Science.gov

Sample records for auto-contoured target volume

  1. Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison

    PubMed Central

    2009-01-01

    Background Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the

  2. Liposome technology. Volume III: Targeted drug delivery and biological interaction

    SciTech Connect

    Gregoriadis, G.

    1984-01-01

    These three volumes cover liposome technology in pharmacology and medicine. Contributors emphasize methodology used in their own laboratories, and include a brief introduction, coverage of relevant literature, applications and critical evaluations for the methods they describe. In Volume III, the growing variety of techniques yielding targeted liposomes and approaches of studying liposomal behavior both in vitro and in vivo are discussed.

  3. Combined Recipe for Clinical Target Volume and Planning Target Volume Margins

    SciTech Connect

    Stroom, Joep; Gilhuijs, Kenneth; Vieira, Sandra; Chen, Wei; Salguero, Javier; Moser, Elizabeth; Sonke, Jan-Jakob

    2014-03-01

    Purpose: To develop a combined recipe for clinical target volume (CTV) and planning target volume (PTV) margins. Methods and Materials: A widely accepted PTV margin recipe is M{sub geo} = aΣ{sub geo} + bσ{sub geo}, with Σ{sub geo} and σ{sub geo} standard deviations (SDs) representing systematic and random geometric uncertainties, respectively. On the basis of histopathology data of breast and lung tumors, we suggest describing the distribution of microscopic islets around the gross tumor volume (GTV) by a half-Gaussian with SD Σ{sub micro}, yielding as possible CTV margin recipe: M{sub micro} = ƒ(N{sub i}) × Σ{sub micro}, with N{sub i} the average number of microscopic islets per patient. To determine ƒ(N{sub i}), a computer model was developed that simulated radiation therapy of a spherical GTV with isotropic distribution of microscopic disease in a large group of virtual patients. The minimal margin that yielded D{sub min} <95% in maximally 10% of patients was calculated for various Σ{sub micro} and N{sub i}. Because Σ{sub micro} is independent of Σ{sub geo}, we propose they should be added quadratically, yielding for a combined GTV-to-PTV margin recipe: M{sub GTV-PTV} = √([aΣ{sub geo}]{sup 2} + [ƒ(N{sub i})Σ{sub micro}]{sup 2}) + bσ{sub geo}. This was validated by the computer model through numerous simultaneous simulations of microscopic and geometric uncertainties. Results: The margin factor ƒ(N{sub i}) in a relevant range of Σ{sub micro} and N{sub i} can be given by: ƒ(N{sub i}) = 1.4 + 0.8log(N{sub i}). Filling in the other factors found in our simulations (a = 2.1 and b = 0.8) yields for the combined recipe: M{sub GTV-PTV} = √((2.1Σ{sub geo}){sup 2} + ([1.4 + 0.8log(N{sub i})] × Σ{sub micro}){sup 2}) + 0.8σ{sub geo}. The average margin difference between the simultaneous simulations and the above recipe was 0.2 ± 0.8 mm (1 SD). Calculating M{sub geo} and M{sub micro} separately and adding them linearly overestimated PTVs by on

  4. Interobserver Variation of Clinical Target Volume Delineation in Gastric Cancer

    SciTech Connect

    Jansen, Edwin; Verheij, Marcel

    2010-07-15

    Purpose: To evaluate interobserver variability in clinical target volume (CTV) delineation in gastric cancer performed with the help of a delineation guide. Patients and Methods: Ten radiotherapy centers that participate in the CRITICS Phase III trial were provided with a delineation atlas, preoperative CT scans, a postoperative planning CT scan, and clinical information for a gastric cancer case and were asked to construct a CTV and create a dosimetric plan according to departmental policy. Results: The volumes of the CTVs and planning target volumes (PTVs) differed greatly, with a mean (SD) CTV volume of 392 (176) cm{sup 3} (range, 240-821cm{sup 3}) and PTV volume of 915 (312) cm{sup 3} (range, 634-1677cm{sup 3}). The overlapping volume was 376cm{sup 3} for the CTV and 890cm{sup 3} for the PTV. The greatest differences in the CTV were seen at the cranial and caudal parts. After planning, dose coverage of the overlapping PTV volume showed less variability than the CTV. Conclusion: In this series of 10 plans, variability of the CTV in postoperative chemoradiotherapy for gastric cancer is large. Strict and clear delineation guidelines should be provided, especially in Phase III multicenter studies. Adaptations of these guidelines should be evaluated in clinical studies.

  5. Masked target transform volume clutter metric applied to vehicle search

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.; Camp, H. A.; Moyer, Steve; Halford, Carl E.

    2010-04-01

    The Night Vision and Electronic Sensors Directorate's current time-limited search model, which makes use of the targeting task performance (TTP) metric to describe imager quality, does not explicitly account for the effects of clutter on observer performance. The masked target transform volume (MTTV) clutter metric has been presented previously, but is first applied to the results of a vehicle search perception experiment with simulated thermal imagery here. NVESD's Electro-Optical Simulator program was used to generate hundreds of synthetic images of tracked vehicles hidden in a rural environment. 12 observers searched for the tracked vehicles and their performance is compared to the MTTV clutter level, signal-to-clutter ratios using several clutter metrics from open literature, and to the product of target size and contrast. The investigated clutter metrics included the Schmeider-Weathersby statistical variance, Silk's statistical variance, Aviram's probability of edge detection metric, and Chang's target structural similarity metric. The MTTV was shown to better model observer performance as measured by the perception experiment than any of the other compared metrics, including the product of target size and contrast.

  6. Functional magnetic resonance imaging for defining the biological target volume

    PubMed Central

    Kauczor, Hans-Ulrich; Zechmann, Christian; Stieltjes, Bram; Weber, Marc-Andre

    2006-01-01

    Morphology as demonstrated by CT is the basis for radiotherapy planning. Intensity-modulated and adaptive radiotherapy techniques would greatly benefit from additional functional information allowing for definition of the biological target volume. MRI techniques include several which can characterize and quantify different tissue properties and their tumour-related changes. Results of perfusion MRI represent microvascular density and permeability; MR spectroscopy depicts particular metabolites; diffusion weighted imaging shows tissue at risk and tumour cellularity; while dynamic 3D acquisition (4D MRI) shows organ motion and the mobility of tumours within them. PMID:16766269

  7. Optimized Planning Target Volume for Intact Cervical Cancer

    SciTech Connect

    Khan, Alvin; Jensen, Lindsay G.; Sun Shuai; Song, William Y.; Yashar, Catheryn M.; Mundt, Arno J.; Zhang Fuquan; Jiang, Steve B.; Mell, Loren K.

    2012-08-01

    Purpose: To model interfraction clinical target volume (CTV) variation in patients with intact cervical cancer and design a planning target volume (PTV) that minimizes normal tissue dose while maximizing CTV coverage. Methods and Materials: We analyzed 50 patients undergoing external-beam radiotherapy for intact cervical cancer using daily online cone-beam computed tomography (CBCT). The CBCTs (n = 972) for each patient were rigidly registered to the planning CT. The CTV was delineated on the planning CT (CTV{sub 0}) and the set of CBCTs ({l_brace}CTV{sub 1}-CTV{sub 25}{r_brace}). Manual (n = 98) and automated (n = 668) landmarks were placed over the surface of CTV{sub 0} with reference to defined anatomic structures. Normal vectors were extended from each landmark, and the minimum length required for a given probability of encompassing CTV{sub 1}-CTV{sub 25} was computed. The resulting expansions were used to generate an optimized PTV. Results: The mean (SD; range) normal vector length to ensure 95% coverage was 4.3 mm (2.7 mm; 1-16 mm). The uniform expansion required to ensure 95% probability of CTV coverage was 13 mm. An anisotropic margin of 20 mm anteriorly and posteriorly and 10 mm superiorly, inferiorly, and laterally also would have ensured a 95% probability of CTV coverage. The volume of the 95% optimized PTV (1470 cm{sup 3}) was significantly lower than both the anisotropic PTV (2220 cm{sup 3}) and the uniformly expanded PTV (2110 cm{sup 3}) (p < 0.001). For a 95% probability of CTV coverage, normal lengths of 1-3 mm were found along the superior and lateral regions of CTV{sub 0}, 5-10 mm along the interfaces of CTV{sub 0} with the bladder and rectum, and 10-14 mm along the anterior surface of CTV{sub 0} at the level of the uterus. Conclusion: Optimizing PTV definition according to surface landmarking resulted in a high probability of CTV coverage with reduced PTV volumes. Our results provide data justifying planning margins to use in practice and

  8. [Gross tumor volume (GTV) and clinical target volume (CTV) in radiotherapy of benign skull base tumors].

    PubMed

    Maire, J P; Liguoro, D; San Galli, F

    2001-10-01

    Skull base tumours represent about 35 to 40% of all intracranial tumours. There are now many reports in the literature confirming the fact that about 80 to 90% of such tumours are controlled with fractionated radiotherapy. Stereotactic and 3-dimensional treatment planning techniques increase local control and central nervous system tolerance. Definition of the gross tumor volume (GTV) is generally easy with currently available medical imaging systems and computers for 3-dimensional dosimetry. The definition of the clinical target volume (CTV) is more difficult to appreciate; it is defined from the CTV plus a margin, which depends on the histology and anterior therapeutic history of the tumour. It is important to take into account the visible tumour and its possible extension pathways (adjacent bone, holes at the base of skull) and/or an anatomic region (sella turcica + adjacent cavernous sinus). It is necessary to evaluate these volumes with CT Scan and MRI to appreciate tumor extension in a 3-dimentional approach, in order to reduce the risk of marginal recurrences. The aim of this paper is to discuss volume definition as a function of tumour site and tumour type to be irradiated. PMID:11715310

  9. A precision translation stage for reproducing measured target volume motions.

    PubMed

    Litzenberg, Dale W; Hadley, Scott W; Lam, Kwok L; Balter, James M

    2007-01-01

    The development of 4D imaging, treatment planning and treatment delivery methods for radiation therapy require the use of a high-precision translation stage for testing and validation. These technologies may require spatial resolutions of 1 mm, and temporal resolutions of 2-30 Hz for CT imaging, electromagnetic tracking, and fluoroscopic imaging. A 1D programmable translation stage capable of reproducing idealized and measured anatomic motions common to the thorax has been design and built to meet these spatial and temporal resolution requirement with phantoms weighing up to 27 kg. The stage consists of a polycarbonate base and table, driven by an AC servo motor with encoder feedback by means of a belt-coupled precision screw. Complex motions are possible through a programmable motion controller that is capable of running multiple independent control and monitoring programs concurrently. Programmable input and output ports allow motion to be synchronized with beam delivery and other imaging and treatment delivery devices to within 2.0 ms. Average deviations from the programmed positions are typically 0.2 mm or less, while the average typical maximum positional errors are typically 0.5 mm for an indefinite number of idealized breathing motion cycles and while reproducing measured target volume motions for several minutes. PMID:17712294

  10. [Gross tumor volume (GTV) and clinical target volume (CTV) in adult gliomas].

    PubMed

    Kantor, G; Loiseau, H; Vital, A; Mazeron, J J

    2001-10-01

    Glioblastoma multiform and astrocytoma are the most frequent primary cancer of the central nervous system of adult. Definitions of gross tumor volume (GTV) and clinical target volume (CTV) are based on the confrontation of clinical presentation (age, performance status, neurologic symptoms...), histological type and imaging aspects. For glioblastoma multiform, the GTV can be defined by the area of contrast enhancement observed on the CT scan or MRI. Definition of the CTV can be more difficult and have to take into account the risk of presence of isolated malignant cells in the oedema surrounding the tumor or in the adjacent brain structures. The classical concept of GTV plus a safety margin of 2 cm around is discussed with a CTV containing at least all the oedematous area and eventually adjacent brain structures (nuclei, corpus callosum or other long associative fibers...). For low grade astrocytoma, the definition of GTV can be difficult if the tumoral infiltration is diffuse without nodular visible tumor. CTV corresponds to at least T2 MRI hypersignal area when visible. For postoperative tumor, technical considerations are important for the detection of residual tumor. A safety margin around the resected area is designed according to the risk of presence of isolated cells or involvement of adjacent brain structures. PMID:11715309

  11. OPS MCC level B/C formulation requirements: Area targets and space volumes processor

    NASA Technical Reports Server (NTRS)

    Bishop, M. J., Jr.

    1979-01-01

    The level B/C mathematical specifications for the area targets and space volumes processor (ATSVP) are described. The processor is designed to compute the acquisition-of-signal (AOS) and loss-of-signal (LOS) times for area targets and space volumes. The characteristics of the area targets and space volumes are given. The mathematical equations necessary to determine whether the spacecraft lies within the area target or space volume are given. These equations provide a detailed model of the target geometry. A semianalytical technique for predicting the AOS and LOS time periods is disucssed. This technique was designed to bound the actual visibility period using a simplified target geometry model and unperturbed orbital motion. Functional overview of the ATSVP is presented and it's detailed logic flow is described.

  12. Technology transfer from NASA to targeted industries, volume 2

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  13. High volume fabrication of laser targets using MEMS techniques

    NASA Astrophysics Data System (ADS)

    Spindloe, C.; Arthur, G.; Hall, F.; Tomlinson, S.; Potter, R.; Kar, S.; Green, J.; Higginbotham, A.; Booth, N.; Tolley, M. K.

    2016-04-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed.

  14. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    SciTech Connect

    Brown, Lindsay C.; Diehn, Felix E.; Boughey, Judy C.; Childs, Stephanie K.; Park, Sean S.; Yan, Elizabeth S.; Petersen, Ivy A.; Mutter, Robert W.

    2015-07-01

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.

  15. Atlas-Based Semiautomatic Target Volume Definition (CTV) for Head-and-Neck Tumors

    SciTech Connect

    Strassmann, Gerd; Abdellaoui, Soulimane; Richter, Detlef; Bekkaoui, Fayzal; Haderlein, Marlene; Fokas, Emmanouil; Timmesfeld, Nina; Vogel, Birgitt M.D.; Henzel, Martin; Engenhart-Cabillic, Rita

    2010-11-15

    Purpose: To develop a new semiautomatic method to improve target delineation in head-and-neck cancer. Methods and Materials: We implemented an atlas-based software program using fourteen anatomic landmarks as well as the most superior and inferior computerd tomography slices for automatic target delineation, using an advanced laryngeal carcinoma as an example. Registration was made by an affine transformation. Evaluation was performed with manually drawn contours for comparison. Three physicians sampled and further applied a target volume atlas to ten other computer tomography data sets. In addition, a rapid three-dimensional (3D) correction program was developed. Results: The mean time to the first semiautomatic target delineation proposal was 2.7 minutes. Manual contouring required 20.2 minutes per target, whereas semiautomatic target volume definition with the rapid 3D correction was completed in only 9.7 minutes. The net calculation time for image registration of the target volume atlas was negligible (approximately 0.6 seconds). Our method depicted a sufficient adaptation of the target volume atlas on the new data sets, with a mean similarity index of 77.2%. The similarity index increased up to 85% after 3D correction performed by the physicians. Conclusions: We have developed a new, feasible method for semiautomatic contouring that saves a significant amount (51.8%) of target delineation time for head-and-neck cancer patients. This approach uses a target volume atlas and a landmark model. The software was evaluated by means of laryngeal cancer but has important implications for various tumor types whereby target volumes remain constant in form and do not move with respiration.

  16. Target volume definition for three-dimensional conformal radiation therapy of lung cancer.

    PubMed

    Armstrong, J G

    1998-06-01

    Three-dimensional conformal radiation therapy (3DCRT) is a mode of high precision radiotherapy which has the potential to improve the therapeutic ratio of radiation therapy for locally advanced non-small cell lung cancer. The preliminary clinical experience with 3DCRT has been promising and justifies further endeavour to refine its clinical application and ultimately test its role in randomized trials. There are several steps to be taken before 3DCRT evolves into an effective single modality for the treatment of lung cancer and before it is effectively integrated with chemotherapy. This article addresses core issues in the process of target volume definition for the application of 3DCRT technology to lung cancer. The International Commission on Radiation Units and Measurements Report no. 50 definitions of target volumes are used to identify the factors influencing target volumes in lung cancer. The rationale for applying 3DCRT to lung cancer is based on the frequency of failure to eradicate gross tumour with conventional approaches. It may therefore be appropriate to ignore subclinical or microscopic extensions when designing a clinical target volume, thereby restricting target volume size and allowing dose escalation. When the clinical target volume is expanded to a planning target volume, an optimized margin would result in homogeneous irradiation to the highest dose feasible within normal tissue constraints. To arrive at such optimized margins, multiple factors, including data acquisition, data transfer, patient movement, treatment reproducibility, and internal organ and target volume motion, must be considered. These factors may vary significantly depending on technology and techniques, and published quantitative analyses are no substitute for meticulous attention to detail and audit of performance. PMID:9849380

  17. Technology transfer from NASA to targeted industries, volume 1

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  18. International Spine Radiosurgery Consortium Consensus Guidelines for Target Volume Definition in Spinal Stereotactic Radiosurgery

    SciTech Connect

    Cox, Brett W.; Spratt, Daniel E.; Lovelock, Michael; Bilsky, Mark H.; Lis, Eric; Ryu, Samuel; Sheehan, Jason; Gerszten, Peter C.; Chang, Eric; Gibbs, Iris; Soltys, Scott; Sahgal, Arjun; Deasy, Joe; Flickinger, John; Quader, Mubina; Mindea, Stefan; and others

    2012-08-01

    Purpose: Spinal stereotactic radiosurgery (SRS) is increasingly used to manage spinal metastases. However, target volume definition varies considerably and no consensus target volume guidelines exist. This study proposes consensus target volume definitions using common scenarios in metastatic spine radiosurgery. Methods and Materials: Seven radiation oncologists and 3 neurological surgeons with spinal radiosurgery expertise independently contoured target and critical normal structures for 10 cases representing common scenarios in metastatic spine radiosurgery. Each set of volumes was imported into the Computational Environment for Radiotherapy Research. Quantitative analysis was performed using an expectation maximization algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE) with kappa statistics calculating agreement between physicians. Optimized confidence level consensus contours were identified using histogram agreement analysis and characterized to create target volume definition guidelines. Results: Mean STAPLE agreement sensitivity and specificity was 0.76 (range, 0.67-0.84) and 0.97 (range, 0.94-0.99), respectively, for gross tumor volume (GTV) and 0.79 (range, 0.66-0.91) and 0.96 (range, 0.92-0.98), respectively, for clinical target volume (CTV). Mean kappa agreement was 0.65 (range, 0.54-0.79) for GTV and 0.64 (range, 0.54-0.82) for CTV (P<.01 for GTV and CTV in all cases). STAPLE histogram agreement analysis identified optimal consensus contours (80% confidence limit). Consensus recommendations include that the CTV should include abnormal marrow signal suspicious for microscopic invasion and an adjacent normal bony expansion to account for subclinical tumor spread in the marrow space. No epidural CTV expansion is recommended without epidural disease, and circumferential CTVs encircling the cord should be used only when the vertebral body, bilateral pedicles/lamina, and spinous process are all involved or there is extensive metastatic

  19. Monte Carlo Simulations for Dosimetry in Prostate Radiotherapy with Different Intravesical Volumes and Planning Target Volume Margins

    PubMed Central

    Lv, Wei; Yu, Dong; He, Hengda; Liu, Qian

    2016-01-01

    In prostate radiotherapy, the influence of bladder volume variation on the dose absorbed by the target volume and organs at risk is significant and difficult to predict. In addition, the resolution of a typical medical image is insufficient for visualizing the bladder wall, which makes it more difficult to precisely evaluate the dose to the bladder wall. This simulation study aimed to quantitatively investigate the relationship between the dose received by organs at risk and the intravesical volume in prostate radiotherapy. The high-resolution Visible Chinese Human phantom and the finite element method were used to construct 10 pelvic models with specific intravesical volumes ranging from 100 ml to 700 ml to represent bladders of patients with different bladder filling capacities during radiotherapy. This series of models was utilized in six-field coplanar 3D conformal radiotherapy simulations with different planning target volume (PTV) margins. Each organ’s absorbed dose was calculated using the Monte Carlo method. The obtained bladder wall displacements during bladder filling were consistent with reported clinical measurements. The radiotherapy simulation revealed a linear relationship between the dose to non-targeted organs and the intravesical volume and indicated that a 10-mm PTV margin for a large bladder and a 5-mm PTV margin for a small bladder reduce the effective dose to the bladder wall to similar degrees. However, larger bladders were associated with evident protection of the intestines. Detailed dosimetry results can be used by radiation oncologists to create more accurate, individual water preload protocols according to the patient’s anatomy and bladder capacity. PMID:27441944

  20. Is internal target volume accurate for dose evaluation in lung cancer stereotactic body radiotherapy?

    PubMed Central

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Hu, Weigang

    2016-01-01

    Purpose 4DCT delineated internal target volume (ITV) was applied to determine the tumor motion and used as planning target in treatment planning in lung cancer stereotactic body radiotherapy (SBRT). This work is to study the accuracy of using ITV to predict the real target dose in lung cancer SBRT. Materials and methods Both for phantom and patient cases, the ITV and gross tumor volumes (GTVs) were contoured on the maximum intensity projection (MIP) CT and ten CT phases, respectively. A SBRT plan was designed using ITV as the planning target on average projection (AVG) CT. This plan was copied to each CT phase and the dose distribution was recalculated. The GTV_4D dose was acquired through accumulating the GTV doses over all ten phases and regarded as the real target dose. To analyze the ITV dose error, the ITV dose was compared to the real target dose by endpoints of D99, D95, D1 (doses received by the 99%, 95% and 1% of the target volume), and dose coverage endpoint of V100(relative volume receiving at least the prescription dose). Results The phantom study shows that the ITV underestimates the real target dose by 9.47%∼19.8% in D99, 4.43%∼15.99% in D95, and underestimates the dose coverage by 5% in V100. The patient cases show that the ITV underestimates the real target dose and dose coverage by 3.8%∼10.7% in D99, 4.7%∼7.2% in D95, and 3.96%∼6.59% in V100 in motion target cases. Conclusions Cautions should be taken that ITV is not accurate enough to predict the real target dose in lung cancer SBRT with large tumor motions. Restricting the target motion or reducing the target dose heterogeneity could reduce the ITV dose underestimation effect in lung SBRT. PMID:26968812

  1. Assessing the Effect of a Contouring Protocol on Postprostatectomy Radiotherapy Clinical Target Volumes and Interphysician Variation

    SciTech Connect

    Mitchell, Darren M.; Perry, Lesley; Smith, Steve; Elliott, Tony; Wylie, James P.; Cowan, Richard A.; Livsey, Jacqueline E.; Logue, John P.

    2009-11-15

    Purpose: To compare postprostatectomy clinical target volume (CTV) delineation before and after the introduction of a contouring protocol and to investigate its effect on interphysician variability Methods and Materials: Six site-specialized radiation oncologists independently delineated a CTV on the computed tomography (CT) scans of 3 patients who had received postprostatectomy radiotherapy. At least 3 weeks later this was repeated, but with the physicians adhering to the contouring protocol from the Medical Research Council's Radiotherapy and Androgen Deprivation In Combination After Local Surgery (RADICALS) trial. The volumes obtained before and after the protocol were compared and the effect of the protocol on interphysician variability assessed. Results: An increase in mean CTV for all patients of 40.7 to 53.9cm{sup 3} was noted as a result of observing the protocol, with individual increases in the mean CTV of 65%, 15%, and 24% for Patients 1, 2, and 3 respectively. A reduction in interphysician variability was noted when the protocol was used. Conclusions: Substantial interphysician variation in target volume delineation for postprostatectomy radiotherapy exists, which can be reduced by the use of a contouring protocol. The RADICALS contouring protocol increases the target volumes when compared with those volumes typically applied at our center. The effect of treating larger volumes on the therapeutic ratio and resultant toxicity should be carefully monitored, particularly if the same dose-response as documented in radical prostate radiotherapy applies to the adjuvant and salvage setting. Prostate cancer, Postprostatectomy, Radiotherapy, Target volume.

  2. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    SciTech Connect

    Chang, Eric L. . E-mail: echang@mdanderson.org; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-05-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r {sup 2} 0.0007; p = 0.3). For patients with edema >75 cm{sup 3}, the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm{sup 3}, using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema.

  3. Image Guidance-Based Target Volume Margin Expansion in IMRT of Head and Neck Cancer.

    PubMed

    Srivastava, Shiv P; Cheng, Chee-Wai; Das, Indra J

    2016-02-01

    This study quantifies the setup uncertainties to optimize the planning target volume (PTV) margin based on daily image guidance, its dosimetric impact, and radiobiological implication for intensity-modulated radiation therapy (IMRT) in head and neck cancer. Ten patients were retrospectively chosen who had been treated with IMRT and with daily image-guided radiation therapy (IGRT). The daily setup errors of the 10 patients from on-board imaging for the entire treatment were analyzed. Planning target volumes were generated by expanding the clinical target volumes (CTVs) with 0 to 10 mm margins. The IMRT plans with the same dose-volume constraints were created in an Eclipse treatment planning system. The effect of volume expansion was analyzed with biological indices such as tumor control probability, normal tissue complication probability (NTCP), and equivalent uniform dose. Analysis of 906 daily setup corrections using daily IGRT showed that 98% of the daily setups are within ± 5 mm. The relative increase in PTV-CTV volume from 0 to 10 mm margins provides nearly 4-fold volume increase and is linearly related to monitor unit (MU). The increase in MU is about 5%/mm margin increase. The relative increase in NTCP of parotids from 5 to 10 mm margins is 3.2 ± 1.15. Increase in PTV margin increases extra tissue volume with a corresponding increase in MU for treatment and NTCP values. Even a small margin increase (eg, 1 mm) may result in increase of more than 20% in relative extra volume and 15% in NTCP value of organs at risk (OARs). With image guidance, the setup uncertainty could be achieved within ± 5 mm for 98% of the treatments, and a margin <5 mm for PTV may seem desirable to reduce the extra tissue irradiated, but at the expense of a more demanding setup accuracy. PMID:25432930

  4. Characterization of Target Volume Changes During Breast Radiotherapy Using Implanted Fiducial Markers and Portal Imaging

    SciTech Connect

    Harris, Emma J. Donovan, Ellen M.; Yarnold, John R.; Coles, Charlotte E.; Evans, Philip M.

    2009-03-01

    Purpose: To determine target volume changes by using volume and shape analysis for patients receiving radiotherapy after breast conservation surgery and to compare different methods of automatically identifying changes in target volume, position, size, and shape during radiotherapy for use in adaptive radiotherapy. Methods and Materials: Eleven patients undergoing whole breast radiotherapy had fiducial markers sutured into the excision cavity at the time of surgery. Patients underwent imaging using computed tomography (for planning and at the end of treatment) and during treatment by using portal imaging. A marker volume (MV) was defined by using the measured marker positions. Changes in both individual marker positions and MVs were identified manually and using six automated similarity indices. Comparison of the two types of analysis (manual and automated) was undertaken to establish whether similarity indices can be used to automatically detect changes in target volumes. Results: Manual analysis showed that 3 patients had significant MV reduction. This analysis also showed significant changes between planning computed tomography and the start of treatment for 9 patients, including single and multiple marker movement, deformation (shape change), and rotation. Four of the six similarity indices were shown to be sensitive to the observed changes. Conclusions: Significant changes in size, shape, and position occur to the fiducial marker-defined volume. Four similarity indices can be used to identify these changes, and a protocol for their use in adaptive radiotherapy is suggested.

  5. OPS MCC level B/C formulation requirements: Area targets and space volumes processor

    NASA Technical Reports Server (NTRS)

    Bishop, M. J., Jr.

    1979-01-01

    The level B/C mathematical specifications for the area targets and space volume processor (ATSVP) as well as the characteristics of the system are provided. The mathematical equation necessary to determine whether the spacecraft lies within the area target or space volume is presented. A semianalytical technique for predicting the acquisition of signal (AOS) and loss of signal (LOS) time periods is discussed. A functional overview of the ATSVP which includes an outline of the process required to determine precise AOS and LOS times are given.

  6. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    SciTech Connect

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-02-15

    Introduction: This study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. Methods: The CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error and random error set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. Results: The margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. Conclusions: The delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors.

  7. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    PubMed Central

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-01-01

    IntroductionThis study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. MethodsThe CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error () and random error () set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. ResultsThe margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. ConclusionsThe delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors. PMID:26229633

  8. A two isocenter IMRT technique with a controlled junction dose for long volume targets

    NASA Astrophysics Data System (ADS)

    Zeng, G. G.; Heaton, R. K.; Catton, C. N.; Chung, P. W.; O'Sullivan, B.; Lau, M.; Parent, A.; Jaffray, D. A.

    2007-07-01

    Most IMRT techniques have been designed to treat targets smaller than the field size of conventional linac accelerators. In order to overcome the field size restrictions in applying IMRT, we developed a two isocenter IMRT technique to treat long volume targets. The technique exploits an extended dose gradient throughout a junction region of 4-6 cm to minimize the impact of field match errors on a junction dose and manipulates the inverse planning and IMRT segments to fill in the dose gradient and achieve dose uniformity. Techniques for abutting both conventional fields with IMRT ('Static + IMRT') and IMRT fields ('IMRT + IMRT') using two separate isocenters have been developed. Five long volume sarcoma cases have been planned in Pinnacle (Philips, Madison, USA) using Elekta Synergy and Varian 2100EX linacs; two of the cases were clinically treated with this technique. Advantages were demonstrated with well-controlled junction target uniformity and tolerance to setup uncertainties. The junction target dose heterogeneity was controlled at a level of ±5% for 3 mm setup errors at the field edges, the junction target dose changed less than 5% and the dose sparing to organs at risk (OARs) was maintained. Film measurements confirmed the treatment planning results.

  9. Guidelines for delineation of lymphatic clinical target volumes for high conformal radiotherapy: head and neck region

    PubMed Central

    2011-01-01

    The success of radiotherapy depends on the accurate delineation of the clinical target volume. The delineation of the lymph node regions has most impact, especially for tumors in the head and neck region. The purpose of this article was the development an atlas for the delineation of the clinical target volume for patients, who should receive radiotherapy for a tumor of the head and neck region. Literature was reviewed for localisations of the adjacent lymph node regions and their lymph drain in dependence of the tumor entity. On this basis the lymph node regions were contoured on transversal CT slices. The probability for involvement was reviewed and a recommendation for the delineation of the CTV was generated. PMID:21854585

  10. Comparison of Various Radiation Therapy Techniques in Breast Cancer Where Target Volume Includes Mammaria Interna Region

    SciTech Connect

    Dogan, Mehmet Hakan; Zincircioglu, Seyit Burhanedtin Zorlu, Faruk

    2009-04-01

    In breast cancer radiotherapy, the internal mammary lymphatic chain is treated in the target volume in a group of patients with high-risk criteria. Because of the variability of the anatomic region and structures in the irradiation field, there are a number of different techniques in breast radiotherapy. While irradiating the target volume, we also consider minimizing the dose to critical structures such as heart, lung, and contralateral breast tissue. In this study, we evaluated the dose distribution of different radiotherapy techniques in patients with left-sided breast cancer who had breast-conserving surgery. A three-dimensional computerized planning system (3DCPS) was used for each patient to compare wide-field, oblique photon-electron, and perpendicular photon-electron techniques in terms of dose homogeneities in the target volume; the doses received by the contralateral breast, heart, and lung; and the coverage of the internal mammary chain. Data from 3DCPS were controlled by the Rando-phantom and thermoluminescence dosimetry. Critical structures were irradiated with acceptable dose percentages in addition to the internal mammary chain with both wide-field and photon-electron techniques. We detected more frequent hot spots in the oblique photon-electron technique than in the other techniques, and this situation necessitated changing the junctions. The wide-field technique was easy to perform and exposed less radiation dose to the heart than photon-electron techniques. In conclusion, we suggest the use of the wide-field technique in breast irradiation when the internal mammary area is in the target volume.

  11. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    SciTech Connect

    Parker, William Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.

  12. Postoperative radiation in esophageal squamous cell carcinoma and target volume delineation

    PubMed Central

    Zhu, Yingming; Li, Minghuan; Kong, Li; Yu, Jinming

    2016-01-01

    Esophageal cancer is the sixth leading cause of cancer death worldwide, and patients who are treated with surgery alone, without neoadjuvant therapies, experience frequent relapses. Whether postoperative therapies could reduce the recurrence or improve overall survival is still controversial for these patients. The purpose of our review is to figure out the value of postoperative adjuvant therapy and address the disputes about target volume delineation according to published data. Based on the evidence of increased morbidity and disadvantages on patient survival caused by postoperative chemotherapy or radiotherapy (RT) alone provided by studies in the early 1990s, the use of postoperative adjuvant therapies in cases of esophageal squamous cell carcinoma has diminished substantially and has been replaced gradually by neoadjuvant chemoradiation. With advances in surgery and RT, accumulating evidence has recently rekindled interest in the delivery of postoperative RT or chemoradiotherapy in patients with stage T3/T4 or N1 (lymph node positive) carcinomas after radical surgery. However, due to complications with the standard radiation field, a nonconforming modified field has been adopted in most studies. Therefore, we analyze different field applications and provide suggestions on the optimization of the radiation field based on the major sites of relapse and the surgical non-clearance area. For upper and middle thoracic esophageal carcinomas, the bilateral supraclavicular and superior mediastinal areas remain common sites of recurrence and should be encompassed within the clinical target volume. In contrast, a consensus has yet to be reached regarding lower thoracic esophageal carcinomas; the “standard” clinical target volume is still recommended. Further studies of larger sample sizes should focus on different recurrence patterns, categorized by tumor locations, refined classifications, and differing molecular biology, to provide more information on the

  13. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    SciTech Connect

    Gong, Y; Yu, J; Xiao, Y

    2015-06-15

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.

  14. Delineation of radiation therapy target volumes for patients with postoperative glioblastoma: a review

    PubMed Central

    Zhao, Fen; Li, Minghuan; Kong, Li; Zhang, Guoli; Yu, Jinming

    2016-01-01

    Glioblastoma is the most aggressive and lethal primary malignancy of the brain, and radiotherapy (RT) is a fundamental part of its treatment. However, the optimal radiation treatment conditions are still a matter of debate, and there is no clear consensus concerning the inclusion of peritumoral edema in the clinical target volume calculation. Target delineation calculations that use postoperative residual tumor and cavity volumes plus 2 cm margins result in smaller volumes of normal brain receiving high-dose irradiation, compared to calculations that include expanded edema. Smaller RT fields may be more appropriate than larger RT fields, possibly reducing the risk of late neurological deterioration, especially in patients with significant peritumoral edema. This review focuses on the factors influencing target delineation, such as peritumoral edema, failure patterns, and prognostic factors (clinical and pathological characteristics) of patients with glioblastoma. Based on this information, we make three suggestions for radiation oncologists to refer to in daily practice. Further study is necessary to investigate the unresolved problems related to routine clinical application of RT. PMID:27313465

  15. Optimized planning target volume margin in helical tomotherapy for prostate cancer: Is there a preferred method?

    NASA Astrophysics Data System (ADS)

    Cao, Yuan Jie; Lee, Suk; Chang, Kyung Hwan; Shim, Jang Bo; Kim, Kwang Hyeon; Jang, Min Sun; Yoon, Won Sup; Yang, Dae Sik; Park, Young Je; Kim, Chul Yong

    2015-07-01

    We compare the dosimetrical differences between plans generated for helical tomotherapy by using the 2D or 3D the margining technique for the treatment of prostate cancer. Ten prostate cancer patients were included in this study. For 2D plans, the planning target volume (PTV) was created by adding 5 mm (lateral/anterior-posterior) to the clinical target volume (CTV). For 3D plans, a 5-mm margin was added not only lateral/anterior-posterior, but also superior-inferior, to the CTV. Various dosimetrical indices, including the prescription isodose to target volume (PITV) ratio, conformity index (CI), homogeneity index (HI), target coverage index (TCI), modified dose homogeneity index (MHI), conformation number (CN), critical organ scoring index (COSI), and quality factor (QF) were determined to compare the different treatment plans. Differences between the 2D and the 3D PTV indices were not significant except for the CI (p = 0.023). 3D margin plans (11195 MUs) resulted in higher (13.0%) monitor units than 2D margin plans (9728 MUs). There were no significant differences in any organs at risk (OARs) between the 2D and the 3D plans. Overall, the average dose for the 2D plan was slightly lower than that for the 3D plan dose. Compared to the 2D plan, the 3D plan increased the average treatment time by 1.5 minutes; however, this difference was not statistically significant (p = 0.082). We confirmed that the 2D and the 3D margin plans were not significantly different with regard to various dosimetric indices such as the PITV, CI, and HI for PTV and the OARs with tomotherapy.

  16. Target Volume Delineation for Partial Breast Radiotherapy Planning: Clinical Characteristics Associated with Low Interobserver Concordance

    SciTech Connect

    Petersen, Ross P.; Truong, Pauline T. Kader, Hosam A.; Berthelet, Eric; Lee, Junella C.; Hilts, Michelle L.; Kader, Adam S.; Beckham, Wayne A.; Olivotto, Ivo A.

    2007-09-01

    Purpose: To examine variability in target volume delineation for partial breast radiotherapy planning and evaluate characteristics associated with low interobserver concordance. Methods and Materials: Thirty patients who underwent planning CT for adjuvant breast radiotherapy formed the study cohort. Using a standardized scale to score seroma clarity and consensus contouring guidelines, three radiation oncologists independently graded seroma clarity and delineated seroma volumes for each case. Seroma geometric center coordinates, maximum diameters in three axes, and volumes were recorded. Conformity index (CI), the ratio of overlapping volume and encompassing delineated volume, was calculated for each case. Cases with CI {<=}0.50 were analyzed to identify features associated with low concordance. Results: The median time from surgery to CT was 42.5 days. For geometric center coordinates, variations from the mean were 0.5-1.1 mm and standard deviations (SDs) were 0.5-1.8 mm. For maximum seroma dimensions, variations from the mean and SDs were predominantly <5 mm, with the largest SDs observed in the medial-lateral axis. The mean CI was 0.61 (range, 0.27-0.84). Five cases had CI {<=}0.50. Conformity index was significantly associated with seroma clarity (p < 0.001) and seroma volume (p < 0.002). Features associated with reduced concordance included tissue stranding from the surgical cavity, proximity to muscle, dense breast parenchyma, and benign calcifications that may be mistaken for surgical clips. Conclusion: Variability in seroma contouring occurred in three dimensions, with the largest variations in the medial-lateral axis. Awareness of clinical features associated with reduced concordance may be applied toward training staff and refining contouring guidelines for partial breast radiotherapy trials.

  17. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    SciTech Connect

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-08-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.

  18. From anatomical to biological target volumes: the role of PET in radiation treatment planning

    PubMed Central

    Schinagl, D A X; Kaanders, J H A M; Oyen, W J G

    2006-01-01

    Progress in radiation oncology requires a re-evaluation of the methods of target volume delineation beyond anatomical localization. New molecular imaging techniques for tumour visualisation such as positron emission tomography (PET) provide insight into tumour characteristics and can be complementary to the anatomical data of computed tomography or magnetic resonance imaging. In this review, three issues are discussed: First, can PET identify a tumour more accurately? Second, can biological tumour characteristics be visualised? Third, can intratumoural heterogeneity of these characteristics be identified? PMID:17114062

  19. A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion.

    PubMed

    Kung, J H; Zygmanski, P; Choi, N; Chen, G T Y

    2003-06-01

    The motion of lung tumors from respiration has been reported in the literature to be as large as 1-2 cm. This motion requires an additional margin between the Clinical Target Volume (CTV) and the Planning Target Volume (PTV). In Intensity Modulated Radiotherapy (IMRT), while such a margin is necessary, the margin may not be sufficient to avoid unintended high and low dose regions to the interior on moving CTV. Gated treatment has been proposed to improve normal tissues sparing as well as to ensure accurate dose coverage of the tumor volume. The following questions have not been addressed in the literature: (a) what is the dose error to a target volume without a gated IMRT treatment? (b) What is an acceptable gating window for such a treatment. In this study, we address these questions by proposing a novel technique for calculating the three-dimensional (3-D) dose error that would result if a lung IMRT plan were delivered without a gated linac beam. The method is also generalized for gated treatment with an arbitrary triggering window. IMRT plans for three patients with lung tumors were studied. The treatment plans were generated with HELIOS for delivery with 6 MV on a CL2100 Varian linear accelerator with a 26 pair MLC. A CTV to PTV margin of 1 cm was used. An IMRT planning system searches for an optimized fluence map phi(x,y) for each port, which is then converted into a dynamic MLC file (DMLC). The DMLC file contains information about MLC subfield shapes and the fractional Monitor Units (MUs) to be delivered for each subfield. With a lung tumor, a CTV that executes a quasiperiodic motion z(t) does not receive phi(x,y), but rather an Effective Incident Fluence EIF(x,y). We numerically evaluate the EIF(x,y) from a given DMLC file by a coordinate transformation to the Target's Eye View (TEV). In the TEV coordinate system, the CTV itself is stationary, and the MLC is seen to execute a motion -z(t) that is superimposed on the DMLC motion. The resulting EIF(x,y) is

  20. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    PubMed Central

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  1. Masked target transform volume clutter metric for human observer visual search modeling

    NASA Astrophysics Data System (ADS)

    Moore, Richard Kirk

    The Night Vision and Electronic Sensors Directorate (NVESD) develops an imaging system performance model to aid in the design and comparison of imaging systems for military use. It is intended to approximate visual task performance for a typical human observer with an imaging system of specified optical, electrical, physical, and environmental parameters. When modeling search performance, the model currently uses only target size and target-to-background contrast to describe a scene. The presence or absence of other non-target objects and textures in the scene also affect search performance, but NVESD's targeting task performance metric based time limited search model (TTP/TLS) does not currently account for them explicitly. Non-target objects in a scene that impact search performance are referred to as clutter. A universally accepted mathematical definition of clutter does not yet exist. Researchers have proposed a number of clutter metrics based on very different methods, but none account for display geometry or the varying spatial frequency sensitivity of the human visual system. After a review of the NVESD search model, properties of the human visual system, and a literature review of clutter metrics, the new masked target transform volume clutter metric will be presented. Next the results of an experiment designed to show performance variation due to clutter alone will be presented. Then, the results of three separate perception experiments using real or realistic search imagery will be used to show that the new clutter metric better models human observer search performance than the current NVESD model or any of the reviewed clutter metrics.

  2. Data fusion for planning target volume and isodose prediction in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2015-03-01

    In low-dose prostate brachytherapy treatment, a large number of radioactive seeds is implanted in and adjacent to the prostate gland. Planning of this treatment involves the determination of a Planning Target Volume (PTV), followed by defining the optimal number of seeds, needles and their coordinates for implantation. The two major planning tasks, i.e. PTV determination and seed definition, are associated with inter- and intra-expert variability. Moreover, since these two steps are performed in sequence, the variability is accumulated in the overall treatment plan. In this paper, we introduce a model based on a data fusion technique that enables joint determination of PTV and the minimum Prescribed Isodose (mPD) map. The model captures the correlation between different information modalities consisting of transrectal ultrasound (TRUS) volumes, PTV and isodose contours. We take advantage of joint Independent Component Analysis (jICA) as a linear decomposition technique to obtain a set of joint components that optimally describe such correlation. We perform a component stability analysis to generate a model with stable parameters that predicts the PTV and isodose contours solely based on a new patient TRUS volume. We propose a framework for both modeling and prediction processes and evaluate it on a dataset of 60 brachytherapy treatment records. We show PTV prediction error of 10:02+/-4:5% and the V100 isodose overlap of 97+/-3:55% with respect to the clinical gold standard.

  3. Estimated limits of IMRT dose escalation using varied planning target volume margins

    NASA Astrophysics Data System (ADS)

    Goulet, Christopher C.; Herman, Michael G.; Hillman, David W.; Davis, Brian J.

    2008-07-01

    To estimate the limits of dose escalation for prostate cancer as a function of planning target volume (PTV) margins, the maximum achievable dose (MAD) was determined through iterative plan optimizations from data sets of 18 patients until the dose constraints for rectum, bladder and PTV could no longer be met. PTV margins of 10, 5 and 3 mm yielded a mean MAD of 83.0 Gy (range, 73.8-108.0 Gy), 113.1 Gy (range, 90.0-151.2 Gy) and 135.9 Gy (range, 102.6-189.0 Gy), respectively. All comparisons of MAD among margin groups were statistically significant (P < 0.001). Comparison of prostate volumes of 30-50 mL (n = 8) with volumes of 51-70 mL (n = 7) and 71-105 mL (n = 3) showed an inverse relationship with MAD. Decreases in PTV margin significantly decreased the PTV overlap of the rectum (P < 0.001 for all margin comparisons). With decreases in the PTV margin and maintenance of identical dose constraints, doses well above those currently prescribed for treatment of localized prostate cancer appear feasible. However, the dose escalation suggested by these findings is a theoretical estimate, and additional dose constraints will likely be necessary to limit toxicity to normal tissue.

  4. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    SciTech Connect

    Lens, Eelco Horst, Astrid van der; Versteijne, Eva; Tienhoven, Geertjan van; Bel, Arjan

    2015-07-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dose distribution was analyzed; PTV coverage was required to be at least V{sub 95%} >98%. In addition, the change in PTV size and the changes in V{sub 10Gy}, V{sub 20Gy}, V{sub 30Gy}, V{sub 40Gy}, D{sub mean} and D{sub 2cc} for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D{sub 2cc} of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors.

  5. Evaluation of potential internal target volume of liver tumors using cine-MRI

    SciTech Connect

    Akino, Yuichi; Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results

  6. [Postoperative radiotherapy for non-small cell lung cancer: Efficacy, target volume, dose].

    PubMed

    Dupic, G; Bellière-Calandry, A

    2016-04-01

    The rate of local failure of stage IIIA-N2 non-small cell lung cancer is 20 to 40%, even if they are managed with surgery and adjuvant chemotherapy. Postoperative radiotherapy improves local control, but its benefit on global survival remains to be demonstrated. Considered for many years as an adjuvant treatment option for pN2 cancers, it continues nevertheless to be deemed too toxic. What is the current status of postoperative radiotherapy? The Lung Adjuvant Radiotherapy Trial (Lung ART) phase III trial should give us a definitive, objective response on global survival, but inclusion of patients is difficult. The results are consequently delayed. The aim of this review is to show all the results about efficacy and tolerance of postoperative radiotherapy and to define the target volume and dose to prescribe. PMID:26996789

  7. Localization Accuracy of the Clinical Target Volume During Image-Guided Radiotherapy of Lung Cancer

    SciTech Connect

    Hugo, Geoffrey D.; Weiss, Elisabeth; Badawi, Ahmed; Orton, Matthew

    2011-10-01

    Purpose: To evaluate the position and shape of the originally defined clinical target volume (CTV) over the treatment course, and to assess the impact of gross tumor volume (GTV)-based online computed tomography (CT) guidance on CTV localization accuracy. Methods and Materials: Weekly breath-hold CT scans were acquired in 17 patients undergoing radiotherapy. Deformable registration was used to propagate the GTV and CTV from the first weekly CT image to all other weekly CT images. The on-treatment CT scans were registered rigidly to the planning CT scan based on the GTV location to simulate online guidance, and residual error in the CTV centroids and borders was calculated. Results: The mean GTV after 5 weeks relative to volume at the beginning of treatment was 77% {+-} 20%, whereas for the prescribed CTV, it was 92% {+-} 10%. The mean absolute residual error magnitude in the CTV centroid position after a GTV-based localization was 2.9 {+-} 3.0 mm, and it varied from 0.3 to 20.0 mm over all patients. Residual error of the CTV centroid was associated with GTV regression and anisotropy of regression during treatment (p = 0.02 and p = 0.03, respectively; Spearman rank correlation). A residual error in CTV border position greater than 2 mm was present in 77% of patients and 50% of fractions. Among these fractions, residual error of the CTV borders was 3.5 {+-} 1.6 mm (left-right), 3.1 {+-} 0.9 mm (anterior-posterior), and 6.4 {+-} 7.5 mm (superior-inferior). Conclusions: Online guidance based on the visible GTV produces substantial error in CTV localization, particularly for highly regressing tumors. The results of this study will be useful in designing margins for CTV localization or for developing new online CTV localization strategies.

  8. Clinicopathologic Analysis of Microscopic Extension in Lung Adenocarcinoma: Defining Clinical Target Volume for Radiotherapy

    SciTech Connect

    Grills, Inga S.; Fitch, Dwight L.; Goldstein, Neal S.; Yan Di; Chmielewski, Gary W.; Welsh, Robert J.; Kestin, Larry L.

    2007-10-01

    Purpose: To determine the gross tumor volume (GTV) to clinical target volume margin for non-small-cell lung cancer treatment planning. Methods: A total of 35 patients with Stage T1N0 adenocarcinoma underwent wedge resection plus immediate lobectomy. The gross tumor size and microscopic extension distance beyond the gross tumor were measured. The nuclear grade and percentage of bronchoalveolar features were analyzed for association with microscopic extension. The gross tumor dimensions were measured on a computed tomography (CT) scan (lung and mediastinal windows) and compared with the pathologic dimensions. The potential coverage of microscopic extension for two different lung stereotactic radiotherapy regimens was evaluated. Results: The mean microscopic extension distance beyond the gross tumor was 7.2 mm and varied according to grade (10.1, 7.0, and 3.5 mm for Grade 1 to 3, respectively, p < 0.01). The 90th percentile for microscopic extension was 12.0 mm (13.0, 9.7, and 4.4 mm for Grade 1 to 3, respectively). The CT lung windows correlated better with the pathologic size than did the mediastinal windows (gross pathologic size overestimated by a mean of 5.8 mm; composite size [gross plus microscopic extension] underestimated by a mean of 1.2 mm). For a GTV contoured on the CT lung windows, the margin required to cover microscopic extension for 90% of the cases would be 9 mm (9, 7, and 4 mm for Grade 1 to 3, respectively). The potential microscopic extension dosimetric coverage (55 Gy) varied substantially between the stereotactic radiotherapy schedules. Conclusion: For lung adenocarcinomas, the GTV should be contoured using CT lung windows. Although a GTV based on the CT lung windows would underestimate the gross tumor size plus microscopic extension by only 1.2 mm for the average case, the clinical target volume expansion required to cover the microscopic extension in 90% of cases could be as large as 9 mm, although considerably smaller for high-grade tumors

  9. Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter

    NASA Astrophysics Data System (ADS)

    Camp, H. A.; Moyer, Steven; Moore, Richard K.

    2010-04-01

    The Night Vision and Electronic Sensors Directorate's current time-limited search (TLS) model, which makes use of the targeting task performance (TTP) metric to describe image quality, does not explicitly account for the effects of visual clutter on observer performance. The TLS model is currently based on empirical fits to describe human performance for a time of day, spectrum and environment. Incorporating a clutter metric into the TLS model may reduce the number of these empirical fits needed. The masked target transform volume (MTTV) clutter metric has been previously presented and compared to other clutter metrics. Using real infrared imagery of rural images with varying levels of clutter, NVESD is currently evaluating the appropriateness of the MTTV metric. NVESD had twenty subject matter experts (SME) rank the amount of clutter in each scene in a series of pair-wise comparisons. MTTV metric values were calculated and then compared to the SME observers rankings. The MTTV metric ranked the clutter in a similar manner to the SME evaluation, suggesting that the MTTV metric may emulate SME response. This paper is a first step in quantifying clutter and measuring the agreement to subjective human evaluation.

  10. Impact of motion velocity on four-dimensional target volumes: a phantom study.

    PubMed

    Nakamura, Mitsuhiro; Narita, Yuichiro; Sawada, Akira; Matsugi, Kiyotomo; Nakata, Manabu; Matsuo, Yukinori; Mizowaki, Takashi; Hiraoka, Masahiro

    2009-05-01

    This study aims to assess the impact of motion velocity that may cause motion artifacts on target volumes (TVs) using a one-dimensional moving phantom. A 20 mm diameter spherical object embedded in a QUASAR phantom sinusoidally moved with approximately 5.0 or 10.0 mm amplitude (A) along the longitudinal axis of the computed tomography (CT) couch. The motion period was manually set in the range of 2.0-10.0 s at approximately 2.0 s interval. Four-dimensional (4D) CT images were acquired by a four-slice CT scanner (LightSpeed RT; General Electric Medical Systems, Waukesha, WI) with a slice thickness of 1.25 mm in axial cine mode. The minimum gantry rotation of 1.0 s was employed to achieve the maximum in-slice temporal resolution. Projection data over a full gantry rotation (1.0 s) were used for image reconstruction. Reflective marker position was recorded by the real-time positioning management system (Varian Medical Systems, Palo Alto, CA). ADVANTAGE 4D software exported ten respiratory phase volumes and the maximum intensity volume generated from all reconstructed data (MIV). The threshold to obtain static object volume (V0, 4.19 ml) was used to automatically segment TVs on CT images, and then the union of TVs on 4D CT images (TV(4D)) was constructed. TVs on MIV (TV(MIV)) were also segmented by the threshold that can determine the area occupied within the central slice of TV(MIV). The maximum motion velocity for each phase bin was calculated using the actual averaged motion period displayed on ADVANTAGE 4D software (T), the range of phases used to construct the target phase bin (phase range), and a mathematical model of sinusoidal function. Each volume size and the motion range of TV in the cranial-caudal (CC) direction were measured. Subsequently, cross-correlation coefficients between TV size and motion velocity as well as phase range were calculated. Both misalignment and motion-blurring artifacts were caused by high motion velocity, Less than 6% phase range was

  11. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation.

    PubMed

    Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  12. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  13. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    PubMed

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease. PMID:25894681

  14. Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study

    PubMed Central

    2014-01-01

    Background To assess the feasibility and benefit of integrating four-dimensional (4D) Positron Emission Tomography (PET) – computed tomography (CT) for liver stereotactic body radiation therapy (SBRT) planning. Methods 8 patients with 14 metastases were accrued in the study. They all underwent a non-gated PET and a 4D PET centered on the liver. The same CT scan was used for attenuation correction, registration, and considered the planning CT for SBRT planning. Six PET phases were reconstructed for each 4D PET. By applying an individualized threshold to the 4D PET, a Biological Internal Target Volume (BITV) was generated for each lesion. A gated Planning Target Volume (PTVg) was created by adding 3 mm to account for set-up margins. This volume was compared to a manual Planning Target Volume (PTV) delineated with the help of a semi-automatic Biological Target Volume (BTV) obtained from the non-gated exam. A 5 mm radial and a 10 mm craniocaudal margins were applied to account for tumor motion and set-up margins to create the PTV. Results One undiagnosed liver metastasis was discovered thanks to the 4D PET. The semi-automatic BTV were significantly smaller than the BITV (p = 0.0031). However, after applying adapted margins, 4D PET allowed a statistically significant decrease in the PTVg as compared to the PTV (p = 0.0052). Conclusions In comparison to non-gated PET, 4D PET may better define the respiratory movements of liver targets and improve SBRT planning for liver metastases. Furthermore, non respiratory-gated PET exams can both misdiagnose liver metastases and underestimate the real internal target volumes. PMID:24885897

  15. Impact Factors for Microinvasion in Intrahepatic Cholangiocarcinoma: A Possible System for Defining Clinical Target Volume

    SciTech Connect

    Bi Aihong; Zeng Zhaochong; Ji Yuan; Zeng Haiying; Xu Chen; Tang Zhaoyou; Fan Jia; Zhou Jian; Zeng Mengsu; Tan Yunshan

    2010-12-01

    Purpose: To quantify microscopic invasion of intrahepatic cholangiocarcinoma (IHC) into nontumor tissue and define the gross tumor volume (GTV)-to-clinical target volume (CTV) expansion necessary for radiotherapy. Methods and Materials: One-hundred IHC patients undergoing radical resection from January 2004 to July 2008 were enrolled in this study. Pathologic and clinical data including maximum tumor diameter, tumor boundary type, TNM stage, histologic grade, tumor markers, and liver enzymes were reviewed. The distance of microinvasion from the tumor boundary was measured by microscopy. The contraction coefficient for tumor measurements in radiographs and slide-mounted tissue was calculated. SPSS15.0 was used for statistical analysis. Results: Sixty-five patients (65%) exhibited tumor microinvasions. Microinvasions ranged from 0.4-8 mm, with 96% of patients having a microinvasion distance {<=}6 mm measured on slide. The radiograph-to-slide contraction coefficient was 82.1%. The degree of microinvasion was correlated with tumor boundary type, TNM stage, histologic grade, and serum levels of carbohydrate antigen 19-9, alanine aminotransferase, aspartate aminotransferase, {gamma}-glutamyltransferase and alkaline phosphatase. To define CTV accurately, we devised a scoring system based on combination of these factors. According to this system, a score {<=}1.5 is associated with 96.1% sensitivity in detecting patients with a microextension {<=}4.9 mm in radiographs, whereas a score {>=}2 has a 95.1% sensitivity in detecting microextension {<=}7.9 mm measured on radiograph. Conclusions: Patients with a score {<=}1.5 and {>=}2 require a radiographic GTV-to-CTV expansions of 4.9 and 7.9 mm, respectively, to encompass >95% of microinvasions.

  16. Anatomic Boundaries of the Clinical Target Volume (Prostate Bed) After Radical Prostatectomy

    SciTech Connect

    Wiltshire, Kirsty L.; Brock, Kristy K.; Haider, Masoom A.; Zwahlen, Daniel; Kong, Vickie; Chan, Elisa; Moseley, Joanne; Bayley, Andrew; Catton, Charles; Chung, Peter W.M.; Gospodarowicz, Mary; Milosevic, Michael; Kneebone, Andrew; Warde, Padraig; Menard, Cynthia

    2007-11-15

    Purpose: We sought to derive and validate an interdisciplinary consensus definition for the anatomic boundaries of the postoperative clinical target volume (CTV, prostate bed). Methods and Materials: Thirty one patients who had planned for radiotherapy after radical prostatectomy were enrolled and underwent computed tomography and magnetic resonance imaging (MRI) simulation prior to radiotherapy. Through an iterative process of consultation and discussion, an interdisciplinary consensus definition was derived based on a review of published data, patterns of local failure, surgical practice, and radiologic anatomy. In validation, we analyzed the distribution of surgical clips in reference to the consensus CTV and measured spatial uncertainties in delineating the CTV and vesicourethral anastomosis. Clinical radiotherapy plans were retrospectively evaluated against the consensus CTV (prostate bed). Results: Anatomic boundaries of the consensus CTV (prostate bed) are described. Surgical clips (n = 339) were well distributed throughout the CTV. The vesicourethral anastomosis was accurately localized using central sagittal computed tomography reconstruction, with a mean {+-} standard deviation uncertainty of 1.8 {+-} 2.5 mm. Delineation uncertainties were small for both MRI and computed tomography (mean reproducibility, 0-3.8 mm; standard deviation, 1.0-2.3); they were most pronounced in the anteroposterior and superoinferior dimensions and at the superior/posterior-most aspect of the CTV. Retrospectively, the mean {+-} standard deviation CTV (prostate bed) percentage of volume receiving 100% of prescribed dose was only 77% {+-} 26%. Conclusions: We propose anatomic boundaries for the CTV (prostate bed) and present evidence supporting its validity. In the absence of gross recurrence, the role of MRI in delineating the CTV remains to be confirmed. The CTV is larger than historically practiced at our institution and should be encompassed by a microscopic tumoricidal dose.

  17. Note: Development of a volume-limited dot target for a high brightness extreme ultraviolet microplasma source

    SciTech Connect

    Dinh, Thanh Hung Suzuki, Yuhei; Hara, Hiroyuki; Higashiguchi, Takeshi; Hirose, Ryoichi; Ohashi, Hayato; Li, Bowen; Dunne, Padraig; O’Sullivan, Gerry; Sunahara, Atsushi

    2014-11-15

    We report on production of volume-limited dot targets based on electron beam lithographic and sputtering technologies for use in efficient high brightness extreme ultraviolet microplasma sources. We successfully produced cylindrical tin (Sn) targets with diameters of 10, 15, and 20 μm and a height of 150 nm. The calculated spectrum around 13.5 nm was in good agreement with that obtained experimentally.

  18. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase

    PubMed Central

    Mathieu, Véronique; Chantôme, Aurélie; Lefranc, Florence; Cimmino, Alessio; Miklos, Walter; Paulitschke, Verena; Mohr, Thomas; Maddau, Lucia; Kornienko, Alexander; Berger, Walter; Vandier, Christophe; Evidente, Antonio; Delpire, Eric; Kiss, Robert

    2016-01-01

    Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 μM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl− and the decreased HCO3− concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na–K–2Cl electroneutral cotransporter or Cl−/HCO3− anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells. PMID:25868554

  19. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase.

    PubMed

    Mathieu, Véronique; Chantôme, Aurélie; Lefranc, Florence; Cimmino, Alessio; Miklos, Walter; Paulitschke, Verena; Mohr, Thomas; Maddau, Lucia; Kornienko, Alexander; Berger, Walter; Vandier, Christophe; Evidente, Antonio; Delpire, Eric; Kiss, Robert

    2015-10-01

    Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 µM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl(-) and the decreased HCO3 (-) concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na-K-2Cl electroneutral cotransporter or Cl(-)/HCO3 (-) anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells. PMID:25868554

  20. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    SciTech Connect

    McAuley, G; Slater, J; Wroe, A

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  1. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-04-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  2. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 1

    SciTech Connect

    1997-01-01

    The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) was an invehicle advanced traveler information system (ATIS) that operated in the northwest suburbs of Chicago, Illinois. It was designed to provide origin-destination shortest-time route guidance to a vehicle based on (a) an on-board static (fixed) data base of average network link travel times by time of day, combined as available and appropriate with (b) dynamic (real-time) information on traffic conditions provided by radio frequency (RF) communications to and from a traffic information center (TIC). Originally conceived in 1990 as a major project that would have installed 3,000 to 5,000 route guidance units in privately owned vehicles throughout the test area, ADVANCE was restructured in 1995 as a {open_quotes}targeted deployment,{close_quotes} in which approximately 80 vehicles were to be equipped with the guidance units - Mobile Navigation Assistants (MNAs) - to be in full communication with the TIC while driving the ADVANCE test area road system. Volume one consists of the evaluation managers overview report, and several appendices containing test results.

  3. Intra and Interfraction Mediastinal Nodal Region Motion: Implications for Internal Target Volume Expansions

    SciTech Connect

    Thomas, Jonathan G.; Kashani, Rojano; Balter, James M.; Tatro, Daniel; Kong, F.-M.; Pan, Charlie C.

    2009-07-01

    The purpose of this study was to determine the intra and interfraction motion of mediastinal lymph node regions. Ten patients with nonsmall-cell lung cancer underwent controlled inhale and exhale computed tomography (CT) scans during two sessions (40 total datasets) and mediastinal nodal stations 1-8 were outlined. Corresponding CT scans from different sessions were registered to remove setup error and, in this reference frame, the centroid of each nodal station was compared for right-left (RL), anterior-posterior (AP), and superior-inferior (SI) displacement. In addition, an anisotropic volume expansion encompassing the change of the nodal region margins in all directions was used. Intrafraction displacement was determined by comparing same session inhale-exhale scans. Interfraction reproducibility of nodal regions was determined by comparing the same respiratory phase scans between two sessions. Intrafraction displacement of centroid varied between nodal stations. All nodal regions moved posteriorly and superiorly with exhalation, and inferior nodal stations showed the most motion. Based on anisotropic expansion, nodal regions expanded mostly in the RL direction from inhale to exhale. The interpatient variations in intrafraction displacement were large compared with the displacements themselves. Moreover, there was substantial interfractional displacement ({approx}5 mm). Mediastinal lymph node regions clearly move during breathing. In addition, deformation of nodal regions between inhale and exhale occurs. The degree of motion and deformation varies by station and by individual. This study indicates the potential advantage of characterizing individualized nodal region motion to safely maximize conformality of mediastinal nodal targets.

  4. Use of volume-targeted non-invasive bilevel positive airway pressure ventilation in a patient with amyotrophic lateral sclerosis*,**

    PubMed Central

    Diaz-Abad, Montserrat; Brown, John Edward

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease in which most patients die of respiratory failure. Although volume-targeted non-invasive bilevel positive airway pressure (BPAP) ventilation has been studied in patients with chronic respiratory failure of various etiologies, its use in ALS has not been reported. We present the case of a 66-year-old woman with ALS and respiratory failure treated with volume-targeted BPAP ventilation for 15 weeks. Weekly data downloads showed that disease progression was associated with increased respiratory muscle weakness, decreased spontaneous breathing, and increased use of non-invasive positive pressure ventilation, whereas tidal volume and minute ventilation remained relatively constant. PMID:25210968

  5. Defining the Clinical Target Volume for Bladder Cancer Radiotherapy Treatment Planning

    SciTech Connect

    Jenkins, Peter; Anjarwalla, Salim; Gilbert, Hugh; Kinder, Richard

    2009-12-01

    Purpose: There are currently no data for the expansion margin required to define the clinical target volume (CTV) around bladder tumors. This information is particularly relevant when perivesical soft tissue changes are seen on the planning scan. While this appearance may reflect extravesical extension (EVE), it may also be an artifact of previous transurethral resection (TUR). Methods and Materials: Eighty patients with muscle-invasive bladder cancer who had undergone radical cystectomy were studied. All patients underwent preoperative TUR and staging computed tomography (CT) scans. The presence and extent of tumor growth beyond the outer bladder wall was measured radiologically and histopathologically. Results: Forty one (51%) patients had histologically confirmed tumor extension into perivesical fat. The median and mean extensions beyond the outer bladder wall were 1.7 and 3.1 mm, respectively. Thirty five (44%) patients had EVE, as seen on CT scans. The sensitivity and specificity of CT scans for EVE were 56% and 79%, respectively. False-positive results were infrequent and not affected by either the timing or the amount of tissue resected at TUR. CT scans consistently tended to overestimate the extent of EVE. Tumor size and the presence of either lymphovascular invasion or squamoid differentiation predict a greater extent of EVE. Conclusions: In patients with radiological evidence of extravesical disease, the CTV should comprise the outer bladder wall plus a 10-mm margin. In patients with no evidence of extravesical disease on CT scans, the CTV should be restricted to the outer bladder wall plus a 6-mm margin. These recommendations would encompass microscopic disease extension in 90% of cases.

  6. Definition and delineation of the clinical target volume for rectal cancer

    SciTech Connect

    Roels, Sarah; Duthoy, Wim; Haustermans, Karin . E-mail: Karin.Haustermans@uzleuven.be; Penninckx, Freddy; Vandecaveye, Vincent; Boterberg, Tom; Neve, Wilfried de

    2006-07-15

    Purpose: Optimization of radiation techniques to maximize local tumor control and to minimize small bowel toxicity in locally advanced rectal cancer requires proper definition and delineation guidelines for the clinical target volume (CTV). The purpose of this investigation was to analyze reported data on the predominant locations and frequency of local recurrences and lymph node involvement in rectal cancer, to propose a definition of the CTV for rectal cancer and guidelines for its delineation. Methods and Materials: Seven reports were analyzed to assess the incidence and predominant location of local recurrences in rectal cancer. The distribution of lymphatic spread was analyzed in another 10 reports to record the relative frequency and location of metastatic lymph nodes in rectal cancer, according to the stage and level of the primary tumor. Results: The mesorectal, posterior, and inferior pelvic subsites are most at risk for local recurrences, whereas lymphatic tumor spread occurs mainly in three directions: upward into the inferior mesenteric nodes; lateral into the internal iliac lymph nodes; and, in a few cases, downward into the external iliac and inguinal lymph nodes. The risk for recurrence or lymph node involvement is related to the stage and the level of the primary lesion. Conclusion: Based on a review of articles reporting on the incidence and predominant location of local recurrences and the distribution of lymphatic spread in rectal cancer, we defined guidelines for CTV delineation including the pelvic subsites and lymph node groups at risk for microscopic involvement. We propose to include the primary tumor, the mesorectal subsite, and the posterior pelvic subsite in the CTV in all patients. Moreover, the lateral lymph nodes are at high risk for microscopic involvement and should also be added in the CTV.

  7. Implementation of a target volume design function for intrafractional range variation in a particle beam treatment planning system

    PubMed Central

    Inaniwa, T; Miki, K; Shirai, T; Noda, K

    2014-01-01

    Objective: Treatment planning for charged particle therapy in the thoracic and abdominal regions should take account of range uncertainty due to intrafractional motion. Here, we developed a design tool (4Dtool) for the target volume [field-specific target volume (FTV)], which accounts for this uncertainty using four-dimensional CT (4DCT). Methods: Target and normal tissue contours were input manually into a treatment planning system (TPS). These data were transferred to the 4Dtool via the picture archiving and communication system (PACS). Contours at the reference phase were propagated to other phases by deformable image registration. FTV was calculated using 4DCT on the 4Dtool. The TPS displays FTV contours using digital imaging and communications in medicine files imported from the PACS. These treatment parameters on the CT image at the reference phase were then used for dose calculation on the TPS. The tool was tested in single clinical case randomly selected from patients treated at our centre for lung cancer. Results: In this clinical case, calculation of dose distribution with the 4Dtool resulted in the successful delivery of carbon-ion beam at the reference phase of 95% of the prescribed dose to the clinical target volume (CTV). Application to the other phases also provided sufficient dose to the CTV. Conclusion: The 4Dtool software allows the design of the target volume with consideration to intrafractional range variation and is now in routine clinical use at our institution. Advances in knowledge: Our alternative technique represents a practical approach to four-dimensional treatment planning within the current state of charged particle therapy. PMID:25168286

  8. Relationship Between Pelvic Organ-at-Risk Dose and Clinical Target Volume in Postprostatectomy Patients Receiving Intensity-Modulated Radiotherapy

    SciTech Connect

    Stanic, Sinisa; Mathai, Mathew; Cui Jing; Purdy, James A.; Valicenti, Richard K.

    2012-04-01

    Purpose: To investigate dose-volume consequences of inclusion of the seminal vesicle (SV) bed in the clinical target volume (CTV) for the rectum and bladder using biological response indices in postprostatectomy patients receiving intensity-modulated radiotherapy (IMRT). Methods and Materials: We studied 10 consecutive patients who underwent prostatectomy for prostate cancer and subsequently received adjuvant or salvage RT to the prostate fossa. The CTV to planning target volume (PTV) expansion was 7 mm, except posterior expansion, which was 5 mm. Two IMRT plans were generated for each patient, including either the prostate fossa alone or the prostate fossa with the SV bed, but identical in all other aspects. Prescription dose was 68.4 Gy in 1.8-Gy fractions prescribed to {>=}95% PTV. Results: With inclusion of the SV bed in the treatment volume, PTV increased and correlated with PTV-bladder and PTV-rectum volume overlap (Spearman {rho} 0.91 and 0.86, respectively; p < 0.05). As a result, the dose delivered to the bladder and rectum was higher (p < 0.05): mean bladder dose increased from 11.3 {+-} 3.5 Gy to 21.2 {+-} 6.6 Gy, whereas mean rectal dose increased from 25.8 {+-} 5.5 Gy to 32.3 {+-} 5.5 Gy. Bladder and rectal equivalent uniform dose correlated with mean bladder and rectal dose. Inclusion of the SV bed in the treatment volume increased rectal normal tissue complication probability from 2.4% to 4.8% (p < 0.01). Conclusions: Inclusion of the SV bed in the CTV in postprostatectomy patients receiving IMRT increases bladder and rectal dose, as well as rectal normal tissue complication probability. The magnitude of PTV-bladder and PTV-rectal volume overlap and subsequent bladder and rectum dose increase will be higher if larger PTV expansion margins are used.

  9. Effects of breathing variation on gating window internal target volume in respiratory gated radiation therapy

    SciTech Connect

    Cai Jing; McLawhorn, Robert; Read, Paul W.; Larner, James M.; Yin, Fang-fang; Benedict, Stanley H.; Sheng, Ke

    2010-08-15

    Purpose: To investigate the effects of breathing variation on gating window internal target volume (ITV{sub GW}) in respiratory gated radiation therapy. Method and Materials: Two-dimensional dynamic MRI (dMRI) of lung motion was acquired in ten volunteers and eight lung cancer patients. Resorted dMRI using 4DCT acquisition method (RedCAM) was generated for selected subjects by simulating the image rebinning process. A dynamic software generated phantom (dSGP) was created by moving a solid circle (to mimic the ''tumor'') with dMRI-determined motion trajectories. The gating window internal target area (ITA{sub GW}, 2D counterpart of ITV{sub GW}) was determined from both RedCAM and dSGP/dMRI. Its area (A), major axis (L1), minor axis (L2), and similarity (S) were calculated and compared. Results: In the phantom study of 3 cm tumor, measurements of the ITA{sub GW} from dSGP (A=10.0{+-}1.3 cm{sup 2}, L1=3.8{+-}0.4 cm, and L2=3.3{+-}0.1 cm) are significantly (p<0.001) greater than those from RedCAM (A=8.5{+-}0.7 cm{sup 2}, L1=3.5{+-}0.2 cm, and L2=3.1{+-}0.1 cm). Similarly, the differences are significantly greater (p<0.001) for the 1 cm tumor (A=1.9{+-}0.5 cm{sup 2}, L1=1.9{+-}0.4 cm, and L2=1.3{+-}0.1 cm in dSGP; A=1.3{+-}0.1 cm{sup 2}, L1=1.5{+-}0.2 cm, and L2=1.1{+-}0.1 cm in RedCAM). In patient studies, measurements of the ITA{sub GW} from dMRI (A=15.5{+-}8.2 cm{sup 2}, L1=5.0{+-}1.1 cm, and L2=3.8{+-}1.2 cm) are also significantly greater (p<0.05) than those from RedCAM (A=13.2{+-}8.5 cm{sup 2}, L1=4.3{+-}1.4 cm, and L2=3.7{+-}1.2 cm). Similarities were 0.9{+-}0.1, 0.8{+-}0.1, and 0.8{+-}0.1 in the 3 cm tumor phantom, 1 cm tumor phantom, and patient studies, respectively. Conclusion: ITV{sub GW} can be underestimated by 4DCT due to breathing variations. An additional margin may be needed to account for this potential error in generating a PTV{sub GW}. Cautions need to be taken when generating ITV{sub GW} from 4DCT in respiratory gated radiation therapy, especially

  10. A New Suggestion for the Radiation Target Volume After a Subtotal Gastrectomy in Patients With Stomach Cancer

    SciTech Connect

    Nam, Heerim; Lim, Do Hoon Kim, Sung; Kang, Won Ki; Sohn, Tae Sung; Noh, Jae Hyung; Kim, Yong Il; Park, Chan Hyung; Park, Chul Keun; Ahn, Yong Chan; Huh, Seung Jae

    2008-06-01

    Purpose: To compare treatment results between the use of two different radiation fields including and excluding remnant stomach and suggest new target volumes excluding remnant stomach after subtotal gastrectomy (STG) in patients with stomach cancer. Methods and Materials: We retrospectively analyzed 291 patients treated with adjuvant chemoradiotherapy after STG and D2 dissection at the Samsung Medical Center, Seoul, South Korea. Eighty-three patients registered from 1995 to 1997 underwent irradiation according to the INT 0116 protocol that recommended the inclusion of remnant stomach within the target volume (Group A). After this period, we excluded remnant stomach from the target volume for 208 patients (Group B). Median follow-up was 67 months. Results: Treatment failure developed in 93 patients (32.0%). Local and regional recurrence rates for Group A vs. Group B were 10.8% vs. 5.3% (p = not significant) and 9.6% vs. 6.3% (p = not significant), and recurrence rates for remnant stomach were 7.2% vs. 1.4% (p = 0.018), respectively. Overall and disease-free survival rates were not different between the two groups. Grade 3 or 4 vomiting and diarrhea developed more frequently in Group A than Group B (4.8% vs. 1.4% and 6.0% vs. 1.9%, respectively; p = 0.012; p < 0.001). Conclusion: Exclusion of remnant stomach from the radiation field had no effect on failure rates or survival, and a low complication rate occurred in patients treated excluding remnant stomach. We suggest that remnant stomach be excluded from the radiation target volume for patients with stomach cancer who undergo STG and D2 dissection.

  11. {sup 11}C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy

    SciTech Connect

    Grosu, Anca-Ligia . E-mail: anca-ligia.grosu@lrz.tum.de; Weber, Wolfgang A.; Astner, Sabrina T.; Adam, Markus; Krause, Bernd J.; Schwaiger, Markus; Molls, Michael; Nieder, Carsten

    2006-10-01

    Purpose: To evaluate the role of {sup 11}C-methionine positron emission tomography (MET-PET) in target volume delineation for meningiomas and to determine the interobserver variability. Methods and Materials: Two independent observers performed treatment planning in 10 patients according to a prospective written protocol. In the first step, they used coregistered computed tomography (CT) and magnetic resonance imaging (MRI). In the second step, MET-PET was added to CT/MRI (image fusion based on mutual information). Results: The correlation between gross tumor volume (GTVs) delineated by the two observers based on CT/MRI was r = 0.855 (Spearman's correlation coefficient, p = 0.002) and r = 0.988 (p = 0.000) when MET-PET/CT/MRI were used. The number of patients with agreement in more then 80% of the outlined volume increased with the availability of MET-PET from 1 in 10 to 5 in 10. The median volume of intersection between the regions delineated by two observers increased significantly from 69% (from the composite volume) to 79%, by the addition of MET-PET (p = 0.005). The information of MET-PET was useful to delineate GTV in the area of cavernous sinus, orbit, and base of the skull. Conclusions: The hypothesis-generating findings of potential normal tissue sparing and reduced interobserver variability provide arguments for invasive studies of the correlation between MET-PET images and histologic tumor extension and for prospective trials of target volume delineation with CT/MRI/MET-PET image fusion.

  12. Changes in the planning target volume and liver volume dose based on the selected respiratory phase in respiratory-gated radiation therapy for a hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min

    2013-11-01

    The aim of this study was to quantitatively analyze the changes in the planning target volume (PTV) and liver volume dose based on the respiratory phase to identify the optimal respiratory phase for respiratory-gated radiation therapy for a hepatocellular carcinoma (HCC). Based on the standardized procedure for respiratory-gated radiation therapy, we performed a 4-dimensional computed tomography simulation for 0 ˜ 90%, 30 ˜ 70%, and 40 ˜ 60% respiratory phases to assess the respiratory stability (S R ) and the defined PTV i for each respiratory phase i. A treatment plan was established, and the changes in the PTV i and dose volume of the liver were quantitatively analyzed. Most patients (91.5%) passed the respiratory stability test (S R = 0.111 ± 0.015). With standardized respiration training exercises, we were able to minimize the overall systematic error caused by irregular respiration. Furthermore, a quantitative analysis to identify the optimal respiratory phase revealed that when a short respiratory phase (40 ˜ 60%) was used, the changes in the PTV were concentrated inside the center line; thus, we were able to obtain both a PTV margin accounting for respiration and a uniform radiation dose within the PTV.

  13. Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume

    SciTech Connect

    Callahan, Jason; Kron, Tomas; Schneider-Kolsky, Michal; Dunn, Leon; Thompson, Mick; Siva, Shankar; Aarons, Yolanda; Binns, David; Hicks, Rodney J.

    2013-07-15

    Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom while moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently

  14. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    SciTech Connect

    Herschtal, Alan; Te Marvelde, Luc; Mengersen, Kerrie; Foroudi, Farshad; Eade, Thomas; Pham, Daniel; Caine, Hannah; Kron, Tomas

    2015-06-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.

  15. SU-E-J-78: Internal Target Volume Delineation for Lung Tumors in Patients Treated with Robotic Radiosurgery

    SciTech Connect

    Descovich, M; Pinnaduwage, D; Kirby, N; Gottschalk, A; Yom, S; Pouliot, J; Braunstein, S

    2014-06-01

    Purpose: To compare different approaches for Internal Target Volume (ITV) delineation for patients treated with fiducial-free robotic radiosurgery for primary and metastatic lung tumors. Methods: Ten patients undergoing Lung-Optimized Treatment (LOT) for robotic radiosurgery were imaged with inhale and exhale breath-hold CT scans and 8-phase 4DCT scan. We evaluated the differences in internal target volume (ITV) delineated using three approaches: 1) maximum intensity projection (MIP) images reconstructed from 4DCT scan (ITV-MIP); 2) linear interpolation of Gross Tumor Volumes (GTV) segmented on inhale and exhale breath-hold scans (ITV-BH); 3) linear interpolation of GTV segmented on inhale and exhale phases of 4DCT scan (ITV-2Phase). All contours were independently generated by the same radiation oncologist using lung window settings. Patients had ITV-MIP volumes ranging from 1.5 to 146.9 cc (mean 36.8 cc) located in various parts of the lung. Volume overlap and matching index (MI) were calculated and compared. The MI between two volumes was defined as the ratio of their intersection to their union. MI of 1 indicates the volumes are identical; MI of 0 indicates that there is no overlap. Results: The three approaches generated very different results. The average (SD) MI for ITV-MIP and ITV-BH was 0.52 (0.24); for ITV-MIP and ITV-2Phase it was 0.69 (0.13); and for ITV-BH and ITV-2Phase was 0.57 (0.21), (ANOVA, p=0.16). Relative to the ITV-MIP, the percentage of volume overlap was 72% (26%) and 90% (7%) for ITV-BH and ITV-2Phase, respectively (t-test, p=0.05). Conclusion: Differences between ITV-BH and ITV-MIP are due to inconsistent lung filling at breath-hold and nonlinear tumor motion. Therefore, methods to check breath-hold scanning against regular patient breathing patterns should be developed. Whenever possible, ITV-BH generated by the LOT workflow should be verified by 4DCT data.

  16. Short Communication: Conformal Therapy for Peri-Ventricular Brain Tumors: Is Target Volume Deformation an Issue?

    SciTech Connect

    Bauman, Glenn Woodford, Curtis; Yartsev, Slav

    2008-04-01

    Physiologic variations in ventricular volumes could have important implications for treating patients with peri-ventricular brain tumors, yet no data exist in the literature addressing this issue. Daily megavoltage computed tomography (CT) scans in a patient with neurocytoma receiving fractionated radiation revealed minimal changes, suggesting that margins accounting for ventricular deformation are not necessary.

  17. Target Volume Delineation in Dynamic Positron Emission Tomography Based on Time Activity Curve Differences

    NASA Astrophysics Data System (ADS)

    Teymurazyan, Artur

    Tumor volume delineation plays a critical role in radiation treatment planning and simulation, since inaccurately defined treatment volumes may lead to the overdosing of normal surrounding structures and potentially missing the cancerous tissue. However, the imaging modality almost exclusively used to determine tumor volumes, X-ray Computed Tomography (CT), does not readily exhibit a distinction between cancerous and normal tissue. It has been shown that CT data augmented with PET can improve radiation treatment plans by providing functional information not available otherwise. Presently, static PET scans account for the majority of procedures performed in clinical practice. In the radiation therapy (RT) setting, these scans are visually inspected by a radiation oncologist for the purpose of tumor volume delineation. This approach, however, often results in significant interobserver variability when comparing contours drawn by different experts on the same PET/CT data sets. For this reason, a search for more objective contouring approaches is underway. The major drawback of conventional tumor delineation in static PET images is the fact that two neighboring voxels of the same intensity can exhibit markedly different overall dynamics. Therefore, equal intensity voxels in a static analysis of a PET image may be falsely classified as belonging to the same tissue. Dynamic PET allows the evaluation of image data in the temporal domain, which often describes specific biochemical properties of the imaged tissues. Analysis of dynamic PET data can be used to improve classification of the imaged volume into cancerous and normal tissue. In this thesis we present a novel tumor volume delineation approach (Single Seed Region Growing algorithm in 4D (dynamic) PET or SSRG/4D-PET) in dynamic PET based on TAC (Time Activity Curve) differences. A partially-supervised approach is pursued in order to allow an expert reader to utilize the information available from other imaging

  18. Determination of Internal Target Volume From a Single Positron Emission Tomography/Computed Tomography Scan in Lung Cancer

    SciTech Connect

    Chang Guoping; Chang Tingting; Pan Tinsu; Clark, John W.; Mawlawi, Osama R.

    2012-05-01

    Purpose: The use of four-dimensional computed tomography (4D-CT) to determine the tumor internal target volume (ITV) is usually characterized by high patient radiation exposure. The objective of this study was to propose and evaluate an approach that relies on a single static positron emission tomography (PET)/CT scan to determine the ITV, thereby eliminating the need for 4D-CT and thus reduce patient radiation dose. Methods and Materials: The proposed approach is based on the concept that the observed PET image is the result of a joint convolution of an ideal PET image (free from motion and partial volume effect) with a motion-blurring kernel (MBK) and partial volume effect. In this regard, the MBK and tumor ITV are then estimated from the deconvolution of this joint model. To test this technique, phantom and patient studies were performed using different sphere/tumor sizes and motion trajectories. In all studies, a 4D-CT and a PET/CT image of the sphere/tumor were acquired. The ITV from the proposed technique was then compared to the maximum intensity projection (MIP) volume of the 4D-CT images. A Dice coefficient of the two volumes was calculated to represent the similarity between the two ITVs. Results: The average ITVs of the proposed technique were 97.2% {+-} 0.3% and 81.0% {+-} 16.7% similar to the MIP volume in the phantom and patient studies, respectively. The average dice coefficients were 0.87 {+-} 0.05 and 0.73 {+-} 0.16, respectively, for the two studies. Conclusion: Using the proposed approach, a single static PET/CT scan has the potential to replace a 4D-CT to determine the tumor ITV. This approach has the added advantage of reducing patient radiation exposure and determining the tumor MBK compared to 4D-CT/MIP-CT.

  19. Defining Radiotherapy Target Volumes Using {sup 18}F-Fluoro-Deoxy-Glucose Positron Emission Tomography/Computed Tomography: Still a Pandora's Box?

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Faria, Sergio; Menard, Sonia; Lisbona, Robert; Lehnert, Shirley

    2010-12-01

    Purpose: We discuss the effect of {sup 18}F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) data on target volume definition for radiotherapy planning. We compared the effect of various thresholding methods on the PET-based target volume vs. the standard CT-based tumor volume. Methods and Materials: Different thresholding methods were reviewed and compared to our PET-based gross tumor volume data obtained from a cohort of 31 non-small-cell lung carcinoma patients who had undergone preoperative PET/CT scans for staging. The feasibility and limitations of FDG-based PET/CT data on target volume delineation in radiotherapy planning have been demonstrated with frequently used approaches for target outlining such as the qualitative visual method and the fixed 15% or 40% of the maximal iso-uptake value threshold methods. Results: The relationship between PET-based and CT-based volumes generally suffers from poor correlation between the two image data sets, expressed in terms of a large statistical variation in gross tumor volume ratios, irrespective of the threshold method used. However, we found that the maximal signal/background ratios in non-small-cell lung carcinoma patients correlated well with the pathologic results, with an average ratio for adenocarcinoma, large cell carcinoma, and squamous cell carcinoma of 10.5 {+-} 3.5, 12.6 {+-} 2.8, and 14.1 {+-} 5.9, respectively. Conclusion: The fluctuations in tumor volume using different quantitative PET thresholding approaches did not depend on the thresholding method used. They originated from the nature of functional imaging in general and PET imaging in particular. Functional imaging will eventually be used for biologically tailored target radiotherapy volume definition not as a replacement of CT- or magnetic resonance imaging-based anatomic gross tumor volumes but with the methods complementing each other in a complex mosaic of distinct biologic target volumes.

  20. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    SciTech Connect

    Lewis, Lorraine; Cox, Jennifer; Morgia, Marita; Atyeo, John; Lamoury, Gillian

    2015-09-15

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 days post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.

  1. Toxicity assessment for RMA target contaminants. Volume 1. Endangerment assessment RMA, task 35. Final draft report

    SciTech Connect

    1987-06-01

    This report is detailed discussion of the evaluations performed to develop the toxicity assessment for RMA contaminants in soil. The objectives of the toxicity assessment are to determine the nature and extent of health and environmental hazards associated with exposure to contaminants present at the site and identify a quantitative index of toxicity for each target contaminant, referred to in this assessment as DT. The toxicity assessment for the RMA target contaminants has been performed consistent with published EPA guidelines and addresses only human health hazards associated with contaminants in soil. Each toxicity profile is composed of seven sections: 1. summary; 2. chemical and physical properties; and 3. transport and rate.

  2. Internal target volume determined with expansion margins beyond composite gross tumor volume in three-dimensional conformal radiotherapy for lung cancer

    SciTech Connect

    Shih, Helen A.; Jiang, Steve B.; Aljarrah, Khaled M.; Doppke, Karen P.; Choi, Noah C. . E-mail: nchoi@partners.org

    2004-10-01

    Purpose: Gross tumor volume (GTV) of lung cancer defined by fast helical CT scan represents an image of moving tumor captured at a point in active respiratory movement. However, the method for defining internal margins beyond GTV to account for its expected physiologic movement and all variations in size and shape during the administration of radiation has not been established. The goal of this study was to determine the internal margins with expansion margins beyond individual GTVs defined with (1) fast scan at shallow free breathing (2) breath-hold scans at the end of tidal volume inspiration and expiration, and (3) 4-s slow scan to approximate the composite GTV of all scans. Methods and materials: A series of sequential CT scans were acquired with (1) a fast helical scan at shallow free breathing and (2) breath-hold scans at the end of tidal volume expiration and inspiration for the first 6 patients, and (3) a 4-s slow scan at quiet free breathing, which was added for the latter 7 patients. We fused breath-hold scans and the 4-s slow scan to the fast scan at shallow free breathing to generate the composite GTV. Margins necessary to encompass the composite GTV beyond individual GTVs defined by either fast scan at quiet free breathing, breath-hold scans, or the 4-s slow scan at quiet free breathing were defined as expansion or internal margins and termed the internal target volumes. The centroid of the tumor volume was also used as another reference for tumor movement. Results: Thirteen patients with 14 tumors were enrolled into the study. Substantial tumor movement was noted by either the extent of internal margins beyond each GTV or the movement of the centroid. Internal margins varied significantly according to the method of CT scanning for determination of GTV. Even for tumors in the same lobe of the lung, a wide range of internal margins and significant variation in the centroid movement in all directions (x, y, and z) were observed. The GTV of a single fast

  3. Quantification and Minimization of Uncertainties of Internal Target Volume for Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect

    Ge Hong; Cai Jing; Kelsey, Chris R.; Yin Fangfang

    2013-02-01

    Purpose: To quantify uncertainties in delineating an internal target volume (ITV) and to understand how these uncertainties may be individually minimized for stereotactic body radiation therapy (SBRT) of early stage non-small cell lung cancer (NSCLC). Methods and Materials: Twenty patients with NSCLC who were undergoing SBRT were imaged with free-breathing 3-dimensional computed tomography (3DCT) and 10-phase 4-dimensional CT (4DCT) for delineating gross tumor volume (GTV){sub 3D} and ITV{sub 10Phase} (ITV3). The maximum intensity projection (MIP) CT was also calculated from 10-phase 4DCT for contouring ITV{sub MIP} (ITV1). Then, ITV{sub COMB} (ITV2), ITV{sub 10Phase+GTV3D} (ITV4), and ITV{sub 10Phase+ITVCOMB} (ITV5) were generated by combining ITV{sub MIP} and GTV{sub 3D}, ITV{sub 10phase} and GTV{sub 3D}, and ITV{sub 10phase} and ITV{sub COMB}, respectively. All 6 volumes (GTV{sub 3D} and ITV1 to ITV5) were delineated in the same lung window by the same radiation oncologist. The percentage of volume difference (PVD) between any 2 different volumes was determined and was correlated to effective tumor diameter (ETD), tumor motion ranges, R{sub 3D}, and the amplitude variability of the recorded breathing signal (v) to assess their volume variations. Results: The mean (range) tumor motion (R{sub SI}, R{sub AP}, R{sub ML}, and R{sub 3D}) and breathing variability (v) were 7.6 mm (2-18 mm), 4.0 mm (2-8 mm), 3.3 mm (0-7.5 mm), 9.9 mm (4.1-18.7 mm), and 0.17 (0.07-0.37), respectively. The trend of volume variation was GTV{sub 3D} volumes were 11.1 {+-} 9.3 cc, 13.2 {+-} 10.5 cc, 14.9 {+-} 11.0 cc, 14.7 {+-} 11.4 cc, 15.9 {+-} 11.7 cc, and 16.4 {+-} 11.8 cc, respectively. All comparisons between the target volumes showed statistical significance (P{<=}.001), except for ITV2 and ITV3 (P=.594). The PVDs for all volume pairs correlated negatively with ETD (r{<=}-0.658, P{<=}.006) and positively with

  4. Determination of Internal Target Volume for Radiation Treatment Planning of Esophageal Cancer by Using 4-Dimensional Computed Tomography (4DCT)

    SciTech Connect

    Chen, Xiaojian; Lu, Haijun; Tai, An; Johnstone, Candice; Gore, Elizabeth; Li, X. Allen

    2014-09-01

    Purpose: To determine an efficient strategy for the generation of the internal target volume (ITV) for radiation treatment planning for esophageal cancer using 4-dimensional computed tomography (4DCT). Methods and Materials: 4DCT sets acquired for 20 patients with esophageal carcinoma were analyzed. Each of the 4DCT sets was binned into 10 respiratory phases. For each patient, the gross tumor volume (GTV) was delineated on the 4DCT set at each phase. Various strategies to derive ITV were explored, including the volume from the maximum intensity projection (MIP; ITV{sub M}IP), unions of the GTVs from selected multiple phases ITV2 (0% and 50% phases), ITV3 (ITV2 plus 80%), and ITV4 (ITV3 plus 60%), as well as the volumes expanded from ITV2 and ITV3 with a uniform margin. These ITVs were compared to ITV10 (the union of the GTVs for all 10 phases) and the differences were measured with the overlap ratio (OR) and relative volume ratio (RVR) relative to ITV10 (ITVx/ITV10). Results: For all patients studied, the average GTV from a single phase was 84.9% of ITV10. The average ORs were 91.2%, 91.3%, 94.5%, and 96.4% for ITV{sub M}IP, ITV2, ITV3, and ITV4, respectively. Low ORs were associated with irregular breathing patterns. ITV3s plus 1 mm uniform margins (ITV3+1) led to an average OR of 98.1% and an average RVR of 106.4%. Conclusions: The ITV generated directly from MIP underestimates the range of the respiration motion for esophageal cancer. The ITV generated from 3 phases (ITV3) may be used for regular breathers, whereas the ITV generated from 4 phases (ITV4) or ITV3 plus a 1-mm uniform margin may be applied for irregular breathers.

  5. Microspheres targeted with a mesothelin antibody and loaded with doxorubicin reduce tumor volume of human mesotheliomas in xenografts

    PubMed Central

    2013-01-01

    Background Malignant mesotheliomas (MMs) are chemoresistant tumors related to exposure to asbestos fibers. The long latency period of MM (30-40 yrs) and heterogeneity of tumor presentation make MM difficult to diagnose and treat at early stages. Currently approved second-line treatments following surgical resection of MMs include a combination of cisplatin or carboplatin (delivered systemically) and pemetrexed, a folate inhibitor, with or without subsequent radiation. The systemic toxicities of these treatments emphasize the need for more effective, localized treatment regimens. Methods Acid-prepared mesoporous silica (APMS) microparticles were loaded with doxorubicin (DOX) and modified externally with a mesothelin (MB) specific antibody before repeated intraperitoneal (IP) injections into a mouse xenograft model of human peritoneal MM. The health/weight of mice, tumor volume/weight, tumor necrosis and cell proliferation were evaluated in tumor-bearing mice receiving saline, DOX high (0.2 mg/kg), DOX low (0.05 mg/kg), APMS-MB, or APMS-MB-DOX (0.05 mg/kg) in saline. Results Targeted therapy (APMS-MB-DOX at 0.05 mg/kg) was more effective than DOX low (0.05 mg/kg) and less toxic than treatment with DOX high (0.2 mg/kg). It also resulted in the reduction of tumor volume without loss of animal health and weight, and significantly decreased tumor cell proliferation. High pressure liquid chromatography (HPLC) of tumor tissue confirmed that APMS-MB-DOX particles delivered DOX to target tissue. Conclusions Data suggest that targeted therapy results in greater chemotherapeutic efficacy with fewer adverse side effects than administration of DOX alone. Targeted microparticles are an attractive option for localized drug delivery. PMID:24024776

  6. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    SciTech Connect

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  7. Toxicity assessment for RMA target contaminants. Volume 2. Endangerment assessment, RMA, task 35. Final draft report

    SciTech Connect

    1987-06-01

    This report is a detailed discussion of the evaluations performed to develop the toxicity assessment for RMA contaminants in soil. The objectives of the toxicity assessment are to: (1) determine the nature and extent of health and environmental hazards associated with exposure to contaminants present at the site and (2) identify a quantitative index of toxicity for each target contaminant, referred to in this assessment as DT. The toxicity assessment for the RMA target contaminants has been performed consistent with published EPA guidelines and addresses only human health hazards associated with contaminants in soil. Each toxicity profile is composed of seven sections: (1) summary; (2) chemical and physical properties; and (3) transport and fate.

  8. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    SciTech Connect

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  9. The optimization of intensity modulated radiotherapy in cases where the planning target volume extends into the build-up region.

    PubMed

    Nguyen, T B; Hoole, A C F; Burnet, N G; Thomas, S J

    2009-04-21

    A common clinical problem in IMRT, especially when treating head and neck cases, is that the clinical target volume (CTV) stops short of the skin surface, whilst the margin for geometric uncertainties may take the planning target volume (PTV) to the skin surface or beyond. In these cases, optimization leads to over-dosing of the skin, unless the planner resorts to procedural tricks to avoid this, such as the use of pretend bolus or reduction of the PTV followed by adding 'flash' after optimization. This paper describes a method of avoiding the need for these tricks by using a multiple-isocentre CTV-based objective function. This enables plans to be produced that will give good coverage of the CTV for all the geometrical uncertainties that would have been covered by the PTV without causing the problem of over-dosing the skin. Eight isocentre shifts, equally distributed on the surface of a sphere with a radius equal to the CTV-PTV margin, are shown to be adequate for the optimization process. The resulting fluence maps are much simpler than those resulting from PTV optimization and will therefore be simpler to deliver. The method also permits better sparing of organs at risk such as the spinal cord. PMID:19336846

  10. Elective Clinical Target Volumes for Conformal Therapy in Anorectal Cancer: A Radiation Therapy Oncology Group Consensus Panel Contouring Atlas

    SciTech Connect

    Myerson, Robert J. Garofalo, Michael C.; El Naqa, Issam; Abrams, Ross A.; Apte, Aditya; Bosch, Walter R.; Das, Prajnan; Gunderson, Leonard L.; Hong, Theodore S.; Kim, J.J. John; Willett, Christopher G.; Kachnic, Lisa A.

    2009-07-01

    Purpose: To develop a Radiation Therapy Oncology Group (RTOG) atlas of the elective clinical target volume (CTV) definitions to be used for planning pelvic intensity-modulated radiotherapy (IMRT) for anal and rectal cancers. Methods and Materials: The Gastrointestinal Committee of the RTOG established a task group (the nine physician co-authors) to develop this atlas. They responded to a questionnaire concerning three elective CTVs (CTVA: internal iliac, presacral, and perirectal nodal regions for both anal and rectal case planning; CTVB: external iliac nodal region for anal case planning and for selected rectal cases; CTVC: inguinal nodal region for anal case planning and for select rectal cases), and to outline these areas on individual computed tomographic images. The imaging files were shared via the Advanced Technology Consortium. A program developed by one of the co-authors (I.E.N.) used binomial maximum-likelihood estimates to generate a 95% group consensus contour. The computer-estimated consensus contours were then reviewed by the group and modified to provide a final contouring consensus atlas. Results: The panel achieved consensus CTV definitions to be used as guidelines for the adjuvant therapy of rectal cancer and definitive therapy for anal cancer. The most important difference from similar atlases for gynecologic or genitourinary cancer is mesorectal coverage. Detailed target volume contouring guidelines and images are discussed. Conclusion: This report serves as a template for the definition of the elective CTVs to be used in IMRT planning for anal and rectal cancers, as part of prospective RTOG trials.

  11. Target Volume Delineation in Oropharyngeal Cancer: Impact of PET, MRI, and Physical Examination

    SciTech Connect

    Thiagarajan, Anuradha; Caria, Nicola; Schoeder, Heiko; Iyer, N. Gopalakrishna; Wolden, Suzanne; Wong, Richard J.; Sherman, Eric; Fury, Matthew G.; Lee, Nancy

    2012-05-01

    Introduction: Sole utilization of computed tomography (CT) scans in gross tumor volume (GTV) delineation for head-and-neck cancers is subject to inaccuracies. This study aims to evaluate contributions of magnetic resonance imaging (MRI), positron emission tomography (PET), and physical examination (PE) to GTV delineation in oropharyngeal cancer (OPC). Methods: Forty-one patients with OPC were studied. All underwent contrast-enhanced CT simulation scans (CECTs) that were registered with pretreatment PETs and MRIs. For each patient, three sets of primary and nodal GTV were contoured. First, reference GTVs (GTVref) were contoured by the treating radiation oncologist (RO) using CT, MRI, PET, and PE findings. Additional GTVs were created using fused CT/PET scans (GTVctpet) and CT/MRI scans (GTVctmr) by two other ROs blinded to GTVref. To compare GTVs, concordance indices (CI) were calculated by dividing the respective overlap volumes by overall volumes. To evaluate the contribution of PE, composite GTVs derived from CT, MRI, and PET (GTVctpetmr) were compared with GTVref. Results: For primary tumors, GTVref was significantly larger than GTVctpet and GTVctmr (p < 0.001). Although no significant difference in size was noted between GTVctpet and GTVctmr (p = 0.39), there was poor concordance between them (CI = 0.62). In addition, although CI (ctpetmr vs. ref) was low, it was significantly higher than CI (ctpet vs. ref) and CI (ctmr vs. ref) (p < 0.001), suggesting that neither modality should be used alone. Qualitative analyses to explain the low CI (ctpetmr vs. ref) revealed underestimation of mucosal disease when GTV was contoured without knowledge of PE findings. Similar trends were observed for nodal GTVs. However, CI (ctpet vs. ref), CI (ctmr vs. ref), and CI (ctpetmr vs. ref) were high (>0.75), indicating that although the modalities were complementary, the added benefit was small in the context of CECTs. In addition, PE did not aid greatly in nodal GTV delineation

  12. The Influence of Treatment Position (Prone vs. Supine) on Clip Displacement, Seroma, Tumor Bed and Partial Breast Target Volumes: Comparative Study.

    PubMed

    Lakosi, Ferenc; Gulyban, Akos; Simoni, Selma Ben-Mustapha; Nguyen, Paul Viet; Cucchiaro, Séverine; Seidel, Laurence; Janvary, Levente; Nicolas, Sophie; Vavassis, Peter; Coucke, Philippe

    2016-07-01

    To analyse the displacement of surgical clips in prone (Pr) position and assess the consequences on target volumes and integral dose of partial breast irradiation (PBI). 30 post-lumpectomy breast cancer patients underwent CT imaging in supine (Su) and Pr. Clip displacements were measured by the distances from the clips to a common fix bony reference point. On each dataset, the tumour bed (TB = clips ± seroma), clinical target volume (CTV = TB + 1.5 cm) and planning target volumes (PTV = CTV + 1 cm) for PBI were determined and the volume pairs were compared. Furthermore estimation of integral dose ratio (IDR) within the breast from tangential treatment was performed as the ratio of the irradiated breast volume and the volume encompassing all clips. Clips close to the chest wall (CW) in Su showed significantly less displacement in Pr. The mean volumes of seroma, CTV and PTV were significantly higher in Pr than in Su. The PTV volume difference (Pr-Su) was significantly higher in patients with presence of seroma, deep clips and TB location in the superior-internal-quadrant (SIQ) and at the junction of superior quadrants (jSQ). In a multivariate analysis two factors remained significant: seroma and TB localization in SIQ-jSQ. The IDR was significantly larger in Su than in Pr (7.6 vs. 4.1 p < 0.01). Clip displacements varied considerably with respect to their relative position to the CW. In selected patients Pr position potentially leads to a significant increase in target volumes of PBI. Tangential beam arrangement for PBI should be avoided, not only in Su but in Pr as well in case of clip-based target volume definition. PMID:26676979

  13. Hypervelocity Impact (HVI). Volume 3; WLE Small-Scale Fiberglass Panel Flat Target C-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-1 was to study hypervelocity impacts on the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  14. Hypervelocity Impact (HVI). Volume 4; WLE Small-Scale Fiberglass Panel Flat Target C-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-2 was to study impacts through the reinforced carboncarbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  15. Accuracy of relocation, evaluation of geometric uncertainties and clinical target volume (CTV) to planning target volume (PTV) margin in fractionated stereotactic radiotherapy for intracranial tumors using relocatable Gill-Thomas-Cosman (GTC) frame.

    PubMed

    Das, Saikat; Isiah, Rajesh; Rajesh, B; Ravindran, B Paul; Singh, Rabi Raja; Backianathan, Selvamani; Subhashini, J

    2011-01-01

    The present study is aimed at determination of accuracy of relocation of Gill-Thomas-Cosman frame during fractionated stereotactic radiotherapy. The study aims to quantitatively determine the magnitudes of error in anteroposterior, mediolateral and craniocaudal directions, and determine the margin between clinical target volume to planning target volume based on systematic and random errors. Daily relocation error was measured using depth helmet and measuring probe. Based on the measurements, translational displacements in anteroposterior (z), mediolateral (x), and craniocaudal (y) directions were calculated. Based on the displacements in x, y and z directions, systematic and random error were calculated and three-dimensional radial displacement vector was determined. Systematic and random errors were used to derive CTV to PTV margin. The errors were within ± 2 mm in 99.2% cases in anteroposterior direction (AP), in 99.6% cases in mediolateral direction (ML), and in 97.6% cases in craniocaudal direction (CC). In AP, ML and CC directions, systematic errors were 0.56, 0.38, 0.42 mm and random errors were 1.86, 1.36 and 0.73 mm, respectively. Mean radial displacement was 1.03 mm ± 0.34. CTV to PTV margins calculated by ICRU formula were 1.86, 1.45 and 0.93 mm; by Stroom's formula they were 2.42, 1.74 and 1.35 mm; by van Herk's formula they were 2.7, 1.93 and 1.56 mm (AP, ML and CC directions). Depth helmet with measuring probe provides a clinically viable way for assessing the relocation accuracy of GTC frame. The errors were within ± 2 mm in all directions. Systematic and random errors were more along the anteroposterior axes. According to the ICRU formula, a margin of 2 mm around the tumor seems to be adequate. PMID:21587166

  16. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 3

    SciTech Connect

    1997-01-01

    ADVANCE [Advanced Driver and Vehicle Advisory Navigation ConcEpt] was a public/private partnership conceived and developed by four founding parties. The founding parties include the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Northwestern University operating together under the auspices of the Illinois Universities Transportation Research Consortium (IUTRC), and Motorola, Inc. The major responsibilities of each party are fully described in the Project agreement. Subsequently, these four were joined on the Steering Committee by the American Automobile Association (AAA). This unique blending of public sector, private sector and university interests, augmented by more than two dozen other private sector participants, provided a strong set of resources for ADVANCE. The ADVANCE test area covered over 300 square miles including portions of the City of Chicago and 40 northwest suburban communities. The Project encompasses the high growth areas adjacent to O`Hare International Airport, the Schaumbura/Hoffman Estates office and retail complexes, and the Lake-Cook Road development corridor. It also includes major sports and entertainment complexes such as the Arlington International Racecourse and the Rosemont Horizon. The population in the area is more than 750,000. This volume provides a summary of the insights and achievements made as a result of this field test, and selected appendices containing more detailed information.

  17. Comparison of planning target volumes based on three-dimensional and four-dimensional CT imaging of thoracic esophageal cancer

    PubMed Central

    Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Fan, Tingyong; Wang, Jinzhi

    2016-01-01

    Background and purpose To investigate the definition of planning target volumes (PTVs) based on four-dimensional computed tomography (4DCT) compared with conventional PTV definition and PTV definition using asymmetrical margins for thoracic primary esophageal cancer. Materials and methods Forty-three patients with esophageal cancer underwent 3DCT and 4DCT simulation scans during free breathing. The motions of primary tumors located in the proximal (group A), middle (group B), and distal (group C) thoracic esophagus were obtained from the 4DCT scans. PTV3D was defined on 3DCT using the tumor motion measured based on 4DCT, PTV conventional (PTVconv) was defined on 3DCT by adding a 1.0 cm margin to the clinical target volume, and PTV4D was defined as the union of the target volumes contoured on the ten phases of the 4DCT images. The centroid positions, volumetric differences, and dice similarity coefficients were evaluated for all PTVs. Results The median centroid shifts between PTV3D and PTV4D and between PTVconv and PTV4D in all three dimensions were <0.3 cm for the three groups. The median size ratios of PTV4D to PTV3D were 0.80, 0.88, and 0.71, and PTV4D to PTVconv were 0.67, 0.73, and 0.76 (χ2=−3.18, −2.98, and −3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The dice similarity coefficients were 0.87, 0.90, and 0.81 between PTV4D and PTV3D and 0.80, 0.84, and 0.83 between PTV4D and PTVconv (χ2 =−3.18, −2.98, and −3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The difference between the degree of inclusion of PTV4D in PTV3D and that of PTV4D in PTVconv was <2% for all groups. Compared with PTVconv, the amount of irradiated normal tissue for PTV3D was decreased by 11.81% and 11.86% in groups A and B, respectively, but was increased by 2.93% in group C. Conclusion For proximal and middle esophageal cancer, 3DCT-based PTV using asymmetrical margins provides good coverage of PTV4D; however, for distal

  18. SU-E-J-75: Importance of 4DCT for Target Volume Definition in Stereotactic Lung Radiotherapy

    SciTech Connect

    Goksel, E; Cone, D; Kucucuk, H; Senkesen, O; Yilmaz, M; Aslay, I; Tezcanli, E; Garipagaoglu, M; Sengoz, M

    2014-06-01

    Purpose: We aimed to investigate the importance of 4DCT for lung tumors treated with SBRT and whether maximum intensity projection (MIP) and free breathing (FB) images can compansate for tumor movement. Methods: Six patients with primary lung cancer and 2 patients with lung metastasis with a median age of 69.5 (42–86) were included. Patients were positioned supine on a vacuum bag. In addition to FB planning CT images, 4DCT images were obtained at 3 mm intervals using Varian RPM system with (Siemens Somatom Sensetion 64). MIP series were reconstructed using 4DCT images. PTV-FB and PTV-MIP (GTV+5mm) volumes were contoured using FB and MIP series, respectively. GTVs were defined on each of eight different breathing phase images and were merged to create the ITV. PTV-4D was generated with a 5 mm margin to ITV. PTV-MIP and PTV-4D contours were copied to FB CT series and treatment plans for PTV-MIP and PTV-FB were generated using RapidArc (2 partial arc) technique in Eclipse (version 11, AAA algorithm). The prescription dose was 5600cGy in 7 fractions. ITV volumes receiving prescription dose (%) and V95 for ITV were calculated for each treatment plan. Results: The mean PTV-4B, PTV-MIP and PTV-FB volumes were 23.2 cc, 15.4cc ve 11cc respectively. Median volume of ITV receiving the prescription dose was 34.6% (16.4–70 %) and median V95 dose for ITV was 1699cGy (232cGy-5117cGy) in the plan optimized for PTV-FB as the reference. When the plan was optimized for PTV-MIP, median ITV volume receiving the prescription dose was 67.15% (26–86%) and median V95 dose for ITV was 4231cGy (1735cGy-5290cGy). Conclusion: Images used in lung SBRT are critical for treatment quality; FB and MIP images did not compensate target movement, therefore 4DCT images should be obtained for all patients undergoing lung SBRT or the safety margins should be adjusted.

  19. Radar detection of low-altitude targets in a maritime environment. Volume 1: Final analysis

    NASA Astrophysics Data System (ADS)

    Anderson, Kenneth D.

    1993-10-01

    Results from a unique analytical and measurement effort to assess low-altitude, short-range, radar detection capabilities in an evaporation ducting environment validate propagation model predictions of reduced radar detection ranges within the radio horizon. In addition, discrepancies between measured and predicted radar data demand a close examination of both meteorological data and surface layer theory. At ranges near and beyond the horizon, radar detection crucially depends both on the surface layer refractivity profile and on the adjacent mixed layer refractivity profile. A unified boundary layer model, an empirical model to merge the surface layer with the mixed layer, is described. Other discrepancies, which are thought to be caused either by inadequate surface layer modeling (perhaps the moisture stability function) or by inadequate boundary layer meteorological measurements, suggest the need for improvements in surface layer modeling and the need for new techniques to measure the refractivity structure. The combination of direct boundary layer (surface and mixed layer) meteorological measurements, remotely sensed radar measurements, and advanced numerical modeling capability provides valuable insight for a better understanding of the atmospheric boundary layer and its effects on the radar detection of low-altitude short-range targets.

  20. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    SciTech Connect

    Yeoh, Kheng-Wei; Mikhaeel, N. George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  1. Fast Quantitation of Target Analytes in Small Volumes of Complex Samples by Matrix-Compatible Solid-Phase Microextraction Devices.

    PubMed

    Piri-Moghadam, Hamed; Ahmadi, Fardin; Gómez-Ríos, German Augusto; Boyacı, Ezel; Reyes-Garcés, Nathaly; Aghakhani, Ali; Bojko, Barbara; Pawliszyn, Janusz

    2016-06-20

    Herein we report the development of solid-phase microextraction (SPME) devices designed to perform fast extraction/enrichment of target analytes present in small volumes of complex matrices (i.e. V≤10 μL). Micro-sampling was performed with the use of etched metal tips coated with a thin layer of biocompatible nano-structured polypyrrole (PPy), or by using coated blade spray (CBS) devices. These devices can be coupled either to liquid chromatography (LC), or directly to mass spectrometry (MS) via dedicated interfaces. The reported results demonstrated that the whole analytical procedure can be carried out within a few minutes with high sensitivity and quantitation precision, and can be used to sample from various biological matrices such as blood, urine, or Allium cepa L single-cells. PMID:27158909

  2. Cranial location of level II lymph nodes in laryngeal cancer: Implications for elective nodal target volume delineation

    SciTech Connect

    Braam, Petra M. . E-mail: P.M.Braam@umcutrecht.nl; Raaijmakers, Cornelis P.J.; Terhaard, Chris

    2007-02-01

    Purpose: To analyze the cranial distribution of level II lymph nodes in patients with laryngeal cancer to optimize the elective radiation nodal target volume delineation. Methods and Materials: The most cranially located metastatic lymph node was delineated in 67 diagnostic CT data sets. The minimum distance from the base of the skull (BOS) to the lymph node was determined. Results: A total of 98 lymph nodes were delineated including 62 ipsilateral and 36 contralateral lymph nodes. The mean ipsilateral and contralateral distance from the top of the most cranial metastatic lymph node to the BOS was 36 mm (range, -9-120; standard deviation [SD], 17.9) and 35 mm (range, 14-78; SD 15.0), respectively. Only 5% and 12% of the ipsilateral and 3% and 9% of the contralateral metastatic lymph nodes were located within 15 mm and 20 mm below the BOS, respectively. No significant differences were found between patients with only ipsilateral metastatic lymph nodes and patients with bilateral metastatic lymph nodes. Between tumors that do cross the midline and those that do not, no significant difference was found in the distance of the most cranial lymph node to the BOS and the occurrence ipsilateral or contralateral. Conclusions: Setting the cranial border of the nodal target volume 1.5 cm below the base of the skull covers 95% of the lymph nodes and should be considered in elective nodal irradiation for laryngeal cancer. Bilateral neck irradiation is mandatory, including patients with unilateral laryngeal cancer, when elective irradiation is advised.

  3. Dosimetric evaluation of planning target volume margin reduction for prostate cancer via image-guided intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-07-01

    The aim of this study was to quantitatively estimate the dosimetric benefits of the image-guided radiation therapy (IGRT) system for the prostate intensity-modulated radiation therapy (IMRT) delivery. The cases of eleven patients who underwent IMRT for prostate cancer without a prostatectomy at our institution between October 2012 and April 2014 were retrospectively analyzed. For every patient, clinical target volume (CTV) to planning target volume (PTV) margins were uniformly used: 3 mm, 5 mm, 7 mm, 10 mm, 12 mm, and 15 mm. For each margin size, the IMRT plans were independently optimized by one medical physicist using Pinnalce3 (ver. 8.0.d, Philips Medical System, Madison, WI) in order to maintain the plan quality. The maximum geometrical margin (MGM) for every CT image set, defined as the smallest margin encompassing the rectum at least at one slice, was between 13 mm and 26 mm. The percentage rectum overlapping PTV (%V ROV ), the rectal normal tissue complication probability (NTCP) and the mean rectal dose (%RD mean ) increased in proportion to the increase of PTV margin. However the bladder NTCP remained around zero to some extent regardless of the increase of PTV margin while the percentage bladder overlapping PTV (%V BOV ) and the mean bladder dose (%BD mean ) increased in proportion to the increase of PTV margin. Without relatively large rectum or small bladder, the increase observed for rectal NTCP, %RDmean and %BD mean per 1-mm PTV margin size were 1.84%, 2.44% and 2.90%, respectively. Unlike the behavior of the rectum or the bladder, the maximum dose on each femoral head had little effect on PTV margin. This quantitative study of the PTV margin reduction supported that IG-IMRT has enhanced the clinical effects over prostate cancer with the reduction of normal organ complications under the similar level of PTV control.

  4. Sci—Fri AM: Mountain — 06: Optimizing planning target volume in lung radiotherapy using deformable registration

    SciTech Connect

    Hoang, P; Wierzbicki, M

    2014-08-15

    A four dimensional computed tomography (4DCT) image is acquired for all radically treated, lung cancer patients to define the internal target volume (ITV), which encompasses tumour motion due to breathing and subclinical disease. Patient set-up error and anatomical motion that is not due to breathing is addressed through an additional 1 cm margin around the ITV to obtain the planning target volume (PTV). The objective of this retrospective study is to find the minimum PTV margin that provides an acceptable probability of delivering the prescribed dose to the ITV. Acquisition of a kV cone beam computed tomography (CBCT) image at each fraction was used to shift the treatment couch to accurately align the spinal cord and carina. Our method utilized deformable image registration to automatically position the planning ITV on each CBCT. We evaluated the percentage of the ITV surface that fell within various PTVs for 79 fractions across 18 patients. Treatment success was defined as a situation where at least 99% of the ITV is covered by the PTV. Overall, this is to be achieved in at least 90% of the treatment fractions. The current approach with a 1cm PTV margin was successful ∼96% of the time. This analysis revealed that the current margin can be reduced to 0.8cm isotropic or 0.6×0.6×1 cm{sup 3} non-isotropic, which were successful 92 and 91 percent of the time respectively. Moreover, we have shown that these margins maintain accuracy, despite intrafractional variation, and maximize CBCT image guidance capabilities.

  5. Defining the Optimal Planning Target Volume in Image-Guided Stereotactic Radiosurgery of Brain Metastases: Results of a Randomized Trial

    SciTech Connect

    Kirkpatrick, John P.; Wang, Zhiheng; Sampson, John H.; McSherry, Frances; Herndon, James E.; Allen, Karen J.; Duffy, Eileen; Hoang, Jenny K.; Chang, Zheng; Yoo, David S.; Kelsey, Chris R.; Yin, Fang-Fang

    2015-01-01

    Purpose: To identify an optimal margin about the gross target volume (GTV) for stereotactic radiosurgery (SRS) of brain metastases, minimizing toxicity and local recurrence. Methods and Materials: Adult patients with 1 to 3 brain metastases less than 4 cm in greatest dimension, no previous brain radiation therapy, and Karnofsky performance status (KPS) above 70 were eligible for this institutional review board–approved trial. Individual lesions were randomized to 1- or 3- mm uniform expansion of the GTV defined on contrast-enhanced magnetic resonance imaging (MRI). The resulting planning target volume (PTV) was treated to 24, 18, or 15 Gy marginal dose for maximum PTV diameters less than 2, 2 to 2.9, and 3 to 3.9 cm, respectively, using a linear accelerator–based image-guided system. The primary endpoint was local recurrence (LR). Secondary endpoints included neurocognition Mini-Mental State Examination, Trail Making Test Parts A and B, quality of life (Functional Assessment of Cancer Therapy-Brain), radionecrosis (RN), need for salvage radiation therapy, distant failure (DF) in the brain, and overall survival (OS). Results: Between February 2010 and November 2012, 49 patients with 80 brain metastases were treated. The median age was 61 years, the median KPS was 90, and the predominant histologies were non–small cell lung cancer (25 patients) and melanoma (8). Fifty-five, 19, and 6 lesions were treated to 24, 18, and 15 Gy, respectively. The PTV/GTV ratio, volume receiving 12 Gy or more, and minimum dose to PTV were significantly higher in the 3-mm group (all P<.01), and GTV was similar (P=.76). At a median follow-up time of 32.2 months, 11 patients were alive, with median OS 10.6 months. LR was observed in only 3 lesions (2 in the 1 mm group, P=.51), with 6.7% LR 12 months after SRS. Biopsy-proven RN alone was observed in 6 lesions (5 in the 3-mm group, P=.10). The 12-month DF rate was 45.7%. Three months after SRS, no significant change in

  6. The thermal-mechanical analysis of targets for the high volume production of molybdenum-99 using a low-enriched uranium metal foil

    NASA Astrophysics Data System (ADS)

    Turner, Kyler Kriens

    Molybdenum-99 diagnostic imaging is the most commonly practiced procedure in nuclear medicine today with the majority molybdenum-99 produced with proliferation sensitive HEU. International and domestic efforts to develop non-HEU production techniques have taking the first steps toward establishing a new non-HEU molybdenum-99 based supply chain. The focus of the research presented in this work is on the analysis of a new high U-235 density LEU based molybdenum-99 production target. Converting directly to LEU using current manufacturing techniques greatly reduces the molybdenum-99 yield per target making high volume production uneconomical. The LEU based foil target analyzed in this research increases the yield per target making economic high volume production with LEU possible. The research analyzed the thermal-mechanical response of an LEU foil target during irradiation. Thermal-mechanical studies focused on deflections and stresses to assess the probability of target failure. Simpler analytical models were used to determine the proper shape of the target and to benchmark the numerical modeling software. Numerical studies using Abaqus focused on analyzing various heating and cooling conditions and assessing the effects of curvature on the target. Finally, experiments were performed to simulate low power heating and further benchmark the models. The results from all of these analyses indicate a LEU foil target could survive irradiation depending on the conditions seen during irradiation.

  7. On the automated definition of mobile target volumes from 4D-CT images for stereotactic body radiotherapy

    SciTech Connect

    Zhang Tiezhi; Orton, Nigel P.; Tome, Wolfgang A.

    2005-11-15

    Stereotactic body radiotherapy (SBRT) can be used to treat small lesions in the chest. A vacuum-based immobilization system is used in our clinic for SBRT, and a motion envelope is used in treatment planning. The purpose of this study is to automatically derive motion envelopes using deformable image registration of 4D-CT images, and to assess the effect of abdominal pressure on the motion envelopes. 4D-CT scans at ten phases were acquired prior to treatment for both free and restricted breathing using a vacuum-based immobilization system that includes an abdominal pressure pillow. To study the stability of the motion envelope over the course of treatment, a mid-treatment 4D-CT scan was obtained after delivery of the third fraction for two patients. The planning target volume excluding breathing motion (PTV{sub ex}) was defined on the image set at full exhalation phase and transformed into all other phases using displacement maps from deformable image registration. The motion envelope was obtained as the union of PTV{sub ex} masks of all phases. The ratios of the motion envelope to PTV{sub ex} volume ranged from 1.3 to 2.5. When pressure was applied, the ratios were reduced by as much as 29% compared to free breathing for some patients, but increased by up to 9% for others. The abdominal pressure pillow has more motion restriction effects on the anterior/inferior region of the lung. For one of the two patients for whom the 4D-CT scan was repeated at mid-treatment, the motion envelope was reproducible. However, for the other patient the tumor location and lung motion pattern significantly changed due to changes in the anatomy surrounding the tumor during the course of treatment, indicating that an image-guided approach to SBRT may increase the efficacy of this treatment.

  8. Residual Tumor After Neoadjuvant Chemoradiation Outside the Radiation Therapy Target Volume: A New Prognostic Factor for Survival in Esophageal Cancer

    SciTech Connect

    Muijs, Christina; Smit, Justin; Karrenbeld, Arend; Beukema, Jannet; Mul, Veronique; Dam, Go van; Hospers, Geke; Kluin, Phillip; Langendijk, Johannes; Plukker, John

    2014-03-15

    Purpose/Objective(s): The aim of this study was to analyze the accuracy of gross tumor volume (GTV) delineation and clinical target volume (CTV) margins for neoadjuvant chemoradiation therapy (neo-CRT) in esophageal carcinoma at pathologic examination and to determine the impact on survival. Methods and Materials: The study population consisted of 63 esophageal cancer patients treated with neo-CRT. GTV and CTV borders were demarcated in situ during surgery on the esophagus, using anatomical reference points to provide accurate information regarding tumor location at pathologic evaluation. To identify prognostic factors for disease-free survival (DFS) and overall survival (OS), a Cox regression analysis was performed. Results: After resection, macroscopic residual tumor was found outside the GTV in 7 patients (11%). Microscopic residual tumor was located outside the CTV in 9 patients (14%). The median follow-up was 15.6 months. With multivariate analysis, only microscopic tumor outside the CTV (hazard ratio [HR], 4.96; 95% confidence interval [CI], 1.03-15.36), and perineural growth (HR, 5.77; 95% CI, 1.27-26.13) were identified as independent prognostic factors for OS. The 1-year OS was 20% for patients with tumor outside the CTV and 86% for those without (P<.01). For DFS, microscopic tumor outside the CTV (HR, 5.92; 95% CI, 1.89-18.54) and ypN+ (HR, 3.36; 95% CI, 1.33-8.48) were identified as independent adverse prognostic factors. The 1-year DFS was 23% versus 77% for patients with or without tumor outside the CTV (P<.01). Conclusions: Microscopic tumor outside the CTV is associated with markedly worse OS after neo-CRT. This may either stress the importance of accurate tumor delineation or reflect aggressive tumor behavior requiring new adjuvant treatment modalities.

  9. Setup Variations in Radiotherapy of Anal Cancer: Advantages of Target Volume Reduction Using Image-Guided Radiation Treatment

    SciTech Connect

    Chen Yijen; Suh, Steve; Nelson, Rebecca A.; Liu An; Pezner, Richard D.; Wong, Jeffrey Y.C.

    2012-09-01

    Purpose: To define setup variations in the radiation treatment (RT) of anal cancer and to report the advantages of image-guided RT (IGRT) in terms of reduction of target volume and treatment-related side effects. Methods and Materials: Twelve consecutive patients with anal cancer treated by combined chemoradiation by use of helical tomotherapy from March 2007 to November 2008 were selected. With patients immobilized and positioned in place, megavoltage computed tomography (MVCT) scans were performed before each treatment and were automatically registered to planning CT scans. Patients were shifted per the registration data and treated. A total of 365 MVCT scans were analyzed. The primary site received a median dose of 55 Gy. To evaluate the potential dosimetric advantage(s) of IGRT, cases were replanned according to Radiation Therapy Oncology Group 0529, with and without adding recommended setup variations from the current study. Results: Significant setup variations were observed throughout the course of RT. The standard deviations for systematic setup correction in the anterior-posterior (AP), lateral, and superior-inferior (SI) directions and roll rotation were 1.1, 3.6, and 3.2 mm, and 0.3 Degree-Sign , respectively. The average random setup variations were 3.8, 5.5, and 2.9 mm, and 0.5 Degree-Sign , respectively. Without daily IGRT, margins of 4.9, 11.1, and 8.5 mm in the AP, lateral, and SI directions would have been needed to ensure that the planning target volume (PTV) received {>=}95% of the prescribed dose. Conversely, daily IGRT required no extra margins on PTV and resulted in a significant reduction of V15 and V45 of intestine and V10 of pelvic bone marrow. Favorable toxicities were observed, except for acute hematologic toxicity. Conclusions: Daily MVCT scans before each treatment can effectively detect setup variations and thereby reduce PTV margins in the treatment of anal cancer. The use of concurrent chemotherapy and IGRT provided favorable

  10. Distance-to-Agreement Investigation of Tomotherapy's Bony Anatomy-Based Autoregistration and Planning Target Volume Contour-Based Optimization

    SciTech Connect

    Suh, Steve; Schultheiss, Timothy E.

    2013-03-01

    Purpose: To compare Tomotherapy's megavoltage computed tomography bony anatomy autoregistration with the best achievable registration, assuming no deformation and perfect knowledge of planning target volume (PTV) location. Methods and Materials: Distance-to-agreement (DTA) of the PTV was determined by applying a rigid-body shift to the PTV region of interest of the prostate from its reference position, assuming no deformations. Planning target volume region of interest of the prostate was extracted from the patient archives. The reference position was set by the 6 degrees of freedom (dof)—x, y, z, roll, pitch, and yaw—optimization results from the previous study at this institution. The DTA and the compensating parameters were calculated by the shift of the PTV from the reference 6-dof to the 4-dof—x, y, z, and roll—optimization. In this study, the effectiveness of Tomotherapy's 4-dof bony anatomy–based autoregistration was compared with the idealized 4-dof PTV contour-based optimization. Results: The maximum DTA (maxDTA) of the bony anatomy-based autoregistration was 3.2 ± 1.9 mm, with the maximum value of 8.0 mm. The maxDTA of the contour-based optimization was 1.8 ± 1.3 mm, with the maximum value of 5.7 mm. Comparison of Pearson correlation of the compensating parameters between the 2 4-dof optimization algorithms shows that there is a small but statistically significant correlation in y and z (0.236 and 0.300, respectively), whereas there is very weak correlation in x and roll (0.062 and 0.025, respectively). Conclusions: We find that there is an average improvement of approximately 1 mm in terms of maxDTA on the PTV going from 4-dof bony anatomy-based autoregistration to the 4-dof contour-based optimization. Pearson correlation analysis of the 2 4-dof optimizations suggests that uncertainties due to deformation and inadequate resolution account for much of the compensating parameters, but pitch variation also makes a statistically significant

  11. SU-E-T-379: Concave Approximations of Target Volume Dose Metrics for Intensity- Modulated Radiotherapy Treatment Planning

    SciTech Connect

    Xie, Y; Chen, Y; Wickerhauser, M; Deasy, J

    2014-06-01

    Purpose: The widely used treatment plan metric Dx (mimimum dose to the hottest x% by volume of the target volume) is simple to interpret and use, but is computationally poorly behaved (non-convex), this impedes its use in computationally efficient intensity-modulated radiotherapy (IMRT) treatment planning algorithms. We therefore searched for surrogate metrics that are concave, computationally efficient, and accurately correlated to Dx values in IMRT treatment plans. Methods: To find concave surrogates of D95—and more generally, Dx values with variable x values—we tested equations containing one or two generalized equivalent uniform dose (gEUD) functions. Fits were obtained by varying gEUD ‘a’ parameter values, as well as the linear equation coefficients. Fitting was performed using a dataset of dose-volume histograms from 498 de-identified head and neck IMRT treatment plans. Fit characteristics were tested using a crossvalidation process. Reported root-mean-square error values were averaged over the cross-validation shuffles. Results: As expected, the two-gEUD formula provided a superior fit, compared to the single-gEUD formula. The best approximation uses two gEUD terms: 16.25 x gEUD[a=0.45] – 15.30 x gEUD[a=1.75] – 0.69. The average root-mean-square error on repeated (70/30) cross validation was 0.94 Gy. In addition, a formula was found that reasonably approximates Dx for x between 80% and 96%. Conclusion: A simple concave function using two gEUD terms was found that correlates well with PTV D95s for these head and neck treatment plans. More generally, a formula was found that represents well the Dx for x values from 80% to 96%, thus providing a computationally efficient formula for use in treatment planning optimization. The formula may need to be adjusted for other institutions with different treatment planning protocols. We conclude that the strategy of replacing Dx values with gEUD-based formulas is promising.

  12. A dimensionless dynamic contrast enhanced MRI parameter for intra-prostatic tumour target volume delineation: initial comparison with histology

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Gibson, Eli; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; McKenzie, Charles A.; Bauman, Glenn S.; Ward, Aaron D.; Fenster, Aaron; Wong, Eugene

    2014-03-01

    Purpose: T2 weighted and diffusion weighted magnetic resonance imaging (MRI) show promise in isolating prostate tumours. Dynamic contrast enhanced (DCE)-MRI has also been employed as a component in multi-parametric tumour detection schemes. Model-based parameters such as Ktrans are conventionally used to characterize DCE images and require arterial contrast agent (CR) concentration. A robust parameter map that does not depend on arterial input may be more useful for target volume delineation. We present a dimensionless parameter (Wio) that characterizes CR wash-in and washout rates without requiring arterial CR concentration. Wio is compared to Ktrans in terms of ability to discriminate cancer in the prostate, as demonstrated via comparison with histology. Methods: Three subjects underwent DCE-MRI using gadolinium contrast and 7 s imaging temporal resolution. A pathologist identified cancer on whole-mount histology specimens, and slides were deformably registered to MR images. The ability of Wio maps to discriminate cancer was determined through receiver operating characteristic curve (ROC) analysis. Results: There is a trend that Wio shows greater area under the ROC curve (AUC) than Ktrans with median AUC values of 0.74 and 0.69 respectively, but the difference was not statistically significant based on a Wilcoxon signed-rank test (p = 0.13). Conclusions: Preliminary results indicate that Wio shows potential as a tool for Ktrans QA, showing similar ability to discriminate cancer in the prostate as Ktrans without requiring arterial CR concentration.

  13. Life Style Study: Children of the Lesser World in the English-Speaking Caribbean. Volume II: Ecological Characteristics of the Target Areas.

    ERIC Educational Resources Information Center

    Grant, D. R. B.

    The second in a series of four, this volume reports on a study designed to explore the home conditions under which young children in the English-speaking Caribbean islands, especially the underprivileged, are nurtured. Highlighted are those inseparable factors of the target islands that are likely to influence the living standards of each island…

  14. An Effective Preoperative Three-Dimensional Radiotherapy Target Volume for Extremity Soft Tissue Sarcoma and the Effect of Margin Width on Local Control

    SciTech Connect

    Kim, Bo Kyong; Chen, Yen-Lin E.; Kirsch, David G.; Goldberg, Saveli I.; Kobayashi, Wendy; Kung, Jong Hyun; Wolfgang, John A.; Doppke, Karen

    2010-07-01

    Purpose: There is little information on the appropriate three-dimensional (3D) preoperative radiotherapy (XRT) volume for extremity soft-tissue sarcomas (STS). We retrospectively analyzed the pattern of local failure (LF) to help elucidate optimal field design. Methods and Materials: We analyzed the 56 patients who underwent computed tomography-planned XRT for Stage I to III extremity STS between June 2000 and December 2006. Clinical target volume (CTV) included the T1 post-gadolinium-defined gross tumor volume with 1- to 1.5-cm radial and 3.5-cm longitudinal margins. Planning target volume expansion was 5 to 7 mm, and {>=}95% of dose was delivered to the planning target volume. Preoperative XRT was 44 to 50.4 Gy (median, 50). Postoperative boost of 10 to 20 Gy was given to 12 patients (6 with positive and 6 with close margins). Results: Follow-up ranged from 15 to 76 months (median, 41 months). The 5-year local control, freedom from distant metastasis, disease-free survival, and overall survival were 88.5%, 80.0%, 77.5% and 82.8%, respectively. Three patients (all with positive margin) experienced local failure (LF) as first relapse (2 isolated, 1 with distant failure), and 2 additional patients (all with margin<1 mm) had late LF after distant metastasis. The LFs were within the CTV in 3 patients and within and also extending beyond the CTV in 2 patients. Conclusions: These target volume definitions appear to be appropriate for most patients. No local recurrences were observed with surgical margins {>=}1 mm, and it appears that these may be adequate for patients with extremity STS treated with preoperative radiotherapy.

  15. Prospective Randomized Double-Blind Pilot Study of Site-Specific Consensus Atlas Implementation for Rectal Cancer Target Volume Delineation in the Cooperative Group Setting

    SciTech Connect

    Fuller, Clifton D.; Nijkamp, Jasper; Duppen, Joop C.; Rasch, Coen R.N.; Thomas, Charles R.; Wang, Samuel J.; Okunieff, Paul; Jones, William E.; Baseman, Daniel; Patel, Shilpen; Demandante, Carlo G.N.; Harris, Anna M.; Smith, Benjamin D.; Katz, Alan W.; McGann, Camille

    2011-02-01

    Purpose: Variations in target volume delineation represent a significant hurdle in clinical trials involving conformal radiotherapy. We sought to determine the effect of a consensus guideline-based visual atlas on contouring the target volumes. Methods and Materials: A representative case was contoured (Scan 1) by 14 physician observers and a reference expert with and without target volume delineation instructions derived from a proposed rectal cancer clinical trial involving conformal radiotherapy. The gross tumor volume (GTV), and two clinical target volumes (CTVA, including the internal iliac, presacral, and perirectal nodes, and CTVB, which included the external iliac nodes) were contoured. The observers were randomly assigned to receipt (Group A) or nonreceipt (Group B) of a consensus guideline and atlas for anorectal cancers and then instructed to recontour the same case/images (Scan 2). Observer variation was analyzed volumetrically using the conformation number (CN, where CN = 1 equals total agreement). Results: Of 14 evaluable contour sets (1 expert and 7 Group A and 6 Group B observers), greater agreement was found for the GTV (mean CN, 0.75) than for the CTVs (mean CN, 0.46-0.65). Atlas exposure for Group A led to significantly increased interobserver agreement for CTVA (mean initial CN, 0.68, after atlas use, 0.76; p = .03) and increased agreement with the expert reference (initial mean CN, 0.58; after atlas use, 0.69; p = .02). For the GTV and CTVB, neither the interobserver nor the expert agreement was altered after atlas exposure. Conclusion: Consensus guideline atlas implementation resulted in a detectable difference in interobserver agreement and a greater approximation of expert volumes for the CTVA but not for the GTV or CTVB in the specified case. Visual atlas inclusion should be considered as a feature in future clinical trials incorporating conformal RT.

  16. Reduce in Variation and Improve Efficiency of Target Volume Delineation by a Computer-Assisted System Using a Deformable Image Registration Approach

    SciTech Connect

    Chao, K.S. Clifford . E-mail: cchao@mdanderson.org; Bhide, Shreerang FRCR; Chen, Hansen; Asper, Joshua PAC; Bush, Steven; Franklin, Gregg; Kavadi, Vivek; Liengswangwong, Vichaivood; Gordon, William; Raben, Adam; Strasser, Jon; Koprowski, Christopher; Frank, Steven; Chronowski, Gregory; Ahamad, Anesa; Malyapa, Robert; Zhang Lifei; Dong Lei

    2007-08-01

    Purpose: To determine whether a computer-assisted target volume delineation (CAT) system using a deformable image registration approach can reduce the variation of target delineation among physicians with different head and neck (HN) IMRT experiences and reduce the time spent on the contouring process. Materials and Methods: We developed a deformable image registration method for mapping contours from a template case to a patient case with a similar tumor manifestation but different body configuration. Eight radiation oncologists with varying levels of clinical experience in HN IMRT performed target delineation on two HN cases, one with base-of-tongue (BOT) cancer and another with nasopharyngeal cancer (NPC), by first contouring from scratch and then by modifying the contours deformed by the CAT system. The gross target volumes were provided. Regions of interest for comparison included the clinical target volumes (CTVs) and normal organs. The volumetric and geometric variation of these regions of interest and the time spent on contouring were analyzed. Results: We found that the variation in delineating CTVs from scratch among the physicians was significant, and that using the CAT system reduced volumetric variation and improved geometric consistency in both BOT and NPC cases. The average timesaving when using the CAT system was 26% to 29% for more experienced physicians and 38% to 47% for the less experienced ones. Conclusions: A computer-assisted target volume delineation approach, using a deformable image-registration method with template contours, was able to reduce the variation among physicians with different experiences in HN IMRT while saving contouring time.

  17. SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI

    SciTech Connect

    Lafata, K; Czito, B; Palta, M; Bashir, M; Yin, F; Cai, J

    2014-06-01

    Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D images were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation. NIH 1R21

  18. Mapping Patterns of Ipsilateral Supraclavicular Nodal Metastases in Breast Cancer: Rethinking the Clinical Target Volume for High-risk Patients

    SciTech Connect

    Jing, Hao; Wang, Shu-Lian; Li, Jing; Xue, Mei; Xiong, Zu-Kun; Jin, Jing; Wang, Wei-Hu; Song, Yong-Wen; Liu, Yue-Ping; Ren, Hua; Fang, Hui; Yu, Zi-Hao; Liu, Xin-Fan; Li, Ye-Xiong

    2015-10-01

    Purpose: To map the location of metastatic supraclavicular (SCV) lymph nodes (LNMs) in breast cancer patients with SCV node involvement and determine whether and where the radiation therapy clinical target volume (CTV) of this region could be modified in high-risk subsets. Methods and Materials: Fifty-five patients with metastatic SCV LNMs were eligible for geographic mapping and atlas coverage analysis. All LNMs and their epicenters were registered proportionally by referencing the surrounding landmarks onto simulation computed tomography images of a standard patient. CTVs based on selected SCV atlases, including the one by the Radiation Therapy Oncology Group (RTOG) were contoured. A modified SCV CTV was tried and shown to have better involved-node coverage and thus theoretically improved prophylaxis in this setting. Results: A total of 50 (91%) and 45 (81.8%) patients had LNMs in the medial and lateral SCV subregions, respectively. Also, 36 patients (65.5%) had LNMs located at the junction of the jugular-subclavian veins. All nodes were covered in only 25.5% to 41.8% of patients by different atlases. The RTOG atlas covered all nodes in 25.5% of patients. Stratified by the nodes in all the patients as a whole, 49.2% to 81.3% were covered, and the RTOG atlas covered 62.6%. The lateral and posterior borders were the most overlooked locations. Modification by extending the borders to natural anatomic barriers allowed the new CTV to cover all the nodes in 81.8% of patients and encompass 96.1% of all the nodes. Conclusions: According to the distribution of SCV LNMs, the extent of existing atlases might not be adequate for potential metastatic sites in certain groups of patients. The extension of the lateral and posterior CTV borders in high-risk or recurrent patients might be a reasonable approach for increasing coverage. However, additional data in more homogeneous populations with localized disease are needed before routine application.

  19. An Assessment of Emergency School Aid Act (ESAA) Program Operations. Volume I: The Targeting of ESAA Grants and Grant Funds, and Volume II: The Focus of ESAA Projects.

    ERIC Educational Resources Information Center

    Smith, Stephen M.

    As part of a larger study, volume I of this report describes the results of analyses of the extent to which Emergency School Aid Act (ESAA) program grants and grant funds have been focused on school districts with desegregation-related needs. Also described is the extent to which the Act, regulations, and program processes influence the focusing…

  20. Comparative Analysis of the Post-Lumpectomy Target Volume Versus the Use of Pre-Lumpectomy Tumor Volume for Early-Stage Breast Cancer: Implications for the Future

    SciTech Connect

    Nichols, Elizabeth M.; Dhople, Anil A.; Mohiuddin, Majid M.; Flannery, Todd W.; Yu, Cedric X.; Regine, William F.

    2010-05-01

    Purpose: Three-dimensional conformal accelerated partial breast irradiation (APBI-3D-CRT) is commonly associated with the treatment of large amounts of normal breast tissue. We hypothesized that a planning tumor volume (PTV) generation based on an expansion of the pre-lumpectomy (pre-LPC) intact tumor volume would result in smaller volumes of irradiated normal breast tissue compared with using a PTV based on the post-lumpectomy cavity (post-LPC). Use of PTVs based on the pre-LPC might also result in greater patient eligibility for APBI-3D-CRT. Methods and Materials: Forty-one early-stage breast cancers were analyzed. Preoperative imaging was used to determine a pre-LPC tumor volume. PTVs were developed in the pre- and post-LPC settings as per National Surgical Breast and Bowel Project (NSABP)-B39 guidelines. The pre- and post-LPC PTV volumes were compared and eligibility for APBI-3D-CRT determined using NSABP-B39 criteria. Results: The post-LPC PTV exceeded the pre-LPC PTV in all cases. The median volume for the pre- and post-LPC PTVs were 93 cm{sup 3} (range, 24-570 cm{sup 3}) and 250 cm{sup 3} (range, 45-879 cm{sup 3}), respectively, p <0.001. The difference between pre- and post-LPC PTVs represented a median of 165 cc (range, 21-482 cc) or 16% (range, 3%-42%) of the whole breast volume. Three of 41 vs. 13 of 41 cases were ineligible for APBI-3D-CRT when using the pre- and post-LPC PTVs, respectively. Conclusion: PTVs based on pre-LPC tumor expansion are likely associated with reduced amounts of irradiated normal breast tissue compared with post-LPC PTVs, possibly leading to greater patient eligibility for APBI-3D-CRT. These findings support future investigation as to the feasibility of neoadjuvant APBI-3D-CRT.

  1. Sci—Fri PM: Dosimetry — 03: Delta4 diode absolute dose response for large and small target volume IMRT QA

    SciTech Connect

    Simard, D; Thakur, V

    2014-08-15

    The goal of this project was to quantify the over-response/under-response of the Delta4 diodes for Helical Tomotherapy plans on extreme target volume sizes. A custom Delta4 phantom quarter with a hole to insert an ionisation chamber (IC) close to the center of the phantom have been used to acquire simultaneous IC and diodes absolute dose measurements. Eight plans for different target volumes were created from 20cm to 1cm diameter. Diodes dose measurements in the target were compared with IC measurement, to quantify absolute dose accuracy. IC measurements show a good agreement with planned dose (±2%). Diode measurements demonstrate a good agreement with IC for regular target size of 5 and 10cm (0 to 1%). For larger targets, an over-response is observed for FW 25mm and 10mm (2 to 3%). for small target of 1cm diameter, a major under-response is observed for FW 25mm and 10mm (−8 and −36%). The over-response could to be due to the extra amount of scattered radiation and the opposite for under-response. Although this scatter hypothesis still has to be proven, early testing demonstrates an over-response of 40%/20% of the central diodes compare to IC when an open helical rotational beam is delivered 75mm/25mm away from the center of the phantom. These results are in agreement with the real patient Delta4 DQA results at our center.

  2. Impact of 18FDG-PET/CT on biological target volume (BTV) definition for treatment planning for non-small cell lung cancer patients

    NASA Astrophysics Data System (ADS)

    Devic, Slobodan; Tomic, Nada; Faria, Sergio; Dean, Geoffrey; Lisbona, Robert; Parker, William; Kaufman, Chris; Podgorsak, Ervin B.

    2007-02-01

    This work represents our effort to test feasibility of FDG-based PET/CT on target volume delineation in radiotherapy treatment planning of NSCLC patients. Different methods have been developed to enable more precise target outlining using PET: Qualitative Visual Method, CTV=2.5 SUV units, linear SUV threshold function method, and CTV=40% Iso of Maximum Uptake Value. We are proposing reconstruction of three biological target volumes: necrotic BTV (same as PTV created by radiation oncologist using CT data), proliferating BTV (based on PET signal to background ratio 1:3) and hypoxic BTV (based on PET signal to background ratio of 1:19). Two IMRT plans were created and compared to the conventional treatment plan: "conservative" IMRT plan delivers 52.5 Gy to the necrotic BTV and 65 Gy to the hypoxic BTV; "radical" IMRT plan delivers 30 Gy to necrotic BTV, 52.5 Gy to proliferating BTV and 65 Gy to hypoxic BTV. Use of BTVs in IMRT plans is attractive because it increases dose to targets considered to need higher doses. It reduces considerably dose to heart and spinal cord, organs considered to limit dose escalation approaches in NSCLC treatment. "Conservative" IMRT approach can be understood as a PET/CT-based concomitant boost to the tumor expressing the highest FDG uptake. "Radical" plan implies deviation from the traditional uniform dose target coverage approach, with the intention of achieving better surrounding tissue sparing and ultimately allowing for dose escalation protocols relying on biologically based treatment planning.

  3. Monte-Carlo model development for evaluation of current clinical target volume definition for heterogeneous and hypoxic glioblastoma

    NASA Astrophysics Data System (ADS)

    Moghaddasi, L.; Bezak, E.; Harriss-Phillips, W.

    2016-05-01

    Clinical target volume (CTV) determination may be complex and subjective. In this work a microscopic-scale tumour model was developed to evaluate current CTV practices in glioblastoma multiforme (GBM) external radiotherapy. Previously, a Geant4 cell-based dosimetry model was developed to calculate the dose deposited in individual GBM cells. Microscopic extension probability (MEP) models were then developed using Matlab-2012a. The results of the cell-based dosimetry model and MEP models were combined to calculate survival fractions (SF) for CTV margins of 2.0 and 2.5 cm. In the current work, oxygenation and heterogeneous radiosensitivity profiles were incorporated into the GBM model. The genetic heterogeneity was modelled using a range of α/β values (linear-quadratic model parameters) associated with different GBM cell lines. These values were distributed among the cells randomly, taken from a Gaussian-weighted sample of α/β values. Cellular oxygen pressure was distributed randomly taken from a sample weighted to profiles obtained from literature. Three types of GBM models were analysed: homogeneous-normoxic, heterogeneous-normoxic, and heterogeneous-hypoxic. The SF in different regions of the tumour model and the effect of the CTV margin extension from 2.0–2.5 cm on SFs were investigated for three MEP models. The SF within the beam was increased by up to three and two orders of magnitude following incorporation of heterogeneous radiosensitivities and hypoxia, respectively, in the GBM model. However, the total SF was shown to be overdominated by the presence of tumour cells in the penumbra region and to a lesser extent by genetic heterogeneity and hypoxia. CTV extension by 0.5 cm reduced the SF by a maximum of 78.6  ±  3.3%, 78.5  ±  3.3%, and 77.7  ±  3.1% for homogeneous and heterogeneous-normoxic, and heterogeneous hypoxic GBMs, respectively. Monte-Carlo model was developed to quantitatively evaluate SF for genetically

  4. Doses to radiation sensitive organs and structures located outside the radiotherapeutic target volume for four treatment situations

    SciTech Connect

    Foo, M.L.; McCullough, E.C.; Foote, R.L.; Pisansky, T.M.; Shaw, E.G. )

    1993-09-20

    This study documents dosage to radiation sensitive organs/structures located outside the radiotherapeutic target volume for four treatment situations: (a) head and neck, (b) brain (pituitary and temporal lobe), (c) breast and (d) pelvis. Clinically relevant treatment fields were simulated on a tissue-equivalent anthropomorphic phantom and subsequently irradiated with Cobalt-60 gamma rays, 6- and 18-MV x-ray beams. Thermoluminescent dosimeters and diodes were used to measure absorbed dose. The head and neck treatment resulted in significant doses of radiation to the lens and thyroid gland. The total treatment lens dose (300-400 cGy) could be cataractogenic while measured thyroid doses (1000-8000 cGy) have the potential of causing chemical hypothyroidism, thyroid neoplasms, Graves' disease and hyperparathyroidism. Total treatment retinal (400-700 cGy) and pituitary (460-1000 cGy) doses are below that considered capable of producing chronic disease. The pituitary treatment studied consisted of various size parallel opposed lateral and vertex fields (4 x 4 through 8 x 8 cm). The lens dose (40-200 cGy) with all field sizes is below those of clinical concern. Parotid doses (130-1200 cGy) and thyroid doses (350-600 cGy) are in a range where temporary xerostomia (parotid) and thyroid neoplasia development are a reasonable possibility. The retinal dose (4000 cGy) from the largest field size (8 x 8 cm[sup 2]) is in the range where retinopathy has been reported. The left temporal lobe treatment also used parallel opposed lateral and vertex fields (7 x 7 and 10 x 10 cm). Doses to the pituitary gland (5200-6200 cGy), both parotids (200-6900 cGy), left lens (200-300 cGy), and left retina (1700-4500 cGy) are capable of causing significant future clinical problems. Right-sided structures received insignificant doses. Secondary malignancies could result from the measured total treatment thyroid doses (670-980 cGy). 82 refs., 7 figs., 5 tabs.

  5. Monte-Carlo model development for evaluation of current clinical target volume definition for heterogeneous and hypoxic glioblastoma.

    PubMed

    Moghaddasi, L; Bezak, E; Harriss-Phillips, W

    2016-05-01

    Clinical target volume (CTV) determination may be complex and subjective. In this work a microscopic-scale tumour model was developed to evaluate current CTV practices in glioblastoma multiforme (GBM) external radiotherapy. Previously, a Geant4 cell-based dosimetry model was developed to calculate the dose deposited in individual GBM cells. Microscopic extension probability (MEP) models were then developed using Matlab-2012a. The results of the cell-based dosimetry model and MEP models were combined to calculate survival fractions (SF) for CTV margins of 2.0 and 2.5 cm. In the current work, oxygenation and heterogeneous radiosensitivity profiles were incorporated into the GBM model. The genetic heterogeneity was modelled using a range of α/β values (linear-quadratic model parameters) associated with different GBM cell lines. These values were distributed among the cells randomly, taken from a Gaussian-weighted sample of α/β values. Cellular oxygen pressure was distributed randomly taken from a sample weighted to profiles obtained from literature. Three types of GBM models were analysed: homogeneous-normoxic, heterogeneous-normoxic, and heterogeneous-hypoxic. The SF in different regions of the tumour model and the effect of the CTV margin extension from 2.0-2.5 cm on SFs were investigated for three MEP models. The SF within the beam was increased by up to three and two orders of magnitude following incorporation of heterogeneous radiosensitivities and hypoxia, respectively, in the GBM model. However, the total SF was shown to be overdominated by the presence of tumour cells in the penumbra region and to a lesser extent by genetic heterogeneity and hypoxia. CTV extension by 0.5 cm reduced the SF by a maximum of 78.6  ±  3.3%, 78.5  ±  3.3%, and 77.7  ±  3.1% for homogeneous and heterogeneous-normoxic, and heterogeneous hypoxic GBMs, respectively. Monte-Carlo model was developed to quantitatively evaluate SF for genetically

  6. Doses to radiation sensitive organs and structures located outside the radiotherapeutic target volume for four treatment situations.

    PubMed

    Foo, M L; McCullough, E C; Foote, R L; Pisansky, T M; Shaw, E G

    1993-09-30

    This study documents dosage to radiation sensitive organs/structures located outside the radiotherapeutic target volume for four treatment situations: (a) head and neck, (b) brain (pituitary and temporal lobe), (c) breast and (d) pelvis. Clinically relevant treatment fields were simulated on a tissue-equivalent anthropomorphic phantom and subsequently irradiated with Cobalt-60 gamma rays, 6- and 18-MV x-ray beams. Thermoluminescent dosimeters and diodes were used to measure absorbed dose. The head and neck treatment resulted in significant doses of radiation to the lens and thyroid gland. The total treatment lens dose (300-400 cGy) could be cataractogenic while measured thyroid doses (1000-8000 cGy) have the potential of causing chemical hypothyroidism, thyroid neoplasms, Graves' disease and hyperparathyroidism. Total treatment retinal (400-700cGy) and pituitary (460-1000 cGy) doses are below that considered capable of producing chronic disease. The pituitary treatment studied consisted of various size parallel opposed lateral and vertex fields (4 x 4 through 8 x 8 cm). The lens dose (40-200 cGy) with all field sizes is below those of clinical concern. Parotid doses (130-1200 cGy) and thyroid doses (350-600 cGy) are in a range where temporary xerostomia (parotid) and thyroid neoplasia development are a reasonable possibility. The retinal dose (4000 cGy) from the largest field size (8 x 8 cm2) is in the range where retinopathy has been reported. The left temporal lobe treatment also used parallel opposed lateral and vertex fields (7 x 7 and 10 x 10 cm). Doses to the pituitary gland (5200-6200 cGy), both parotids (200-6900 cGy), left lens (200-300 cGy) and left retina (1700-4500 cGy) are capable of causing significant future clinical problems. Right-sided structures received insignificant doses. Secondary malignancies could result from measured total treatment thyroid doses (670-980 cGy). Analysis of three breast/chest wall and regional nodal irradiation techniques

  7. TU-A-12A-06: Intra-Observer Variability in Delineation of Target Volumes in Breast Radiotherapy and Its Effect On Accuracy of Deformation Measurements

    SciTech Connect

    Juneja, P; Harris, E; Bonora, M; Evans, P

    2014-06-15

    Purpose: In breast radiotherapy, the target volume may change during treatment and need adaptation of the treatment plan. This is possible for both tumour bed (TB) and whole breast (WB) target volumes. Delineation of the target (to detect changes) is also subject to uncertainty due to intra- and inter-observer variability. This work measured the uncertainty, due to intraobserver variability, in the quantification of tissue deformation. Methods: Datasets consisting of paired prone and supine CT scans of three patients were used. Significant deformation in target volumes is expected between prone and supine patient positions. The selected cases had 1) no seroma, 2) some seroma, and 3) large seroma. The TB and WB were outlined on each dataset three times by one clinician. Delineation variability was defined as the standard deviations of the distances between observer outlines. For each target volume and each case, tissue deformation between prone and supine delineations was quantified using the Dice similarity coefficient (DSC) and the average surface distance (ASD). The uncertainty in the tissue deformation (due to delineation variability) was quantified by measuring the ranges of DSC and ASD using all combinations of pairs of outlines (9 pairs). Results: For the TB, the range of delineation variability was 0.44-1.16 mm. The deformation, DSC and ASD, (and uncertainty in measurement) of the TB between prone and supine position of the cases were: 1) 0.21 (0.17-0.28) and 12.4 mm (11.8-13 mm); 2) 0.54 (0.51-0.57) and 3.3 mm (3.1-3.5 mm); 3) 0.62 (0.61-0.64) and 4.9 mm (4.6-5.2 mm). WB deformation measurements were subject to less uncertainty due to delineation variability than TB deformation measurements. Conclusion: For the first time, the uncertainty, due to observer variability, in the measurement of the deformation of breast target volumes was investigated. Deformations in these ranges would be difficult to detect. This work was supported in part by Cancer Research

  8. High-Frequency Jet Ventilation for Complete Target Immobilization and Reduction of Planning Target Volume in Stereotactic High Single-Dose Irradiation of Stage I Non-Small Cell Lung Cancer and Lung Metastases

    SciTech Connect

    Fritz, Peter; Kraus, Hans-Joerg; Muehlnickel, Werner; Sassmann, Volker; Hering, Werner; Strauch, Konstantin

    2010-09-01

    Purpose: To demonstrate the feasibility of complete target immobilization by means of high-frequency jet ventilation (HFJV); and to show that the saving of planning target volume (PTV) on the stereotactic body radiation therapy (SBRT) under HFJV, compared with SBRT with respiratory motion, can be predicted with reliable accuracy by computed tomography (CT) scans at peak inspiration phase. Methods and Materials: A comparison regarding different methods for defining the PTV was carried out in 22 patients with tumors that clearly moved with respiration. A movement span of the gross tumor volume (GTV) was defined by fusing respiration-correlated CT scans. The PTV enclosed the GTV positions with a safety margin throughout the breathing cycle. To create a PTV from CT scans acquired under HFJV, the same margins were drawn around the immobilized target. In addition, peak inspiration phase CT images (PIP-CTs) were used to approximate a target immobilized by HFJV. Results: The resulting HFJV-PTVs were between 11.6% and 45.4% smaller than the baseline values calculated as respiration-correlated CT-PTVs (median volume reduction, 25.4%). Tentative planning by means of PIP-CT PTVs predicted that in 19 of 22 patients, use of HFJV would lead to a reduction in volume of {>=}20%. Using this threshold yielded a positive predictive value of 0.89, as well as a sensitivity of 0.94 and a specificity of 0.5. Conclusions: In all patients, SBRT under HFJV provided a reliable immobilization of the GTVs and achieved a reduction in PTVs, regardless of patient compliance. Tentative planning facilitated the selection of patients who could better undergo radiation in respiratory standstill, both with greater accuracy and lung protection.

  9. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy?

    SciTech Connect

    Chen, Chuanben; Fei, Zhaodong; Chen, Lisha; Bai, Penggang; Lin, Xiang; Pan, Jianji

    2014-04-01

    This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contours were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.

  10. Intensity-Modulated Radiation Therapy Versus 3D Conformal Radiotherapy for Postoperative Gynecologic Cancer: Are They Covering the Same Planning Target Volume?

    PubMed Central

    Patil, Nikhilesh; D'souza, David; Millman, Barbara; Yaremko, Brian P; Leung, Eric; Whiston, Frances; Hajdok, George; Wong, Eugene

    2016-01-01

    Background and Purpose: This study compares dosimetric parameters of planning target volume (PTV) coverage and organs at risk (OAR) sparing when postoperative radiotherapy for gynecologic cancers is delivered using volumetric modulated arc therapy (VMAT) versus a four-field (4FLD) box technique. Material and Methods: From July to December 2012, women requiring postoperative radiation for gynecologic cancers were treated with a standardized VMAT protocol. Two sets of optimized 4FLD plans were retrospectively generated: one based on standard anatomical borders (4FLD) and one based on the clinical target volume (CTV) created for VMAT with a 2 cm expansion guiding field border placement (4FLD+2). Ninety-five percent isodose curves were generated to evaluate PTV coverage. Results: VMAT significantly improved dose conformity compared with 4FLD and 4FLD+2 plans (p < 0.001) and provided additional coverage of the PTV posteriorly and superiorly, corresponding to coverage of the presacral and proximal iliac vessels. There was a significant reduction in dose to all OARs with VMAT, including a 58% reduction in the volume of the small bowel receiving more than 45 Gy (p=0.005). Conclusions: Despite treating a larger volume, radiotherapy using a 4FLD technique is less homogenous and provides inferior coverage of the PTV compared with VMAT. With meticulous treatment planning and delivery, VMAT effectively encompasses the PTV and minimizes dose to OARs. PMID:26973802

  11. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer

    SciTech Connect

    Lim, Karen; Portelance, Lorraine; Creutzberg, Carien; Juergenliemk-Schulz, Ina M.; Mundt, Arno; Mell, Loren K.; Mayr, Nina; Viswanathan, Akila; Jhingran, Anuja; Erickson, Beth; De Los Santos, Jennifer; Gaffney, David; Yashar, Catheryn; Beriwal, Sushil; Wolfson, Aaron

    2011-02-01

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aid in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.

  12. RTOG Sarcoma Radiation Oncologists Reach Consensus on Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) on Computed Tomographic Images for Preoperative Radiotherapy of Primary Soft Tissue Sarcoma of Extremity in RTOG Studies

    PubMed Central

    Wang, Dian; Bosch, Walter; Roberge, David; Finkelstein, Steven E.; Petersen, Ivy; Haddock, Michael; Chen, Yen-Lin E.; Saito, Naoyuki G.; Kirsch, David G.; Hitchcock, Ying J.; Wolfson, Aaron H.; DeLaney, Thomas F.

    2011-01-01

    Objective To develop an Radiation Therapy Oncology Group (RTOG) atlas delineating gross tumor volume (GTV), and clinical target volume (CTV) to be used for preoperative radiotherapy of primary extremity soft tissue sarcoma (STS). Methods A consensus meeting was held during the RTOG meeting in January 2010 to reach agreement about GTV and CTV delineation on CT images for preoperative radiotherapy of high-grade large extremity STS. Data were presented to address the local extension of STS. Extensive discussion ensued to develop optimal criteria for GTV and CTV delineation on CT images. Results A consensus was reached on appropriate CT-based GTV and CTV. GTV is gross tumor defined by T1 contrast-enhanced MRI images. Fusion of MRI and CT is recommended to delineate the GTV. CTV for high-grade large STS typically includes GTV plus 3 cm margins in the longitudinal directions. If this causes the field to extend beyond the compartment, the field can be shortened to include the end of a compartment. The radial margin from the lesion should be 1.5 cm including any portion of the tumor not confined by an intact fascial barrier, bone or skin surface. Conclusion The consensus on GTV and CTV for preoperative radiotherapy of high-grade large extremity STS is available as web-based images as well as descriptive format through the RTOG. This is expected to improve target volume consistency and allow for rigorous evaluation of the benefits and risks of such treatment. PMID:21676552

  13. Impact of Increasing Margin Around the Lumpectomy Cavity to Define the Planning Target Volume for 3D Conformal External Beam Accelerated Partial Breast Irradiation

    SciTech Connect

    Cox, Brett W.; Horst, Kathleen C. Thornton, Sherri; Dirbas, Frederick M.

    2007-01-01

    The purpose of this study was to evaluate the dose to normal tissues as a function of increasing margins around the lumpectomy cavity in accelerated partial breast irradiation (APBI) using 3D-conformal radiotherapy (3DCRT). Eight patients with Stage 0-I breast cancer underwent treatment planning for 3DCRT APBI. The clinical target volume (CTV) was defined as a 15-mm expansion around the cavity limited by the chest wall and skin. Three planning target volumes (PTV1, PTV2, PTV3) were generated for each patient using a 0, 5-, and 10-mm expansion around the CTV, for a total margin of 15, 20, and 25 mm. Three treatment plans were generated for every patient using the 3 PTVs, and dose-volume analysis was performed for each plan. For each 5-mm increase in margin, the mean PTV:total breast volume ratio increased 10% and the relative increase in the mean ipsilateral breast dose was 15%. The mean volume of ipsilateral breast tissue receiving 75%, 50%, and 25% of the prescribed dose increased 6% to 7% for every 5 mm increase in PTV margin. Compared to lesions located in the upper outer quadrant, plans for medially located tumors revealed higher mean ipsilateral breast doses and 20% to 22% more ipsilateral breast tissue encompassed by the 25% IDL. The use of 3DCRT for APBI delivers higher doses to normal breast tissue as the PTV increases around the lumpectomy cavity. Efforts should be made to minimize the overall PTV when this technique is used. Ongoing studies will be necessary to determine the clinical relevance of these findings.

  14. Verification of Planning Target Volume Settings in Volumetric Modulated Arc Therapy for Stereotactic Body Radiation Therapy by Using In-Treatment 4-Dimensional Cone Beam Computed Tomography

    SciTech Connect

    Takahashi, Wataru; Yamashita, Hideomi; Kida, Satoshi; Masutani, Yoshitaka; Sakumi, Akira; Ohtomo, Kuni; Nakagawa, Keiichi; Haga, Akihiro

    2013-07-01

    Purpose: To evaluate setup error and tumor motion during beam delivery by using 4-dimensional cone beam computed tomography (4D CBCT) and to assess the adequacy of the planning target volume (PTV) margin for lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). Methods and Materials: Fifteen lung cancer patients treated by single-arc VMAT-SBRT were selected in this analysis. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on maximum inspiration and maximum expiration CT datasets from 4D CT respiratory sorting and merged into internal target volumes (ITVs). The PTV margin was isotropically taken as 5 mm. Registration was automatically performed using “pre-3D” CBCT. Treatment was performed with a D95 prescription of 50 Gy delivered in 4 fractions. The 4D tumor locations during beam delivery were determined using in-treatment 4D CBCT images acquired in each fraction. Then, the discrepancy between the actual tumor location and the ITV was evaluated in the lateral, vertical, and longitudinal directions. Results: Overall, 55 4D CBCT sets during VMAT-SBRT were successfully obtained. The amplitude of tumor motion was less than 10 mm in all directions. The average displacements between ITV and actual tumor location during treatment were 0.41 ± 0.93 mm, 0.15 ± 0.58 mm, and 0.60 ± 0.99 mm for the craniocaudal, left-right, and anteroposterior directions, respectively. The discrepancy in each phase did not exceed 5 mm in any direction. Conclusions: With in-treatment 4D CBCT, we confirmed the required PTV margins when the registration for moving target was performed using pre-3D CBCT. In-treatment 4D CBCT is a direct method for quantitatively assessing the intrafractional location of a moving target.

  15. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    PubMed Central

    Lee, Jennifer C.; Elnaiem, Sara; Guirguis, Adel; Ikoro, N. C.; Ashamalla, Hani

    2014-01-01

    Purpose The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectumoverlap) or PTV and bladder (Bladderoverlap) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Materials and Methods Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. Results The percentage Rectumoverlap and Bladderoverlap correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V45 and bladder V50 with R2 = 0.78 and R2 = 0.83, respectively, and predicted the boost plan rectum V30 and bladder V30 with R2 = 0.53 and R2 = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost Bladderoverlap to predict bladder V80 >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). Conclusion The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization. PMID:24724048

  16. Dosimetric Effects of Magnetic Resonance Imaging-assisted Radiotherapy Planning: Dose Optimization for Target Volumes at High Risk and Analytic Radiobiological Dose Evaluation.

    PubMed

    Park, Ji-Yeon; Suh, Tae Suk; Lee, Jeong-Woo; Ahn, Kook-Jin; Park, Hae-Jin; Choe, Bo-Young; Hong, Semie

    2015-10-01

    Based on the assumption that apparent diffusion coefficients (ADCs) define high-risk clinical target volume (aCTVHR) in high-grade glioma in a cellularity-dependent manner, the dosimetric effects of aCTVHR-targeted dose optimization were evaluated in two intensity-modulated radiation therapy (IMRT) plans. Diffusion-weighted magnetic resonance (MR) images and ADC maps were analyzed qualitatively and quantitatively to determine aCTVHR in a high-grade glioma with high cellularity. After confirming tumor malignancy using the average and minimum ADCs and ADC ratios, the aCTVHR with double- or triple-restricted water diffusion was defined on computed tomography images through image registration. Doses to the aCTVHR and CTV defined on T1-weighted MR images were optimized using a simultaneous integrated boost technique. The dosimetric benefits for CTVs and organs at risk (OARs) were compared using dose volume histograms and various biophysical indices in an ADC map-based IMRT (IMRTADC) plan and a conventional IMRT (IMRTconv) plan. The IMRTADC plan improved dose conformity up to 15 times, compared to the IMRTconv plan. It reduced the equivalent uniform doses in the visual system and brain stem by more than 10% and 16%, respectively. The ADC-based target differentiation and dose optimization may facilitate conformal dose distribution to the aCTVHR and OAR sparing in an IMRT plan. PMID:26425053

  17. Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy

    SciTech Connect

    Kruijf, Wilhelmus de . E-mail: kruijf.de.w@bvi.nl; Heijmen, Ben; Levendag, Peter C.

    2007-05-01

    Purpose: To quantify the trade-off between parotid gland sparing and planning target volume (PTV) underdosages for head-and-neck intensity-modulated radiotherapy. Methods and Materials: A planning study was performed for 4 patients with either soft palate or tonsil tumors treated with external radiotherapy up to 46 Gy. The trade-off between underdosages in the PTV and sparing of the parotid glands was investigated by systematically varying the optimization objectives for the inverse planning. A new way of presenting dose-volume information allows easy detection of small PTV subvolumes with underdosages that cannot be assessed in conventional cumulative dose-volume histograms. A simple radiobiological model to estimate the control probability for an electively irradiated neck level was developed. Results: The average dose to the parotid glands can decrease by >10 Gy by allowing the PTV to be underdosed in such a way that the radiobiological model predicts a decrease in subclinical disease control probability of (typically) 1% to a few percent. Conclusion: The trade-off between parotid gland sparing and underdosages in the PTV has been quantified by the use of an alternative method to present dose-volume information and by the use of a radiobiological model to predict subclinical disease control probability.

  18. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus.

    PubMed

    Jimenez-Mateos, Eva M; Engel, Tobias; Merino-Serrais, Paula; Fernaud-Espinosa, Isabel; Rodriguez-Alvarez, Natalia; Reynolds, James; Reschke, Cristina R; Conroy, Ronan M; McKiernan, Ross C; deFelipe, Javier; Henshall, David C

    2015-07-01

    Emerging data support roles for microRNA (miRNA) in the pathogenesis of various neurologic disorders including epilepsy. MicroRNA-134 (miR-134) is enriched in dendrites of hippocampal neurons, where it negatively regulates spine volume. Recent work identified upregulation of miR-134 in experimental and human epilepsy. Targeting miR-134 in vivo using antagomirs had potent anticonvulsant effects against kainic acid-induced seizures and was associated with a reduction in dendritic spine number. In the present study, we measured dendritic spine volume in mice injected with miR-134-targeting antagomirs and tested effects of the antagomirs on status epilepticus triggered by the cholinergic agonist pilocarpine. Morphometric analysis of over 6,400 dendritic spines in Lucifer yellow-injected CA3 pyramidal neurons revealed increased spine volume in mice given antagomirs compared to controls that received a scrambled sequence. Treatment of mice with miR-134 antagomirs did not alter performance in a behavioral test (novel object location). Status epilepticus induced by pilocarpine was associated with upregulation of miR-134 within the hippocampus of mice. Pretreatment of mice with miR-134 antagomirs reduced the proportion of animals that developed status epilepticus following pilocarpine and increased animal survival. In antagomir-treated mice that did develop status epilepticus, seizure onset was delayed and total seizure power was reduced. These studies provide in vivo evidence that miR-134 regulates spine volume in the hippocampus and validation of the seizure-suppressive effects of miR-134 antagomirs in a model with a different triggering mechanism, indicating broad conservation of anticonvulsant effects. PMID:24874920

  19. Variations in Target Volume Definition for Postoperative Radiotherapy in Stage III Non-Small-Cell Lung Cancer: Analysis of an International Contouring Study

    SciTech Connect

    Spoelstra, Femke; Senan, Suresh; Le Pechoux, Cecile; Ishikura, Satoshi; Casas, Francesc; Ball, David; Price, Allan; De Ruysscher, Dirk; Soernsen de Koste, John R. van

    2010-03-15

    Purpose: Postoperative radiotherapy (PORT) in patients with completely resected non-small-cell lung cancer with mediastinal involvement is controversial because of the failure of earlier trials to demonstrate a survival benefit. Improved techniques may reduce toxicity, but the treatment fields used in routine practice have not been well studied. We studied routine target volumes used by international experts and evaluated the impact of a contouring protocol developed for a new prospective study, the Lung Adjuvant Radiotherapy Trial (Lung ART). Methods and Materials: Seventeen thoracic radiation oncologists were invited to contour their routine clinical target volumes (CTV) for 2 representative patients using a validated CD-ROM-based contouring program. Subsequently, the Lung ART study protocol was provided, and both cases were contoured again. Variations in target volumes and their dosimetric impact were analyzed. Results: Routine CTVs were received for each case from 10 clinicians, whereas six provided both routine and protocol CTVs for each case. Routine CTVs varied up to threefold between clinicians, but use of the Lung ART protocol significantly decreased variations. Routine CTVs in a postlobectomy patient resulted in V{sub 20} values ranging from 12.7% to 54.0%, and Lung ART protocol CTVs resulted in values of 20.6% to 29.2%. Similar results were seen for other toxicity parameters and in the postpneumectomy patient. With the exception of upper paratracheal nodes, protocol contouring improved coverage of the required nodal stations. Conclusion: Even among experts, significant interclinician variations are observed in PORT fields. Inasmuch as contouring variations can confound the interpretation of PORT results, mandatory quality assurance procedures have been incorporated into the current Lung ART study.

  20. The dosimetric impact of daily setup error on target volumes and surrounding normal tissue in the treatment of prostate cancer with intensity-modulated radiation therapy

    SciTech Connect

    Algan, Ozer; Jamgade, Ambarish; Ali, Imad; Christie, Alana; Thompson, J. Spencer; Thompson, David; Ahmad, Salahuddin; Herman, Terence

    2012-01-01

    The purpose of this study was to evaluate the impact of daily setup error and interfraction organ motion on the overall dosimetric radiation treatment plans. Twelve patients undergoing definitive intensity-modulated radiation therapy (IMRT) treatments for prostate cancer were evaluated in this institutional review board-approved study. Each patient had fiducial markers placed into the prostate gland before treatment planning computed tomography scan. IMRT plans were generated using the Eclipse treatment planning system. Each patient was treated to a dose of 8100 cGy given in 45 fractions. In this study, we retrospectively created a plan for each treatment day that had a shift available. To calculate the dose, the patient would have received under this plan, we mathematically 'negated' the shift by moving the isocenter in the exact opposite direction of the shift. The individualized daily plans were combined to generate an overall plan sum. The dose distributions from these plans were compared with the treatment plans that were used to treat the patients. Three-hundred ninety daily shifts were negated and their corresponding plans evaluated. The mean isocenter shift based on the location of the fiducial markers was 3.3 {+-} 6.5 mm to the right, 1.6 {+-} 5.1 mm posteriorly, and 1.0 {+-} 5.0 mm along the caudal direction. The mean D95 doses for the prostate gland when setup error was corrected and uncorrected were 8228 and 7844 cGy (p < 0.002), respectively, and for the planning target volume (PTV8100) was 8089 and 7303 cGy (p < 0.001), respectively. The mean V95 values when patient setup was corrected and uncorrected were 99.9% and 87.3%, respectively, for the PTV8100 volume (p < 0.0001). At an individual patient level, the difference in the D95 value for the prostate volume could be >1200 cGy and for the PTV8100 could approach almost 2000 cGy when comparing corrected against uncorrected plans. There was no statistically significant difference in the D35 parameter

  1. High-resolution x-ray imaging of Kα volume radiation induced by high-intensity laser pulse interaction with a copper target

    NASA Astrophysics Data System (ADS)

    Galtier, E.; Moinard, A.; Khattak, F. Y.; Renner, O.; Robert, T.; Santos, J. J.; Beaucourt, C.; Angelo, P.; Tikhonchuk, V.; Rosmej, F. B.

    2012-10-01

    In a proof of principle experiment using the LULI 100-TW laser facility ELFIE, we have demonstrated high spectral and spatial resolution of Kα volume radiation induced by energetic electrons generated by irradiating solid Cu targets with visible (0.53 µm) 350 fs laser pulses. Employing an x-ray spectrometer equipped with the spherically bent crystal of quartz (502) and with an image plate, single shot Cu-Kα radiation was recorded in first-order reflection allowing for a geometrical mapping of the emission induced by hot electrons with a spatial resolution down to 30 µm. The simultaneously achieved high spectral resolution permitted the identification of asymmetries in the Kα1-group emission profile. Data from the shot in which a part of the laser beam was incident at grazing angle to the target surface show a signature of enhanced lateral transport of energetic electrons.

  2. RTOG Sarcoma Radiation Oncologists Reach Consensus on Gross Tumor Volume and Clinical Target Volume on Computed Tomographic Images for Preoperative Radiotherapy of Primary Soft Tissue Sarcoma of Extremity in Radiation Therapy Oncology Group Studies

    SciTech Connect

    Wang Dian; Bosch, Walter; Roberge, David; Finkelstein, Steven E.; Petersen, Ivy; Haddock, Michael; Chen, Yen-Lin E.; Saito, Naoyuki G.; Kirsch, David G.; Hitchcock, Ying J.; Wolfson, Aaron H.; DeLaney, Thomas F.

    2011-11-15

    Objective: To develop a Radiation Therapy Oncology Group (RTOG) atlas delineating gross tumor volume (GTV) and clinical target volume (CTV) to be used for preoperative radiotherapy of primary extremity soft tissue sarcoma (STS). Methods and Materials: A consensus meeting was held during the RTOG meeting in January 2010 to reach agreement about GTV and CTV delineation on computed tomography (CT) images for preoperative radiotherapy of high-grade large extremity STS. Data were presented to address the local extension of STS. Extensive discussion ensued to develop optimal criteria for GTV and CTV delineation on CT images. Results: A consensus was reached on appropriate CT-based GTV and CTV. The GTV is gross tumor defined by T1 contrast-enhanced magnetic resonance images. Fusion of magnetic resonance and images is recommended to delineate the GTV. The CTV for high-grade large STS typically includes the GTV plus 3-cm margins in the longitudinal directions. If this causes the field to extend beyond the compartment, the field can be shortened to include the end of a compartment. The radial margin from the lesion should be 1.5 cm, including any portion of the tumor not confined by an intact fascial barrier, bone, or skin surface. Conclusion: The consensus on GTV and CTV for preoperative radiotherapy of high-grade large extremity STS is available as web-based images and in a descriptive format through the RTOG. This is expected to improve target volume consistency and allow for rigorous evaluation of the benefits and risks of such treatment.

  3. Evaluation of the cone beam CT for internal target volume localization in lung stereotactic radiotherapy in comparison with 4D MIP images

    SciTech Connect

    Wang, Lu; Chen, Xiaoming; Lin, Mu-Han; Lin, Teh; Fan, Jiajin; Jin, Lihui; Ma, Charlie M.; Xue, Jun

    2013-11-15

    Purpose: To investigate whether the three-dimensional cone-beam CT (CBCT) is clinically equivalent to the four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) reconstructed images for internal target volume (ITV) localization in image-guided lung stereotactic radiotherapy.Methods: A ball-shaped polystyrene phantom with built-in cube, sphere, and cone of known volumes was attached to a motor-driven platform, which simulates a sinusoidal movement with changeable motion amplitude and frequency. Target motion was simulated in the patient in a superior-inferior (S-I) direction with three motion periods and 2 cm peak-to-peak amplitudes. The Varian onboard Exact-Arms kV CBCT system and the GE LightSpeed four-slice CT integrated with the respiratory-position-management 4DCT scanner were used to scan the moving phantom. MIP images were generated from the 4DCT images. The clinical equivalence of the two sets of images was evaluated by comparing the extreme locations of the moving objects along the motion direction, the centroid position of the ITV, and the ITV volumes that were contoured automatically by Velocity or calculated with an imaging gradient method. The authors compared the ITV volumes determined by the above methods with those theoretically predicted by taking into account the physical object dimensions and the motion amplitudes. The extreme locations were determined by the gradient method along the S-I axis through the center of the object. The centroid positions were determined by autocenter functions. The effect of motion period on the volume sizes was also studied.Results: It was found that the extreme locations of the objects determined from the two image modalities agreed with each other satisfactorily. They were not affected by the motion period. The average difference between the two modalities in the extreme locations was 0.68% for the cube, 1.35% for the sphere, and 0.5% for the cone, respectively. The maximum difference in the

  4. Variation in the Gross Tumor Volume and Clinical Target Volume for Preoperative Radiotherapy of Primary Large High-Grade Soft Tissue Sarcoma of the Extremity Among RTOG Sarcoma Radiation Oncologists

    SciTech Connect

    Wang Dian; Bosch, Walter; Kirsch, David G.; Al Lozi, Rawan; El Naqa, Issam; Roberge, David; Finkelstein, Steven E.; Petersen, Ivy; Haddock, Michael; Chen, Yen-Lin E.; Saito, Naoyuki G.; Hitchcock, Ying J.; Wolfson, Aaron H.; DeLaney, Thomas F.

    2011-12-01

    Purpose: To evaluate variability in the definition of preoperative radiotherapy gross tumor volume (GTV) and clinical target volume (CTV) delineated by sarcoma radiation oncologists. Methods and Materials: Extremity sarcoma planning CT images along with the corresponding diagnostic MRI from two patients were distributed to 10 Radiation Therapy Oncology Group sarcoma radiation oncologists with instructions to define GTV and CTV using standardized guidelines. The CT data with contours were then returned for central analysis. Contours representing statistically corrected 95% (V95) and 100% (V100) agreement were computed for each structure. Results: For the GTV, the minimum, maximum, mean (SD) volumes (mL) were 674, 798, 752 {+-} 35 for the lower extremity case and 383, 543, 447 {+-} 46 for the upper extremity case. The volume (cc) of the union, V95 and V100 were 882, 761, and 752 for the lower, and 587, 461, and 455 for the upper extremity, respectively. The overall GTV agreement was judged to be almost perfect in both lower and upper extremity cases (kappa = 0.9 [p < 0.0001] and kappa = 0.86 [p < 0.0001]). For the CTV, the minimum, maximum, mean (SD) volumes (mL) were 1145, 1911, 1605 {+-} 211 for the lower extremity case and 637, 1246, 1006 {+-} 180 for the upper extremity case. The volume (cc) of the union, V95, and V100 were 2094, 1609, and 1593 for the lower, and 1533, 1020, and 965 for the upper extremity cases, respectively. The overall CTV agreement was judged to be almost perfect in the lower extremity case (kappa = 0.85 [p < 0.0001]) but only substantial in the upper extremity case (kappa = 0.77 [p < 0.0001]). Conclusions: Almost perfect agreement existed in the GTV of these two representative cases. Tshere was no significant disagreement in the CTV of the lower extremity, but variation in the CTV of upper extremity was seen, perhaps related to the positional differences between the planning CT and the diagnostic MRI.

  5. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 1, Final report

    SciTech Connect

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-04-01

    This report describes background research for preparation of a plan for development of whole-building energy targets for new commercial buildings. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research development, and technology transfer activities with other interested organizations are actively pursued.

  6. Antioxidants and NOS inhibitors selectively targets manganese-induced cell volume via Na-K-Cl cotransporter-1 in astrocytes.

    PubMed

    Alahmari, Khalid A; Prabhakaran, Harini; Prabhakaran, Krishnan; Chandramoorthy, Harish C; Ramugounder, Ramakrishnan

    2015-06-12

    Manganese has shown to be involved in astrocyte swelling. Several factors such as transporters, exchangers and ion channels are attributed to astrocyte swelling as a result in the deregulation of cell volume. Products of oxidation and nitration have been implied to be involved in the pathophysiology of swelling; however, the direct link and mechanism of manganese induced astrocyte swelling has not been fully elucidated. In the current study, we used rat primary astrocyte cultures to investigate the activation of Na-K-Cl cotransporter-1 (NKCC1) a downstream mechanism for free radical induced astrocyte swelling as a result of manganese toxicity. Our results showed manganese, oxidants and NO donors as potent inducer of oxidation and nitration of NKCC1. Our results further confirmed that manganese (50 μM) increased the total protein, phosphorylation and activity of NKCC1 as well as cell volume (p < 0.05 vs. control). NKCC1 inhibitor (bumetanide), NKCC1-siRNA, antioxidants; DMTU, MnTBAP, tempol, catalase and Vit-E, NOS inhibitor; L-NAME, peroxinitrite scavenger; uric acid all significantly reversed the effects of NKCC1 activation (p < 0.05). From the current investigation we infer that manganese or oxidants and NO induced activation, oxidation/nitration of NKCC1 play an important role in the astrocyte swelling. PMID:25817889

  7. Delineation of clinical target volume for postoperative radiotherapy in stage IIIA-pN2 non-small-cell lung cancer

    PubMed Central

    Jing, Xuquan; Meng, Xue; Sun, Xindong; Yu, Jinming

    2016-01-01

    With the high locoregional relapse rate and the improvement of radiation technology, postoperative radiotherapy (PORT) has been widely used in the treatment of completely resected stage IIIA-pN2 non-small-cell lung cancer (NSCLC). However, there is still no definitive consensus on clinical target volume for the pN2 subgroup. This review will discuss how to delineate the clinical target volume (CTV) for pN2 subgroups of IIIA-N2 NSCLC based on the published literature and to investigate the optimal PORT CTV in this cohort of patients. Besides overall survival (OS), locoregional recurrence (LR), and radiotherapy-related toxicity of this subset of the population in the modern PORT era, selection of proper patients will also be considered in this review. In summary, it is appropriate to include involved lymph node stations and uninvolved stations at high risk in PORT CTV for patients with pN2 disease when PORT is administered. PORT can reduce LR and has the potential to improve OS. In the current era of modern radiation technology, PORT can be administered safely with well-tolerated toxicity. Clinicopathological characteristics may be helpful in selecting proper candidates for PORT. PMID:26929651

  8. Is a Clinical Target Volume (CTV) Necessary in the Treatment of Lung Cancer in the Modern Era Combining 4-D Imaging and Image-guided Radiotherapy (IGRT)?

    PubMed Central

    Kilburn, Jeremy M; Lucas, John T; Soike, Michael H; Ayala-Peacock, Diandra N; Blackstock, Arthur W; Hinson, William H; Munley, Michael T; Petty, William J

    2016-01-01

    Objective: We hypothesized that omission of clinical target volumes (CTV) in lung cancer radiotherapy would not compromise control by determining retrospectively if the addition of a CTV would encompass the site of failure. Methods: Stage II-III patients were treated from 2009-2012 with daily cone-beam imaging and a 5 mm planning target volume (PTV) without a CTV. PTVs were expanded 1 cm and termed CTVretro. Recurrences were scored as 1) within the PTV, 2) within CTVretro, or 3) outside the PTV. Locoregional control (LRC), distant control (DC), progression-free survival (PFS), and overall survival (OS) were estimated. Result: Among 110 patients, Stage IIIA 57%, IIIB 32%, IIA 4%, and IIB 7%. Eighty-six percent of Stage III patients received chemotherapy. Median dose was 70 Gy (45-74 Gy) and fraction size ranged from 1.5-2.7 Gy. Median follow-up was 12 months, median OS was 22 months (95% CI 19-30 months), and LRC at two years was 69%. Fourteen local and eight regional events were scored with two CTVretro failures equating to a two-year CTV failure-free survival of 98%. Conclusion: Omission of a 1 cm CTV expansion appears feasible based on only two events among 110 patients and should be considered in radiation planning. PMID:26929893

  9. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation.

    PubMed

    Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo(®) TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus(®) chamber. An EBT3(®) film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification. PMID:26301623

  10. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    NASA Astrophysics Data System (ADS)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  11. Toward Semi-automated Assessment of Target Volume Delineation in Radiotherapy Trials: The SCOPE 1 Pretrial Test Case

    SciTech Connect

    Gwynne, Sarah; Spezi, Emiliano; Wills, Lucy; Nixon, Lisette; Hurt, Chris; Joseph, George; Evans, Mererid; Griffiths, Gareth; Crosby, Tom; Staffurth, John

    2012-11-15

    Purpose: To evaluate different conformity indices (CIs) for use in the analysis of outlining consistency within the pretrial quality assurance (Radiotherapy Trials Quality Assurance [RTTQA]) program of a multicenter chemoradiation trial of esophageal cancer and to make recommendations for their use in future trials. Methods and Materials: The National Cancer Research Institute SCOPE 1 trial is an ongoing Cancer Research UK-funded phase II/III randomized controlled trial of chemoradiation with capecitabine and cisplatin with or without cetuximab for esophageal cancer. The pretrial RTTQA program included a detailed radiotherapy protocol, an educational package, and a single mid-esophageal tumor test case that were sent to each investigator to outline. Investigator gross tumor volumes (GTVs) were received from 50 investigators in 34 UK centers, and CERR (Computational Environment for Radiotherapy Research) was used to perform an assessment of each investigator GTV against a predefined gold-standard GTV using different CIs. A new metric, the local conformity index (l-CI), that can localize areas of maximal discordance was developed. Results: The median Jaccard conformity index (JCI) was 0.69 (interquartile range, 0.62-0.70), with 14 of 50 investigators (28%) achieving a JCI of 0.7 or greater. The median geographical miss index was 0.09 (interquartile range, 0.06-0.16), and the mean discordance index was 0.27 (95% confidence interval, 0.25-0.30). The l-CI was highest in the middle section of the volume, where the tumor was bulky and more easily definable, and identified 4 slices where fewer than 20% of investigators achieved an l-CI of 0.7 or greater. Conclusions: The available CIs analyze different aspects of a gold standard-observer variation, with JCI being the most useful as a single metric. Additional information is provided by the l-CI and can focus the efforts of the RTTQA team in these areas, possibly leading to semi-automated outlining assessment.

  12. Hypervelocity Impact (HVI). Volume 8; Tile Small Targets A-1, Ag-1, B-1, and Bg-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  13. Assessment of Planning Target Volume Margins for Intensity-Modulated Radiotherapy of the Prostate Gland: Role of Daily Inter- and Intrafraction Motion

    SciTech Connect

    Tanyi, James A.; He, Tongming; Summers, Paige A.; Mburu, Ruth G.; Kato, Catherine M.; Rhodes, Stephen M.; Hung, Arthur Y.; Fuss, Martin

    2010-12-01

    Purpose: To determine planning target volume margins for prostate intensity-modulated radiotherapy based on inter- and intrafraction motion using four daily localization techniques: three-point skin mark alignment, volumetric imaging with bony landmark registration, volumetric imaging with implanted fiducial marker registration, and implanted electromagnetic transponders (beacons) detection. Methods and Materials: Fourteen patients who underwent definitive intensity-modulated radiotherapy for prostate cancer formed the basis of this study. Each patient was implanted with three electromagnetic transponders and underwent a course of 39 treatment fractions. Daily localization was based on three-point skin mark alignment followed by transponder detection and patient repositioning. Transponder positioning was verified by volumetric imaging with cone-beam computed tomography of the pelvis. Relative motion between the prostate gland and bony anatomy was quantified by offline analyses of daily cone-beam computed tomography. Intratreatment organ motion was monitored continuously by the Calypso (registered) System for quantification of intrafraction setup error. Results: As expected, setup error (that is, inter- plus intrafraction motion, unless otherwise stated) was largest with skin mark alignment, requiring margins of 7.5 mm, 11.4 mm, and 16.3 mm, in the lateral (LR), longitudinal (SI), and vertical (AP) directions, respectively. Margin requirements accounting for intrafraction motion were smallest for transponder detection localization techniques, requiring margins of 1.4 mm (LR), 2.6 mm (SI), and 2.3 mm (AP). Bony anatomy alignment required 2.1 mm (LR), 9.4 mm (SI), and 10.5 mm (AP), whereas image-guided marker alignment required 2.8 mm (LR), 3.7 mm (SI), and 3.2 mm (AP). No marker migration was observed in the cohort. Conclusion: Clinically feasible, rapid, and reliable tools such as the electromagnetic transponder detection system for pretreatment target localization

  14. Improved target volume definition for precision radiotherapy planning of meningiomas by correlation of CT and dynamic, Gd-DTPA-enhanced FLASH MR imaging.

    PubMed

    Schad, L R; Blüml, S; Debus, J; Scharf, J; Lorenz, W J

    1994-10-01

    In this methodological paper the authors report a fast, T1-weighted gradient-echo sequence (FLASH) for dynamic, Gd-DTPA-enhanced magnetic resonance (MR) imaging of meningiomas and its application in precision radiotherapy planning. Indications for radiotherapy included unresected tumors, tumor remaining after surgery, and recurrences. The patient's head was fixed in a stereotactic localization system which is usable at the CT, MR and the linear accelerator installations. By phantom measurements different materials (steel, aluminum, titanium, plastic, wood, ceramics) used for the stereotactic system were tested for mechanical stability and geometric MR image distortion. All metallic stereotactic rings (closed rings made of massive metal) led to a more or less dramatic geometric distortion and signal cancellation in the MR images. The best properties--nearly no distortion and high mechanic stability--are provided by a ceramic ring. If necessary, the remaining geometric MR image distortion can be 'corrected' (reducing displacements to the size of a pixel) by calculations based on modeling the distortion as a fourth order two-dimensional polynomial. The target volume was defined in dynamic, T1-weighted FLASH MR images, which were measured before, during, and after the controlled intravenous infusion of 0.1 mmol/kg body weight Gd-DTPA. The stereotactic localization technique allows the precise transfer of the target volume information from MR onto CT data to provide a map of the radiation attenuation coefficient for dose calculation. In genera, the superior soft tissue contrast of MR showed an excellent tumor delineation, especially in regions, such as the base of the skull, where the target often was obscured in CT images.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7878213

  15. Contribution of {sup 68}Ga-DOTATOC PET/CT to Target Volume Delineation of Skull Base Meningiomas Treated With Stereotactic Radiation Therapy

    SciTech Connect

    Graf, Reinhold; Nyuyki, Fonyuy; Steffen, Ingo G.; Michel, Roger; Fahdt, Daniel; Wust, Peter; Brenner, Winfried; Budach, Volker; Wurm, Reinhard; Plotkin, Michail

    2013-01-01

    Purpose: To investigate the potential impact of {sup 68}Ga-DOTATOC positron emission tomography ({sup 68}Ga-DOTATOC-PET) in addition to magnetic resonance imaging (MRI) and computed tomography (CT) for retrospectively assessing the gross tumor volume (GTV) delineation of meningiomas of the skull base in patients treated with fractionated stereotactic radiation therapy (FSRT). Methods and Materials: The study population consisted of 48 patients with 54 skull base meningiomas, previously treated with FSRT. After scans were coregistered, the GTVs were first delineated with MRI and CT data (GTV{sub MRI/CT}) and then by PET (GTV{sub PET}) data. The overlapping regions of both datasets resulted in the GTV{sub common}, which was enlarged to the GTV{sub final} by adding volumes defined by only one of the complementary modalities (GTV{sub MRI/CT-added} or GTV{sub PET-added}). We then evaluated the contribution of conventional imaging modalities (MRI, CT) and {sup 68}Ga-DOTATOC-PET to the GTV{sub final}, which was used for planning purposes. Results: Forty-eight of the 54 skull base lesions in 45 patients showed increased {sup 68}Ga-DOTATOC uptake and were further analyzed. The mean GTV{sub MRI/CT} and GTV{sub PET} were approximately 21 cm{sup 3} and 25 cm{sup 3}, with a common volume of approximately 15 cm{sup 3}. PET contributed a mean additional GTV of approximately 1.5 cm{sup 3} to the common volume (16% {+-} 34% of the GTV{sub common}). Approximately 4.5 cm{sup 3} of the GTV{sub MRI/CT} was excluded from the contribution to the common volume. The resulting mean GTV{sub final} was significantly smaller than both the GTV{sub MRI/CT} and the GTV{sub PET}. Compared with the initial GTV{sub MRI/CT}, the addition of {sup 68}Ga-DOTATOC-PET resulted in more than 10% modification of the size of the GTV{sub final} in 32 (67%) meningiomas Conclusions: {sup 68}Ga-DOTATOC-PET/CT seems to improve the target volume delineation in skull base meningiomas, often leading to a reduction of

  16. Daylight Imaging of SSA Targets Through Distributed Volume Non-Kolmogorov and Anisotropic Deep Turbulence at Low Elevation Angles

    NASA Astrophysics Data System (ADS)

    Bos, J.

    2014-09-01

    Monte-Carlo simulations featuring Kolmogorov phase screens have long been used in understanding both the effects of atmospheric turbulence on imaging and the performance of turbulence mitigation methods. We have developed a new, high-fidelity, non-Kolmogorov phase screen model that allows the orientation of anisotropy to vary arbitrarily. Our model is used to generate simulated video sequences featuring a common satellite imaging target in low-elevation, daylight imaging scenarios, where these effects are thought to be common. These sequences demonstrate the effects of anisotropic, non-Kolmogorov turbulence, which can be unintuitive. We also briefly examine how these non-traditional features affect the performance of certain post-processing techniques, such as speckle imaging.

  17. Coregistration of Prechemotherapy PET-CT for Planning Pediatric Hodgkin's Disease Radiotherapy Significantly Diminishes Interobserver Variability of Clinical Target Volume Definition

    SciTech Connect

    Metwally, Hussein; Courbon, Frederic; David, Isabelle; Filleron, Thomas; Blouet, Aurelien; Rives, Michel; Izar, Francoise; Zerdoud, Slimane; Plat, Genevieve; Vial, Julie; Robert, Alain; Laprie, Anne

    2011-07-01

    Purpose: To assess the interobserver variability in clinical target volume (CTV) definitions when using registered {sup 18}F-labeled deoxyglucose positron emission tomography (FDG-PET-CT) versus side-by-side image sets in pediatric Hodgkin's disease (HD). Methods and Materials: Prechemotherapy FDG-PET-CT scans performed in the treatment position were acquired from 20 children (median age, 14 years old) with HD (stages 2A to 4B) and registered with postchemotherapy planning CT scans. The patients had a median age of 14 years and stages of disease ranging between 2A and 4B. Image sets were coregistered using a semiautomatic coregistration system. The biological target volume was defined on all the coregistered images as a guide to defining the initial site of involvement and to avoid false-positive or negative results. Five radiation oncologists independently defined the CTV for all 20 patients: once using separate FDG-PET-CT images as a guide (not registered) to define CTVa and once using the registered FDG-PET-CT data to define CTVb. The total volumes were compared, as well as their coefficients of variation (COV). To assess the interobserver variability, the percentages of intersection between contours drawn by all observers for each patient were calculated for CTVa and for CTVb. Results: The registration of a prechemotherapy FDG-PET-CT scan caused a change in the CTV for all patients. Comparing CTVa with CTVb showed that the mean CTVb increased in 14 patients (range, 0.61%-101.96%) and decreased in 6 patients (range, 2.97%-37.26%). The COV for CTVb significantly decreased for each patient; the mean COVs for CTVa and CTVb were 45% (21%-65%) and 32% (13%-57%), respectively (p = 0.0004). The percentage of intersection among all CTVbs for the five observers increased significantly by 89.77% (1.99%-256.41%) compared to that of CTVa (p = 0.0001). Conclusions: High observer variability can occur during CT-based definition of CTVs for children diagnosed with HD

  18. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    SciTech Connect

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  19. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer

    SciTech Connect

    Viswanathan, Akila N.; Gaffney, David K.; Beriwal, Sushil; Bhatia, Sudershan K.; Lee Burnett, Omer; D'Souza, David P.; Patil, Nikhilesh; Haddock, Michael G.; Jhingran, Anuja; Jones, Ellen L.; Kunos, Charles A.; Lee, Larissa J.; Mayr, Nina A.; Petersen, Ivy; Petric, Primoz; Portelance, Lorraine; Small, William; Strauss, Jonathan B.; and others

    2014-10-01

    Objective: To create and compare consensus clinical target volume (CTV) contours for computed tomography (CT) and 3-Tesla (3-T) magnetic resonance (MR) image-based cervical-cancer brachytherapy. Methods and Materials: Twenty-three experts in gynecologic radiation oncology contoured the same 3 cervical cancer brachytherapy cases: 1 stage IIB near-complete response (CR) case with a tandem and ovoid, 1 stage IIB partial response (PR) case with tandem and ovoid with needles, and 1 stage IB2 CR case with a tandem and ring applicator. The CT contours were completed before the MRI contours. These were analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with κ statistics as a measure of agreement between participants. The conformity index was calculated for each of the 6 data sets. Dice coefficients were generated to compare the CT and MR contours of the same case. Results: For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001). The κ and conformity index estimates were slightly higher for CT, indicating a higher level of agreement on CT. The Dice coefficients were 89% for the stage IB2 case with a CR, 74% for the stage IIB case with a PR, and 57% for the stage IIB case with a CR. Conclusion: In a comparison of MR-contoured with CT-contoured CTV volumes, the higher level of agreement on CT may be due to the more distinct contrast medium visible on the images at the time of brachytherapy. MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam. On the basis of these results, a 95% consensus volume was generated for CT and for MR. Online contouring atlases are available for instruction at (http://www.nrgoncology.org/Resources/ContouringAtlases/GYNCervicalBrachytherapy.aspx)

  20. Simulation of tissue activity curves of 64Cu-ATSM for sub-target volume delineation in radiotherapy

    NASA Astrophysics Data System (ADS)

    Dalah, E.; Bradley, D.; Nisbet, A.

    2010-02-01

    There is much interest in positron emission tomography (PET) for measurements of regional tracer concentration in hypoxic tumour-bearing tissue, focusing on the need for accurate radiotherapy treatment planning. Generally, relevant data are taken over multiple time frames in the form of tissue activity curves (TACs), thus providing an indication of vasculature structure and geometry. This is a potential key in providing information on cellular perfusion and limited diffusion. A number of theoretical studies have attempted to describe tracer uptake in tissue cells in an effort to understand such complicated behaviour of cellular uptake and the mechanism of washout. More recently, a novel computerized reaction diffusion equation method was developed by Kelly and Brady (2006 A model to simulate tumour oxygenation and dynamic [18F]-FMISO PET data Phys. Med. Biol. 51 5859-73), where they managed to simulate the realistic dynamic TACs of 18F-FMISO. The model was developed over a multi-step process. Here we present a refinement to the work of Kelly and Brady, such that the model allows simulation of a realistic tissue activity curve (TAC) of any hypoxia selective PET tracer, in a single step process. In this work we show particular interest in simulating the TAC of perhaps the most promising hypoxia selective tracer, 64Cu-ATSM. In addition, we demonstrate its potential role in tumour sub-volume delineation for radiotherapy treatment planning. Simulation results have demonstrated the significant high contrast of imaging using ATSM, with a tumour to blood ratio ranging from 2.24 to 4.1.

  1. SU-E-T-389: Effect of Interfractional Shoulder Motion On Low Neck Nodal Targets for Patients Treated Using Volume Modulated Arc Therapy (VMAT)

    SciTech Connect

    Casey, K; Wong, P; Tung, S

    2014-06-01

    Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT). Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs. A second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient's treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the low neck contours. Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan) and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan) for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3. Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.

  2. Radar detection of low-altitude targets in a maritime environment. Volume 2: Meteorological and radar data

    NASA Astrophysics Data System (ADS)

    Anderson, Kenneth D.

    1993-11-01

    Results from a unique analytical and measurement effort to assess low-altitude short-range radar detection in an evaporation ducting environment validate propagation model predictions of reduced radar detection ranges within the radio horizon. Discrepancies between measured and predicted radar data demand a close examination of both meteorological data and surface layer theory. At ranges near and beyond the horizon, radar detection crucially depends both on the surface layer refractivity profile and on the adjacent mixed layer refractivity profile. An empirical model is described that merges the surface layer with the mixed layer forming a unified boundary layer. Other discrepancies, which are thought to be caused either by inadequate surface layer modeling (perhaps the moisture stability function) or by inadequate boundary layer meteorological measurements, suggest the need for improvements in surface layer modeling and new techniques to measure the refractivity structure. The combination of direct boundary layer (surface and mixed layer) meteorological measurements, remotely sensed radar measurements, and advanced numerical modeling capability provides valuable insight for a better understanding of the atmospheric boundary layer and its effects on the radar detection of low-altitude short-range targets.

  3. A Prospective Pathologic Study to Define the Clinical Target Volume for Partial Breast Radiation Therapy in Women With Early Breast Cancer

    SciTech Connect

    Nguyen, Brandon T.; Deb, Siddhartha; Fox, Stephen; Hill, Prudence; Collins, Marnie; Chua, Boon H.

    2012-12-01

    Purpose: To determine an appropriate clinical target volume for partial breast radiation therapy (PBRT) based on the spatial distribution of residual invasive and in situ carcinoma after wide local excision (WLE) for early breast cancer or ductal carcinoma in situ (DCIS). Methods and Materials: We performed a prospective pathologic study of women potentially eligible for PBRT who had re-excision and/or completion mastectomy after WLE for early breast cancer or DCIS. A pathologic assessment protocol was used to determine the maximum radial extension (MRE) of residual carcinoma from the margin of the initial surgical cavity. Women were stratified by the closest initial radial margin width: negative (>1 mm), close (>0 mm and {<=}1 mm), or involved. Results: The study population was composed of 133 women with a median age of 59 years (range, 27-82 years) and the following stage groups: 0 (13.5%), I (40.6%), II (38.3%), and III (7.5%). The histologic subtypes of the primary tumor were invasive ductal carcinoma (74.4%), invasive lobular carcinoma (12.0%), and DCIS alone (13.5%). Residual carcinoma was present in the re-excision and completion mastectomy specimens in 55.4%, 14.3%, and 7.2% of women with an involved, close, and negative margin, respectively. In the 77 women with a noninvolved radial margin, the MRE of residual disease, if present, was {<=}10 mm in 97.4% (95% confidence interval 91.6-99.5) of cases. Larger MRE measurements were significantly associated with an involved margin (P<.001), tumor size >30 mm (P=.03), premenopausal status (P=.03), and negative progesterone receptor status (P=.05). Conclusions: A clinical target volume margin of 10 mm would encompass microscopic residual disease in >90% of women potentially eligible for PBRT after WLE with noninvolved resection margins.

  4. Development of RTOG Consensus Guidelines for the Definition of the Clinical Target Volume for Postoperative Conformal Radiation Therapy for Prostate Cancer

    SciTech Connect

    Michalski, Jeff M.; Lawton, Colleen; El Naqa, Issam; Ritter, Mark; O'Meara, Elizabeth C.; Seider, Michael J.; Lee, W. Robert; Rosenthal, Seth A.; Pisansky, Thomas; Catton, Charles; Valicenti, Richard K.; Zietman, Anthony L.; Bosch, Walter R.; Sandler, Howard; Buyyounouski, Mark K.; Menard, Cynthia

    2010-02-01

    Purpose: To define a prostate fossa clinical target volume (PF-CTV) for Radiation Therapy Oncology Group (RTOG) trials using postoperative radiotherapy for prostate cancer. Methods and Materials: An RTOG-sponsored meeting was held to define an appropriate PF-CTV after radical prostatectomy. Data were presented describing radiographic failure patterns after surgery. Target volumes used in previous trials were reviewed. Using contours independently submitted by 13 radiation oncologists, a statistical imputation method derived a preliminary 'consensus' PF-CTV. Results: Starting from the model-derived CTV, consensus was reached for a CT image-based PF-CTV. The PF-CTV should extend superiorly from the level of the caudal vas deferens remnant to >8-12 mm inferior to vesicourethral anastomosis (VUA). Below the superior border of the pubic symphysis, the anterior border extends to the posterior aspect of the pubis and posteriorly to the rectum, where it may be concave at the level of the VUA. At this level, the lateral border extends to the levator ani. Above the pubic symphysis, the anterior border should encompass the posterior 1-2 cm of the bladder wall; posteriorly, it is bounded by the mesorectal fascia. At this level, the lateral border is the sacrorectogenitopubic fascia. Seminal vesicle remnants, if present, should be included in the CTV if there is pathologic evidence of their involvement. Conclusions: Consensus on postoperative PF-CTV for RT after prostatectomy was reached and is available as a CT image atlas on the RTOG website. This will allow uniformity in defining PF-CTV for clinical trials that include postprostatectomy RT.

  5. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [{sup 68}Ga]-DOTATOC-PET

    SciTech Connect

    Milker-Zabel, Stefanie . E-mail: stefanie_milker-zabel@med.uni-heidelberg.de; Zabel-du Bois, Angelika; Henze, Marcus; Huber, Peter; Schulz-Ertner, Daniela; Hoess, Angelika; Haberkorn, Uwe; Debus, Juergen

    2006-05-01

    Purpose: To evaluate the influence of {sup 68}-Ga-labeled DOTA ( )-D-Phe ({sup 1})-Tyr ({sup 3})-Octreotide positron emission tomography ([{sup 68}Ga]-DOTATOC-PET) for target definition for fractionated stereotactic radiotherapy (FSRT) as a complementary modality to computed tomography (CT) and magnetic resonance imaging (MRI). Because meningiomas show a high expression of somatostatin receptor subtype 2, somatostatin analogs such as DOTATOC offer the possibility of receptor-targeted imaging. Patients and Methods: Twenty-six patients received stereotactic CT, MRI, and [{sup 68}Ga]-DOTATOC-PET as part of their treatment planning. Histology was: World Health Organization (WHO) Grade 1 61.5%, WHO Grade 2 7.7%, WHO Grade 3 3.9%, and undetermined 26.9%. Six patients received radiotherapy as primary treatment, 2 after subtotal resection; 17 patients were treated for recurrent disease. Dynamic PET scans were acquired before radiotherapy over 60 min after intravenous injection of 156 {+-} 29 MBq [{sup 68}Ga]-DOTATOC. These PET images were imported in the planning software for FSRT. Planning target volume (PTV)-I outlined on CT and contrast-enhanced MRI was compared with PTV-II outlined on PET. PTV-III was defined with CT, MRI, and PET and was actually used for radiotherapy treatment. Results: PTV-III was smaller than PTV-I in 9 patients, the same size in 7 patients, and larger in 10 patients. Median PTV-I was 49.6 cc, median PTV-III was 57.2 cc. In all patients [{sup 68}Ga]-DOTATOC-PET delivered additional information concerning tumor extension. PTV-III was significantly modified based on DOTATOC-PET data in 19 patients. In 1 patient no tumor was exactly identified on CT/MRI but was visible on PET. Conclusion: These data demonstrate that [{sup 68}Ga]-DOTATOC-PET improves target definition for FSRT in patients with intracranial meningiomas. Radiation targeting with fused DOTATOC-PET, CT, and MRI resulted in significant alterations in target definition in 73%.

  6. Adenocarcinoma of the Esophagogastric Junction: The Pattern of Metastatic Lymph Node Dissemination as a Rationale for Elective Lymphatic Target Volume Definition

    SciTech Connect

    Meier, Iris; Merkel, Susanne; Papadopoulos, Thomas; Sauer, Rolf; Hohenberger, Werner; Brunner, Thomas B.

    2008-04-01

    Purpose: Regional nodal metastasis after neoadjuvant chemoradiation of adenocarcinoma of the esophagogastric junction (AEG) predicts survival. We aimed to clarify the lymph node (LN) distribution of AEG according to location of the tumor mass and invasion of neighboring areas for the selection of radiotherapy planning target volume (PTV) margins. Methods and Materials: Patterns of regional spread were analyzed in pathology reports of 326 patients patients with AEG who had undergone primary resection, with {>=}15 lymph nodes examined. Tumors were classified into AEG types based on endoscopy and pathology reports. Fisher's exact test was used to compare nodal disease and tumor characteristics. Pulmonary dose-volume histograms were tested in 8 patients. Results: Nodes were positive in 81% of T2 to T4 tumors. Type of AEG, tumor size, lymphovascular invasion, and grading significantly influenced nodal distribution. We found that marked esophageal invasion of AEG II/III significantly correlated with paraesophageal nodal disease, and T3 to T4 AEG II/III had a significant rate of splenic hilum/artery nodes. Middle and lower paraesophageal nodes should be treated in T2 to T4 AEG I and AEG II with {>=}15 mm involvement above the Z-line, and T3 to T4 AEG II. The splenic hilum and artery nodes can be spared in T2 AEG tumors, especially Type I tumors. The influence of paraesophageal nodal treatment on the risk of postoperative pulmonary complications can be estimated from dose-volume histograms. Conclusions: Accurate pretherapeutic staging predicts the risk of subclinical nodal disease and should be used to select the appropriate radiotherapeutic PTV. Careful selection of the PTV can be used to maximize the therapeutic window in multimodal therapy for AEG.

  7. A Prospective Evaluation of Staging and Target Volume Definition of Lymph Nodes by {sup 18}FDG PET/CT in Patients With Squamous Cell Carcinoma of Thoracic Esophagus

    SciTech Connect

    Yu Wen; Fu Xiaolong; Zhang Yingjian; Xiang Jiaqing; Shen Lei; Chang, Joe Y.

    2011-12-01

    Purpose: To determine an optimal standardized uptake value (SUV) threshold for detecting lymph node (LN) metastases in esophageal cancer using {sup 18}F-Fluorodeoxyglucose positron emission tomography/computer tomography ({sup 18}FDG PET/CT) and to define the resulting nodal target volume, using histopathology as a 'gold standard.' Methods: Sixteen patients with esophageal squamous cell carcinoma who underwent radical esophagectomy and three-field LN dissection after {sup 18}FDG PET/CT and CT scans were enrolled into this study. Locations of LN groups were recorded according to a uniform LN map. Diagnostic performance of different SUV thresholds was assessed by receiver operating characteristic analysis. The optimal cutoff SUV was determined by plotting the false-negative rate (FNR) and false-positive rate (FPR), the sum of both error rates (FNR+FPR), and accuracy against a hypothetical SUV threshold. For each patient, nodal gross tumor volumes (GTVNs) were generated with CT alone (GTVNCT), PET/CT (GTVNPET), and pathologic data (GTVNpath). GTVNCT or GTVNPET was compared with GTVNpath by means of a conformity index (CI), which is the intersection of the two GTVNs divided by the sum of them minus the intersection, e.g., CI{sub CT} and {sub path} = GTVN{sub CT} and {sub path}/(GTVN{sub CT}+ GTVN{sub path} - GTVN{sub CT} and {sub path}). Results: LN metastases occurred in 21 LN groups among the 144 specimens taken from the 16 patients. The area under the receiver operating characteristic curve was 0.9017 {+-} 0.0410. The plot of error rates showed a minimum of FNR+FPR for an SUV of 2.36, at which the sensitivity, specificity, and accuracy were 76.19%, 95.93%, and 93.06%, respectively, whereas those of CT were 33.33%, 94.31%, and 85.42% (p values: 0.0117, 0.7539, and 0.0266). Mean GTVN{sub CT}, GTVN{sub PET}, and GTVN{sub path} were 1.52 {+-} 2.38, 2.82 {+-} 4.51, and 2.68 {+-} 4.16cm{sup 3}, respectively. Mean CI{sub CT} and {sub path} and CI{sub PET} and {sub path

  8. A New Brain Positron Emission Tomography Scanner With Semiconductor Detectors for Target Volume Delineation and Radiotherapy Treatment Planning in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    Purpose: We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET{sub CONV}WB) versus the new brain (BR) PET system using semiconductor detectors (PET{sub NEW}BR). Methods and Materials: Twelve patients with NPC were enrolled in this study. [{sup 18}F]Fluorodeoxyglucose-PET images were acquired using both the PET{sub NEW}BR and the PET{sub CONV}WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET{sub CONV}WB and PET{sub NEW}BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET{sub CONV}WB (GTV{sub CONV}) images or PET{sub NEW}BR (GTV{sub NEW}) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. Results: The average absolute volume ({+-}standard deviation [SD]) of GTV{sub NEW} was 15.7 ml ({+-}9.9) ml, and that of GTV{sub CONV} was 34.0 ({+-}20.5) ml. The average GTV{sub NEW} was significantly smaller than that of GTV{sub CONV} (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN{sub NEW}) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Conclusion: Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy

  9. Determining optimal clinical target volume margins on the basis of microscopic extracapsular extension of metastatic nodes in patients with non-small-cell lung cancer

    SciTech Connect

    Yuan Shuanghu; Meng Xue; Yu Jinming . E-mail: fishtigers@yahoo.com.cn; Mu Dianbin; Chao, K.S. Clifford; Zhang Jiandong; Zhong Weixia; Yu Yonghua; Wang Jialin; Sun Xindong; Yang Guoren; Wang Yongzheng

    2007-03-01

    Purpose: To determine the optimal clinical target volume (CTV) margins around the nodal gross tumor volume (GTV) in non-small-cell lung cancer (NSCLC) patients by assessing microscopic tumor extension beyond regional lymph node capsules. Methods and Materials: The incidence of nodal extracapsular extension (ECE) and relationship with nodal size were reviewed in 243 patients. Histologic sections of dissected regional lymph nodes up to 30 mm in size were examined to measure the extent of microscopic ECE. We determined the distribution of cases according to extent of ECE and the relationships between ECE extent and lymph node size, regional nodal disease extent, histologic type, and degree of differentiation. Results: The nodal ECE was seen in 41.6% of patients (101/243) and 33.4% of lymph nodes (214/640), and the incidence correlated to larger lymph node size positively. The extent of ECE was 0.7 mm in mean (range, 0-12.0 mm) and {<=}3 mm in 95% of the nodes. Positive correlations were found between extent of ECE and larger lymph node size ({>=}20 mm vs. 10-19 mm or <10 mm, p = 0.005), advanced nodal stage (N2 vs. N1, p = 0.046), and moderate or poor (vs. good or unknown) nodal differentiation (p = 0.002). ECE did not differ significantly by histologic type or nodal station. Conclusions: The incidence of ECE related to lymph node size, and ECE extent related to lymph node size, stage, and differentiation. It may be reasonable to recommend 3-mm CTV margins for pathologic lymph nodes <20 mm and more generous margins for lymph nodes {>=}20 mm.

  10. SU-E-J-207: Assessing the Validity of 4D-CT Based Target Volumes and Free Breathing CBCT Localization in Lung Stereotactic Ablative Radiation Therapy (SABR)

    SciTech Connect

    Badkul, R; Pokhrel, D; Jiang, H; Park, J; Wang, F; Kumar, P

    2014-06-01

    Purpose: Four-dimensional-computed-tomography(4D-CT) imaging for target-volume delineation and cone-beam-tomography(CBCT) for treatment localization are widely utilized in lung-SABR.Aim of this study was to perform a quantitative-assessment and inter-comparison of Internal-targetvolumes( ITV) drawn on various phases of breathing-cycle 4D-CT-scans, Maximum-intensity-projection(MIP), average-intensity-projection(AIP)and static CT-scans of lung-motion-phantom to simulate lung-SABR patient geometry. We also analyzed and compared the ITVs drawn on freebreathing- CBCT. Materials and Methods: 4D-CT-scans were acquired on Philips big-bore 16slice CT and Bellows-respiratory monitoring-system using retrospective phase-binning method. Each respiratory cycle divided into 10-phases. Quasar-Phantom with lung-inserts and 3cm-diameter nylonball to simulate tumor and was placed on respiratory-motion-platform for 4D-CT and CBCT-acquisition. Amplitudes of motions: 0.5,1.0,2.0,3.0cm in superior-inferior direction with breathing-cycle time of 6,5,4,6sec, respectively used.4D-CTs with 10-phases(0%to90%)for each excursion-set and 3D-CT for static-phantom exported to iPlan treatment-planningsystem( TPS).Tumor-volumes delineated in all phases of 4D-CT, MIP,AIP,CBCT scans using fixed-HU-threshold(−500to1000)values automatically.For each 4D-dataset ITV obtained by unifying the tumorcontours on all phases.CBCT-ITV-volumes were drawn in Eclipse-TPS. Results: Mean volume of tumor contours for all phases compared with static 3D-CT were 0.62±0.08%, 1.67±0.26%, 4.77±0.54% and 9.27±1.23% for 0.5cm,1cm,2cm,3cm excursions respectively. Differences of mean Union-ITV with MIP-ITV were close(≤2.4%).Mean Union-ITV from expected-theoretical values differed from −4.9% to 3.8%.Union-ITV and MIP-ITV were closer within 2.3%. AIP-ITVs were underestimated from 14 to 32% compared to union-ITV for all motion datasets. Differences of −5.9% to −44% and −5% to 6.7% for CBCT-ITV from MIP-ITV and AIP

  11. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry.

    PubMed

    Vergeynst, Leendert; Van Langenhove, Herman; Joos, Pieter; Demeestere, Kristof

    2014-04-01

    The ever-growing number of emerging micropollutants such as pharmaceuticals requests rapid and sensitive full-spectrum analytical techniques. Time-of-flight high-resolution mass spectrometry (TOF-HRMS) is a promising alternative for the state-of-the-art tandem mass spectrometry instruments because of its ability to simultaneously screen for a virtually unlimited number of suspect analytes and to perform target quantification. The challenge for such suspect screening is to develop a strategy, which minimizes the false-negative rate without restraining numerous false-positives. At the same time, omitting laborious sample enrichment through large-volume injection ultra-performance liquid chromatography (LVI-UPLC) avoids selective preconcentration. A suspect screening strategy was developed using LVI-UPLC-TOF-MS aiming the detection of 69 multi-class pharmaceuticals in surface water without the a priori availability of analytical standards. As a novel approach, the screening takes into account the signal-intensity-dependent accurate mass error of TOF-MS, hereby restraining 95 % of the measured suspect pharmaceuticals present in surface water. Application on five Belgian river water samples showed the potential of the suspect screening approach, as exemplified by a false-positive rate not higher than 15 % and given that 30 out of 37 restrained suspect compounds were confirmed by the retention time of analytical standards. Subsequently, this paper discusses the validation and applicability of the LVI-UPLC full-spectrum HRMS method for target quantification of the 69 pharmaceuticals in surface water. Analysis of five Belgian river water samples revealed the occurrence of 17 pharmaceuticals in a concentration range of 17 ng L(-1) up to 3.1 μg L(-1). PMID:24633561

  12. Droplet Characterization and Penetration of an Ultra-Low Volume Mosquito Adulticide Spray Targeting the Asian Tiger Mosquito, Aedes albopictus, within Urban and Suburban Environments of Northeastern USA

    PubMed Central

    Faraji, Ary; Unlu, Isik; Crepeau, Taryn; Healy, Sean; Crans, Scott; Lizarraga, Griffith; Fonseca, Dina; Gaugler, Randy

    2016-01-01

    Adult control of Aedes albopictus via ultra-low volume is difficult because this species occurs primarily in peridomestic habitats where obstacles such as buildings and vegetation can disrupt spray plumes and droplet dispersion. We determined droplet penetration and characterization of a pyrethroid adulticide applied from the ground at mid (46.77 ml/ha) and maximum (93.53 ml/ha) label rates within cryptic habitats of urban and suburban environments. Droplets were collected from all habitats, with no significant differences detected between locations within the same application rate or collection method. No differences were detected in droplet densities (drops per mm2) between rates within urban environments, but more droplets were collected in urban (149.93 ± 11.07 SE) than suburban sites (114.37 ± 11.32) at the maximum label rate (P = 0.003). The excellent penetration of aerosols into cryptic habitats of an urban site was likely due to the shorter spray paths afforded by our network of roads and alleys. Mid label rates displayed similar droplet density values as maximum label rates in urban areas, indicating that lower rates may be used effectively to reduce costs, lessen non-target effects, and increase environmental stewardship. Advances in formulations and technology are driving changes in adulticide applications, leading to use of the minimum effective dose for maximum efficacy, precision, and accountability. PMID:27116103

  13. Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure

    SciTech Connect

    Gluck, Iris; Ibrahim, Mohannad; Popovtzer, Aron; Teknos, Theodoros N.; Chepeha, Douglas B.; Prince, Mark E.; Moyer, Jeffrey S.; Bradford, Carol R.; Eisbruch, Avraham

    2009-05-01

    Purpose: To analyze patterns of failure in patients with head-and-neck cutaneous squamous cell carcinoma (HNCSCC) and clinical/radiologic evidence of perineural invasion (CPNI), in order to define neural clinical target volume (CTV) for treatment planning. Methods and Materials: Patients treated with three-dimensional (3D) conformal or intensity-modulated radiotherapy (IMRT) for HNCSCC with CPNI were included in the study. A retrospective review of the clinical charts, radiotherapy (RT) plans and radiologic studies has been conducted. Results: Eleven consecutive patients with HNCSCCs with CPNI were treated from 2000 through 2007. Most patients underwent multiple surgical procedures and RT courses. The most prevalent failure pattern was along cranial nerves (CNs), and multiple CNs were ultimately involved in the majority of cases. In all cases the involved CNs at recurrence were the main nerves innervating the primary tumor sites, as well as their major communicating nerves. We have found several distinct patterns of disease spread along specific CNs depending on the skin regions harboring the primary tumors, including multiple branches of CN V and VII. These patterns and the pertinent anatomy are detailed in the this article. Conclusions: Predictable disease spread patterns along cranial nerves supplying the primary tumor sites were found in this study. Awareness of these patterns, as well as knowledge of the relevant cranial nerve anatomy, should be the basis for CTV definition and delineation for RT treatment planning.

  14. Skin Cancer of the Head and Neck with Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure

    PubMed Central

    Gluck, Iris; Ibrahim, Mohannad; Popovtzer, Aron; Teknos, Theodoros N.; Chepeha, Douglas B; Prince, Mark E; Moyer, Jeffrey S; Bradford, Carol R; Eisbruch, Avraham

    2009-01-01

    Purpose To analyze patterns of failure in patients with head and neck cutaneous squamous cell carcinoma (HNCSCC) and clinical/radiological evidence of perineural invasion (CPNI), in order to define neural clinical target volume (CTV) for treatment planning. Methods Patients treated with 3D conformal or intensity modulated radiotherapy (IMRT) for HNCSCC with CPNI were included in the study. A retrospective review of the clinical charts, radiotherapy (RT) plans and radiological studies has been conducted. Results Eleven consecutive patients with HNCSCCs with CPNI were treated from 2000 through 2007. Most patients received multiple surgical procedures and RT courses. The most prevalent failure pattern was along cranial nerves (CNs), and multiple CNs were ultimately involved in the majority of cases. In all cases the involved CNs at recurrence were the main nerves innervating the primary tumor sites, as well as their major communicating nerves. We have found several distinct patterns of disease spread along specific CNs depending on the skin regions harboring the primary tumors, including multiple branches of CN V and VII. These patterns and the pertinent anatomy are detailed in the paper. Conclusions Predictable disease spread patterns along cranial nerves supplying the primary tumor sites were found in this study. Awareness of these patterns, as well as knowledge of the relevant cranial nerve anatomy, should be the basis for CTV definition and delineation for RT treatment planning. PMID:18938044

  15. Radiation Therapy Oncology Group Consensus Panel Guidelines for the Delineation of the Clinical Target Volume in the Postoperative Treatment of Pancreatic Head Cancer

    SciTech Connect

    Goodman, Karyn A.; Regine, William F.; Dawson, Laura A.; Ben-Josef, Edgar; Haustermans, Karin; Bosch, Walter R.; Turian, Julius; Abrams, Ross A.

    2012-07-01

    Purpose: To develop contouring guidelines to be used in the Radiation Therapy Oncology Group protocol 0848, a Phase III randomized trial evaluating the benefit of adjuvant chemoradiation in patients with resected head of pancreas cancer. Methods and Materials: A consensus committee of six radiation oncologists with expertise in gastrointestinal radiotherapy developed stepwise contouring guidelines and an atlas for the delineation of the clinical target volume (CTV) in the postoperative treatment of pancreas cancer, based on identifiable regions of interest and margin expansions. Areas at risk for subclinical disease to be included in the CTV were defined, including nodal regions, anastomoses, and the preoperative primary tumor location. Regions of interest that could be reproducibly contoured on postoperative imaging after a pancreaticoduodenectomy were identified. Standardized expansion margins to encompass areas at risk were developed after multiple iterations to determine the optimal margin expansions. Results: New contouring recommendations based on CT anatomy were established. Written guidelines for the delineation of the postoperative CTV and normal tissues, as well as a Web-based atlas, were developed. Conclusions: The postoperative abdomen has been a difficult area for effective radiotherapy. These new guidelines will help physicians create fields that better encompass areas at risk and minimize dose to normal tissues.

  16. Droplet Characterization and Penetration of an Ultra-Low Volume Mosquito Adulticide Spray Targeting the Asian Tiger Mosquito, Aedes albopictus, within Urban and Suburban Environments of Northeastern USA.

    PubMed

    Faraji, Ary; Unlu, Isik; Crepeau, Taryn; Healy, Sean; Crans, Scott; Lizarraga, Griffith; Fonseca, Dina; Gaugler, Randy

    2016-01-01

    Adult control of Aedes albopictus via ultra-low volume is difficult because this species occurs primarily in peridomestic habitats where obstacles such as buildings and vegetation can disrupt spray plumes and droplet dispersion. We determined droplet penetration and characterization of a pyrethroid adulticide applied from the ground at mid (46.77 ml/ha) and maximum (93.53 ml/ha) label rates within cryptic habitats of urban and suburban environments. Droplets were collected from all habitats, with no significant differences detected between locations within the same application rate or collection method. No differences were detected in droplet densities (drops per mm2) between rates within urban environments, but more droplets were collected in urban (149.93 ± 11.07 SE) than suburban sites (114.37 ± 11.32) at the maximum label rate (P = 0.003). The excellent penetration of aerosols into cryptic habitats of an urban site was likely due to the shorter spray paths afforded by our network of roads and alleys. Mid label rates displayed similar droplet density values as maximum label rates in urban areas, indicating that lower rates may be used effectively to reduce costs, lessen non-target effects, and increase environmental stewardship. Advances in formulations and technology are driving changes in adulticide applications, leading to use of the minimum effective dose for maximum efficacy, precision, and accountability. PMID:27116103

  17. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy in Postoperative Treatment of Endometrial and Cervical Cancer

    SciTech Connect

    Small, William Mell, Loren K.; Anderson, Penny; Creutzberg, Carien; De Los Santos, Jennifer; Gaffney, David; Jhingran, Anuja; Portelance, Lorraine; Schefter, Tracey; Iyer, Revathy; Varia, Mahesh; Winter, Kathryn M.S.; Mundt, Arno J.

    2008-06-01

    Purpose: To develop an atlas of the clinical target volume (CTV) definitions for postoperative radiotherapy of endometrial and cervical cancer to be used for planning pelvic intensity-modulated radiotherapy. Methods and Materials: The Radiation Therapy Oncology Group led an international collaberation of cooperative groups in the development of the atlas. The groups included the Radiation Therapy Oncology Group, Gynecologic Oncology Group, National Cancer Institute of Canada, European Society of Therapeutic Radiology and Oncology, and American College of Radiology Imaging Network. The members of the group were asked by questionnaire to define the areas that were to be included in the CTV and to outline theses areas on individual computed tomography images. The initial formulation of the group began in late 2004 and culminated with a formal consensus conference in June 2005. Results: The committee achieved a consensus CTV definition for postoperative therapy for endometrial and cervical cancer. The CTV should include the common, external, and internal iliac lymph node regions. The upper 3.0 cm of the vagina and paravaginal soft tissue lateral to the vagina should also be included. For patients with cervical cancer, or endometrial cancer with cervical stromal invasion, it is also recommended that the CTV include the presacral lymph node region. Conclusion: This report serves as an international template for the definition of the CTV for postoperative intensity-modulated radiotherapy for endometrial and cervical cancer.

  18. Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles

    NASA Astrophysics Data System (ADS)

    Chang, Jenghwa; Aronson, Raphael; Graber, Harry L.; Barbour, Randall L.

    1995-05-01

    We present results examining the dependence of image quality for imaging in dense scattering media as influenced by the choice of parameters pertaining to the physical measurement and factors influencing the efficiency of the computation. The former includes the density of the weight matrix as affected by the target volume, view angle, and source condition. The latter includes the density of the weight matrix and type of algorithm used. These were examined by solving a one-step linear perturbation equation derived from the transport equation using three different algorithms: POCS, CGD, and SART algorithms with contraints. THe above were explored by evaluating four different 3D cylindrical phantom media: a homogeneous medium, an media containing a single black rod on the axis, a single black rod parallel to the axis, and thirteen black rods arrayed in the shape of an 'X'. Solutions to the forward problem were computed using Monte Carlo methods for an impulse source, from which was calculated time- independent and time harmonic detector responses. The influence of target volume on image quality and computational efficiency was studied by computing solution to three types of reconstructions: 1) 3D reconstruction, which considered each voxel individually, 2) 2D reconstruction, which assumed that symmetry along the cylinder axis was know a proiri, 3) 2D limited reconstruction, which assumed that only those voxels in the plane of the detectors contribute information to the detecot readings. The effect of view angle was explored by comparing computed images obtained from a single source, whose position was varied, as well as for the type of tomographic measurement scheme used (i.e., radial scan versus transaxial scan). The former condition was also examined for the dependence of the above on choice of source condition [ i.e., cw (2D reconstructions) versus time-harmonic (2D limited reconstructions) source]. The efficiency of the computational effort was explored

  19. Clinicopathologic analysis of extracapsular extension in prostate cancer: Should the clinical target volume be expanded posterolaterally to account for microscopic extension?

    SciTech Connect

    Chao, K. Kenneth; Goldstein, Neal S.; Yan Di; Vargas, Carlos E.; Ghilezan, Michel I.; Korman, Howard J.; Kernen, Kenneth M.; Hollander, Jay B.; Gonzalez, Jose A.; Martinez, Alvaro A.; Vicini, Frank A.; Kestin, Larry L. . E-mail: lkestin@beaumont.edu

    2006-07-15

    Purpose: We performed a complete pathologic analysis examining extracapsular extension (ECE) and microscopic spread of malignant cells beyond the prostate capsule to determine whether and when clinical target volume (CTV) expansion should be performed. Methods and Materials: A detailed pathologic analysis was performed for 371 prostatectomy specimens. All slides from each case were reviewed by a single pathologist (N.S.G.). The ECE status and ECE distance, defined as the maximal linear radial distance of malignant cells beyond the capsule, were recorded. Results: A total of 121 patients (33%) were found to have ECE (68 unilateral, 53 bilateral). Median ECE distance = 2.4 mm [range: 0.05-7.0 mm]. The 90th-percentile distance = 5.0 mm. Of the 121 cases with ECE, 55% had ECE distance {>=}2 mm, 19% {>=}4 mm, and 6% {>=}6 mm. ECE occurred primarily posterolaterally along the neurovascular bundle in all cases. Pretreatment prostrate-specific antigen (PSA), biopsy Gleason, pathologic Gleason, clinical stage, bilateral involvement, positive margins, percentage of gland involved, and maximal tumor dimension were associated with presence of ECE. Both PSA and Gleason score were associated with ECE distance. In all 371 patients, for those with either pretreatment PSA {>=}10 or biopsy Gleason score {>=}7, 21% had ECE {>=}2 mm and 5% {>=}4 mm beyond the capsule. For patients with both of these risk factors, 49% had ECE {>=}2 mm and 21% {>=}4 mm. Conclusions: For prostate cancer with ECE, the median linear distance of ECE was 2.4 mm and occurred primarily posterolaterally. Although only 5% of patients demonstrate ECE >4 to 5 mm beyond the capsule, this risk may exceed 20% in patients with PSA {>=}10 ng/ml and biopsy Gleason score {>=}7. As imaging techniques improve for prostate capsule delineation and as radiotherapy delivery techniques increase in accuracy, a posterolateral CTV expansion should be considered for patients at high risk.

  20. Toward optimal organ at risk sparing in complex volumetric modulated arc therapy: An exponential trade-off with target volume dose homogeneity

    SciTech Connect

    Tol, Jim P. Dahele, Max; Doornaert, Patricia; Slotman, Ben J.; Verbakel, Wilko F. A. R.

    2014-02-15

    Purpose: Conventional radiotherapy typically aims for homogenous dose in the planning target volume (PTV) while sparing organs at risk (OAR). The authors quantified and characterized the trade-off between PTV dose inhomogeneity (IH) and OAR sparing in complex head and neck volumetric modulated arc therapy plans. Methods: Thirteen simultaneous integrated boost plans were created per patient, for ten patients. PTV boost{sub (B)}/elective{sub (E)} optimization priorities were systematically increased. IH{sub B} and IH{sub E}, defined as (100% − V95%) + V107%, were evaluated against the average of the mean dose to the combined composite swallowing and combined salivary organs (D-OAR{sub comp}). To investigate the influence of OAR size and position with respect to PTV{sub B/E}, OAR dose was evaluated against a modified Euclidean distance (DM{sub B}/DM{sub E}) between OAR and PTV. Results: Although the achievable D-OAR{sub comp} for a given level of PTV IH differed between patients, excellent logarithmic fits described the D-OAR{sub comp}/IH{sub B} and IH{sub E} relationship in all patients (mean R{sup 2} of 0.98 and 0.97, respectively). Allowing an increase in average IH{sub B} and IH{sub E} over a clinically acceptable range, e.g., from 0.4% ± 0.5% to 2.0% ± 2.0% and 6.9% ± 2.8% to 14.8% ± 2.7%, respectively, corresponded to a decrease in average dose to the composite salivary and swallowing structures from 30.3 ± 6.5 to 23.6 ± 4.7 Gy and 32.5 ± 8.3 to 26.8 ± 9.3 Gy. The increase in PTV{sub E} IH was mainly accounted for by an increase in V107, by on average 5.9%, rather than a reduction in V95, which was on average only 2%. A linear correlation was found between the OAR dose to composite swallowing structures and contralateral parotid and submandibular gland, with DM{sub E} (R{sup 2} = 0.83, 0.88, 0.95). Only mean ipsilateral parotid dose correlated with DM{sub B} (R{sup 2} = 0.87). Conclusions: OAR sparing is highly dependent on the permitted PTV{sub B

  1. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    SciTech Connect

    Juneja, P; Harris, E; Bamber, J

    2014-06-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will

  2. More Accurate Definition of Clinical Target Volume Based on the Measurement of Microscopic Extensions of the Primary Tumor Toward the Uterus Body in International Federation of Gynecology and Obstetrics Ib-IIa Squamous Cell Carcinoma of the Cervix

    SciTech Connect

    Xie, Wen-Jia; Wu, Xiao; Xue, Ren-Liang; Lin, Xiang-Ying; Kidd, Elizabeth A.; Yan, Shu-Mei; Zhang, Yao-Hong; Zhai, Tian-Tian; Lu, Jia-Yang; Wu, Li-Li; Zhang, Hao; Huang, Hai-Hua; Chen, Zhi-Jian; Li, De-Rui; Xie, Liang-Xi

    2015-01-01

    Purpose: To more accurately define clinical target volume for cervical cancer radiation treatment planning by evaluating tumor microscopic extension toward the uterus body (METU) in International Federation of Gynecology and Obstetrics stage Ib-IIa squamous cell carcinoma of the cervix (SCCC). Patients and Methods: In this multicenter study, surgical resection specimens from 318 cases of stage Ib-IIa SCCC that underwent radical hysterectomy were included. Patients who had undergone preoperative chemotherapy, radiation, or both were excluded from this study. Microscopic extension of primary tumor toward the uterus body was measured. The association between other pathologic factors and METU was analyzed. Results: Microscopic extension toward the uterus body was not common, with only 12.3% of patients (39 of 318) demonstrating METU. The mean (±SD) distance of METU was 0.32 ± 1.079 mm (range, 0-10 mm). Lymphovascular space invasion was associated with METU distance and occurrence rate. A margin of 5 mm added to gross tumor would adequately cover 99.4% and 99% of the METU in the whole group and in patients with lymphovascular space invasion, respectively. Conclusion: According to our analysis of 318 SCCC specimens for METU, using a 5-mm gross tumor volume to clinical target volume margin in the direction of the uterus should be adequate for International Federation of Gynecology and Obstetrics stage Ib-IIa SCCC. Considering the discrepancy between imaging and pathologic methods in determining gross tumor volume extent, we recommend a safer 10-mm margin in the uterine direction as the standard for clinical practice when using MRI for contouring tumor volume.

  3. Targeting Cydia pomonella (L.)(Lepidoptera: Tortricidae) Adults with Low Volume Applications of Insecticides Alone and in Combination with Sex Pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies examined the effectiveness of adding insecticides to low volume sprays of a microencapsulated (MEC) sex pheromone to manage codling moth, Cydia pomonella (L). The activities of fifteen insecticides against the adult stage were first evaluated with a plastic cup assay. In general, moth longev...

  4. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    SciTech Connect

    Kosztyla, Robert; Chan, Elisa K.; Hsu, Fred; Wilson, Don; Ma, Roy; Cheung, Arthur; Zhang, Susan; Moiseenko, Vitali; Benard, Francois; Nichol, Alan

    2013-12-01

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified by the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2-cm

  5. Oscillatory Chloride Efflux at the Pollen Tube Apex Has a Role in Growth and Cell Volume Regulation and Is Targeted by Inositol 3,4,5,6-Tetrakisphosphate

    PubMed Central

    Zonia, Laura; Cordeiro, Sofia; Tupý, Jaroslav; Feijó, José A.

    2002-01-01

    Oscillatory growth of pollen tubes has been correlated with oscillatory influxes of the cations Ca2+, H+, and K+. Using an ion-specific vibrating probe, a new circuit was identified that involves oscillatory efflux of the anion Cl− at the apex and steady influx along the tube starting at 12 μm distal to the tip. This spatial coupling of influx and efflux sites predicts that a vectorial flux of Cl− ion traverses the apical region. The Cl− channel blockers 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)benzoic acid completely inhibited tobacco pollen tube growth at 80 and 20 μM, respectively. Cl− channel blockers also induced increases in apical cell volume. The apical 50 μm of untreated pollen tubes had a mean cell volume of 3905 ± 75 μm3. DIDS at 80 μM caused a rapid and lethal cell volume increase to 6206 ± 171 μm3, which is at the point of cell bursting at the apex. DIDS was further demonstrated to disrupt Cl− efflux from the apex, indicating that Cl− flux correlates with pollen tube growth and cell volume status. The signal encoded by inositol 3,4,5,6-tetrakisphosphate [Ins(3,4,5,6)P4] antagonized pollen tube growth, induced cell volume increases, and disrupted Cl− efflux. Ins(3,4,5,6)P4 decreased the mean growth rate by 85%, increased the cell volume to 5997 ± 148 μm3, and disrupted normal Cl− efflux oscillations. These effects were specific for Ins(3,4,5,6)P4 and were not mimicked by either Ins(1,3,4,5)P4 or Ins(1,3,4,5,6)P5. Growth correlation analysis demonstrated that cycles of Cl− efflux were coupled to and temporally in phase with cycles of growth. A role for Cl− flux in the dynamic cellular events during growth is assessed. Differential interference contrast microscopy and kymographic analysis of individual growth cycles revealed that vesicles can advance transiently to within 2 to 4 μm of the apex during the phase of maximally increasing Cl− efflux, which temporally

  6. Range resolved mode mixing in a large volume for the mitigation of speckle and strategic target orientation requirements in active millimeter-wave imaging.

    PubMed

    Patrick, Mark A; Holt, Jennifer A; Joye, Colin D; De Lucia, Frank C

    2015-04-01

    In spite of many reports of active millimeter-wave imaging in the literature, speckle and requirements for cooperative target orientation significantly reduce its practical usefulness. Here we report a new technique, range resolved mode mixing (RRMM), which significantly mitigates both of these issues. It also provides a three-dimensional (3D) image. RRMM accomplishes this by combining multimode illumination (which eliminates the requirement for cooperative target orientation) with range resolution (which provides statistical independence of speckle patterns for averaging and the 3D image). The use of a 5W extended interaction klystron amplifier results in large signal margins in the 50 m scale atrium of the Physics Department at Ohio State University. It appears that there are a number of scenarios out to a range of 1 km for which this approach is useful to provide 3D images, with minimal speckle, and no requirement for cooperative target orientation. PMID:26366774

  7. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume II: Appendices

    SciTech Connect

    Not Available

    1994-02-01

    This part sets forth the regulations for the Industrial Energy conservation Program established under Part E of Title III of the Act. It includes criteria and procedures for the identification of reporting corporations, reporting requirements, criteria and procedures for exemption from filing reports directly with DOE, voluntary industrial energy efficiency improvement targets and voluntary recovered materials utilization targets. The purpose of the program is to promote increased energy conservation by American industry and, as it relates to the use of recovered materials, to conserve valuable energy and scarce natural resources.

  8. State and Local Implementation of the No Child Left Behind Act. Volume VI--Targeting and Uses of Federal Education Funds

    ERIC Educational Resources Information Center

    Chambers, Jay G.; Lam, Irene; Mahitivanichcha, Kanya; Esra, Phil; Shambaugh, Larisa; Stullich, Stephanie

    2009-01-01

    Achieving the goals of federal education legislation depends on how federal funds are distributed and used. Since the enactment of the Elementary and Secondary Education Act (ESEA) in 1965, various federal programs have been created to support educational improvement and target additional resources to meet the educational needs of children who are…

  9. Study for identification of beneficial Uses of Space (BUS). Volume 2: Technical report. Book 3: Development and business analysis of space processed tungsten fox X-ray targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development plans, analysis of required R and D and production resources, the costs of such resources, and finally, the potential profitability of a commercial space processing opportunity for containerless melting and resolidification of tungsten are discussed. The aim is to obtain a form of tungsten which, when fabricated into targets for X-ray tubes, provides at least, a 50 percent increase in service life.

  10. Significant Reduction of Late Toxicities in Patients With Extremity Sarcoma Treated With Image-Guided Radiation Therapy to a Reduced Target Volume: Results of Radiation Therapy Oncology Group RTOG-0630 Trial

    PubMed Central

    Wang, Dian; Zhang, Qiang; Eisenberg, Burton L.; Kane, John M.; Li, X. Allen; Lucas, David; Petersen, Ivy A.; DeLaney, Thomas F.; Freeman, Carolyn R.; Finkelstein, Steven E.; Hitchcock, Ying J.; Bedi, Manpreet; Singh, Anurag K.; Dundas, George; Kirsch, David G.

    2015-01-01

    Purpose We performed a multi-institutional prospective phase II trial to assess late toxicities in patients with extremity soft tissue sarcoma (STS) treated with preoperative image-guided radiation therapy (IGRT) to a reduced target volume. Patients and Methods Patients with extremity STS received IGRT with (cohort A) or without (cohort B) chemotherapy followed by limb-sparing resection. Daily pretreatment images were coregistered with digitally reconstructed radiographs so that the patient position could be adjusted before each treatment. All patients received IGRT to reduced tumor volumes according to strict protocol guidelines. Late toxicities were assessed at 2 years. Results In all, 98 patients were accrued (cohort A, 12; cohort B, 86). Cohort A was closed prematurely because of poor accrual and is not reported. Seventy-nine eligible patients from cohort B form the basis of this report. At a median follow-up of 3.6 years, five patients did not have surgery because of disease progression. There were five local treatment failures, all of which were in field. Of the 57 patients assessed for late toxicities at 2 years, 10.5% experienced at least one grade ≥ 2 toxicity as compared with 37% of patients in the National Cancer Institute of Canada SR2 (CAN-NCIC-SR2: Phase III Randomized Study of Pre- vs Postoperative Radiotherapy in Curable Extremity Soft Tissue Sarcoma) trial receiving preoperative radiation therapy without IGRT (P < .001). Conclusion The significant reduction of late toxicities in patients with extremity STS who were treated with preoperative IGRT and absence of marginal-field recurrences suggest that the target volumes used in the Radiation Therapy Oncology Group RTOG-0630 (A Phase II Trial of Image-Guided Preoperative Radiotherapy for Primary Soft Tissue Sarcomas of the Extremity) study are appropriate for preoperative IGRT for extremity STS. PMID:25667281

  11. Hypervelocity Impact (HVI). Volume 2; WLE Small-Scale Fiberglass Panel Flat Multi-Layer Targets A-1, A-2, and B-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  12. {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Radiotherapy Target Volume Definition in Non-Small-Cell Lung Cancer: Delineation by Radiation Oncologists vs. Joint Outlining With a PET Radiologist?

    SciTech Connect

    Hanna, Gerard G.; Carson, Kathryn J.; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P.; Eakin, Ruth L.; Stewart, David P.; Zatari, Ashraf; O'Sullivan, Joe M.; Hounsell, Alan R.

    2010-11-15

    Purpose: {sup 18}F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. Methods and Materials: RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV{sub CT}) and on fused PET/CT images (GTV{sub PETCT}). The mean percentage volume change (PVC) between GTV{sub CT} and GTV{sub PETCT} for the radiation oncologists and the PVC between GTV{sub CT} and GTV{sub PETCT} for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV{sub CT} and GTV{sub PETCT} in a single measurement. Results: For all patients, a significant difference in PVC from GTV{sub CT} to GTV{sub PETCT} exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV{sub CT} and GTV{sub FUSED} for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Conclusions: Percentage volume changes from GTV{sub CT} to GTV{sub PETCT} were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP.

  13. Magnetic Resonance Imaging Appearances in the Postoperative Breast: The Clinical Target Volume-Tumor and Its Relationship to the Chest Wall

    SciTech Connect

    Whipp, Elisabeth C. Halliwell, Michael

    2008-09-01

    Purpose: To describe and measure the postoperative complexes and their relationship to the chest wall in 100 randomly chosen MRI breast scans, to attempt a better understanding of the changes taking place in the postoperative breast. Methods and Materials: Appearances and measurements of MRI postoperative cavities were analyzed in a cohort of 100 randomly selected patients who underwent a single open MRI scan in the conventional breast radiotherapy treatment position before routine two-dimensional simulation. Results: Magnetic resonance imaging appearances of postoperative cavities seem to differ qualitatively from descriptions of CT and ultrasound cavities in the literature. Rather than being principally homogeneous, heterogeneous cavities were seen in 85%, irregular in 51%. The size of cavity was inversely related to the time elapsed since surgery. Cavities directly touched the chest wall in 53% of cases; 89% lay within 10 mm of the chest wall. Regular, annular concentric rings of differing signal were seen in 32% of cases; such appearances have not been previously described. These patterns suggest that seromas may not shrink entirely as a result of simple serous fluid absorption; instead, new tissue may be being laid down. Because large, regular spheroidal/ellipsoidal cavities with crisp margins may be seromas under pressure, greater target shifts during radiation may need to be anticipated in such cases. Conclusions: Postsurgical cavities in the conserved breast on MRI are commonly heterogeneous, irregular, and lie close to the chest wall. Magnetic resonance imaging studies may help in better understanding the natural history of postoperative cavities.

  14. Evaluation of the Planning Target Volume in the Treatment of Head and Neck Cancer With Intensity-Modulated Radiotherapy: What Is the Appropriate Expansion Margin in the Setting of Daily Image Guidance?

    SciTech Connect

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Donald, Paul J.; Perks, Julian; Purdy, James A.

    2011-11-15

    Purpose: To compare patterns of disease failure among patients treated with intensity-modulated radiotherapy (IMRT) in conjunction with daily image-guided radiotherapy (IGRT) for head and neck cancer, according to the margins used to expand the clinical target volume (CTV) to create a planning target volume (PTV). Methods and Materials: Two-hundred and twenty-five patients were treated with IMRT for squamous cell carcinoma of the head and neck. Daily IGRT scans were acquired using either kilovoltage or megavoltage volumetric imaging prior to each delivered fraction. The first 95 patients were treated with IMRT with 5-mm CTV-to-PTV margins. The subsequent 130 patients were treated using 3-mm PTV expansion margins. Results: Two-year estimates of overall survival, local-regional control, and distant metastasis-free survival were 76%, 78%, and 81%, respectively. There were no differences with respect to any of these endpoints among patients treated with 5-mm and 3-mm PTV expansion margins (p > 0.05, all). The 2-year local-regional control rate for patients treated with IMRT with 5-mm and 3-mm PTV margins was 78% and 78%, respectively (p = 0.96). Spatial evaluation revealed no differences in the incidences of marginal failures among those treated with 5-mm and 3-mm PTV margins. Conclusions: The use of 3-mm PTV expansion margins appears adequate and did not increase local-regional failures among patients treated with IMRT for head and neck cancer. These data demonstrate the safety of PTV reduction of less than 5 mm and support current protocols recommending this approach in the setting of daily IGRT.

  15. Stereotactic Body Radiotherapy for Primary Lung Cancer at a Dose of 50 Gy Total in Five Fractions to the Periphery of the Planning Target Volume Calculated Using a Superposition Algorithm

    SciTech Connect

    Takeda, Atsuya; Sanuki, Naoko; Kunieda, Etsuo Ohashi, Toshio; Oku, Yohei; Takeda, Toshiaki; Shigematsu, Naoyuki; Kubo, Atsushi

    2009-02-01

    Purpose: To retrospectively analyze the clinical outcomes of stereotactic body radiotherapy (SBRT) for patients with Stages 1A and 1B non-small-cell lung cancer. Methods and Materials: We reviewed the records of patients with non-small-cell lung cancer treated with curative intent between Dec 2001 and May 2007. All patients had histopathologically or cytologically confirmed disease, increased levels of tumor markers, and/or positive findings on fluorodeoxyglucose positron emission tomography. Staging studies identified their disease as Stage 1A or 1B. Performance status was 2 or less according to World Health Organization guidelines in all cases. The prescribed dose of 50 Gy total in five fractions, calculated by using a superposition algorithm, was defined for the periphery of the planning target volume. Results: One hundred twenty-one patients underwent SBRT during the study period, and 63 were eligible for this analysis. Thirty-eight patients had Stage 1A (T1N0M0) and 25 had Stage 1B (T2N0M0). Forty-nine patients were not appropriate candidates for surgery because of chronic pulmonary disease. Median follow-up of these 49 patients was 31 months (range, 10-72 months). The 3-year local control, disease-free, and overall survival rates in patients with Stages 1A and 1B were 93% and 96% (p = 0.86), 76% and 77% (p = 0.83), and 90% and 63% (p = 0.09), respectively. No acute toxicity was observed. Grade 2 or higher radiation pneumonitis was experienced by 3 patients, and 1 of them had fatal bacterial pneumonia. Conclusions: The SBRT at 50 Gy total in five fractions to the periphery of the planning target volume calculated by using a superposition algorithm is feasible. High local control rates were achieved for both T2 and T1 tumors.

  16. Volumetric-modulated arc therapy for left-sided breast cancer and all regional nodes improves target volumes coverage and reduces treatment time and doses to the heart and left coronary artery, compared with a field-in-field technique

    PubMed Central

    Tyran, Marguerite; Mailleux, Hugues; Tallet, Agnes; Fau, Pierre; Gonzague, Laurence; Minsat, Mathieu; Moureau-Zabotto, Laurence; Resbeut, Michel

    2015-01-01

    We compared two intensity-modulated radiotherapy techniques for left-sided breast treatment, involving lymph node irradiation including the internal mammary chain. Inverse planned arc-therapy (VMAT) was compared with a forward-planned multi-segment technique with a mono-isocenter (MONOISO). Ten files were planned per technique, delivering a 50-Gy dose to the breast and 46.95 Gy to nodes, within 25 fractions. Comparative endpoints were planning target volume (PTV) coverage, dose to surrounding structures, and treatment delivery time. PTV coverage, homogeneity and conformality were better for two arc VMAT plans; V95%PTV-T was 96% for VMAT vs 89.2% for MONOISO. Homogeneity index (HI)PTV-T was 0.1 and HIPTV-N was 0.1 for VMAT vs 0.6 and 0.5 for MONOISO. Treatment delivery time was reduced by a factor of two using VMAT relative to MONOISO (84 s vs 180 s). High doses to organs at risk were reduced (V30left lung = 14% using VMAT vs 24.4% with MONOISO; dose to 2% of the volume (D2%)heart = 26.1 Gy vs 32 Gy), especially to the left coronary artery (LCA) (D2%LCA = 34.4 Gy vs 40.3 Gy). However, VMAT delivered low doses to a larger volume, including contralateral organs (mean dose [Dmean]right lung = 4 Gy and Dmeanright breast = 3.2 Gy). These were better protected using MONOISO plans (Dmeanright lung = 0.8 Gy and Dmeanright breast = 0.4 Gy). VMAT improved PTV coverage and dose homogeneity, but clinical benefits remain unclear. Decreased dose exposure to the LCA may be clinically relevant. VMAT could be used for complex treatments that are difficult with conventional techniques. Patient age should be considered because of uncertainties concerning secondary malignancies. PMID:26386255

  17. Clinical Validation of Atlas-Based Auto-Segmentation of Multiple Target Volumes and Normal Tissue (Swallowing/Mastication) Structures in the Head and Neck

    SciTech Connect

    Teguh, David N.; Levendag, Peter C.; Voet, Peter W.J.; Al-Mamgani, Abrahim; Han Xiao; Wolf, Theresa K.; Hibbard, Lyndon S.; Nowak, Peter; Akhiat, Hafid; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Hoogeman, Mischa S.

    2011-11-15

    : Multiple-subject ABAS of computed tomography images proved to be a useful novel tool in the rapid delineation of target and normal tissues. Although editing of the autocontours is inevitable, a substantial time reduction was achieved using editing, instead of manual contouring (180 vs. 66 min).

  18. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  19. Time-Adjusted Internal Target Volume: A Novel Approach Focusing on Heterogeneity of Tumor Motion Based on 4-Dimensional Computed Tomography Imaging for Radiation Therapy Planning of Lung Cancer

    SciTech Connect

    Nishibuchi, Ikuno; Kimura, Tomoki; Nakashima, Takeo; Ochi, Yusuke; Takahashi, Ippei; Doi, Yoshiko; Kenjo, Masahiro; Kaneyasu, Yuko; Ozawa, Syuichi; Murakami, Yuji; Wadasaki, Koichi; Nagata, Yasushi

    2014-08-01

    Purpose: To consider nonuniform tumor motion within the internal target volume (ITV) by defining time-adjusted ITV (TTV), a volume designed to include heterogeneity of tumor existence on the basis of 4-dimensional computed tomography (4D-CT). Methods and Materials: We evaluated 30 lung cancer patients. Breath-hold CT (BH-CT) and free-breathing 4D-CT scans were acquired for each patient. The tumors were manually delineated using a lung CT window setting (window, 1600 HU; level, −300 HU). Tumor in BH-CT images was defined as gross tumor volume (GTV), and the sum of tumors in 4D-CT images was defined as ITV-4D. The TTV images were generated from the 4D-CT datasets, and the tumor existence probability within ITV-4D was calculated. We calculated the TTV{sub 80} value, which is the percentage of the volume with a tumor existence probability that exceeded 80% on ITV-4D. Several factors that affected the TTV{sub 80} value, such as the ITV-4D/GTV ratio or tumor centroid deviation, were evaluated. Results: Time-adjusted ITV images were acquired for all patients, and tumor respiratory motion heterogeneity was visualized. The median (range) ITV-4D/GTV ratio and median tumor centroid deviation were 1.6 (1.0-4.1) and 6.3 mm (0.1-30.3 mm), respectively. The median TTV{sub 80} value was 43.3% (2.9-98.7%). Strong correlations were observed between the TTV{sub 80} value and the ITV-4D/GTV ratio (R=−0.71) and tumor centroid deviation (R=−0.72). The TTV images revealed the tumor motion pattern features within ITV. Conclusions: The TTV images reflected nonuniform tumor motion, and they revealed the tumor motion pattern features, suggesting that the TTV concept may facilitate various aspects of radiation therapy planning of lung cancer while incorporating respiratory motion in the future.

  20. Validation of Planning Target Volume Margins by Analyzing Intrafractional Localization Errors for 14 Prostate Cancer Patients Based on Three-Dimensional Cross-Correlation between the Prostate Images of Planning CT and Intrafraction Cone-Beam CT during Volumetric Modulated Arc Therapy

    PubMed Central

    Shiraishi, Kenshiro; Futaguchi, Masahiko; Haga, Akihiro; Sakumi, Akira; Sasaki, Katsutake; Yamamoto, Kentaro; Igaki, Hiroshi; Ohtomo, Kuni; Yoda, Kiyoshi; Nakagawa, Keiichi

    2014-01-01

    Time-averaged intreatment prostate localization errors were calculated, for the first time, by three-dimensional prostate image cross-correlation between planning CT and intrafraction kilovoltage cone-beam CT (CBCT) during volumetric modulated arc therapy (VMAT). The intrafraction CBCT volume was reconstructed by an inhouse software after acquiring cine-mode projection images during VMAT delivery. Subsequently, the margin between a clinical target volume and a planning target volume (PTV) was obtained by applying the van Herk and variant formulas using the calculated localization errors. The resulting PTV margins were approximately 2 mm in lateral direction and 4 mm in craniocaudal and anteroposterior directions, which are consistent with the margin prescription employed in our facility. PMID:24977167

  1. Validation of planning target volume margins by analyzing intrafractional localization errors for 14 prostate cancer patients based on three-dimensional cross-correlation between the prostate images of planning CT and intrafraction cone-beam CT during volumetric modulated arc therapy.

    PubMed

    Shiraishi, Kenshiro; Futaguchi, Masahiko; Haga, Akihiro; Sakumi, Akira; Sasaki, Katsutake; Yamamoto, Kentaro; Igaki, Hiroshi; Ohtomo, Kuni; Yoda, Kiyoshi; Nakagawa, Keiichi

    2014-01-01

    Time-averaged intreatment prostate localization errors were calculated, for the first time, by three-dimensional prostate image cross-correlation between planning CT and intrafraction kilovoltage cone-beam CT (CBCT) during volumetric modulated arc therapy (VMAT). The intrafraction CBCT volume was reconstructed by an inhouse software after acquiring cine-mode projection images during VMAT delivery. Subsequently, the margin between a clinical target volume and a planning target volume (PTV) was obtained by applying the van Herk and variant formulas using the calculated localization errors. The resulting PTV margins were approximately 2 mm in lateral direction and 4 mm in craniocaudal and anteroposterior directions, which are consistent with the margin prescription employed in our facility. PMID:24977167

  2. Patterns of Local-Regional Failure in Completely Resected Stage IIIA(N2) Non-Small Cell Lung Cancer Cases: Implications for Postoperative Radiation Therapy Clinical Target Volume Design

    SciTech Connect

    Feng, Wen; Fu, Xiao-Long; Cai, Xu-Wei; Yang, Huan-Jun; Wu, Kai-Liang; Fan, Min; Xiang, Jia-Qing; Zhang, Ya-Wei; Chen, Hai-Quan

    2014-04-01

    Purpose: To analyze patterns of local-regional failure (LRF) for completely resected stage IIIA(N2) non-small cell lung cancer (NSCLC) patients treated in our hospital and to propose a clinical target volume (CTV) for postoperative radiation therapy (PORT) in these patients. Methods and Materials: From 2005 to 2011, consecutive patients with pT1-3N2 NSCLC who underwent complete resection in our hospital but who did not receive PORT were identified. The patterns of first LRF were assessed and evaluated as to whether these areas would be encompassed by our proposed PORT CTV. Results: With a median follow-up of 24 months, 173 of 250 patients (69.2%) experienced disease recurrence. Of the 54 patients with LRF as the first event, 48 (89%) had recurrence within the proposed PORT CTV, and 6 (11%) had failures occurring both within and outside the proposed CTV (all of which occurred in patients with right-lung cancer). Ninety-three percent of failure sites (104 of 112) would have been contained within the proposed PORT CTV. For left-sided lung cancer, the most common lymph node station failure site was 4R, followed by 7, 4L, 6, 10L, and 5. For right-sided lung cancer, the most common site was station 2R, followed by 10R, 4R, and 7. Conclusions: LRF following complete surgery was an important and potentially preventable pattern of failure in stage IIIA(N2) patients. Ipsilateral superior mediastinal recurrences dominated for right-sided tumors, whereas left-sided tumors frequently involved the bilateral superior mediastinum. Most of the LRF sites would have been covered by the proposed PORT CTV. A prospective investigation of patterns of failure after PORT (following our proposed CTV delineation guideline) is presently underway and will be reported in a separate analysis.

  3. A planning target volume margin formula for hypofractionated intracranial stereotactic radiotherapy under cone beam CT image guidance with a six-degrees-of-freedom robotic couch and a mouthpiece-assisted mask system: a preliminary study

    PubMed Central

    Kunishima, N; Yamamoto, K; Yoda, K

    2014-01-01

    Objective: A planning target volume (PTV) margin formula for hypofractionated intracranial stereotactic radiotherapy (SRT) has been proposed under cone beam CT (CBCT) image guidance with a six-degrees-of-freedom (6-DOF) robotic couch. Methods: CBCT-based registration using a 6-DOF couch reportedly led to negligibly small systematic positioning errors, suggesting that each in-treatment positioning error during the treatment courses for the patients employing this combination was predominantly caused by a random gaussian process. Under this assumption, an anisotropic PTV margin for each axis was formulated based on a gaussian distribution model. 19 patients with intracranial lesions who underwent additional post-treatment CBCT were consecutively selected, to whom stereotactic hypofractionated radiotherapy was delivered by a linear accelerator equipped with a CBCT imager, a 6-DOF couch and a mouthpiece-assisted mask system. Time-averaged patient-positioning errors during treatment were estimated by comparing the post-treatment CBCT with the reference planning CT images. Results: It was suggested that each histogram of the in-treatment positioning error in each axis would approach each single gaussian distribution with a mean of zero. The calculated PTV margins in the x, y and z directions were 0.97, 1.30 and 0.88 mm, respectively. Conclusion: The empirical isotropic PTV margin of 2 mm used in our facility for intracranial SRT was consistent with the margin calculated by the proposed gaussian model. Advances in knowledge: We have proposed a PTV margin formula for hypofractionated intracranial SRT under CBCT image guidance with a 6-DOF robotic couch. PMID:25029296

  4. Quantum volume

    NASA Astrophysics Data System (ADS)

    Ryabov, V. A.

    2015-08-01

    Quantum systems in a mechanical embedding, the breathing mode of a small particles, optomechanical system, etc. are far not the full list of examples in which the volume exhibits quantum behavior. Traditional consideration suggests strain in small systems as a result of a collective movement of particles, rather than the dynamics of the volume as an independent variable. The aim of this work is to show that some problem here might be essentially simplified by introducing periodic boundary conditions. At this case, the volume is considered as the independent dynamical variable driven by the internal pressure. For this purpose, the concept of quantum volume based on Schrödinger’s equation in 𝕋3 manifold is proposed. It is used to explore several 1D model systems: An ensemble of free particles under external pressure, quantum manometer and a quantum breathing mode. In particular, the influence of the pressure of free particle on quantum oscillator is determined. It is shown also that correction to the spectrum of the breathing mode due to internal degrees of freedom is determined by the off-diagonal matrix elements of the quantum stress. The new treatment not using the “force” theorem is proposed for the quantum stress tensor. In the general case of flexible quantum 3D dynamics, quantum deformations of different type might be introduced similarly to monopole mode.

  5. Defining the “Hostile Pelvis” for Intensity Modulated Radiation Therapy: The Impact of Anatomic Variations in Pelvic Dimensions on Dose Delivered to Target Volumes and Organs at Risk in Patients With High-Risk Prostate Cancer Treated With Whole Pelvic Radiation Therapy

    SciTech Connect

    Yirmibeşoğlu Erkal, Eda; Karabey, Sinan; Karabey, Ayşegül; Hayran, Mutlu; Erkal, Haldun Şükrü

    2015-07-15

    Purpose: The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). Methods and Materials: In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to the Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (D{sub min}), maximum dose (D{sub max}), and mean dose (D{sub mean}) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (V{sub D}) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. Results: According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Conclusions: Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT.

  6. Thinkers on Education. Volume 3.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the third volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  7. Thinkers on Education. Volume 1.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the first volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  8. Thinkers on Education. Volume 2.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the second volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  9. Thinkers on Education. Volume 4.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the fourth volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  10. Pragmatics & Language Learning. Volume 12

    ERIC Educational Resources Information Center

    Kasper, Gabriele, Ed.; Nguyen, Hanh thi, Ed.; Yoshimi, Dina Rudolph, Ed.; Yoshioka, Jim K., Ed.

    2010-01-01

    This volume examines the organization of second language and multilingual speakers' talk and pragmatic knowledge across a range of naturalistic and experimental activities. Based on data collected on Danish, English, Hawai'i Creole, Indonesian, and Japanese as target languages, the contributions explore the nexus of pragmatic knowledge,…

  11. Sputter target

    DOEpatents

    Gates, Willard G.; Hale, Gerald J.

    1980-01-01

    The disclosure relates to an improved sputter target for use in the deposition of hard coatings. An exemplary target is given wherein titanium diboride is brazed to a tantalum backing plate using a gold-palladium-nickel braze alloy.

  12. VOLUMNECT: measuring volumes with Kinect

    NASA Astrophysics Data System (ADS)

    Quintino Ferreira, Beatriz; Griné, Miguel; Gameiro, Duarte; Costeira, João. Paulo; Sousa Santos, Beatriz

    2014-03-01

    This article presents a solution to volume measurement object packing using 3D cameras (such as the Microsoft KinectTM). We target application scenarios, such as warehouses or distribution and logistics companies, where it is important to promptly compute package volumes, yet high accuracy is not pivotal. Our application auto- matically detects cuboid objects using the depth camera data and computes their volume and sorting it allowing space optimization. The proposed methodology applies to a point cloud simple computer vision and image processing methods, as connected components, morphological operations and Harris corner detector, producing encouraging results, namely an accuracy in volume measurement of 8mm. Aspects that can be further improved are identified; nevertheless, the current solution is already promising turning out to be cost effective for the envisaged scenarios.

  13. Ways to Environmental Education, Volume 1.

    ERIC Educational Resources Information Center

    Dawson, Joel, Ed.; And Others

    This resource guide is the first of three volumes of environmental education ideas and activities compiled by participants at the Tallahassee Junior Museum for the benefit of other environmental educators. This volume contains ten booklets produced by various community groups to educate their membership or target groups about the environment. The…

  14. Target capture and target ghosts

    NASA Astrophysics Data System (ADS)

    Auerbach, Steven P.

    1996-05-01

    Optimal detection methods for small targets rely on whitened matched filters, which convolve the measured data with the signal model, and whiten the result with the noise covariance. In real-world implementations of such filters, the noise covariance must be estimated from the data, and the resulting covariance estimate may be corrupted by presence of the target. The resulting loss in SNR is called 'target capture'. Target capture is often thought to be a problem only for bright targets. This presentation shows that target capture also arises for dim targets, leading to an SNR loss which is independent of target strength and depends on the averaging method used to estimate the noise covariance. This loss is due to a 'coherent beat' between the true noise and that portion of the estimated noise covariance due to the target. This beat leads to 'ghost targets', which diminish the target SNR by producing a negative target ghost at the target's position. A quantitative estimate of this effect will be given, and shown to agree with numerical results. The effect of averaging on SNR is also discussed for data scenes with synthetic injected targets, in cases where the noise covariance is estimated using 'no target' data. For these cases, it is shown that the so-called 'optimal' filter, which uses the true noise covariance, is actually worse than a 'sub-optimal' filter which estimates the noise from scene. This apparent contradiction is resolved by showing that the optimal filter is best if the same filter is used for many scenes, but is outperformed by a filter adapted to a specific scene.

  15. Direct Volume Rendering of Curvilinear Volumes

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Wilhelms, J.; Challinger, J.; Alper, N.; Ramamoorthy, S.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Direct volume rendering can visualize sampled 3D scalar data as a continuous medium, or extract features. However, it is generally slow. Furthermore, most algorithms for direct volume rendering have assumed rectilinear gridded data. This paper discusses methods for using direct volume rendering when the original volume is curvilinear, i.e. is divided into six-sided cells which are not necessarily equilateral hexahedra. One approach is to ray-cast such volumes directly. An alternative approach is to interpolate the sample volumes to a rectilinear grid, and use this regular volume for rendering. Advantages and disadvantages of the two approaches in terms of speed and image quality are explored.

  16. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  17. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOEpatents

    Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  18. Tackling Targets.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This document is designed to help British training and enterprise councils (TECs) and further education (FE) colleges develop and implement strategies for achieving the National Targets for Education and Training (NTET), which were developed by the Confederation of British Industry in 1992 and endorsed by the British government. The findings from…

  19. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: Quality-assurance implications for target volume and organ-at-risk margination using daily CT-on-rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.

    2016-01-01

    Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151

  20. Target assembly

    DOEpatents

    Lewis, Richard A.

    1980-01-01

    A target for a proton beam which is capable of generating neutrons for absorption in a breeding blanket includes a plurality of solid pins formed of a neutron emissive target material disposed parallel to the path of the beam and which are arranged axially in a plurality of layers so that pins in each layer are offset with respect to pins in all other layers, enough layers being used so that each proton in the beam will strike at least one pin with means being provided to cool the pins. For a 300 mA, 1 GeV beam (300 MW), stainless steel pins, 12 inches long and 0.23 inches in diameter are arranged in triangular array in six layers with one sixth of the pins in each layer, the number of pins being such that the entire cross sectional area of the beam is covered by the pins with minimum overlap of pins.

  1. Multivariate volume rendering

    SciTech Connect

    Crawfis, R.A.

    1996-03-01

    This paper presents a new technique for representing multivalued data sets defined on an integer lattice. It extends the state-of-the-art in volume rendering to include nonhomogeneous volume representations. That is, volume rendering of materials with very fine detail (e.g. translucent granite) within a voxel. Multivariate volume rendering is achieved by introducing controlled amounts of noise within the volume representation. Varying the local amount of noise within the volume is used to represent a separate scalar variable. The technique can also be used in image synthesis to create more realistic clouds and fog.

  2. Accelerator target

    SciTech Connect

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  3. Accelerator target

    DOEpatents

    Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  4. Liquid Hydrogen: Target, Detector

    SciTech Connect

    Mulholland, G.T.; Harigel, G.G.

    2004-06-23

    In 1952 D. Glaser demonstrated that a radioactive source's radiation could boil 135 deg. C superheated-diethyl ether in a 3-mm O glass vessel and recorded bubble track growth on high-speed film in a 2-cm3 chamber. This Bubble Chamber (BC) promised improved particle track time and spatial resolution and cycling rate. Hildebrand and Nagle, U of Chicago, reported Liquid Hydrogen minimum ionizing particle boiling in August 1953. John Wood created the 3.7-cm O Liquid Hydrogen BC at LBL in January 1954. By 1959 the Lawrence Berkley Laboratory (LBL) Alvarez group's '72-inch' BC had tracks in liquid hydrogen. Within 10 years bubble chamber volumes increased by a factor of a million and spread to every laboratory with a substantial high-energy physics program. The BC, particle accelerators and special separated particle beams created a new era of High Energy Physics (HEP) experimentation. The BC became the largest most complex cryogenic installation at the world's HEP laboratories for decades. The invention and worldwide development, deployment and characteristics of these cryogenic dynamic target/detectors and related hydrogen targets are described.

  5. X-ray volume imaging in bladder radiotherapy verification

    SciTech Connect

    Henry, Ann M. . E-mail: amhenry@doctors.net.uk; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-03-15

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology.

  6. Gated viewing for target detection and target recognition

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove K.; Olsson, Hakan; Bolander, Goeran; Groenwall, Christina A.; Letalick, Dietmar

    1999-05-01

    Gated viewing using short pulse lasers and fast cameras offers many new possibilities in imaging compared with passive EO imaging. Among these we note ranging capability, large target-to-background contrast also in low visibility, good penetration capability trough obscurants and vegetation as well as through shadows in buildings, cars, etc. We also note that short wavelength laser systems have better angular resolution than long-wave infrared systems of the same aperture size. This gives an interesting potential of combined IR and laser systems for target detection and classification. Beside military applications civilian applications of gated viewing for search and rescue as well as vehicle enhanced vision and other applications are in progress. This presentation investigates the performance for gated viewing systems during different atmospheric conditions, including obscurants and gives examples of experimental data. The paper also deals with signal processing of gated viewing images for target detection. This is performed in two steps. First, image frames containing information of interest are found. In a second step those frames are investigated further to evaluate if man-made objects are present. In this step a sequence of images (video frames) are set up as a 3-D volume to incorporate spatial information. The object will then be detected using a set of quadrature filters operating on the volume.

  7. LLE Review Quarterly Report (April-June 1985). Volume 23

    SciTech Connect

    Skupsky, S.

    1985-06-01

    This volume of the LLE Review contains articles on the fully UV converted OMEGA laser system, mass-ablation rate experiments, reactor-size target designs, plasma processes in the target corona, degradation in optical performance of dielectric thin films, and the National Laser Users Facility activities for April-June 1985.

  8. Method and apparatus for producing cryogenic targets

    SciTech Connect

    Murphy, J.T.; Miller, J.R.

    1981-08-28

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  9. Method and apparatus for producing cryogenic targets

    DOEpatents

    Murphy, J.T.; Miller, J.R.

    1984-08-07

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

  10. Method and apparatus for producing cryogenic targets

    DOEpatents

    Murphy, James T.; Miller, John R.

    1984-01-01

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  11. THERMAL OSCILLATIONS IN LIQUID HELIUM TARGETS.

    SciTech Connect

    WANG,L.; JIA,L.X.

    2001-07-16

    A liquid helium target for the high-energy physics was built and installed in the proton beam line at the Alternate Gradient Synchrotron of Brookhaven National Laboratory in 2001. The target flask has a liquid volume of 8.25 liters and is made of thin Mylar film. A G-M/J-T cryocooler of five-watts at 4.2K was used to produce liquid helium and refrigerate the target. A thermosyphon circuit for the target was connected to the J-T circuit by a liquid/gas separator. Because of the large heat load to the target and its long transfer lines, thermal oscillations were observed during the system tests. To eliminate the oscillation, a series of tests and analyses were carried out. This paper describes the phenomena and provides the understanding of the thermal oscillations in the target system.

  12. Live ultrasound volume reconstruction using scout scanning

    NASA Astrophysics Data System (ADS)

    Meyer, Amelie; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor

    2015-03-01

    Ultrasound-guided interventions often necessitate scanning of deep-seated anatomical structures that may be hard to visualize. Visualization can be improved using reconstructed 3D ultrasound volumes. High-resolution 3D reconstruction of a large area during clinical interventions is challenging if the region of interest is unknown. We propose a two-stage scanning method allowing the user to perform quick low-resolution scouting followed by high-resolution live volume reconstruction. Scout scanning is accomplished by stacking 2D tracked ultrasound images into a low-resolution volume. Then, within a region of interest defined in the scout scan, live volume reconstruction can be performed by continuous scanning until sufficient image density is achieved. We implemented the workflow as a module of the open-source 3D Slicer application, within the SlicerIGT extension and building on the PLUS toolkit. Scout scanning is performed in a few seconds using 3 mm spacing to allow region of interest definition. Live reconstruction parameters are set to provide good image quality (0.5 mm spacing, hole filling enabled) and feedback is given during live scanning by regularly updated display of the reconstructed volume. Use of scout scanning may allow the physician to identify anatomical structures. Subsequent live volume reconstruction in a region of interest may assist in procedures such as targeting needle interventions or estimating brain shift during surgery.

  13. Unsteady flow volumes

    SciTech Connect

    Becker, B.G.; Lane, D.A.; Max, N.L.

    1995-03-01

    Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

  14. Volume rendering: application in static field conformal radiosurgery

    NASA Astrophysics Data System (ADS)

    Bourland, J. Daniel; Camp, Jon J.; Robb, Richard A.

    1992-09-01

    Lesions in the head which are large or irregularly shaped present challenges for radiosurgical treatment by linear accelerator or other radiosurgery modalities. To treat these lesions we are developing static field, conformal stereotactic radiosurgery. In this procedure seven to eleven megavoltage x-ray beams are aimed at the target volume. Each beam is designed from the beam's-eye view, and has its own unique geometry: gantry angle, table angle, and shape which conforms to the projected cross-section of the target. A difficulty with this and other 3- D treatment plans is the visualization of the treatment geometry and proposed treatment plan. Is the target volume geometrically covered by the arrangement of beams, and is the dose distribution adequate? To answer these questions we have been investigating the use of ANALYZETM volume rendering to display the target anatomy and the resultant dose distribution.

  15. Variable-Volume Container

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Nallette, T. A.; Sansevero, F.

    1989-01-01

    Container holds bed of beads securely while accommodating sizable changes in volume and allowing gases to flow through bed. Developed for air-purifying system in which carbon dioxide is removed by solid amine beads.

  16. Environmental chemistry: Volume A

    SciTech Connect

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  17. Stereometric body volume measurement

    NASA Technical Reports Server (NTRS)

    Herron, R. E.

    1975-01-01

    The following studies are reported: (1) effects of extended space flight on body form of Skylab astronauts using biostereometrics; (2) comparison of body volume determinations using hydrostatic weighing and biostereometrics; and (3) training of technicians in biostereometric principles and procedures.

  18. Free volume under shear.

    PubMed

    Maiti, Moumita; Vinutha, H A; Sastry, Srikanth; Heussinger, Claus

    2015-10-14

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems - particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior. PMID:26472384

  19. Geomagnetism. Volume I

    SciTech Connect

    Jacobs, J.A.

    1987-01-01

    The latest attempt to summarise the wealth of knowledge now available on geomagnetic phenomena has resulted in this multi-volume treatise, with contributions and reviews from many scientists. The first volume in the series contains a thorough review of all existing information on measuring the Earth's magnetic field, both on land and at sea, and includes a comparative analysis of the techniques available for this purpose.

  20. Hypervelocity Impact (HVI). Volume 1; General Introduction

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. This volume contains an executive summary, overview of the method, brief descriptions of all targets, and highlights of results and conclusions.

  1. Automatic detection of sweep-meshable volumes

    DOEpatents

    Tautges; Timothy J. , White; David R.

    2006-05-23

    A method of and software for automatically determining whether a mesh can be generated by sweeping for a representation of a geometric solid comprising: classifying surface mesh schemes for surfaces of the representation locally using surface vertex types; grouping mappable and submappable surfaces of the representation into chains; computing volume edge types for the representation; recursively traversing surfaces of the representation and grouping the surfaces into source, target, and linking surface lists; and checking traversal direction when traversing onto linking surfaces.

  2. Direct volume editing.

    PubMed

    Bürger, Kai; Krüger, Jens; Westermann, Rüdiger

    2008-01-01

    In this work we present basic methodology for interactive volume editing on GPUs, and we demonstrate the use of these methods to achieve a number of different effects. We present fast techniques to modify the appearance and structure of volumetric scalar fields given on Cartesian grids. Similar to 2D circular brushes as used in surface painting we present 3D spherical brushes for intuitive coloring of particular structures in such fields. This paint metaphor is extended to allow the user to change the data itself, and the use of this functionality for interactive structure isolation, hole filling, and artefact removal is demonstrated. Building on previous work in the field we introduce high-resolution selection volumes, which can be seen as a resolution-based focus+context metaphor. By utilizing such volumes we present a novel approach to interactive volume editing at sub-voxel accuracy. Finally, we introduce a fast technique to paste textures onto iso-surfaces in a 3D scalar field. Since the texture resolution is independent of the volume resolution, this technique allows structure-aligned textures containing appearance properties or textual information to be used for volume augmentation and annotation. PMID:18988988

  3. TREATABILITY MANUAL. VOLUME V: SUMMARY

    EPA Science Inventory

    The Treatability Manual presents in five volumes an extensive survey of the effectiveness of various water pollution treatment processes when applied to particular industrial effluents. This volume summarizes volumes one through four and outlines their potential utility to Nation...

  4. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  5. WYSIWYG (What You See is What You Get) volume visualization.

    PubMed

    Guo, Hanqi; Mao, Ningyu; Yuan, Xiaoru

    2011-12-01

    In this paper, we propose a volume visualization system that accepts direct manipulation through a sketch-based What You See Is What You Get (WYSIWYG) approach. Similar to the operations in painting applications for 2D images, in our system, a full set of tools have been developed to enable direct volume rendering manipulation of color, transparency, contrast, brightness, and other optical properties by brushing a few strokes on top of the rendered volume image. To be able to smartly identify the targeted features of the volume, our system matches the sparse sketching input with the clustered features both in image space and volume space. To achieve interactivity, both special algorithms to accelerate the input identification and feature matching have been developed and implemented in our system. Without resorting to tuning transfer function parameters, our proposed system accepts sparse stroke inputs and provides users with intuitive, flexible and effective interaction during volume data exploration and visualization. PMID:22034329

  6. Targeted therapies for cancer

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000902.htm Targeted therapies for cancer To use the sharing features on ... cells so they cannot spread. How Does Targeted Therapy Work? Targeted therapy drugs work in a few ...

  7. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.

    2006-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.

  8. Volume MLS ray casting.

    PubMed

    Ledergerber, Christian; Guennebaud, Gaël; Meyer, Miriah; Bächer, Moritz; Pfister, Hanspeter

    2008-01-01

    The method of Moving Least Squares (MLS) is a popular framework for reconstructing continuous functions from scattered data due to its rich mathematical properties and well-understood theoretical foundations. This paper applies MLS to volume rendering, providing a unified mathematical framework for ray casting of scalar data stored over regular as well as irregular grids. We use the MLS reconstruction to render smooth isosurfaces and to compute accurate derivatives for high-quality shading effects. We also present a novel, adaptive preintegration scheme to improve the efficiency of the ray casting algorithm by reducing the overall number of function evaluations, and an efficient implementation of our framework exploiting modern graphics hardware. The resulting system enables high-quality volume integration and shaded isosurface rendering for regular and irregular volume data. PMID:18988986

  9. Assessing volume status.

    PubMed

    Scott, Michael C; Mallemat, Haney

    2014-11-01

    Shock is a physiologic state associated with high morbidity and mortality rates. The clinician has several tools available to evaluate volume status. Each modality has its benefits and limitations but, to date, no one test can indicate with 100% accuracy which patients will be truly volume responsive. Although the search for the Holy Grail of a perfect intravascular monitor continues, we must remember the importance of early, aggressive, and goal-directed interventions for patients in shock. Finally, there is no substitute for the most important intervention-the frequent presence of the physician at the patient's bedside. PMID:25441036

  10. Aperiodic Volume Optics

    NASA Astrophysics Data System (ADS)

    Gerke, Tim D.

    Presented in this thesis is an investigation into aperiodic volume optical devices. The three main topics of research and discussion are the aperiodic volume optical devices that we call computer-generated volume holograms (CGVH), defects within periodic 3D photonic crystals, and non-periodic, but ordered 3D quasicrystals. The first of these devices, CGVHs, are designed and investigated numerically and experimentally. We study the performance of multi-layered amplitude computer-generated volume holograms in terms of efficiency and angular/frequency selectivity. Simulation results show that such aperiodic devices can increase diffraction efficiency relative to periodic amplitude volume holograms while maintaining angular and wavelength selectivity. CGVHs are also designed as voxelated volumes using a new projection optimization algorithm. They are investigated using a volumetric diffraction simulation and a standard 3D beam propagation technique as well as experimentally. Both simulation and experiment verify that the structures function according to their design. These represent the first diffractive structures that have the capacity for generating arbitrary transmission and reflection wave fronts and that provide the ability for multiplexing arbitrary functionality given different illumination conditions. Also investigated and discussed in this thesis are 3D photonic crystals and quasicrystals. We demonstrate that these devices can be fabricated using a femtosecond laser direct writing system that is particularly appropriate for fabrication of such arbitrary 3D structures. We also show that these devices can provide 3D partial bandgaps which could become complete bandgaps if fabricated using high index materials or by coating lower index materials with high index metals. Our fabrication method is particularly suited to the fabrication of engineered defects within the periodic or quasi-periodic systems. We demonstrate the potential for fabricating defects within

  11. GREEK BASIC COURSE, VOLUME I.

    ERIC Educational Resources Information Center

    OBOLENSKY, SERGE; AND OTHERS

    THE GREEK LANGUAGE DESCRIBED IN VOLUME I OF THIS INTRODUCTORY COURSE FOR ADULTS IS THE "KATHOMILUMENI" VARIETY, THAT OF THE STANDARD SPEECH OF EDUCATED GREEKS. (VOLUME III OF THE COURSE INTRODUCES THE MORE FORMAL KATHAREVUSA VARIETY.) EACH VOLUME OF THE COURSE CONTAINS 25 UNITS PLUS FIVE REVIEW SECTIONS. A TYPICAL UNIT IN VOLUME I CONSISTS OF--(1)…

  12. Transorbital target localization in the porcine model

    NASA Astrophysics Data System (ADS)

    DeLisi, Michael P.; Mawn, Louise A.; Galloway, Robert L.

    2013-03-01

    Current pharmacological therapies for the treatment of chronic optic neuropathies such as glaucoma are often inadequate due to their inability to directly affect the optic nerve and prevent neuron death. While drugs that target the neurons have been developed, existing methods of administration are not capable of delivering an effective dose of medication along the entire length of the nerve. We have developed an image-guided system that utilizes a magnetically tracked flexible endoscope to navigate to the back of the eye and administer therapy directly to the optic nerve. We demonstrate the capabilities of this system with a series of targeted surgical interventions in the orbits of live pigs. Target objects consisted of NMR microspherical bulbs with a volume of 18 μL filled with either water or diluted gadolinium-based contrast, and prepared with either the presence or absence of a visible coloring agent. A total of 6 pigs were placed under general anesthesia and two microspheres of differing color and contrast content were blindly implanted in the fat tissue of each orbit. The pigs were scanned with T1-weighted MRI, image volumes were registered, and the microsphere containing gadolinium contrast was designated as the target. The surgeon was required to navigate the flexible endoscope to the target and identify it by color. For the last three pigs, a 2D/3D registration was performed such that the target's coordinates in the image volume was noted and its location on the video stream was displayed with a crosshair to aid in navigation. The surgeon was able to correctly identify the target by color, with an average intervention time of 20 minutes for the first three pigs and 3 minutes for the last three.

  13. Leadership Abstracts, Volume 10.

    ERIC Educational Resources Information Center

    Milliron, Mark D., Ed.

    1997-01-01

    The abstracts in this series provide brief discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 10 for 1997 contains the following 12 abstracts: (1) "On Community College Renewal" (Nathan L. Hodges and Mark D. Milliron); (2) "The Community College Niche in a…

  14. Liter - Metric Volume.

    ERIC Educational Resources Information Center

    Sisk, Diane

    This autoinstructional program, developed as part of a general science course, is offered for students in the middle schools. Mathematics of fractions and decimals is considered to be prerequisite knowledge. The behavioral objectives are directed toward mastery of determining volumes of solid objects using the water displacement method as well as…

  15. Overview of the Volume

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Emslie, A. G.; Hudson, H. S.

    2011-01-01

    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23.

  16. Volume measuring system

    NASA Technical Reports Server (NTRS)

    Oele, J. S.

    1975-01-01

    Chamber is designed to be airtight; it includes face mask for person to breathe outside air so that he does not disturb chamber environment. Chamber includes piston to vary air volume inside. Also included are two microphone transducers which record pressure information inside chamber.

  17. Navajo Biographies. Volume I.

    ERIC Educational Resources Information Center

    Hoffman, Virginia

    The life stories of eight Navajo ("Dine", their term for themselves) leaders are presented in volume one of this collection of biographies. Interspersed with portraits, drawings, and maps, the narrative chronologically covers the time period from 1766 when the Navajos lived on land under the rule of Spain into the twentieth century and dealings…

  18. Strategic Plan. Volume 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The purpose of this document is to present the strategic plan and associated organizational structure that the National Space Biomedical Research Institute (NSBRI) will utilize to achieve the defined mission and objectives provided by NASA. Much of the information regarding the background and establishment of the NSBRI by NASA has been provided in other documentation and will not be repeated in this Strategic Plan. This Strategic Plan is presented in two volumes. Volume I (this volume) begins with an Introduction (Section 2) that provides the Institute's NASA-defined mission and objectives, and the organizational structure adopted to implement these through three Strategic Programs: Countermeasure Research; Education, Training and Outreach; and Cooperative Research and Development. These programs are described in Sections 3 to 5. Each program is presented in a similar way, using four subsections: Goals and Objectives; Current Strategies; Gaps and Modifications; and Resource Requirements. Section 6 provides the administrative infrastructure and total budget required to implement the Strategic Programs and assures that they form a single cohesive plan. This plan will ensure continued success of the Institute for the next five years. Volume II of the Strategic Plan provides an in-depth analysis of the current and future strategic programs of the 12 current NSBRI teams, including their goals, objectives, mutual interactions and schedules.

  19. VOLUME AND SURFACE AREA.

    ERIC Educational Resources Information Center

    FOLEY, JACK L.

    THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE (1) MEASURING VOLUMES OF RECTANGULAR SOLIDS, RIGHT RECTANGULAR…

  20. Negotiating Salaries, Volume II.

    ERIC Educational Resources Information Center

    Educational Service Bureau, Inc., Washington, DC.

    This volume discusses specific strategy and tactics that can be employed in the effort to reach an agreement on salaries at the bargaining table. Although strategies and situations may vary from case to case, this report focuses on those principles and approaches that are essential to any good bargaining procedure. The discussion covers public vs.…

  1. Negotiating Salaries, Volume I.

    ERIC Educational Resources Information Center

    Educational Service Bureau, Inc., Washington, DC.

    This volume deals with concepts important to the effective negotiation of salaries in public schools. The discussion covers the compensation patterns in education, the goals and pressures affecting reacher negotiators, salaries in relation to other benefits and proposals, extra pay for extra duties and merit pay, and the stance of the negotiators…

  2. Electrically charged targets

    DOEpatents

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  3. Polarized internal target apparatus

    DOEpatents

    Holt, R.J.

    1984-10-10

    A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.

  4. Polarized internal target apparatus

    DOEpatents

    Holt, Roy J.

    1986-01-01

    A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.

  5. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  6. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  7. Human target acquisition performance

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.; Du Bosq, Todd W.; Reynolds, Joseph P.; Thompson, Roger; Aghera, Sameer; Moyer, Steven K.; Flug, Eric; Espinola, Richard; Hixson, Jonathan

    2012-06-01

    The battlefield has shifted from armored vehicles to armed insurgents. Target acquisition (identification, recognition, and detection) range performance involving humans as targets is vital for modern warfare. The acquisition and neutralization of armed insurgents while at the same time minimizing fratricide and civilian casualties is a mounting concern. U.S. Army RDECOM CERDEC NVESD has conducted many experiments involving human targets for infrared and reflective band sensors. The target sets include human activities, hand-held objects, uniforms & armament, and other tactically relevant targets. This paper will define a set of standard task difficulty values for identification and recognition associated with human target acquisition performance.

  8. Target Visualization at the National Ignition Facility

    SciTech Connect

    Potter, Daniel Abraham

    2011-01-01

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

  9. Global bioconversions. Volume 2

    SciTech Connect

    Wise, D.L.

    1987-01-01

    These volumes present the most active bioconversion-based research and development projects worldwide, with an emphasis on the important practical aspects of this work. A major focus of the text is the bioconversion of organic residues to useful products, which also encompasses the field of anaerobic methane fermentation. Chapters from an international perspective are also included, which further address the global importance of bioconversion.

  10. Global bioconversions. Volume 4

    SciTech Connect

    Wise, D.L.

    1987-01-01

    These volumes present the most active bioconversion-based research and development projects worldwide, with an emphasis on the important practical aspects of this work. A major focus of the text is the bioconversion of organic residues to useful products, which also encompasses the field of anaerobic methane fermentation. Chapters from an international perspective are also included, which further address the global importance of bioconversion.

  11. Variable volume calibration apparatus

    SciTech Connect

    Hallman, R.L. Jr.

    1991-01-01

    An apparatus is provided for determining the volume of a closed chamber. The apparatus includes a body having a cylindrical cavity therein including a threaded rear portion and a closed front end, and a piston having a threaded portion which mates with threaded rear portion of the cavity and which reciprocates in the cavity. A gas-impermeable seal, which is carried by the piston in one embodiment, forms a closed chamber in the front end of the cavity. A linear-movement indicator, attached to the rear end of the piston, measures the reciprocating movement of the piston in the cavity, while a pressure sensing device, connected to the front end of the cavity, determines the pressure in the closed system. In use, a vessel, having a volume enclosing experimental materials, is also connected to the front end of the cavity, and pressure and piston movement measurements are made which enable calculation of a volume change in the vessels. The design and operation of this instrument are presented. 7 figs.

  12. Anisotropic Ambient Volume Shading.

    PubMed

    Ament, Marco; Dachsbacher, Carsten

    2016-01-01

    We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745

  13. Research Summary No. 36-6, Volume II. Volume II

    NASA Technical Reports Server (NTRS)

    1961-01-01

    The Research Summary is a bimonthly report of supporting research and development conducted at the Jet Propulsion Laboratory. This periodical is issued in three volumes. Volume I contains summaries of the work accomplished by the Space Sciences, Systems, Guidance and Control, and Telecommunications Divisions of the Laboratory. Volume II contains summaries of the work accomplished by the Physical Sciences, Engineering Mechanics, Engineering Facilities, and Propulsion Divisions. All work of a classified nature is contained in Volume Ill.

  14. Research Summary No. 36-5, Volume II. Volume II

    NASA Technical Reports Server (NTRS)

    1960-01-01

    The Research Summary is a bimonthly report of supporting research and development conducted at the Jet Propulsion Laboratory. This periodical is issued in three volumes. Volume I contains summaries of the work accomplished by the Space Sciences, Systems, Guidance and Control, and Telecommunications Divisions of the Laboratory. Volume II contains summaries of the work accomplished by the Physical Sciences, Engineering Mechanics, Engineering Facilities, and Propulsion Divisions. All work of a classified nature is contained in Volume Ill.

  15. Information architecture. Volume 4: Vision

    SciTech Connect

    1998-03-01

    The Vision document marks the transition from definition to implementation of the Department of Energy (DOE) Information Architecture Program. A description of the possibilities for the future, supported by actual experience with a process model and tool set, points toward implementation options. The directions for future information technology investments are discussed. Practical examples of how technology answers the business and information needs of the organization through coordinated and meshed data, applications, and technology architectures are related. This document is the fourth and final volume in the planned series for defining and exhibiting the DOE information architecture. The targeted scope of this document includes DOE Program Offices, field sites, contractor-operated facilities, and laboratories. This document paints a picture of how, over the next 7 years, technology may be implemented, dramatically improving the ways business is conducted at DOE. While technology is mentioned throughout this document, the vision is not about technology. The vision concerns the transition afforded by technology and the process steps to be completed to ensure alignment with business needs. This goal can be met if those directing the changing business and mission-support processes understand the capabilities afforded by architectural processes.

  16. FLIR target screening

    NASA Technical Reports Server (NTRS)

    Aggarwal, R.

    1982-01-01

    Methods for the segmentation and recognition of individual targets sensed with forward looking infrared detectors are discussed. Particular attention is given to an adaptive multi-scenario target screener.

  17. Plasma sheath driven targets

    NASA Astrophysics Data System (ADS)

    Brownell, J. H.; Freeman, B. L.

    1980-02-01

    Plasma focus driven target implosions are simulated using hydrodynamic-burn codes. Support is given to the idea that the use of a target in a plasma focus should allow 'impedance matching' between the fuel and gun, permitting larger fusion yields from a focus-target geometry than the scaling laws for a conventional plasma focus would predict.

  18. An actionable climate target

    NASA Astrophysics Data System (ADS)

    Geden, Oliver

    2016-05-01

    The Paris Agreement introduced three mitigation targets. In the future, the main focus should not be on temperature targets such as 2 or 1.5 °C, but on the target with the greatest potential to effectively guide policy: net zero emissions.

  19. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  20. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  1. Environmental Report 1996, Volume 2

    SciTech Connect

    Harrach, R.J.

    1996-01-01

    This is Volume 2 of the Lawrence Livermore National Laboratory`s (LLNL`s) annual Environmental Report 1996, prepared for the US Department of Energy. Volume 2 supports Volume 1 summary data and is essentially a detailed data report that provides individual data points, where applicable. Volume 2 includes information on monitoring of air, air effluents, sewerable water, surface water, ground water, soil and sediment, vegetation and foodstuff, environmental radiation, and quality assurance.

  2. Lunar Simple Crater Impact Melt Volumes

    NASA Technical Reports Server (NTRS)

    Plescia, Jeffrey B.; Barnouin, O. S.; Cintala, Mark J.

    2013-01-01

    Impact melt is observed in simple lunar craters having diameters as small as less than 200 m. The presence of ponds of impact melt on the floor of such small craters is interpreted to indicate vertical impacts. Data from the LRO LROC and LOLA experiments allow quantitative estimates of the volume of impact melt in simple crater. Such estimates allow for validation of theoretical models of impact melt generation and examination of target effects. Preliminary data have considerable scatter but are broadly consistent with the models.

  3. BULGARIAN, BASIC COURSE, VOLUME 1.

    ERIC Educational Resources Information Center

    HODGE, CARLETON T.; AND OTHERS

    A BASIC COURSE IN BULGARIAN HAS BEEN PREPARED IN TWO VOLUMES. THIS VOLUME, VOLUME 1, IS DIVIDED INTO THREE PARTS--BASIC SENTENCES, NOTES, AND DRILLS. AN ADDITIONAL PART INCLUDES READING PASSAGES. THE BASIC SENTENCES ARE NORMAL DIALOG MATERIAL, MEANT TO BE MEMORIZED. THE NOTES EXPLAIN THE GRAMMATICAL STRUCTURE OF THE LANGUAGE AND ARE DIVIDED INTO…

  4. Calculus Students' Understanding of Volume

    ERIC Educational Resources Information Center

    Dorko, Allison; Speer, Natasha M.

    2013-01-01

    Researchers have documented difficulties that elementary school students have in understanding volume. Despite its importance in higher mathematics, we know little about college students' understanding of volume. This study investigated calculus students' understanding of volume. Clinical interview transcripts and written responses to volume…

  5. REFLECTION AND REFRACTION, VOLUME 2.

    ERIC Educational Resources Information Center

    KLAUS, DAVID J.; AND OTHERS

    THIS VOLUME 2 OF A TWO-VOLUME SET PROVIDES AUTOINSTRUCTION IN PHYSICS. THE UNITS COVERED IN THIS VOLUME ARE (1) REFLECTION OF LIGHT, (2) PHOTOMETRY, (3) POLARIZATION, (4) REFRACTION OF LIGHT, (5) SNELL'S LAW, (6) LENSES, FOCUS, AND FOCAL POINTS, (7) IMAGE FORMATION, AND (8) ABERRATIONS, THE EYE, AND MAGNIFICATION. THE INTRODUCTION AND UNITS ON…

  6. New volume and inverse volume operators for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Yang, Jinsong; Ma, Yongge

    2016-08-01

    A new alternative volume operator is constructed for loop quantum gravity by using the so-called cotriad operators as building blocks. It is shown that the new volume operator shares the same qualitative properties with the standard volume operator. Moreover, a new alternative inverse volume operator is also constructed in the light of the construction of the alternative volume operator, which is possessed of the same qualitative properties as those of the alternative volume operator. The new inverse volume operator can be employed to construct the Hamiltonian operator of matter fields, which may lead to an anomaly-free on-shell quantum constraint algebra without any special restriction on the regularization procedure for gravity coupled to matter fields.

  7. Strong volume, stable prices

    SciTech Connect

    1993-11-01

    This article is the September-October 1993 market report, providing trading volume and prices in the Uranium market. Activity was brisk, with 15 deals concluded. Six were in the spot concentrates market, with four of the six deals involving U.S. utilities and approximately 1.8M pounds of U3O8 equivalent. There were five conversion deals announced, with four of the five deals involving U.S. utilities. Four deals were concluded in the enrichment market, and the deals involving U.S. utilities were approximately 327k SWUs. On the horizon, there are deals for approximately 4.1M SWU.

  8. Mining volume measurement system

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph Saul (Inventor)

    1988-01-01

    In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.

  9. CASP9 Target Classification

    PubMed Central

    Kinch, Lisa N.; Shi, Shuoyong; Cheng, Hua; Cong, Qian; Pei, Jimin; Mariani, Valerio; Schwede, Torsten; Grishin, Nick V.

    2011-01-01

    The Critical Assessment of Protein Structure Prediction round 9 (CASP9) aimed to evaluate predictions for 129 experimentally determined protein structures. To assess tertiary structure predictions, these target structures were divided into domain-based evaluation units that were then classified into two assessment categories: template based modeling (TBM) and template free modeling (FM). CASP9 targets were split into domains of structurally compact evolutionary modules. For the targets with more than one defined domain, the decision to split structures into domains for evaluation was based on server performance. Target domains were categorized based on their evolutionary relatedness to existing templates as well as their difficulty levels indicated by server performance. Those target domains with sequence-related templates and high server prediction performance were classified as TMB, while those targets without identifiable templates and low server performance were classified as FM. However, using these generalizations for classification resulted in a blurred boundary between CASP9 assessment categories. Thus, the FM category included those domains without sequence detectable templates (25 target domains) as well as some domains with difficult to detect templates whose predictions were as poor as those without templates (5 target domains). Several interesting examples are discussed, including targets with sequence related templates that exhibit unusual structural differences, targets with homologous or analogous structure templates that are not detectable by sequence, and targets with new folds. PMID:21997778

  10. Wake Shield Target Protection

    SciTech Connect

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-05-15

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed.

  11. Higher-dimensional targeting

    SciTech Connect

    Kostelich, E.J. ); Grebogi, C. Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 ); Ott, E. Department of Electrical Engineering, University of Maryland, College Park, Maryland 20742 ); Yorke, J.A. )

    1993-01-01

    This paper describes a procedure to steer rapidly successive iterates of an initial condition on a chaotic attractor to a small target region about any prespecified point on the attractor using only small controlling perturbations. Such a procedure is called targeting.'' Previous work on targeting for chaotic attractors has been in the context of one- and two-dimensional maps. Here it is shown that targeting can also be done in higher-dimensional cases. The method is demonstrated with a mechanical system described by a four-dimensional mapping whose attractor has two positive Lyapunov exponents and a Lyapunov dimension of 2.8. The target is reached by making very small successive changes in a single control parameter. In one typical case, 35 iterates on average are required to reach a target region of diameter 10[sup [minus]4], as compared to roughly 10[sup 11] iterates without the use of the targeting procedure.

  12. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. PMID:23628475

  13. Beginning Competency: Elementary Career Education Guide. Volume 4.

    ERIC Educational Resources Information Center

    Watertown Independent School District 1, SD.

    The Career Development Project formulated this resource lesson guide. The fourth volume is devoted to beginning competence leading to the life-time target of employable skills. After a ten-page introduction to career development, career development rationale and theories, and career clusters, an overview of the lesson guide and rationale and goals…

  14. Self Awareness: Elementary Career Education Guide. Volume 1.

    ERIC Educational Resources Information Center

    Watertown Independent School District 1, SD.

    The Career Development Project formulated this resource lesson guide. The first volume is devoted to self awareness leading to the life-time target of self identity. After a ten-page introduction to career development, career development rationale and theories, and career clusters, an overview of the lesson guides and rationale and goals for self…

  15. LLE Review Quarterly Report (October-December 1984). Volume 21

    SciTech Connect

    Kim, H.

    1984-12-01

    This volume of the LLE Review contains articles on upgrade of the GDL system, theoretical advances in the laser fusion effort, improved target fabrication capabilities, x-ray laser research, developments in the picosecond optics research of the LLE advanced technology program, and on the National Laser Users Facility activities for October-December 1984.

  16. Transparent volume imaging

    NASA Astrophysics Data System (ADS)

    Wixson, Steve E.

    1990-07-01

    Transparent Volume Imaging began with the stereo xray in 1895 and ended for most investigators when radiation safety concerns eliminated the second view. Today, similiar images can be generated by the computer without safety hazards providing improved perception and new means of image quantification. A volumetric workstation is under development based on an operational prototype. The workstation consists of multiple symbolic and numeric processors, binocular stereo color display generator with large image memory and liquid crystal shutter, voice input and output, a 3D pointer that uses projection lenses so that structures in 3 space can be touched directly, 3D hard copy using vectograph and lenticular printing, and presentation facilities using stereo 35mm slide and stereo video tape projection. Volumetric software includes a volume window manager, Mayo Clinic's Analyze program and our Digital Stereo Microscope (DSM) algorithms. The DSM uses stereo xray-like projections, rapidly oscillating motion and focal depth cues such that detail can be studied in the spatial context of the entire set of data. Focal depth cues are generated with a lens and apeture algorithm that generates a plane of sharp focus, and multiple stereo pairs each with a different plane of sharp focus are generated and stored in the large memory for interactive selection using a physical or symbolic depth selector. More recent work is studying non-linear focussing. Psychophysical studies are underway to understand how people perce ive images on a volumetric display and how accurately 3 dimensional structures can be quantitated from these displays.

  17. Environmental report 1995. Volume 2

    SciTech Connect

    Harrach, R.J.; Failor, R.A.; Gallegos, G.M.

    1996-09-01

    This is Volume 2 of the Lawrence Livermore National Laboratory`s (LLNL`s) annual Environmental Report 1995. This volume is intended to support summary data from Volume 1 and is essentially a detailed data report that provides additional data points, where applicable. Some summary data are also included in Volume 2, and more detailed accounts are given of sample collection and analytical methods. Volume 2 includes information in eight chapters on monitoring of air, air effluent, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation, as well as three chapters on ground water protection, compliance self-monitoring and quality assurance.

  18. LLE Review Quarterly Report (July-September 1984). Volume 20

    SciTech Connect

    Iwan, L.

    1984-09-01

    This volume of the LLE Review contains articles on the activities in the GDL and OMEGA laser facilities, some design changes to be implemented on the OMEGA laser, techniques for estimating UV target-irradiation uniformity, progress in fabricating polymer-shell targets, refined estimates of thermal electron transport in IR-irradiated targets, a program to develop a surgical instrument to excise arterial blockages with a laser, a new damage criterion for optical coatings, and NI-UF activities for July-September 1984.

  19. Effects of perioperative fasting on haemodynamics and intravascular volumes.

    PubMed

    Jacob, Matthias; Chappell, Daniel

    2012-12-01

    Maintaining cardiac preload throughout the perioperative period is a generally accepted target. As perioperative fasting is believed to cause intravascular hypovolaemia it traditionally triggers aggressive preemptive intravenous fluid infusion. Physiology suggests that extracellular losses via urinary output and evaporation decrease the extracellular compartment. Representing a relevant part of the latter, the intravascular space is also affected, even without blood loss. Measurements in humans, however, have revealed that even a prolonged fasting period does not decrease absolute blood volume. Beyond that, modern fasting guidelines recommend to refrain from clear liquids only two hours prior to surgery. Nevertheless, an intravenous colloid challenge can increase stroke volume after induction of anaesthesia in the majority of surgical patients. While perioperative stroke volume maximisation in high-risk surgery probably improves outcome, the implication of this observation for the routine patient remains unclear. It appears as though there are two important targets to preserve cardiac preload: normovolaemia and vasotension. PMID:23351229

  20. Role of target geometry in phagocytosis

    PubMed Central

    Champion, Julie A.; Mitragotri, Samir

    2006-01-01

    Phagocytosis is a principal component of the body’s innate immunity in which macrophages internalize targets in an actin-dependent manner. Targets vary widely in shape and size and include particles such as pathogens and senescent cells. Despite considerable progress in understanding this complicated process, the role of target geometry in phagocytosis has remained elusive. Previous studies on phagocytosis have been performed using spherical targets, thereby overlooking the role of particle shape. Using polystyrene particles of various sizes and shapes, we studied phagocytosis by alveolar macrophages. We report a surprising finding that particle shape, not size, plays a dominant role in phagocytosis. All shapes were capable of initiating phagocytosis in at least one orientation. However, the local particle shape, measured by tangent angles, at the point of initial contact dictates whether macrophages initiate phagocytosis or simply spread on particles. The local shape determines the complexity of the actin structure that must be created to initiate phagocytosis and allow the membrane to move over the particle. Failure to create the required actin structure results in simple spreading and not internalization. Particle size primarily impacts the completion of phagocytosis in cases where particle volume exceeds the cell volume. PMID:16549762

  1. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  2. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  3. Soot Volume Fraction Imaging

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1994-01-01

    A new technique is described for the full-field determination of soot volume fractions via laser extinction measurements. This technique differs from previously reported point-wise methods in that a two-dimensional array (i.e., image) of data is acquired simultaneously. In this fashion, the net data rate is increased, allowing the study of time-dependent phenomena and the investigation of spatial and temporal correlations. A telecentric imaging configuration is employed to provide depth-invariant magnification and to permit the specification of the collection angle for scattered light. To improve the threshold measurement sensitivity, a method is employed to suppress undesirable coherent imaging effects. A discussion of the tomographic inversion process is provided, including the results obtained from numerical simulation. Results obtained with this method from an ethylene diffusion flame are shown to be in close agreement with those previously obtained by sequential point-wise interrogation.

  4. Infrared target array development

    NASA Astrophysics Data System (ADS)

    Scott, E. A.

    1980-04-01

    The US Army Yuma Proving Ground (USAYPG) was requested to develop and acquire a series of infrared targets with controllable thermal signatures to support the test and evaluation of the Target Acquisition Designation System/Pilot Night Vision System (TADS/PNVS) subsystems of the Advanced Attack Helicopter (AAH) Fire Control System. Prior to this development effort, no capability beyond the use of real-scene targets existed at USAYPG to provide thermally active targets with characteristic signatures in the infrared band. Three targets were acquired: (1) a detection target; (2) a recognition target; and (3) a laser scoring board. It is concluded that design goals were met and the system was delivered in time to perform its function. The system provides sufficient thermal realism and has advanced the state-of-the-art of infrared imaging system test and evaluation. It is recommended that the Field Equivalent Bar Target (FEBT) system be validated as a potential test standard and that environmentally 'hardened' targets be acquired for continued thermal sight testing.

  5. Targeting the tumor microenvironment

    SciTech Connect

    Kenny, P.A.; Lee, G.Y.; Bissell, M.J.

    2006-11-07

    Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the 'druggable' targets and processes within the tumor microenvironment and review the approaches being taken to disrupt these interactions.

  6. Raytracing and Direct-Drive Targets

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Bates, Jason; Fyfe, David; Eimerl, David

    2013-10-01

    Accurate simulation of the effects of laser imprinting and drive asymmetries in directly driven targets requires the ability to distinguish between raytrace noise and the intensity structure produced by the spatial and temporal incoherence of optical smoothing. We have developed and implemented a smoother raytrace algorithm for our mpi-parallel radiation hydrodynamics code, FAST3D. The underlying approach is to connect the rays into either sheets (in 2D) or volume-enclosing chunks (in 3D) so that the absorbed energy distribution continuously covers the propagation area illuminated by the laser. We will describe the status and show the different scalings encountered in 2D and 3D problems as the computational size, parallelization strategy, and number of rays is varied. Finally, we show results using the method in current NIKE experimental target simulations and in proposed symmetric and polar direct-drive target designs. Supported by US DoE/NNSA.

  7. Optimal target VOI size for accurate 4D coregistration of DCE-MRI

    NASA Astrophysics Data System (ADS)

    Park, Brian; Mikheev, Artem; Zaim Wadghiri, Youssef; Bertrand, Anne; Novikov, Dmitry; Chandarana, Hersh; Rusinek, Henry

    2016-03-01

    Dynamic contrast enhanced (DCE) MRI has emerged as a reliable and diagnostically useful functional imaging technique. DCE protocol typically lasts 3-15 minutes and results in a time series of N volumes. For automated analysis, it is important that volumes acquired at different times be spatially coregistered. We have recently introduced a novel 4D, or volume time series, coregistration tool based on a user-specified target volume of interest (VOI). However, the relationship between coregistration accuracy and target VOI size has not been investigated. In this study, coregistration accuracy was quantitatively measured using various sized target VOIs. Coregistration of 10 DCE-MRI mouse head image sets were performed with various sized VOIs targeting the mouse brain. Accuracy was quantified by measures based on the union and standard deviation of the coregistered volume time series. Coregistration accuracy was determined to improve rapidly as the size of the VOI increased and approached the approximate volume of the target (mouse brain). Further inflation of the VOI beyond the volume of the target (mouse brain) only marginally improved coregistration accuracy. The CPU time needed to accomplish coregistration is a linear function of N that varied gradually with VOI size. From the results of this study, we recommend the optimal size of the VOI to be slightly overinclusive, approximately by 5 voxels, of the target for computationally efficient and accurate coregistration.

  8. Prehospital tidal volume influences hospital tidal volume: A cohort study

    PubMed Central

    Stoltze, Andrew J.; Wong, Terrence S.; Harland, Karisa K.; Ahmed, Azeemuddin; Fuller, Brian M.; Mohr, Nicholas M.

    2015-01-01

    Purpose To describe current practice of ventilation in a modern air medical system, and to measure the association of ventilation strategy with subsequent ventilator care and acute respiratory distress syndrome (ARDS). Materials and Methods Retrospective observational cohort study of intubated adult patients (n=235) transported by a university-affiliated air medical transport service to a 711-bed tertiary academic center between July 2011 and May 2013. Low tidal volume ventilation was defined as tidal volumes ≤ 8 mL/kg predicted body weight (PBW). Multivariable regression was used to measure the association between prehospital tidal volume, hospital ventilation strategy, and ARDS. Results Most patients (57%) were ventilated solely with bag-valve ventilation during transport. Mean tidal volume of mechanically ventilated patients was 8.6 mL/kg PBW (SD 0.2 mL/kg). Low tidal volume ventilation was used in 13% of patients. Patients receiving low tidal volume ventilation during air medical transport were more likely to receive low tidal volume ventilation in the emergency department (p < 0.001) and intensive care unit (p = 0.015). ARDS was not associated with pre-hospital tidal volume (p = 0.840). Conclusions Low tidal volume ventilation was rare during air medical transport. Air transport ventilation strategy influenced subsequent ventilation, but was not associated with ARDS. PMID:25813548

  9. A targeted controlled force injection of genetic material in vivo

    PubMed Central

    Ahlén, Gustaf; Frelin, Lars; Holmström, Fredrik; Smetham, Grant; Augustyn, Steve; Sällberg, Matti

    2016-01-01

    A general limitation in gene delivery is the cellular uptake in lager animals including humans. Several approaches have been tested including liposomes, micro-needles, in vivo electro-transfer, ballistic delivery, and needle-free delivery. All these techniques have individual limitations. One approach reproducibly delivering genetic material in muscle tissue in nonhuman primates is hydrodynamic injection, a forced injection of a volume equaling the volume of the tissue to be transfected thereby causing an increased local pressure resulting in an improved uptake of genetic material. We transferred the principle of hydrodynamic injection to a device, where a small injection volume can be delivered to a targeted tissue volume, termed in vivo intracellular injection (IVIN). The device is based on needle(s) with apertures along the needle shafts, where multiple needles can fix the tissue volume to be transfected. The apertures direct the injection from a central needle outward or inward to the centroid of a geometric arrangement thereby targeting the tissue to be transfected. With a controlled force, this results in a targeted injection with increased transfection efficiency. We here show that the IVIN technology reproducibly improved plasmid uptake and expression and the immunogenicity. The IVIN technology can be generally applied to a targeted delivery of genetic materials. PMID:27069951

  10. Information Consumption by Low Income Families to Reduce Rural Poverty in Florida. Volume I, Research Instruments.

    ERIC Educational Resources Information Center

    Dhillon, Jogindar S.

    Volume I of this 4-volume report contains the research instruments used in an 18-month project which was designed to understand the rural poor in terms of their information-seeking and information-utilization behavior patterns. Randomly divided into 3 groups, 840 families from 7 target counties in northwestern Florida were studied by a group of…

  11. Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and Reference Document

    SciTech Connect

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1994-12-22

    The Compliance Plan Volume provides overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) and contains procedures to establish milestones to be enforced under the Order. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume and is provided for informational purposes only.

  12. Limitations of the planning organ at risk volume (PRV) concept

    SciTech Connect

    Stroom, Joep C. . E-mail: j.stroom@nki.nl; Heijmen, Ben J.M.

    2006-09-01

    Purpose: Previously, we determined a planning target volume (PTV) margin recipe for geometrical errors in radiotherapy equal to M{sub T} = 2{sigma} + 0.7{sigma}, with {sigma} and {sigma} standard deviations describing systematic and random errors, respectively. In this paper, we investigated margins for organs at risk (OAR), yielding the so-called planning organ at risk volume (PRV). Methods and Materials: For critical organs with a maximum dose (D{sub max}) constraint, we calculated margins such that D{sub max} in the PRV is equal to the motion averaged D{sub max} in the (moving) clinical target volume (CTV). We studied margins for the spinal cord in 10 head-and-neck cases and 10 lung cases, each with two different clinical plans. For critical organs with a dose-volume constraint, we also investigated whether a margin recipe was feasible. Results: For the 20 spinal cords considered, the average margin recipe found was: M{sub R} = 1.6{sigma} + 0.2{sigma} with variations for systematic and random errors of 1.2{sigma} to 1.8{sigma} and -0.2{sigma} to 0.6{sigma}, respectively. The variations were due to differences in shape and position of the dose distributions with respect to the cords. The recipe also depended significantly on the volume definition of D{sub max}. For critical organs with a dose-volume constraint, the PRV concept appears even less useful because a margin around, e.g., the rectum changes the volume in such a manner that dose-volume constraints stop making sense. Conclusion: The concept of PRV for planning of radiotherapy is of limited use. Therefore, alternative ways should be developed to include geometric uncertainties of OARs in radiotherapy planning.

  13. Volume Rendering of Heliospheric Data

    NASA Astrophysics Data System (ADS)

    Hick, P. P.; Jackson, B. V.; Bailey, M. J.; Buffington, A.

    2001-12-01

    We demonstrate some of the techniques we currently use for the visualization of heliospheric volume data. Our 3D volume data usually are derived from tomographic reconstructions of the solar wind density and velocity from remote sensing observations (e.g., Thomson scattering and interplanetary scintillation observations). We show examples of hardware-based volume rendering using the Volume Pro PCI board (from TeraRecon, Inc.). This board updates the display at a rate of up to 30 frames per second using a parallel projection algorithm, allowing the manipulation of volume data in real-time. In addition, the manipulation of 4D volume data (the 4th dimension usually representing time) enables the visualization in real-time of an evolving (time-dependent) data set. We also show examples of perspective projections using IDL. This work was supported through NASA grant NAG5-9423.

  14. Target visibility for multiple maneuvering target tracking

    NASA Astrophysics Data System (ADS)

    Sabordo, Madeleine G.; Aboutanios, Elias

    2015-05-01

    We present a recursion of the probability of target visibility and its applications to analysis of track life and termination in the context of Global Nearest Neighbour (GNN) approach and Probability Hypothesis Density (PHD) filter. In the presence of uncertainties brought about by clutter; decisions to retain a track, terminate it or initialise a new track are based on probability, rather than on distance criterion or estimation error. The visibility concept is introduced into a conventional data-association-oriented multitarget tracker, the GNN; and a random finite set based-tracker, the PHD filter, to take into account instances when targets become invisible or occluded by obstacles. We employ the natural logarithmof the Dynamic Error Spectrum to assess the performance of the trackers with and without probability of visibility incorporated. Simulation results show that the performance of the GNN tracker with visibility concept incorporated is significantly enhanced.

  15. Moving target exploitation

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce L.; Grayson, Timothy P.

    1998-08-01

    The understanding of maneuvering forces is invaluable to the warfighter, as it enhances understanding of enemy force structure and disposition, provides cues to potential enemy actions, and expedites targeting of time critical targets. Airborne ground moving target indicator (GMTI) radars are a class of highly-effective, all-weather, wide-area senors that aid in the surveillance of these moving ground vehicles. Unfortunately conventional GMTI radars are incapable of identifying individual vehicles, and techniques for exploiting information imbedded within GMTI radar reports are limited. The Defense Advanced Research Projects Agency (DARPA) Moving Target Exploitation (MTE) program is working to mitigate these deficiencies by developing, integrating, and evaluating a suite of automated and semi-automated technologies to classify moving targets and units, and to provide indications of their activities. These techniques include: aid in the interpretation of GMTI data to provide moving force structure analysis, automatic tracking of thousands of moving ground vehicles, 1-D target classification based upon high-range- resolution (HRR) radar profiles, and 2-D target classification based upon moving target imaging (MTIm) synthetic aperture radar (SAR). This paper shall present the MTE concept and motivation and provide an overview of results to date.

  16. Segmented Target Design

    NASA Astrophysics Data System (ADS)

    Merhi, Abdul Rahman; Frank, Nathan; Gueye, Paul; Thoennessen, Michael; MoNA Collaboration

    2013-10-01

    A proposed segmented target would improve decay energy measurements of neutron-unbound nuclei. Experiments like this have been performed at the National Superconducting Cyclotron Laboratory (NSCL) located at Michigan State University. Many different nuclei are produced in such experiments, some of which immediately decay into a charged particle and neutron. The charged particles are bent by a large magnet and measured by a suite of charged particle detectors. The neutrons are measured by the Modular Neutron Array (MoNA) and Large Multi-Institutional Scintillation Array (LISA). With the current target setup, a nucleus in a neutron-unbound state is produced with a radioactive beam impinged upon a beryllium target. The resolution of these measurements is very dependent on the target thickness since the nuclear interaction point is unknown. In a segmented target using alternating layers of silicon detectors and Be-targets, the Be-target in which the nuclear reaction takes place would be determined. Thus the experimental resolution would improve. This poster will describe the improvement over the current target along with the status of the design. Work supported by Augustana College and the National Science Foundation grant #0969173.

  17. Knowing Your Learning Target

    ERIC Educational Resources Information Center

    Moss, Connie M.; Brookhart, Susan M.; Long, Beverly A.

    2011-01-01

    No matter what we decide students need to learn, not much will happen until students understand what they are supposed to learn during a lesson and set their sights on learning it. Crafting learning targets for each lesson and deliberately sharing them with students is one way to give students the direction they need. Targets that tell students…

  18. Retained gas sampler interface volume

    SciTech Connect

    Cannon, N.S.

    1997-10-01

    The maximum Retained Gas Sampler (RGS) interface volume was determined; this volume can trap contamination gases during the sampling process. A new technique (helium backfill) for eliminating contamination gases from the RGS sampler interface volume is described, and verification testing reported. Also demonstrated was that RGS data obtained prior to the introduction of the new helium backfill technique can be compensated for air contamination using the measured oxygen concentration and normal air composition.

  19. Electromagnetic Theory 3 Volume Set

    NASA Astrophysics Data System (ADS)

    Heaviside, Oliver

    2011-09-01

    Volume 1: Preface; 1. Introduction; 2. Outline of the electromagnetic connections; 3. The elements of vectorial algebra and analysis; 4. Theory of plane electromagnetic waves; Appendix. Volume 2: Preface; 5. Mathematics and the age of the earth; 6. Pure diffusion of electric displacement; 7. Electromagnetic waves and generalised differentiation; 8. Generalised differentiation and divergent series; Appendix. Volume 3: 9. Waves from moving sources; 10. Waves in the ether.

  20. Twisted mass finite volume effects

    SciTech Connect

    Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.

    2010-08-01

    We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

  1. The physics of volume rendering

    NASA Astrophysics Data System (ADS)

    Peters, Thomas

    2014-11-01

    Radiation transfer is an important topic in several physical disciplines, probably most prominently in astrophysics. Computer scientists use radiation transfer, among other things, for the visualization of complex data sets with direct volume rendering. In this article, I point out the connection between physical radiation transfer and volume rendering, and I describe an implementation of direct volume rendering in the astrophysical radiation transfer code RADMC-3D. I show examples for the use of this module on analytical models and simulation data.

  2. Heliophysics 3 Volume Set

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-11-01

    Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliūnas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliūnas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight 358 Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun

  3. Advanced Targeted Nanomedicine

    PubMed Central

    Arachchige, Mohan C M; Reshetnyak, Yana K.; Andreev, Oleg A.

    2015-01-01

    Targeted drug delivery has been the major topic in drug formulation and delivery. As nanomedicine emerges to create nano scale therapeutics and diagnostics, it is still essential to embed targeting capability to these novel systems to make them useful. Here we discuss various targeting approaches for delivery of therapeutic and diagnostic nano materials in view of search for more universal methods to target diseased tissues. Many diseases are accompanied with hypoxia and acidosis. Coating nanoparticles with pH Low Insertion Peptides (pHLIPs) increases efficiency of targeting acidic diseased tissues. It has been showing promising results to create future nanotheranostics for cancer and other diseases which are dominating in the present world. PMID:25615945

  4. Direct volume estimation without segmentation

    NASA Astrophysics Data System (ADS)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  5. Multiple local minima in radiotherapy optimization problems with dose-volume constraints.

    PubMed

    Deasy, J O

    1997-07-01

    The cause of multiple local minima in beam weight optimization problems subject to dose-volume constraints is analyzed. Three objective functions were considered: (a) maximization of tumor control probability (TCP), (b) maximization of the minimum target dose, and (c) minimization of the mean-squared-deviation of the target dose from the prescription dose. It is shown that: (a) TCP models generally result in strongly quasiconvex objective functions; (b) maximization of the minimum target dose results in a strongly quasiconvex objective function; and (c) minimizing the root-mean-square dose deviation results in a convex objective function. Dose-volume constraints are considered such that, for each region at risk (RAR), the volume of tissue whose dose exceeds a certain tolerance dose (DTol) is kept equal to or below a given fractional level (VTol). If all RARs lack a "volume effect" (i.e., VTol = 0 for all RARs) then there is a single local minimum. But if volume effects are present, then the feasible space is possibly nonconvex and therefore possibly leads to multiple local minima. These conclusions hold for all three objective functions. Hence, possible local minima come not from the nonlinear nature of the objective functions considered, but from the "either this volume or that volume but not both" nature of the volume effect. These observations imply that optimization algorithms for dose-volume constraint types of problems should have effective strategies for dealing with multiple local minima. PMID:9243478

  6. SU-E-J-79: Internal Tumor Volume Motion and Volume Size Assessment Using 4D CT Lung Data

    SciTech Connect

    Jurkovic, I; Stathakis, S; Li, Y; Patel, A; Vincent, J; Papanikolaou, N; Mavroidis, P

    2014-06-01

    Purpose: To assess internal tumor volume change through breathing cycle and associated tumor motion using the 4DCT data. Methods: Respiration induced volume change through breathing cycle and associated motion was analyzed for nine patients that were scanned during the different respiratory phases. The examined datasets were the maximum and average intensity projections (MIP and AIP) and the 10 phases of the respiratory cycle. The internal target volume (ITV) was delineated on each of the phases and the planning target volume (PTV) was then created by adding setup margins to the ITV. Tumor motion through the phases was assessed using the acquired 4DCT dataset, which was then used to determine if the margins used for the ITV creation successfully encompassed the tumor in three dimensions. Results: Results showed that GTV motion along the superior inferior axes was the largest in all the cases independent of the tumor location and/or size or the use of abdomen compression. The extent of the tumor motion was found to be connected with the size of the GTV. The smallest GTVs exhibited largest motion vector independent of the tumor location. The motion vector size varied through the phases depending on the tumor size and location and it was smallest for phases 20 and 30. The smaller the volume of the delineated GTV, the greater its volume difference through the different respiratory phases was. The average GTV volume change was largest for the phases 60 and 70. Conclusion: Even if GTV is delineated using both AIP and MIP datasets, its motion extent will exceed the used margins especially for the very small GTV volumes. When the GTV size is less than 10 cc it is recommended to use fusion of the GTVs through all the phases to create the planning ITV.

  7. Reduced cardiac volumes in chronic fatigue syndrome associate with plasma volume but not length of disease: a cohort study

    PubMed Central

    Newton, Julia L; Finkelmeyer, Andreas; Petrides, George; Frith, James; Hodgson, Tim; Maclachlan, Laura; MacGowan, Guy; Blamire, Andrew M

    2016-01-01

    Objectives To explore potential mechanisms that underpin the cardiac abnormalities seen in chronic fatigue syndrome (CFS) using non-invasive cardiac impedance, red cell mass and plasma volume measurements. Methods Cardiac MR (MR) examinations were performed using 3 T Philips Intera Achieva scanner (Best, NL) in participants with CFS (Fukuda; n=47) and matched case-by-case controls. Total volume (TV), red cell volume (RCV) and plasma volume (PV) measurements were performed (41 CFS and 10 controls) using the indicator dilution technique using simultaneous 51-chromium labelling of red blood cells and 125-iodine labelling of serum albumin. Results The CFS group length of history (mean±SD) was 14±10 years. Patients with CFS had significantly reduced end-systolic and end-diastolic volumes together with reduced end-diastolic wall masses (all p<0.0001). Mean±SD RCV was 1565±443 mL with 26/41 (63%) having values below 95% of expected. PV was 2659±529 mL with 13/41 (32%) <95% expected. There were strong positive correlations between TV, RCV and PV and cardiac end-diastolic wall mass (all p<0.0001; r2=0.5). Increasing fatigue severity correlated negatively with lower PV (p=0.04; r2=0.2). There were no relationships between any MR or volume measurements and length of history, suggesting that deconditioning was unlikely to be the cause of these abnormalities. Conclusions This study confirms an association between reduced cardiac volumes and blood volume in CFS. Lack of relationship between length of disease, cardiac and plasma volumes suggests findings are not secondary to deconditioning. The relationship between plasma volume and severity of fatigue symptoms suggests a potential therapeutic target in CFS. PMID:27403329

  8. Assessing the optimal liquid volume to be sprayed on isolated olive trees according to their canopy volumes.

    PubMed

    Miranda-Fuentes, A; Llorens, J; Rodríguez-Lizana, A; Cuenca, A; Gil, E; Blanco-Roldán, G L; Gil-Ribes, J A

    2016-10-15

    The application of pesticides to traditional and intensive olive orchards in Southern Spain has led to environmental problems. More specifically, the lack of an accurate, useful criterion to regulate the spray volume in relation to canopy characteristics has led to spray drift and runoff, which are threats to local ecosystems. The aim of this study was to determine the optimal relationship between canopy volume and the spray application volume, called specific spray volume, CV, through laboratory and field trials. In the laboratory trial, 6 specific spray volumes (0.05, 0.08, 0.10, 0.12, 0.15, and 0.20Lm(-3)) were tested in a specially designed structure containing small, live olive trees in order to simulate an intensive plantation system. The model aimed to evaluate the coverage of pesticide application on water sensitive paper (WSP) collectors. In the field trial, the three laboratory specific spray volumes that gave the best coverage values were tested on live, intensively managed trees, whose crown volume was manually measured. Food dye E-102 was used to determine the spray deposition on artificial targets (10×10cm absorbent paper pieces), and WSP was used to evaluate spray coverage. The spray penetration and deposit homogeneity inside the canopy were also evaluated. Weather conditions during the field trial were monitored with a weather station. The results of the laboratory trial showed that the three best specific spray volumes were 0.08, 0.10, and 0.12Lm(-3), resulting in mean coverage values of approximately 30%. The ANOVA of the field trial results showed that the 0.12Lm(-3) was the optimal specific spray volume for isolated olive trees. This specific spray volume gave the highest mean deposits, the best efficiency (as measured by the greatest normalized deposit), the most favourable penetration and homogeneity, and the highest coverage values. PMID:27300563

  9. Healthy People 2010: Conference Edition, Volume I [and] Volume II.

    ERIC Educational Resources Information Center

    Department of Health and Human Services, Washington, DC.

    This document contains the two volumes of the Conference Edition of Healthy People 2010, a comprehensive, nationwide health promotion and disease prevention agenda. The first section of Volume I, "Healthy People 2010: Understanding and Improving Health," includes "Introduction,""Leading Health Indicators," and "Bibliography. The second section,…

  10. The Occupational Thesaurus: Volume 1 and Volume 2.

    ERIC Educational Resources Information Center

    Teal, Everett A.

    Presented in two volumes, the job guide handbook can be used by high school and college counselors, students, recruiters for business and industry, and parents in determining areas of employment which are compatible with a student's or potential employee's interests, abilities, and preparation. Volume 1 lists job areas for students majoring in…

  11. Multilayer volume microwave filters

    NASA Astrophysics Data System (ADS)

    Gvozdev, V. I.; Smirnov, S. V.; Chernushenko, A. M.

    1985-09-01

    Multilayer volume microwave filters are particularly suitable for miniaturization of radioelectronic devices by way of circuit integration, the principal advantage over planar filters being the much higher Q-factor; Q sub 0 or = 10 to the 3rd power as compared with Q sub 0 or = 10 to the 2nd power. Their metal-dielectric structure forms an array of coupled half-wavelength resonators electrically symmetric with respect to the center layer, coupling being effected by a magnetic field normal to the plane of resonators. The structure consists of an asymmetric strip line with conductor at the input end, followed by a metal layer with cut out symmetric slot line, a dielectric layer, a symmetric strip line with conductor, a metal layer with cut out symmetric slot line, a dielectric layer, and an asymmetric strip line with conductor at the output end. The size of such a filter depends directly on the number of resonator stages and, without the case, is comparable with the size of conventional filters on symmetric strip lines only but is much smaller than that of conventional filters on asymmetric strip lines only.

  12. Cordoba Durchmusterung, volume 4

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 'Cordoba Durchmusterung' (CD) is a visual survey of southern stars in the declination zones -22 to -89 deg, carried out as an extension to the 'Bonner Durchmusterung' (BD) catalogs of Argelander and Schoenfeld. This volume covers the declination range -40 deg through -49 deg. The survey was performed using techniques similar to those used for the BD; i.e., the stars were cataloged by allowing the telescope to drift along the mean declination of each zone and recording the positions and magnitudes of stars crossing the transit line of the field. The goal of the survey was to obtain a position and estimated visual magnitude for every star down to 10.0 magnitude inclusive, but the faint limit was confirmed from comparisons with other catalogs, to be somewhat below 10. The positions are given to 0.1 s in right ascension and 0.1 min in declination for the equinox 1875. The positional uncertainties quoted in the original publications are plus or minus 0.42 sec and plus or minus 0.23 min for zones -22 deg to -32 deg. A list of all corrections made to the original data as a result of published corrigenda is presented. No other corrections or changes were incorporated into the original data, e.g., from more modern positions and magnitudes or comparison with the 'Cape Photographic Durchmusterung'.

  13. Cordoba Durchmusterung, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 'Cordoba Durchmusterung' (CD) is a visual survey of southern stars in the declination zones -22 to -89 deg, carried out as an extension to the 'Bonner Durchmusterung' (BD) catalogs of Argelander and Schoenfeld. This volume covers the declination range -22 deg through -30 deg. The survey was performed using techniques similar to those used for the BD; i.e., the stars were cataloged by allowing the telescope to drift along the mean declination of each zone and recording the positions and magnitudes of stars crossing the transit line of the field. The goal of the survey was to obtain a position and estimated visual magnitude for every star down to 10.0 magnitude inclusive, but the faint limit was confirmed from comparisons with other catalogs, to be somewhat below 10. The positions are given to 0.1 s in right ascension and 0.1 min in declination for the equinox 1875. The positional uncertainties quoted in the original publications are plus or minus 0.42 s and plus or minus 0.23 min for zones -22 deg to -32 deg. A list of all corrections made to the original data as a result of published corrigenda is presented. No other corrections or changes were incorporated into the original data, e.g., from more modern positions and magnitudes or comparison with the 'Cape Photographic Durchmusterung'.

  14. Lung Volume Reduction Surgery

    PubMed Central

    DeCamp, Malcolm M.; McKenna, Robert J.; Deschamps, Claude C.; Krasna, Mark J.

    2008-01-01

    The objective of lung volume reduction surgery (LVRS) is the safe, effective, and durable palliation of dyspnea in appropriately selected patients with moderate to severe emphysema. Appropriate patient selection and preoperative preparation are prerequisites for successful LVRS. An effective LVRS program requires participation by and communication between experts from pulmonary medicine, thoracic surgery, thoracic anesthesiology, critical care medicine, rehabilitation medicine, respiratory therapy, chest radiology, and nursing. The critical analysis of perioperative outcomes has influenced details of the conduct of the procedure and has established a bilateral, stapled approach as the standard of care for LVRS. The National Emphysema Treatment Trial (NETT) remains the world's largest multi-center, randomized trial comparing LVRS to maximal medical therapy. NETT purposely enrolled a broad spectrum of anatomic patterns of emphysema. This, along with the prospective, audited collection of extensive demographic, physiologic, radiographic, surgical and quality-of-life data, has positioned NETT as the most robust repository of evidence to guide the refinement of patient selection criteria for LVRS, to assist surgeons in providing optimal intraoperative and postoperative care, and to establish benchmarks for survival, complication rates, return to independent living, and durability of response. This article reviews the evolution of current LVRS practice with a particular emphasis on technical aspects of the operation, including the predictors and consequences of its most common complications. PMID:18453353

  15. LLE Review Quarterly Report (January-March 2000). Volume 82

    SciTech Connect

    Radha, P. B.

    2000-03-01

    This volume of the LLE Review, covering the period January-March 2000, includes a report on OMEGA cryogenic target designs for the soon-to-be-commissioned OMEGA Cryogenic Target Handling System. R. P. J. Town, J. A. Delettrez, R. Epstein, V. N. Goncharov, P. W. McKenty, P. B. Radha, and S. Skupsky use two-dimensional hydrodynamic simulations in conjunction with a stability analysis model to study the performance of OMEGA cryogenic capsules. They show that these targets are energy-scaled from the NIF ignition designs and have similar 1-D behavior and stability properties. This similarity will facilitate the extrapolation of cryogenic target studies on OMEGA to ignition targets on the NIF. Other articles in this volume are: Imprint Reduction using an Intensity Spike in Omega Cryogenic Targets; Measurement of Preheat Due to Fast Electrons in Laser Implosions; Holographic Transmission Gratings for Spectral Dispersion; Laser Beam Smoothing Caused by the Small-Spatial-Scale B-Integral; Three-Dimensional Modeling of Capsule Implosions in OMEGA Tetrahedral Hohlraums; and, Nanoindentation Hardness of Particles Used in Magnetoheological finishing (MRF).

  16. Nuclear target development

    SciTech Connect

    Greene, J.P.; Thomas, G.E.

    1995-08-01

    The Physics Division operates a target development laboratory that produces thin foil targets needed for experiments performed at the ATLAS and Dynamitron accelerators. Targets are not only produced for the Physics Division but also for other divisions and occasionally for other laboratories and universities. In the past year, numerous targets were fabricated by vacuum evaporation either as self-supporting foils or on various substrates. Targets produced included Ag, Au, {sup 10,11}B, {sup 138}Ba, Be, {sup 12}C, {sup 40}Ca, {sup 116}Cd, {sup 155,160}Gd, {sup 76}Ge, In, LID, {sup 6}LiH, Melamine, Mg, {sup 142,150}Nd, {sup 58}Ni, {sup 206,208}Pb, {sup 194}Pt, {sup 28}Si, {sup 144,148}Sm, {sup 120,122,124}Sn, Ta, {sup 130}Te, ThF{sub 4}, {sup 46,50}Ti, TiH, U, UF{sub 4}, {sup 182}W and {sup 170}Yb. Polypropylene and aluminized polypropylene, along with metallized Mylar were produced for experiments at ATLAS. A number of targets of {sup 11}B of various thickness were made for the DEP 2-MeV Van de Graff accelerator. An increased output of foils fabricated using our small rolling mill included targets of Au, C, {sup 50}Cr, Cu, {sup 155,160}Gd, Mg, {sup 58}Ni, {sup 208}Pb, {sup 105,110}Pd. Sc, Ti, and {sup 64,66}Zn.

  17. Draft Site Treatment Plan (DSTP), Volumes I and II

    SciTech Connect

    D`Amelio, J.

    1994-08-30

    Site Treatment Plans (STP) are required for facilities at which the DOE generates or stores mixed waste. This Draft Site Treatment Plan (DSTP) the second step in a three-phase process, identifies the currently preferred options for treating mixed waste at the Savannah River Site (SRS) or for developing treatment technologies where technologies do not exist or need modification. The DSTP reflects site-specific preferred options, developed with the state`s input and based on existing available information. To the extent possible, the DSTP identifies specific treatment facilities for treating the mixed waste and proposes schedules. Where the selection of specific treatment facilities is not possible, schedules for alternative activities such as waste characterization and technology assessment are provided. All schedule and cost information presented is preliminary and is subject to change. The DSTP is comprised of two volumes: this Compliance Plan Volume and the Background Volume. This Compliance Plan Volume proposes overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) of RCRA and procedures for converting the target dates into milestones to be enforced under the Order. The more detailed discussion of the options contained in the Background Volume is provided for informational purposes only.

  18. Immunogenicity of targeted lentivectors

    PubMed Central

    Goyvaerts, Cleo; Kurt, De Groeve; Lint, Sandra Van; Heirman, Carlo; Van Ginderachter, Jo A.; De Baetselier, Patrick; Raes, Geert; Thielemans, Kris; Breckpot, Karine

    2014-01-01

    To increase the safety and possibly efficacy of HIV-1 derived lentivectors (LVs) as an anti-cancer vaccine, we recently developed the Nanobody (Nb) display technology to target LVs to antigen presenting cells (APCs). In this study, we extend these data with exclusive targeting of LVs to conventional dendritic cells (DCs), which are believed to be the main cross-presenting APCs for the induction of a TH1-conducted antitumor immune response. The immunogenicity of these DC-subtype targeted LVs was compared to that of broad tropism, general APC-targeted and non-infectious LVs. Intranodal immunization with ovalbumin encoding LVs induced proliferation of antigen specific CD4+ T cells, irrespective of the LVs' targeting ability. However, the cytokine secretion profile of the restimulated CD4+ T cells demonstrated that general APC targeting induced a similar TH1-profile as the broad tropism LVs while transduction of conventional DCs alone induced a similar and less potent TH1 profile as the non-infectious LVs. This observation contradicts the hypothesis that conventional DCs are the most important APCs and suggests that the activation of other APCs is also meaningful. Despite these differences, all targeted LVs were able to stimulate cytotoxic T lymphocytes, be it to a lesser extent than broad tropism LVs. Furthermore this induction was shown to be dependent on type I interferon for the targeted and non-infectious LVs, but not for broad tropism LVs. Finally we demonstrated that the APC-targeted LVs were as potent in therapy as broad tropism LVs and as such deliver on their promise as safer and efficacious LV-based vaccines. PMID:24519916

  19. Device overlay method for high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Han, Sangjun; Kim, Youngsik; Kim, Myoungsoo; Heo, Hoyoung; Jeon, Sanghuck; Choi, DongSub; Nabeth, Jeremy; Brinster, Irina; Pierson, Bill; Robinson, John C.

    2016-03-01

    Advancing technology nodes with smaller process margins require improved photolithography overlay control. Overlay control at develop inspection (DI) based on optical metrology targets is well established in semiconductor manufacturing. Advances in target design and metrology technology have enabled significant improvements in overlay precision and accuracy. One approach to represent in-die on-device as-etched overlay is to measure at final inspection (FI) with a scanning electron microscope (SEM). Disadvantages to this approach include inability to rework, limited layer coverage due to lack of transparency, and higher cost of ownership (CoO). A hybrid approach is investigated in this report whereby infrequent DI/FI bias is characterized and the results are used to compensate the frequent DI overlay results. The bias characterization is done on an infrequent basis, either based on time or triggered from change points. On a per-device and per-layer basis, the optical target overlay at DI is compared with SEM on-device overlay at FI. The bias characterization results are validated and tracked for use in compensating the DI APC controller. Results of the DI/FI bias characterization and sources of variation are presented, as well as the impact on the DI correctables feeding the APC system. Implementation details in a high volume manufacturing (HVM) wafer fab will be reviewed. Finally future directions of the investigation will be discussed.

  20. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  1. Modern Written Arabic, Volume II.

    ERIC Educational Resources Information Center

    Naja, A. Nashat; Snow, James A.

    This second volume of Modern Written Arabic builds on the previous volume and is the second step designed to teach members of the Foreign Service to read the modern Arabic press. The student will gain recognitional mastery of an extensive set of vocabulary items and will be more intensively exposed to wider and more complex morphological and…

  2. Portuguese Programmatic Course. Volume 2.

    ERIC Educational Resources Information Center

    Ulsh, Jack Lee; And Others

    This volume, containing units 26-48, completes the Portuguese Programmatic Course. The odd-numbered units present the grammatical features not covered in Volume One in a programmed format. The even numbered units contain dialogs, substitution drills, practice with irregular verb forms, and exercises geared to vocabulary expansion. The…

  3. PDLE: Sustaining Professionalism. Volume 3

    ERIC Educational Resources Information Center

    Byrd, Patricia, Ed.; Nelson, Gayle, Ed.

    2003-01-01

    This third volume looks at ways that seasoned professionals continue to develop throughout their careers. The text includes descriptive accounts of professionals seeking to enhance their careers while remaining inspired to continue to develop professionally. This volume reveals how personal and professional lives are entwined. It proves that TESOL…

  4. Lao Basic Course, Volume 2.

    ERIC Educational Resources Information Center

    Yates, Warren G.; And Others

    This second volume on Lao is designed as the continuation of the introductory material presented in volume one. The objectives are to produce greater proficiency in the use of Lao and, at the same time, to provide a general introduction to Laotian culture. The course is divided into six modules concerning various aspects of culture: physical…

  5. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, Scott; Sheffield, Stephen

    2005-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.

  6. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    PubMed Central

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2015-01-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs. PMID:26146475

  7. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  8. Target-detection strategies

    NASA Astrophysics Data System (ADS)

    Schachter, Bruce J.

    2013-04-01

    Hundreds of simple target-detection algorithms were tested on mid- and long-wave forward-looking infrared images. Each algorithm is briefly described. Indications are given as to which performed well. Most of these simple algorithms are loosely derived from standard tests of the difference of two populations. For target detection, these are populations of pixel grayscale values or features derived from them. The statistical tests are implemented in the form of sliding triple window filters. Several more elaborate algorithms are also described with their relative performances noted. They utilize neural networks, deformable templates, and adaptive filtering. Algorithm design issues are broadened to cover system design issues and concepts of operation. Since target detection is such a fundamental problem, it is often used as a test case for developing technology. New technology leads to innovative approaches for attacking the problem. Eight inventive paradigms, each with deep philosophical underpinnings, are described in relation to their effect on target detector design.

  9. Target Heart Rate Calculator

    MedlinePlus

    ... My Saved Articles » My ACS » + - Text Size Target Heart Rate Calculator Compute your best workout Enter your age ... is your age? years. How to Check Your Heart Rate Right after you stop exercising, take your pulse: ...

  10. High pressure gas target

    NASA Astrophysics Data System (ADS)

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-01

    Compact, high pressure, high current gas target features all metal construction and semi-automatic window assembly change. The unique aspect of this target is the domed-shaped window. The Havar alloy window is electron beam welded to a metal ring, thus forming one, interchangeable assembly. The window assembly is sealed by knife-edges locked by a pneumatic toggle allowing a quick, in situ window change.

  11. SETI target selection.

    NASA Astrophysics Data System (ADS)

    Latham, D. W.; Soderblom, D. R.

    1995-06-01

    The NASA High Resolution Microwave Survey consists of two complementary elements: a Sky Survey of the entire sky to a moderate level of sensitivity; and a Targeted Search of nearby stars, one at a time, to a much deeper level of sensitivity. The authors propose strategies for target selection with two goals: to improve the chances of successful detection of signals from technical civilizations that inhabit planets around solar-type stars, and to minimize the chances of missing signals from unexpected sites.

  12. Target activated frame capture

    NASA Astrophysics Data System (ADS)

    Roberts, G. Marlon; Fitzgerald, James; McCormack, Michael; Steadman, Robert

    2008-04-01

    Over the past decade, technological advances have enabled the use of increasingly intelligent systems for battlefield surveillance. These systems are triggered by a combination of external devices including acoustic and seismic sensors. Such products are mainly used to detect vehicles and personnel. These systems often use infra-red imagery to record environmental information, but Textron Defense Systems' Terrain Commander is one of a small number of systems which analyze these images for the presence of targets. The Terrain Commander combines acoustic, infrared, magnetic, seismic, and visible spectrum sensors to detect nearby targets in military scenarios. When targets are detected by these sensors, the cameras are triggered and images are captured in the infrared and visible spectrum. In this paper we discuss a method through which such systems can perform target tracking in order to record and transmit only the most pertinent surveillance images. This saves bandwidth which is crucial because these systems often use communication systems with throughputs below 2400bps. This method is expected to be executable on low-power processors at frame rates exceeding 10HZ. We accomplish this by applying target activated frame capture algorithms to infra-red video data. The target activated frame capture algorithms combine edge detection and motion detection to determine the best frames to be transmitted to the end user. This keeps power consumption and bandwidth requirements low. Finally, the results of the algorithm are analyzed.

  13. Volume Segmentation and Ghost Particles

    NASA Astrophysics Data System (ADS)

    Ziskin, Isaac; Adrian, Ronald

    2011-11-01

    Volume Segmentation Tomographic PIV (VS-TPIV) is a type of tomographic PIV in which images of particles in a relatively thick volume are segmented into images on a set of much thinner volumes that may be approximated as planes, as in 2D planar PIV. The planes of images can be analysed by standard mono-PIV, and the volume of flow vectors can be recreated by assembling the planes of vectors. The interrogation process is similar to a Holographic PIV analysis, except that the planes of image data are extracted from two-dimensional camera images of the volume of particles instead of three-dimensional holographic images. Like the tomographic PIV method using the MART algorithm, Volume Segmentation requires at least two cameras and works best with three or four. Unlike the MART method, Volume Segmentation does not require reconstruction of individual particle images one pixel at a time and it does not require an iterative process, so it operates much faster. As in all tomographic reconstruction strategies, ambiguities known as ghost particles are produced in the segmentation process. The effect of these ghost particles on the PIV measurement is discussed. This research was supported by Contract 79419-001-09, Los Alamos National Laboratory.

  14. Sonographic measurement of gallbladder volume.

    PubMed

    Dodds, W J; Groh, W J; Darweesh, R M; Lawson, T L; Kishk, S M; Kern, M K

    1985-11-01

    Sonographic images of the gallbladder enable satisfactory approximation of gallbladder volume using the sum-of-cylinders method. The sum-of-cylinder measurements, however, are moderately cumbersome and time consuming to perform. In this investigation, in vitro and in vivo testing was done to determine that a simple ellipsoid method applied to sonographic gallbladder images yields reasonable volume approximations that are comparable to the volumes calculated by the sum-of-cylinders method. Findings from a water-bath experiment showed that measurement of gallbladder volume by the ellipsoid method closely approximated the true volume with a mean difference of about 1.0 ml. The results of in vivo studies in five volunteers demonstrated that the gallbladder contracted substantially after a fatty meal and that volumes calculated by the ellipsoid and sum-of-cylinders methods were nearly identical. Thus, a simple ellipsoid method, requiring negligible time, may be used to approximate satisfactory gallbladder volume for clinical or investigative studies. PMID:3901703

  15. FY 1996 solid waste integrated life-cycle forecast volume summary - Volume 1 and Volume 2

    SciTech Connect

    Valero, O.J.

    1996-02-22

    Solid waste forecast volumes to be generated or received ;at Westinghouse Hanford Company`s Solid Waste program over the life cycle of the site are described in this report. Previous forecast summary reports have covered only a 30-year period; however, the life-cycle approach was adopted for this FY 1996 report to ensure consistency with waste volumes reported in the 1996 Multi-Year Program Plans (MYPP). The volume data were collected on a life-cycle basis from onsite and offsite waste generators who currently ship or plan to ship solid waste to the Solid Waste program. The volumes described in detail are low-level mixed waste (LLMW) and transuranic/transuranic-mixed (TRU(M)) waste. The volumes reported in this document represent the external volume of the containers selected to ship the waste. Summary level information pertaining to low-level waste (LLW) is described in Appendix B. Hazardous waste volumes are also provided in Appendices E and F but are not described in detail since they will be managed by a commercial facility. Emphasis is placed on LLMW and TRU(M) waste because it will require processing and storage at Hanford Solid Waste`s Central Waste Complex (CORK) prior to final disposal. The LLW will generally be sent directly to disposal. The total baselines volume of LLMW and TRU(M) waste forecast to be received by the Solid Waste program (until 2070) is approximately 100,900 cubic meters. This total waste volume is composed of the following waste categories: 077,080 cubic meters of LLMW; 23,180 cubic meters of TRU(M); 640 cubic meters of greater-than-class III LLMW. This total is about 40% of the total volume reported last year (FY 1995).

  16. Particles in small volume injections.

    PubMed

    Taylor, S A; Spence, J

    1983-12-01

    The level of particulate contamination in small volume injections has been examined using the light blockage (HIAC) and electrical sensing zone (Coulter counter) techniques, the HIAC system being found to be the more suitable. Particle counts on the same batch of injection showed a large and variable difference between the HIAC and the Coulter counter results, especially below 5 micron. None of the injections examined complied with the British Pharmacopoeia limits for particulates in large volume parenterals, suggesting the unsuitability of the limits for small volume parenterals. PMID:6141237

  17. Image space adaptive volume rendering

    NASA Astrophysics Data System (ADS)

    Corcoran, Andrew; Dingliana, John

    2012-01-01

    We present a technique for interactive direct volume rendering which provides adaptive sampling at a reduced memory requirement compared to traditional methods. Our technique exploits frame to frame coherence to quickly generate a two-dimensional importance map of the volume which guides sampling rate optimisation and allows us to provide interactive frame rates for user navigation and transfer function changes. In addition our ray casting shader detects any inconsistencies in our two-dimensional map and corrects them on the fly to ensure correct classification of important areas of the volume.

  18. LLE Review Quarterly Report (October - December 2007). Volume 113

    SciTech Connect

    Zuegel, Jonathan D.

    2007-12-01

    This volume of the LLE Review, covering October–December 2007, features “High-Intensity Laser–Plasma Interactions in the Refluxing Limit,” by P. M. Nilson, W. Theobald, J. Myatt, C. Stoeckl, M. Storm, O. V. Gotchev, J. D. Zuegel, R. Betti, D. D. Meyerhofer, and T. C. Sangster. In this article (p. 1), the authors report on target experiments using the Multi-Terawatt (MTW) Laser Facility to study isochoric heating of solid-density targets by fast electrons produced from intense, short-pulse laser irradiation. Electron refluxing occurs due to target-sheath field effects and contains most of the fast electrons within the target volume. This efficiently heats the solid-density plasma through collisions. X-ray spectroscopic measurements of absolute Kα (x-radiation) photon yields and variations of the Kβ/Kα b emission ratio both indicate that laser energy couples to fast electrons with a conversion efficiency of approximately 20%. Bulk electron temperatures of at least 200 eV are inferred for the smallest mass targets.

  19. Production Target Design Report

    SciTech Connect

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    2015-07-28

    The Northstar 99Mo production target, a cylindrical length of 100Mo rod, has evolved considerably since its first conception.  The cylinder was very early sliced into disks to increase the heat transfer area, first to 1 mm thick disks then to the current 0.5 mm thick.  The coolant was changed early in the target development from water to helium to eliminate corrosion and dissolution.  The diameter has increased from initially 6 mm to 12 mm, the current diameter of the test target now at ANL, to nominally 28 mm (26-30.6 mm, depending upon optimal beam spot size and shape).  The length has also changed to improve the production to cost ratio, so now the target is nominally 41 mm long (excluding coolant gaps between disks), and irradiated on both ends.  This report summarizes the current status of the plant target design.

  20. The Sinuous Target

    SciTech Connect

    Zwaska, R.

    2015-06-01

    We report on the concept for a target material comprised of a multitude of interlaced wires of small dimension. This target material concept is primarily directed at high-power neutrino targets where the thermal shock is large due to small beam sizes and short durations; it also has applications to other high-power targets, particularly where the energy deposition is great or a high surface area is preferred. This approach ameliorates the problem of thermal shock by engineering a material with high strength on the micro-scale, but a very low modulus of elasticity on the meso-scale. The low modulus of elasticity is achieved by constructing the material of spring-like wire segments much smaller than the beam dimension. The intrinsic bends of the wires will allow them to absorb the strain of thermal shock with minimal stress. Furthermore, the interlaced nature of the wires provides containment of any segment that might become loose. We will discuss the progress on studies of analogue materials and fabrication techniques for sinuous target materials.

  1. High power density targets

    NASA Astrophysics Data System (ADS)

    Pellemoine, Frederique

    2013-12-01

    In the context of new generation rare isotope beam facilities based on high-power heavy-ion accelerators and in-flight separation of the reaction products, the design of the rare isotope production targets is a major challenge. In order to provide high-purity beams for science, high resolution is required in the rare isotope separation. This demands a small beam spot on the production target which, together with the short range of heavy ions in matter, leads to very high power densities inside the target material. This paper gives an overview of the challenges associated with this high power density, discusses radiation damage issues in targets exposed to heavy ion beams, and presents recent developments to meet some of these challenges through different projects: FAIR, RIBF and FRIB which is the most challenging. Extensive use of Finite Element Analysis (FEA) has been made at all facilities to specify critical target parameters and R&D work at FRIB successfully retired two major risks related to high-power density and heavy-ion induced radiation damage.

  2. Burglar Target Selection

    PubMed Central

    Townsley, Michael; Bernasco, Wim; Ruiter, Stijn; Johnson, Shane D.; White, Gentry; Baum, Scott

    2015-01-01

    Objectives: This study builds on research undertaken by Bernasco and Nieuwbeerta and explores the generalizability of a theoretically derived offender target selection model in three cross-national study regions. Methods: Taking a discrete spatial choice approach, we estimate the impact of both environment- and offender-level factors on residential burglary placement in the Netherlands, the United Kingdom, and Australia. Combining cleared burglary data from all study regions in a single statistical model, we make statistical comparisons between environments. Results: In all three study regions, the likelihood an offender selects an area for burglary is positively influenced by proximity to their home, the proportion of easily accessible targets, and the total number of targets available. Furthermore, in two of the three study regions, juvenile offenders under the legal driving age are significantly more influenced by target proximity than adult offenders. Post hoc tests indicate the magnitudes of these impacts vary significantly between study regions. Conclusions: While burglary target selection strategies are consistent with opportunity-based explanations of offending, the impact of environmental context is significant. As such, the approach undertaken in combining observations from multiple study regions may aid criminology scholars in assessing the generalizability of observed findings across multiple environments. PMID:25866418

  3. Targeted assets risk analysis.

    PubMed

    Bouwsema, Barry

    2013-01-01

    Risk assessments utilising the consolidated risk assessment process as described by Public Safety Canada and the Centre for Security Science utilise the five threat categories of natural, human accidental, technological, human intentional and chemical, biological, radiological, nuclear or explosive (CBRNE). The categories of human intentional and CBRNE indicate intended actions against specific targets. It is therefore necessary to be able to identify which pieces of critical infrastructure represent the likely targets of individuals with malicious intent. Using the consolidated risk assessment process and the target capabilities list, coupled with the CARVER methodology and a security vulnerability analysis, it is possible to identify these targeted assets and their weaknesses. This process can help emergency managers to identify where resources should be allocated and funding spent. Targeted Assets Risk Analysis (TARA) presents a new opportunity to improve how risk is measured, monitored, managed and minimised through the four phases of emergency management, namely, prevention, preparation, response and recovery. To reduce risk throughout Canada, Defence Research and Development Canada is interested in researching the potential benefits of a comprehensive approach to risk assessment and management. The TARA provides a framework against which potential human intentional threats can be measured and quantified, thereby improving safety for all Canadians. PMID:23615063

  4. LLE Review Quarterly Report (October-December 1990). Volume 45

    SciTech Connect

    Epperlein, E. M.

    1990-12-01

    This volume of the LLE Review, covering the period October-December 1990, contains descriptions of a new phase-conversion technique designed to improve irradiation uniformity, a report on the interpretation of highdensity implosion experiments of argon-filled targets, and an article on the use of absorption spectroscopy to diagnose compressed target layers. The section on advanced technology has a report on the application of KTP crystals as electro-optic amplitude modulators, and describes the use of chirped-pulse technology to measure X(3) by nearly degenerate four-wave mixing. Finally, the activities of the National Laser Users Facility and the GDL and OMEGA laser facilities are summarized.

  5. LLE Review Quarterly Report (July-September 1985). Volume 24

    SciTech Connect

    Skupsky, S.

    1985-09-01

    This volume of the LLE Review contains articles on the first 24-beam UV experiments on the OMEGA laser system, the use of absorption spectroscopy to diagnose high-density compressions, the development of a new target fabrication technique to coat mechanically unsupported laser-fusion targets with a parylene layer, the use of liquid crystals as laser-beam apodizers, the investigation of the process of melting using a subpicosecond probe, the development of a new picosecond oscilloscope, and the National Laser Users Facility activities for June-September 1985.

  6. LLE Review Quarterly Report (April-June 1994). Volume 59

    SciTech Connect

    Knauer, James P.

    1994-06-01

    This volume of the LLE Review, covering the period of April-June 1994, contains articles on surface characterization by atomic force microscopy; electron acceleration with intense laser field; spatial intensity variations induced by nonlinear beam propagation; backlighting of implosion targets exhibiting mix; and the use of cosmic rays to monitor large, multielement detectors. Four of these articles - surface characterization; nonlinear beam propagation; backlighting of mixed targets; and monitoring of the MEDUSA detector array - are related to the OMEGA Upgrade, which is currently under construction.

  7. LLE Review Quarterly Report (April-June 2001). Volume 87

    SciTech Connect

    Hinterman, Thomas H.

    2001-06-01

    This volume of the LLE Review, covering April–June 2001, features ''A Self-Calibrating, Multichannel Streak Camera for Inertial Confinement Fusion Applications'' by Dr. W. R. Donaldson, R. Boni, R. L. Keck, and P. A. Jaanimagi. This article (p. 109) describes the 60-beam streak camera system used on OMEGA and focuses on the hardware and software calibration techniques that maximize its utility. The system can diagnose each of the beams on every target shot and can measure beam energies with 8% accuracy and timing at 7 ps rms. Beam-to-beam power variations of less than 5% can be detected. Other articles in this volume are: Evolution of Shell Nonuniformities Near Peak Compression of a Spherical Implosion; Multibeam Stimulated Brillouin Scattering from Hot Solid-Target Plasmas; Hot-Electron Effect in Superconductors and Is Applications for Radiation Sensors; and, Scaling Law for Marginal Ignition.

  8. LLE review: Quarterly report, July--September 1995. Volume 64

    SciTech Connect

    Craxton, R.S.

    1995-09-01

    This volume of the LLE Review, covering the period July--September 1995, includes a description of the first target experiments performed on the upgraded OMEGA laser system. These experiments, carried out to active and test several diagnostics systems, have demonstrated successful functioning of the overall experimental system and have produced high neutron yields and high core temperatures. Other articles in this volume describe the diagnosis of core conditions using krypton line spectroscopy, a mix model for LILAC that can be applied to study the deceleration instability at the pusher-core interface, a simulated-annealing algorithm for improved phase-plate design, a simple method for characterizing the thickness and uniformity of transparent laser-fusion targets, and femtosecond pump-probe experiments on semiconducting YBCO.

  9. Penetration of concrete targets

    SciTech Connect

    Forrestal, M.J.; Cargile, J.D.; Tzou, R.D.Y.

    1993-08-01

    We developed penetration equations for ogive-nosed projectiles that penetrated concrete targets after normal impact. Our penetration equations predict axial force on the projectile nose, rigid-body motion, and final penetration depth. For target constitutive models, we conducted triaxial material experiments to confining pressures of 600 MPa and curve-fit these data with a linear pressure-volumetric strain relation and with a linear Mohr-Coulomb, shear strength-pressure relation. To verify our penetration equations, we conducted eleven penetration experiments with 0.90 kg, 26.9-mm-diameter, ogive-nosed projectiles into 1.37-m-diameter concrete targets with unconfined compressive strengths between 32-40 MPa. Predictions from our penetration equation are compared with final penetration depth measurements for striking velocities between 280--800 m/s.

  10. Setting reference targets

    SciTech Connect

    Ruland, R.E.

    1997-04-01

    Reference Targets are used to represent virtual quantities like the magnetic axis of a magnet or the definition of a coordinate system. To explain the function of reference targets in the sequence of the alignment process, this paper will first briefly discuss the geometry of the trajectory design space and of the surveying space, then continue with an overview of a typical alignment process. This is followed by a discussion on magnet fiducialization. While the magnetic measurement methods to determine the magnetic centerline are only listed (they will be discussed in detail in a subsequent talk), emphasis is given to the optical/mechanical methods and to the task of transferring the centerline position to reference targets.

  11. Phoenix Color Targets

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images of three Phoenix color targets were taken on sols 1 and 2 by the Surface Stereo Imager (SSI) on board the Phoenix lander. The bottom target was imaged in approximate color (SSI's red, green, and blue filters: 600, 530, and 480 nanometers), while the others were imaged with an infrared filter (750 nanometers). All of them will be imaged many times over the mission to monitor the color calibration of the camera. The two at the top show grains 2 to 3 millimeters in size that were likely lifted to the Phoenix deck during landing. Each of the large color chips on each target contains a strong magnet to protect the interior material from Mars' magnetic dust.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  13. Volumetric measurement of tank volume

    NASA Technical Reports Server (NTRS)

    Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)

    1991-01-01

    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.

  14. A urine volume measurement system

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.

    1972-01-01

    An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.

  15. Midface volumization with injectable fillers.

    PubMed

    Tan, Marietta; Kontis, Theda C

    2015-05-01

    The aging midface has long been overlooked in cosmetic surgery. Our understanding of facial aging in terms of 3 dimensions has placed increased importance on volume restoration. Although an "off-label" indication for most fillers in this facial region, volumization of the midface with injectable fillers is usually a safe and straightforward procedure technically. Injectors, nevertheless, need to have an excellent understanding of facial anatomy and the characteristics of the injected products should problems arise. PMID:25921573

  16. Radiation Dose-Volume Effects and the Penile Bulb

    SciTech Connect

    Roach, Mack; Nam, Jiho; Gagliardi, Giovanna; El Naqa, Issam; Deasy, Joseph O.; Marks, Lawrence B.

    2010-03-01

    The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulb may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques.

  17. Multinozzle Emitter Array Chips for Small-Volume Proteomics

    PubMed Central

    Mao, Pan; Gomez-Sjoberg, Rafael; Wang, Daojing

    2013-01-01

    High-throughput multiplexed proteomics of small-volume biospecimens will generate new opportunities in theranostics. Achieving parallel top-down and bottom-up mass spectrometry analyses of target proteins using a unified apparatus will improve proteome characterization. We have developed a novel silicon-based microfluidic device, multinozzle emitter array chip (MEA chip), as a new platform for small-volume proteomics using liquid chromatography-nanoelectrospray ionization mass spectrometry (LC-nanoESI-MS). We demonstrate parallel, on-chip, and on-line LC-MS analysis of hemoglobin and its tryptic digests directly from microliters of blood, achieving a detection limit of less than 5 red blood cells. Our MEA chip will enable clinical proteomics of small-volume samples. PMID:23252432

  18. Microfluidic devices for the controlled manipulation of small volumes

    DOEpatents

    Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN

    2007-07-03

    A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.

  19. Microfluidic devices for the controlled manipulation of small volumes

    DOEpatents

    Ramsey, Michael J; Jacobson, Stephen C

    2012-09-18

    A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.

  20. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    SciTech Connect

    Deasy, Joseph O.; Moiseenko, Vitali; Marks, Lawrence; Chao, K.S. Clifford; Nam, Jiho; Eisbruch, Avraham

    2010-03-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than {approx}20 Gy or if both glands are spared to less than {approx}25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. A lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk.

  1. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    PubMed Central

    Deasy, Joseph O.; Moiseenko, Vitali; Marks, Lawrence; Chao, K. S. Clifford; Nam, Jiho; Eilsbruch, Avraham

    2013-01-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than ≈20 Gy or if both glands are spared to less than ≈25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. A lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk. PMID:20171519

  2. Targeted polypeptide degradation

    DOEpatents

    Church, George M.; Janse, Daniel M.

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  3. Targeting the tumor microenvironment

    PubMed Central

    Bournazou, Eirini; Bromberg, Jacqueline

    2013-01-01

    Persistent JAK-STAT3 signaling is implicated in many aspects of tumorigenesis. Apart from its tumor-intrinsic effects, STAT3 also exerts tumor-extrinsic effects, supporting tumor survival and metastasis. These involve the regulation of paracrine cytokine signaling, alterations in metastatic sites rendering these permissive for the growth of cancer cells and subversion of host immune responses to create an immunosuppressive environment. Targeting this signaling pathway is considered a novel promising therapeutic approach, especially in the context of tumor immunity. In this article, we will review to what extent JAK-STAT3-targeted therapies affect the tumor microenvironment and whether the observed effects underlie responsiveness to therapy. PMID:24058812

  4. Foam encapsulated targets

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.; Dahlbacka, Glen H.

    1983-01-01

    Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.

  5. LLE Review Quarterly Report (April-June 1988). Volume 35

    SciTech Connect

    Kremens, R.

    1988-06-01

    This volume of the LLE Review, covering the period April-June 1988, contains an in-depth article on recent cryogenic target experiments on the OMEGA laser system; two articles on laser-plasma interactions; and an advanced technology article discussing laser damage in polymeric materials. Finally, the activities of the National Laser Users Facility and the GDL and OMEGA laser facilities are summarized.

  6. LLE Review Quarterly Report (January-March 1988). Volume 34

    SciTech Connect

    Kelly, J.

    1988-03-01

    This volume of the LLE Review, covering the period January-March 1988, contains articles on the spectra of scattered laser radiation from laser-produced plasmas and on the bounce coating of ablation layers on fusion targets. The advanced technology section has reports on a novel technique for characterizing surface breakdown on semiconductor devices and on a versatile alexandrite regenerative amplifier. Finally, the activities of the National Laser Users Facility and the GDL and OMEGA laser facilities are summarized.

  7. Projection-Based Volume Alignment

    PubMed Central

    Yu, Lingbo; Snapp, Robert R.; Ruiz, Teresa; Radermacher, Michael

    2013-01-01

    When heterogeneous samples of macromolecular assemblies are being examined by 3D electron microscopy (3DEM), often multiple reconstructions are obtained. For example, subtomograms of individual particles can be acquired from tomography, or volumes of multiple 2D classes can be obtained by random conical tilt reconstruction. Of these, similar volumes can be averaged to achieve higher resolution. Volume alignment is an essential step before 3D classification and averaging. Here we present a projection-based volume alignment (PBVA) algorithm. We select a set of projections to represent the reference volume and align them to a second volume. Projection alignment is achieved by maximizing the cross-correlation function with respect to rotation and translation parameters. If data are missing, the cross-correlation functions are normalized accordingly. Accurate alignments are obtained by averaging and quadratic interpolation of the cross-correlation maximum. Comparisons of the computation time between PBVA and traditional 3D cross-correlation methods demonstrate that PBVA outperforms the traditional methods. Performance tests were carried out with different signal-to-noise ratios using modeled noise and with different percentages of missing data using a cryo-EM dataset. All tests show that the algorithm is robust and highly accurate. PBVA was applied to align the reconstructions of a subcomplex of the NADH: ubiquinone oxidoreductase (Complex I) from the yeast Yarrowia lipolytica, followed by classification and averaging. PMID:23410725

  8. SNS second target station moderator performance update

    SciTech Connect

    Gallmeier, Franz X.

    2010-03-08

    In its first years of operations of its first target station, the Spallation Neutron Source (SNS) is working towards a facility upgrade by a megawatt-class second target station operated at 20 Hz repetition rate, which is intended to complement the existing ORNL neutron sources, the first SNS target station and the HFIR reactor, with high-intensity cold neutron beams.The first round of optimization calculations converged on larger-volume cylindrical para-hydrogen moderators placed in wing configuration on top and bottom of a flat mercury target, pre-moderated by layers of ambient water and surrounded by beryllium reflector. The metric of these optimization calculations was time-averaged and energy-integrated neutron brightness below 5 meV with the requirement to be able to serve 20 ports with neutrons. A summary of these calculations will be given including lessons learned from the variety of simulated configurations and detailed neutron performance characteristics like spectral intensities, emission time distributions, local variations of moderator brightness at the viewed areas, and sensitivity of the optimization metric to optimized parameters for the most promising configuration.

  9. Image guidance: treatment target localization systems.

    PubMed

    Sharpe, Michael B; Craig, Tim; Moseley, Douglas J

    2007-01-01

    Highly conformal radiation therapy tailors treatment to match the target shape and position, minimizing normal tissue damage to a greater extent than previously possible. Technological advances such as intensity-modulated radiation therapy, introduced a decade ago, have yielded significant gains in tumor control and reduced toxicity. Continuing advances have focused on the characterization and control of patient movement, organ motion, and anatomical deformation, which all introduce geometric uncertainty. These sources of uncertainty limit the effectiveness of high-precision treatment. Target localization, performed using appropriate technologies and frequency, is a critical component of treatment quality assurance. Until recently, the target position with respect to the beams has been inferred from surface marks on the patient's skin or through an immobilization device, and verified using megavoltage radiographs of the treatment portal. Advances in imaging technologies have made it possible to image soft tissue volumes in the treatment setting. Real-time tracking is also possible using a variety of technologies, including fluoroscopic imaging and radiopaque markers implanted in or near the tumor. The capacity to acquire volumetric soft tissue images in the treatment setting can also be used to assess anatomical changes over a course of treatment. Enhancing localization practices reduces treatment errors, and gives the capacity to monitor anatomical changes and reduce uncertainties that could influence clinical outcomes. This review presents the technologies available for target localization, and discusses some of the considerations that should be addressed in the implementation of many new clinical processes in radiation oncology. PMID:17641503

  10. The use of phase sequence image sets to reconstruct the total volume occupied by a mobile lung tumor

    SciTech Connect

    Gagne, Isabelle M.; Robinson, Don M.; Halperin, Ross; Roa, Wilson

    2005-07-15

    The use of phase sequence image (PSI) sets to reveal the total volume occupied by a mobile target is presented. Isocontrast composite clinical target volumes (CCTVs) may be constructed from PSI sets in order to reveal the total volume occupied by a mobile target during the course of its travel. The ability of the CCTV technique to properly account for target motion is demonstrated by comparison to contours of the true total volume occupied (TVO) for a number of experimental phantom geometries. Finally, using real patient data, the clinical utility of the CCTV technique to properly account for internal tumor motion while minimizing the volume of healthy lung tissue irradiated is assessed by comparison to the standard approach of applying safety margins. Results of the phantom study reveal that CCTV cross sections constructed at the 20% isocontrast level yield good agreement with the total cross sections (TXO) of mobile targets. These CCTVs conform well to the TVOs of the moving targets examined whereby the addition of small uniform margins ensures complete circumscription of the TVO with the inclusion of minimal amounts of surrounding external volumes. The CCTV technique is seen to be clearly superior to the common practice of the addition of safety margins to individual CTV contours in order to account for internal target motion. Margins required with the CCTV technique are eight to ten times smaller than those required with individual CTVs.

  11. NASA Reactor Facility Hazards Summary. Volume 2

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Supplements to volume 1 are presented herein. Included in these papers are information unavailable when volume 1 was written, an evaluation of the proposed nuclear facility, and answers to questions raised by the AEC concerning volume 1.

  12. Target-Rich Environment

    ERIC Educational Resources Information Center

    Perna, Mark C.

    2005-01-01

    Target marketing is defining school enrollment goals and then developing a strategic plan to accomplish those goals through the use of specific communication vehicles and community focus. It is critical to reach the right audience, with the right message, at the right time, for the right cost. In this brief article, the author describes several…

  13. Right on Target

    ERIC Educational Resources Information Center

    Henderson, Nancy

    2008-01-01

    This article features the Target Community and Educational Services program, a salaried arrangement that allows students at McDaniel College to complete their studies while living with, and managing, clients with developmental disabilities. In what is believed to be the only arrangement of its kind in the U.S., full-time graduate students agree to…

  14. The targets of curcumin.

    PubMed

    Zhou, Hongyu; Beevers, Christopher S; Huang, Shile

    2011-03-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-kB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer's disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  15. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  16. Microenvironmental Targets in Sarcoma

    PubMed Central

    Ehnman, Monika; Larsson, Olle

    2015-01-01

    Sarcomas are rare malignant tumors affecting all age groups. They are typically classified according to their resemblance to corresponding normal tissue. Their heterogeneous features, for example, in terms of disease-driving genetic aberrations and body location, complicate both disease classification and development of novel treatment regimens. Many years of failure of improved patient outcome in clinical trials has led to the conclusion that novel targeted therapies are likely needed in combination with current multimodality regimens. Sarcomas have not, in contrast to the common carcinomas, been the subject of larger systematic studies on how tumor behavior relates to characteristics of the tumor microenvironment. There is consequently an urgent need for identifying suitable molecular targets, not only in tumor cells but also in the tumor microenvironment. This review discusses preclinical and clinical data about potential molecular targets in sarcomas. Studies on targeted therapies involving the tumor microenvironment are prioritized. A greater understanding of the biological context is expected to facilitate more successful design of future clinical trials in sarcoma. PMID:26583076

  17. Target fragmentation in radiobiology

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.; Townsend, Lawrence W.

    1993-01-01

    Nuclear reactions in biological systems produce low-energy fragments of the target nuclei seen as local high events of linear energy transfer (LET). A nuclear-reaction formalism is used to evaluate the nuclear-induced fields within biosystems and their effects within several biological models. On the basis of direct ionization interaction, one anticipates high-energy protons to have a quality factor and relative biological effectiveness (RBE) of unity. Target fragmentation contributions raise the effective quality factor of 10 GeV protons to 3.3 in reasonable agreement with RBE values for induced micronuclei in bean sprouts. Application of the Katz model indicates that the relative increase in RBE with decreasing exposure observed in cell survival experiments with 160 MeV protons is related solely to target fragmentation events. Target fragment contributions to lens opacity given an RBE of 1.4 for 2 GeV protons in agreement with the work of Lett and Cox. Predictions are made for the effective RBE for Harderian gland tumors induced by high-energy protons. An exposure model for lifetime cancer risk is derived from NCRP 98 risk tables, and protraction effects are examined for proton and helium ion exposures. The implications of dose rate enhancement effects on space radiation protection are considered.

  18. High purity tungsten targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High purity tungsten, which is used for targets in X-ray tubes was considered for space processing. The demand for X-ray tubes was calculated using the growth rates for dental and medical X-ray machines. It is concluded that the cost benefits are uncertain.

  19. Opportunity Spies Its Target

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a forward-looking view of the Meridiani Planum plains that lie between the Mars Exploration Rover Opportunity and its primary drive target, 'Endurance Crater.' The images in this image mosaic were taken by the rover's panoramic camera on sol 88.

  20. Enhanced target factor analysis.

    PubMed

    Rostami, Akram; Abdollahi, Hamid; Maeder, Marcel

    2016-03-10

    Target testing or target factor analysis, TFA, is a well-established soft analysis method. TFA answers the question whether an independent target test vector measured at the same wavelengths as the collection of spectra in a data matrix can be excluded as the spectrum of one of the components in the system under investigation. Essentially, TFA cannot positively prove that a particular test spectrum is the true spectrum of one of the components, it can, only reject a spectrum. However, TFA will not reject, or in other words TFA will accept, many spectra which cannot be component spectra. Enhanced Target Factor Analysis, ETFA addresses the above problem. Compared with traditional TFA, ETFA results in a significantly narrower range of positive results, i.e. the chance of a false positive test result is dramatically reduced. ETFA is based on feasibility testing as described in Refs. [16-19]. The method has been tested and validated with computer generated and real data sets. PMID:26893084

  1. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  2. ENFORCEMENT TARGETING 2001

    EPA Science Inventory

    A GIS based targeting methodology which uses multi-media state and federal regulatory data to identify watersheds in Texas, Louisiana, Arkansas, Oklahoma, and New Mexico that are vulnerable to environmental damage and/or have high chemical emissions to the environment. The assess...

  3. Targets of curcumin

    PubMed Central

    Zhou, Hongyu; Beevers, Christopher S.; Huang, Shile

    2010-01-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-κB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer’s disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  4. [Radiotherapy of cancers of the pancreas and extrahepatic biliary tree. Gross tumor volume (GTV). Clinical target volume (CTV)].

    PubMed

    Atlan, D; Mornex, F

    2001-10-01

    Anatomical data of pancreas, biliary tree, regional lymph nodes is required to define GTV and CTV. In case of postoperative irradiation, CTV is designed in collaboration with radiation oncologist and surgeon oncologist. For exclusive radiotherapy, endodigestive ultrasonography, CT scan and MRI could help radiation oncologist defining GTV. Although, accuracy of all the imaging techniques in past years remains poor. Currently, no available literature is published regarding security margins for the definition of CTV. Therefore, recommendations according to clinical experience are proposed. PMID:11715305

  5. Image plane sweep volume illumination.

    PubMed

    Sundén, Erik; Ynnerman, Anders; Ropinski, Timo

    2011-12-01

    In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements. PMID:22034331

  6. Rain Volume Estimation over Areas Using Satellite and Radar Data

    NASA Technical Reports Server (NTRS)

    Doneaud, A. A.; Miller, J. R., Jr.; Johnson, L. R.; Vonderhaar, T. H.; Laybe, P.

    1984-01-01

    The application of satellite data to a recently developed radar technique used to estimate convective rain volumes over areas on a dry environment (the northern Great Plains) is discussed. The area time integral technique (ATI) provides a means of estimating total rain volumes over fixed and floating target areas of the order of 1,000 to 100,000 km(2) for clusters lasting 40 min. The basis of the method is the existence of a strong correlation between the area coverage integrated over the lifetime of the storm (ATI) and the rain volume. One key element in this technique is that it does not require the consideration of the structure of the radar intensities inside the area coverage to generate rain volumes, but only considers the rain event per se. This fact might reduce or eliminate some sources of error in applying the technique to satellite data. The second key element is that the ATI once determined can be converted to total rain volume by using a constant factor (average rain rate) for a given locale.

  7. Registration of multimodal volume head images via attached markers

    NASA Astrophysics Data System (ADS)

    Mandava, Venkateswara R.; Fitzpatrick, J. Michael; Maurer, Calvin R., Jr.; Maciunas, Robert J.; Allen, George S.

    1992-06-01

    We investigate the accuracy of registering arbitrarily oriented, multimodal, volume images of the human head, both to other images and to physical space, by aligning a configuration of three or more fiducial points that are the centers of attached markers. To compute the centers we use an extension of an adaptive thresholding algorithm due to Kittler. Because the markers are indistinguishable it is necessary to establish their correspondence between images. We have evaluated geometric matching algorithms for this purpose. The inherent errors in fiducial localization arising with digital images limits the accuracy with which anatomical targets can be registered. To accommodate this error we apply a least-squares registration algorithm to the fiducials. To evaluate the resulting target registration accuracy we have conducted experiments on images of internally implanted markers in a cadaver and images of externally attached markers in volunteers. We have also produced computer simulations of volume images of a hemispherical model of the head, randomly picking corresponding fiducial points and targets in the images, introducing uniformly distributed error into the fiducial locations, registering the images, and measuring target registration accuracy at the 95% confidence level. Our results indicate that submillimetric accuracy is feasible for high resolution images with four markers.

  8. Guilty Feelings, Targeted Actions

    PubMed Central

    Cryder, Cynthia E.; Springer, Stephen; Morewedge, Carey K.

    2014-01-01

    Early investigations of guilt cast it as an emotion that prompts broad reparative behaviors that help guilty individuals feel better about themselves or about their transgressions. The current investigation found support for a more recent representation of guilt as an emotion designed to identify and correct specific social offenses. Across five experiments, guilt influenced behavior in a targeted and strategic way. Guilt prompted participants to share resources more generously with others, but only did so when those others were persons whom the participant had wronged and only when those wronged individuals could notice the gesture. Rather than trigger broad reparative behaviors that remediate one’s general reputation or self-perception, guilt triggers targeted behaviors intended to remediate specific social transgressions. PMID:22337764

  9. Mitochondria-targeting particles

    PubMed Central

    Wongrakpanich, Amaraporn; Geary, Sean M; Joiner, Mei-ling A; Anderson, Mark E; Salem, Aliasger K

    2015-01-01

    Mitochondria are a promising therapeutic target for the detection, prevention and treatment of various human diseases such as cancer, neurodegenerative diseases, ischemia-reperfusion injury, diabetes and obesity. To reach mitochondria, therapeutic molecules need to not only gain access to specific organs, but also to overcome multiple barriers such as the cell membrane and the outer and inner mitochondrial membranes. Cellular and mitochondrial barriers can be potentially overcome through the design of mitochondriotropic particulate carriers capable of transporting drug molecules selectively to mitochondria. These particulate carriers or vectors can be made from lipids (liposomes), biodegradable polymers, or metals, protecting the drug cargo from rapid elimination and degradation in vivo. Many formulations can be tailored to target mitochondria by the incorporation of mitochondriotropic agents onto the surface and can be manufactured to desired sizes and molecular charge. Here, we summarize recently reported strategies for delivering therapeutic molecules to mitochondria using various particle-based formulations. PMID:25490424

  10. Targeted Therapy for Melanoma.

    PubMed

    Wong, Deborah J L; Ribas, Antoni

    2016-01-01

    Vemurafenib and dabrafenib, two potent tyrosine kinase inhibitors (TKIs) of the BRAF(V600E) kinase, are highly effective in the treatment of a BRAF (V600) -mutant metastatic melanoma. These are selective type I inhibitors (functional against the active conformation of the kinase) of the RAF kinases, which are key players in the mitogen-activated protein kinase (MAPK) pathway. BRAF (V600) mutations are present in approximately 7 % of all cancers, including high frequencies of mutations reported in 50 % of advanced melanomas and 100 % of hairy cell leukemias. As with most targeted therapies, resistance to BRAF inhibitors is an issue, and mechanisms of resistance are varied. Combining BRAF inhibitors with MEK inhibitors such as trametinib delays the development of resistance. Rationally combining targeted therapies to address the mechanism of resistance or combining BRAF inhibitors with other effective therapies such as immunotherapy may result in further improvement in outcomes for patients. PMID:26601866

  11. Guilty feelings, targeted actions.

    PubMed

    Cryder, Cynthia E; Springer, Stephen; Morewedge, Carey K

    2012-05-01

    Early investigations of guilt cast it as an emotion that prompts broad reparative behaviors that help guilty individuals feel better about themselves or about their transgressions. The current investigation found support for a more recent representation of guilt as an emotion designed to identify and correct specific social offenses. Across five experiments, guilt influenced behavior in a targeted and strategic way. Guilt prompted participants to share resources more generously with others, but only did so when those others were persons whom the participant had wronged and only when those wronged individuals could notice the gesture. Rather than trigger broad reparative behaviors that remediate one's general reputation or self-perception, guilt triggers targeted behaviors intended to remediate specific social transgressions. PMID:22337764

  12. Pushing the Limits of an O-18 Water Target

    SciTech Connect

    Nye, J.A.; Dick, D.W.; Nickles, R.J.

    2003-08-26

    A gridded-niobium target was constructed for the improvement of routine [18F]-fluorine production from 18O-enriched water on a CTI RDS 112 cyclotron. Niobium was chosen for its inertness and excellent thermal properties. The target volume consists of a 400{mu}L (active volume) niobium chamber mounted with a single entrance foil supported against an array of 3mm hexagonal holes with 0.25mm aluminum septa, machined by EDM. The target operates at high beam currents and elevated pressures and temperatures with significant reductions in maintenance intervals. Several diagnostic tools such as autoradiography, activation, and neutron logging optimize the performance and yield of the target. Entrance foils including Havar and Nb are used to assess the [18F] chemical compatibility, with FDG synthesis as the test reaction. The gridded, single-foiled niobium target chamber appears to be an improvement compared to a standard double-foiled helium cooled water target used with RDS cyclotrons.

  13. FOS Target Acquisition Test

    NASA Astrophysics Data System (ADS)

    Koratkar, Anuradha

    1994-01-01

    FOS onboard target acquisition software capabilities will be verified by this test -- point source binary, point source firmware, point source peak-up, wfpc2 assisted realtime, point source peak-down, taled assisted binary, taled assisted firmware, and nth star binary modes. The primary modes are tested 3 times to determine repeatability. This test is the only test that will verify mode-to-mode acquisition offsets. This test has to be conducted for both the RED and BLUE detectors.

  14. SETI target selection.

    PubMed

    Latham, D W; Soderblom, D R

    1995-01-01

    The NASA High Resolution Microwave Survey consists of two complementary elements: a Sky Survey of the entire sky to a moderate level of sensitivity; and a Targeted Search of nearby stars, one at a time, to a much deeper level of sensitivity. In this paper we propose strategies for target selection. We have two goals: to improve the chances of successful detection of signals from technical civilizations that inhabit planets around solar-type stars, and to minimize the chances of missing signals from unexpected sites. For the main Targeted Search survey of approximately 1000 nearby solar-type stars, we argue that the selection criteria should be heavily biased by what we know about the origin and evolution of life here on Earth. We propose that observations of stars with stellar companions orbiting near the habitable zone should be de-emphasized, because such companions would prevent the formation of habitable planets. We also propose that observations of stars younger than about three billion years should be de-emphasized in favor of older stars, because our own technical civilization took longer than three billion years to evolve here on Earth. To provide the information needed for the preparation of specific target lists, we have undertaken an inventory of a large sample of solar-type stars out to a distance of 60 pc, with the goal of characterizing the relevant astrophysical properties of these stars, especially their ages and companionship. To complement the main survey, we propose that a modest sample of the nearest stars should be observed without any selection biases whatsoever. Finally, we argue that efforts to identify stars with planetary systems should be expanded. If found, such systems should receive intensive scrutiny. PMID:11540737

  15. Targeting biodefense markets.

    PubMed

    Olinger, Gene Garrard

    2009-10-01

    The "World Vaccine Congress 2009" held in Washington D.C. (April 20-23, 2009) sponsored several sessions focused on the vaccine market targeting biodefense. On day one of the congress, a panel discussion outlined the federal progress in medical countermeasure preparedness that included emerging infections, influenza, and biodefense focuses. The second day, a session focused on the biodefense vaccine market with both government and industry members discussing the opportunities and challenges associated with the budding market. PMID:19855169

  16. Gender difference in hippocampal volume reduction among abstinent methamphetamine users

    PubMed Central

    Du, Jiang; Quan, Meina; Zhuang, Wenxu; Zong, Na; Jiang, Haifeng; Kennedy, David N.; Harrington, Amy; Ziedonis, Douglas; Fan, Xiaoduo; Zhao, Min

    2015-01-01

    Background and Aims Growing evidence suggests abnormalities in brain morphology including hippocampal structure in patients with methamphetamine (MA) dependence. Yet little is known about the possible gender difference. This study was performed to examine hippocampal volume in abstinent male and female MA users, and to further explore its relationship with cognitive function. Methods 27 abstinent MA users (19 males and 8 females) with average 5.75 months of duration and 29 healthy controls (19 males and 10 females) age 18 to 45 years old were recruited for clinical assessment and imaging scan. FreeSurfer was used to segment the hippocampus bilaterally, and hippocampal volumes were extracted for group and gender comparisons. Cognitive function was measured using the CogState Battery Chinese language version (CSB-C). Results Analysis of covariance (ANCOVA) controlling for education showed a significant group by gender interaction for right hippocampal relative volume adjusted for total brain size (p=0.002). Female patients showed significantly less volume compared with female healthy controls; there was no significant difference in volume between male patients and male healthy controls. Within female patients, there were significant negative relationships between right hippocampal volume and average dose of MA use (p=0.001), as well as the total error scores on the Continuous Paired Association Learning Task (CPAL) in CSB-C (p=0.013). Conclusions There seems to be a gender difference in how MA affects hippocampal volume and cognitive function in abstinent MA users. Hippocampus might be an important treatment target for cognitive improvement and functional recovery in this patient population, especially in females. PMID:25920682

  17. Age estimation from canine volumes.

    PubMed

    De Angelis, Danilo; Gaudio, Daniel; Guercini, Nicola; Cipriani, Filippo; Gibelli, Daniele; Caputi, Sergio; Cattaneo, Cristina

    2015-08-01

    Techniques for estimation of biological age are constantly evolving and are finding daily application in the forensic radiology field in cases concerning the estimation of the chronological age of a corpse in order to reconstruct the biological profile, or of a living subject, for example in cases of immigration of people without identity papers from a civil registry. The deposition of teeth secondary dentine and consequent decrease of pulp chamber in size are well known as aging phenomena, and they have been applied to the forensic context by the development of age estimation procedures, such as Kvaal-Solheim and Cameriere methods. The present study takes into consideration canines pulp chamber volume related to the entire teeth volume, with the aim of proposing new regression formulae for age estimation using 91 cone beam computerized scans and a freeware open-source software, in order to permit affordable reproducibility of volumes calculation. PMID:25698302

  18. Flex bearing UUEC, volume 2

    NASA Technical Reports Server (NTRS)

    Clapper, M. L.

    1993-01-01

    This volume, Volume 2, of this Flex Bearing UUEC Final Report documents findings and data pertaining to Team B's tasks. Team B was organized as one of two sub-teams of the Unplanned/Unintended Event or Condition (UUEC) board established per InterOffice Memorandum (IOM) A100-FY93-072. Team A determined the cause of the unacceptable unbonds (referred to as 'heat-affect' unbonds), including the initial, light rust film, in the FSM #3 flex bearing was overheating of the Forward End Ring (FER) during cure, specifically in zone 8 of the mold. Team A's findings are documented in Volume 1 of this report. Team B developed flight rationale for existing bearings, based on absence or presence of an unpropitious unbond condition like that in FSM #3's flex bearing.

  19. Radiation calibration targets

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several prominent features of Mars Pathfinder and surrounding terrain are seen in this image, taken by the Imager for Mars Pathfinder on July 4 (Sol 1), the spacecraft's first day on the Red Planet. Portions of a lander petal are at the lower part of the image. At the left, the mechanism for the high-gain antenna can be seen. The dark area along the right side of the image represents a portion of the low-gain antenna. The radiation calibration target is at the right. The calibration target is made up of a number of materials with well-characterized colors. The known colors of the calibration targets allow scientists to determine the true colors of the rocks and soils of Mars. Three bull's-eye rings provide a wide range of brightness for the camera, similar to a photographer's grayscale chart. In the middle of the bull's-eye is a 5-inch tall post that casts a shadow, which is distorted in this image due to its location with respect to the lander camera.

    A large rock is located at the near center of the image. Smaller rocks and areas of soil are strewn across the Martian terrain up to the horizon line.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C.

  20. Apparatus for forming targets

    DOEpatents

    Woerner, Robert L.

    1980-01-01

    Apparatus and method for cryoinduced uniform deposition of cryogenic materials, such as deuterium-tritium (DT) mixtures, on the inner surface of hollow spherical members, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on the inner surface of the spherical member. Heating of the cryogenic material, located within a non-isothermal compact freezing cell, is accomplished by an electrical heat pulse, whereafter the material is quickly frozen forming a uniform layer on the inner surface of the spherical member. The method is not restricted to producing a frozen layer on only the inner surface of the innermost hollow member, but where multiple concentric hollow spheres are involved, such as in multiple shell targets for lasers, electron beams, etc., layers of cryogenic material may also be formed on the inner surface of intermediate or outer spherical members, thus providing the capability of forming targets having multiple concentric layers or shells of frozen DT.

  1. Method for forming targets

    DOEpatents

    Woerner, Robert L.

    1979-01-01

    Method for cryoinduced uniform deposition of cryogenic materials, such as deuterium-tritium (DT) mixtures, on the inner surface of hollow spherical members, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on the inner surface of the spherical member. Heating of the cryogenic material, located within a non-isothermal compact freezing cell, is accomplished by an electrical heat pulse, whereafter the material is quickly frozen forming a uniform layer on the inner surface of the spherical member. The method is not restricted to producing a frozen layer on only the inner surface of the innermost hollow member, but where multiple concentric hollow spheres are involved, such as in multiple shell targets for lasers, electron beams, etc., layers of cryogenic material may also be formed on the inner surface of intermediate or outer spherical members, thus providing the capability of forming targets having multiple concentric layers or shells of frozen DT.

  2. New targets for DBS.

    PubMed

    Benabid, Alim Louis; Torres, Napoleon

    2012-01-01

    The specific effect of DBS at high frequency, discovered during a VIM thalamotomy, was extended to the older targets of ablative neurosurgery such as the pallidum, for tremor in Parkinson's disease (PD), dyskinesias, essential tremor, as well as the internal capsule to treat psychiatric disorders (OCD). A second wave of targets came from basic research, enabled by the low morbidity, reversibility, and adaptability of DBS. This was the case for the subthalamic nucleus (STN) which improves the triad of dopaminergic symptoms, and the pedunculopontine nucleus (PPN) for gait disorders in PD. The new concepts of the role of basal ganglia in psychiatric disorders indicate the subgenual cortex CG 25 for severe resistant depression, the accumbens nucleus for depression, anorexia nervosa, and addiction, and the thalamus intralaminar nuclei for minimally conscious states. Serendipity and a scientific approach have provided several instances where targets have produced unexpected effects (such as STN in OCD), as well as limbic effects observed during attempts at VMH stimulation for obesity: this might offer a novel way to treat mild cognitive impairment, or memory deficits reported in Alzheimer's disease. While these might provide solutions for as yet unsolved problems, attention must be paid to ethical considerations. PMID:22166437

  3. CDTI target selection criteria

    NASA Technical Reports Server (NTRS)

    Britt, C. L.; Davis, C. M.; Jackson, C. B.; Mcclellan, V. A.

    1984-01-01

    A Cockpit Display of Traffic Information (CDTI) is a cockpit instrument which provides information to the aircrew on the relative location of aircraft traffic in the vicinity of their aircraft (township). In addition, the CDTI may provide information to assist in navigation and in aircraft control. It is usually anticipated that the CDTI will be integrated with a horizontal situation indicator used for navigational purposes and/or with a weather radar display. In this study, several sets of aircraft traffic data are analyzed to determine statistics on the number of targets that will be displayed on a CDTI using various target selection criteria. Traffic data were obtained from an Atlanta Terminal Area Simulation and from radar tapes recorded at the Atlanta and Miami terminal areas. Results are given in the form of plots showing the average percentage of time (or probability) that an aircraft equipped with a CDTI would observe from 0 to 10 other aircraft on the display for range settings on the CDTI up to 30 n. mi. and using various target discrimination techniques.

  4. Nanocrystal targeting in vivo

    NASA Astrophysics Data System (ADS)

    Åkerman, Maria E.; Chan, Warren C. W.; Laakkonen, Pirjo; Bhatia, Sangeeta N.; Ruoslahti, Erkki

    2002-10-01

    Inorganic nanostructures that interface with biological systems have recently attracted widespread interest in biology and medicine. Nanoparticles are thought to have potential as novel intravascular probes for both diagnostic (e.g., imaging) and therapeutic purposes (e.g., drug delivery). Critical issues for successful nanoparticle delivery include the ability to target specific tissues and cell types and escape from the biological particulate filter known as the reticuloendothelial system. We set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (<10 nm) inorganic nanocrystals that possess unique luminescent properties; their fluorescence emission is stable and tuned by varying the particle size or composition. We show that ZnS-capped CdSe qdots coated with a lung-targeting peptide accumulate in the lungs of mice after i.v. injection, whereas two other peptides specifically direct qdots to blood vessels or lymphatic vessels in tumors. We also show that adding polyethylene glycol to the qdot coating prevents nonselective accumulation of qdots in reticuloendothelial tissues. These results encourage the construction of more complex nanostructures with capabilities such as disease sensing and drug delivery.

  5. Strategies Targeting Telomerase Inhibition

    PubMed Central

    Chen, Huaping; Li, Yuanyuan; Tollefsbol, Trygve O.

    2008-01-01

    Telomerase plays a pivotal role in cellular immortality and tumorigenesis. Its activity is normally not detectable in most somatic cells while it is reactivated in the vast majority of cancer cells. Therefore, inhibition of telomerase has been viewed as a promising anticancer approach due to its specificity for cancer cells. Studies so far have shown that telomerase inhibition can inhibit the proliferation of cancer cells or cause apoptosis while it has no effect on most normal cells. Strategies currently being applied to induce telomerase inhibition target virtually all of the major components of the ribonucleoprotein holoenzyme and related cell signal pathways that regulate its activity. These strategies include inhibition of telomerase through targeting at the telomerase reverse transcriptase (TERT) catalytic subunit, the telomerase RNA (TR) component, and associated proteins. Other strategies have been developed to target the proteins associated with telomerase at the telomeric ends of chromosomes such as tankyrase. The specific mechanisms that mediate those inhibition effects include small molecules, antisense RNA, and ribozymes. Although the beneficial evidence of telomerase inhibition is obvious, limitations of strategies remain to be resolved to increase the feasibility of clinical application. This analysis will summarize recent developments of strategies in telomerase inhibition. PMID:18956258

  6. Rockets and People. Volume 1

    NASA Technical Reports Server (NTRS)

    Chertok, Boris E; Siddiqi, Asif A. (Editor)

    2005-01-01

    Much has been written in the West on the history of the Soviet space program but few Westerners have read direct first-hand accounts of the men and women who were behind the many Russian accomplishments in exploring space.The memoirs of Academician Boris Chertok, translated from the original Russian, fills that gap.Chertok began his career as an electrician in 1930 at an aviation factory near Moscow.Twenty-seven years later, he became deputy to the founding figure of the Soviet space program, the mysterious Chief Designer Sergey Korolev. Chertok s sixty-year-long career and the many successes and failures of the Soviet space program constitute the core of his memoirs, Rockets and People. These writings are spread over four volumes. This is volume I. Academician Chertok not only describes and remembers, but also elicits and extracts profound insights from an epic story about a society s quest to explore the cosmos. In Volume 1, Chertok describes his early years as an engineer and ends with the mission to Germany after the end of World War II when the Soviets captured Nazi missile technology and expertise. Volume 2 takes up the story with the development of the world s first intercontinental ballistic missile ICBM) and ends with the launch of Sputnik and the early Moon probes. In Volume 3, Chertok recollects the great successes of the Soviet space program in the 1960s including the launch of the world s first space voyager Yuriy Gagarin as well as many events connected with the Cold War. Finally, in Volume 4, Chertok meditates at length on the massive Soviet lunar project designed to beat the Americans to the Moon in the 1960s, ending with his remembrances of the Energiya-Buran project.

  7. Gas volume contents within a container, smart volume instrument

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)

    2008-01-01

    A method for determining the volume of an incompressible gas in a system including incompressible substances in a zero-gravity environment. The method includes inducing a volumetric displacement within a container and measuring the resulting pressure change. From this data, the liquid level can be determined.

  8. Thai Basic Course. Volume 1 and Volume 2.

    ERIC Educational Resources Information Center

    Yates, Warren G.; Tryon, Absorn

    The 40 lessons in these two volumes and the accompanying tape recordings are designed to teach standard spoken Thai to Foreign Service Officers and other American Government personnel. After completing the "Programed Introduction to Thai Phonology," the student should be able to read the phonemic transcription in which all Thai material is…

  9. High air volume to low liquid volume aerosol collector

    DOEpatents

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  10. Be the Volume: A Classroom Activity to Visualize Volume Estimation

    ERIC Educational Resources Information Center

    Mikhaylov, Jessica

    2011-01-01

    A hands-on activity can help multivariable calculus students visualize surfaces and understand volume estimation. This activity can be extended to include the concepts of Fubini's Theorem and the visualization of the curves resulting from cross-sections of the surface. This activity uses students as pillars and a sheet or tablecloth for the…

  11. Maximum-Intensity Volumes for Fast Contouring of Lung Tumors Including Respiratory Motion in 4DCT Planning

    SciTech Connect

    Rietzel, Eike Liu, Arthur K.; Chen, George T.Y.; Choi, Noah C.

    2008-07-15

    Purpose: To assess the accuracy of maximum-intensity volumes (MIV) for fast contouring of lung tumors including respiratory motion. Methods and Materials: Four-dimensional computed tomography (4DCT) data of 10 patients were acquired. Maximum-intensity volumes were constructed by assigning the maximum Hounsfield unit in all CT volumes per geometric voxel to a new, synthetic volume. Gross tumor volumes (GTVs) were contoured on all CT volumes, and their union was constructed. The GTV with all its respiratory motion was contoured on the MIV as well. Union GTVs and GTVs including motion were compared visually. Furthermore, planning target volumes (PTVs) were constructed for the union of GTVs and the GTV on MIV. These PTVs were compared by centroid position, volume, geometric extent, and surface distance. Results: Visual comparison of GTVs demonstrated failure of the MIV technique for 5 of 10 patients. For adequate GTV{sub MIV}s, differences between PTVs were <1.0 mm in centroid position, 5% in volume, {+-}5 mm in geometric extent, and {+-}0.5 {+-} 2.0 mm in surface distance. These values represent the uncertainties for successful MIV contouring. Conclusion: Maximum-intensity volumes are a good first estimate for target volume definition including respiratory motion. However, it seems mandatory to validate each individual MIV by overlaying it on a movie loop displaying the 4DCT data and editing it for possible inadequate coverage of GTVs on additional 4DCT motion states.

  12. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  13. Disorders of Erythrocyte Volume Homeostasis

    PubMed Central

    Glogowska, Edyta; Gallagher, Patrick G.

    2015-01-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneity characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis. PMID:25976965

  14. Vector quantization for volume rendering

    NASA Technical Reports Server (NTRS)

    Ning, Paul; Hesselink, Lambertus

    1992-01-01

    Volume rendering techniques typically process volumetric data in raw, uncompressed form. As algorithmic and architectural advances improve rendering speeds, however, larger data sets will be evaluated requiring consideration of data storage and transmission issues. In this paper, we analyze the data compression requirements for volume rendering applications and present a solution based on vector quantization. The proposed system compresses volumetric data and then renders images directly from the new data format. Tests on a fluid flow data set demonstrate that good image quality may be achieved at a compression ratio of 17:1 with only a 5 percent cost in additional rendering time.

  15. Time-Critical Volume Rendering

    NASA Technical Reports Server (NTRS)

    Kaufman, Arie

    1998-01-01

    For the past twelve months, we have conducted and completed a joint research entitled "Time- Critical Volume Rendering" with NASA Ames. As expected, High performance volume rendering algorithms have been developed by exploring some new faster rendering techniques, including object presence acceleration, parallel processing, and hierarchical level-of-detail representation. Using our new techniques, initial experiments have achieved real-time rendering rates of more than 10 frames per second of various 3D data sets with highest resolution. A couple of joint papers and technique reports as well as an interactive real-time demo have been compiled as the result of this project.

  16. Foaming volume and foam stability

    NASA Technical Reports Server (NTRS)

    Ross, Sydney

    1947-01-01

    A method of measuring foaming volume is described and investigated to establish the critical factors in its operation. Data on foaming volumes and foam stabilities are given for a series of hydrocarbons and for a range of concentrations of aqueous ethylene-glycol solutions. It is shown that the amount of foam formed depends on the machinery of its production as well as on properties of the liquid, whereas the stability of the foam produced, within specified mechanical limitations, is primarily a function of the liquid.

  17. Inter-Fraction Tumor Volume Response during Lung Stereotactic Body Radiation Therapy Correlated to Patient Variables

    PubMed Central

    Ayan, Ahmet S.; Mo, Xiaokui; Williams, Terence M.; Mayr, Nina A.; Grecula, John C.; Chakravarti, Arnab; Xu-Welliver, Meng

    2016-01-01

    Purpose Analyze inter-fraction volumetric changes of lung tumors treated with stereotactic body radiation therapy (SBRT) and determine if the volume changes during treatment can be predicted and thus considered in treatment planning. Methods and Materials Kilo-voltage cone-beam CT (kV-CBCT) images obtained immediately prior to each fraction were used to monitor inter-fraction volumetric changes of 15 consecutive patients (18 lung nodules) treated with lung SBRT at our institution (45–54 Gy in 3–5 fractions) in the year of 2011–2012. Spearman's (ρ) correlation and Spearman's partial correlation analysis was performed with respect to patient/tumor and treatment characteristics. Multiple hypothesis correction was performed using False Discovery Rate (FDR) and q-values were reported. Results All tumors studied experienced volume change during treatment. Tumor increased in volume by an average of 15% and regressed by an average of 11%. The overall volume increase during treatment is contained within the planning target volume (PTV) for all tumors. Larger tumors increased in volume more than smaller tumors during treatment (q = 0.0029). The volume increase on CBCT was correlated to the treatment planning gross target volume (GTV) as well as internal target volumes (ITV) (q = 0.0085 and q = 0.0039 respectively) and could be predicted for tumors with a GTV less than 22 mL. The volume increase was correlated to the integral dose (ID) in the ITV at every fraction (q = 0.0049). The peak inter-fraction volume occurred at an earlier fraction in younger patients (q = 0.0122). Conclusions We introduced a new analysis method to follow inter-fraction tumor volume changes and determined that the observed changes during lung SBRT treatment are correlated to the initial tumor volume, integral dose (ID), and patient age. Furthermore, the volume increase during treatment of tumors less than 22mL can be predicted during treatment planning. The volume increase remained

  18. 40 CFR 791.48 - Production volume.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Production volume. 791.48 Section 791... (CONTINUED) DATA REIMBURSEMENT Basis for Proposed Order § 791.48 Production volume. (a) Production volume.... (b) For the purpose of determining fair reimbursement shares, production volume shall include...

  19. 40 CFR 791.48 - Production volume.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Production volume. 791.48 Section 791... (CONTINUED) DATA REIMBURSEMENT Basis for Proposed Order § 791.48 Production volume. (a) Production volume.... (b) For the purpose of determining fair reimbursement shares, production volume shall include...

  20. 40 CFR 791.48 - Production volume.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Production volume. 791.48 Section 791... (CONTINUED) DATA REIMBURSEMENT Basis for Proposed Order § 791.48 Production volume. (a) Production volume.... (b) For the purpose of determining fair reimbursement shares, production volume shall include...

  1. Carnegie Observatories Astrophysics 4 Volume Hardback Set

    NASA Astrophysics Data System (ADS)

    Ho, Luis

    2004-11-01

    Volume 1: Coevolution of Black Holes and Galaxies Luis C. Ho. Volume 2: Measuring and Modelling the Universe Wendy L. Freedman. Volume 3: Clusters of Galaxies John S. Mulchaey, Alan Dressler and Augustus Oemler. Volume 4: Origin and Evolution of the Elements Andrew McWilliam and Michael Rauch.

  2. Carnegie Observatories Astrophysics 4 Volume Paperback Set

    NASA Astrophysics Data System (ADS)

    Ho, Luis

    2011-11-01

    Volume 1: Coevolution of Black Holes and Galaxies Luis C. Ho. Volume 2: Measuring and Modelling the Universe Wendy L. Freedman. Volume 3: Clusters of Galaxies John S. Mulchaey, Alan Dressler and Augustus Oemler. Volume 4: Origin and Evolution of the Elements Andrew McWilliam and Michael Rauch.

  3. 40 CFR 791.48 - Production volume.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Production volume. 791.48 Section 791... (CONTINUED) DATA REIMBURSEMENT Basis for Proposed Order § 791.48 Production volume. (a) Production volume.... (b) For the purpose of determining fair reimbursement shares, production volume shall include...

  4. 40 CFR 791.48 - Production volume.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Production volume. 791.48 Section 791... (CONTINUED) DATA REIMBURSEMENT Basis for Proposed Order § 791.48 Production volume. (a) Production volume.... (b) For the purpose of determining fair reimbursement shares, production volume shall include...

  5. HANDBOOK: GROUND WATER VOLUME II: METHODOLOGY

    EPA Science Inventory

    This handbook is an extensively revised version of the Ground Water Handbook, originally published in 1987 as EPA/625/6-87/016. It has been published in two volumes: Volume I: Ground Water and Contamination, EPA/625/6-90/016a, and Volume II: Methodology, EPA/625/6-90/016b. Volume...

  6. Visual observation of boiling in high power liquid target

    NASA Astrophysics Data System (ADS)

    Peeples, J. L.; Stokely, M. H.; Poorman, M. C.; Magerl, M.; Wieland, B. W.

    2012-12-01

    A top pressurized, batch style, 3.15 mL total volume (2.5 mL fill volume) water target with transparent viewing windows was operated on an IBA 18/9 cyclotron at 18 MeV proton energy and beam power up to 1.1 kW. Video recordings documented bubble formation and transport, and blue light from de-excitation of water molecules produced images of proton beam stopping geometry including location of the Bragg peak.

  7. Visual observation of boiling in high power liquid target

    SciTech Connect

    Peeples, J. L.; Stokely, M. H.; Poorman, M. C.; Magerl, M.; Wieland, B. W.

    2012-12-19

    A top pressurized, batch style, 3.15 mL total volume (2.5 mL fill volume) water target with transparent viewing windows was operated on an IBA 18/9 cyclotron at 18 MeV proton energy and beam power up to 1.1 kW. Video recordings documented bubble formation and transport, and blue light from de-excitation of water molecules produced images of proton beam stopping geometry including location of the Bragg peak.

  8. Lung volume reduction therapies for advanced emphysema: an update.

    PubMed

    Berger, Robert L; Decamp, Malcolm M; Criner, Gerard J; Celli, Bartolome R

    2010-08-01

    Observational and randomized studies provide convincing evidence that lung volume reduction surgery (LVRS) improves symptoms, lung function, exercise tolerance, and life span in well-defined subsets of patients with emphysema. Yet, in the face of an estimated 3 million patients with emphysema in the United States, < 15 LVRS operations are performed monthly under the aegis of Medicare, in part because of misleading reporting in lay and medical publications suggesting that the operation is associated with prohibitive risks and offers minimal benefits. Thus, a treatment with proven potential for palliating and prolonging life may be underutilized. In an attempt to lower risks and cost, several bronchoscopic strategies (bronchoscopic emphysema treatment [BET]) to reduce lung volume have been introduced. The following three methods have been tested in some depth: (1) unidirectional valves that allow exit but bar entry of gas to collapse targeted hyperinflated portions of the lung and reduce overall volume; (2) biologic lung volume reduction (BioLVR) that involves intrabronchial administration of a biocompatible complex to collapse, inflame, scar, and shrink the targeted emphysematous lung; and (3) airway bypass tract (ABT) or creation of stented nonanatomic pathways between hyperinflated pulmonary parenchyma and bronchial tree to decompress and reduce the volume of oversized lung. The results of pilot and randomized pivotal clinical trials suggest that the bronchoscopic strategies are associated with lower mortality and morbidity but are also less efficient than LVRS. Most bronchoscopic approaches improve quality-of-life measures without supportive physiologic or exercise tolerance benefits. Although there is promise of limited therapeutic influence, the available information is not sufficient to recommend use of bronchoscopic strategies for treating emphysema. PMID:20682529

  9. Influence of target requirements on the production, acceleration, transport, and focusing of ion beams

    SciTech Connect

    Bangerter, R.O.; Mark, J.W.K.; Meeker, D.J.; Judd, D.L.

    1981-01-01

    We have calculated the energy gain of ion-driven fusion targets as a function of input energy, ion range, and focal spot radius. For heavy-ion drivers a given target gain, together with final-lens properties, determines a 6-D phase space volume which must exceed that occupied by the ion beam. Because of Liouville's theorem and the inevitability of some phase space dilutions, the beams's 6-D volume will increase between the ion source and the target. This imposes important requirements on accelerators and on transport and focusing systems.

  10. Computing Proton Dose to Irregularly Moving Targets

    PubMed Central

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-01-01

    Purpose While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, and 95.7% with 3 cm drift in the

  11. Computing proton dose to irregularly moving targets

    NASA Astrophysics Data System (ADS)

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-08-01

    Purpose: While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods: The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results: A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in the

  12. Wilderness Medicine Newsletter, Volume 5.

    ERIC Educational Resources Information Center

    Wilderness Medicine Newsletter, 1994

    1994-01-01

    This volume of newsletters addresses issues related to the treatment and prevention of medical emergencies in the wilderness. Each issue includes feature articles, book reviews, product reviews, letters to the editor, notices of upcoming wilderness conferences and training courses, additional resources, and general information relevant to medical…

  13. Korean Basic Course. Volume I.

    ERIC Educational Resources Information Center

    Park, B. Nam

    Volume I of the Korean Basic Course provides introductory materials for the student who wishes to achieve a working command of the language currently spoken by an estimated 40 to 43 million people on the Korean Peninsula and in Japan, Manchuria, and the Soviet Union. The linguistic content is based on the speech of educated Koreans in Seoul, the…

  14. Korean Basic Course. Volume Two.

    ERIC Educational Resources Information Center

    Park, B. Nam

    Volume Two of the Korean Basic Course contains Units 29 through 47. Most units consist of (1) a basic dialog, (2) notes on the basic dialog, (3) additional vocabulary and phrases, (4) grammar notes, (5) drills, (6) a supplementary dialog for comprehension, (7) a narrative for comprehension and reading, and (8) exercises. Two of the last units…

  15. Organ volume estimation using SPECT

    SciTech Connect

    Zaidi, H.

    1996-06-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang`s algorithm. The dual window method was used for scatter subtraction. The author used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of (1) fixed thresholding, (2) automatic thresholding, (3) attenuation, (4) scatter, and (5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are performed. The relative error is within 7% for the GLH method combined with attenuation and scatter corrections.

  16. Chemical measurement of urine volume

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.

    1978-01-01

    Chemical method of measuring volume of urine samples using lithium chloride dilution technique, does not interfere with analysis, is faster, and more accurate than standard volumetric of specific gravity/weight techniques. Adaptation of procedure to urinalysis could prove generally practical for hospital mineral balance and catechoamine determinations.

  17. Summation of IMS Volume Frequencies.

    ERIC Educational Resources Information Center

    Gordillo, Frank

    A computer program designed to produce summary information on the data processing volume of the Southwest Regional Laboratory's (SWRL) Instructional Management System (IMS) is described. Written in FORTRAN IV for use on an IBM 360 Model 91, the program sorts IMS input data on the basis of run identifier and on the basis of classroom identification…

  18. Modern Chemical Technology, Volume 7.

    ERIC Educational Resources Information Center

    Pecsok, Robert L.; Chapman, Kenneth

    This volume is one of the series for the Chemical Technician Curriculum Project (ChemTeC) of the American Chemical Society funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: the nature of reversible processes, equilibrium constants, variable reaction tendencies, practical…

  19. Leadership Abstracts; Volume 4, 1991.

    ERIC Educational Resources Information Center

    Doucette, Don, Ed.

    1991-01-01

    "Leadership Abstracts" is published bimonthly and distributed to the chief executive officer of every two-year college in the United States and Canada. This document consists of the 15 one-page abstracts published in 1991. Addressing a variety of topics of interest to the community college administrators, this volume includes: (1) "Delivering the…

  20. Modern Chemical Technology, Volume 5.

    ERIC Educational Resources Information Center

    Pecsok, Robert L., Ed.; Chapman, Kenneth, Ed.

    This volume contains chapters 26-31 for the American Chemical Society (ACS) "Modern Chemical Technology" (ChemTeC) instructional material intended to prepare chemical technologists. Chapter 26 reviews oxidation and reduction, including applications in titrations with potassium permanganate and iodometry. Coordination compounds are described in the…

  1. The African Experience. Volume I: Syllabus Lectures; Volume II: Bibliographic References; Volume IIIA: Introductory Essays; Volume IIIB: Introductory Essays.

    ERIC Educational Resources Information Center

    Paden, John N.; Soja, Edward W.

    In response to demands for more and better teaching about Africa in American higher education, the US Office of Education requested that the Program of African Studies at Northwestern University generate a set of teaching materials which could be used in introductory undergraduate courses. Included in these volumes, these materials provide…

  2. Modern Chemical Technology, Volume 4.

    ERIC Educational Resources Information Center

    Pecsok, Robert L.; Chapman, Kenneth

    This volume contains chapters 19 to 25 of the ACS "Modern Chemical Technology" (CHemTeC) curriculum material which is intended to prepare chemical technologists. Laboratory techniques and procedures are emphasized. The chapters cover the areas of the techniques of sampling, the techniques of weighing, sample preparation, the measurement of pH,…

  3. Modern Chemical Technology, Volume 3.

    ERIC Educational Resources Information Center

    Pecsok, Robert L.; Chapman, Kenneth

    This volume contains chapters 14-18 for the ACS "Modern Chemical Technology" (ChemTeC) instructional material which is intended to prepare chemical technologists. The content concentrates on the background needed to understand the periodic table; names of inorganic compounds; structures, names and classes of common organic material; chemistry and…

  4. PATRAM '80. Proceedings. Volume 2

    SciTech Connect

    Huebner, H.W.

    1980-01-01

    Volume 2 contains papers from the following sessions: Safeguards-Related Problems; Neutronics and Criticality; Operations and Systems Experience II; Plutonium Systems; Intermediate Storage in Casks; Operations and Systems Planning; Institutional Issues; Structural and Thermal Evaluation I; Poster Session B; Extended Testing I; Structural and Thermal Evaluation II; Extended Testing II; and Emergency Preparedness and Response. Individual papers were processed. (LM)

  5. Modern Chemical Technology, Volume 1.

    ERIC Educational Resources Information Center

    Pecsok, Robert L.; Chapman, Kenneth

    This volume is the first in a series of the ACS "Modern Chemical Technology" (ChemTeC) curriculum which is to prepare chemical technicians. The chapters concentrate on gas chromatography, tests for purity, properties of gases, and gas measurements. Included is the appropriate content, exercises, laboratory activities, and all needed mathematics.…

  6. Simple estimate of critical volume

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1980-01-01

    Method for estimating critical molar volume of materials is faster and simpler than previous procedures. Formula sums no more than 18 different contributions from components of chemical structure of material, and is as accurate (within 3 percent) as older more complicated models. Method should expedite many thermodynamic design calculations.

  7. Intermediate Nepali Structure. Volume 1.

    ERIC Educational Resources Information Center

    Verma, M. K.; Sharma, T. N.

    This volume is made up of 20 lessons and is part of a comprehensive course in intermediate Nepali. It explains and illustrates the basic structures of Nepali grammar through lessons which include different tense forms, postpositions, conditionals, comparatives, and other structural elements. The first lesson is devoted specifically to guiding…

  8. Innovation Abstracts, Volume XV, 1993.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1993-01-01

    This volume of 30 one- to two-page abstracts from 1993 highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) role-playing to encourage critical thinking; (2) team learning techniques to cultivate business skills; (3) librarian-instructor partnerships to create…

  9. PATRAM '80. Proceedings. Volume 1

    SciTech Connect

    Huebner, H.W.

    1980-01-01

    Volume 1 contains papers from the following sessions: Plenary Session; Regulations, Licensing and Standards; LMFBR Systems Concepts; Risk/Safety Assessment I; Systems and Package Design; US Institutional Issues; Risk/Safety Assessment II; Leakage, Leak Rate and Seals; Poster Session A; Operations and Systems Experience I; Manufacturing Processes and Materials; and Quality Assurance and Maintenance. Individual papers were processed. (LM)

  10. Safety Education Handbook. Volume 2.

    ERIC Educational Resources Information Center

    Kansas State Dept. of Education, Topeka.

    This is the second of three volumes of a safety guide developed to assist Kansas administrators and teachers in organizing, evaluating, and maintaining safety programs. It provides information to help them identify, assess, and correct unsafe conditions relating to equipment and facilities and ensure a safe and healthy environment for themselves…

  11. Advances in Librarianship. Volume 6.

    ERIC Educational Resources Information Center

    Voigt, Melvin J., Ed.; Harris, Michael H., Ed.

    A major theme of this volume is the issue of library accountability and evaluation of productivity. Four review papers deal directly with the topic. The first reviews the literature relating to evaluation of libraries generally with an emphasis on school libraries. The second focuses on the measurement of productivity in the academic library. It…

  12. Advances In Librarianship. Volume 2.

    ERIC Educational Resources Information Center

    Voigt, Melvin J., Ed.

    The authors of this second volume provide a composite contribution to a broader understanding of some of the major topics affecting libraries and their operation today. These contributions are in keeping with the aim of the series of providing scholarly reviews of specific topics related to the rapidly changing and advancing field of…

  13. Partial specific volume of xanthan

    NASA Astrophysics Data System (ADS)

    Wohlfarth, Ch.

    This document is part of Subvolume D2 'Polymer Solutions - Physical Properties and their Relations I (Thermodynamic Properties: PVT -Data and miscellaneous Properties of polymer Solutions) of Volume 6 `Polymers' of Landolt-Börnstein - Group VIII `Advanced Materials and Technologies'.

  14. The volume change during solidification

    NASA Technical Reports Server (NTRS)

    Rittich, M.

    1985-01-01

    The liquid-solid phase transformation of solidifying metallic melts is accompanied by a volume change Delta-Vm. This volume change produces a gravity-independent microscopic flow near the solidification front. In a ground-based laboratory, solidification processes are also affected by convection due to temperature and concentration gradients. A quantitative evaluation of the effects of these flows on the formation of structure requires reproducible values of Delta-Vm. Alloys with Delta-Vm = 0 would be best suited for such an evaluation, while alloys with a constant value for Delta-Vm are still usable. Another requirement is related to a solidus-liquidus interval which is as small as possible. One-phase alloys, which would be particularly well suited, could not be found. For these reasons, alloys which solidify in two phases, as for example eutectics, have been considered, taking into account the Al-Ge system. Attention is given to the volume change at the melting point, the measurement of this change, the volume change at solidification, and applications to terrestrial technology.

  15. Rural Libraries, Volume XIV, 1994.

    ERIC Educational Resources Information Center

    Pratt, Mary Lou, Ed.

    1994-01-01

    The 2 issues in this volume contain 10 articles on rural libraries and information access in rural America. Topics include telecommunications and distance education in Nebraska, the future of small rural public libraries, federal programs to improve rural access to information, outreach issues for public libraries, and the role of information in…

  16. Skylab Experiments, Volume 6, Mechanics.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Volume 6, one of a series of booklets designed to acquaint teachers with the Skylab Program, is focused on mechanics. Introductory material provides background information on Skylab and its related education program. Section 1 of the booklet presents relevant physics content concerning the concept of mechanics. Section 2 contains a discussion of…

  17. Modern Chemical Technology, Volume 2.

    ERIC Educational Resources Information Center

    Pecsok, Robert L.; Chapman, Kenneth

    This volume contains chapters 8 to 13 of the ACS "Modern Chemical Technology" (ChemTeC) curriculum material which is intended to prepare chemical technologists. The content is centered around the background needed to understand the structure of the atom, covalence, electrovalence, elements and compounds, liquids and solutions, and chemical…

  18. Modern Chemical Technology, Volume 8.

    ERIC Educational Resources Information Center

    Pecsok, Robert L.; Chapman, Kenneth

    This volume is one of a series for the Chemical Technician Curriculum Project (ChemTeC) of the American Chemical Society funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: amino acids and proteins, carbohydrates, synthetic polymers, other natural products, chemical separations…

  19. Physics in Perspective, Volume I.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Physics Survey Committee.

    As the second report on physics disciplines, a balanced picture of recent progress in relation to other scientific fields and human civilization is presented in this first volume prepared by the Physics Survey Committee. Fourteen chapters are included with the first one dealing with the origin, objectives, and organization of the Committee. The…

  20. Cost, volume and profitability analysis.

    PubMed

    Tarantino, David P

    2002-01-01

    If you want to increase your income by seeing more patients, it's important to figure out the financial impact such a move could have on your practice. Learn how to run a cost, volume, and profitability analysis to determine how business decisions can change your financial picture. PMID:11806235

  1. Modern Chemical Technology, Volume 6.

    ERIC Educational Resources Information Center

    Pecsok, Robert L., Ed.; Chapman, Kenneth, Ed.

    This volume contains chapters 32-39 for the American Chemical Society (ACS) "Modern Chemical Technology" (ChemTeC) instructional materials intended to prepare chemical technologists. The study of organic chemistry is continued as these major topics are considered: alcohols and phenols, alkyl and aryl halides, ethers, aldehydes and ketones,…

  2. Modern Chemical Technology, Volume 9.

    ERIC Educational Resources Information Center

    Pecsok, Robert L.; Chapman, Kenneth

    This volume is one of the series for the Chemical Technician Curriculum Project (ChemTeC) of the American Chemical Society funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: ion exchange, electrphoresis, dialysis, electrochemistry, corrosion, electrolytic cells, coulometry,…

  3. Construction Cluster Volume III [Plumbing].

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is the third of a series, to be integrated with a G.E.D. program, containing instructional materials at the basic skills level for the construction cluster. The volume focuses on plumbing and consists of 20 instructional units which require a month of study. The units include: (1) importance of plumbing; (2) pipe and tubing…

  4. Healing Magazine, Volume 8, 2003.

    ERIC Educational Resources Information Center

    2003

    This volume of "Healing Magazine" features practical, clinical information aimed at sharing current work in children's mental health. The first issue contains articles on intervention for self-injurious behavior, providing school-based grief groups, effectively using time-out as a parenting tool, and KidsPeace's suicide prevention program. The…

  5. NASA Thesaurus. Volume 1: Hierarchical listing. Volume 2: Access vocabulary. Volume 3: Definitions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    There are over 17,500 postable terms and some 4,000 nonpostable terms approved for use in the NASA Scientific and Technical Information Database in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions.

  6. Cooperative assembly in targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Auguste, Debra

    2012-02-01

    Described as cell analogues, liposomes are self-assembled lipid bilayer spheres that encapsulate aqueous volumes. Liposomes offer several drug delivery advantages due to their structural versatility related to size, composition, bilayer fluidity, and ability to encapsulate a large variety of compounds non-covalently. However, liposomes lack the structural information embedded within cell membranes. Partitioning of unsaturated and saturated lipids into liquid crystalline (Lα) and gel phase (Lβ) domains, respectively, affects local molecular diffusion and elasticity. Liposome microdomains may be used to pattern molecules, such as antibodies, on the liposome surface to create concentrated, segregated binding regions. We have synthesized, characterized, and evaluated a series of homogeneous and heterogeneous liposomal vehicles that target inflamed endothelium. These drug delivery vehicles are designed to complement the heterogeneous presentation of lipids and receptors on endothelial cells (ECs). EC surfaces are dynamic; they segregate receptors within saturated lipid microdomains on the cell surface to regulate binding and signaling events. We have demonstrated that cooperative binding of two antibodies enhances targeting by multiple fold. Further, we have shown that organization of these antibodies on the surface can further enhance cell uptake. The data suggest that EC targeting may be enhanced by designing liposomes that mirror the segregated structure of lipid and receptor molecules involved in neutrophil-EC adhesion. This strategy is employed in an atherosclerotic mouse model in vivo.

  7. High Efficiency Diffusion Molecular Retention Tumor Targeting

    PubMed Central

    Guo, Yanyan; Yuan, Hushan; Cho, Hoonsung; Kuruppu, Darshini; Jokivarsi, Kimmo; Agarwal, Aayush; Shah, Khalid; Josephson, Lee

    2013-01-01

    Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for 111 In3+), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or IV methods was assessed by surface fluorescence, biodistribution of [111In] RGD and [111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by IV). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light. PMID:23505478

  8. Pharmacologic agents targeting autophagy

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Xia, Hong-guang; Yuan, Junying

    2015-01-01

    Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies. PMID:25654545

  9. Target Mass Corrections Revisited

    SciTech Connect

    W. Melnitchouk; F. Steffens

    2006-03-07

    We propose a new implementation of target mass corrections to nucleon structure functions which, unlike existing treatments, has the correct kinematic threshold behavior at finite Q{sup 2} in the x {yields} 1 limit. We illustrate the differences between the new approach and existing prescriptions by considering specific examples for the F{sub 2} and F{sub L} structure functions, and discuss the broader implications of our results, which call into question the notion of universal parton distribution at finite Q{sup 2}.

  10. Targeting Breast Cancer Metastasis

    PubMed Central

    Jin, Xin; Mu, Ping

    2015-01-01

    Metastasis is the leading cause of breast cancer-associated deaths. Despite the significant improvement in current therapies in extending patient life, 30–40% of patients may eventually suffer from distant relapse and succumb to the disease. Consequently, a deeper understanding of the metastasis biology is key to developing better treatment strategies and achieving long-lasting therapeutic efficacies against breast cancer. This review covers recent breakthroughs in the discovery of various metastatic traits that contribute to the metastasis cascade of breast cancer, which may provide novel avenues for therapeutic targeting. PMID:26380552

  11. Generation of Parametric Equivalent-Area Targets for Design of Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood

    2011-01-01

    A tool with an Excel visual interface is developed to generate equivalent-area (A(sub e)) targets that satisfy the volume constraints for a low-boom supersonic configuration. The new parametric Ae target explorer allows users to interactively study the tradeoffs between the aircraft volume constraints and the low-boom characteristics (e.g., loudness) of the ground signature. Moreover, numerical optimization can be used to generate the optimal A(sub e) target for given A(sub e) volume constraints. A case study is used to demonstrate how a generated low-boom Ae target can be matched by a supersonic configuration that includes a fuselage, wing, nacelle, pylon, aft pod, horizontal tail, and vertical tail. The low-boom configuration is verified by sonic-boom analysis with an off-body pressure distribution at three body lengths below the configuration

  12. Non-Targeted Analysis Challenge (Non-targeted screening workshop)

    EPA Science Inventory

    This brief presentation is intended to motivate discussion of the "Non-Targeted Analysis Challenge" at the Advancing Non-Targeted Analyses of Xenobiotics in Environmental and Biological Media workshop held at the EPA RTP campus.

  13. Shielding calculations for a production target for secondary beams

    SciTech Connect

    Rehm, K.E.; Back, B.B.; Jiang, C.L.

    1995-08-01

    In order to estimate the amount of shielding required for a radioactive beam facility dose rate were performed. The calculations for production targets with different geometries were performed. The calculations were performed with the MSU shielding code assuming a 500-p{mu}A 200-MeV deuteron beam stopped in a thick Al target. The target and the ion-optical elements for beam extraction are located in a 2 m{sup 3} large volume at the center of the production cell. These dose rate calculations show that with a combination of Fe and concrete it is possible to reduce the dose rate expected at the surface of a 7-m-wide cube housing the production target to less than 2 mrem/hr.

  14. Targeted therapy for sarcomas

    PubMed Central

    Forscher, Charles; Mita, Monica; Figlin, Robert

    2014-01-01

    Sarcomas are tumors of mesenchymal origin that make up approximately 1% of human cancers. They may arise as primary tumors in either bone or soft tissue, with approximately 11,280 soft tissue tumors and 2,650 bone tumors diagnosed each year in the United States. There are at least 50 different subtypes of soft tissue sarcoma, with new ones described with ever-increasing frequency. One way to look at sarcomas is to divide them into categories on the basis of their genetic make-up. One group of sarcomas has an identifiable, relatively simple genetic signature, such as the X:18 translocation seen in synovial sarcoma or the 11:22 translocation seen in Ewing’s sarcoma. These specific abnormalities often lead to the presence of fusion proteins, such as EWS-FLI1 in Ewing’s sarcoma, which are helpful as diagnostic tools and may become therapeutic targets in the future. Another group of sarcomas is characterized by complex genetic abnormalities as seen in leiomyosarcoma, osteosarcoma, and undifferentiated sarcoma. It is important to keep these distinctions in mind when contemplating the development of targeted agents for sarcomas. Different abnormalities in sarcoma could be divided by tumor subtype or by the molecular or pathway abnormality. However, some existing drugs or drugs in development may interfere with or alter more than one of the presented pathways. PMID:24669185

  15. Targeted therapy in melanoma.

    PubMed

    Kudchadkar, Ragini R; Smalley, Keiran S M; Glass, L Frank; Trimble, James S; Sondak, Vernon K

    2013-01-01

    Since the discovery of activating mutations in the BRAF oncogene in melanoma, there has been remarkable progress in the development of targeted therapies for unresectable and metastatic melanoma. We review the latest developments in our understanding of the role of BRAF/MEK/ERK pathway signaling in melanoma, and the development of inhibitors of this pathway. We also explore alternative mutations seen in melanoma, such as NRAS, KIT, GNAQ, and GNA11, and the drug development that is ongoing based on this biology. Strategies for the management of the vexing clinical problem of BRAF inhibitor resistance, primarily via combination therapy, are outlined. With the recent approval of the BRAF inhibitor vemurafenib for stage IV metastatic melanoma, use of this agent is expanding in the United States. Thus, management of the skin toxicities of this agent, such as squamous cell carcinomas, "acneiform" eruptions, hand-foot syndrome, and panniculitis, will be a growing problem facing dermatologists today. We discuss the toxicities of targeted agents in use for melanoma, in particular the dermatologic effects and the management of these skin toxicities. PMID:23438383

  16. Extrapolating target tracks

    NASA Astrophysics Data System (ADS)

    Van Zandt, James R.

    2012-05-01

    Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.

  17. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  18. High-Volume Hospitals with High-Volume and Low-Volume Surgeons: Is There a "Field Effect" for Pancreaticoduodenectomy?

    PubMed

    Wood, Thomas W; Ross, Sharona B; Bowman, Ty A; Smart, Amanda; Ryan, Carrie E; Sadowitz, Benjamin; Downs, Darrell; Rosemurgy, Alexander S

    2016-05-01

    Since the Leapfrog Group established hospital volume criteria for pancreaticoduodenectomy (PD), the importance of surgeon volume versus hospital volume in obtaining superior outcomes has been debated. This study was undertaken to determine whether low-volume surgeons attain the same outcomes after PD as high-volume surgeons at high-volume hospitals. PDs undertaken from 2010 to 2012 were obtained from the Florida Agency for Health Care Administration. High-volume hospitals were identified. Surgeon volumes within were determined; postoperative length of stay (LOS), in-hospital mortality, discharge status, and hospital charges were examined relative to surgeon volume. Six high-volume hospitals were identified. Each hospital had at least one surgeon undertaking ≥ 12 PDs per year and at least one surgeon undertaking < 12 PDs per year. Within these six hospitals, there were 10 "high-volume" surgeons undertaking 714 PDs over the three-year period (average of 24 PDs per surgeon per year), and 33 "low-volume" surgeons undertaking 225 PDs over the three-year period (average of two PDs per surgeon per year). For all surgeons, the frequency with which surgeons undertook PD did not predict LOS, in-hospital mortality, discharge status, or hospital charges. At the six high-volume hospitals examined from 2010 to 2012, low-volume surgeons undertaking PD did not have different patient outcomes from their high-volume counterparts with respect to patient LOS, in-hospital mortality, patient discharge status, or hospital charges. Although the discussion of volume for complex operations has shifted toward surgeon volume, hospital volume must remain part of the discussion as there seems to be a hospital "field effect." PMID:27215720

  19. Site Environmental Report for 2005 Volume I and Volume II

    SciTech Connect

    Ruggieri, Michael

    2006-07-07

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the prefixes

  20. Crater morphology in sandstone targets: The MEMIN impact parameter study

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Poelchau, Michael H.; Kenkmann, Thomas; Deutsch, Alex; Hoerth, Tobias; SchńFer, Frank; Thoma, Klaus

    2013-01-01

    Hypervelocity (2.5-7.8 km s-1) impact experiments into sandstone were carried out to investigate the influence of projectile velocity and mass, target pore space saturation, target-projectile density contrast, and target layer orientation on crater size and shape. Crater size increases with increasing projectile velocity and mass as well as with increasing target pore space saturation. Craters in water-saturated porous targets are generally shallower and larger in volume and in diameter than craters from equivalent impacts into dry porous sandstone. Morphometric analyses of the resultant craters, 5-40 cm in diameter, reveal features that are characteristic of all of our experimental craters regardless of impact conditions (I) a large central depression within a fragile, light-colored central part, and (II) an outer spallation zone with areas of incipient spallation. Two different mechanical processes, grain fragmentation and intergranular tensile fracturing, are recorded within these crater morphologies. Zone (I) approximates the shape of the transient crater formed by material compression, displacement, comminution, and excavation flow, whereas (II) is the result of intergranular tensile fracturing and spallation. The transient crater dimensions are reconstructed by fitting quadric parabolas to crater profiles from digital elevation models. The dimensions of this transient and of the final crater show the same trends: both increase in volume with increasing impact energy, and with increasing water saturation of the target pore space. The relative size of the transient crater (in percent of the final crater volume) decreases with increasing projectile mass and velocity, signifying a greater contribution of spallation on the final crater size when projectile mass and velocity are increased.