphylococcus aureus*

    PubMed Central

    Rush, Mark G.; Gordon, C. N.; Novick, Richard P.; Warner, Robert C.

    1969-01-01

    A penicillinase plasmid from Staphylococcus aureus and three of its derivatives, all previously identified as extrachromosomal genetic elements, have been isolated in high yield as circular duplex DNA molecules. The wild-type plasmid was found by contour-length measurements of electron micrographs to have a molecular weight of 18.6 × 106 daltons. Two plasmids with deletions encompassing six and eight of the eleven known plasmid cistrons had molecular weights of 16.4 × 106 and 15.3 × 106 daltons, respectively. This information was used to establish approximate physical distances for the genetic map. A high-frequency transducing element also derived from the plasmid had a molecular weight of approximately 24 × 106 daltons. Although each plasmid preparation appeared homogeneous by ultracentrifugal analysis, electron micrographs always revealed the presence of a low percentage of complex oligomeric forms, particularly circular and catenated dimers. Images PMID:5260933

  5. Plasmid-protein relaxation complexes in Staphylococcus aureus.

    PubMed

    Novick, R

    1976-09-01

    Protein-deoxyribonucleic acid relaxation complexes have been demonstrated for six Staphylococcus aureus plasmids out of sixteen examined. Four of these encode stretomycin resistence, have molecular weights of about 2.7 x 10(6), and are isolated as supercoiled molecules that are virtally 100% relaxable by treatment with sodium dodecyl sulfate. It is probable that these four isolates represent a single widely disseminated plasmid species. The other two plasmids showing relaxation complexes have molecular weights of about 3 x 10(6) and encode chloramphenicol resistance. The complexes in these cases are unstable, and it has not been possible to induce more than 50% relaxation by any of the standard treatments. Ten other plasmids do not show detectable complexes. These include three penicillinase plasmids, four tetracycline-resistance plasmids, one plasmid carrying kanamycin-neomycin resistance, and finally, two chloramphenicol-resistance plasmids. PMID:956124

  6. Mobilization functions of the bacteriocinogenic plasmid pRJ6 of Staphylococcus aureus.

    PubMed

    Varella Coelho, Marcus Livio; Ceotto, Hilana; Madureira, Danielle Jannuzzi; Nes, Ingolf F; Bastos, Maria do Carmo de Freire

    2009-06-01

    Plasmid pRJ6 is the first known bacteriocinogenic mobilizable (Mob) plasmid of Staphylococcus aureus. Its Mob region is composed of four mob genes (mobCDAB) arranged as an operon, a genetic organization uncommon among S. aureus Mob plasmids. oriT (pRJ6) was detected in a region of 431 bp, positioned immediately upstream of mobC. This region, when cloned into pCN37, was able to confer mobilization to the re-combinant plasmid only in the presence of pRJ6. The entire Mob region, including oriT (pRJ6), is much more similar to Mob regions from several coagulase-negative staphylococci plasmids, although some remarkable similarities with S. aureus Mob plasmids can also be noted. These similarities include the presence within oriT (pRJ6) of the three mcb (MobC binding sites), firstly described in pC221 and pC223, an identical nick site also found in these same plasmids, and a nearly identical sra(pC223) site (sequence recognized by MobA). pRJ6 was successfully transferred to S. epidermidis by conjugation in the presence of the conjugative plasmid pGOl. Altogether these findings suggest that pRJ6 might have been originally a coagulase-negative staphylococci plasmid that had been transferred successfully to S. aureus. PMID:19557350

  7. Plasmid profiles and antibiotic susceptibility patterns of Staphylococcus aureus isolates from Nigeria.

    PubMed

    Olukoya, D K; Asielue, J O; Olasupo, N A; Ikea, J K

    1995-06-01

    In an investigation into the problems of infections due to Staphylococcus aureus in Nigeria, 100 strains were isolated from various hospitals in Lagos. The strains were screened for the presence of plasmids and for susceptibility to antimicrobial agents. Plasmids were extracted by modification of the method of Takahashi and Nagono[1]. The plasmids were diverse in nature. The strains were found to be highly resistant to commonly prescribed antibiotics. PMID:8669391

  8. Analysis of plasmids in nosocomial strains of multiple-antibiotic-resistant Staphylococcus aureus.

    PubMed Central

    Lyon, B R; May, J W; Skurray, R A

    1983-01-01

    Nosocomial infections caused by Staphylococcus aureus strains resistant to methicillin and multiple antibiotics have reached epidemic proportions in Melbourne, Australia, over the past 5 years. Plasmid analysis of representative clinical isolates demonstrated the presence of three classes of plasmid DNA in most strains. Resistance to gentamicin, kanamycin, and tobramycin was usually mediated by an 18-megadalton plasmid but could also be encoded by a related 22-megadalton plasmid. Two distinguishable plasmids of 3 megadaltons each endowed resistance to chloramphenicol, and the third class consisted of small plasmids, each approximately 1 megadalton in size, with no attributable function. An extensive array of resistance determinants, including some which have usually been associated with a plasmid locus, were found to exist on the chromosome. Evidence that resistance to gentamicin, kanamycin, and tobramycin is chromosomally encoded in some clinical isolates suggests that this determinant may have undergone genetic translocation onto the staphylococcal chromosome. Images PMID:6311086

  9. A stable luciferase reporter plasmid for in vivo imaging in murine models of Staphylococcus aureus infections.

    PubMed

    Bacconi, Marta; Haag, Andreas F; Torre, Antonina; Castagnetti, Andrea; Chiarot, Emiliano; Delany, Isabel; Bensi, Giuliano

    2016-04-01

    In vivo imaging of bioluminescent bacteria permits their visualization in infected mice, allowing spatial and temporal evaluation of infection progression. Most available bioluminescent strains were obtained by integration of the luciferase genes into the bacterial chromosome, a challenging and time-consuming approach. Recently, episomal plasmids were used, which were introduced in bacteria and expressed all genes required for bioluminescence emission. However, the plasmid was progressively lost in vitro and in vivo, if bacteria were not maintained under antibiotic selective pressure. Increased stability could be obtained inserting into the plasmid backbone sequences that assured plasmid partition between daughter bacterial cells, or caused death of bacteria that had lost the plasmid. So far, no detailed analysis was performed of either plasmid stability in vivo or contribution of different stabilizing sequence types. Here we report the construction of a plasmid, which includes the Photorhabdus luminescens lux cassette expressed under the control of a Staphylococcus aureus specific gene promoter, and toxin/antitoxin (T/A) and partition sequences (Par) conferring stability and transmissibility of the plasmid. Following infection of mice with S. aureus carrying this plasmid, we demonstrated that the promoter-lux fusion was functional in vivo, that the plasmid was retained by 70-100% of bacterial cells 7 days post-infection, and that both stabilizing sequence types were required to maximize plasmid retention. These data suggest that the plasmid can be a valuable tool to study gene expression and bacterial spread in small laboratory animals infected with S. aureus or possibly other Gram-positive human pathogens. PMID:26685857

  10. Efficient non-enzymatic cleavage of Staphylococcus aureus plasmid DNAs mediated by neodymium ions.

    PubMed

    Zovčáková, Monika; Španová, Alena; Pantůček, Roman; Doškař, Jiří; Rittich, Bohuslav

    2016-08-15

    Staphylococcus aureus plasmids are the main factor in the spreading of antibacterial resistance among bacterial strains that has emerged on a worldwide scale. Plasmids recovered from 12 clinical and food isolates of S. aureus were treated with 10 mM free lanthanide Nd(3+) ions (non-enzymatic cleavage agent) in Hepes buffer (pH 7.5) at 70 °C. Topological forms of plasmids-closed circular (ccc), open circular (oc), and linear (lin)-produced by cleavage at different times were separated using pulsed-field agarose gel electrophoresis. The method is proposed to detect and differentiate several plasmids in the same bacterial strain according to their size. PMID:27237372

  11. Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus.

    PubMed

    O'Brien, Frances G; Yui Eto, Karina; Murphy, Riley J T; Fairhurst, Heather M; Coombs, Geoffrey W; Grubb, Warren B; Ramsay, Joshua P

    2015-09-18

    Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2-3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus. PMID:26243776

  12. Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus

    PubMed Central

    O'Brien, Frances G.; Yui Eto, Karina; Murphy, Riley J. T.; Fairhurst, Heather M.; Coombs, Geoffrey W.; Grubb, Warren B.; Ramsay, Joshua P.

    2015-01-01

    Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus. PMID:26243776

  13. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B.

    PubMed

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo; Sugai, Motoyuki

    2013-12-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6')/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6')/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6')/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6')/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment. PMID:24080652

  14. The activation of electrophile, nucleophile and leaving group during the reaction catalysed by pI258 arsenate reductase.

    PubMed

    Roos, Goedele; Loverix, Stefan; Brosens, Elke; Van Belle, Karolien; Wyns, Lode; Geerlings, Paul; Messens, Joris

    2006-06-01

    The reduction of arsenate to arsenite by pI258 arsenate reductase (ArsC) combines a nucleophilic displacement reaction with a unique intramolecular disulfide cascade. Within this reaction mechanism, the oxidative equivalents are translocated from the active site to the surface of ArsC. The first reaction step in the reduction of arsenate by pI258 ArsC consists of a nucleophilic displacement reaction carried out by Cys10 on dianionic arsenate. The second step involves the nucleophilic attack of Cys82 on the Cys10-arseno intermediate formed during the first reaction step. The onset of the second step is studied here by using quantum chemical calculations in a density functional theory context. The optimised geometry of the Cys10-arseno adduct in the ArsC catalytic site (sequence motif: Cys10-Thr11-Gly12-Asn13-Ser14-Cys15-Arg16-Ser17) forms the starting point for all subsequent calculations. Thermodynamic data and a hard and soft acids and bases (HSAB) reactivity analysis show a preferential nucleophilic attack on a monoanionic Cys10-arseno adduct, which is stabilised by Ser17. The P-loop active site of pI258 ArsC activates first a hydroxy group and subsequently arsenite as the leaving group, as is clear from an increase in the calculated nucleofugality of these groups upon going from the gas phase to the solvent phase to the enzymatic environment. Furthermore, the enzymatic environment stabilises the thiolate form of the nucleophile Cys82 by 3.3 pH units through the presence of the eight-residue alpha helix flanked by Cys82 and Cys89 (redox helix) and through a hydrogen bond with Thr11. The importance of Thr11 in the pKa regulation of Cys82 was confirmed by the observed decrease in the kcat value of the Thr11Ala mutant as compared to that of wild-type ArsC. During the final reaction step, Cys89 is activated as a nucleophile by structural alterations of the redox helix that functions as a pKa control switch for Cys89; this final step is necessary to expose a Cys82-Cys89 disulfide. PMID:16607668

  15. Transfer of mupirocin resistance from Staphylococcus haemolyticus clinical strains to Staphylococcus aureus through conjugative and mobilizable plasmids.

    PubMed

    Rossi, Ciro C; Ferreira, Natália C; Coelho, Marcus L V; Schuenck, Ricardo P; Bastos, Maria do Carmo de F; Giambiagi-deMarval, Marcia

    2016-07-01

    Coagulase-negative staphylococci are thought to act as reservoirs of antibiotic resistance genes that can be transferred to Staphylococcus aureus, thus hindering the combat of this bacterium. In this work, we analyzed the presence of plasmids conferring resistance to the antibiotic mupirocin-widely used to treat and prevent S. aureus infections in hospital environments-in nosocomial S. haemolyticus strains. About 12% of the 75 strains tested were resistant to mupirocin, and this phenotype was correlated with the presence of plasmids. These plasmids were shown to be diverse, being either conjugative or mobilizable, and capable of transferring mupirocin resistance to S. aureus Our findings reinforce that S. haemolyticus, historically and mistakenly considered as a less important pathogen, is a reservoir of resistance genes which can be transferred to other bacteria, such as S. aureus, emphasizing the necessity of more effective strategies to detect and combat this emergent opportunistic pathogen. PMID:27190144

  16. Mechanism of Plasmid-Mediated Resistance to Cadmium in Staphylococcus aureus

    PubMed Central

    Chopra, I.

    1975-01-01

    The mechanism of plasmid-mediated resistance to cadmium in Staphylococcus aureus was investigated. Protein synthesis in cell-free extracts from resistant or susceptible bacteria was equally susceptible to inhibition by Cd2+, but spheroplasts from resistant bacteria retained their resistance. Resistant bacteria did not have a decreased affinity for cations in general, nor was active metabolism required for exclusion of Cd2+. The kinetics of Cd2+ uptake into susceptible and resistant bacteria suggested that the conformation of membrane proteins in resistant bacteria may be important in the exclusion of Cd2+. PMID:1137361

  17. Antiseptic and antibiotic resistance plasmid in Staphylococcus aureus that possesses ability to confer chlorhexidine and acrinol resistance.

    PubMed Central

    Yamamoto, T; Tamura, Y; Yokota, T

    1988-01-01

    Plasmid pSAJ1 from a methicillin- and gentamicin-resistant strain of Staphylococcus aureus had am molecular size of 50 kilobases and conferred resistance not only to kanamycin, gentamicin, tobramycin, amikacin, benzalkonium chloride, acriflavin, and ethidium bromide but also to chlorhexidine. In addition, the cloned antiseptic resistance gene(s) manifested acrinol resistance in Escherichia coli. Images PMID:3415214

  18. C55 bacteriocin produced by ETB-plasmid positive Staphylococcus aureus strains is a key factor for competition with S. aureus strains.

    PubMed

    Kawada-Matsuo, Miki; Shammi, Fariha; Oogai, Yuichi; Nakamura, Norifumi; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2016-03-01

    Exfoliative toxin (ET) produced by Staphylococcus aureus is closely associated with the onset of bullous impetigo. To date, three ETs (ETA, ETB and ETD) have been identified. The gene encoding ETB is located in a plasmid designated pETB. Bacteriocin synthesis genes are also located in this plasmid and pETB-positive strains reportedly produce the C55 bacteriocin. In this study, the antibacterial activity against S. aureus strains of the bacteriocin produced by the pETB-positive strain TY4 was investigated. This bacteriocin demonstrated antibacterial activity against all pETB-negative but not pETB-positive strains, including TY4. Additionally, a TY4- strain from which the pETB plasmid had been deleted exhibited susceptibility to the bacteriocin. Further experiments revealed that two immunity factors (orf 46-47 and orf 48) downstream of the bacteriocin synthesis genes in the pETB plasmid are associated with immunity against the bacteriocin produced by TY4. The TY4- with orf46-47 strain exhibited complete resistance to bacteriocin, whereas the TY4- with orf48 strain exhibited partial resistance. Whether bacteriocin affects the proportion of each strain when co-cultured with S. aureus strains was also investigated. When TY4 or TY4- was co-cultured with 209P strain, which is susceptible to the bacteriocin, the proportion of 209P co-cultured with TY4 was significantly less than when 209P was co-cultured with TY4-, whereas the proportion of TY4- with orf46-48 co-cultured with TY4 was greater than with TY4-. These results suggest that the C55 bacteriocin produced by pETB-positive strains affects the proportion of each strain when pETB-positive and -negative strains co-exist. PMID:26801833

  19. Dissemination of a pSCFS3-like cfr-carrying plasmid in Staphylococcus aureus and Staphylococcus epidermidis clinical isolates recovered from hospitals in Ohio.

    PubMed

    Mendes, Rodrigo E; Deshpande, Lalitagauri M; Bonilla, Hector F; Schwarz, Stefan; Huband, Michael D; Jones, Ronald N; Quinn, John P

    2013-07-01

    Nineteen linezolid-resistant Staphylococcus epidermidis and two Staphylococcus aureus isolates recovered from two medical institutions in northeast Ohio and an S. aureus cfr index strain previously collected in the same facilities during the 2007 SENTRY Antimicrobial Surveillance Program were investigated for the genetic basis of oxazolidinone resistance and the location of cfr. S. aureus isolates were typed by pulsed-field gel electrophoresis (PFGE), spa typing, and multilocus sequence typing (MLST). The location of cfr was determined by Southern blotting and hybridization. Plasmid sequencing was performed using the 454 Life Sciences (Roche) GS-FLX DNA platform. The two S. aureus isolates showed unique PFGE patterns but were multilocus sequence type 5 (ST5) and spa type t002, whereas the S. aureus index strain was ST239 and t037. Southern blot and hybridization experiments showed that cfr was plasmid located and that the S. epidermidis isolates, one of the S. aureus isolates, and the S. aureus index strain shared an identical cfr-carrying plasmid (39.3 kb). Sequencing results confirmed these findings. A 10-kb fragment containing cfr showed the highest identity (99.9%) to a 9.5-kb fragment of plasmid pSCFS3 from a bovine Staphylococcus lentus isolate from Germany. In addition, these 39.3-kb plasmids from human S. epidermidis and S. aureus exhibited BglII restriction profiles very similar to that observed for plasmid pSCFS3. The cfr-carrying plasmid detected in the remaining S. aureus isolate (7.9 kb) was distinct and showed the highest identity to the chromosomal cfr integrate found in the chromosomal DNA of a Proteus vulgaris isolate from a pig in China. PMID:23571552

  20. Dissemination of a pSCFS3-Like cfr-Carrying Plasmid in Staphylococcus aureus and Staphylococcus epidermidis Clinical Isolates Recovered from Hospitals in Ohio

    PubMed Central

    Deshpande, Lalitagauri M.; Bonilla, Hector F.; Schwarz, Stefan; Huband, Michael D.; Jones, Ronald N.; Quinn, John P.

    2013-01-01

    Nineteen linezolid-resistant Staphylococcus epidermidis and two Staphylococcus aureus isolates recovered from two medical institutions in northeast Ohio and an S. aureus cfr index strain previously collected in the same facilities during the 2007 SENTRY Antimicrobial Surveillance Program were investigated for the genetic basis of oxazolidinone resistance and the location of cfr. S. aureus isolates were typed by pulsed-field gel electrophoresis (PFGE), spa typing, and multilocus sequence typing (MLST). The location of cfr was determined by Southern blotting and hybridization. Plasmid sequencing was performed using the 454 Life Sciences (Roche) GS-FLX DNA platform. The two S. aureus isolates showed unique PFGE patterns but were multilocus sequence type 5 (ST5) and spa type t002, whereas the S. aureus index strain was ST239 and t037. Southern blot and hybridization experiments showed that cfr was plasmid located and that the S. epidermidis isolates, one of the S. aureus isolates, and the S. aureus index strain shared an identical cfr-carrying plasmid (39.3 kb). Sequencing results confirmed these findings. A 10-kb fragment containing cfr showed the highest identity (99.9%) to a 9.5-kb fragment of plasmid pSCFS3 from a bovine Staphylococcus lentus isolate from Germany. In addition, these 39.3-kb plasmids from human S. epidermidis and S. aureus exhibited BglII restriction profiles very similar to that observed for plasmid pSCFS3. The cfr-carrying plasmid detected in the remaining S. aureus isolate (7.9 kb) was distinct and showed the highest identity to the chromosomal cfr integrate found in the chromosomal DNA of a Proteus vulgaris isolate from a pig in China. PMID:23571552

  1. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus.

    PubMed Central

    Tynecka, Z; Gos, Z; Zajac, J

    1981-01-01

    Resistance of Staphylococcus aureus strain 17810R to Cd2+ appears to be due to a plasmid-coded Cd2+ efflux system. Complete efflux of Cd2+ after transfer of preloaded cells into Cd2+-free medium occurred in the resistant strain 17810R, but not in the plasmidless derivative strain 17810S. Net efflux was blocked by 2,4-dinitrophenol, N,N,-dicyclohexylcarbodiimide (DCCD), and incubation at 4 degrees C. The inhibition of Cd2+ efflux by DCCD paralleled a stimulation of net uptake in the resistant cells by this agent. Cd2+ efflux by the resistant strain was accompanied by a reversal of inhibition of respiration, whereas in the sensitive strain, inhibition of respiration was not reversed after transfer to Cd2+-free medium. Net Cd2+ uptake by strain 17810R was inhibited by p-chloromercuribenzoate. In Cd2+ contrast, Cd2+ uptake by the plasmidless strain 17810S was affected neither by p-chloromercuribenzoate nor by DCCD when added alone, but was blocked by a combination of these two agents. Valinomycin had no effect on the reduced Cd2+ uptake by the resistant strain, whereas nigericin stimulated uptake to values comparable to those of the untreated sensitive cells. With sensitive cells, valinomycin reduced Cd2+ uptake by about 50%, whereas nigericin was without effect. A possible mechanism of Cd2+ movements in both strains is discussed. PMID:7263609

  2. Novel erm(T)-Carrying Multiresistance Plasmids from Porcine and Human Isolates of Methicillin-Resistant Staphylococcus aureus ST398 That Also Harbor Cadmium and Copper Resistance Determinants

    PubMed Central

    Gómez-Sanz, Elena; Kadlec, Kristina; Feßler, Andrea T.; Zarazaga, Myriam; Schwarz, Stefan

    2013-01-01

    This study describes three novel erm(T)-carrying multiresistance plasmids that also harbor cadmium and copper resistance determinants. The plasmids, designated pUR1902, pUR2940, and pUR2941, were obtained from porcine and human methicillin-resistant Staphylococcus aureus (MRSA) of the clonal lineage ST398. In addition to the macrolide-lincosamide-streptogramin B (MLSB) resistance gene erm(T), all three plasmids also carry the tetracycline resistance gene tet(L). Furthermore, plasmid pUR2940 harbors the trimethoprim resistance gene dfrK and the MLSB resistance gene erm(C), while plasmids pUR1902 and pUR2941 possess the kanamycin/neomycin resistance gene aadD. Sequence analysis of approximately 18.1 kb of the erm(T)-flanking region from pUR1902, 20.0 kb from pUR2940, and 20.8 kb from pUR2941 revealed the presence of several copies of the recently described insertion sequence ISSau10, which is probably involved in the evolution of the respective plasmids. All plasmids carried a functional cadmium resistance operon with the genes cadD and cadX, in addition to the multicopper oxidase gene mco and the ATPase copper transport gene copA, which are involved in copper resistance. The comparative analysis of S. aureus RN4220 and the three S. aureus RN4220 transformants carrying plasmid pUR1902, pUR2940, or pUR2941 revealed an 8-fold increase in CdSO4 and a 2-fold increase in CuSO4 MICs. The emergence of multidrug resistance plasmids that also carry heavy metal resistance genes is alarming and requires further surveillance. The colocalization of antimicrobial resistance genes and genes that confer resistance to heavy metals may facilitate their persistence, coselection, and dissemination. PMID:23629701

  3. Novel ABC Transporter Gene, vga(C), Located on a Multiresistance Plasmid from a Porcine Methicillin-Resistant Staphylococcus aureus ST398 Strain ▿

    PubMed Central

    Kadlec, Kristina; Schwarz, Stefan

    2009-01-01

    A novel ABC transporter gene, vga(C), was identified on the 14,365-bp multiresistance plasmid pKKS825 in a porcine methicillin (meticillin)-resistant Staphylococcus aureus isolate of sequence type 398. The vga(C) gene encodes a 523-amino-acid protein which confers resistance not only to streptogramin A antibiotics but also to lincosamides and pleuromutilins. Plasmid pKKS825 also carries the resistance genes aadD, tet(L), and dfrK, which may enable the coselection of vga(C) under selective pressure by kanamycin/neomycin, tetracyclines, and trimethoprim. PMID:19470508

  4. First Report of cfr-Carrying Plasmids in the Pandemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Staphylococcal Cassette Chromosome mec Type IV Clone

    PubMed Central

    Shore, Anna C.; Lazaris, Alexandros; Kinnevey, Peter M.; Brennan, Orla M.; Brennan, Gráinne I.; O'Connell, Brian; Feßler, Andrea T.; Schwarz, Stefan

    2016-01-01

    Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins; cfr, encoding phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A (PhLOPSA) resistance; its homologue cfr(B); or optrA, conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr is even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing, and conjugative transfer. Whole-genome sequencing was used for single-nucleotide variant (SNV) analysis, multilocus sequence typing, L protein mutation identification, cfr plasmid sequence analysis, and optrA and cfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles, compared to 1/5 in M13/0401. Both isolates were sequence type 22 MRSA staphylococcal cassette chromosome mec type IV (ST22-MRSA-IV)/spa type t032 isolates, harbored cfr, exhibited the PhLOPSA phenotype, and lacked optrA and cfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid. This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlight that prudent management of linezolid use is essential. PMID:26953212

  5. First Report of cfr-Carrying Plasmids in the Pandemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Staphylococcal Cassette Chromosome mec Type IV Clone.

    PubMed

    Shore, Anna C; Lazaris, Alexandros; Kinnevey, Peter M; Brennan, Orla M; Brennan, Gráinne I; O'Connell, Brian; Feßler, Andrea T; Schwarz, Stefan; Coleman, David C

    2016-05-01

    Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins; cfr, encoding phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A (PhLOPSA) resistance; its homologue cfr(B); or optrA, conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr is even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing, and conjugative transfer. Whole-genome sequencing was used for single-nucleotide variant (SNV) analysis, multilocus sequence typing, L protein mutation identification, cfr plasmid sequence analysis, and optrA and cfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles, compared to 1/5 in M13/0401. Both isolates were sequence type 22 MRSA staphylococcal cassette chromosome mec type IV (ST22-MRSA-IV)/spa type t032 isolates, harbored cfr, exhibited the PhLOPSA phenotype, and lacked optrA and cfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid. This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlight that prudent management of linezolid use is essential. PMID:26953212

  6. Introduction of plasmid DNA into an ST398 livestock-associated methicillin-resistant Staphylococcus aureus strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MRS926 is a livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) strain of sequence type (ST) 398. In order to facilitate in vitro and in vivo studies of this strain, we sought to tag it with a fluorescent marker. We cloned a codon-optimized gene for TurboGFP into a shuttle vector...

  7. Analysis of the beta-lactamase plasmid of borderline methicillin-susceptible Staphylococcus aureus: focus on bla complex genes and cadmium resistance determinants cadD and cadX.

    PubMed

    Massidda, Orietta; Mingoia, Marina; Fadda, Daniela; Whalen, Michael B; Montanari, Maria Pia; Varaldo, Pietro E

    2006-03-01

    Borderline methicillin-susceptible Staphylococcus aureus strains are a rather homogeneous group, characterized by MICs of penicillinase-resistant penicillins (PRPs) at or just below the susceptibility breakpoint. Other features unique to this group include the presence of a pBW15-like beta-lactamase plasmid, the association with phage complex 94/96, and the production of a PRP-hydrolyzing beta-lactamase activity in addition to the classical penicillinase activity. The four HindIII fragments of pBORa53, a pBW15-like plasmid from the well-studied borderline S. aureus strain a53, were cloned in Escherichia coli, sequenced and analyzed. The plasmid (17,334 bp in size) contains 14 open reading frames (ORFs) and a complete copy of transposon Tn552, which harbors the three genes of the bla complex (blaZ, blaR1, and blaI) necessary for penicillinase production. Among the other 11 ORFs identified, two were homologous to cadmium resistance determinants of Staphylococcus lugdunensis and to the cadD and cadX genes recently detected in S. aureus. Consistent with this, strain a53 was found to be cadmium resistant. From a collection of 30 S. aureus isolates with borderline PRP MIC levels, 27 matched strain a53 in the positive amplification reactions with all of the four primer pairs targeting the cadD-cadX region, the presence of the 17.3-kb plasmid, and the level of cadmium resistance. The well-established S. aureus laboratory strain ATCC 29213 was also found to express cadD-cadX-mediated cadmium resistance. pBORa53 could be re-isolated from transformants obtained by transferring it into a PRP-susceptible recipient. However, while the transformants demonstrated levels of cadmium and penicillin resistance similar to those of strain a53, they remained fully susceptible to PRPs. PMID:16229889

  8. Phenotypic characterization of xpr, a global regulator of extracellular virulence factors in Staphylococcus aureus

    NASA Technical Reports Server (NTRS)

    Smeltzer, M. S.; Hart, M. E.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We recently described a Tn551 insertion in the chromosome of Staphylococcus aureus S6C that resulted in drastically reduced expression of extracellular lipase (M. S. Smeltzer, S. R. Gill, and J. J. Iandolo, J. Bacteriol. 174:4000-4006, 1992). The insertion was localized to a chromosomal site (designated omega 1058) distinct from the lipase structural gene (geh) and the accessory gene regulator (agr), both of which were structurally intact in the lipase-negative (Lip-) mutants. In this report, we describe a phenotypic comparison between strains S6C, a hyperproducer of enterotoxin B; KSI9051, a derivative of S6C carrying the Tn551 insertion at omega 1058; ISP546, an 8325-4 strain that carries a Tn551 insertion in the agr locus; and ISP479C, the parent strain of ISP546 cured of the Tn551 delivery plasmid pI258repA36. Compared with their respective parent strains, ISP546 and KSI9051 produced greatly reduced amounts of lipase, alpha-toxin, delta-toxin, protease, and nuclease. KSI9051 also produced reduced amounts of staphylococcal enterotoxin B. Coagulase production was increased in ISP546 but not in KSI9051. Using a mouse model, we also demonstrated that ISP546 and KSI9051 were far less virulent than ISP479C and S6C. We have designated the genetic element defined by the Tn551 insertion at omega 1058 xpr to denote its role as a regulator of extracellular protein synthesis. We conclude that xpr and agr are similar and possibly interactive regulatory genes that play an important role in pathogenesis of staphylococcal disease.

  9. Replication of Staphylococcal Multiresistance Plasmids

    PubMed Central

    Firth, Neville; Apisiridej, Sumalee; Berg, Tracey; O'Rourke, Brendon A.; Curnock, Steve; Dyke, Keith G. H.; Skurray, Ronald A.

    2000-01-01

    Based on structural and functional properties, three groups of large staphylococcal multiresistance plasmids have been recognized, viz., the pSK1 family, pSK41-like conjugative plasmids, and β-lactamase–heavy-metal resistance plasmids. Here we describe an analysis of the replication functions of a representative of each of these plasmid groups. The replication initiation genes from the Staphylococcus aureus plasmids pSK1, pSK41, and pI9789::Tn552 were found to be related to each other and to the Staphylococcus xylosus plasmid pSX267 and are also related to rep genes of several plasmids from other gram-positive genera. Nucleotide sequence similarity between pSK1 and pI9789::Tn552 extended beyond their rep genes, encompassing upstream divergently transcribed genes, orf245 and orf256, respectively. Our analyses revealed that genes encoding proteins related to the deduced orf245 product are variously represented, in several types of organization, on plasmids possessing six seemingly evolutionarily distinct types of replication initiation genes and including both theta-mode and rolling-circle replicons. Construction of minireplicons and subsequent functional analysis demonstrated that orf245 is required for the segregational stability of the pSK1 replicon. In contrast, no gene equivalent to orf245 is evident on the conjugative plasmid pSK41, and a minireplicon encoding only the pSK41 rep gene was found to exhibit a segregational stability approaching that of the parent plasmid. Significantly, the results described establish that many of the large multiresistance plasmids that have been identified in clinical staphylococci, which were formerly presumed to be unrelated, actually utilize an evolutionarily related theta-mode replication system. PMID:10735859

  10. An updated view of plasmid conjugation and mobilization in Staphylococcus.

    PubMed

    Ramsay, Joshua P; Kwong, Stephen M; Murphy, Riley J T; Yui Eto, Karina; Price, Karina J; Nguyen, Quang T; O'Brien, Frances G; Grubb, Warren B; Coombs, Geoffrey W; Firth, Neville

    2016-01-01

    The horizontal gene transfer facilitated by mobile genetic elements impacts almost all areas of bacterial evolution, including the accretion and dissemination of antimicrobial-resistance genes in the human and animal pathogen Staphylococcus aureus. Genome surveys of staphylococcal plasmids have revealed an unexpected paucity of conjugation and mobilization loci, perhaps suggesting that conjugation plays only a minor role in the evolution of this genus. In this letter we present the DNA sequences of historically documented staphylococcal conjugative plasmids and highlight that at least 3 distinct and widely distributed families of conjugative plasmids currently contribute to the dissemination of antimicrobial resistance in Staphylococcus. We also review the recently documented "relaxase-in trans" mechanism of conjugative mobilization facilitated by conjugative plasmids pWBG749 and pSK41, and discuss how this may facilitate the horizontal transmission of around 90% of plasmids that were previously considered non-mobilizable. Finally, we enumerate unique sequenced S. aureus plasmids with a potential mechanism of mobilization and predict that at least 80% of all non-conjugative S. aureus plasmids are mobilizable by at least one mechanism. We suggest that a greater research focus on the molecular biology of conjugation is essential if we are to recognize gene-transfer mechanisms from our increasingly in silico analyses. PMID:27583185

  11. An updated view of plasmid conjugation and mobilization in Staphylococcus

    PubMed Central

    Ramsay, Joshua P.; Kwong, Stephen M.; Murphy, Riley J. T.; Yui Eto, Karina; Price, Karina J.; Nguyen, Quang T.; O'Brien, Frances G.; Grubb, Warren B.; Coombs, Geoffrey W.; Firth, Neville

    2016-01-01

    ABSTRACT The horizontal gene transfer facilitated by mobile genetic elements impacts almost all areas of bacterial evolution, including the accretion and dissemination of antimicrobial-resistance genes in the human and animal pathogen Staphylococcus aureus. Genome surveys of staphylococcal plasmids have revealed an unexpected paucity of conjugation and mobilization loci, perhaps suggesting that conjugation plays only a minor role in the evolution of this genus. In this letter we present the DNA sequences of historically documented staphylococcal conjugative plasmids and highlight that at least 3 distinct and widely distributed families of conjugative plasmids currently contribute to the dissemination of antimicrobial resistance in Staphylococcus. We also review the recently documented “relaxase-in trans” mechanism of conjugative mobilization facilitated by conjugative plasmids pWBG749 and pSK41, and discuss how this may facilitate the horizontal transmission of around 90% of plasmids that were previously considered non-mobilizable. Finally, we enumerate unique sequenced S. aureus plasmids with a potential mechanism of mobilization and predict that at least 80% of all non-conjugative S. aureus plasmids are mobilizable by at least one mechanism. We suggest that a greater research focus on the molecular biology of conjugation is essential if we are to recognize gene-transfer mechanisms from our increasingly in silico analyses. PMID:27583185

  12. Transformation of microorganisms with the plasmid vector with the replicon from pAC1 from Acetobacter pasteurianus.

    PubMed

    Grones, J; Turna, J

    1995-01-26

    A number of gram-negative and gram-positive bacteria species was screened for the expression of the gram-negative plasmid pACK5 and pACT72 with replicon of pAC1 plasmid from Acetobacter pasteurianus. As was described previously, both plasmids were expressed in Escherichia coli, Acetobacter pasteurianus, Acetobacter aceti, Shigella spp. and Citrobacter spp. Expressions of plasmids were successful in twelve species tested, Comamonas terrigena, Salmonella typhimurium, Serratia marcescens, Bacillus cereus, Bacillus megatericum, Bacillus subtilis, Lactobacillus helveticus, Micrococcus luteus, Sarcina lutea, Staphylococcus aureus, Staphylococcus epidermidis, Streptoccocus feacalis, and the stability of plasmid DNA was tested after cultivation in non-selective conditions. PMID:7832808

  13. Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci

    PubMed Central

    Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.; Eakes, Thomas C.; Eto, Karina Yui; Kwong, Stephen M.; Ramsay, Joshua P.; Firth, Neville

    2016-01-01

    ABSTRACT Antimicrobial resistance in Staphylococcus aureus presents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at the oriT region of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by the full 665-residue NES protein in vitro. Second, pSK156 and pCA347 are nonconjugative Staphylococcus aureus plasmids that contain sequences similar to the oriT region of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate the oriT sequences of these nonconjugative plasmids in vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognate oriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variant oriT mimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-like oriT. These data indicate that the conjugative relaxase in trans mechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids. IMPORTANCE Understanding the mechanism of antimicrobial resistance transfer in bacteria such as Staphylococcus aureus is an important step toward potentially slowing the spread of antimicrobial-resistant infections. This work establishes protein-DNA interactions essential for the transfer of the Staphylococcus aureus

  14. Plasmids in Frankia sp.

    PubMed

    Normand, P; Simonet, P; Butour, J L; Rosenberg, C; Moiroud, A; Lalonde, M

    1983-07-01

    A method to achieve cell lysis and isolate Frankia sp. plasmid DNA was developed. A screening of Frankia sp. strains belonging to different host compatibility groups (Alnus sp., Elaeagnus sp., Ceanothus sp.) showed that, of 39 strains tested, 4 (strains Cp11, ARgN22d, ArI3, and EUN1f) possessed plasmids ranging in size from 7.1 to 32.2 kilobase pairs as estimated from agarose gel electrophoresis and electron microscopy. A total of 11 plasmids were detected. PMID:6863219

  15. Genomic fingerprinting of bacteriocin-producer strains of Staphylococcus aureus.

    PubMed

    Nascimento, Janaína dos S; Giambiagi-deMarval, Marcia; de Oliveira, Selma S; Ceotto, Hilana; dos Santos, Kátia Regina N; Bastos, Maria do Carmo de F

    2005-09-01

    Among 363 strains of Staphylococcus aureus, 21 were shown to produce bacteriocins (Bac), antimicrobial peptides with potential biotechnological applications. This collection includes strains which are either isolated from food, patients and healthy cattle, or are involved in subclinical bovine mastitis. From these 21 strains, 17 were shown to carry closely-related 8.0-kb Bac plasmids encoding bacteriocins either identical to or similar to aureocin A70, a bacteriocin able to inhibit strains of Listeria monocytogenes, a food-borne pathogen. Such findings prompted us to investigate the genetic relationships among these Bac+ strains. To obtain more discriminatory results, a combined analysis of AP-PCR, rep-PCR, and a modified PCR technique that we designated SD-PCR was employed. The 17 Bac+ strains harboring 8.0-kb Bac plasmids exhibited seven fingerprint patterns. One such genotype was composed of 8 out of the 11 strains associated with bovine mastitis, which suggests the prevalence of a clone of Bac+ strains involved in this animal infection carrying 8.0-kb Bac plasmids. Our data support the assumption that Bac+ strains of S. aureus carrying genetically related 8.0-kb Bac plasmids do not belong to a single clone. It seems, therefore, that 8.0-kb Bac plasmids have spread horizontally among different S. aureus strains. There also seems to be genetic diversity among the remaining Bac+ strains analyzed. PMID:16171981

  16. Natural plasmids of filamentous fungi.

    PubMed Central

    Griffiths, A J

    1995-01-01

    Among eukaryotes, plasmids have been found in fungi and plants but not in animals. Most plasmids are mitochondrial. In filamentous fungi, plasmids are commonly encountered in isolates from natural populations. Individual populations may show a predominance of one type, but some plasmids have a global distribution, often crossing species boundaries. Surveys have shown that strains can contain more than one type of plasmid and that different types appear to be distributed independently. In crosses, plasmids are generally inherited maternally. Horizontal transmission is by cell contact. Circular plasmids are common only in Neurospora spp., but linear plasmids have been found in many fungi. Circular plasmids have one open reading frame (ORF) coding for a DNA polymerase or a reverse transcriptase. Linear plasmids generally have two ORFs, coding for presumptive DNA and RNA polymerases with amino acid motifs showing homology to viral polymerases. Plasmids often attain a high copy number, in excess of that of mitochondrial DNA. Linear plasmids have a protein attached to their 5' end, and this is presumed to act as a replication primer. Most plasmids are neutral passengers, but several linear plasmids integrate into mitochondrial DNA, causing death of the host culture. Inferred amino acid sequences of linear plasmid ORFs have been used to plot phylogenetic trees, which show a fair concordance with conventional trees. The circular Neurospora plasmids have replication systems that seem to be evolutionary intermediates between the RNA and the DNA worlds. PMID:8531891

  17. Plasmid Capture by the Bacillus thuringiensis Conjugative Plasmid pXO16▿

    PubMed Central

    Timmery, Sophie; Modrie, Pauline; Minet, Olivier; Mahillon, Jacques

    2009-01-01

    Conjugation, mobilization, and retromobilization are three related mechanisms of horizontal gene transfer in bacteria. They have been extensively studied in gram-negative species, where retromobilization, the capture of DNA from a recipient by a donor cell, was shown to result from two successive steps: the transfer of the conjugative plasmid from the donor to the recipient followed by the retrotransfer of the mobilizable plasmid to the donor. This successive model was established for gram-negative bacteria but was lacking experimental data from the gram-positive counterparts. In the present work, the mobilization and retromobilization abilities of the conjugative plasmid pXO16 from Bacillus thuringiensis subsp. israelensis were studied using the mobilizable plasmids pUB110 and pE194 and the “nonmobilizable” element pC194 lacking the mob and oriT features (all from Staphylococcus aureus). Experimental data suggested a successive model, since different retromobilization frequencies were observed between the small plasmids. More importantly, retromobilization was shown to be delayed by 50 and 150 min for pUB110 and pE194, respectively, compared to pXO16 conjugation. Natural liquid foods (cow milk, soy milk, and rice milk) were used to evaluate the putative ecological impact of these transfers. In cow and soy milk, conjugation, mobilization, and retromobilization were shown to occur at frequencies of 8.0 × 10−1, 1.0 × 10−2, and 1.2 × 10−4 transconjugants per recipient, respectively. These data are comparable to those obtained with LB medium and about 10-fold lower than in the case of rice milk. Taken together, these results emphasize the potential role of plasmid capture played by B. thuringiensis in natural environments. PMID:19181805

  18. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  19. Plasmid detection, characterization and ecology

    PubMed Central

    Smalla, Kornelia; Jechalke, Sven; Top, Eva M.

    2015-01-01

    Plasmids are important vehicles for rapid adaptation of bacterial populations to changing environmental conditions. To reduce the cost of plasmid carriage, it is thought that only a fraction of a local population carries plasmids or is permissive to plasmid uptake. Plasmids provide various accessory traits which might be beneficial under particular conditions. The genetic variation generated by plasmid carriage within populations ensures the robustness towards environmental change. Plasmid-mediated gene transfer plays an important role not only in the mobilization and dissemination of antibiotic resistance genes but also in the spread of degradative pathways and pathogenicity determinants of pathogens. Here we summarize the state-of-the-art methods to study the occurrence, abundance and diversity of plasmids in environmental bacteria. Increasingly, cultivation independent total community DNA methods are being used to characterize and quantify the diversity and abundance of plasmids in relation to various biotic and abiotic factors. An improved understanding of the ecology of plasmids and their hosts is crucial in the development of intervention strategies for antibiotic resistance gene spread. We discuss the potentials and limitations of methods used to determine the host range of plasmids as the ecology of plasmids is tightly linked to their hosts. The recent advances in sequencing technologies provide an enormous potential for plasmid classification, diversity and evolution studies but numerous challenges still exist. PMID:26104560

  20. First Complete Genome Sequences of Staphylococcus aureus subsp. aureus Rosenbach 1884 (DSM 20231T), Determined by PacBio Single-Molecule Real-Time Technology

    PubMed Central

    Terabayashi, Yasunobu; Nakano, Kazuma; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2015-01-01

    The first complete genome sequences of Staphylococcus aureus subsp. aureus Rosenbach 1884 strain DSM 20231T, the type strain of the bacterium causing staphylococcal disease, were determined using PacBio RS II. The sequences represent the chromosome (2,755,072 bp long; G+C content, 32.86%) and a plasmid (27,490 bp long; G+C content, 30.69%). PMID:26184947

  1. Nonconjugative Plasmids Encoding Sulfanilamide Resistance

    PubMed Central

    Mitsuhashi, Susumu; Inoue, Kunio; Inoue, Matsuhisa

    1977-01-01

    Nonconjugative plasmids encoding sulfanilamide (Sa) resistance were demonstrated at a high frequency in Shigella and Escherichia coli strains resistant to sulfanilamide. These Sa plasmids were all compatible with the standard plasmids used in compatibility testing. The sizes of seven Sa plasmids were measured by electron microscopy and ranged from 1.79 to 2.08 μm, corresponding to 3.5 to 3.9 megadaltons. Images PMID:334067

  2. Toxin plasmids of Clostridium perfringens.

    PubMed

    Li, Jihong; Adams, Vicki; Bannam, Trudi L; Miyamoto, Kazuaki; Garcia, Jorge P; Uzal, Francisco A; Rood, Julian I; McClane, Bruce A

    2013-06-01

    In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  3. Staphylococcus aureus subsp. anaerobius strain ST1464 genome sequence

    PubMed Central

    Elbir, Haitham; Robert, Catherine; Nguyen, Ti Thien; Gimenez, Grégory; El Sanousi, Sulieman M.; Flock, Jan-Ingmar; Raoult, Didier

    2013-01-01

    Staphylococcus aureus subsp. anaerobius is responsible for Morel's disease in animals and a cause of abscess in humans. It is characterized by a microaerophilic growth, contrary to the other strains of S. aureus. The 2,604,446-bp genome (32.7% GC content) of S. anaerobius ST1464 comprises one chromosome and no plasmids. The chromosome contains 2,660 open reading frames (ORFs), 49 tRNAs and three complete rRNAs, forming one complete operon. The size of ORFs ranges between 100 to 4,600 bp except for two ORFs of 6,417 and 7,173 bp encoding segregation ATPase and non-ribosomal peptide synthase, respectively. The chromosome harbors Staphylococcus phage 2638A genome and incomplete Staphylococcus phage genome PT1028, but no detectable CRISPRS. The antibiotic resistance gene for tetracycline was found although Staphylococcus aureus subsp. anaerobius is susceptible to tetracycline in-vitro. Intact oxygen detoxification genes encode superoxide dismutase and cytochrome quinol oxidase whereas the catalase gene is impaired by a stop codon. Based on the genome, in-silico multilocus sequence typing indicates that S. aureus subsp. anaerobius emerged as a clone separated from all other S. aureus strains, illustrating host-adaptation linked to missing functions. Availability of S. aureus subsp. anaerobius genome could prompt the development of post-genomic tools for its rapid discrimination from S. aureus. PMID:24501641

  4. Determination of aminoglycoside resistance in Staphylococcus aureus by DNA hybridization.

    PubMed Central

    Dickgiesser, N; Kreiswirth, B N

    1986-01-01

    A method is described for identification of the genes conferring aminoglycoside resistance in Staphylococcus aureus by dot-blot and Southern blot techniques. As radioactive probes, fragments of plasmids pAT48, pUBH2, and pH13, carrying the genes for an aminocyclitol-3'-phosphotransferase, an aminocyclitol-4'-adenylyltransferase, and an aminocyclitol-2''-phosphotransferase-aminocyclitol-6'-acetyltransferase, respectively, were used. Images PMID:3729351

  5. Toxin Plasmids of Clostridium perfringens

    PubMed Central

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  6. Conjugative Plasmids of Neisseria gonorrhoeae

    PubMed Central

    Pachulec, Emilia; van der Does, Chris

    2010-01-01

    Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM) determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones) and with and without different tetM determinants (Dutch and American type tetM determinants) have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233) or containing Dutch (pEP5289) or American (pEP5050) type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1α, β, γ, δ and ε subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids conjugated efficiently between

  7. Phenotypic plasticity in bacterial plasmids.

    PubMed Central

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  8. Plasmid acquisition in microgravity

    NASA Technical Reports Server (NTRS)

    Juergensmeyer, Margaret A.; Juergensmeyer, Elizabeth A.; Guikema, James A.

    1995-01-01

    In microgravity, bacteria often show an increased resistance to antibiotics. Bacteria can develop resistance to an antibiotic after transformation, the acquisition of DNA, usually in the form of a plasmid containing a gene for resistance to one or more antibiotics. In order to study the capacity of bacteria to become resistant to antibiotics in microgravity, we have modified the standard protocol for transformation of Escherichia coli for use in the NASA-flight-certified hardware package, The Fluid Processing Apparatus (FPA). Here we report on the ability of E. coli to remain competent for long periods of time at temperatures that are readily available on the Space Shuttle, and present some preliminary flight results.

  9. Evolved plasmid-host interactions reduce plasmid interference cost.

    PubMed

    Yano, Hirokazu; Wegrzyn, Katarznya; Loftie-Eaton, Wesley; Johnson, Jenny; Deckert, Gail E; Rogers, Linda M; Konieczny, Igor; Top, Eva M

    2016-09-01

    Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad-host-range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins. PMID:27121483

  10. Staphylococcus aureus biofilms

    PubMed Central

    Archer, Nathan K; Mazaitis, Mark J; Costerton, J William; Leid, Jeff G; Powers, Mary Elizabeth

    2011-01-01

    Increasing attention has been focused on understanding bacterial biofilms and this growth modality's relation to human disease. In this review we explore the genetic regulation and molecular components involved in biofilm formation and maturation in the context of the Gram-positive cocci, Staphylococcus aureus. In addition, we discuss diseases and host immune responses, along with current therapies associated with S. aureus biofilm infections and prevention strategies. PMID:21921685

  11. Conjugative Transfer in Staphylococcus aureus.

    PubMed

    Halsey, Cortney R; Fey, Paul D

    2016-01-01

    The acquisition of plasmids has led to a significant increase in antimicrobial resistance within the staphylococci. In order to study these plasmids effectively, one must be able move the plasmid DNA into genetically clean backgrounds. While the smaller staphylococcal class I (1-5 kb) and class II (10-30 kb) plasmids are readily transferred using bacteriophage transduction or electroporation, these methods are inefficient at moving the larger class III (30-60 kb) plasmids. This review describes methods to transfer class III plasmids via conjugative mobilization. PMID:26194708

  12. Self-transmissible plasmids in staphylococci that encode resistance to aminoglycosides.

    PubMed Central

    Archer, G L; Johnston, J L

    1983-01-01

    High-level resistance to gentamicin, tobramycin, and kanamycin was transferred between staphylococci of the same and different species by filter mating. Resistance and transfer proficiency were mediated by plasmids ranging from 38 to 54 kilobases in size. All of the plasmids encoded intermediate resistance to amikacin and netilmicin and resistance to ethidium bromide; some encoded beta-lactamase production. None of these plasmids carried resistance to other antibiotics or heavy metals. Transfer of antibiotic resistance occurred by a mechanism similar to that of conjugation, because it was DNase resistant, required cell-to-cell contact, and did not appear to involve phage. The participation of phage in transfer appeared to be unlikely because mijtomicin C-induced lysates of donor isolates did not mediate transfer, filter mating transfer proceeded at high frequency between nonlysogenic donor and recipient cells, and transfer of the aminoglycoside resistance plasmid mobilized the transfer of as many as five additional plasmids. All 17 gentamicin-resistant Staphylococcus aureus and all 6 Staphylococcus epidermidis isolates obtained from an outbreak of staphylococcal infections in a newborn nursery contained conjugative plasmids, as did all 6 gentamicin-resistant S. aureus isolates from bacteremic adults. However, only 3 of 10 gentamicin-resistant S. epidermidis isolates from colonized cardiac surgery patients and 1 of 2 S. epidermidis isolates from patients with prosthetic valve endocarditis transferred gentamicin resistance by filter mating. The recent increase in nosocomial infections caused by gentamicin-resistant staphylococci may be partially explained by the evolution of self-transmissible plasmids in these isolates. Images PMID:6625557

  13. Large plasmids of avian Escherichia coli isolates.

    PubMed

    Doetkott, D M; Nolan, L K; Giddings, C W; Berryhill, D L

    1996-01-01

    The plasmid DNA of 30 Escherichia coli isolates from chickens was extracted and examined using techniques designed to isolate large plasmids. This plasmid DNA was examined for the presence of certain known virulence-related genes including cvaC, traT, and some aerobactin-related sequences. Seventeen of the 30 isolates contained from one to four plasmids greater than 50 kb in size. Eleven of these 17 strains possessed plasmids greater than 100 kb in size. Therefore, E. coli isolates of chickens frequently contain large plasmids, and many of these plasmids are likely to contain virulence-related sequences. PMID:8980827

  14. Plasmid-mediated quinolone resistance

    PubMed Central

    Jacoby, George A.; Strahilevitz, Jacob; Hooper, David C.

    2014-01-01

    Summary Three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998. Plasmid genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC code for proteins of the pentapeptide repeat family that protects DNA gyrase and topoisomerase IV from quinolone inhibition. The qnr genes appear to have been acquired from chromosomal genes in aquatic bacteria, are usually associated with mobilizing or transposable elements on plasmids, and are often incorporated into sul1-type integrons. The second plasmid-mediated mechanism involves acetylation of quinolones with an appropriate amino nitrogen target by a variant of the common aminoglycoside acetyltransferase AAC(6′)-Ib. The third mechanism is enhanced efflux produced by plasmid genes for pumps QepAB and OqxAB. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. The plasmid-mediated mechanisms provide only low-level resistance that by itself does not exceed the clinical breakpoint for susceptibility but nonetheless facilitates selection of higher-level resistance and makes infection by pathogens containing PMQR harder to treat. PMID:25584197

  15. The Staphylococcus aureus proteome.

    PubMed

    Otto, Andreas; van Dijl, Jan Maarten; Hecker, Michael; Becher, Dörte

    2014-03-01

    Staphylococcus aureus is a Gram-positive commensal bacterium that is regarded as a major threat for modern health care systems. This relates both to the ability of S. aureus to overcome antibiotic therapy by developing high-level resistance against multiple antibiotics and this bacterium's extensive arsenal of virulence factors. Understanding the mechanisms of resistance and functional studies on stress and starvation responses are the main goals of proteomics in staphylococcal research. This review high-lights recent advances in gel-based and gel-free proteomics analyses of S. aureus and pinpoints the importance of location-specific proteomics studies targeting the cytosol, the membrane, the cell surface and the extracellular milieu in combination with integrated global proteome studies. Emerging hot topics in staphylococcal proteomics are discussed with special focus on in vivo proteomics, membrane vesicles, biofilm formation and the acquisition of absolute proteome data for systems biological modeling approaches. PMID:24439828

  16. Recurrent Methicillin-Resistant Staphylococcus aureus Cutaneous Abscesses and Selection of Reduced Chlorhexidine Susceptibility during Chlorhexidine Use

    PubMed Central

    Johnson, Ryan C.; Schlett, Carey D.; Crawford, Katrina; Lanier, Jeffrey B.

    2015-01-01

    We describe the selection of reduced chlorhexidine susceptibility during chlorhexidine use in a patient with two episodes of cutaneous USA300 methicillin-resistant Staphylococcus aureus abscess. The second clinical isolate harbors a novel plasmid that encodes the QacA efflux pump. Greater use of chlorhexidine for disease prevention warrants surveillance for resistance. PMID:26292295

  17. Heterologously Expressed Staphylococcus aureus Fibronectin-Binding Proteins Are Sufficient for Invasion of Host Cells

    PubMed Central

    Sinha, Bhanu; Francois, Patrice; Que, Yok-Ai; Hussain, Muzaffar; Heilmann, Christine; Moreillon, Philippe; Lew, Daniel; Krause, Karl-Heinz; Peters, Georg; Herrmann, Mathias

    2000-01-01

    Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin α5β1 (B. Sinha et al., Cell. Microbiol. 1:101–117, 1999). However, it is unknown whether this mechanism is sufficient for S. aureus invasion. To address this question, various S. aureus adhesins (FnBPA, FnBPB, and clumping factor [ClfA]) were expressed in Staphylococcus carnosus and Lactococcus lactis subsp. cremoris. Both noninvasive gram-positive microorganisms are genetically distinct from S. aureus, lack any known S. aureus surface protein, and do not bind fibronectin. Transformants of S. carnosus and L. lactis harboring plasmids coding for various S. aureus surface proteins (FnBPA, FnBPB, and ClfA) functionally expressed adhesins (as determined by bacterial clumping in plasma, specific latex agglutination, Western ligand blotting, and binding to immobilized and soluble fibronectin). FnBPA or FnBPB but not of ClfA conferred invasiveness to S. carnosus and L. lactis. Invasion of 293 cells by transformants was comparable to that of strongly invasive S. aureus strain Cowan 1. Binding of soluble and immobilized fibronectin paralleled invasiveness, demonstrating that the amount of accessible surface FnBPs is rate limiting. Thus, S. aureus FnBPs confer invasiveness to noninvasive, apathogenic gram-positive cocci. Furthermore, FnBP-coated polystyrene beads were internalized by 293 cells, demonstrating that FnBPs are sufficient for invasion of host cells without the need for (S. aureus-specific) coreceptors. PMID:11083807

  18. A plasmid in Legionella pneumophila.

    PubMed Central

    Knudson, G B; Mikesell, P

    1980-01-01

    Sixteen strains from the six serogroups of Legionella pneumophila were examined for the presence of extrachromosomal genetic elements by a modified cleared lysate procedure, dye-buoyant centrifugation, and agarose gel electrophoresis. Two strains, Atlanta-1 and Atlanta-2 from serogroup II, each contained a plasmid of cryptic function with a molecular weight of ca. 30 megadaltons. Images Fig. 1 PMID:7429628

  19. Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis.

    PubMed Central

    Monod, M; Denoya, C; Dubnau, D

    1986-01-01

    We initiated a study of pIM13, a multicopy, macrolide-lincosamide-streptogramin B (MLS) plasmid first isolated from a strain of Bacillus subtilis and described by Mahler and Halvorson (J. Gen. Microbiol. 120:259-263, 1980). The copy number of this plasmid was about 200 in B. subtilis and 30 in Staphylococcus aureus. The MLS resistance determinant of pIM13 was shown to be highly homologous to ermC, an inducible element on the S. aureus plasmid pE194. The product of the pIM13 determinant was similar in size to that of ermC and immunologically cross-reactive with it. The MLS resistance of pIM13 was expressed constitutively. The complete base sequence of pIM13 is presented. The plasmid consisted of 2,246 base pairs and contained two open reading frames that specified products identified in minicell extracts. One was a protein of 16,000 molecular weight, possibly required for replication. The second was the 29,000-molecular-weight MLS resistance methylase. The regulatory region responsible for ermC inducibility was missing from pIM13, explaining its constitutivity. The remainder of the pIM13 MLS determinant was nearly identical to ermC. The ends of the region of homology between pIM13 and pE194 were associated with hyphenated dyad symmetries. A segment partially homologous to one of these termini on pIM13 and also associated with a dyad was found in pUB110 near the end of a region of homology between that plasmid and pBC16. The entire sequence of pIM13 was highly homologous to that of pE5, an inducible MLS resistance plasmid from S. aureus that differs from pIM13 in copy control. Images PMID:3087948

  20. Origin and Evolution of Rickettsial Plasmids

    PubMed Central

    El Karkouri, Khalid; Pontarotti, Pierre; Raoult, Didier; Fournier, Pierre-Edouard

    2016-01-01

    Background Rickettsia species are strictly intracellular bacteria that have undergone a reductive genomic evolution. Despite their allopatric lifestyle, almost half of the 26 currently validated Rickettsia species have plasmids. In order to study the origin, evolutionary history and putative roles of rickettsial plasmids, we investigated the evolutionary processes that have shaped 20 plasmids belonging to 11 species, using comparative genomics and phylogenetic analysis between rickettsial, microbial and non-microbial genomes. Results Plasmids were differentially present among Rickettsia species. The 11 species had 1 to 4 plasmid (s) with a size ranging from 12 kb to 83 kb. We reconstructed pRICO, the last common ancestor of the current rickettsial plasmids. pRICO was vertically inherited mainly from Rickettsia/Orientia chromosomes and diverged vertically into a single or multiple plasmid(s) in each species. These plasmids also underwent a reductive evolution by progressive gene loss, similar to that observed in rickettsial chromosomes, possibly leading to cryptic plasmids or complete plasmid loss. Moreover, rickettsial plasmids exhibited ORFans, recent gene duplications and evidence of horizontal gene transfer events with rickettsial and non-rickettsial genomes mainly from the α/γ-proteobacteria lineages. Genes related to maintenance and plasticity of plasmids, and to adaptation and resistance to stress mostly evolved under vertical and/or horizontal processes. Those involved in nucleotide/carbohydrate transport and metabolism were under the influence of vertical evolution only, whereas genes involved in cell wall/membrane/envelope biogenesis, cycle control, amino acid/lipid/coenzyme and secondary metabolites biosynthesis, transport and metabolism underwent mainly horizontal transfer events. Conclusion Rickettsial plasmids had a complex evolution, starting with a vertical inheritance followed by a reductive evolution associated with increased complexity via

  1. Chromate resistance plasmid in Pseudomonas fluorescens.

    PubMed Central

    Bopp, L H; Chakrabarty, A M; Ehrlich, H L

    1983-01-01

    Chromate resistance of Pseudomonas fluorescens LB300, isolated from chromium-contaminated sediment in the upper Hudson River, was found to be plasmid specified. Loss of the plasmid (pLHB1) by spontaneous segregation or mitomycin C curing resulted in a simultaneous loss of chromate resistance. Subsequent transformation of such strains with purified pLHB1 plasmid DNA resulted in a simultaneous re-acquisition of the chromate resistance phenotype and the plasmid. When pLHB1 was transferred by conjugation to Escherichia coli, the plasmid still conferred chromate resistance. PMID:6309741

  2. Revealing the latent mobilization capability of the staphylococcal bacteriocinogenic plasmid pRJ9.

    PubMed

    Coutinho, Bruna Gonçalves; Coelho, Marcus Lívio Varella; Ceotto, Hilana; Bastos, Maria do Carmo de Freire

    2011-01-01

    Plasmid pRJ9 is a non-self-mobilizable bacteriocinogenic plasmid from Staphylococcus aureus. Despite this feature, DNA sequencing and RT-PCR experiments showed that it presents a Mob region with three genes (mobCAB), transcribed as an operon. In silico analysis of the Mob proteins encoded by pRJ9 showed that they present all the conserved functional features reported until present as being essential for plasmid mobilization. Moreover, they showed a high identity to Mob proteins encoded by mobilizable plasmids from Staphylococcus spp., especially to those encoded by plasmid pRJ6, which presents four mob genes (mobCDAB). A putative oriT region was also found upstream of the pRJ9 mob operon. pRJ9 could only be successfully mobilized by pGO1 when pRJ6 was present in the same strain. Further experiments showed that the pRJ9 oriT can be recognized by the pRJ6 Mob proteins, confirming its functionality. As pRJ9 does not possess a mobD gene while pRJ6 does, the absence of this gene was believed to be responsible for its lack of mobilization. However, conjugation experiments with a donor strain carrying also mobD cloned into an S. aureus vector showed that pRJ9 does not become mobilized even in the presence of the protein MobD encoded by pRJ6. Therefore, the reasons for pRJ9 failure to be mobilized are presently unknown. PMID:22286044

  3. A very early-branching Staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin.

    PubMed

    Holt, Deborah C; Holden, Matthew T G; Tong, Steven Y C; Castillo-Ramirez, Santiago; Clarke, Louise; Quail, Michael A; Currie, Bart J; Parkhill, Julian; Bentley, Stephen D; Feil, Edward J; Giffard, Philip M

    2011-01-01

    Here we discuss the evolution of the northern Australian Staphylococcus aureus isolate MSHR1132 genome. MSHR1132 belongs to the divergent clonal complex 75 lineage. The average nucleotide divergence between orthologous genes in MSHR1132 and typical S. aureus is approximately sevenfold greater than the maximum divergence observed in this species to date. MSHR1132 has a small accessory genome, which includes the well-characterized genomic islands, νSAα and νSaβ, suggesting that these elements were acquired well before the expansion of the typical S. aureus population. Other mobile elements show mosaic structure (the prophage ϕSa3) or evidence of recent acquisition from a typical S. aureus lineage (SCCmec, ICE6013 and plasmid pMSHR1132). There are two differences in gene repertoire compared with typical S. aureus that may be significant clues as to the genetic basis underlying the successful emergence of S. aureus as a pathogen. First, MSHR1132 lacks the genes for production of staphyloxanthin, the carotenoid pigment that confers upon S. aureus its characteristic golden color and protects against oxidative stress. The lack of pigment was demonstrated in 126 of 126 CC75 isolates. Second, a mobile clustered regularly interspaced short palindromic repeat (CRISPR) element is inserted into orfX of MSHR1132. Although common in other staphylococcal species, these elements are very rare within S. aureus and may impact accessory genome acquisition. The CRISPR spacer sequences reveal a history of attempted invasion by known S. aureus mobile elements. There is a case for the creation of a new taxon to accommodate this and related isolates. PMID:21813488

  4. A Very Early-Branching Staphylococcus aureus Lineage Lacking the Carotenoid Pigment Staphyloxanthin

    PubMed Central

    Tong, Steven Y.C.; Castillo-Ramirez, Santiago; Clarke, Louise; Quail, Michael A.; Currie, Bart J.; Parkhill, Julian; Bentley, Stephen D.; Feil, Edward J.; Giffard, Philip M.

    2011-01-01

    Here we discuss the evolution of the northern Australian Staphylococcus aureus isolate MSHR1132 genome. MSHR1132 belongs to the divergent clonal complex 75 lineage. The average nucleotide divergence between orthologous genes in MSHR1132 and typical S. aureus is approximately sevenfold greater than the maximum divergence observed in this species to date. MSHR1132 has a small accessory genome, which includes the well-characterized genomic islands, νSAα and νSaβ, suggesting that these elements were acquired well before the expansion of the typical S. aureus population. Other mobile elements show mosaic structure (the prophage φSa3) or evidence of recent acquisition from a typical S. aureus lineage (SCCmec, ICE6013 and plasmid pMSHR1132). There are two differences in gene repertoire compared with typical S. aureus that may be significant clues as to the genetic basis underlying the successful emergence of S. aureus as a pathogen. First, MSHR1132 lacks the genes for production of staphyloxanthin, the carotenoid pigment that confers upon S. aureus its characteristic golden color and protects against oxidative stress. The lack of pigment was demonstrated in 126 of 126 CC75 isolates. Second, a mobile clustered regularly interspaced short palindromic repeat (CRISPR) element is inserted into orfX of MSHR1132. Although common in other staphylococcal species, these elements are very rare within S. aureus and may impact accessory genome acquisition. The CRISPR spacer sequences reveal a history of attempted invasion by known S. aureus mobile elements. There is a case for the creation of a new taxon to accommodate this and related isolates. PMID:21813488

  5. Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus.

    PubMed

    Scharn, Caitlyn R; Tenover, Fred C; Goering, Richard V

    2013-11-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a well-known public health concern. However, the means by which methicillin resistance genes are transferred among staphylococci in nature remains unknown. Older scientific literature suggests transduction as a means of mecA transfer, but the optimal conditions are reported to require plasmids and potentially a lysogenic phage. These reports preceded discovery of the staphylococcal cassette chromosome mec (SCCmec) elements. We undertook studies to confirm and clarify the conditions promoting transduction of SCCmec in S. aureus populations using well-characterized donor and recipient strains primarily of the USA300 lineage. Both bacteriophages 80α and 29 were capable of transducing SCCmec type IV and SCCmec type I to recipient strains of S. aureus. Pulsed-field gel electrophoresis and mec-associated dru typing were used to confirm the identity of the transductants. Transfer of mecA via transduction occurred at low frequency and required extended selection times for mecA gene expression and the presence of a penicillinase plasmid in the recipient. However, interference with the process by clavulanic acid and the necessity of lysogeny with 11 in the recipient or the presence of a small (4-kb) tetracycline resistance plasmid, as previously reported, were not confirmed. SCCmec transduction was occasionally associated with substantial deletions or truncation of SCCmec and the arginine catabolic metabolic element in USA300 recipients. Overall, these data clarify the conditions required for SCCmec transduction and document that rearrangements may occur during the process. PMID:23939891

  6. Bacterial Plasmids in Antarctic Natural Microbial Assemblages

    PubMed Central

    Kobori, Hiromi; Sullivan, Cornelius W.; Shizuya, Hiroaki

    1984-01-01

    Samples of psychrophilic and psychrotrophic bacteria were collected from sea ice, seawater, sediments, and benthic or ice-associated animals in McMurdo Sound, Antarctica. A total of 155 strains were isolated and tested for the presence of plasmids by DNA agarose gel electrophoresis. Thirty-one percent of the isolates carried at least one kind of plasmid. Bacterial isolates taken from sediments showed the highest plasmid incidence (42%), and isolates from seawater showed the lowest plasmid incidence (20%). Plasmids were significantly more frequent in the strains which had been first isolated from low-nutrient media (46%) than in the strains which had been isolated from high-nutrient media (25%). Multiple forms of plasmids were observed in two-thirds of the plasmid-carrying strains. A majority of the plasmids detected were estimated to have a mass of 10 megadaltons or less. Among 48 plasmid-carrying strains, 7 showed antibiotic resistance. It is concluded that bacterial plasmids are ubiquitous in natural microbial assemblages of the pristine marine ecosystem of Antarctica. Images PMID:16346621

  7. Virulence Plasmids of Spore-Forming Bacteria.

    PubMed

    Adams, Vicki; Li, Jihong; Wisniewski, Jessica A; Uzal, Francisco A; Moore, Robert J; McClane, Bruce A; Rood, Julian I

    2014-12-01

    Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins. PMID:26104459

  8. Extensive Horizontal Gene Transfer during Staphylococcus aureus Co-colonization In Vivo

    PubMed Central

    McCarthy, Alex J.; Loeffler, Anette; Witney, Adam A.; Gould, Katherine A.; Lloyd, David H.; Lindsay, Jodi A.

    2014-01-01

    Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. PMID:25260585

  9. Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power

    PubMed Central

    de Lencastre, Herminia; Oliveira, Duarte; Tomasz, Alexander

    2009-01-01

    Summary Nothing documents better the spectacular adaptive capacity of Staphylococcus aureus than the response of this important human and animal pathogen to the introduction of antimicrobial agents into the clinical environment. The effectiveness of penicillin introduced in the early 1940s was virtually annulled within a decade due to the plasmid epidemics that spread the ß-lactamase gene through the entire species of S. aureus. In 1960 within one to two years of the introduction of penicillinase resistant ß-lactams (methicillin), methicillin resistant S. aureus (MRSA) strains were identified in clinical specimens. By the 1980s, epidemic clones of MRSA acquired multidrug resistant traits and spread worldwide to become one of the most important causative agents of hospital acquired infections. In the early 2000s, MRSA strains carrying the Tn1546 transposon-based enterococcal vancomycin resistant mechanism were identified in clinical specimens, bringing the specter of a totally resistant bacterial pathogen closer to reality. Then, in the late 1990s, just as effective hygienic and antibiotic use policies managed to bring down the frequency of MRSA in hospitals of several countries, MRSA strains began to show up in the community. PMID:17921044

  10. Electroporation of plasmid DNA to swine muscle.

    PubMed

    Bodles-Brakhop, Angela M; Draghia-Akli, Ruxandra; Broderick, Kate; Khan, Amir S

    2011-01-01

    For plasmid-mediated gene therapy applications, a major limitation to scale up from rodents to large animals is the low expression level of injected plasmid DNA. The electroporation technique, which results in the passage of foreign material through the cell membrane, is one method that has been shown to be effective at improving local plasmid uptake and consequently, expression levels. Previous studies have determined that optimized electroporation parameters (such as electric field intensity, number of pulses, lag time between plasmid injections and electroporations, and optimal plasmid formulation conditions) are dependent on the target muscle type and individual species. Here, we provide a detailed protocol to optimize conditions for the successful intramuscular electroporation of plasmid DNA to swine, a large animal model. Our results suggest that the technique is safe and effective for veterinary applications. Furthermore, these results provide evidence for the feasibility of upcoming human applications. PMID:21194033

  11. Homemade Site Directed Mutagenesis of Whole Plasmids

    PubMed Central

    Laible, Mark; Boonrod, Kajohn

    2009-01-01

    Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensive. Applying this protocol can reduce the total cost of a reaction to an eighth of what it costs using some of the commercial kits. In this video we also comment on critical steps during the process and give detailed instructions on how to design the mutagenic primers. PMID:19488024

  12. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression.

    PubMed

    Gao, Peng; Wang, Yanli; Villanueva, Iván; Ho, Pak Leung; Davies, Julian; Kao, Richard Yi Tsun

    2016-01-01

    As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm. PMID:27625639

  13. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression

    PubMed Central

    Gao, Peng; Wang, Yanli; Villanueva, Iván; Ho, Pak Leung; Davies, Julian; Kao, Richard Yi Tsun

    2016-01-01

    As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm. PMID:27625639

  14. Microwave effects on plasmid DNA

    SciTech Connect

    Sagripanti, J.L.; Swicord, M.L.; Davis, C.C.

    1987-05-01

    The exposure of purified plasmid DNA to microwave radiation at nonthermal levels in the frequency range from 2.00 to 8.75 GHz produces single- and double-strand breaks that are detected by agarose gel electrophoresis. Microwave-induced damage to DNA depends on the presence of small amounts of copper. This effect is dependent upon both the microwave power and the duration of the exposure. Cuprous, but not cupric, ions were able to mimic the effects produced by microwaves on DNA.

  15. Elucidating the Crucial Role of Poly N-Acetylglucosamine from Staphylococcus aureus in Cellular Adhesion and Pathogenesis

    PubMed Central

    Lin, Li Ping; Chong, Kowit yu; Cheng, Ya Wen; Du, Jia Fu; Liu, Shih-Tung

    2015-01-01

    Staphylococcus aureus is an important pathogen that forms biofilms on the surfaces of medical implants. Biofilm formation by S. aureus is associated with the production of poly N-acetylglucosamine (PNAG), also referred to as polysaccharide intercellular adhesin (PIA), which mediates bacterial adhesion, leading to the accumulation of bacteria on solid surfaces. This study shows that the ability of S. aureus SA113 to adhere to nasal epithelial cells is reduced after the deletion of the ica operon, which contains genes encoding PIA/PNAG synthesis. However, this ability is restored after a plasmid carrying the entire ica operon is transformed into the mutant strain, S. aureus SA113Δica, showing that the synthesis of PIA/PNAG is important for adhesion to epithelial cells. Additionally, S. carnosus TM300, which does not produce PIA/PNAG, forms a biofilm and adheres to epithelial cells after the bacteria are transformed with a PIA/PNAG-expressing plasmid, pTXicaADBC. The adhesion of S. carnosus TM300 to epithelial cells is also demonstrated by adding purified exopolysaccharide (EPS), which contains PIA/PNAG, to the bacteria. In addition, using a mouse model, we find that the abscess lesions and bacterial burden in lung tissues is higher in mice infected with S. aureus SA113 than in those infected with the mutant strain, S. aureus SA113Δica. The results indicate that PIA/PNAG promotes the adhesion of S. aureus to human nasal epithelial cells and lung infections in a mouse model. This study elucidates a mechanism that is important to the pathogenesis of S. aureus infections. PMID:25876106

  16. pLS101 plasmid vector

    DOEpatents

    Lacks, S.A.; Balganesh, T.S.

    1985-02-19

    Disclosed is recombinant plasmid pLS101, consisting essentially of a 2.0 Kb ma1M gene fragment ligated to a 4.4 Kb Tcr DNA fragment, which is particularly useful for transforming Gram-positive bacteria. This plasmid contains at least four restriction sites suitable for inserting exogeneous gene sequences. Also disclosed is a method for plasmid isolation by penicillin selection, as well as processes for enrichment of recombinant plasmids in Gram-positive bacterial systems. 5 figs., 2 tabs.

  17. pLS010 plasmid vector

    DOEpatents

    Lacks, Sanford A.; Balganesh, Tanjore S.

    1988-01-01

    Disclosed is recombinant plasmid pLS101, consisting essentially of a 2.0 Kb malM gene fragment ligated to a 4.4 Kb T.sub.c r DNA fragment, which is particularly useful for transforming Gram-positive bacteria. This plasmid contains at least four restriction sites suitable for inserting exogeneous gene sequences. Also disclosed is a method for plasmid isolation by penicillin selection, as well as processes for enrichment of recombinant plasmids in Gram-positive bacterial systems.

  18. Preparation of Saccharomyces cerevisiae expression plasmids.

    PubMed

    Drew, David; Kim, Hyun

    2012-01-01

    Expression plasmids for Saccharomyces cerevisiae offer a wide choice of vector copy number, promoters of varying strength and selection markers. These expression plasmids are usually shuttle vectors that can be propagated both in yeast and bacteria, making them useful in gene cloning. For heterologous production of membrane proteins, we used the green fluorescent protein (GFP) fusion technology which was previously developed in the Escherichia coli system. We designed an expression plasmid carrying an inducible GAL1 promoter, a gene encoding a membrane protein of interest and the GFP-octa-histidine sequence. Here we describe construction of multi-copy yeast expression plasmids by homologous recombination in S. cerevisiae. PMID:22454112

  19. Exotoxins of Staphylococcus aureus

    PubMed Central

    Dinges, Martin M.; Orwin, Paul M.; Schlievert, Patrick M.

    2000-01-01

    This article reviews the literature regarding the structure and function of two types of exotoxins expressed by Staphylococcus aureus, pyrogenic toxin superantigens (PTSAgs) and hemolysins. The molecular basis of PTSAg toxicity is presented in the context of two diseases known to be caused by these exotoxins: toxic shock syndrome and staphylococcal food poisoning. The family of staphylococcal PTSAgs presently includes toxic shock syndrome toxin-1 (TSST-1) and most of the staphylococcal enterotoxins (SEs) (SEA, SEB, SEC, SED, SEE, SEG, and SEH). As the name implies, the PTSAgs are multifunctional proteins that invariably exhibit lethal activity, pyrogenicity, superantigenicity, and the capacity to induce lethal hypersensitivity to endotoxin. Other properties exhibited by one or more staphylococcal PTSAgs include emetic activity (SEs) and penetration across mucosal barriers (TSST-1). A detailed review of the molecular mechanisms underlying the toxicity of the staphylococcal hemolysins is also presented. PMID:10627489

  20. Incompatibility of Lactobacillus Vectors with Replicons Derived from Small Cryptic Lactobacillus Plasmids and Segregational Instability of the Introduced Vectors

    PubMed Central

    Posno, M.; Leer, R. J.; van Luijk, N.; van Giezen, M. J. F.; Heuvelmans, P. T. H. M.; Lokman, B. C.; Pouwels, P. H.

    1991-01-01

    Three new Lactobacillus vectors based on cryptic Lactobacillus plasmids were constructed. The shuttle vector pLP3537 consists of a 2.3-kb plasmid from Lactobacillus pentosus MD353, an erythromycin resistance gene from Staphylococcus aureus plasmid pE194, and pUC19 as a replicon for Escherichia coli. The vectors pLPE317 and pLPE323, which do not contain E. coli sequences, were generated by introducing the erythromycin resistance gene of pE194 into a 1.7- and a 2.3-kb plasmid from L. pentosus MD353, respectively. These vectors and the shuttle vector pLP825 (M. Posno, R. J. Leer, J. M. M. van Rijn, B. C. Lokman, and P. H. Pouwels, p. 397-401, in A. T. Ganesan and J. A. Hoch, ed., Genetics and biotechnology of bacilli, vol. 2, 1988) could be introduced by electroporation into Lactobacillus casei, L. pentosus, L. plantarum, L. acidophilus, L. fermentum, and L. brevis strains with similar efficiencies. Transformation efficiencies were strain dependent and varied from 102 to 107 transformants per μg of DNA. Plasmid DNA analysis of L. pentosus MD353 transformants revealed that the introduction of pLP3537 or pLPE323 was invariably accompanied by loss of the endogenous 2.3-kb plasmid. Remarkably, pLPE317 could only be introduced into an L. pentosus MD353 strain that had been previously cured of its endogenous 1.7-kb plasmid. The curing phenomena are most likely to be explained by the incompatibility of the vectors and resident plasmids. Lactobacillus vectors are generally rapidly lost when cells are cultivated in the absence of selective pressure. However, pLPE323 is stable in three of four Lactobacillus strains tested so far. Images PMID:16348515

  1. Natural plasmid transformation in Escherichia coli.

    PubMed

    Tsen, Suh-Der; Fang, Suh-Sen; Chen, Mei-Jye; Chien, Jun-Yi; Lee, Chih-Chun; Tsen, Darwin Han-Lin

    2002-01-01

    Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli. PMID:12065899

  2. CONSTRUCTION OF PLASMIDS FOR USE IN RISK ASSESSMENT RESEARCH

    EPA Science Inventory

    The report describes a series of selftransmissible and nonselftransmissible (cloning vector) plasmids constructed to compare results from different laboratory tests and plasmid systems. Plasmids were designed to overcome problems of reproducibility, confusion due to use of differ...

  3. Mini-F plasmid genes that couple host cell division to plasmid proliferation.

    PubMed Central

    Ogura, T; Hiraga, S

    1983-01-01

    A mechanism for stable maintenance of plasmids, besides the replication and partition mechanisms, has been found to be specified by genes of a mini-F plasmid. An oriC plasmid carrying both a mini-F segment necessary for partition [coordinates 46.4-49.4 kilobase pairs (kb) on the F map] and another segment (42.9-43.6 kb), designated ccd (coupled cell division), is more stably maintained than are oriC plasmids carrying only the partition segment; the stability is comparable to that of the parental mini-F plasmid. When replication of a plasmid carrying ccd is prevented and the plasmid copy number decreases, to as few as one per cell, host cell division is inhibited, but not increase of turbidity or chromosome replication. Appearance of plasmid-free segregants is therefore effectively prevented under such conditions. Experimental results suggest that reduction of the copy number of plasmids carrying the ccd region causes an inhibition of cell division and that the ccd region can be dissected into two functional regions; one (ccdB) inhibits cell division and the other (ccdA) releases the inhibition. The interplay of the ccdA and ccdB genes promotes stable plasmid maintenance by coupling host cell division to plasmid proliferation. PMID:6308648

  4. Vaccination Against Staphylococcus aureus Pneumonia

    PubMed Central

    Spaulding, Adam R.; Salgado-Pabón, Wilmara; Merriman, Joseph A.; Stach, Christopher S.; Ji, Yinduo; Gillman, Aaron N.; Peterson, Marnie L.; Schlievert, Patrick M.

    2014-01-01

    Background. Staphylococcus aureus causes serious infections in both hospital and community settings. Attempts have been made to prevent human infection through vaccination against bacterial cell-surface antigens; thus far all have failed. Here we show that superantigens and cytolysins, when used in vaccine cocktails, provide protection from S. aureus USA100–USA400 intrapulmonary challenge. Methods. Rabbits were actively vaccinated (wild-type toxins or toxoids) or passively immunized (hyperimmune serum) against combinations of superantigens (toxic shock syndrome toxin 1, enterotoxins B and C, and enterotoxin-like X) and cytolysins (α-, β-, and γ-toxins) and challenged intrapulmonarily with multiple strains of S. aureus, both methicillin-sensitive and methicillin-resistant. Results. Active vaccination against a cocktail containing bacterial cell-surface antigens enhanced disease severity as tested by infective endocarditis. Active vaccination against secreted superantigens and cytolysins resulted in protection of 86 of 88 rabbits when challenged intrapulmonarily with 9 different S. aureus strains, compared to only 1 of 88 nonvaccinated animals. Passive immunization studies demonstrated that production of neutralizing antibodies was an important mechanism of protection. Conclusions. The data suggest that vaccination against bacterial cell-surface antigens increases disease severity, but vaccination against secreted virulence factors provides protection against S. aureus. These results advance our understanding of S. aureus pathogenesis and have important implications in disease prevention. PMID:24357631

  5. Ceftaroline-Heteroresistant Staphylococcus aureus

    PubMed Central

    Saravolatz, Stephanie N.; Martin, Hayley; Pawlak, Joan; Johnson, Leonard B.

    2014-01-01

    Heteroresistance refers to the presence, within a large population of antimicrobial-susceptible microorganisms, of subpopulations with lesser susceptibilities. Ceftaroline is a novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to detect the prevalence of ceftaroline heteroresistance in vitro in a select group of S. aureus strains. There were 57 isolates selected for evaluation, 20 MRSA, 20 vancomycin-intermediate S. aureus (VISA), 7 daptomycin-nonsusceptible S. aureus (DNSSA), 6 linezolid-nonsusceptible S. aureus (LNSSA), and 4 heteroresistant VISA (hVISA) isolates. MICs and minimal bactericidal concentrations were determined using the broth microdilution method according to CLSI guidelines. All of the isolates were analyzed by pulsed-field gel electrophoresis. The staphylococcal cassette chromosome mec element (SCCmec) types were determined by a multiplex PCR. Population analysis profiles (PAPs) were performed to determine heteroresistance for all of the isolates using plates made by adding various amounts of ceftaroline to brain heart infusion agar. The frequencies of resistant subpopulations were 1 in 104 to 105 organisms. We determined that 12 of the 57 (21%) isolates tested were ceftaroline-heteroresistant S. aureus (CHSA). CHSA occurred among strains with reduced susceptibilities to vancomycin, daptomycin, and linezolid but occurred in none of the USA-300 isolates tested. Evaluation of the heteroresistant strains demonstrated that the phenotype was unstable. Further studies are needed to determine whether CHSA has a role in clinical failures and to determine the implications of our study findings. PMID:24637680

  6. Yeast telomere repeat sequence (TRS) improves circular plasmid segregation, and TRS plasmid segregation involves the RAP1 gene product.

    PubMed Central

    Longtine, M S; Enomoto, S; Finstad, S L; Berman, J

    1992-01-01

    Telomere repeat sequences (TRSs) can dramatically improve the segregation of unstable circular autonomously replicating sequence (ARS) plasmids in Saccharomyces cerevisiae. Deletion analysis demonstrated that yeast TRSs, which conform to the general sequence (C(1-3)A)n, are able to stabilize circular ARS plasmids. A number of TRS clones of different primary sequence and C(1-3)A tract length confer the plasmid stabilization phenotype. TRS sequences do not appear to improve plasmid replication efficiency, as determined by plasmid copy number analysis and functional assays for ARS activity. Pedigree analysis confirms that TRS-containing plasmids are missegregated at low frequency and that missegregated TRS-containing plasmids, like ARS plasmids, are preferentially retained by the mother cell. Plasmids stabilized by TRSs have properties that distinguish them from centromere-containing plasmids and 2 microns-based recombinant plasmids. Linear ARS plasmids, which include two TRS tracts at their termini, segregate inefficiently, while circular plasmids with one or two TRS tracts segregate efficiently, suggesting that plasmid topology or TRS accessibility interferes with TRS segregation function on linear plasmids. In strains carrying the temperature-sensitive mutant alleles rap1grc4 and rap1-5, TRS plasmids are not stable at the semipermissive temperature, suggesting that RAP1 protein is involved in TRS plasmid stability. In Schizosaccharomyces pombe, an ARS plasmid was stabilized by the addition of S. pombe telomere sequence, suggesting that the ability to improve the segregation of ARS plasmids is a general property of telomere repeats. PMID:1569937

  7. High-level plasmid-mediated gentamicin resistance and pheromone response of plasmids present in clinical isolates of Enterococcus faecalis.

    PubMed Central

    Shiojima, M; Tomita, H; Tanimoto, K; Fujimoto, S; Ike, Y

    1997-01-01

    Eleven pheromone-responding plasmids encoding erythromycin or gentamicin resistance were isolated from multiresistant clinical Enterococcus faecalis isolates. The plasmids were classified into six types with respect to their pheromone responses. The three erythromycin resistance plasmids responded to different pheromones. Of the eight gentamicin resistance plasmids, four plasmids responded to same pheromone. Southern hybridization studies showed that the genes involved in regulation of the pheromone response were conserved in the drug resistance plasmids. PMID:9056018

  8. Cutaneous Immune Defenses Against Staphylococcus aureus Infections

    PubMed Central

    Choi, Ji Hae; Seo, Ho Seong; Lim, Sang Young; Park, Kyungho

    2014-01-01

    Staphylococcus aureus (S. aureus) is a virulent bacterium that abundantly colonizes inflammatory skin diseases. Since S. aureus infections occur in an impaired skin barrier, it is important to understand the protective mechanism through cutaneous immune responses against S. aureus infections and the interaction with Staphylococcal virulence factors. In this review, we summarize not only the pathogenesis and key elements of S. aureus skin infections, but also the cutaneous immune system against its infections and colonization. The information obtained from this area may provide the groundwork for further immunomodulatory therapies or vaccination strategies to prevent S. aureus infections. PMID:26064853

  9. PlasmID: a centralized repository for plasmid clone information and distribution

    PubMed Central

    Zuo, Dongmei; Mohr, Stephanie E.; Hu, Yanhui; Taycher, Elena; Rolfs, Andreas; Kramer, Jason; Williamson, Janice; LaBaer, Joshua

    2007-01-01

    The Plasmid Information Database (PlasmID; ) was developed as a community-based resource portal to facilitate search and request of plasmid clones shared with the Dana-Farber/Harvard Cancer Center (DF/HCC) DNA Resource Core. PlasmID serves as a central data repository and enables researchers to search the collection online using common gene names and identifiers, keywords, vector features, author names and PubMed IDs. As of October 2006, the repository contains >46 000 plasmids in 98 different vectors, including cloned cDNA and genomic fragments from 26 different species. Moreover, the clones include plasmid vectors useful for routine and cutting-edge techniques; functionally related sets of human cDNA clones; and genome-scale gene collections for Saccharomyces cerevisiae, Pseudomonas aeruginosa, Yersinia pestis, Francisella tularensis, Bacillus anthracis and Vibrio cholerae. Information about the plasmids has been fully annotated in adherence with a high-quality standard, and clone samples are stored as glycerol stocks in a state-of-the-art automated −80°C freezer storage system. Clone replication and distribution is highly automated to minimize human error. Infor-mation about vectors and plasmid clones, including downloadable maps and sequence data, is freely available online. Researchers interested in requesting clone samples or sharing their own plasmids with the repository can visit the PlasmID website for more information. PMID:17132831

  10. Generalized Transduction of Small Yersinia enterocolitica Plasmids

    PubMed Central

    Hertwig, Stefan; Popp, Andreas; Freytag, Barbara; Lurz, Rudi; Appel, Bernd

    1999-01-01

    To study phage-mediated gene transfer in Yersinia, the ability of Yersinia phages to transduce naturally occurring plasmids was investigated. The transduction experiments were performed with a temperate phage isolated from a pathogenic Yersinia enterocolitica strain and phage mixtures isolated from sewage. Small plasmids (4.3 and 5.8 kb) were transduced at a frequency of 10−5 to 10−7/PFU. However, we could not detect the transduction of any indigenous virulence plasmid (ca. 72 kb) in pathogenic Yersinia strains. Transductants obtained by infection with the temperate phage were lysogenic and harbored the phage genome in their chromosomes. PMID:10473387

  11. [Vancomycin-resistant Staphylococcus aureus].

    PubMed

    Rodríguez, Carlos Andrés; Vesga, Omar

    2005-12-01

    The evolution and molecular mechanisms of vancomycin resistance in Staphylococcus aureus were reviewed. Case reports and research studies on biochemestry, electron microscopy and molecular biology of Staphylococcus aureus were selected from Medline database and summarized in the following review. After almost 40 years of successful treatment of S. aureus with vancomycin, several cases of clinical failures have been reported (since 1997). S. aureus strains have appeared with intermediate susceptibility (MIC 8-16 microg/ml), as well as strains with heterogeneous resistance (global MIC < or =4 microg/ml), but with subpopulations of intermediate susceptibility. In these cases, resistance is mediated by cell wall thickening with reduced cross linking. This traps the antibiotic before it reaches its major target, the murein monomers in the cell membrane. In 2002, a total vancomycin resistant strain (MIC > or =32 microg/ml) was reported with vanA genes from Enterococcus spp. These genes induce the change of D-Ala-D-Ala terminus for D-Ala-D-lactate in the cell wall precursors, leading to loss of affinity for glycopeptides. Vancomycin resistance in S. aureus has appeared; it is mediated by cell wall modifications that trap the antibiotic before it reaches its action site. In strains with total resistance, Enterococcus spp. genes have been acquired that lead to modification of the glycopeptide target. PMID:16433184

  12. Multiply antibiotic-resistant Staphylococcus aureus: introduction, transmission, and evolution of nosocomial infection.

    PubMed

    Locksley, R M; Cohen, M L; Quinn, T C; Tompkins, L S; Coyle, M B; Kirihara, J M; Counts, G W

    1982-09-01

    A burn patient with a multiply antibiotic-resistant Staphylococcus aureus infection was transferred to Harborview Medical Center from a burn unit in another state. Despite standard wound precautions, transmission to 34 patients occurred during the subsequent 15 months. Twenty-seven of the patients were infected. Disease included pneumonia, empyema, bacteremia, endocarditis, osteomyelitis, and burn and wound infections. Seventeen of the 34 patients died. Phage typing and plasmid analysis showed the spread of multiply resistant S. aureus from the burn unit to the surgical intensive care unit where a study evaluating the use of chloramphenicol in cases of bowel sepsis was in progress. During this period the organism became resistant to chloramphenicol by acquiring either of two chloramphenicol R-plasmids. Using plasmid profiles and antibiograms, four epidemic strains were identified that assisted in identifying patient and personnel reservoirs. The outbreak was controlled only after rifampin was added to vancomycin treatment of infected patients, which correlated with eradication of the carrier state. PMID:7114628

  13. Molecular characterization of a new efficiently transducing bacteriophage identified in meticillin-resistant Staphylococcus aureus.

    PubMed

    Varga, Marian; Pantůček, Roman; Růžičková, Vladislava; Doškař, Jirˇí

    2016-01-01

    In Staphylococcus aureus, generalized transduction mediated by temperate bacteriophages represents a highly efficient way of transferring antibiotic resistance genes between strains. In the present study, we identified and characterized in detail a new efficiently transducing bacteriophage of the family Siphoviridae, designated ϕJB, which resides as a prophage in the meticillin-resistant S. aureus (MRSA) strain Jevons B. Whole-genome sequencing followed by detailed in silico analysis uncovered a linear dsDNA genome consisting of 43 ,12 bp and comprising 70 ORFs, of which ∼40 encoded proteins with unknown function. A global genome alignment of ϕJB and other efficiently transducing phages ϕ11, ϕ53, ϕ80, ϕ80α and ϕNM4 showed a high degree of homology with ϕNM4 and substantial differences with regard to other phages. Using a model transduction system with a well-defined donor and recipient, ϕJB transferred the tetracycline resistance plasmid pT181 and a penicillinase plasmid with outstanding frequencies, beating most of the above-mentioned phages by an order of magnitude. Moreover, ϕJB demonstrated high frequencies of transferring antibiotic resistance plasmids even upon induction from a lysogenic donor strain. Considering such transducing potential, ϕJB and related bacteriophages may serve as a suitable tool for elucidating the nature of transduction and its contribution to the spread of antibiotic resistance genes in naturally occurring MRSA populations. PMID:26537974

  14. Plasmids as Tools for Containment.

    PubMed

    García, José L; Díaz, Eduardo

    2014-10-01

    Active containment systems are a major tool for reducing the uncertainty associated with the introduction of monocultures, genetically engineered or not, into target habitats for a large number of biotechnological applications (e.g., bioremediation, bioleaching, biopesticides, biofuels, biotransformations, live vaccines, etc.). While biological containment reduces the survival of the introduced organism outside the target habitat and/or upon completion of the projected task, gene containment strategies reduce the lateral spread of the key genetic determinants to indigenous microorganisms. In fundamental research, suicide circuits become relevant tools to address the role of gene transfer, mainly plasmid transfer, in evolution and how this transfer contributes to genome plasticity and to the rapid adaptation of microbial communities to environmental changes. Many lethal functions and regulatory circuits have been used and combined to design efficient containment systems. As many new genomes are being sequenced, novel lethal genes and regulatory elements are available, e.g., new toxin-antitoxin modules, and they could be used to increase further the current containment efficiencies and to expand containment to other organisms. Although the current containment systems can increase the predictability of genetically modified organisms in the environment, containment will never be absolute, due to the existence of mutations that lead to the appearance of surviving subpopulations. In this sense, orthogonal systems (xenobiology) appear to be the solution for setting a functional genetic firewall that will allow absolute containment of recombinant organisms. PMID:26104372

  15. Topological Behavior of Plasmid DNA

    PubMed Central

    Higgins, N. Patrick; Vologodskii, Alexander V.

    2015-01-01

    The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells. PMID:26104708

  16. Plasmid DNA fermentation strategies: influence on plasmid stability and cell physiology.

    PubMed

    Silva, Filomena; Queiroz, João A; Domingues, Fernanda C

    2012-03-01

    In order to provide sufficient pharmaceutical-grade plasmid DNA material, it is essential to gain a comprehensive knowledge of the bioprocesses involved; so, the development of protocols and techniques that allow a fast monitoring of process performance is a valuable tool for bioprocess design. Regarding plasmid DNA production, the metabolic stress of the host strain as well as plasmid stability have been identified as two of the key parameters that greatly influence plasmid DNA yields. The present work describes the impact of batch and fed-batch fermentations using different C/N ratios and different feeding profiles on cell physiology and plasmid stability, investigating the potential of these two monitoring techniques as valuable tools for bioprocess development and design. The results obtained in batch fermentations showed that plasmid copy number values suffered a pronounced increase at the end of almost all fermentation conditions tested. Regarding fed-batch fermentations, the strategies with exponential feeding profiles, in contrast with those with constant feeding, showed higher biomass and plasmid yields, the maximum values obtained for these two parameters being 95.64 OD(600) and 344.3 mg plasmid DNA (pDNA)/L, respectively, when using an exponential feed rate of 0.2 h(-1). Despite the results obtained, cell physiology and plasmid stability monitoring revealed that, although higher pDNA overall yields were obtained, this fermentation exhibited lower plasmid stability and percentage of viable cells. In conclusion, this study allowed clarifying the bioprocess performance based on cell physiology and plasmid stability assessment, allowing improvement of the overall process and not only plasmid DNA yield and cell growth. PMID:22089386

  17. SIMPLAS: A Simulation of Bacterial Plasmid Maintenance.

    ERIC Educational Resources Information Center

    Dunn, A.; And Others

    1988-01-01

    This article describes a computer simulation of bacterial physiology during growth in a chemostat. The program was designed to help students to appreciate and understand the related effects of parameters which influence plasmid persistence in bacterial populations. (CW)

  18. Expression Plasmids for Use in Candida glabrata

    PubMed Central

    Zordan, Rebecca E.; Ren, Yuxia; Pan, Shih-Jung; Rotondo, Giuseppe; Peñas, Alejandro De Las; Iluore, Joseph; Cormack, Brendan P.

    2013-01-01

    We describe a series of CEN/ARS episomal plasmids containing different Candida glabrata promoters, allowing for a range of constitutive or regulated expression of proteins in C. glabrata. The set of promoters includes three constitutive promoters (EGD2pr, HHT2pr, PDC1pr), two macrophage/phagocytosis-induced promoters (ACO2pr, LYS21pr), and one nutritionally regulated promoter (MET3pr). Each promoter was cloned into two plasmid backbones that differ in their selectable marker, URA3, or the dominant-selectable NAT1 gene, which confers resistance to the drug nourseothricin. Expression from the 12 resulting plasmids was assessed using GFP as a reporter and flow cytometry or quantitative reverse-transcription polymerase chain reaction to assess expression levels. Together this set of plasmids expands the toolkit of expression vectors available for use with C. glabrata. PMID:23934995

  19. Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence.

    PubMed Central

    Sansonetti, P J; Kopecko, D J; Formal, S B

    1981-01-01

    Virulent form I Shigella sonnei strains contain a 120-megadalton plasmid that is absent in their form II derivatives, which are always avirulent and devoid of O side chains. In the present study, 165 biochemical and antibiotic traits were assessed, but no experimentally useful phenotype could be associated with this large form I plasmid. Therefore, the form I plasmids of several S. sonnei strains were tagged with the antibiotic resistance transposons Tn3, Tn5, or Tn10. Transposon-tagged form I plasmids were not self-transmissible, but could be mobilized by the plasmid R386. Form II S. sonnei transconjugants for the form I plasmid acquired both virulence and the ability to synthesize form I antigen, establishing that these properties are plasmid mediated. Further studies indicate that this 120-megadalton form I plasmid is physically unstable in any of several host bacteria and suggest that it is a member of the FI incompatibility group. Also, two commonly observed, small plasmids of S. sonnei, of 3.2 and 3.9 megadaltons, were shown to encode either colicin E1 production or resistance to streptomycin and sulfonamide, respectively. Images PMID:6271687

  20. Denitrification by Alcaligenes eutrophus is plasmid dependent.

    PubMed Central

    Römermann, D; Friedrich, B

    1985-01-01

    Curing of the hydrogenase-specifying megaplasmid pHG indigenous to strains of the facultative lithoautotrophic bacterium Alcaligenes eutrophus was correlated with a loss of denitrifying ability (Nitd). The retransfer of plasmid pHG1 reconstituted the Nitd phenotype. Plasmid-free mutants were still capable of converting some nitrate to nitrite, but they did not metabolize nitrite under anaerobic conditions. PMID:3886640

  1. Experimental Staphylococcus aureus brain abscess.

    PubMed

    Enzmann, D R; Britt, R R; Obana, W G; Stuart, J; Murphy-Irwin, K

    1986-01-01

    The virulent organism Staphylococcus aureus produced brain abscesses that were quantitatively and qualitatively different from those caused by less virulent organisms. S. aureus abscesses created larger lesions, as earlier ependymitis, delayed progress toward healing, and caused areas of inflammatory escape outside the collagen capsule. Imaging tests revealed similar findings: the abscesses were larger, had more extensive central necrosis, and showed earlier evidence of ependymitis. This virulent organism also demonstrated that white matter is more susceptible than overlying gray matter to destruction by infection. The pattern of spread and other histologic findings suggest that collagen capsule formation has less of an infection "containment" function than was previously thought. PMID:3085444

  2. [Protein toxins of Staphylococcus aureus].

    PubMed

    Shamsutdinov, A F; Tiurin, Iu A

    2014-01-01

    Main scientific-research studies regarding protein bacterial toxins of the most widespread bacteria that belong to Staphylococcus spp. genus and in particular the most pathogenic species for humans--Staphylococcus aureus, are analyzed. Structural and biological properties of protein toxins that have received the name of staphylococcus pyrogenic toxins (PTSAg) are presented. Data regarding genetic regulation of secretion and synthesis of these toxins and 3 main regulatory genetic systems (agr--accessory gene regulator, xpr--extracellular protein regulator, sar--staphylococcal accessory regulator) that coordinate synthesis of the most important protein toxins and enzymes for virulence of S. aureus, are presented. PMID:25051707

  3. Multidrug Efflux Pumps in Staphylococcus aureus: an Update

    PubMed Central

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions. PMID:23569469

  4. Clostridium perfringens type A–E toxin plasmids

    PubMed Central

    Freedman, John C.; Theoret, James R.; Wisniewski, Jessica A.; Uzal, Francisco A.; Rood, Julian I.; McClane, Bruce A.

    2014-01-01

    Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell. PMID:25283728

  5. Engineering large functional plasmids for biosafety.

    PubMed

    Cangelosi, Chris; Shank, Caroline; Santiago, Clayton; Wilson, James W

    2013-11-01

    Large bacterial plasmid constructs (generally 25-100 kb, but can be greater), such as those engineered with DNA encoding specific functions such as protein secretion or specialized metabolism, can carry antibiotic resistance genes and/or conjugation systems that typically must be removed before use in medical or environmental settings due to biosafety concerns. However, a convenient in vivo recombineering approach for intact large plasmids to sequentially remove multiple different genes using non-antibiotic selection methods is not described in the literature to our knowledge. We developed strategies and reagents for convenient removal of antibiotic resistance markers and conjugation genes while retaining non-antibiotic-based plasmid selection to increase practical utility of large engineered plasmids. This approach utilizes targeted lambda Red recombination of PCR products encoding the trpE and asd genes and as well as FLP/FRT-mediated marker removal. This is particularly important given that use of restriction enzymes with plasmids of this size is extremely problematic and often not feasible. This report provides the first example of the trpE gene/tryptophan prototrophy being used for recombineering selection. We applied this strategy to the plasmids R995+SPI-1 and R995+SPI-2 which encode cloned type III secretion systems to allow protein secretion and substrate delivery to eukaryotic cells. The resulting constructs are functional, stably maintained under conditions where the original constructs are unstable, completely defective for conjugative transfer, and transferred via electroporation. PMID:24055203

  6. Immobilization of plasmid DNA in bacterial ghosts.

    PubMed

    Mayrhofer, Peter; Tabrizi, Chakameh Azimpour; Walcher, Petra; Haidinger, Wolfgang; Jechlinger, Wolfgang; Lubitz, Werner

    2005-02-16

    The development of novel delivery vehicles is crucial for the improvement of DNA vaccine efficiency. In this report, we describe a new platform technology, which is based on the immobilization of plasmid DNA in the cytoplasmic membrane of a bacterial carrier. This technology retains plasmid DNA (Self-Immobilizing Plasmid, pSIP) in the host envelope complex due to a specific protein/DNA interaction during and after protein E-mediated lysis. The resulting bacterial ghosts (empty bacterial envelopes) loaded with pDNA were analyzed in detail by real time PCR assays. We could verify that pSIP plasmids were retained in the pellets of lysed Escherichia coli cultures indicating that they are efficiently anchored in the inner membrane of bacterial ghosts. In contrast, a high percentage of control plasmids that lack essential features of the self-immobilization system were expelled in the culture broth during the lysis process. We believe that the combination of this plasmid immobilization procedure and the protein E-mediated lysis technology represents an efficient in vivo technique for the production of non-living DNA carrier vehicles. In conclusion, we present a "self-loading", non-living bacterial DNA delivery vector for vaccination endowed with intrinsic adjuvant properties of the Gram-negative bacterial cell envelope. PMID:15681093

  7. Mobilization of Genomic Islands of Staphylococcus aureus by Temperate Bacteriophage

    PubMed Central

    Moon, Bo Youn; Park, Joo Youn; Robinson, D. Ashley; Thomas, Jonathan C.; Park, Yong Ho; Thornton, Justin A.; Seo, Keun Seok

    2016-01-01

    The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus. PMID:26953931

  8. Curing Both Virulent Mega-Plasmids from Bacillus anthracis Wild-Type Strain A16 Simultaneously Using Plasmid Incompatibility.

    PubMed

    Wang, Dongshu; Gao, Zhiqi; Wang, Huagui; Feng, Erling; Zhu, Li; Liu, Xiankai; Wang, Hengliang

    2015-10-28

    Plasmid-cured derivative strains of Bacillus anthracis are frequently used in laboratory studies. Plasmid incompatibility, which does not increase the risk of chromosomal mutation, is a useful method for plasmid curing. However, in bacteria containing multiple plasmids, it often requires the sequential introduction of multiple, specific incompatibility plasmids. This lengthy process renders the traditional plasmid incompatibility method inefficient and mutation-prone. In this study, we successfully cured plasmids pXO1 and pXO2 from B. anthracis A16 simultaneously using only one recombinant incompatible plasmid, pKORT, to obtain a plasmid-free strain, designated A16DD. This method may also be useful for the simultaneous, one-step curing of multiple plasmids from other bacteria, including Bacillus thuringiensis and Yersinia pestis. PMID:26059513

  9. Inducible Escherichia coli fermentation for increased plasmid DNA production.

    PubMed

    Carnes, Aaron E; Hodgson, Clague P; Williams, James A

    2006-11-01

    Bacterial plasmids are the vectors of choice for DNA vaccines and short-term gene therapeutics. Growing plasmid DNA by microbial (Escherichia coli) fermentation is usually combined with alkaline lysis/chromatography methods of purification. To date, typical plasmid fermentation media and processes result in yields of 100-250 mg of plasmid DNA/l of culture medium, using standard high-copy pUC origin-containing plasmids. In order to address this initial and yield-limiting upstream step, we identified novel fermentation control parameters for fed-batch fermentation. The resulting fermentation strategies significantly increased specific plasmid yield with respect to cell mass while enhancing plasmid integrity and maintaining supercoiled DNA content. Fed-batch fermentation yield exceeding 1000 mg of plasmid DNA/l was obtained after reduction of plasmid-mediated metabolic burden during growth, and yields up to 1500 mg of plasmid DNA/l have been achieved with optimized plasmid backbones. Interestingly, by inducing high plasmid levels after sufficient biomass accumulation at low temperature and restricted growth, cells were able to tolerate significantly higher plasmid quantities than cells grown by conventional processes. This 5-10-fold increase in plasmid yield dramatically decreases plasmid manufacturing costs and improves the effectiveness of downstream purification by reducing the fraction of impurities. PMID:16819941

  10. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids

    PubMed Central

    Weaver, Keith E.; Kwong, Stephen M.; Firth, Neville; Francia, Maria Victoria

    2009-01-01

    The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multi-resistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families. PMID:19100285

  11. In vivo visualization of type II plasmid segregation: bacterial actin filaments pushing plasmids

    PubMed Central

    Campbell, Christopher S.; Mullins, R. Dyche

    2007-01-01

    Type II par operons harness polymerization of the dynamically unstable actin-like protein ParM to segregate low-copy plasmids in rod-shaped bacteria. In this study, we use time-lapse fluorescence microscopy to follow plasmid dynamics and ParM assembly in Escherichia coli. Plasmids lacking a par operon undergo confined diffusion with a diffusion constant of 5 × 10−5 μm2/s and a confinement radius of 0.28 μm. Single par-containing plasmids also move diffusively but with a larger diffusion constant (4 × 10−4 μm2/s) and confinement radius (0.42 μm). ParM filaments are dynamically unstable in vivo and form spindles that link pairs of par-containing plasmids and drive them rapidly (3.1 μm/min) toward opposite poles of the cell. After reaching the poles, ParM filaments rapidly and completely depolymerize. After ParM disassembly, segregated plasmids resume diffusive motion, often encountering each other many times and undergoing multiple rounds of ParM-dependent segregation in a single cell cycle. We propose that in addition to driving segregation, the par operon enables plasmids to search space and find sister plasmids more effectively. PMID:18039937

  12. A double outbreak of exfoliative toxin-producing strains of Staphylococcus aureus in a maternity unit.

    PubMed

    Dave, J; Reith, S; Nash, J Q; Marples, R R; Dulake, C

    1994-02-01

    This report describes a double outbreak of staphylococcal scalded skin syndrome (SSSS) in which two distinct tetracycline-resistant strains of Staphylococcus aureus producing different exfoliative toxins were involved. In the first phase the daytime staff of the delivery unit and eczematous skin conditions in midwives were implicated as the probable source. In the second phase a source within a post-natal ward was suggested with local cross-infection. In the final phase both sources were epidemiologically linked to cases of SSSS. Because early discharge was the policy of the unit many cases presented in the community rather than in the hospital. Confirmation of epidemiological findings was provided by additional laboratory studies. Two distinct strains of S. aureus could be defined, differing in phage-typing patterns, the exfoliative toxin produced, plasmid profile, cadmium resistance and bacteriocin production. Strict care in hand washing with a chlorhexidine-containing detergent was an important control measure. PMID:8119349

  13. Complete nucleotide sequence of plasmid pNA6 reveals the high plasticity of IncU family plasmids.

    PubMed

    Dang, Bingjun; Xu, Yan; Mao, Daqing; Luo, Yi

    2016-10-10

    Antibiotic resistance is a serious problem in health care and is of widespread public concern. Conjugative plasmids are the most important vectors in the dissemination of antibiotic resistance genes. In this study, we determined the complete sequence of plasmid pNA6, a plasmid which was isolated from the sediments of Haihe River. This plasmid confers reduced susceptibility to ampicillin, erythromycin and sulfamethoxazole. The complete sequence of plasmid pNA6 was 52,210bp in length with an average G+C content of 52.70%. Plasmid pNA6 belongs to the IncU group by sequence queries against the GenBank database. This plasmid has a typical IncU backbone and shows the highest similarities with plasmid RA3 and plasmid pFBAOT6. Plasmid pNA6 carries a class 1 integron consisting of aacA4, ereA and dfrA1 genes. Moreover, plasmid pNA6 also harbors a blaTEM-1-containing complex structure which inserted into the replication region and maintenance region. This insertion site has never been found on other IncU plasmids. The sequencing of plasmid pNA6 will add new sequence information to IncU family plasmids and enhance our understanding of the plasticity of IncU family plasmids. PMID:27374151

  14. Molecular analysis of Staphylococcus aureus pathogenicity islands (SaPI) and their superantigens combination of food samples.

    PubMed

    Alibayov, Babek; Zdenkova, Kamila; Sykorova, Hana; Demnerova, Katerina

    2014-12-01

    Staphylococcus aureus produces a wide variety of superantigenic activity Staphylococcal enterotoxins (SE) and they are a major cause of food poisoning. These superantigens are associated with mobile genetic elements such as plasmids, prophages and S. aureus pathogenicity islands (SaPI). The presence of well-known eight SaPI integrase and 13 enterotoxin genes (sea, seb, sec, sed, see, seg, seh, sei, sej, sel, sek, seq, and tst) in 93 S. aureus strains were investigated. All S. aureus isolates were characterized by pulsed-field gel electrophoresis (PFGE), and the genes were detected using five sets of multiplex PCR (mPCR). The most predominant toxin genes were sea (19%), seb (15%), sec (54%), sell (48%), selk (46%), selq (52%), seg (22%), and sei (19%). Analysis showed that many S. aureus isolates harbored multiple toxin genes. An mPCR-based assay was developed for the determination of all SaPI and their superantigen gene combinations. Twenty three isolates revealed the gene combination sec, sell and tst, typical of the SaPIbov1 and SaPIn1/m1 pathogenicity islands. Twelve isolates revealed the selk and selq gene combination consistent with SaPI3. Eight isolates exhibited the sec and sell genes without the tst gene typical of SaPImw2. We established a correlation between superantigenic toxin genotypes in S. aureus in terms of combinations of toxin gene-encoding SaPI. These results provide a rapid method for determining superantigenic toxin genotypes in S. aureus strains. A total of 24 PFGE patterns were generated. To our knowledge, this is a first study analyzing the correlation of all known SaPI and their enterotoxins in S. aureus using mPCR. PMID:25447888

  15. Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus

    PubMed Central

    Highlander, Sarah K; Hultén, Kristina G; Qin, Xiang; Jiang, Huaiyang; Yerrapragada, Shailaja; Mason, Edward O; Shang, Yue; Williams, Tiffany M; Fortunov, Régine M; Liu, Yamei; Igboeli, Okezie; Petrosino, Joseph; Tirumalai, Madhan; Uzman, Akif; Fox, George E; Cardenas, Ana Maria; Muzny, Donna M; Hemphill, Lisa; Ding, Yan; Dugan, Shannon; Blyth, Peter R; Buhay, Christian J; Dinh, Huyen H; Hawes, Alicia C; Holder, Michael; Kovar, Christie L; Lee, Sandra L; Liu, Wen; Nazareth, Lynne V; Wang, Qiaoyan; Zhou, Jianling; Kaplan, Sheldon L; Weinstock, George M

    2007-01-01

    Background Community acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear. Results We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified. Conclusion USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens. PMID:17986343

  16. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis.

    PubMed

    Diaz, Lorena; Kiratisin, Pattarachai; Mendes, Rodrigo E; Panesso, Diana; Singh, Kavindra V; Arias, Cesar A

    2012-07-01

    Nonmutational resistance to linezolid is due to the presence of cfr, which encodes a methyltransferase responsible for methylation of A2503 in the 23S rRNA. The cfr gene was first described in animal isolates of staphylococci, and more recently, it has been identified in Staphylococcus aureus from human clinical infections, including in an outbreak of methicillin-resistant S. aureus. In enterococci, cfr has been described in an animal isolate of Enterococcus faecalis from China. Here, we report an isolate of linezolid-resistant E. faecalis (603-50427X) recovered from a patient in Thailand who received prolonged therapy with the antibiotic for the treatment of atypical mycobacterial disease. The isolate lacked mutations in the genes coding for 23S rRNA and L3 and L4 ribosomal proteins and belonged to the multilocus sequence type (MLST) 16 (ST16), which is commonly found in enterococcal isolates from animal sources. Resistance to linezolid was associated with the presence of cfr on an ~97-kb transferable plasmid. The cfr gene environment exhibited DNA sequences similar to those of other cfr-carrying plasmids previously identified in staphylococci (nucleotide identity, 99 to 100%). The cfr-carrying plasmid was transferable by conjugation to a laboratory strain of E. faecalis (OG1RF) but not to Enterococcus faecium or S. aureus. The cfr gene was flanked by IS256-like sequences both upstream and downstream. This is the first characterization of the potential horizontal transferability of the cfr gene from a human linezolid-resistant isolate of E. faecalis. PMID:22491691

  17. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media.

    PubMed

    Lange, Nicole; Steinbüchel, Alexander

    2011-09-01

    A recombinant Saccharomyces cerevisiae strain was used for the production of β-carotene. The episomal plasmid YEplac195YB/I/E was extended by a gene coding for the mevalonate kinase (mvaK1) from Staphylococcus aureus. The adh1 promoter was chosen for constitutive expression of mvaK1. The recombinant strain S. cerevisiae G175 (YEplac-CaroSA) synthesised β-carotene by expressing the carotenogenic genes of Xanthophyllomyces dendrorhous together with the mvaK1 gene. Cells of this strain were investigated for their carotenoid contents in YNB and YPD media. A corresponding mvaK1 transcript in the recombinant yeast host was verified. Growth experiments of a specific erg12 deletion mutant showed that the mevalonate kinase (MvaK1) was able to complement the function of the deleted native mevalonate kinase (Erg12) from S. cerevisiae in the MVA pathway under control of the constitutive adh1 promoter. Cells of S. cerevisiae G175 (YEplac-CaroSA) exhibited high plasmid stability under either selective or non-selective cultivation conditions. Time course experiments demonstrated high plasmid stability even over extended cultivation periods. Carotenoid production was therefore also stable in larger culture volumes. Due to the stability of the plasmid, cultivation of the cells in complex YPD medium was possible, and 14.3 mg β-carotene per litre and a cell density of 9 g cell dry matter (CDM) per litre were achieved. The highest amount of 3,897 μg β-carotene per gramme CDM at a cell density of 1 g CDM per litre was measured after cultivation of the cells in YNB medium with glucose as sole carbon source. PMID:21573686

  18. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication

    PubMed Central

    Carr, Stephen B.; Phillips, Simon E.V.; Thomas, Christopher D.

    2016-01-01

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  19. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication.

    PubMed

    Carr, Stephen B; Phillips, Simon E V; Thomas, Christopher D

    2016-03-18

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  20. BioShuttle-mediated Plasmid Transfer

    PubMed Central

    Braun, Klaus; von Brasch, Leonie; Pipkorn, Ruediger; Ehemann, Volker; Jenne, Juergen; Spring, Herbert; Debus, Juergen; Didinger, Bernd; Rittgen, Werner; Waldeck, Waldemar

    2007-01-01

    An efficient gene transfer into target tissues and cells is needed for safe and effective treatment of genetic diseases like cancer. In this paper, we describe the development of a transport system and show its ability for transporting plasmids. This non-viral peptide-based BioShuttle-mediated transfer system consists of a nuclear localization address sequence realizing the delivery of the plasmid phNIS-IRES-EGFP coding for two independent reporter genes into nuclei of HeLa cells. The quantification of the transfer efficiency was achieved by measurements of the sodium iodide symporter activity. EGFP gene expression was measured with Confocal Laser Scanning Microscopy and quantified with biostatistical methods by analysis of the frequency of the amplitude distribution in the CLSM images. The results demonstrate that the “BioShuttle”-Technology is an appropriate tool for an effective transfer of genetic material carried by a plasmid. PMID:18026568

  1. Plasmid DNA from the acetotrophic methanogen Methanosarcina acetivorans

    SciTech Connect

    Sowers, K.R.; Gunsalus, R.P. )

    1988-10-01

    Nine acetotrophic and three methylotrophic strains of methane-producing bacteria were screened for the presence of plasmid DNA. Plasmids were detected in three marine isolates, including Methanosarcina acetivorans. All three plasmids appeared to be similar based on size and restriction site analyses. The plasmid from M. acetivorans, designated pC2A, was approximately 5.1 kilobase pairs in size and was estimated to be present in a low copy number of six plasmids per genome. Multimers were also observed. A restriction map was constructed. The function of this plasmid is cryptic.

  2. Electrotransfer of Plasmid Vector DNA into Muscle

    NASA Astrophysics Data System (ADS)

    Miyazaki, Satsuki; Miyazaki, Jun-Ichi

    Wolff et al. (1990) first reported that plasmid DNA injected into skeletal muscle is taken up by muscle cells and the genes in the plasmid are expressed for more than two months thereafter, although the transfected DNA does not usually undergo chromosomal integration (Wolff et al., 1991, 1992). However, the relatively low expression levels attained by this method have hampered its applications for uses other than as a DNA vaccine (Davis et al., 1995). There are a number of reports analyzing the conditions that affect the efficiency of gene transfer by intramuscular DNA injection and assessing the fine structures of expression plasmid vectors that may affect expression levels (Davis et al., 1993; Liang et al., 1996; Norman et al., 1997). Furthermore, various attempts were done to improve the efficiency of gene transfer by intramus cular DNA injection. Consequently, regenerating muscle was shown to produce 80-fold or more protein than did normal muscle, following injection of an expression plas-mid. Muscle regeneration was induced by treatment with cardiotoxin or bupivacaine (Wells, 1993; Vitadello et al., 1994). We previously demonstrated that by combining a strong promoter and bupivacaine pretreatment intramuscular injection of an IL-5 expression plasmid results in IL-5 production in muscle at a level sufficient to induce marked proliferation of eosinophils in the bone marrow and eosinophil infiltration of various organs (Tokui et al., 1997). It was also reported that a single intramuscular injection of an erythropoietin expression plasmid produced physiologically significant elevations in serum erythropoietin levels and increased hematocrits in adult mice (Tripathy et al., 1996). Hematocrits in these animals remained elevated at >60% for at least 90 days after a single injection. However, improvements to this method have not been sufficient to extend its applications including clinical use.

  3. Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10.

    PubMed Central

    Hill, K E; Weightman, A J; Fry, J C

    1992-01-01

    This study examined the potential of bacteria from river epilithon to mobilize a recombinant catabolic plasmid, pD10, encoding 3-chlorobenzoate degradation and kanamycin resistance. Fifty-four mobilizing plasmids were exogenously isolated by triparental matings between strains of Pseudomonas putida and epilithic bacteria from the River Taff (South Wales, United Kingdom). Frequencies for mobilization ranged from 1.7 x 10(-8) to 4.5 x 10(-3) per recipient at 20 degrees C. The sizes of the mobilizing plasmids isolated ranged from 40 kb to over 200 kb, and 19 of 54 were found to encode mercury resistance. Plasmid-encoded resistance to tetracycline and streptomycin was also found but not resistance to UV light or various heavy metals. Eight plasmids of epilithic bacteria, analyzed by comparing restriction fragmentation patterns, showed significant differences between those isolated from different independent matings. Optimal temperatures for mobilization of pD10 were between 15 and 25 degrees C. Four mercury resistance plasmids were found to be broad host range, transferring mercury resistance and mobilizing pD10 readily to representative species of beta- and gamma-purple bacteria. In general, frequencies of pD10 mobilization by plasmids of epilithic bacteria were 2 to 3 orders of magnitude lower than conjugal transfer frequencies. Thus, there is a high potential for exchange of recombinant genes introduced into the epilithon by mobilization between a variety of bacterial species. Images PMID:1599248

  4. Spread of Plasmids Carrying Multiple GES Variants.

    PubMed

    Cuzon, Gaelle; Bogaerts, Pierre; Bauraing, Caroline; Huang, Te-Din; Bonnin, Rémy A; Glupczynski, Youri; Naas, Thierry

    2016-08-01

    Five GES-producing Enterobacteriaceae isolates that displayed an extended-spectrum β-lactamase (ESBL) phenotype harbored two GES variants: GES-7 ESBL and GES-6 carbapenemase. In all isolates, the two GES alleles were located on the same integron that was inserted into an 80-kb IncM1 self-conjugative plasmid. Whole-genome sequencing suggested in vivo horizontal gene transfer of the plasmid along with clonal diffusion of Enterobacter cloacae To our knowledge, this is the first description in Europe of clustered Enterobacteriaceae isolates carrying two GES β-lactamases, of which one has extended activity toward carbapenems. PMID:27216071

  5. Evasion of Neutrophil Killing by Staphylococcus aureus.

    PubMed

    McGuinness, Will A; Kobayashi, Scott D; DeLeo, Frank R

    2016-01-01

    Staphylococcus aureus causes many types of infections, ranging from self-resolving skin infections to severe or fatal pneumonia. Human innate immune cells, called polymorphonuclear leukocytes (PMNs or neutrophils), are essential for defense against S. aureus infections. Neutrophils are the most prominent cell type of the innate immune system and are capable of producing non-specific antimicrobial molecules that are effective at eliminating bacteria. Although significant progress has been made over the past few decades, our knowledge of S. aureus-host innate immune system interactions is incomplete. Most notably, S. aureus has the capacity to produce numerous molecules that are directed to protect the bacterium from neutrophils. Here we review in brief the role played by neutrophils in defense against S. aureus infection, and correspondingly, highlight selected S. aureus molecules that target key neutrophil functions. PMID:26999220

  6. Evasion of Neutrophil Killing by Staphylococcus aureus

    PubMed Central

    McGuinness, Will A.; Kobayashi, Scott D.; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus causes many types of infections, ranging from self-resolving skin infections to severe or fatal pneumonia. Human innate immune cells, called polymorphonuclear leukocytes (PMNs or neutrophils), are essential for defense against S. aureus infections. Neutrophils are the most prominent cell type of the innate immune system and are capable of producing non-specific antimicrobial molecules that are effective at eliminating bacteria. Although significant progress has been made over the past few decades, our knowledge of S. aureus-host innate immune system interactions is incomplete. Most notably, S. aureus has the capacity to produce numerous molecules that are directed to protect the bacterium from neutrophils. Here we review in brief the role played by neutrophils in defense against S. aureus infection, and correspondingly, highlight selected S. aureus molecules that target key neutrophil functions. PMID:26999220

  7. Plasmid maintenance and protein overproduction in selective recycle bioreactors.

    PubMed

    Ogden, K L; Davis, R H

    1991-02-20

    A new plasmid construct has been used in conjunction with selective recycle to successfully maintain otherwise unstable plasmid-bearing E. coli cells in a continuous bioreactor and to produce significant amounts of the plasmid-encoded protein beta-lactamase. The plasmid is constructed so that pilin expression, which leads to bacterial flocculation, is under control of the tac operon. The plasmid-bearing cells are induced to flocculate in the separator, whereas cell growth and product synthesis occur in the main fermentation vessel without the inhibiting effects of pilin production. Selective recycle allows for the maintenance of the plasmid-bearing cells by separating flocculent, plasmid-bearing cells from nonflocculent, segregant cells in an inclined settler, and recycling only the plasmid-bearing cells to the reactor. As a result, product expression levels are maintained that are more than ten times the level achieved without selective recycle. All experimental data agree well with theoretical predictions. PMID:18597374

  8. DISTRIBUTION OF PLASMIDS IN GROUNDWATER BACTERIA

    EPA Science Inventory

    Bacteria isolated from groundwater aquifer core materials of pristine aquifers at Lula and Pickett, Oklahoma, and from a site with a history of aromatic hydrocarbon contamination and natural renovation located at Conroe, Texas, were screened for the presence of plasmid Deoxyribon...

  9. DYNAMICS OF PLASMID TRANSFER ON SURFACES

    EPA Science Inventory

    A protocol was developed to study the dynamics of growth and plasmid transfer in surface populations of bacteria. his method allows for quantitative estimates of cell population densities over time, as well as microscopic observations of colony growth and interactions. sing this ...

  10. Immunomodulation and Disease Tolerance to Staphylococcus aureus

    PubMed Central

    Li, Zhigang; Peres, Adam G.; Damian, Andreea C.; Madrenas, Joaquín

    2015-01-01

    The Gram-positive bacterium Staphylococcus aureus is one of the most frequent pathogens that causes severe morbidity and mortality throughout the world. S. aureus can infect skin and soft tissues or become invasive leading to diseases such as pneumonia, endocarditis, sepsis or toxic shock syndrome. In contrast, S. aureus is also a common commensal microbe and is often part of the human nasal microbiome without causing any apparent disease. In this review, we explore the immunomodulation and disease tolerance mechanisms that promote commensalism to S. aureus. PMID:26580658

  11. Mild Staphylococcus aureus Skin Infection Improves the Course of Subsequent Endogenous S. aureus Bacteremia in Mice

    PubMed Central

    van den Berg, Sanne; de Vogel, Corné P.; van Belkum, Alex; Bakker-Woudenberg, Irma A. J. M.

    2015-01-01

    Staphylococcus aureus carriers with S. aureus bacteremia may have a reduced mortality risk compared to non-carriers. A role for the immune system is suggested. Here, we study in mice the effect of mild S. aureus skin infection prior to endogenous or exogenous S. aureus bacteremia, and evaluate protection in relation to anti-staphylococcal antibody levels. Skin infections once or twice by a clinical S. aureus isolate (isolate P) or S. aureus strain 8325-4 were induced in mice free of S. aureus and anti-staphylococcal antibodies. Five weeks later, immunoglobulin G (IgG) levels in blood against 25 S. aureus antigens were determined, and LD50 or LD100 bacteremia caused by S. aureus isolate P was induced. S. aureus skin infections led to elevated levels of anti-staphylococcal IgG in blood. One skin infection improved the course of subsequent severe endogenous bacteremia only. A second skin infection further improved animal survival rate, which was associated with increased pre-bacteremia IgG levels against Efb, IsaA, LukD, LukE, Nuc, PrsA and WTA. In conclusion, S. aureus isolate P skin infection in mice reduces the severity of subsequent endogenous S. aureus bacteremia only. Although cellular immune effects cannot be rules out, anti-staphylococcal IgG against specified antigens may contribute to this effect. PMID:26060995

  12. Plasmid mediated enhancement of uv resistance in Streptococcus faecalis

    SciTech Connect

    Miehl, R.; Miller, M.; Yasbin, R.E.

    1980-01-01

    A 38.5-Mdal plasmid of Streptococcus faecalis subdp. zymogenes has been shown to enhance survival following uv irradiation. In addition, the presence of this plasmid increases the mutation frequencies following uv irradiation and enhanced W-reactivation. The data presented indicate that S. faecalis has an inducible error-prone repair system and that the plasmid enhances these repair functions.

  13. Compositional discordance between prokaryotic plasmids and host chromosomes

    PubMed Central

    van Passel, Mark WJ; Bart, Aldert; Luyf, Angela CM; van Kampen, Antoine HC; van der Ende, Arie

    2006-01-01

    Background Most plasmids depend on the host replication machinery and possess partitioning genes. These properties confine plasmids to a limited range of hosts, yielding a close and presumably stable relationship between plasmid and host. Hence, it is anticipated that due to amelioration the dinucleotide composition of plasmids is similar to that of the genome of their hosts. However, plasmids are also thought to play a major role in horizontal gene transfer and thus are frequently exchanged between hosts, suggesting dinucleotide composition dissimilarity between plasmid and host genome. We compared the dinucleotide composition of a large collection of plasmids with that of their host genomes to shed more light on this enigma. Results The dinucleotide frequency, coined the genome signature, facilitates the identification of putative horizontally transferred DNA in complete genome sequences, since it was found to be typical for a certain genome, and similar between related species. By comparison of the genome signature of 230 plasmid sequences with that of the genome of each respective host, we found that in general the genome signature of plasmids is dissimilar from that of their host genome. Conclusion Our results show that the genome signature of plasmids does not resemble that of their host genome. This indicates either absence of amelioration or a less stable relationship between plasmids and their host. We propose an indiscriminate lifestyle for plasmids preserving the genome signature discordance between these episomes and host chromosomes. PMID:16480495

  14. Triclosan promotes Staphylococcus aureus nasal colonization.

    PubMed

    Syed, Adnan K; Ghosh, Sudeshna; Love, Nancy G; Boles, Blaise R

    2014-01-01

    The biocide triclosan is used in many personal care products, including toothpastes, soaps, clothing, and medical equipment. Consequently, it is present as a contaminant in the environment and has been detected in some human fluids, including serum, urine, and milk. Staphylococcus aureus is an opportunistic pathogen that colonizes the noses and throats of approximately 30% of the population. Colonization with S. aureus is known to be a risk factor for several types of infection. Here we demonstrate that triclosan is commonly found in the nasal secretions of healthy adults and the presence of triclosan trends positively with nasal colonization by S. aureus. We demonstrate that triclosan can promote the binding of S. aureus to host proteins such as collagen, fibronectin, and keratin, as well as inanimate surfaces such as plastic and glass. Lastly, triclosan-exposed rats are more susceptible to nasal colonization with S. aureus. These data reveal a novel factor that influences the ability of S. aureus to bind surfaces and alters S. aureus nasal colonization. IMPORTANCE Triclosan has been used as a biocide for over 40 years, but the broader effects that it has on the human microbiome have not been investigated. We demonstrate that triclosan is present in nasal secretions of a large portion of a test population and its presence correlates with Staphylococcus aureus nasal colonization. Triclosan also promotes the binding of S. aureus to human proteins and increases the susceptibility of rats to nasal colonization by S. aureus. These findings are significant because S. aureus colonization is a known risk factor for the development of several types of infections. Our data demonstrate the unintended consequences of unregulated triclosan use and contribute to the growing body of research demonstrating inadvertent effects of triclosan on the environment and human health. PMID:24713325

  15. Evaluation of Two New Chromogenic Media, CHROMagar MRSA and S. aureus ID, for Identifying Staphylococcus aureus and Screening Methicillin-Resistant S. aureus

    PubMed Central

    Hedin, Göran; Fang, Hong

    2005-01-01

    Thirty-nine methicillin-resistant Staphylococcus aureus (MRSA) isolates with diverse genetic backgrounds and two reference strains were correctly identified as S. aureus on CHROMagar MRSA and S. aureus ID media. Growth inhibition on CHROMagar MRSA was noted. A combination of cefoxitin disk and S. aureus ID was found suitable for rapid MRSA screening. PMID:16081989

  16. A novel positive regulatory element for exfoliative toxin A gene expression in Staphylococcus aureus.

    PubMed

    Sakurai, Susumu; Suzuki, Hitoshi; Hata, Toshiaki; Yoshizawa, Yukio; Nakayama, Ritsuko; Machida, Katsuhiko; Masuda, Shogo; Tsukiyama, Takashi

    2004-04-01

    A 1.4 kb positive regulatory element (ETA(exp)) that controls staphylococcal exfoliative toxin A (sETA) transcription was cloned from Staphylococcus aureus. ETA(exp) is located upstream of the cloned 5.8 kb eta gene (etaJ1) obtained from the chomosomal DNA of S. aureus ZM, the standard ETA-producing strain. The cETA prepared from an Escherichia coli transformant into which the recombinant plasmid petaJ1 (5.8 kb eta/pUC9) had been introduced was expressed at high levels in the culture supernatant and the ammonium-sulfate-precipitated culture supernatant fraction as shown by immunoblotting and the single radial immunodiffusion test. However, cETA produced by the recombinant plasmid petaJ3 containing the 1.7 kb eta sequence (etaJ3) with a 1.45 kb ETA(exp)-deficient eta fragment (1.7 kb eta/pUC9) obtained from the 5.8 kb eta sequence by subcloning was not detected in either the culture supernatant or the ammonium-sulfate-precipitated culture supernatant fraction (167-fold concentrate of the culture supernatant) by immunoblotting or the single radial immunodiffusion test. A large amount of cETA was produced by the 1.7 kb eta sequence when it was linked to ETA(exp) amplified by PCR (1.7 kb eta-ETA(exp)/pUC9), regardless of the orientation of ETA(exp) insertion. Northern blot hybridization showed lower levels of the transcripts of the 1.7 kb eta sequence than of the 5.8 kb eta sequence. The rsETA prepared from an S. aureus transformant into which the recombinant plasmid 3.4 kb eta-ETA(exp)/pYT3 (pYT3-etaJ6) had been introduced was expressed at high levels in the culture supernatant fraction as shown by the latex agglutination test. However, the agglutination titre in the culture supernatant fraction of rsETA produced by the recombinant plasmid (1.7 kb eta/pYT3) containing the 1.7 kb eta sequence carrying the 1.4 kb ETA(exp)-deficient eta fragment (pYT3-etaJ3) was 2500-4000 times lower than that of pYT3-etaJ6. PMID:15073304

  17. Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids.

    PubMed

    Van der Auwera, Géraldine A; Król, Jaroslaw E; Suzuki, Haruo; Foster, Brian; Van Houdt, Rob; Brown, Celeste J; Mergeay, Max; Top, Eva M

    2009-08-01

    The self-transmissible, broad-host-range (BHR) plasmid pMOL98 was previously isolated from polluted soil using a triparental plasmid capture approach and shown to possess a replicon similar to that of the BHR plasmids pSB102 and pIPO2. Here, complete sequence analysis and comparative genomics reveal that the 55.5 kb nucleotide sequence of pMOL98 shows extensive sequence similarity and synteny with the BHR plasmid family that now includes pIPO2, pSB102, pTER331, and pMRAD02. They share a plasmid backbone comprising replication, partitioning and conjugative transfer functions. Comparison of the variable accessory regions of these plasmids shows that the majority of natural transposons, as well as the mini-transposon used to mark the plasmids, are inserted in the parA locus. The transposon unique to pMOL98 appears to have inserted from the chromosome of the recipient strain used in the plasmid capture procedure. This demonstrates the necessity for careful screening of plasmids and host chromosomes to avoid mis-interpretation of plasmid genome content. The presence of very similar BHR plasmids with different accessory genes in geographically distinct locations suggests an important role in horizontal gene exchange and bacterial adaptation for this recently defined plasmid group, which we propose to name "PromA". PMID:19259779

  18. In vitro antibiogram pattern of Staphylococcus aureus isolated from wound infection and molecular analysis of mecA gene and restriction sites in methicillin resistant Staphylococcus aureus

    PubMed Central

    Hemamalini, V.; Kavitha, V.; Ramachandran, Sridhar

    2015-01-01

    Staphylococcus aureus is a common nosocomial pathogen with property to develop resistance to antimicrobial agents. But in the modern era, drug resistance had been developed by microbes due to its continuous usage of antibiotics. This study was carried out to evaluate antibiotic resistant pattern of methicillin resistant Staphylococcus aureus (MRSA) using molecular genotyping. In view of the present problem, the study has been conducted to detect the molecular genotyping of mecA gene from MRSA and confirmation of its restriction sites using EcoRI and BamHI. The pus samples were swabbed out, and clinical strains were isolated using standard microbiological procedures. Then the strains were subjected to in vitro antibiotic susceptibility assay and identified MRSA. Further molecular genotyping of mecA gene was determined by polymerase chain reaction technique. The percentage analysis was done. The clinical strains were isolated from the wound infected patients. A total of 60 samples were collected, of 60 samples, 40 (66.7%) were showed positive to strains of S. aureus. The in vitro antibiotic susceptibility assay was carried to find the drug sensitive and resistant patterns. Further methicillin resistant strains (35%) of S. aureus were screened and subjected to molecular genotyping of mecA gene and was confirmed by restriction digestion. Overall, 70% of plasmids show positive for the presence of mecA gene, although all strains have restriction sites. Hence, the present study revealed that the early detection of antibiotic resistant character using molecular genotyping will help the infected patient to cure short period and will reduce the development of multidrug resistance. PMID:26605158

  19. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences.

    PubMed

    Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando

    2014-12-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  20. Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

    PubMed Central

    Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando

    2014-01-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  1. Gene and cell survival: lessons from prokaryotic plasmid R1.

    PubMed

    de la Cueva-Méndez, Guillermo; Pimentel, Belén

    2007-05-01

    Plasmids are units of extrachromosomal genetic inheritance found in all kingdoms of life. They replicate autonomously and undergo stable propagation in their hosts. Despite their small size, plasmid replication and gene expression constitute a metabolic burden that compromises their stable maintenance in host cells. This pressure has driven the evolution of strategies to increase plasmid stability--a process accelerated by the ability of plasmids to transfer horizontally between cells and to exchange genetic material with their host and other resident episomal DNAs. These abilities drive the adaptability and diversity of plasmids and their host cells. Indeed, survival functions found in plasmids have chromosomal homologues that have an essential role in cellular responses to stress. An analysis of these functions in the prokaryotic plasmid R1, and of their intricate interrelationships, reveals remarkable overall similarities with other gene- and cell-survival strategies found within and beyond the prokaryotic world. PMID:17471262

  2. The 2 micron plasmid purloins the yeast cohesin complex

    PubMed Central

    Mehta, Shwetal; Yang, Xian Mei; Chan, Clarence S.; Dobson, Melanie J.; Jayaram, Makkuni; Velmurugan, Soundarapandian

    2002-01-01

    The yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled. The Rep proteins, acting in concert, recruit the yeast cohesin complex to the STB locus. The periodicity of cohesin association and dissociation is nearly identical for the plasmid and the chromosomes. The timely disassembly of cohesin is a prerequisite for plasmid segregation. Cohesin-mediated pairing and unpairing likely provides a counting mechanism for evenly partitioning plasmids either in association with or independently of the chromosomes. PMID:12177044

  3. Plasmid-associated aggregation in Thermus thermophilus HB8

    SciTech Connect

    Mather, M.W.; Fee, J.A. )

    1990-01-01

    Thermus thermophilus HB8, a moderate thermophile, exhibits visible aggregation when growing on a rich broth. Strain HB8 also contains two cryptic plasmids. The authors isolated cured strains from HB8 and observed that loss of the 47-MDa plasmid was correlated with loss of aggregation. An enrichment procedure was developed for aggregating cells and used to demonstrate that aggregation was restored upon transformation of a cured strain with plasmid DNA. The aggregation phenotype of transformed cells was variably stable; most did not retain either the plasmid or the phenotype for prolonged periods of growth. Hybridization experiments using a partial sequence from the 47-MDa plasmid suggested the presence of a repeated DNA sequence on this plasmid and on the chromosome. This is the first report of a phenotype associated with a plasmid from a Thermus strain.

  4. Selenium nanoparticles inhibit Staphylococcus aureus growth

    PubMed Central

    Tran, Phong A; Webster, Thomas J

    2011-01-01

    Staphylococcus aureus is a key bacterium commonly found in numerous infections. S. aureus infections are difficult to treat due to their biofilm formation and documented antibiotic resistance. While selenium has been used for a wide range of applications including anticancer applications, the effects of selenium nanoparticles on microorganisms remain largely unknown to date. The objective of this in vitro study was thus to examine the growth of S. aureus in the presence of selenium nanoparticles. Results of this study provided the first evidence of strongly inhibited growth of S. aureus in the presence of selenium nanoparticles after 3, 4, and 5 hours at 7.8, 15.5, and 31 μg/mL. The percentage of live bacteria also decreased in the presence of selenium nanoparticles. Therefore, this study suggests that selenium nanoparticles may be used to effectively prevent and treat S. aureus infections and thus should be further studied for such applications. PMID:21845045

  5. The T Cell Response to Staphylococcus aureus

    PubMed Central

    Bröker, Barbara M.; Mrochen, Daniel; Péton, Vincent

    2016-01-01

    Staphylococcus aureus (S. aureus) is a dangerous pathogen and a leading cause of both nosocomial and community acquired bacterial infection worldwide. However, on the other hand, we are all exposed to this bacterium, often within the first hours of life, and usually manage to establish equilibrium and coexist with it. What does the adaptive immune system contribute toward lifelong control of S. aureus? Will it become possible to raise or enhance protective immune memory by vaccination? While in the past the S. aureus-specific antibody response has dominated this discussion, the research community is now coming to appreciate the role that the cellular arm of adaptive immunity, the T cells, plays. There are numerous T cell subsets, each with differing functions, which together have the ability to orchestrate the immune response to S. aureus and hence to tip the balance between protection and pathology. This review summarizes the state of the art in this dynamic field of research. PMID:26999219

  6. Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA

    NASA Astrophysics Data System (ADS)

    Hassani, Leila; Hakimian, Fatemeh; Safaei, Elham; Fazeli, Zahra

    2013-11-01

    Resistance to antibiotics is a public health issue and identification of new antibacterial agents is one of the most important goals of pharmacological research. Among the novel developed antibacterial agents, porphyrin complexes and their derivatives are ideal candidates for use in medical applications. Phthalocyanines differ from porphyrins by having nitrogen atoms link the individual pyrrol units. The aza analogues of the phthalocyanines (azaPcs) such as tetramethylmetalloporphyrazines are heterocyclic Pc analogues. In this investigation, interaction of an anionic phthalocyanine (Cu(PcTs)) and two cationic tetrapyridinoporphyrazines including [Cu(2,3-tmtppa)]4+ and [Cu(3,4-tmtppa)]4+ complexes with plasmid DNA was studied using spectroscopic and gel electrophoresis methods. In addition, antibacterial effect of the complexes against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was investigated using dilution test method. The results indicated that both porphyrazines have significant antibacterial properties, but Cu(PcTs) has weak antibacterial effect. Compairing the binding of the phthalocyanine and the porphyrazines to DNA demonstrated that the interaction of cationic porphyrazines is stronger than the anionic phthalocyanine remarkably. The extent of hypochromicity and red shift of absorption spectra indicated preferential intercalation of the two porphyrazine into the base pairs of DNA helix. Gel electrophoresis result implied Cu(2,3-tmtppa) and Cu(3,4-tmtppa) are able to perform cleavage of the plasmid DNA. Consequently, DNA binding and cleavage might be one of the antibacterial mechanisms of the complexes.

  7. Prevalence of plasmid mediated pesticide resistant bacterial assemblages in crop fields.

    PubMed

    Umamaheswari, S; Murali, M

    2010-11-01

    Three crop fields namely paddy sugarcane and tomato exposed to bavistin [Methyl (1H-benzimidazol-2-yl) carbomate], monocrotophos[Dimethyl(E)-1-methyl-2-(methyl-carbamoyl) vinyl phosphate] and kinado plus [(EZ)-2-chloro-3-dimethoxyphosphinoyloxy-X1, X1-diethylbut-2-enamide], respectively were chosen for the present investigation to know the bacterial population and degradation of pesticides. The chemical nature of the soil and water samples from the pesticide contaminated fields was analysed along with counting of the total heterotrophic bacteria (THB), Staphylococci and Enterococcci population. Mean calcium, phosphate and biological oxygen demand were maximum in tomato field water Field water recorded maximum phophate and silicate content, whereas, sugarcane field water elicited maximum dissolved oxygen content. On the other hand, available phosphate and exchangeable potassium were maximum is sugarcane field soil. Significant variations in the bacterial population were evident between the treatments in sugarcane field soil and tomato field water exposed to monocrotophos and kinado plus, respectively In addition, significant variations between THB, Staphlyococci and Enterococci population were also evinced in both the sugarcane andtomato fields. The dominant pesticide resistant bacteria, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeuroginosa harboured plasmids and the resistant trait observed were found to be plasmid borne. PMID:21506482

  8. Cloning and expression of the phospho-beta-galactosidase gene of Staphylococcus aureus in Escherichia coli.

    PubMed Central

    Breidt, F; Stewart, G C

    1986-01-01

    The phospho-beta-galactosidase gene of Staphylococcus aureus was cloned in Escherichia coli. This was done by first isolating a staphylococcal transposon Tn551-induced mutant which rendered phospho-beta-galactosidase synthesis partially constitutive because of an insertion nearby this lac structural gene. This allowed selection in E. coli of chimeric plasmids which expressed the erythromycin resistance determinant of Tn551. A 26-kilobase (kb) BamHI insert in plasmid pBR322 was isolated which encoded phospho-beta-galactosidase, as determined by phospho-beta-galactosidase activity measurements. Maxicell experiments showed the presence of 56-, 13.5-, and 31-kilodalton proteins encoded by the staphylococcal DNA. The presence of the 56-kilodalton protein correlated with phospho-beta-galactosidase activity and corresponded in molecular weight to the reported value for the purified enzyme. The nature of the other proteins is unknown. Phospho-beta-galactosidase was apparently expressed in E. coli by a promoter contained within a 2.1-kb EcoRI chromosomal DNA fragment. This fragment, when inserted into a chloramphenicol acetyl transferase promoter detection plasmid, was transcriptionally active in both E. coli and Bacillus subtilis but was much more active in the latter host. Images PMID:3011732

  9. Antibiotics, Acne, and Staphylococcus aureus Colonization

    PubMed Central

    Fanelli, Matthew; Kupperman, Eli; Lautenbach, Ebbing; Edelstein, Paul H.; Margolis, David J.

    2011-01-01

    Objectives To determine the frequency of Staphylococcus aureus colonization among patients with acne and to compare the susceptibility patterns between the patients who are using antibiotics and those who are not using antibiotics. Design Survey (cross-sectional) study of patients treated for acne. Setting Dermatology outpatient office practice Participants The study included 83 patients who were undergoing treatment and evaluation for acne. Main Outcome Measure Colonization of the nose or throat with S aureus. Results A total of 36 of the 83 participants (43%) were colonized with S aureus. Two of the 36 patients (6%) had methicillin-resistant S aureus; 20 (56%) had S aureus solely in their throat; 9 (25%) had S aureus solely in their nose; and 7 (19%) had S aureus in both their nose and their throat. When patients with acne who were antibiotic users were compared with nonusers, the prevalence odds ratio for the colonization of S aureus was 0.16 (95% confidence interval [CI], 0.08–1.37) after 1 to 2 months of exposure and increased to 0.52 (95% CI, 0.12–2.17) after 2 months of exposure (P =.31). Many of the S aureus isolates were resistant to treatment with clindamycin and erythromycin (40% and 44%, respectively), particularly the nasal isolates. Very few showed resistance rates (<10%) to treatment with tetracycline antibiotics. Conclusion Unlike current dogma about the long-term use of antimicrobial agents, the prolonged use of tetracycline antibiotics commonly used to treat acne lowered the prevalence of colonization by S aureus and did not increase resistance to the tetracycline antibiotics. PMID:21482860

  10. Functional characteristics of the Staphylococcus aureus δ-toxin allelic variant G10S

    PubMed Central

    Cheung, Gordon Y. C.; Yeh, Anthony J.; Kretschmer, Dorothee; Duong, Anthony C.; Tuffuor, Kwame; Fu, Chih-Lung; Joo, Hwang-Soo; Diep, Binh A.; Li, Min; Nakamura, Yuumi; Nunez, Gabriel; Peschel, Andreas; Otto, Michael

    2015-01-01

    Staphylococcus aureus δ-toxin is a member of the phenol-soluble modulin (PSM) peptide family. PSMs have multiple functions in staphylococcal pathogenesis; for example, they lyse red and white blood cells and trigger inflammatory responses. Compared to other PSMs, δ-toxin is usually more strongly expressed but has only moderate cytolytic capacities. The amino acid sequences of S. aureus PSMs are well conserved with two exceptions, one of which is the δ-toxin allelic variant G10S. This variant is a characteristic of the subspecies S. argenteus and S. aureus sequence types ST1 and ST59, the latter representing the most frequent cause of community-associated infections in Asia. δ-toxin G10S and strains expressing that variant from plasmids or the genome had significantly reduced cytolytic and pro-inflammatory capacities, including in a strain background with pronounced production of other PSMs. However, in murine infection models, isogenic strains expressing the two δ-toxin variants did not cause measurable differences in disease severity. Our findings indicate that the widespread G10S allelic variation of the δ-toxin locus has a significant impact on key pathogenesis mechanisms, but more potent members of the PSM peptide family may overshadow that impact in vivo. PMID:26658455

  11. Plasmid R6K Replication Control

    PubMed Central

    Rakowski, Sheryl A.; Filutowicz, Marcin

    2013-01-01

    The focus of this minireview is the replication control of the 39.9-kb plasmid R6K and its derivatives. Historically, this plasmid was thought to have a narrow host range but more recent findings indicate that its derivatives can replicate in a variety of enteric and non-enteric bacterial species (Wild et al., 2004). In the four-plus decades since it was first described, R6K has proven to be an excellent model for studies of plasmid DNA replication. In part this is because of its similarities to other systems in which replication is activated and regulated by Rep protein and iteron-containing DNA. However its apparent idiosynchracies have also added to its significance (e.g., independent and co-dependent replication origins, and Rep dimers that stably bind iterons). Here, we survey the current state of knowledge regarding R6K replication and place individual regulatory elements into a proposed homeostatic model with implications for the biological significance of R6K and its multiple origins of replication. PMID:23474464

  12. Sequence analysis and characterization of pOM1, a small cryptic plasmid from Butyrivibrio fibrisolvens, and its use in construction of a new family of cloning vectors for Butyrivibrios.

    PubMed Central

    Hefford, M A; Kobayashi, Y; Allard, S E; Forster, R J; Teather, R M

    1997-01-01

    As a preliminary step in the development of vector systems, we have isolated and begun to characterize small, cryptic plasmids from several strains of the rumen bacterium Butyrivibrio fibrisolvens. We present here the complete nucleotide sequence of Butyrivibrio plasmid pOM1, which was isolated from B. fibrisolvens Bu49. While it is very similar in size to the previously characterized Butyrivibrio plasmids pRJF1 and pRJF2, pOM1 exhibits a restriction pattern which is quite distinct. Analysis of sequence data reveals that pOM1 contains only two open reading frames of significant length (ORF1 and ORF2), both of which are required for self-replication and maintenance. The protein encoded in ORF1 shows homologies with Pre (plasmid recombination enzyme) proteins encoded in plasmids from gram-positive organisms such as Staphylococcus aureus, Streptococcus agalactiae, Lactobacillus plantarum, and Bacillus thuringiensis. The putative translation product of ORF2, on the other hand, resembles Rep (replication) proteins of a different group of gram-positive plasmids, for which the Staphylococcus plasmid pSN2 is a prototype. Unlike the other characterized-Butyrivibrio plasmids, pOM1 appears to replicate via a rolling-circle mechanism. Experimental evidence showing the presence of a single-stranded replication intermediate consistent with this mechanism is presented. pOM1 has been used in the construction of a new Escherichia coli-B. fibrisolvens shuttle vector, pSMerm1, which has been successfully used to introduce a cloned gene into B. fibrisolvens harboring the pRJF1 plasmid. PMID:9143105

  13. Linear and Circular Plasmid Content in Borrelia burgdorferi Clinical Isolates

    PubMed Central

    Iyer, Radha; Kalu, Ogori; Purser, Joye; Norris, Steven; Stevenson, Brian; Schwartz, Ira

    2003-01-01

    The genome of Borrelia burgdorferi, the etiologic agent of Lyme disease, is composed of a linear chromosome and more than 20 linear and circular plasmids. Typically, plasmid content analysis has been carried out by pulsed-field gel electrophoresis and confirmed by Southern hybridization. However, multiple plasmids of virtually identical sizes (e.g., lp28 and cp32) complicate the interpretation of such data. The present study was undertaken to investigate the complete plasmid complements of B. burgdorferi clinical isolates cultivated from patients from a single region where early Lyme disease is endemic. A total of 21 isolates obtained from the skin biopsy or blood samples of Lyme disease patients were examined for their complete plasmid complements by Southern hybridization and plasmid-specific PCR analysis. All clinical isolates harbored at least six of the nine previously characterized cp32s. Fourteen isolates harbored all B31-like linear plasmids, and seven isolates simultaneously lacked lp56, lp38, and some segments of lp28-1. The distinctive plasmid profile observed in these seven isolates was specific to organisms that had ribosomal spacer type 2 and pulsed-field gel type A, which implies a clonal origin for this genotype. The presence of nearly identical complements of multiple linear and circular plasmids in all of the human isolates suggests that these plasmids may be particularly necessary for infection, adaptation, and/or maintenance in the infected host. PMID:12819050

  14. Determination of Plasmid Segregational Stability in a Growing Bacterial Population.

    PubMed

    Kramer, M Gabriela

    2016-01-01

    Bacterial plasmids are extensively used as cloning vectors for a number of genes for academic and commercial purposes. Moreover, attenuated bacteria carrying recombinant plasmids expressing genes with anti-tumor activity have shown promising therapeutic results in animal models of cancer. Equitable plasmid distribution between daughter cells during cell division, i.e., plasmid segregational stability, depends on many factors, including the plasmid copy number, its replication mechanism, the levels of recombinant gene expression, the type of bacterial host, and the metabolic burden associated with all these factors. Plasmid vectors usually code for antibiotic-resistant functions, and, in order to enrich the culture with bacteria containing plasmids, antibiotic selective pressure is commonly used to eliminate plasmid-free segregants from the growing population. However, administration of antibiotics can be inconvenient for many industrial and therapeutic applications. Extensive ongoing research is being carried out to develop stably-inherited plasmid vectors. Here, I present an easy and precise method for determining the kinetics of plasmid loss or maintenance for every ten generations of bacterial growth in culture. PMID:26846807

  15. Properties of IncP-2 plasmids of Pseudomonas spp.

    PubMed Central

    Jacoby, G A; Sutton, L; Knobel, L; Mammen, P

    1983-01-01

    Thirty IncP-2 R plasmids from isolates of Pseudomonas spp. of diverse geographical origins were examined for the production of resistance properties. All the plasmids determined resistance to tellurite and all inhibited the propagation of certain DNA phages, although several patterns of phage inhibition were detected. Of the 30 plasmids, 29 determined resistance to streptomycin, 28 determined resistance to mercuric ion, and 24 determined resistance to sulfonamide. Resistance to other antibiotics, to compounds of arsenic, boron, or chromium, and to UV irradiation was less common. The degradative plasmid CAM also belonged to this group. When CAM was introduced into recipients carrying an IncP-2 R plasmid, recombinant plasmids were often formed in which antibiotic resistance and the ability to grow on camphor were transferred together to further recipients or were lost together in a strain in which IncP-2 plasmids were unstable. Such hybrid plasmid formation was rec dependent. CAM and other IncP-2 plasmids that determine UV light resistance demonstrated UV-enhanced, nonpolarized transfer of the Pseudomonas aeruginosa chromosome. By agarose gel electrophoresis, all IncP-2 R plasmids and CAM were ca. 300 X 10(6) in molecular weight. PMID:6638986

  16. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates.

    PubMed

    Johnson, Timothy J; Wannemuehler, Yvonne M; Johnson, Sara J; Logue, Catherine M; White, David G; Doetkott, Curt; Nolan, Lisa K

    2007-03-01

    Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations. PMID:17277222

  17. Characterization of toxin plasmids in Clostridium perfringens type C isolates.

    PubMed

    Gurjar, Abhijit; Li, Jihong; McClane, Bruce A

    2010-11-01

    Clostridium perfringens type C isolates cause enteritis necroticans in humans or necrotizing enteritis and enterotoxemia in domestic animals. Type C isolates always produce alpha toxin and beta toxin but often produce additional toxins, e.g., beta2 toxin or enterotoxin. Since plasmid carriage of toxin-encoding genes has not been systematically investigated for type C isolates, the current study used Southern blot hybridization of pulsed-field gels to test whether several toxin genes are plasmid borne among a collection of type C isolates. Those analyses revealed that the surveyed type C isolates carry their beta toxin-encoding gene (cpb) on plasmids ranging in size from ∼65 to ∼110 kb. When present in these type C isolates, the beta2 toxin gene localized to plasmids distinct from the cpb plasmid. However, some enterotoxin-positive type C isolates appeared to carry their enterotoxin-encoding cpe gene on a cpb plasmid. The tpeL gene encoding the large clostridial cytotoxin was localized to the cpb plasmids of some cpe-negative type C isolates. The cpb plasmids in most surveyed isolates were found to carry both IS1151 sequences and the tcp genes, which can mediate conjugative C. perfringens plasmid transfer. A dcm gene, which is often present near C. perfringens plasmid-borne toxin genes, was identified upstream of the cpb gene in many type C isolates. Overlapping PCR analyses suggested that the toxin-encoding plasmids of the surveyed type C isolates differ from the cpe plasmids of type A isolates. These findings provide new insight into plasmids of proven or potential importance for type C virulence. PMID:20823204

  18. Genomic Analysis of Companion Rabbit Staphylococcus aureus.

    PubMed

    Holmes, Mark A; Harrison, Ewan M; Fisher, Elizabeth A; Graham, Elizabeth M; Parkhill, Julian; Foster, Geoffrey; Paterson, Gavin K

    2016-01-01

    In addition to being an important human pathogen, Staphylococcus aureus is able to cause a variety of infections in numerous other host species. While the S. aureus strains causing infection in several of these hosts have been well characterised, this is not the case for companion rabbits (Oryctolagus cuniculus), where little data are available on S. aureus strains from this host. To address this deficiency we have performed antimicrobial susceptibility testing and genome sequencing on a collection of S. aureus isolates from companion rabbits. The findings show a diverse S. aureus population is able to cause infection in this host, and while antimicrobial resistance was uncommon, the isolates possess a range of known and putative virulence factors consistent with a diverse clinical presentation in companion rabbits including severe abscesses. We additionally show that companion rabbit isolates carry polymorphisms within dltB as described as underlying host-adaption of S. aureus to farmed rabbits. The availability of S. aureus genome sequences from companion rabbits provides an important aid to understanding the pathogenesis of disease in this host and in the clinical management and surveillance of these infections. PMID:26963381

  19. Genomic Analysis of Companion Rabbit Staphylococcus aureus

    PubMed Central

    Holmes, Mark A.; Harrison, Ewan M.; Fisher, Elizabeth A.; Graham, Elizabeth M.; Parkhill, Julian; Foster, Geoffrey; Paterson, Gavin K.

    2016-01-01

    In addition to being an important human pathogen, Staphylococcus aureus is able to cause a variety of infections in numerous other host species. While the S. aureus strains causing infection in several of these hosts have been well characterised, this is not the case for companion rabbits (Oryctolagus cuniculus), where little data are available on S. aureus strains from this host. To address this deficiency we have performed antimicrobial susceptibility testing and genome sequencing on a collection of S. aureus isolates from companion rabbits. The findings show a diverse S. aureus population is able to cause infection in this host, and while antimicrobial resistance was uncommon, the isolates possess a range of known and putative virulence factors consistent with a diverse clinical presentation in companion rabbits including severe abscesses. We additionally show that companion rabbit isolates carry polymorphisms within dltB as described as underlying host-adaption of S. aureus to farmed rabbits. The availability of S. aureus genome sequences from companion rabbits provides an important aid to understanding the pathogenesis of disease in this host and in the clinical management and surveillance of these infections. PMID:26963381

  20. Triclosan Promotes Staphylococcus aureus Nasal Colonization

    PubMed Central

    Syed, Adnan K.; Ghosh, Sudeshna; Love, Nancy G.; Boles, Blaise R.

    2014-01-01

    ABSTRACT The biocide triclosan is used in many personal care products, including toothpastes, soaps, clothing, and medical equipment. Consequently, it is present as a contaminant in the environment and has been detected in some human fluids, including serum, urine, and milk. Staphylococcus aureus is an opportunistic pathogen that colonizes the noses and throats of approximately 30% of the population. Colonization with S. aureus is known to be a risk factor for several types of infection. Here we demonstrate that triclosan is commonly found in the nasal secretions of healthy adults and the presence of triclosan trends positively with nasal colonization by S. aureus. We demonstrate that triclosan can promote the binding of S. aureus to host proteins such as collagen, fibronectin, and keratin, as well as inanimate surfaces such as plastic and glass. Lastly, triclosan-exposed rats are more susceptible to nasal colonization with S. aureus. These data reveal a novel factor that influences the ability of S. aureus to bind surfaces and alters S. aureus nasal colonization. PMID:24713325

  1. Characterization of Plasmid pOR1 from Ornithobacterium rhinotracheale and Construction of a Shuttle Plasmid

    PubMed Central

    Jansen, Ruud; Chansiripornchai, Niwat; Gaastra, Wim; van Putten, Jos P. M.

    2004-01-01

    The bacterium Ornithobacterium rhinotracheale has been recognized as an emerging pathogen in poultry since about 10 years ago. Knowledge of this bacterium and its mechanisms of virulence is still very limited. Here we report the development of a transformation system that enables genetic modification of O. rhinotracheale. The system is based on a cryptic plasmid, pOR1, that was derived from an O. rhinotracheale strain of serotype K. Sequencing indicated that the plasmid consisted of 14,787 nucleotides. Sequence analysis revealed one replication origin and several rep genes that control plasmid replication and copy number, respectively. In addition, pOR1 contains genes with similarity to a heavy-metal-transporting ATPase, a TonB-linked siderophore receptor, and a laccase. Reverse transcription-PCR demonstrated that these genes were transcribed. Other putative open reading frames exhibited similarities with a virulence-associated protein in Actinobacillus actinomycetemcomitans and a number of genes coding for proteins with unknown function. An Escherichia coli-O. rhinotracheale shuttle plasmid (pOREC1) was constructed by cloning the replication origin and rep genes from pOR1 and the cfxA gene from Bacteroides vulgatus, which codes for resistance to the antibiotic cefoxitin, into plasmid pGEM7 by using E. coli as a host. pOREC1 was electroporated into O. rhinotracheale and yielded cefoxitin-resistant transformants. The pOREC1 isolated from these transformants was reintroduced into E. coli, demonstrating that pOREC1 acts as an independent replicon in both E. coli and O. rhinotracheale, fulfilling the criteria for a shuttle plasmid that can be used for transformation, targeted mutagenesis, and the construction of defined attenuated vaccine strains. PMID:15466524

  2. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Staphylococcus aureus serological reagents. 866... Staphylococcus aureus serological reagents. (a) Identification. Staphylococcus aureus serological reagents are... epidemiological information on these diseases. Certain strains of Staphylococcus aureus produce an...

  3. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Staphylococcus aureus serological reagents. 866... Staphylococcus aureus serological reagents. (a) Identification. Staphylococcus aureus serological reagents are... epidemiological information on these diseases. Certain strains of Staphylococcus aureus produce an...

  4. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Staphylococcus aureus serological reagents. 866... Staphylococcus aureus serological reagents. (a) Identification. Staphylococcus aureus serological reagents are... epidemiological information on these diseases. Certain strains of Staphylococcus aureus produce an...

  5. [Staphylococcus aureus and antibiotic resistance].

    PubMed

    Sancak, Banu

    2011-07-01

    After the report of first case of methicillin-resistant Staphylococcus aureus (MRSA) in 1961, MRSA become a major problem worldwide. Over the last decade MRSA strains have emerged as serious pathogens in nosocomial and community settings. Glycopeptides (vancomycin and teicoplanin) are still the current mainstay of therapy for infections caused by MRSA. In the last decade dramatic changes have occurred in the epidemiology of MRSA infections. The isolates with reduced susceptibility and in vitro resistance to vancomycin have emerged. Recently, therapeutic alternatives such as quinupristin/dalfopristin, linezolid, tigecycline and daptomycin have been introduced into clinical practice for treating MRSA infections. Nevertheless, these drugs are only approved for certain indication and resistance has already been reported. In this review, the new information on novel drugs for treating MRSA infections and the resistance mechanisms of these drugs were discussed. PMID:21935792

  6. Construction of scFv that bind both fibronectin-binding protein A and clumping factor A of Stapylococcus aureus.

    PubMed

    Wang, Man; Zhang, Yan; Li, Benqiang; Zhu, Jianguo

    2015-06-01

    Bovine mastitis (BM) causes significant losses to the dairy industry. Vaccines against the causative agent of BM, Staphylococcus aureus, do not confer adequate protection. Because passive immunization with antibodies permits disease prevention, we constructed a recombinant single-chain antibody (scFv) against fibronectin-binding protein A (FnBPA) and clumping factor A (ClfA), two important virulence factors in S. aureus infection. The DNA coding sequences of the variable heavy (VH) and variable light (VL) domains of antibodies produced in the peripheral blood lymphocytes of cows with S. aureus-induced mastitis were obtained using reverse transcription and polymerase chain reaction, and the VH and VL cDNAs were assembled in-tandem using a DNA sequence encoding a (Gly4Ser)3 peptide linker. The scFv cDNAs were cloned into the pOPE101 plasmid for the expression of soluble scFv protein in Escherichia coli. The binding of the scFvs to both FnBPA and ClfA was confirmed using an indirect ELISA and Western blotting. The DNA sequences of the framework regions of the VH and VL domains were highly conserved, and the complementarity-determining regions displayed significant diversity, especially in CDR3 of the VH domain. These novel bovine antibody fragments may be useful as a therapeutic candidate for the prevention and treatment of S. aureus-induced bovine mastitis. PMID:25910693

  7. Neutrophil-Mediated Phagocytosis of Staphylococcus aureus

    PubMed Central

    van Kessel, Kok P. M.; Bestebroer, Jovanka; van Strijp, Jos A. G.

    2014-01-01

    Initial elimination of invading Staphylococcus aureus from the body is mediated by professional phagocytes. The neutrophil is the major phagocyte of the innate immunity and plays a key role in the host defense against staphylococcal infections. Opsonization of the bacteria with immunoglobulins and complement factors enables efficient recognition by the neutrophil that subsequently leads to intracellular compartmentalization and killing. Here, we provide a review of the key processes evolved in neutrophil-mediated phagocytosis of S. aureus and briefly describe killing. As S. aureus is not helpless against the professional phagocytes, we will also highlight its immune evasion arsenal related to phagocytosis. PMID:25309547

  8. Sequence of two plasmids from Clostridium perfringens chicken necrotic enteritis isolates and comparison with C. perfringens conjugative plasmids.

    PubMed

    Parreira, Valeria R; Costa, Marcio; Eikmeyer, Felix; Blom, Jochen; Prescott, John F

    2012-01-01

    Twenty-six isolates of Clostridium perfringens of different MLST types from chickens with necrotic enteritis (NE) (15 netB-positive) or from healthy chickens (6 netB-positive, 5 netB-negative) were found to contain 1-4 large plasmids, with most netB-positive isolates containing 3 large and variably sized plasmids which were more numerous and larger than plasmids in netB-negative isolates. NetB and cpb2 were found on different plasmids consistent with previous studies. The pathogenicity locus NELoc1, which includes netB, was largely conserved in these plasmids whereas NeLoc3, present in the cpb2 containing plasmids, was less well conserved. A netB-positive and a cpb2-positive plasmid were likely to be conjugative, and the plasmids were completely sequenced. Both plasmids possessed the intact tcp conjugative region characteristic of C. perfringens conjugative plasmids. Comparative genomic analysis of nine CpCPs, including the two plasmids described here, showed extensive gene rearrangements including pathogenicity locus and accessory gene insertions around rather than within the backbone region. The pattern that emerges from this analysis is that the major toxin-containing regions of the variety of virulence-associated CpCPs are organized as complex pathogenicity loci. How these different but related CpCPs can co-exist in the same host has been an unanswered question. Analysis of the replication-partition region of these plasmids suggests that this region controls plasmid incompatibility, and that CpCPs can be grouped into at least four incompatibility groups. PMID:23189158

  9. Identification and sequence homology relationships of plasmids from various micrococci

    SciTech Connect

    Mathis, J.N.

    1983-01-01

    Plasmids have been found in strains of the following Micrococcus species M. nishinomiyaensis (9/22), M. luteus (8/47), and M. agilis (1/5). No plasmids were detected in strains of M. lylae (0/16) or M. sedentarius (0/20). Thirty-eight antibiotics and 23 inorganic salts were screened in an attempt to determine plasmid function. None of these antibiotics and inorganic salts were found to be associated with the presence or absence of plasmid DNA within these strains. Minimum inhibitory concentration experiments and curing experiments in which phenotypic change occurred without plasmid loss are the basis for this conclusion. Hydrocarbon biosynthesis parameters in certain Micrococcus strains previously analyzed were also shown not to be clearly associated to the presence or absence of plasmid DNA.

  10. Community-wide plasmid gene mobilization and selection

    PubMed Central

    Sentchilo, Vladimir; Mayer, Antonia P; Guy, Lionel; Miyazaki, Ryo; Green Tringe, Susannah; Barry, Kerrie; Malfatti, Stephanie; Goessmann, Alexander; Robinson-Rechavi, Marc; van der Meer, Jan R

    2013-01-01

    Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions. PMID:23407308

  11. The Heme Sensor System of Staphylococcus aureus

    PubMed Central

    Stauff, Devin L.; Skaar, Eric P.

    2016-01-01

    The important human pathogen Staphylococcus aureus is able to satisfy its nutrient iron requirement by acquiring heme from host hemoglobin in the context of infection. However, heme acquisition exposes S. aureus to heme toxicity. In order to detect the presence of toxic levels of exogenous heme, S. aureus is able to sense heme through the heme sensing system (HssRS) two-component system. Upon sensing heme, HssRS directly regulates the expression of the heme-regulated ABC transporter HrtAB, which alleviates heme toxicity. Importantly, the inability to sense or respond to heme alters the virulence of S. aureus, highlighting the importance of heme sensing and detoxification to staphylococcal pathogenesis. Furthermore, potential orthologues of the Hss and Hrt systems are found in many species of Gram-positive bacteria, a possible indication that heme stress is a challenge faced by bacteria whose habitats include host tissues rich in heme. PMID:19494582

  12. Generation of Ramoplanin-Resistant Staphylococcus aureus

    PubMed Central

    Schmidt, John W.; Greenough, Adrienne; Burns, Michelle; Luteran, Andrea E.; McCafferty, Dewey G.

    2013-01-01

    Ramoplanin is a lipoglycodepsipeptide antimicrobial active against clinically important Gram-positive bacteria including methicillin resistant Staphylococcus aureus. To proactively examine ramoplanin resistance, we subjected S. aureus NCTC 8325-4 to serial passage in the presence of increasing concentrations of ramoplanin, generating the markedly resistant strain RRSA16. Susceptibility testing of RRSA16 revealed the unanticipated acquisition of cross-resistance to vancomycin and nisin. RRSA16 displayed phenotypes, including a thickened cell wall and reduced susceptibility to Triton X-100 induced autolysis, which are associated with vancomycin intermediate resistant S. aureus strains. Passage of RRSA16 for 18 days in drug-free medium yielded strain R16-18d with restored antibiotic susceptibility. The RRSA16 isolate may be used to identify the genetic and biochemical basis for ramoplanin-resistance and further our understanding of the evolution of antibiotic cross-resistance mechanisms in S. aureus. PMID:20659164

  13. Generation of ramoplanin-resistant Staphylococcus aureus.

    PubMed

    Schmidt, John W; Greenough, Adrienne; Burns, Michelle; Luteran, Andrea E; McCafferty, Dewey G

    2010-09-01

    Ramoplanin is a lipoglycodepsipeptide antimicrobial active against clinically important Gram-positive bacteria including methicillin-resistant Staphylococcus aureus. To proactively examine ramoplanin resistance, we subjected S. aureus NCTC 8325-4 to serial passage in the presence of increasing concentrations of ramoplanin, generating the markedly resistant strain RRSA16. Susceptibility testing of RRSA16 revealed the unanticipated acquisition of cross-resistance to vancomycin and nisin. RRSA16 displayed phenotypes, including a thickened cell wall and reduced susceptibility to Triton X-100-induced autolysis, which are associated with vancomycin intermediate-resistant S. aureus strains. Passage of RRSA16 for 18 days in a drug-free medium yielded strain R16-18d with restored antibiotic susceptibility. The RRSA16 isolate may be used to identify the genetic and biochemical basis for ramoplanin resistance and to further our understanding of the evolution of antibiotic cross-resistance mechanisms in S. aureus. PMID:20659164

  14. Identification of plasmid partition function in coryneform bacteria

    SciTech Connect

    Kurusu, Yasurou; Satoh, Yukie; Inui, Masayuki; Kohama, Keiko; Kobayashi, Miki; Terasawa, Masato; Yukawa, Hideaki )

    1991-03-01

    The authors have identified and characterized a partition function that is required for stable maintenance of plasmids in the coryneform bacteria Brevibacterium flavum MJ233 and Corynebacterium glutamicum ATCC 31831. This function is localized to a HindIII-NspV fragment (673 bp) adjacent to the replication region of the plasmid, named pBY503, from Brevibacterium stationis IFO 12144. The function was independent of copy number control and was not associated directly with plasmid replication functions. This fragment was able to stabilize the unstable plasmids in cis but not in trans.

  15. Analysis of Genetic Toggle Switch Systems Encoded on Plasmids

    NASA Astrophysics Data System (ADS)

    Loinger, Adiel; Biham, Ofer

    2009-08-01

    Genetic switch systems with mutual repression of two transcription factors, encoded on plasmids, are studied using stochastic methods. The plasmid copy number is found to strongly affect the behavior of these systems. More specifically, the average time between spontaneous switching events quickly increases with the number of plasmids. It was shown before that for a single copy encoded on the chromosome, the exclusive switch is more stable than the general switch. Here we show that when the switch is encoded on a sufficiently large number of plasmids, the situation is reversed and the general switch is more stable than the exclusive switch. These predictions can be tested experimentally using methods of synthetic biology.

  16. Ultrasensitive plasmid mapping by high performance capillary electrophoresis.

    PubMed

    Maschke, H E; Frenz, J; Belenkii, A; Karger, B L; Hancock, W S

    1993-01-01

    This paper compares high performance capillary electrophoresis (HPCE) and conventional slab electrophoresis in mapping of four closely related plasmids with three different restriction enzymes. The plasmids express full length and truncated forms of a growth factor receptor oncogene product and were digested with HpaII, HaeIII and RsaI. The resulting oligonucleotide fragments were under 2000 base pairs in length, a size well suited to separation by HPCE with linear polyacrylamide as a sieving matrix. Plasmid mapping is an essential tool in biotechnology both for the design of an expression system and for monitoring the stability of the expression system during fermentation. HPCE can yield much higher resolution of oligonucleotides than attainable in conventional agarose gel electrophoretic procedures for plasmid mapping. In the examples described here, the HpaII digests provided the surest identification of individual plasmids in the HPCE analysis and could discriminate among all four plasmids. In conventional slab electrophoresis, however, the RsaI digests provided the best discrimination, although two of the plasmids in this system yielded essentially identical electrophoretic patterns. Hence the optimal restriction enzyme for plasmid mapping applications with HPCE may differ from that selected on the basis of conventional slab gel analysis, and the former technique can provide higher discrimination among related plasmids. The advantages of the HPCE format with respect to speed, low sample consumption and resolution are described. PMID:8354236

  17. Impact of plasmid quality on lipoplex-mediated transfection.

    PubMed

    De La Vega, Jonathan; Braak, Bas Ter; Azzoni, Adriano R; Monteiro, Gabriel A; Prazeres, Duarte Miguel F

    2013-11-01

    This work investigates the impact of quality attributes (impurity content, plasmid charge, and compactness) of plasmid DNA isolated with different purification methodologies on the characteristics of lipoplexes prepared thereof (size, zeta potential, stability) and on their ability to transfect mammalian cells. A 3.7 kb plasmid with a green fluorescence protein (GFP) reporter gene, Lipofectamine®-based liposomes, and Chinese Hamster Ovary (CHO) cells were used as models. The plasmid was purified by hydrophobic interaction chromatography (HIC)/gel filtration, and with three commercial kits, which combine the use of chaotropic salts with silica membranes/glass fiber fleeces. The HIC-based protocol delivered a plasmid with the smallest hydrodynamic diameter (144 nm) and zeta potential (-46.5 mV), which is virtually free from impurities. When formulated with Lipofectamine®, this plasmid originated the smallest (146 nm), most charged (+13 mV), and most stable lipoplexes. In vitro transfection experiments further showed that these lipoplexes performed better in terms of plasmid uptake (∼500,000 vs. ∼100,000-200,000 copy number/cell), transfection efficiency (50% vs. 20%-40%), and GFP expression levels (twofold higher) when compared with lipoplexes prepared with plasmids isolated using commercial kits. Overall our observations highlight the potential impact that plasmid purification methodologies can have on the outcome of gene transfer experiments and trials. PMID:23996350

  18. Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids.

    PubMed

    Dobiasova, Hana; Kutilova, Iva; Piackova, Veronika; Vesely, Tomas; Cizek, Alois; Dolejska, Monika

    2014-07-16

    Growing ornamental fish industry is associated with public health concerns including extensive antibiotic use accompanied by increasing antibiotic resistance. The aim of this study was to analyze Aeromonas isolates from imported tropical ornamental fish and coldwater koi carps bred in the Czech Republic to assess the potential risk of ornamental fish as a source of plasmid-mediated quinolone resistance genes (PMQR) and antibiotic resistance plasmids. A collection of Aeromonas spp. with reduced susceptibility to ciprofloxacin (MIC ≥ 0.05 mg/L) was selected for the detection of PMQR genes. Isolates harbouring PMQR genes were further analyzed for the additional antibiotic resistance, integron content, clonality, biofilm production and transferability of PMQR genes by conjugation and transformation. Comparative analysis of plasmids carrying PMQR genes was performed. Fifteen (19%, n=80) isolates from koi carps and 18 (24%, n=76) isolates from imported ornamental fish were positive for qnrS2, aac(6')-Ib-cr or qnrB17 genes. PMQR-positive isolates from imported ornamental fish showed higher MIC levels to quinolones, multiresistance and diverse content of antibiotic resistance genes and integrons compared to the isolates from the carps. Related IncU plasmids harbouring qnrS2 and aac(6')-Ib-cr genes were found in Aeromonas spp. from imported ornamental fish and koi carps from various geographical areas. Ornamental fish may represent a potential source of multiresistant bacteria and mobile genetic elements for the environment and for humans. PMID:24629900

  19. Photonic plasmid stability of transformed Salmonella typhimurium: A comparison of three unique plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acquiring a highly stable photonic plasmid in transformed Salmonella typhimurium for use in biophotonic studies of bacterial tracking in vivo is critical to experimental paradigm development. The objective of this study was to determine stability of transformed Salmonella typhimurium (S. typh-lux) u...

  20. Photonic Plasmid Stability of Transformed Salmonella Typhimurium: A Comparison of Three Unique Plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Acquiring a highly stable photonic plasmid in transformed Salmonella Typhimurium for use in biophotonic studies of bacterial tracking in vivo is critical to experimental paradigm development. The objective of this study was to determine stability of transformed Salmonella Typhimurium (S....

  1. The changing epidemiology of Staphylococcus aureus?

    PubMed Central

    Chambers, H. F.

    2001-01-01

    Strains of methicillin-resistant Staphylococcus aureus (MRSA), which had been largely confined to hospitals and long-term care facilities, are emerging in the community. The changing epidemiology of MRSA bears striking similarity to the emergence of penicillinase-mediated resistance in S. aureus decades ago. Even though the origin (hospital or the community) of the emerging MRSA strains is not known, the prevalence of these strains in the community seems likely to increase substantially. PMID:11294701

  2. Plasmids for heterologous expression in Pasteurella haemolytica.

    PubMed

    Fedorova, N D; Highlander, S K

    1997-02-28

    New cloning and expression vectors that replicate both in Pasteurella haemolytica and in Escherichia coli were constructed based on a native sulfonamide (SuR) and streptomycin (SmR) resistant plasmid of P. haemolytica called pYFC1. Each shuttle vector includes an MCS and a selectable antibiotic resistance marker that is expressed in both organisms. Plasmid pNF2176 carries the P. haemolytica ROB-1 beta-lactamase gene (blaP, ApR) and pNF2214 carries the Tn903 aph3 kanamycin resistance (KmR) element. The expression vector, pNF2176, was created by placing the MCS downstream of the sulfonamide gene promoter (PsulII) on pYFC1; this was used to clone and express the promoterless Tn9 chloramphenicol resistance gene (cat, CmR) in P. haemolytica (pNF2200). A promoter-probe vector (pNF2283) was constructed from pNF2200 by deleting PsulII. PMID:9074498

  3. Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions?

    PubMed

    Handa, Hirokazu

    2008-01-01

    Plant mitochondria contain small extrachromosomal DNAs in addition to a large and complex main mitochondrial genome. These molecules can be regarded as extrachromosomal replicons or plasmids, of which there are two forms, circular and linear. Linear mitochondrial plasmids are present in many fungi and in some plants, but they seem to be absent from most animal cells. They usually have a common structural feature, called an invertron, that is characterized by the presence of terminal inverted repeats and proteins covalently attached to their 5 termini. Linear mitochondrial plasmids possess one to six ORFs that can encode unknown proteins but often code for the DNA and RNA polymerases. Although the functions of most linear plasmids in plant mitochondria are unknown, some plasmids may be associated with mitochondrial genome rearrangements and may have phenotypic effects due to their integration into mitochondrial genome. The Brassica 11.6-kb plasmid, one of the linear mitochondrial plasmids in plants, shows a non-maternal inheritance, in contrast to mitochondrial genomes. The origin of these plasmids is still a mystery, but indirect evidence indicates the possibility of horizontal transfer from fungal mitochondria. In this review, the main features of these unique DNAs present in plant mitochondria are described. PMID:18326073

  4. Purification of large plasmids with methacrylate monolithic columns.

    PubMed

    Krajnc, Nika Lendero; Smrekar, Franci; Cerne, Jasmina; Raspor, Peter; Modic, Martina; Krgovic, Danijela; Strancar, Ales; Podgornik, Ales

    2009-08-01

    The rapid evolution of gene therapy and DNA vaccines results in an increasing interest in producing large quantities of pharmaceutical grade plasmid DNA. Most current clinical trials involve plasmids of 10 kb or smaller in size, however, future requirements for multigene vectors including extensive control regions may require the production of larger plasmids, e. g., 20 kb and bigger. The objective of this study was to examine certain process conditions for purification of large plasmids with the size of up to 93 kb. Since there is a lack of knowledge about production and purification of bigger plasmid DNA, cell lysis and storage conditions were investigated. The impact of chromatographic system and methacrylate monolithic column on the degradation of plasmid molecules under nonbinding conditions at different flow rates was studied. Furthermore, capacity measurements varying salt concentration in loading buffer were performed and the capacities up to 13 mg of plasmid per mL of the monolithic column were obtained. The capacity flow independence in the range from 130 to 370 cm/h was observed. Using high resolution monolithic column the separation of linear and supercoiled isoforms of large plasmids was obtained. Last but not least, since the baseline separation of RNA and pDNA was achieved, the one step purification on larger CIM DEAE 8 mL tube monolithic column was performed and the fractions were analyzed by CIM analytical monolithic columns. PMID:19598166

  5. Rapid compensatory evolution promotes the survival of conjugative plasmids

    PubMed Central

    Harrison, Ellie; Dytham, Calvin; Hall, James P. J.; Guymer, David; Spiers, Andrew J.; Paterson, Steve; Brockhurst, Michael A.

    2016-01-01

    ABSTRACT Conjugative plasmids play a vital role in bacterial adaptation through horizontal gene transfer. Explaining how plasmids persist in host populations however is difficult, given the high costs often associated with plasmid carriage. Compensatory evolution to ameliorate this cost can rescue plasmids from extinction. In a recently published study we showed that compensatory evolution repeatedly targeted the same bacterial regulatory system, GacA/GacS, in populations of plasmid-carrying bacteria evolving across a range of selective environments. Mutations in these genes arose rapidly and completely eliminated the cost of plasmid carriage. Here we extend our analysis using an individual based model to explore the dynamics of compensatory evolution in this system. We show that mutations which ameliorate the cost of plasmid carriage can prevent both the loss of plasmids from the population and the fixation of accessory traits on the bacterial chromosome. We discuss how dependent the outcome of compensatory evolution is on the strength and availability of such mutations and the rate at which beneficial accessory traits integrate on the host chromosome. PMID:27510852

  6. An oligonucleotide microarray to characterize multidrug resistant plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the host organism like antibiotic drug resistance. Many of the Enterobacteriaceae carry multiple drug resistance (MDR) genes on large plasmids of replic...

  7. Functional identification of Xylella fastidiosa plasmid replication and stability factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa (Xf) strain RIV11 harbors a 25 kbp plasmid (pXFRIV11) belonging to the incP1 incompatibility group. Replication and stability factors of pXFRIV11 were identified and used to construct plasmids able to replicate in both Xf and Escherichia coli. Sequences required for replication i...

  8. Horizontal gene transfer of stress resistance genes through plasmid transport.

    PubMed

    Shoeb, Erum; Badar, Uzma; Akhter, Jameela; Shams, Hina; Sultana, Maria; Ansari, Maqsood A

    2012-03-01

    The horizontal gene transfer of plasmid-determined stress tolerance was achieved under lab conditions. Bacterial isolates, Enterobacter cloacae (DGE50) and Escherichia coli (DGE57) were used throughout the study. Samples were collected from contaminated marine water and soil to isolate bacterial strains having tolerance against heavy metals and antimicrobial agents. We have demonstrated plasmid transfer, from Amp(+)Cu(+)Zn(-) strain (DGE50) to Amp(-)Cu(-)Zn(+) strain (DGE57), producing Amp(+)Cu(+)Zn(+) transconjugants (DGE(TC50→57)) and Amp(+)Cu(-)Zn(+) transformants (DGE(TF50→57)). DGE57 did not carry any plasmid, therefore, it can be speculated that zinc tolerance gene in DGE57 is located on chromosome. DGE50 was found to carry three plasmids, out of which two were transferred through conjugation into DGE57, and only one was transferred through transformation. Plasmid transferred through transformation was one out of the two transferred through conjugation. Through the results of transformation it was revealed that the genes of copper and ampicillin tolerance in DGE50 were located on separate plasmids, since only ampicillin tolerance genes were transferred through transformation as a result of one plasmid transfer. By showing transfer of plasmids under lab conditions and monitoring retention of respective phenotype via conjugation and transformation, it is very well demonstrated how multiple stress tolerant strains are generated in nature. PMID:22805823

  9. Inc A/C Plasmids in Multidrug resistant Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the survival of the host bacteria. Classification and tracking of plasmids is beneficial because they are potentially a medium of horizontal gene transf...

  10. Potassium Uptake Modulates Staphylococcus aureus Metabolism.

    PubMed

    Gries, Casey M; Sadykov, Marat R; Bulock, Logan L; Chaudhari, Sujata S; Thomas, Vinai C; Bose, Jeffrey L; Bayles, Kenneth W

    2016-01-01

    As a leading cause of community-associated and nosocomial infections, Staphylococcus aureus requires sophisticated mechanisms that function to maintain cellular homeostasis in response to its exposure to changing environmental conditions. The adaptation to stress and maintenance of homeostasis depend largely on membrane activity, including supporting electrochemical gradients and synthesis of ATP. This is largely achieved through potassium (K(+)) transport, which plays an essential role in maintaining chemiosmotic homeostasis, affects antimicrobial resistance, and contributes to fitness in vivo. Here, we report that S. aureus Ktr-mediated K(+) uptake is necessary for maintaining cytoplasmic pH and the establishment of a proton motive force. Metabolite analyses revealed that K(+) deficiency affects both metabolic and energy states of S. aureus by impairing oxidative phosphorylation and directing carbon flux toward substrate-level phosphorylation. Taken together, these results underline the importance of K(+) uptake in maintaining essential components of S. aureus metabolism. IMPORTANCE Previous studies describing mechanisms for K(+) uptake in S. aureus revealed that the Ktr-mediated K(+) transport system was required for normal growth under alkaline conditions but not under neutral or acidic conditions. This work focuses on the effect of K(+) uptake on S. aureus metabolism, including intracellular pH and carbon flux, and is the first to utilize a pH-dependent green fluorescent protein (GFP) to measure S. aureus cytoplasmic pH. These studies highlight the role of K(+) uptake in supporting proton efflux under alkaline conditions and uncover a critical role for K(+) uptake in establishing efficient carbon utilization. PMID:27340697

  11. Potassium Uptake Modulates Staphylococcus aureus Metabolism

    PubMed Central

    Gries, Casey M.; Sadykov, Marat R.; Bulock, Logan L.; Chaudhari, Sujata S.; Thomas, Vinai C.; Bose, Jeffrey L.

    2016-01-01

    ABSTRACT As a leading cause of community-associated and nosocomial infections, Staphylococcus aureus requires sophisticated mechanisms that function to maintain cellular homeostasis in response to its exposure to changing environmental conditions. The adaptation to stress and maintenance of homeostasis depend largely on membrane activity, including supporting electrochemical gradients and synthesis of ATP. This is largely achieved through potassium (K+) transport, which plays an essential role in maintaining chemiosmotic homeostasis, affects antimicrobial resistance, and contributes to fitness in vivo. Here, we report that S. aureus Ktr-mediated K+ uptake is necessary for maintaining cytoplasmic pH and the establishment of a proton motive force. Metabolite analyses revealed that K+ deficiency affects both metabolic and energy states of S. aureus by impairing oxidative phosphorylation and directing carbon flux toward substrate-level phosphorylation. Taken together, these results underline the importance of K+ uptake in maintaining essential components of S. aureus metabolism. IMPORTANCE Previous studies describing mechanisms for K+ uptake in S. aureus revealed that the Ktr-mediated K+ transport system was required for normal growth under alkaline conditions but not under neutral or acidic conditions. This work focuses on the effect of K+ uptake on S. aureus metabolism, including intracellular pH and carbon flux, and is the first to utilize a pH-dependent green fluorescent protein (GFP) to measure S. aureus cytoplasmic pH. These studies highlight the role of K+ uptake in supporting proton efflux under alkaline conditions and uncover a critical role for K+ uptake in establishing efficient carbon utilization. PMID:27340697

  12. Plasmid addiction systems: perspectives and applications in biotechnology.

    PubMed

    Kroll, Jens; Klinter, Stefan; Schneider, Cornelia; Voss, Isabella; Steinbüchel, Alexander

    2010-11-01

    Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications. PMID:21255361

  13. Cartography of Methicillin-Resistant S. aureus Transcripts: Detection, Orientation and Temporal Expression during Growth Phase and Stress Conditions

    PubMed Central

    Beaume, Marie; Hernandez, David; Farinelli, Laurent; Deluen, Cécile; Linder, Patrick; Gaspin, Christine; Romby, Pascale; Schrenzel, Jacques; Francois, Patrice

    2010-01-01

    Background Staphylococcus aureus is a versatile bacterial opportunist responsible for a wide spectrum of infections. The severity of these infections is highly variable and depends on multiple parameters including the genome content of the bacterium as well as the condition of the infected host. Clinically and epidemiologically, S. aureus shows a particular capacity to survive and adapt to drastic environmental changes including the presence of numerous antimicrobial agents. Mechanisms triggering this adaptation remain largely unknown despite important research efforts. Most studies evaluating gene content have so far neglected to analyze the so-called intergenic regions as well as potential antisense RNA molecules. Principal Findings Using high-throughput sequencing technology, we performed an inventory of the whole transcriptome of S. aureus strain N315. In addition to the annotated transcription units, we identified more than 195 small transcribed regions, in the chromosome and the plasmid of S. aureus strain N315. The coding strand of each transcript was identified and structural analysis enabled classification of all discovered transcripts. RNA purified at four time-points during the growth phase of the bacterium allowed us to define the temporal expression of such transcripts. A selection of 26 transcripts of interest dispersed along the intergenic regions was assessed for expression changes in the presence of various stress conditions including pH, temperature, oxidative shocks and growth in a stringent medium. Most of these transcripts showed expression patterns specific for the defined stress conditions that we tested. Conclusions These RNA molecules potentially represent important effectors of S. aureus adaptation and more generally could support some of the epidemiological characteristics of the bacterium. PMID:20505759

  14. Cloning and analysis of a large plasmid pBMB165 from Bacillus thuringiensis revealed a novel plasmid organization.

    PubMed

    Wang, Yueying; Peng, Donghai; Dong, Zhaoxia; Zhu, Lei; Guo, Suxia; Sun, Ming

    2013-01-01

    In this study, we report a rapid cloning strategy for large native plasmids via a contig linkage map by BAC libraries. Using this method, we cloned a large plasmid pBMB165 from Bacillus thuringiensis serovar tenebrionis strain YBT-1765. Complete sequencing showed that pBMB165 is 77,627 bp long with a GC-content of 35.36%, and contains 103 open reading frames (ORFs). Sequence analysis and comparison reveals that pBMB165 represents a novel plasmid organization: it mainly consists of a pXO2-like replicon and mobile genetic elements (an inducible prophage BMBTP3 and a set of transposable elements). This is the first description of this plasmid organization pattern, which may result from recombination events among the plasmid replicon, prophage and transposable elements. This plasmid organization reveals that the prophage BMBTP3 may use the plasmid replicon to maintain its genetic stability. Our results provide a new approach to understanding co-evolution between bacterial plasmids and bacteriophage. PMID:24312580

  15. Effectiveness of contact isolation during a hospital outbreak of methicillin-resistant Staphylococcus aureus.

    PubMed

    Jernigan, J A; Titus, M G; Gröschel, D H; Getchell-White, S; Farr, B M

    1996-03-01

    Contact isolation has been recommended by the Centers for Disease Control and Prevention for the prevention of nosocomial transmission of methicillin-resistant Staphylococcus aureus (MRSA), but there are few data which prospectively quantitate the effectiveness of contact isolation for this purpose. During an outbreak of MRSA in a neonatal intensive care unit between July 18, 1991 and January 30, 1992, weekly surveillance cultures were performed on all patients. Sixteen of 331 admissions became colonized with MRSA, and 3 (19%) developed infections: bacteremia, conjunctivitis, and dialysis catheter site infection. The isolates from all 16 patients were submitted to plasmid profile analysis and restriction enzyme analysis of whole cell DNA. All of the patients had identical chromosomal patterns and plasmid profiles, which differed from control isolates from other wards, indicating that the outbreak resulted from spread of a unique strain. None of 144 personnel who were cultured after recent contact with newly colonized patients during the outbreak were found to carry MRSA, which suggests that patients were the reservoir for transmission rather than caregivers. The most probable source for each individual transmission was determined based on proximity in time and space and shared exposure to caregivers. The rate of transmission of MRSA from patients on contact isolation was significantly lower (0.009 transmissions per day on isolation) than the rate for patients not on isolation (0.140 transmissions per day unisolated, relative risk = 15.6, 95% confidence interval 5.3-45.6, p < 0.0001). The authors conclude that the risk of nosocomial transmission of MRSA was reduced 16-fold by contact isolation during the outbreak in this neonatal intensive care unit. These data confirm the results of previous studies which have suggested that contact isolation was effective in controlling the epidemic spread of methicillin-resistant Staphylococcus aureus. PMID:8610665

  16. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus.

    PubMed Central

    Tenover, F C; Arbeit, R; Archer, G; Biddle, J; Byrne, S; Goering, R; Hancock, G; Hébert, G A; Hill, B; Hollis, R

    1994-01-01

    Fifty-nine Staphylococcus aureus isolates and 1 isolate of Staphylococcus intermedius were typed by investigators at eight institutions by using either antibiograms, bacteriophage typing, biotyping, immunoblotting, insertion sequence typing with IS257/431, multilocus enzyme electrophoresis, restriction analysis of plasmid DNA, pulsed-field or field inversion gel electrophoresis, restriction analysis of PCR-amplified coagulase gene sequences, restriction fragment length polymorphism typing by using four staphylococcal genes as probes, or ribotyping. Isolates from four well-characterized outbreaks (n = 29) and a collection of organisms from two nursing homes were mixed with epidemiologically unrelated stock strains from the Centers for Disease Control and Prevention. Several isolates were included multiple times either within or between the sets of isolates to analyze the reproducibilities of the typing systems. Overall, the DNA-based techniques and immunoblotting were most effective in grouping outbreak-related strains, recognizing 27 to 29 of the 29 outbreak-related strains; however, they also tended to include 3 to 8 epidemiologically unrelated isolates in the same strain type. Restriction fragment length polymorphism methods with mec gene-associated loci were less useful than other techniques for typing oxacillin-susceptible isolates. Phage typing, plasmid DNA restriction analysis, and antibiogram analysis, the techniques most readily available to clinical laboratories, identified 23 to 26 of 29 outbreak-related isolates and assigned 0 to 6 unrelated isolates to outbreak strain types. No single technique was clearly superior to the others; however, biotyping, because it produced so many subtypes, did not effectively group outbreak-related strains of S. aureus. PMID:7908673

  17. Modulation of Staphylococcus aureus spreading by water.

    PubMed

    Lin, Mei-Hui; Ke, Wan-Ju; Liu, Chao-Chin; Yang, Meng-Wei

    2016-01-01

    Staphylococcus aureus is known to spread rapidly and form giant colonies on the surface of soft agar and animal tissues by a process called colony spreading. So far, the mechanisms underlying spreading remain poorly understood. This study investigated the spreading phenomenon by culturing S. aureus and its mutant derivatives on Tryptic Soy Agarose (TSA) medium. We found that S. aureus extracts water from the medium and floats on water at 2.5 h after inoculation, which could be observed using phase contrast microscopy. The floating of the bacteria on water could be verified by confocal microscopy using an S. aureus strain that constitutively expresses green fluorescence protein. This study also found that as the density of bacterial colony increases, a quorum sensing response is triggered, resulting in the synthesis of the biosurfactants, phenolic-soluble modulins (PSMs), which weakens water surface tension, causing water to flood the medium surface to allow the bacteria to spread rapidly. This study reveals a mechanism that explains how an organism lacking a flagellar motor is capable of spreading rapidly on a medium surface, which is important to the understanding of how S. aureus spreads in human tissues to cause infections. PMID:27125382

  18. Modulation of Staphylococcus aureus spreading by water

    PubMed Central

    Lin, Mei-Hui; Ke, Wan-Ju; Liu, Chao-Chin; Yang, Meng-Wei

    2016-01-01

    Staphylococcus aureus is known to spread rapidly and form giant colonies on the surface of soft agar and animal tissues by a process called colony spreading. So far, the mechanisms underlying spreading remain poorly understood. This study investigated the spreading phenomenon by culturing S. aureus and its mutant derivatives on Tryptic Soy Agarose (TSA) medium. We found that S. aureus extracts water from the medium and floats on water at 2.5 h after inoculation, which could be observed using phase contrast microscopy. The floating of the bacteria on water could be verified by confocal microscopy using an S. aureus strain that constitutively expresses green fluorescence protein. This study also found that as the density of bacterial colony increases, a quorum sensing response is triggered, resulting in the synthesis of the biosurfactants, phenolic-soluble modulins (PSMs), which weakens water surface tension, causing water to flood the medium surface to allow the bacteria to spread rapidly. This study reveals a mechanism that explains how an organism lacking a flagellar motor is capable of spreading rapidly on a medium surface, which is important to the understanding of how S. aureus spreads in human tissues to cause infections. PMID:27125382

  19. Agglutination of Staphylococcus aureus by Rabbit Sera

    PubMed Central

    Forsgren, Arne; Forsum, Urban

    1972-01-01

    Of 137 Staphylococcus aureus strains, 87 agglutinated in normal rabbit serum. The agglutination was shown to be caused by the Fc-part of immunoglobulin G (IgG). F(ab1)2-fragments of IgG and immunoglobulin M (IgM) in corresponding concentrations were unreactive. The agglutinating strains had a high or moderate content of protein A. Strains with a low content of protein A and protein A-negative mutants did not agglutinate. The importance of the reaction between the Fc part of IgG and protein A for serotyping of S. aureus is demonstrated. Two alternative methods for serotyping S. aureus are suggested, using either F(ab1)2 fragments of IgG or intact IgM. Images PMID:4564678

  20. Kinin receptor expression during Staphylococcus aureus infection

    PubMed Central

    Bengtson, Sara H.; Phagoo, Stephen B.; Norrby-Teglund, Anna; Påhlman, Lisa; Mörgelin, Matthias; Zuraw, Bruce L.; Leeb-Lundberg, L. M. Fredrik; Herwald, Heiko

    2006-01-01

    An inappropriate host response to invading bacteria is a critical parameter that often aggravates the outcome of an infection. Staphylococcus aureus is a major human Gram-positive pathogen that causes a wide array of community- and hospital-acquired diseases ranging from superficial skin infections to severe conditions such as staphylococcal toxic shock. Here we find that S aureus induces inflammatory reactions by modulating the expression and response of the B1 and B2 receptors, respectively. This process is initiated by a chain of events, involving staphylococcal-induced cytokine release from monocytes, bacteria-triggered contact activation, and conversion of bradykinin to its metabolite desArg9bradykinin. The data of the present study implicate an important and previously unknown role for kinin receptor regulation in S aureus infections. PMID:16735595

  1. Regulatory Elements of the Staphylococcus aureus Protein A (Spa) Promoter†

    PubMed Central

    Gao, Jinxin; Stewart, George C.

    2004-01-01

    Staphylococcal protein A (Spa) is an important virulence factor of Staphylococcus aureus. Transcription of the spa determinant occurs during the exponential growth phase and is repressed when the cells enter the postexponential growth phase. Regulation of spa expression has been found to be complicated, with regulation involving multiple factors, including Agr, SarA, SarS, SarT, Rot, and MgrA. Our understanding of how these factors work on the spa promoter to regulate spa expression is incomplete. To identify regulatory sites within the spa promoter, analysis of deletion derivatives of the promoter in host strains deficient in one or more of the regulatory factors was undertaken, and several critical features of spa regulation were revealed. The transcriptional start sites of spa were determined by primer extension. The spa promoter sequences were subcloned in front of a promoterless chloramphenicol acetyltransferase reporter gene. Various lengths of spa truncations with the same 3′ end were constructed, and the resultant plasmids were transduced into strains with different regulatory genetic backgrounds. Our results identified upstream promoter sequences necessary for Agr system regulation of spa expression. The cis elements for SarS activity, an activator of spa expression, and for SarA activity, a repressor of spa expression, were identified. The well-characterized SarA consensus sequence on the spa promoter was found to be insufficient for SarA repression of the spa promoter. Full repression required the presence of a second consensus site adjacent to the SarS binding site. Sequences directly upstream of the core promoter sequence were found to stimulate transcription. PMID:15175287

  2. Hyaluronan Modulation Impacts Staphylococcus aureus Biofilm Infection.

    PubMed

    Ibberson, Carolyn B; Parlet, Corey P; Kwiecinski, Jakub; Crosby, Heidi A; Meyerholz, David K; Horswill, Alexander R

    2016-06-01

    Staphylococcus aureus is a leading cause of chronic biofilm infections. Hyaluronic acid (HA) is a large glycosaminoglycan abundant in mammalian tissues that has been shown to enhance biofilm formation in multiple Gram-positive pathogens. We observed that HA accumulated in an S. aureus biofilm infection using a murine implant-associated infection model and that HA levels increased in a mutant strain lacking hyaluronidase (HysA). S. aureus secretes HysA in order to cleave HA during infection. Through in vitro biofilm studies with HA, the hysA mutant was found to accumulate increased biofilm biomass compared to the wild type, and confocal microscopy showed that HA is incorporated into the biofilm matrix. Exogenous addition of purified HysA enzyme dispersed HA-containing biofilms, while catalytically inactive enzyme had no impact. Additionally, induction of hysA expression prevented biofilm formation and also dispersed an established biofilm in the presence of HA. These observations were corroborated in the implant model, where there was decreased dissemination from an hysA mutant biofilm infection compared to the S. aureus wild type. Histopathology demonstrated that infection with an hysA mutant caused significantly reduced distribution of tissue inflammation compared to wild-type infection. To extend these studies, the impact of HA and S. aureus HysA on biofilm-like aggregates found in joint infections was examined. We found that HA contributes to the formation of synovial fluid aggregates, and HysA can disrupt aggregate formation. Taken together, these studies demonstrate that HA is a relevant component of the S. aureus biofilm matrix and HysA is important for dissemination from a biofilm infection. PMID:27068096

  3. Plasmid Copy Number Determination by Quantitative Polymerase Chain Reaction.

    PubMed

    Anindyajati; Artarini, A Anita; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Recombinant therapeutic proteins are biopharmaceutical products that develop rapidly for years. Recombinant protein production in certain hosts requires vector expression harboring the gene encoding the corresponding protein. Escherichia coli is the prokaryote organism mostly used in recombinant protein production, commonly using a plasmid as the expression vector. Recombinant protein production is affected by plasmid copy number harboring the encoded gene, hence the determination of plasmid copy number also plays an important role in establishing a recombinant protein production system. On the industrial scale, a low copy number of plasmids are more suitable due to their better stability. In the previous study we constructed pCAD, a plasmid derived from the low copy number pBR322 plasmid. This study was aimed to confirm pCAD's copy number by quantitative polymerase chain reaction (qPCR). Plasmid copy number was determined by comparing the quantification signal from the plasmid to those from the chromosome. Copy number was then calculated by using a known copy number plasmid as a standard. Two pairs of primers, called tdk and ori, were designed for targeting a single gene tdk in the chromosome and a conserved domain in the plasmid's ori, respectively. Primer quality was analyzed in silico using PrimerSelect DNASTAR and PraTo software prior to in vitro evaluation on primer specificity and efficiency as well as optimization of qPCR conditions. Plasmid copy number determination was conducted on E. coli lysates harboring each plasmid, with the number of cells ranging from 10(2)-10(5) cells/μL. Cells were lysed by incubation at 95ºC for 10 minutes, followed by immediate freezing at -4°C. pBR322 plasmid with the copy number of ~19 copies/cell was used as the standard, while pJExpress414-sod plasmid possessing the high copy number pUC ori was also determined to test the method being used. In silico analysis based on primer-primer and primer-template interactions showed

  4. Sociobiological Control of Plasmid Copy Number in Bacteria

    PubMed Central

    Watve, Mukta M.; Dahanukar, Neelesh; Watve, Milind G.

    2010-01-01

    All genes critical for plasmid replication regulation are located on the plasmid rather than on the host chromosome. It is possible therefore that there can be copy-up “cheater” mutants. In spite of this possibility, low copy number plasmids appear to exist stably in host populations. We examined this paradox using a multilevel selection model. Simulations showed that, a slightly higher copy number mutant could out-compete the wild type. Consequently, another mutant with still higher copy number could invade the first invader. However, the realized benefit of increasing intra-host fitness was saturating whereas that of inter-host fitness was exponential. As a result, above a threshold, intra-host selection was overcompensated by inter-host selection and the low copy number wild type plasmid could back invade a very high copy number plasmid. This led to a rock-paper-scissor (RPS) like situation that allowed the coexistence of plasmids with varied copy numbers. Furthermore, another type of cheater that had lost the genes required for conjugation but could hitchhike on a conjugal plasmid, could further reduce the advantage of copy-up mutants. These sociobiological interactions may compliment molecular mechanisms of replication regulation in stabilizing the copy numbers. PMID:20195362

  5. Analysis of chromosomal integration and deletions of yeast plasmids.

    PubMed Central

    Cameron, J R; Philippsen, P; Davis, R W

    1977-01-01

    Plasmid DNAs from six strains of Saccharomyces cerevisiae were compared. Three different plasmids were found, designated Scp 1, Scp 2 and Scp 3, with monomer lengths of 6.19, 6.06 and 5.97 kilobases as referenced to sequenced phiX174 DNA. DNA from each of the plasmids was inserted into a lambda vector DNA. Hybrid phage containing inserted DNA of the desired size were enriched by genetic selection and their DNAs analysed by rapid techniques. All three plasmids share the same organization, two unique sequences separated by two inverted repeats, and share basically the same DNA sequences. Scp 2 and Scp 3 differ from Scp 1 by missing a unique HpaI site and by having small overlapping deletions in the same region. The HpaI site in Scp 1 is, therefore, in a nonessential region and suitable for insertion of foreign DNA in the potential use of the yeast plasmid as a vector. Hybridization of labelled cloned plasmid DNA to restriction fragments of linear yeast DNA separated on agarose gels showed that the plasmid DNA was not stably integrated into the yeast chromosomal DNA. Images PMID:331256

  6. Plasmid incidence in bacteria from deep subsurface sediments

    SciTech Connect

    Fredrickson, J.K.; Hicks, R.J.; Li, S.W.; Brockman, F.J. )

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.

  7. Fractional precipitation of plasmid DNA from lysate by CTAB.

    PubMed

    Lander, Russel J; Winters, Michael A; Meacle, Francis J; Buckland, Barry C; Lee, Ann L

    2002-09-30

    Preparative-scale purification of plasmid DNA has been attempted by diverse methods, including precipitation with solvents, salts, and detergents and chromatography with ion-exchange, reversed-phase, and size-exclusion columns. Chromatographic methods such as hydrophobic interaction chromatography (HIC), reversed phase chromatography (RPC), and size exclusion chromatography (SEC) are the only effective means of eliminating the closely related relaxed and denatured forms of plasmid as well as endotoxin to acceptable levels. However, the anticipated costs of manufacturing-scale chromatography are high due to (a) large projected volumes of the high-dosage therapeutic molecule and (b) restricted loading of the large plasmid molecule in the pores of expensive resins. As an alternative to chromatography, we show herein that precipitation with the cationic detergent, cetyltrimethylammonium bromide (CTAB), is effective for selective precipitation of plasmid DNA from proteins, RNA, and endotoxin. Moreover, CTAB affords novel selectivity by removal of host genomic DNA and even the more closely related relaxed and denatured forms of plasmid as earlier, separate fractions. Finally, plasmid that has been precipitated by CTAB can be purified by selectively dissolving under conditions of controlled salt concentration. The selectivity mechanism is most likely based upon conformational differences among the several forms of DNA. As such, CTAB precipitation provides an ideal nonchromatographic capture step for the manufacture of plasmid DNA. PMID:12209800

  8. Investigation of plasmid-induced growth defect in Pseudomonas putida.

    PubMed

    Mi, Jia; Sydow, Anne; Schempp, Florence; Becher, Daniela; Schewe, Hendrik; Schrader, Jens; Buchhaupt, Markus

    2016-08-10

    Genetic engineering in bacteria mainly relies on the use of plasmids. But despite their pervasive use for physiological studies as well as for the design and optimization of industrially used production strains, only limited information about plasmid induced growth defects is available for different replicons and organisms. Here, we present the identification and characterization of such a phenomenon for Pseudomonas putida transformants carrying the pBBR1-derived plasmid pMiS1. We identified the kanamycin resistance gene and the transcription factor encoding rhaR gene to be causal for the growth defect in P. putida. In contrast, this effect was not observed in Escherichia coli. The plasmid-induced growth defect was eliminated after introduction of a mutation in the plasmid-encoded rep gene, thus enabling construction of the non-toxic variant pMiS4. GFP reporters construct analyses and qPCR experiments revealed a distinctly lowered plasmid copy number for pMiS4, which is probably the reason for alleviation of the growth defect by this mutation. Our work expands the knowledge about plasmid-induced growth defects and provides a useful low-copy pBBR1 replicon variant. PMID:27287537

  9. Plasmid incidence in bacteria from deep subsurface sediments.

    PubMed

    Fredrickson, J K; Hicks, R J; Li, S W; Brockman, F J

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu, Cr, and Hg for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of beta-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds. PMID:16347789

  10. Epidemiology of Staphylococcus aureus during space flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Chidambaram, M.; Heath, J. D.; Mallary, L.; Mishra, S. K.; Sharma, B.; Weinstock, G. M.

    1996-01-01

    Staphylococcus aureus was isolated over 2 years from Space Shuttle mission crewmembers to determine dissemination and retention of bacteria. Samples before and after each mission were from nasal, throat, urine, and feces and from air and surface sampling of the Space Shuttle. DNA fingerprinting of samples by digestion of DNA with SmaI restriction endonuclease followed by pulsed-field gel electrophoresis showed S. aureus from each crewmember had a unique fingerprint and usually only one strain was carried by an individual. There was only one instance of transfer between crewmembers. Strains from interior surfaces after flight matched those of crewmembers, suggesting microbial fingerprinting may have forensic application.

  11. Staphylococcus aureus bacteremia in hemodialysis patients.

    PubMed

    Latos, D L; Stone, W J; Alford, R H

    1977-01-01

    Fifteen male hemodialysis patients developed 21 episodes of S. aureus bacteremia. Infections involving vascular access were responsible for 65% of initial bacteremias. The arteriovenous fistula was the most prevalent type of access used, and thus was responsible for the majority of these illnesses. Phage typing indicated that recurrent episodes were due to reinfection rather than relapse. Complications included endocarditis, osteomyelitis, septic embolism, and pericarditis. One patient died of infectious complications. It is recommended that hemodialysis patients developing bacteremia due to S. aureus receive at least 6 weeks of beta lactamase-resistant antimicrobial therapy. PMID:608860

  12. Bacteriocin production by Staphylococcus aureus involved in bovine mastitis in Brazil.

    PubMed

    Ceotto, Hilana; Nascimento, Janaína dos Santos; Brito, Maria Aparecida Vasconcelos de Paiva; Bastos, Maria do Carmo de Freire

    2009-10-01

    In the present study, 257 Staphylococcus spp. strains were isolated from bovine mastitis cases in 56 different Brazilian dairy herds located in the southeast region of the country and tested for antimicrobial substance (AMS) production. Forty-six strains (17.9%) exhibited AMS production and their identification as Staphylococcus aureus was based on the presence of Gram-positive cocci and on positive results in tests for the ability to coagulate rabbit plasma, to ferment mannitol, and to produce acetoin. The AMS were characterized as bacteriocins (Bac) by their sensitivity to proteolytic enzymes. The Bac(+) strains were tested for resistance to 14 antimicrobial agents showing different profiles. Eighteen strains (39.0%) expressed a multiple antibiotic resistance phenotype. Forty-five strains exhibited at least one plasmid DNA. Cross-immunity analysis against strain S. aureus A70, which produces aureocin A70, amplification of the aurABCD operon (which encodes aureocin A70) or detection of this same operon by DNA/DNA hybridization revealed that 34 strains produce bacteriocins either identical or similar to aureocin A70. The remaining 12 Bac(+) strains produce antimicrobial peptides that seem to be distinct from the best characterized staphylococcal bacteriocins described thus far. The bacteriocin produced by strain 4185 may possess potential practical applications, since it was able to inhibit important pathogens such as Bacillus cereus, Listeria monocytogenes, and Staphylococcus spp. isolated from nosocomial infections. PMID:19635553

  13. Key genetic elements and regulation systems in methicillin-resistant Staphylococcus aureus.

    PubMed

    Hao, Haihong; Dai, Menghong; Wang, Yulian; Huang, Lingli; Yuan, Zonghui

    2012-11-01

    Methicillin-resistant Staphylococcus aureus (MRSA), popularly known as a type of superbug, has been a serious challenge for animal and human health. S. aureus has developed methicillin resistance mainly by expression of β-lactamase and PBP2a, which is regulated by the blaZ-blaI-blaR1 and mecA-mecI-mecRI systems. Other genetic elements, including murE and femA, also participate in expression of methicillin resistance, but the mechanism remains unclear. The evolution of the staphylococcal cassette chromosome mec determines the epidemiological risk of MRSA. The plasmid-located gene cfr might contribute to multiresistance and transmission of MRSA. Some virulence factors, including Panton-Valentine leukocidin, phenol-soluble modulin, arginine catabolic mobile element and other toxin elements enhance the pathogenesis and fitness of MRSA. Two-component regulation systems (agr, saeRS and vraRS) are closely associated with pathogenesis and drug resistance of MRSA. The systematic exploration of key genetic elements and regulation systems involved in multidrug resistance/pathogenesis/transmission of MRSA is conclusively integrated into this review, providing fundamental information for the development of new antimicrobial agents and the establishment of reasonable antibiotic stewardship to reduce the risk of this superbug. PMID:23075449

  14. Molecular classification of IncP-9 naphthalene degradation plasmids

    SciTech Connect

    Izmalkova, T.Y.; Mavrodi, D.V.; Sokolov, S.L.; Kosheleva, I.A.; Smalla, K.; Thomas, C.M.; Boronin, A.M.

    2006-07-15

    A large collection of naphthalene-degrading fluorescent Pseudomonas strains isolated from sites contaminated with coal tar and crude oil was screened for the presence of IncP-9 plasmids. Seventeen strains were found to carry naphthalene catabolic plasmids ranging in size from 83 to 120kb and were selected for further study. Results of molecular genotyping revealed that 15 strains were closely related to P. putida, one to P. fluorescens, and one to P. aeruginosa. All catabolic plasmids found in these strains, with the exception of pBS216, pSN11, and p8909N-1, turned out to belong to IncP-9 {beta}-subgroup. Plasmids pBS216, pSN11, and p8909N-1 were identified as members of IncP-9 {delta}-subgroup. One plasmid, pBS2, contains fused replicons of IncP-9 {beta} and IncP-7 groups. RFLP analyses of the naphthalene catabolic plasmids revealed that organisation of the replicon correlates well with the overall plasmid structure. Comparative PCR studies with conserved oligonucleotide primers indicated that genes for key enzymes of naphthalene catabolism are highly conserved among all studied plasmids. Three bacterial strains, P. putida BS202, P. putida BS3701, and P. putida BS3790, were found to have two different salicylate hydroxylase genes one of which has no similarity to the 'classic' enzyme encoded by nahG gene. Discovery of a large group of plasmid with unique nahR suggested that the regulatory loop may also represent a variable part of the pathway for catabolism of naphthalene in fluorescent Pseudomonas spp.

  15. 9 CFR 113.115 - Staphylococcus Aureus Bacterin-Toxoid.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Staphylococcus Aureus Bacterin-Toxoid... REQUIREMENTS Inactivated Bacterial Products § 113.115 Staphylococcus Aureus Bacterin-Toxoid. Staphylococcus... Staphylococcus aureus which has been inactivated and is nontoxic. Each serial of biological product...

  16. 9 CFR 113.115 - Staphylococcus Aureus Bacterin-Toxoid.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Staphylococcus Aureus Bacterin-Toxoid... REQUIREMENTS Inactivated Bacterial Products § 113.115 Staphylococcus Aureus Bacterin-Toxoid. Staphylococcus... Staphylococcus aureus which has been inactivated and is nontoxic. Each serial of biological product...

  17. 9 CFR 113.115 - Staphylococcus Aureus Bacterin-Toxoid.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Staphylococcus Aureus Bacterin-Toxoid... REQUIREMENTS Inactivated Bacterial Products § 113.115 Staphylococcus Aureus Bacterin-Toxoid. Staphylococcus... Staphylococcus aureus which has been inactivated and is nontoxic. Each serial of biological product...

  18. 9 CFR 113.115 - Staphylococcus Aureus Bacterin-Toxoid.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Staphylococcus Aureus Bacterin-Toxoid... REQUIREMENTS Inactivated Bacterial Products § 113.115 Staphylococcus Aureus Bacterin-Toxoid. Staphylococcus... Staphylococcus aureus which has been inactivated and is nontoxic. Each serial of biological product...

  19. Methicillin-Susceptible, Vancomycin-Resistant Staphylococcus aureus, Brazil.

    PubMed

    Panesso, Diana; Planet, Paul J; Diaz, Lorena; Hugonnet, Jean-Emmanuel; Tran, Truc T; Narechania, Apurva; Munita, Jose M; Rincon, Sandra; Carvajal, Lina P; Reyes, Jinnethe; Londoño, Alejandra; Smith, Hannah; Sebra, Robert; Deikus, Gintaras; Weinstock, George M; Murray, Barbara E; Rossi, Flavia; Arthur, Michel; Arias, Cesar A

    2015-10-01

    We report characterization of a methicillin-susceptible, vancomycin-resistant bloodstream isolate of Staphylococcus aureus recovered from a patient in Brazil. Emergence of vancomycin resistance in methicillin-susceptible S. aureus would indicate that this resistance trait might be poised to disseminate more rapidly among S. aureus and represents a major public health threat. PMID:26402569

  20. Separation of plasmid DNA topoisomers by multimodal chromatography.

    PubMed

    Silva-Santos, A Rita; Alves, Cláudia P A; Prazeres, Duarte Miguel F; Azevedo, Ana M

    2016-06-15

    The ability to analyze the distribution of topoisomers in a plasmid DNA sample is important when evaluating the quality of preparations intended for gene therapy and DNA vaccination or when performing biochemical studies on the action of topoisomerases and gyrases. Here, we describe the separation of supercoiled (sc) and open circular (oc) topoisomers by multimodal chromatography. A medium modified with the ligand N-benzyl-N-methyl ethanolamine and an elution scheme with increasing NaCl concentration are used to accomplish the baseline separation of sc and oc plasmid. The utility of the method is demonstrated by quantitating topoisomers in a purified plasmid sample. PMID:27033004

  1. Characterization of ampicillin resistance plasmids from Haemophilus ducreyi.

    PubMed Central

    Totten, P A; Handsfield, H H; Peters, D; Holmes, K K; Falkow, S

    1982-01-01

    Seven strains of Haemophilus ducreyi from diverse geographic origins were analyzed for their plasmid content. All strains were multiply resistant, but only resistance to ampicillin was transferred to Escherichia coli by transformation. The H. ducreyi plasmids encoding for ampicillin resistance were 7.4, 5.7, and 3.6 megadaltons and encoded for part or all of TnA, and ampicillin transposon. The relatedness of these plasmids was examined by restriction endonuclease digestion and DNA-DNA homology with isolated DNA fragments from TnA. Images PMID:6282212

  2. Enzymatic and nucleotide sequence studies of a kanamycin-inactivating enzyme encoded by a plasmid from thermophilic bacilli in comparison with that encoded by plasmid pUB110.

    PubMed Central

    Matsumura, M; Katakura, Y; Imanaka, T; Aiba, S

    1984-01-01

    The product of a kanamycin resistance gene encoded by plasmid pTB913 isolated from a thermophilic bacillus was identified as a kanamycin nucleotidyltransferase which is similar to that encoded by plasmid pUB110 from a mesophile, Staphylococcus aureus. The enzyme encoded by pTB913 was more thermostable than that encoded by pUB110. In view of a close resemblance of restriction endonuclease cleavage maps around the BglII site in the structural genes of both enzymes, ca. 1,200 base pairs were sequenced, followed by amino-terminal amino acid sequencing of the enzyme. The two nucleotide sequences were found to be identical to each other except for only one base in the midst of the structural gene. Each structural gene, initiating from a GUG codon as methionine, was composed of 759 base pairs and 253 amino acid residues (molecular weight, ca. 29,000). The sole difference was transversion from a cytosine (pUB110) to an adenine (pTB913) at a position + 389, counting the first base of the initiation codon as + 1. That is, a threonine at position 130 for the pUB110-coded kanamycin nucleotidyltransferase was replaced by a lysine for the pTB913-coded enzyme. The difference in thermostability between the two enzymes caused by a single amino acid replacement is discussed in light of electrostatic effects. Images PMID:6090428

  3. The MazEF Toxin-Antitoxin System Alters the β-Lactam Susceptibility of Staphylococcus aureus

    PubMed Central

    Schuster, Christopher F.; Mechler, Lukas; Nolle, Nicoletta; Krismer, Bernhard; Zelder, Marc-Eric; Götz, Friedrich; Bertram, Ralph

    2015-01-01

    Toxin-antitoxin (TA) systems are genetic elements of prokaryotes which encode a stable toxin and an unstable antitoxin that can counteract toxicity. TA systems residing on plasmids are often involved in episomal maintenance whereas those on chromosomes can have multiple functions. The opportunistic pathogen Staphylococcus aureus possesses at least four different families of TA systems but their physiological roles are elusive. The chromosomal mazEF system encodes the RNase toxin MazF and the antitoxin MazE. In the light of ambiguity regarding the cleavage activity, we here verify that MazF specifically targets UACAU sequences in S. aureus in vivo. In a native strain background and under non-stress conditions, cleavage was observed in the absence or presence of mazE. Transcripts of spa (staphylococcal protein A) and rsbW (anti-σB factor) were cut, but translational reporter fusions indicated that protein levels of the encoded products were unaffected. Despite a comparable growth rate as the wild-type, an S. aureus mazEF deletion mutant was more susceptible to β-lactam antibiotics, which suggests that further genes, putatively involved in the antibiotic stress response or cell wall synthesis or turnover, are controlled by this TA system. PMID:25965381

  4. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps

    PubMed Central

    Tintino, Saulo R.; Morais-Tintino, Cícera D.; Campina, Fábia F.; Pereira, Raimundo L.; Costa, Maria do S.; Braga, Maria Flaviana B.M.; Limaverde, Paulo W.; Andrade, Jacqueline C.; Siqueira-Junior, José P.; Coutinho, Henrique Douglas Melo; Balbino, Valdir Q.; Leal-Balbino, Tereza C.; Ribeiro-Filho, Jaime; Quintans-Júnior, Lucindo J.

    2016-01-01

    Alpha-tocopherol is one the most abundant and biologically active isoforms of vitamin E. This compound is a potent antioxidant and one of most studied isoforms of vitamin E. Vitamin D3 (cholecalciferol) is an important nutrient for calcium homeostasis and bone health, that has also been recognized as a potent modulator of the immune response. Methicillin-resistant Staphylococcus aureus (MRSA) is the most important causative agent of both nosocomial and community-acquired infections. The aim of this study was to evaluate the inhibitory effect of alpha-tocopherol and cholecalciferol on both S. aureus and multidrug resistant S. aureus efflux pumps. The RN4220 strain has the plasmid pUL5054 that is the carrier of gene that encodes the macrolide resistance protein (an efflux pump) MsrA; the IS-58 strain possesses the TetK tetracycline efflux protein in its genome and the 1199B strain resists to hydrophilic fluoroquinolones via a NorA-mediated mechanism. The antibacterial activity was evaluated by determining the Minimal Inhibitory Concentration (MIC) and a possible inhibition of efflux pumps was associated to a reduction of the MIC. In this work we observed that in the presence of the treatments there was a decrease in the MIC for the RN4220 and IS-58 strains, suggesting that the substances presented an inhibitory effect on the efflux pumps of these strains. Significant efforts have been done to identify efflux pump inhibitors (EPIs) from natural sources and, therefore, the antibacterial properties of cholecalciferol and alpha-tocopherol might be attributed to a direct effect on the bacterial cell depending on their amphipathic structure. PMID:27298617

  5. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps.

    PubMed

    Tintino, Saulo R; Morais-Tintino, Cícera D; Campina, Fábia F; Pereira, Raimundo L; Costa, Maria do S; Braga, Maria Flaviana B M; Limaverde, Paulo W; Andrade, Jacqueline C; Siqueira-Junior, José P; Coutinho, Henrique Douglas Melo; Balbino, Valdir Q; Leal-Balbino, Tereza C; Ribeiro-Filho, Jaime; Quintans-Júnior, Lucindo J

    2016-01-01

    Alpha-tocopherol is one the most abundant and biologically active isoforms of vitamin E. This compound is a potent antioxidant and one of most studied isoforms of vitamin E. Vitamin D3 (cholecalciferol) is an important nutrient for calcium homeostasis and bone health, that has also been recognized as a potent modulator of the immune response. Methicillin-resistant Staphylococcus aureus (MRSA) is the most important causative agent of both nosocomial and community-acquired infections. The aim of this study was to evaluate the inhibitory effect of alpha-tocopherol and cholecalciferol on both S. aureus and multidrug resistant S. aureus efflux pumps. The RN4220 strain has the plasmid pUL5054 that is the carrier of gene that encodes the macrolide resistance protein (an efflux pump) MsrA; the IS-58 strain possesses the TetK tetracycline efflux protein in its genome and the 1199B strain resists to hydrophilic fluoroquinolones via a NorA-mediated mechanism. The antibacterial activity was evaluated by determining the Minimal Inhibitory Concentration (MIC) and a possible inhibition of efflux pumps was associated to a reduction of the MIC. In this work we observed that in the presence of the treatments there was a decrease in the MIC for the RN4220 and IS-58 strains, suggesting that the substances presented an inhibitory effect on the efflux pumps of these strains. Significant efforts have been done to identify efflux pump inhibitors (EPIs) from natural sources and, therefore, the antibacterial properties of cholecalciferol and alpha-tocopherol might be attributed to a direct effect on the bacterial cell depending on their amphipathic structure. PMID:27298617

  6. Draft Genome Sequences of Vancomycin-Susceptible Staphylococcus aureus Related to Heterogeneous Vancomycin-Intermediate S. aureus.

    PubMed

    Ramaraj, Thiruvarangan; Matyi, Stephanie A; Sundararajan, Anitha; Lindquist, Ingrid E; Devitt, Nicolas P; Schilkey, Faye D; Lamichhane-Khadka, Reena; Hoyt, Peter R; Mudge, Joann; Gustafson, John E

    2014-01-01

    We report the draft genome sequences of three vancomycin-susceptible methicillin-resistant Staphylococcus aureus strains. S. aureus strain MV8 is a sequence type 8 (ST-8) staphylococcal cassette chromosome mec element type IV (SCCmec IV) derivative, while the other two strains (S. aureus MM25 and MM61) are ST-5 SCCmec II strains. MM61 is also closely related to the heterogeneous vancomycin-intermediate S. aureus strain MM66. PMID:25301662

  7. Antimicrobial therapy of Staphylococcus aureus bloodstream infection.

    PubMed

    Tacconelli, Evelina; Cataldo, Maria A

    2007-10-01

    Staphylococcus aureus bloodstream infection (BSI) contributes significantly to the morbidity and mortality of in-patients. The optimal therapy for methicillin-susceptible S. aureus BSI consists of penicillins. The efficacy of these drugs is well documented from several published data and supported from a long clinical experience. Methicillin-resistant S. aureus (MRSA) strains are responsible for the majority of nosocomial BSI and are recovered with increasing frequency at hospital admission. Although glycopeptides still represent the drugs of choice, there are several concerns on the treatment of MRSA BSI: reports of clinical failure with vancomycin treatment, regardless of the in vitro susceptibility; increasing reports of MRSA strains with reduced vancomycin susceptibility; difficulty in therapeutic dosage monitoring of teicoplanin; lack of evidence on the efficacy of combination therapy. Recently, new drugs have been introduced in the therapeutic arsenal for MRSA infections, but their clinical use is not yet clearly established for BSI. The review summarises evidence on present therapeutic options for the treatment of S. aureus BSI. PMID:17931086

  8. Staphylococcus aureus vaccines: Deviating from the carol.

    PubMed

    Missiakas, Dominique; Schneewind, Olaf

    2016-08-22

    Staphylococcus aureus, a commensal of the human nasopharynx and skin, also causes invasive disease, most frequently skin and soft tissue infections. Invasive disease caused by drug-resistant strains, designated MRSA (methicillin-resistant S. aureus), is associated with failure of antibiotic therapy and elevated mortality. Here we review polysaccharide-conjugate and subunit vaccines that were designed to prevent S. aureus infection in patients at risk of bacteremia or surgical wound infection but failed to reach their clinical endpoints. We also discuss vaccines with ongoing trials for combinations of polysaccharide-conjugates and subunits. S. aureus colonization and invasive disease are not associated with the development of protective immune responses, which is attributable to a large spectrum of immune evasion factors. Two evasive strategies, assembly of protective fibrin shields via coagulases and protein A-mediated B cell superantigen activity, are discussed as possible vaccine targets. Although correlates for protective immunity are not yet known, opsonophagocytic killing of staphylococci by phagocytic cells offers opportunities to establish such criteria. PMID:27526714

  9. A series of template plasmids for Escherichia coli genome engineering.

    PubMed

    Deb, Shalini S; Reshamwala, Shamlan M S; Lali, Arvind M

    2016-06-01

    Metabolic engineering strategies often employ multi-copy episomal vectors to overexpress genes. However, chromosome-based overexpression is preferred as it avoids the use of selective pressure and reduces metabolic burden on the cell. We have constructed a series of template plasmids for λ Red-mediated Escherichia coli genome engineering. The template plasmids allow construction of genome integrating cassettes that can be used to integrate single copies of DNA sequences at predetermined sites or replace promoter regions. The constructed cassettes provide flexibility in terms of expression levels achieved and antibiotics used for selection, as well as allowing construction of marker-free strains. The modular design of the template plasmids allows replacement of genetic parts to construct new templates. Gene integration and promoter replacement using the template plasmids are illustrated. PMID:27071533

  10. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds.

    PubMed

    Liu, Jianhua; Zhang, Xiaoliang; Yu, Mei; Li, Songmei; Zhang, Jindan

    2012-01-23

    Biological scaffolds are being actively explored for the synthesis of nanomaterials with novel structures and unexpected properties. Toroidal plasmid DNA separated from the Bacillus host is applied as a sacrificial mold for the synthesis of silver nanoparticles and nanorings. The photoirradiation method is applied to reduce Ag(I) on the plasmid. The nanoparticles are obtained by varying the concentration of the Ag(I) ion solution and the exposure time of the plasmid-Ag(I) complex under UV light at 254 nm and room temperature. It is found that the plasmid serves not only as a template but also as a reductant to drive the silver nucleation and deposition. The resulting nanoparticles have a face-centered cubic (fcc) crystal structure and 20-30 nm average diameter. The detailed mechanism is discussed, and other metals or alloys could also be synthesized with this method. PMID:22102552

  11. [New low-copy plasmid in cyanobacterium Anabaena variabilis].

    PubMed

    Mardanov, A V; Beletskiĭ, A V; Gumerov, V M; Karbysheva, E A; Mikheeva, L E

    2013-08-01

    Complete genome sequencing was performed for Anabaena variabilis ATCC 29413 from the collection of the Chair of Genetics, Department of Biology, Moscow State University, Russia. In addition to known plasmids A, B, and C, a new circular low-copy plasmid was detected and named D. It was also sequenced completely and found to have 27051 bp. The plasmid contained the parA and parB genes of the partition system, two genes that encode replication proteins, a gene for site-specific recombinase, atype-I restriction-modification system, and several genes with unknown functions. Analysis by PCR revealed the presence of plasmid D in two epiphytic strains from Vietnam, i.e., Anabaena sp. 182 and Anabaena sp. 281, as well as in Anabaena sp. V5 and A. azollae (Newton's isolate). PMID:25474879

  12. [New low-copy plasmid in cyanobacterium Anabaena variabilis].

    PubMed

    2013-08-01

    Complete genome sequencing was performed for Anabaena variabilis ATCC 29413 from the collection of the Chair of Genetics, Department of Biology, Moscow State University, Russia. In addition to known plasmids A, B, and C, a new circular low-copy plasmid was detected and named D. It was also sequenced completely and found to have 27051 bp. The plasmid contained the parA and parB genes of the partition system, two genes that encode replication proteins, a gene for site-specific recombinase, atype-I restriction-modification system, and several genes with unknown functions. Analysis by PCR revealed the presence of plasmid D in two epiphytic strains from Vietnam, i.e., Anabaena sp. 182 and Anabaena sp. 281, as well as in Anabaena sp. V5 and A. azollae (Newton's isolate). PMID:25508658

  13. Plasmid content of isolates of Erwinia amylovora from orchards in Washington and Oregon in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly all strains of Erwinia amylovora carry plasmid pEA29, which has not been found in other species of bacteria. Additional plasmids have been reported in the pathogen isolates from Western states, such as a plasmid in strain CA11 that carries streptomycin-resistance genes and the plasmid pEU30,...

  14. A novel chromatographic procedure for purification of bacterial plasmids.

    PubMed

    Bywater, M; Bywater, R; Hellman, L

    1983-07-01

    A new, rapid procedure for purifying bacterial plasmids with high recovery is described. The sequence of operations consists essentially of treatment with alkali, ribonuclease, and proteinase K, followed by chisam extraction and gel filtration on Sephacryl S-1000, and finally a precipitation step using isopropanol at room temperature. The method gives rather good yields of plasmid DNA of high purity, and lends itself to scaling up. PMID:6312836

  15. Transfer of plasmids by conjugation in Streptococcus pneumoniae

    SciTech Connect

    Smith, M.D.; Shoemaker, N.B.; Burdett, V.; Guild, W.R.

    1980-01-01

    Transfer of resistance plasmids occurred by conjugation in Streptococcus pneumoniae (pneumococcus) similiarly to the process in other streptococcal groups. The 20-megadalton plasmid pIP501 mediated its own DNase-resistant transfer by filter mating and mobilized the 3.6-megadalton non-self-transmissible pMV158. Pneumococcal strains acted as donors or as recipients for intraspecies transfers and for interspecific transfers with Streptococcus faecalis. Transfer-deficient mutants of pIP501 have been found.

  16. Staphopains Modulate Staphylococcus aureus Biofilm Integrity

    PubMed Central

    Mootz, Joe M.; Malone, Cheryl L.; Shaw, Lindsey N.

    2013-01-01

    Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties that alter biofilm integrity. However, the specific contribution of each protease and mechanism of biofilm modulation is not clear. To address this issue, we utilized a sigma factor B (ΔsigB) mutant where protease activity results in a biofilm-negative phenotype, thereby creating a condition where the protease(s) responsible for the phenotype could be identified. Using a plasma-coated microtiter assay, biofilm formation was restored to the ΔsigB mutant through the addition of the cysteine protease inhibitor E-64 or by using Staphostatin inhibitors that specifically target the extracellular cysteine proteases SspB and ScpA (called Staphopains). Through construction of gene deletion mutants, we determined that an sspB scpA double mutant restored ΔsigB biofilm formation, and this recovery could be replicated in plasma-coated flow cell biofilms. Staphopain levels were also found to be decreased under biofilm-forming conditions, possibly allowing biofilm establishment. The treatment of S. aureus biofilms with purified SspB or ScpA enzyme inhibited their formation, and ScpA was also able to disperse an established biofilm. The antibiofilm properties of ScpA were conserved across S. aureus strain lineages. These findings suggest an underappreciated role of the SspB and ScpA cysteine proteases in modulating S. aureus biofilm architecture. PMID:23798534

  17. Exposing Plasmids as the Achilles’ Heel of Drug-Resistant Bacteria

    PubMed Central

    Williams, Julia J.; Hergenrother, Paul J.

    2008-01-01

    Many multi-drug resistant bacterial pathogens harbor large plasmids that encode proteins conferring resistance to antibiotics. While the acquisition of these plasmids often enables bacteria to survive in the presence of antibiotics, it is possible that plasmids also represent a vulnerability that can be exploited in tailored antibacterial therapy. This review highlights three recently described strategies designed to specifically combat bacteria harboring such plasmids: Inhibition of plasmid conjugation, inhibition of plasmid replication, and exploitation of plasmid-encoded toxin-antitoxin systems. PMID:18625335

  18. Clinical implications of vancomycin heteroresistant and intermediately susceptible Staphylococcus aureus.

    PubMed

    Gomes, Diane M; Ward, Kristina E; LaPlante, Kerry L

    2015-04-01

    Staphylococcus aureus (S. aureus) has proven to be a major pathogen with the emergence of methicillin-resistant S. aureus (MRSA) infections and recently with heteroresistant vancomycin-intermediate S. aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) infections. Although vancomycin is traditionally a first-line and relatively effective antibiotic, its continued use is under question because reports of heteroresistance in S. aureus isolates are increasing. Both hVISA and VISA infections are associated with complicated clinical courses and treatment failures. The prevalence, mechanism of resistance, clinical significance, and laboratory detection of hVISA and VISA infections are not conclusive, making it difficult to apply research findings to clinical situations. We provide an evidence-based review of S. aureus isolates expressing heterogenic and reduced susceptibility to vancomycin. PMID:25884530

  19. Bovine Staphylococcus aureus: diagnostic properties of specific media.

    PubMed

    Graber, H U; Pfister, S; Burgener, P; Boss, R; Meylan, M; Hummerjohann, J

    2013-08-01

    As accurate discrimination between Staphylococcus (S.) aureus and NSA (non-S. aureus staphylococci) involved in bovine mastitis is essential in terms of clinical prognosis and outcome, the aim of this study was to reevaluate the classical bacteriological procedures to identify these agents. Various media and the coagulase tube test were investigated using 116 strains of S. aureus and 115 of NSA, all isolated from cows with spontaneous intramammary infections (IMI). Furthermore, 25 NSA reference strains were analyzed. The study demonstrated that a few media were appropriate for differentiating S. aureus from NSA, provided that the staphylococci were isolated from bovine IMI. Evaluation of hemolysis further revealed that double or incomplete hemolysis are specific for S. aureus and are, therefore, a decisive diagnostic criterion. For strains showing complete hemolysis, maximal discrimination between S. aureus and NSA was observed by subculturing them on CHROMagar Staph. aureus. PMID:23548479

  20. Plasmid-free T7-based Escherichia coli expression systems.

    PubMed

    Striedner, Gerald; Pfaffenzeller, Irene; Markus, Luchner; Nemecek, Sabine; Grabherr, Reingard; Bayer, Karl

    2010-03-01

    In order to release host cells from plasmid-mediated increases in metabolic load and high gene dosages, we developed a plasmid-free, T7-based E. coli expression system in which the target gene is site-specifically integrated into the genome of the host. With this system, plasmid-loss, a source of instability for conventional expression systems, was eliminated. At the same time, system leakiness, a challenging problem with recombinant systems, was minimized. The efficiency of the T7 RNA polymerase compensates for low gene dosage and provides high rates of recombinant gene expression without fatal consequences to host metabolism. Relative to conventional pET systems, this system permits improved process stability and increases the host cell's capacity for recombinant gene expression, resulting in higher product yields. The stability of the plasmid-free system was proven in chemostat cultivation for 40 generations in a non-induced and for 10 generations in a fully induced state. For this reason plasmid-free systems benefit the development of continuous production processes with E. coli. However, time and effort of the more complex cloning procedure have to be considered in relation to the advantages of plasmid-free systems in upstream-processing. PMID:19891007

  1. Automated Filtration-Based High-Throughput Plasmid Preparation System

    PubMed Central

    Itoh, Masayoshi; Kitsunai, Tokuji; Akiyama, Junichi; Shibata, Kazuhiro; Izawa, Masaki; Kawai, Jun; Tomaru, Yasuhiro; Carninci, Piero; Shibata, Yuko; Ozawa, Yasuhiro; Muramatsu, Masami; Okazaki, Yasushi; Hayashizaki, Yoshihide

    1999-01-01

    Current methods of plasmid preparation do not allow for large capacity automated processing. We have developed an automated high-throughput system that prepares plasmid DNA for large-scale sequencing. This system is based on our previously reported filtration method. In this method, cell harvesting, alkaline lysis, and plasmid purification occur in a single 96-well microtiter plate from which sequence-ready DNA samples are collected. The plates are designed to allow all reagents to be injected from above the wells and the spent reagents to be aspirated from below. This design has enabled us to build a linear process plasmid preparation system consisting of an automated filter plate stacker and a 21-stage automated plasmid preparator. The 96-well plates used are outfitted with glass-filters that trap Escherichia coli before the plates are stacked in the automated stacker. The plates move from the stacker to each of the 21 stages of the preparator. At specific stages, various reagents or chemicals are injected into the wells from above. Finally, the plates are collected in the second stacker. The optimal throughput of the preparator is 40,000 samples in 17.5 hr. Here, we describe a pilot experiment preparing 15,360 templates in 160 specially designed 96-well glass-filter plates. The prepared plasmids were subjected to restriction digestion, DNA sequencing, and transcriptional sequencing. PMID:10330126

  2. Functional analysis of the yeast plasmid partition locus STB

    PubMed Central

    Murray, James A. H.; Cesareni, Gianni

    1986-01-01

    Derivatives of the yeast 2μ plasmid with the cis-acting locus STB (also called REP3) are stably maintained if two plasmid-encoded proteins are present in trans. There are conflicting reports of both the extent of STB and its possible involvement in plasmid partition or copy number control. We have resolved the controversy by constructing 2µ derivatives with a conditional STB function, and showing that when STB is inactivated plasmids become concentrated in a small fraction of the population although the total number of plasmids remains unaltered. Moreover we show that STB consists of two functionally distinct domains which we call STB-proximal and STB-distal relative to the origin of replication. Although STB-proximal is sufficient for proper partitioning, this function is severely disrupted by active transcription from neighbouring sequences. STB-distal is important to protect STB-proximal and ORI from such transcription, and can be effeciently replaced by a 94-bp terminator fragment in an orientation-dependent manner. We find that STB-distal contains an additional element which depresses transcription from upstream promoters. We also describe the phenomenon of replicaton inhibition which we believe can exlain the anomalous instability of some yeast plasmids. ImagesFig. 4.Fig. 5.Fig. 6.Fig. 7. PMID:16453734

  3. Plasmid Carriage and the Serum Sensitivity of Enterobacteria

    PubMed Central

    Taylor, Peter W.; Hughes, Colin

    1978-01-01

    The carriage of a range of plasmids by rough, serum-sensitive laboratory strains of Escherichia coli made no difference to their reactivity in human serum as determined by two methods. Plasmid-carrying enterobacteria isolated from polluted river water gave a variety of responses to serum. Smooth E. coli river isolate C8 was killed by serum but only after a delay of 1 h, and curing of antibiotic resistance and colicin determinants from this strain led to a small but significant increase in serum sensitivity. Plasmids from eight strains were transferred by conjugation to a cured derivative of C8 (C8−NalR), and in six cases a significant increase in the serum resistance of the progeny was observed. Plasmid-mediated enhancement of resistance was particularly marked with plasmids R1 and NR1, and a round of replication mutant of NR1 conferred greater resistance than did the normal R factor. However, R1 and NR1 were unable to modify the serum response of a cured strain (P21−NalR) derived from promptly serum-sensitive isolate P21. These findings suggest that lipopolysaccharide O-side chains, the cell surface components responsible for the delay in serum killing, are essential for the expression of plasmid factors that modify sensitivity to serum. Examination of K(A)− variants of two isolates indicated that the K(A) antigen has only a marginal effect on the serum response. PMID:365738

  4. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species.

    PubMed

    Ramsey, Matthew M; Freire, Marcelo O; Gabrilska, Rebecca A; Rumbaugh, Kendra P; Lemon, Katherine P

    2016-01-01

    Staphylococcus aureus-human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence toward a commensal state when exposed to commensal Corynebacterium species. PMID:27582729

  5. Genetic Diversity of Staphylococcus aureus in Buruli Ulcer

    PubMed Central

    Amissah, Nana Ama; Glasner, Corinna; Ablordey, Anthony; Tetteh, Caitlin S.; Kotey, Nana Konama; Prah, Isaac; van der Werf, Tjip S.; Rossen, John W.; van Dijl, Jan Maarten; Stienstra, Ymkje

    2015-01-01

    Background Buruli ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans. Previous studies have shown that wounds of BU patients are colonized with M. ulcerans and several other microorganisms, including Staphylococcus aureus, which may interfere with wound healing. The present study was therefore aimed at investigating the diversity and topography of S. aureus colonizing BU patients during treatment. Methodology We investigated the presence, diversity, and spatio-temporal distribution of S. aureus in 30 confirmed BU patients from Ghana during treatment. S. aureus was isolated from nose and wound swabs, and by replica plating of wound dressings collected bi-weekly from patients. S. aureus isolates were characterized by multiple-locus variable number tandem repeat fingerprinting (MLVF) and spa-typing, and antibiotic susceptibility was tested. Principal Findings Nineteen (63%) of the 30 BU patients tested positive for S. aureus at least once during the sampling period, yielding 407 S. aureus isolates. Detailed analysis of 91 isolates grouped these isolates into 13 MLVF clusters and 13 spa-types. Five (26%) S. aureus-positive BU patients carried the same S. aureus genotype in their anterior nares and wounds. S. aureus isolates from the wounds of seven (37%) patients were distributed over two different MLVF clusters. Wounds of three (16%) patients were colonized with isolates belonging to two different genotypes at the same time, and five (26%) patients were colonized with different S. aureus types over time. Five (17%) of the 30 included BU patients tested positive for methicillin-resistant S. aureus (MRSA). Conclusion/Significance The present study showed that the wounds of many BU patients were contaminated with S. aureus, and that many BU patients from the different communities carried the same S. aureus genotype during treatment. This calls for improved wound care and hygiene. PMID:25658641

  6. Dye affinity cryogels for plasmid DNA purification.

    PubMed

    Çimen, Duygu; Yılmaz, Fatma; Perçin, Işık; Türkmen, Deniz; Denizli, Adil

    2015-11-01

    The aim of this study is to prepare megaporous dye-affinity cryogel discs for the purification of plasmid DNA (pDNA) from bacterial lysate. Poly(hydroxyethyl methacrylate) [PHEMA] cryogel discs were produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) redox pair in an ice bath. Cibacron Blue F3GA was used as an affinity ligand (loading amount: 68.9μmol/g polymer). The amount of pDNA adsorbed onto the PHEMA-Cibacron Blue F3GA cryogel discs first increased and then reached a plateau value (i.e., 32.5mg/g cryogel) at 3.0mg/mL pDNA concentration. Compared with the PHEMA cryogel (0.11mg/g cryogel), the pDNA adsorption capacity of the PHEMA-Cibacron Blue F3GA cryogel (32.4mg/g polymer) was improved significantly due to the Cibacron Blue 3GA immobilization onto the polymeric matrix. pDNA adsorption amount decreased from 11.7mg/g to 1.1mg/g with the increasing of NaCl concentration. The maximum pDNA adsorption was achieved at 4°C. The overall recovery of pDNA was calculated as 90%. The PHEMA-Cibacron Blue F3GA cryogel discs could be used five times without decreasing the pDNA adsorption capacity significantly. The results show that the PHEMA-Cibacron Blue F3GA cryogel discs promise high selectivity for pDNA. PMID:26249596

  7. Relationship between pNG2, an Emr plasmid in Corynebacterium diphtheriae, and plasmids in aerobic skin coryneforms.

    PubMed Central

    Schiller, J; Strom, M; Groman, N; Coyle, M

    1983-01-01

    Erythromycin-resistant (Emr) coryneforms from cutaneous lesions and erythromycin-susceptible (Ems) coryneforms from normal skin sites were screened for plasmids. Approximately one-third of the 40 isolates carried one or more plasmids ranging in mass from 2.5 to 36 megadaltons, all exhibiting different restriction enzyme digest patterns. In contrast, only Corynebacterium diphtheriae strains comprising a single cohort of apparently identical Emr, pNG2-carrying isolates have been identified as plasmid carriers. Homology was demonstrated between pNG2 and a number of fragments in restriction enzyme digests of plasmids from both Emr and Ems skin coryneforms under high-stringency conditions. However, none was detected between pNG2 and the genomic or plasmid DNAs of Emr staphylococci or streptococci isolated concurrently with the Emr coryneforms. One coryneform plasmid, pNG34, exhibited extensive homology with pNG2, and many comigrating fragments were observed. Very little relationship was observed between C. diphtheriae and the skin coryneforms when their genomic DNAs were hybridized. The origin and presence of pNG2 in Emr C. diphtheriae is discussed in relation to these findings. Images PMID:6318665

  8. Radiosensitivity of plasmid DNA: role of topology and concentration

    NASA Astrophysics Data System (ADS)

    Giustranti, C.; Pérez, C.; Rousset, S.; Balanzat, E.; Sage, E.

    1999-01-01

    Using the plasmid relaxation assay, the induction of single strand breaks (SSB) by ionizing radiation was investigated in two plasmids of different length, pBS and pSP189. The dose-response was linear for both plasmids but pSP189 exhibited a three times higher sensitivity than pBS. This disparity may be explained by a reduced accessibility to hydroxyl radicals due to a different topology of each plasmid, i.e. degree of compaction, as observed with electron microscopy. pBS plasmid was also exposed at various DNA concentrations to rays. The yield of SSB decreased with increasing concentration, suggesting a diminution in the amount of hydroxyl radicals efficient for radiolytic attack. This effect of concentration was also observed with densely ionizing radiation. In conclusion, the accessibility of DNA is a key-parameter in the formation of damage in vitro and in vivo as well. En utilisant la technique de relaxation de plasmide, l'induction de cassures simple brin (SSB) par les radiations ? a été comparée dans deux plasmides de taille différente, pSP189 et pBS. La relation dose-effet est linéaire pour les deux plasmides, mais il se forme trois fois plus de SSB dans pSP189 que dans pBS. Cette disparité semble pouvoir être reliée au degré de compaction différent des plasmides, observé en microscopie électronique. Elle s'expliquerait en terme d'accessibilité aux espèces radicalaires formées lors de la radiolyse de l'eau. Le plasmide pBS, à différentes concentrations, a été ensuite exposé aux radiations γ. Le taux de cassures décroit lorsque la concentration en ADN croit, suggérant une diminution du nombre de radicaux pouvant efficacement réagir avec l'ADN. Cet effet a également été mis en évidence lors d'une irradiation avec des particules de TEL élevé. En conclusion, l'accessibilité de l'ADN est un paramètre- clé dans la formation des dommages, tant in vitro que in vivo.

  9. Plasmids and Rickettsial Evolution: Insight from Rickettsia felis

    PubMed Central

    Gillespie, Joseph J.; Beier, Magda S.; Rahman, M. Sayeedur; Ammerman, Nicole C.; Shallom, Joshua M.; Purkayastha, Anjan; Sobral, Bruno S.; Azad, Abdu F.

    2007-01-01

    Background The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. Methodology/Principal Findings Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFδ, is an artifact of the original genome assembly. Conclusion/Significance Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of

  10. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence.

    PubMed

    Lee, Kayeon; Lee, Jin-Hyung; Ryu, Shi Yong; Cho, Moo Hwan; Lee, Jintae

    2014-09-01

    Stilbenoids have a broad range of beneficial health effects. On the other hand, the emergence of antibiotic-resistant Staphylococcus aureus presents a worldwide problem that requires new antibiotics or nonantibiotic strategies. S. aureus produces α-hemolysin (a pore-forming cytotoxin) that has been implicated in the pathogenesis of sepsis and pneumonia. Furthermore, the biofilms formed by S. aureus constitute a mechanism of antimicrobial resistance. In this study, we investigated the hemolytic and antibiofilm activities of 10 stilbene-related compounds against S. aureus. trans-Stilbene and resveratrol at 10 μg/mL were found to markedly inhibit human blood hemolysis by S. aureus, and trans-stilbene also inhibited S. aureus biofilm formation without affecting its bacterial growth. Furthermore, trans-stilbene and resveratrol attenuated S. aureus virulence in vivo in the nematode Caenorhabditis elegans, which is normally killed by S. aureus. Transcriptional analysis showed that trans-stilbene repressed the α-hemolysin hla gene and the intercellular adhesion locus (icaA and icaD) in S. aureus, and this finding was in line with observed reductions in virulence and biofilm formation. In addition, vitisin B, a stilbenoid tetramer, at 1 μg/mL was observed to significantly inhibit human blood hemolysis by S. aureus. PMID:25007234