Science.gov

Sample records for autoimmune diabetic nod

  1. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes.

    PubMed

    Pearson, James A; Wong, F Susan; Wen, Li

    2016-01-01

    Type 1 Diabetes (T1D) is an autoimmune disease characterized by the pancreatic infiltration of immune cells resulting in T cell-mediated destruction of the insulin-producing beta cells. The successes of the Non-Obese Diabetic (NOD) mouse model have come in multiple forms including identifying key genetic and environmental risk factors e.g. Idd loci and effects of microorganisms including the gut microbiota, respectively, and how they may contribute to disease susceptibility and pathogenesis. Furthermore, the NOD model also provides insights into the roles of the innate immune cells as well as the B cells in contributing to the T cell-mediated disease. Unlike many autoimmune disease models, the NOD mouse develops spontaneous disease and has many similarities to human T1D. Through exploiting these similarities many targets have been identified for immune-intervention strategies. Although many of these immunotherapies did not have a significant impact on human T1D, they have been shown to be effective in the NOD mouse in early stage disease, which is not equivalent to trials in newly-diagnosed patients with diabetes. However, the continued development of humanized NOD mice would enable further clinical developments, bringing T1D research to a new translational level. Therefore, it is the aim of this review to discuss the importance of the NOD model in identifying the roles of the innate immune system and the interaction with the gut microbiota in modifying diabetes susceptibility. In addition, the role of the B cells will also be discussed with new insights gained through B cell depletion experiments and the impact on translational developments. Finally, this review will also discuss the future of the NOD mouse and the development of humanized NOD mice, providing novel insights into human T1D. PMID:26403950

  2. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice.

    PubMed

    Alkan, Manal; Machavoine, François; Rignault, Rachel; Dam, Julie; Dy, Michel; Thieblemont, Nathalie

    2015-01-01

    Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC(-/-) mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC(-/-) mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC(-/-) mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response. PMID:26090474

  3. TAK1 inhibition prevents the development of autoimmune diabetes in NOD mice.

    PubMed

    Cao, Hui; Lu, Jingli; Du, Jiao; Xia, Fei; Wei, Shouguo; Liu, Xiulan; Liu, Tingting; Liu, Yang; Xiang, Ming

    2015-01-01

    Transforming growth factor-β activated kinase-1 (TAK1, Map3k7), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is essential in innate and adaptive immune responses. We postulated that blockade of TAK1 would affect autoimmune diabetes in non-obese diabetic (NOD) mice. Administration of 5Z-7-oxozeaenol (OZ), a TAK1 inhibitor, decreased the incidence and delayed the onset of autoimmune diabetes in both spontaneous and accelerated (cyclophosphamide-induced) experimental NOD mice. OZ also reduced insulitis, preserved islet function, increased the expression of α1- antitrypsin (AAT), and severely inhibited NF-κB and JNK/AP-1 signaling pathways in immune organs and pancreatic tissues. Importantly, TAK1 inhibition by OZ elicited a Th1 to Th2 cytokine shift, and increased TGF-β1 production in cultured T lymphocytes supernatants. Systemic TAK1 inhibition induced immature DCs with lower expressions of MHC-II and CD86, attenuated DC-mediated T cell proliferation in allogeneic MLR, and production of cytokine IL-12p70 in DCs suspensions. The results indicate that TAK1 inhibition with OZ was associated with a lower frequency of autoimmune diabetes in NOD mice. The net effect of TAK1 inhibition in NOD mice therefore appears to be protective rather than disease-enhancing. Strategies targeting TAK1 specifically in NOD mice might prove useful for the treatment of autoimmune diabetes in general. PMID:26459028

  4. Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice.

    PubMed

    Ramakrishnan, Parameswaran; Yui, Mary A; Tomalka, Jeffrey A; Majumdar, Devdoot; Parameswaran, Reshmi; Baltimore, David

    2016-08-01

    The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel-deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel-deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes. We found that both CD4(+) and CD8(+) T cells from c-Rel-deficient NOD mice showed significantly decreased T-cell receptor-induced IL-2, IFN-γ, and GM-CSF expression. Despite compromised T-cell function, c-Rel deficiency dramatically accelerated insulitis and hyperglycemia in NOD mice along with a substantial reduction in T-regulatory (Treg) cell numbers. Supplementation of isogenic c-Rel-competent Treg cells from prediabetic NOD mice reversed the accelerated diabetes development in c-Rel-deficient NOD mice. The results suggest that c-Rel-dependent Treg cell function is critical in suppressing early-onset autoimmune diabetogenesis in NOD mice. This study provides a novel natural system to study autoimmune diabetes pathogenesis and reveals a previously unknown c-Rel-dependent mechanistic difference between chemically induced and spontaneous diabetogenesis. The study also reveals a unique protective role of c-Rel in autoimmune diabetes, which is distinct from other T-cell-dependent autoimmune diseases such as arthritis and experimental autoimmune encephalomyelitis, where c-Rel promotes autoimmunity. PMID:27217485

  5. Inhibition of Autoimmune Diabetes in NOD Mice by miRNA Therapy

    PubMed Central

    Wang, Duncheng; Shanina, Iryna; Toyofuku, Wendy M.; Horwitz, Marc S.; Scott, Mark D.

    2015-01-01

    Autoimmune destruction of the pancreatic islets in Type 1 diabetes is mediated by both increased proinflammatory (Teff) and decreased regulatory (Treg) T lymphocytes resulting in a significant decrease in the Treg:Teff ratio. The non-obese diabetic (NOD) mouse is an excellent in vivo model for testing potential therapeutics for attenuating the decrease in the Treg:Teff ratio and inhibiting disease pathogenesis. Here we show for the first time that a bioreactor manufactured therapeutic consisting of a complex of miRNA species (denoted as TA1) can effectively reset the NOD immune system from a proinflammatory to a tolerogenic state thus preventing or delaying autoimmune diabetes. Treatment of NOD mice with TA1 resulted in a systemic broad-spectrum upregulation of tolerogenic T cell subsets with a parallel downregulation of Teff subsets yielding a dramatic increase in the Treg:Teff ratio. Moreover, the murine-derived TA1 was highly effective in the inhibition of allorecognition of HLA-disparate human PBMC. TA1 demonstrated dose-responsiveness and exhibited equivalent or better inhibition of allorecognition driven proliferation than etanercept (a soluble TNF receptor). These findings demonstrate that miRNA-based therapeutics can effectively attenuate or arrest autoimmune disease processes and may be of significant utility in a broad range of autoimmune diseases including Type 1 diabetes. PMID:26674203

  6. Inhibition of Autoimmune Diabetes in NOD Mice by miRNA Therapy.

    PubMed

    Wang, Duncheng; Shanina, Iryna; Toyofuku, Wendy M; Horwitz, Marc S; Scott, Mark D

    2015-01-01

    Autoimmune destruction of the pancreatic islets in Type 1 diabetes is mediated by both increased proinflammatory (Teff) and decreased regulatory (Treg) T lymphocytes resulting in a significant decrease in the Treg:Teff ratio. The non-obese diabetic (NOD) mouse is an excellent in vivo model for testing potential therapeutics for attenuating the decrease in the Treg:Teff ratio and inhibiting disease pathogenesis. Here we show for the first time that a bioreactor manufactured therapeutic consisting of a complex of miRNA species (denoted as TA1) can effectively reset the NOD immune system from a proinflammatory to a tolerogenic state thus preventing or delaying autoimmune diabetes. Treatment of NOD mice with TA1 resulted in a systemic broad-spectrum upregulation of tolerogenic T cell subsets with a parallel downregulation of Teff subsets yielding a dramatic increase in the Treg:Teff ratio. Moreover, the murine-derived TA1 was highly effective in the inhibition of allorecognition of HLA-disparate human PBMC. TA1 demonstrated dose-responsiveness and exhibited equivalent or better inhibition of allorecognition driven proliferation than etanercept (a soluble TNF receptor). These findings demonstrate that miRNA-based therapeutics can effectively attenuate or arrest autoimmune disease processes and may be of significant utility in a broad range of autoimmune diseases including Type 1 diabetes. PMID:26674203

  7. Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse.

    PubMed

    Ferris, Stephen T; Carrero, Javier A; Unanue, Emil R

    2016-07-01

    This is a brief summary of our studies of NOD autoimmune diabetes examining the events during the initial stage of the process. Our focus has been on antigen presentation events and the antigen presenting cells (APC) inside islets. Islets of non-diabetic mice contain resident macrophages that are developmentally distinct from those in the inter-acinar stroma. The autoimmune process starts with the entrance of CD4+ T cells together with a burst of a subset of dendritic cells (DC) bearing CD103. The CD103+ DC develop under the influence of the Batf3 transcription factor. Batf3 deficient mice do not develop diabetes and their islets are uninfiltrated throughout life. Thus, the CD103+ DC are necessary for the progression of autoimmune diabetes. The major CD4+ T cell response in NOD are the T cells directed to insulin. In particular, the non-conventional 12-20 segment of the insulin B chain is presented by the class II MHC molecule I-A(g7) and elicits pathogenic CD4+ T cells. We discuss that the diabetic process requires the CD103+ DC, the CD4+ T cells to insulin peptides, and NOD specific I-Ag(7) MHC-II allele. Finally, our initial studies indicate that beta cells transfer insulin containing vesicles to the local APC in a contact-dependent reaction. Live images of beta cells interactions with the APC and electron micrographs of islet APCs also show the transfer of granules. PMID:27021276

  8. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    SciTech Connect

    Lee, Y.S.; Kim, D.; Lee, E.K.; Kim, S.; Choi, C.S.; Jun, H.S.

    2015-04-15

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  9. Hematopoietic mixed chimerism derived from allogeneic embryonic stem cells prevents autoimmune diabetes mellitus in NOD mice.

    PubMed

    Verda, Larissa; Kim, Duck An; Ikehara, Susumu; Statkute, Laisvyde; Bronesky, Delphine; Petrenko, Yevgeniya; Oyama, Yu; He, Xiang; Link, Charles; Vahanian, Nicholas N; Burt, Richard K

    2008-02-01

    Embryonic stem cell (ESC)-derived hematopoietic stem cells (HSC), unlike HSC harvested from the blood or marrow, are not contaminated by lymphocytes. We therefore evaluated whether ESC-derived HSC could produce islet cell tolerance, a phenomenon termed graft versus autoimmunity (GVA), without causing the usual allogeneic hematopoietic stem cell transplant complication, graft-versus-host disease (GVHD). Herein, we demonstrate that ESC-derived HSC may be used to prevent autoimmune diabetes mellitus in NOD mice without GVHD or other adverse side effects. ESC were cultured in vitro to induce differentiation toward HSC, selected for c-kit expression, and injected either i.v. or intra-bone marrow (IBM) into sublethally irradiated NOD/LtJ mice. Nine of 10 mice from the IBM group and 5 of 8 from the i.v. group did not become hyperglycemic, in contrast to the control group, in which 8 of 9 mice developed end-stage diabetes. All mice with >5% donor chimerism remained free of diabetes and insulitis, which was confirmed by histology. Splenocytes from transplanted mice were unresponsive to glutamic acid decarboxylase isoform 65, a diabetic-specific autoantigen, but responded normally to third-party antigens. ESC-derived HSC can induce an islet cell tolerizing GVA effect without GVHD. This study represents the first instance, to our knowledge, of ESC-derived HSC cells treating disease in an animal model. PMID:17975228

  10. Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice.

    PubMed

    Hu, Youjia; Jin, Ping; Peng, Jian; Zhang, Xiaojun; Wong, F Susan; Wen, Li

    2016-08-01

    Environmental factors clearly influence the pathogenesis of Type 1 diabetes, an autoimmune disease. We have studied gut microbiota as important environmental agents that could affect the initiation or progression of type 1 diabetes especially in the prenatal period. We used neomycin, targeting mainly Gram negative or vancomycin, targeting mainly Gram positive bacteria, to treat pregnant NOD mothers and to study autoimmune diabetes development in their offspring. Neomycin-treated offspring were protected from diabetes, while vancomycin-treated offspring had accelerated diabetes development, and both antibiotics caused distinctly different shifts in gut microbiota composition compared with the offspring from untreated control mice. Our study demonstrated that neomycin treatment of pregnant mothers leads to generation of immune-tolerogenic antigen-presenting cells (APCs) in the offspring and these APCs had reduced specific autoantigen-presenting function both in vitro and in vivo. Moreover, the protection from diabetes mediated by tolerogenic APCs was vertically transmissible to the second generation. In contrast, more diabetogenic inflammatory T cells were found in the lymphoid organs of the offspring from the vancomycin-treated pregnant mothers. This change however was not transmitted to the second generation. Our results suggested that prenatal exposure to antibiotic influenced gut bacterial composition at the earliest time point in life and is critical for consequent education of the immune system. As different bacteria can induce different immune responses, understanding these differences and how to generate self-tolerogenic APCs could be important for developing new therapy for type 1 diabetes. PMID:27178773

  11. Japanese herbal medicine TJ-48 prevents autoimmune diabetes in NOD mice.

    PubMed

    Ikemoto, Tetsuya; Sugimoto, Koji; Takita, Morihito; Shimoda, Masayuki; Noguchi, Hirofumi; Naziruddin, Bashoo; Levy, Marlon F; Shimada, Mitsuo; Matsumoto, Shinichi

    2011-01-01

    Type 1 diabetes mellitus (T1DM) is mainly caused by CD8(+) cytotoxic T cell infiltration into islets. Recently, the role of regulatory T cells (Tregs) in the prevention of the onset of T1DM was reported. We reported that TJ-48, a common Japanese herbal medicine, decreased Treg population in cancer patients, thus we investigated whether TJ-48 had an influence on T1DM onset using NOD mice. In the TJ-48 group, TJ-48 (2.0g/kg/day) was administered in the drinking water for NOD mice from three weeks of age to 20 weeks of age. Their body weight and fast blood glucose (FBG) were measured every week. Histology (Hematoxylin-Eosin staining) was investigated every month. Lymphocyte profiles were investigated every month with FACS. The results were compared to the age-matched NOD mice control group. FBG of the control group mice showed diabetic status of 66.7% at 18 weeks of age. On the other hand, the TJ-48 group mice showed diabetic status of 16.7% at 18 weeks of age (p = 1.905E-06). There were no significant differences in general conditions or body weight between the two groups. Lymphocyte infiltrations into islets were dramatically suppressed in the TJ-48 group. The effect of TJ-48 on decreasing Tregs was less apparent in the NOD mice model. TJ-48 inhibited lymphocyte infiltrations into islets, which led to preventing the onset of T1DM in NOD mice. PMID:21721154

  12. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice

    PubMed Central

    Abdi, Reza; Moore, Robert; Sakai, Shinobu; Donnelly, Conor B.; Mounayar, Marwan; Sackstein, Robert

    2015-01-01

    Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in non-obese diabetic (NOD) mice. Though murine MSCs natively do not express the E-selectin binding determinant sialyl Lewisx (sLex), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLex display uniquely on cell surface CD44 thereby creating HCELL, the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL+ MSCs showed 3-fold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL−) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays, however, though engraftment was temporary for both HCELL+ and HCELL− MSCs, administration of HCELL+ MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL− MSCs. Notably, exofucosylation of MSCs generated from CD44−/− mice induced prominent membrane expression of sLex, but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. PMID:25641589

  13. Essential role for interferon-gamma and interleukin-6 in autoimmune insulin-dependent diabetes in NOD/Wehi mice.

    PubMed Central

    Campbell, I L; Kay, T W; Oxbrow, L; Harrison, L C

    1991-01-01

    Experimental studies in vitro suggest that cytokines are important mediators in the pathogenesis of autoimmune insulin-dependent diabetes mellitus (IDDM). However, there is little evidence for the role of cytokines in vivo, either in humans or in the spontaneous animal models of IDDM such as the NOD mouse or BB rat. To address this question, we used the model of cyclophosphamide (CYP)-induced autoimmune diabetes in the NOD/Wehi mouse to examine for (a) the production of IFN-gamma and IL-6 from isolated islets, and (b) the effect of anti IFN-gamma or anti IL-6 monoclonal antibodies on the development of diabetes. After cyclophosphamide, the majority of these mice develop of mononuclear cell infiltrate (insulitis) which by 10-14 d is associated with beta cell destruction. IFN-gamma activity at low levels (2.7 +/- 0.3 U/ml) could be detected only in culture supernatants from islets isolated at day 7 post-cyclophosphamide. In contrast, IL-6 activity progressively increased from 457 +/- 44 U/ml at day 0 to 6,020 +/- 777 U/ml at day 10. Culture of islets with anti-CD3 monoclonal antibody resulted in a significant increase in IFN-gamma activity from 41 +/- 7 U/ml at day 0 to 812 +/- 156 U/ml at day 10. Mice given either anti-IFN-gamma or anti-IL-6 antibody had a significantly reduced (P less than 0.001) incidence of diabetes and especially with IFN-gamma, decreased severity of insulitis. We conclude that IFN-gamma and IL-6 have essential roles in the pathogenesis of pancreatic islet beta cell destruction in this model. PMID:1899431

  14. Exacerbated Th2-mediated airway inflammation and hyperresponsiveness in autoimmune diabetes-prone NOD mice: a critical role for CD1d-dependent NKT cells.

    PubMed

    Araujo, Luiza M; Lefort, Jean; Nahori, Marie-Anne; Diem, Séverine; Zhu, Ren; Dy, Michel; Leite-de-Moraes, Maria C; Bach, J F; Vargaftig, B Boris; Herbelin, André

    2004-02-01

    The NOD mouse has proved to be a relevant model of insulin-dependent diabetes mellitus, closely resembling the human disease. However, it is unknown whether this strain presents a general biastoward Th1-mediated autoimmunity or remains capable of mounting complete Th2-mediated responses. Here, we show that NOD mice have the capacity to develop a typical Th2-mediated disease, namely experimental allergic asthma. In contrast to what might have been expected, they even developed a stronger Th2-mediated pulmonary inflammatory response than BALB/c mice, a strain that shows a typical Th2 bias in this model. Thus, after allergen sensitization and intra-nasal challenge, the typical features of experimental asthma were exacerbated in NOD mice, including enhanced bronchopulmonary responsiveness, mucus production and eosinophilic inflammation in the lungs as well as specific IgE titers in serum. These hallmarks of allergic asthma were associated with increased IL-4, IL-5, IL-13 and eotaxin production in the lungs, as compared with BALB/c mice. Notwithstanding their quantitative and functional defect in NOD mice, CD1d-dependent NKT cells contribute to aggravate the disease, since in OVA-immunized CD1d(-/-) NOD mice, which are deficient in this particular T cell subset, airway eosinophilia was clearly diminished relative to NOD littermates. This is the first evidence that autoimmune diabetes-prone NOD mice can also give rise to enhanced Th2-mediated responses and might thus provide a useful model for the study of common genetic and cellular components, including NKT cells that contribute to both asthma and type 1 diabetes. PMID:14768037

  15. Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for lgG in NOD mice

    SciTech Connect

    Prins, J.B.; Todd, J.A.; Rodrigues, N.R.; Ghosh, S. ); Hogarth, P.M. ); Wicker, L.S.; Podolin, P.L.; Gaffney, E.; Peterson, L.B.; Fischer, P.A.; Sirotina, A. )

    1993-04-30

    A congenic, non-obese diabetic (NOD) mouse strain that contains a segment of chromosome 3 from the diabetes-resistant mouse strain B6.PL-Thy-1[sup a] was less susceptible to diabetes than NOD mice. A fully penetrant immunological defect also mapped to this segment, which encodes the high-affinity Fc receptor for immunoglobulin G (lgG), Fc[gamma]Rl. The NOD Fcgr1 allele, which results in a deletion of the cytoplasmic tail, caused a 73 percent reduction in the turnover of cell surface receptor-antibody complexes. The development of congenic strains and the characterization of Mendelian traits that are specific to the disease phenotype demonstrate the feasibility of dissecting the pathophysiology of complex, non-Mendelian diseases.

  16. The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the NOD mouse.

    PubMed

    Unanue, Emil R; Ferris, Stephen T; Carrero, Javier A

    2016-07-01

    We have been examining antigen presentation and the antigen presenting cells (APCs) in the islets of Langerhans of the non-obese diabetic (NOD) mouse. The purpose is to identify the earliest events that initiate autoimmunity in this confined tissue. Islets normally have a population of macrophages that is distinct from those that inhabit the exocrine pancreas. Also found in NOD islets is a minor population of dendritic cells (DCs) that bear the CD103 integrin. We find close interactions between beta cells and the two APCs that result in the initiation of the autoimmunity. Even under non-inflammatory conditions, beta cells transfer insulin-containing vesicles to the APCs of the islet. This reaction requires live cells and intimate contact. The autoimmune process starts in islets with the entrance of CD4(+) T cells and an increase in the CD103(+) DCs. Mice deficient in the Batf3 transcription factor never develop diabetes due to the absence of the CD103/CD8α lineage of DCs. We hypothesize that the 12-20 peptide of the beta chain of insulin is responsible for activation of the initial CD4(+) T-cell response during diabetogenesis. PMID:27319351

  17. Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes.

    PubMed

    Kakoola, Dorothy N; Curcio-Brint, Anita; Lenchik, Nataliya I; Gerling, Ivan C

    2014-01-01

    Type 1 diabetes (T1D) is a multigenic disease caused by T-cell mediated destruction of the insulin producing pancreatic islet ß-cells. The earliest sign of islet autoimmunity in NOD mice, islet leukocytic infiltration or insulitis, is obvious at around 5 weeks of age. The molecular alterations that occur in T cells prior to insulitis and that may contribute to T1D development are poorly understood. Since CD4 T-cells are essential to T1D development, we tested the hypothesis that multiple genes/molecular pathways are altered in these cells prior to insulitis. We performed a genome-wide transcriptome and pathway analysis of whole, untreated CD4 T-cells from 2, 3, and 4 week-old NOD mice in comparison to two control strains (NOR and C57BL/6). We identified many differentially expressed genes in the NOD mice at each time point. Many of these genes (herein referred to as NOD altered genes) lie within known diabetes susceptibility (insulin-dependent diabetes, Idd) regions, e.g. two diabetes resistant loci, Idd27 (tripartite motif-containing family genes) and Idd13 (several genes), and the CD4 T-cell diabetogenic activity locus, Idd9/11 (2 genes, KH domain containing, RNA binding, signal transduction associated 1 and protein tyrosine phosphatase 4a2). The biological processes associated with these altered genes included, apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks); inflammation and cell signaling/activation (predominant at 3 weeks); and innate and adaptive immune responses (predominant at 4 weeks). Pathway analysis identified several factors that may regulate these abnormalities: eight, common to all 3 ages (interferon regulatory factor 1, hepatic nuclear factor 4, alpha, transformation related protein 53, BCL2-like 1 (lies within Idd13), interferon gamma, interleukin 4, interleukin 15, and prostaglandin E2); and two each, common to 2 and 4 weeks (androgen receptor and interleukin 6); and to 3 and 4 weeks (interferon alpha and

  18. Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes

    PubMed Central

    Kakoola, Dorothy N.; Curcio-Brint, Anita; Lenchik, Nataliya I.; Gerling, Ivan C.

    2014-01-01

    Type 1 diabetes (T1D) is a multigenic disease caused by T-cell mediated destruction of the insulin producing pancreatic islet ß-cells. The earliest sign of islet autoimmunity in NOD mice, islet leukocytic infiltration or insulitis, is obvious at around 5 weeks of age. The molecular alterations that occur in T cells prior to insulitis and that may contribute to T1D development are poorly understood. Since CD4 T-cells are essential to T1D development, we tested the hypothesis that multiple genes/molecular pathways are altered in these cells prior to insulitis. We performed a genome-wide transcriptome and pathway analysis of whole, untreated CD4 T-cells from 2, 3, and 4 week-old NOD mice in comparison to two control strains (NOR and C57BL/6). We identified many differentially expressed genes in the NOD mice at each time point. Many of these genes (herein referred to as NOD altered genes) lie within known diabetes susceptibility (insulin-dependent diabetes, Idd) regions, e.g. two diabetes resistant loci, Idd27 (tripartite motif-containing family genes) and Idd13 (several genes), and the CD4 T-cell diabetogenic activity locus, Idd9/11 (2 genes, KH domain containing, RNA binding, signal transduction associated 1 and protein tyrosine phosphatase 4a2). The biological processes associated with these altered genes included, apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks); inflammation and cell signaling/activation (predominant at 3 weeks); and innate and adaptive immune responses (predominant at 4 weeks). Pathway analysis identified several factors that may regulate these abnormalities: eight, common to all 3 ages (interferon regulatory factor 1, hepatic nuclear factor 4, alpha, transformation related protein 53, BCL2-like 1 (lies within Idd13), interferon gamma, interleukin 4, interleukin 15, and prostaglandin E2); and two each, common to 2 and 4 weeks (androgen receptor and interleukin 6); and to 3 and 4 weeks (interferon alpha and

  19. Molecular Phenotyping of Immune Cells from Young NOD Mice Reveals Abnormal Metabolic Pathways in the Early Induction Phase of Autoimmune Diabetes

    PubMed Central

    Wu, Jian; Kakoola, Dorothy N.; Lenchik, Nataliya I.; Desiderio, Dominic M.; Marshall, Dana R.; Gerling, Ivan C.

    2012-01-01

    Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse – a model for human type 1 diabetes (T1D). The molecular events that lead to insulitis and initiate autoimmune diabetes are poorly understood. Since TID is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease. We evaluated the molecular phenotype (mRNA and protein expression) and molecular networks of ex vivo unfractionated spleen leukocytes from 2 and 4 week-old NOD mice in comparison to two control strains. Analysis of the global gene expression profiles and hierarchical clustering revealed that the majority (∼90%) of the differentially expressed genes in NOD mice were repressed. Furthermore, analysis using a modern suite of multiple bioinformatics approaches identified abnormal molecular pathways that can be divided broadly into 2 categories: metabolic pathways, which were predominant at 2 weeks, and immune response pathways, which were predominant at 4 weeks. Network analysis by Ingenuity pathway analysis identified key genes/molecules that may play a role in regulating these pathways. These included five that were common to both ages (TNF, HNF4A, IL15, Progesterone, and YWHAZ), and others that were unique to 2 weeks (e.g. MYC/MYCN, TGFB1, and IL2) and to 4 weeks (e.g. IFNG, beta-estradiol, p53, NFKB, AKT, PRKCA, IL12, and HLA-C). Based on the literature, genes that may play a role in regulating metabolic pathways at 2 weeks include Myc and HNF4A, and at 4 weeks, beta-estradiol, p53, Akt, HNF4A and AR. Our data suggest that abnormalities in regulation of metabolic pathways in the immune cells of young NOD mice lead to abnormalities in the immune response pathways and as such may play a role in the initiation of autoimmune diabetes. Thus, targeting metabolism may provide novel approaches to preventing and/or treating autoimmune diabetes. PMID:23071669

  20. Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.

    PubMed

    Wu, Jian; Kakoola, Dorothy N; Lenchik, Nataliya I; Desiderio, Dominic M; Marshall, Dana R; Gerling, Ivan C

    2012-01-01

    Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse--a model for human type 1 diabetes (T1D). The molecular events that lead to insulitis and initiate autoimmune diabetes are poorly understood. Since TID is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease. We evaluated the molecular phenotype (mRNA and protein expression) and molecular networks of ex vivo unfractionated spleen leukocytes from 2 and 4 week-old NOD mice in comparison to two control strains. Analysis of the global gene expression profiles and hierarchical clustering revealed that the majority (~90%) of the differentially expressed genes in NOD mice were repressed. Furthermore, analysis using a modern suite of multiple bioinformatics approaches identified abnormal molecular pathways that can be divided broadly into 2 categories: metabolic pathways, which were predominant at 2 weeks, and immune response pathways, which were predominant at 4 weeks. Network analysis by Ingenuity pathway analysis identified key genes/molecules that may play a role in regulating these pathways. These included five that were common to both ages (TNF, HNF4A, IL15, Progesterone, and YWHAZ), and others that were unique to 2 weeks (e.g. MYC/MYCN, TGFB1, and IL2) and to 4 weeks (e.g. IFNG, beta-estradiol, p53, NFKB, AKT, PRKCA, IL12, and HLA-C). Based on the literature, genes that may play a role in regulating metabolic pathways at 2 weeks include Myc and HNF4A, and at 4 weeks, beta-estradiol, p53, Akt, HNF4A and AR. Our data suggest that abnormalities in regulation of metabolic pathways in the immune cells of young NOD mice lead to abnormalities in the immune response pathways and as such may play a role in the initiation of autoimmune diabetes. Thus, targeting metabolism may provide novel approaches to preventing and/or treating autoimmune diabetes. PMID:23071669

  1. Nasal administration of CTB-insulin induces active tolerance against autoimmune diabetes in non-obese diabetic (NOD) mice

    PubMed Central

    Aspord, C; Thivolet, C

    2002-01-01

    Nasal administration of beta cell-derived auto-antigens has been reported to suppress the development of autoimmune diabetes. We investigated the tolerogenic effects of insulin conjugated to the B subunit of cholera toxin (CTB). Nasal administration of 1 µg of CTB-insulin significantly delayed the incidence of diabetes in comparison to CTB treated mice. However, administration of 4 or 8 µg of the conjugate had no protective effect. Protection induced by CTB-insulin was transferred to naive recipients by splenic CD4+ T cells. This result favours an active cellular mechanism of regulation, which was lost using higher (4–8 µg) or lower (0·1–0·5 µg) amounts of the conjugate. When co-administered with diabetogenic T cells, splenic T cells from CTB-insulin-treated mice reduced the lymphocytic infiltration of the islets. Reverse transcription-polymerase chain reaction analysis of recipients’ pancreatic glands revealed an increase of TGF-β and IL-10 transcripts after donor mice tolerization, while levels of IFN-γ and IL-4 RNAs were unchanged. We observed a significant increase of T cell proliferation after unspecific stimulation in the spleen and pancreatic lymph nodes 24 h after CTB-insulin administration in comparison to control treatment. Higher amounts of IL-4 and IFN-γ were noticed in pancreatic lymph nodes of tolerized mice upon in vitro stimulation. Antigen-specific unresponsiveness after immunization and upon subsequent in vitro exposure to homologous antigen was obtained in nasally treated animals. Our results underlined the importance of nasal mucosa as an inducing site of tolerance and provided evidence for similar mechanisms of action to what has been described for the oral route, which favoured a CTB-insulin specific effect. PMID:12390307

  2. CNS autoimmune inflammation: RICK must NOD!

    PubMed

    Kang, Zizhen; Gulen, Muhammet Fatih; Li, Xiaoxia

    2011-01-28

    In this issue of Immunity, Shaw et al. (2011) report that the NOD-RICK signaling axis is required for the activation of dendritic cells infiltrating the central nervous system, leading to reactivation of antigen-specific T cells and autoimmune inflammation. PMID:21272781

  3. NOD congenic strain analysis of autoimmune diabetes reveals genetic complexity of the Idd18 locus and identifies Vav3 as a candidate gene

    PubMed Central

    Fraser, Heather I.; Dendrou, Calliope A.; Healy, Barry; Rainbow, Daniel B.; Howlett, Sarah; Smink, Luc J.; Gregory, Simon; Steward, Charles A.; Todd, John A.; Peterson, Laurence B.; Wicker, Linda S.

    2010-01-01

    We have used the public sequencing and annotation of the mouse genome to delimit the previously resolved type 1 diabetes (T1D) Idd18 interval to a region on chromosome 3 that includes the immunologically relevant candidate gene, Vav3. To test the candidacy of Vav3, we developed a novel congenic strain which enabled the resolution of Idd18 to a 604 kb interval, designated Idd18.1, which contains only two annotated genes: the complete sequence of Vav3, and the last exon of the gene encoding NETRIN G1, Ntng1. Targeted sequencing of Idd18.1 in the NOD mouse strain revealed that allelic variation between NOD and C57BL/6J (B6) occurs in non-coding regions with 138 single nucleotide polymorphisms (SNPs) concentrated in the introns between exons 20 and 27, and immediately after the 3′ UTR. We observed differential expression of VAV3 RNA transcripts in thymocytes when comparing congenic mouse strains with B6 or NOD alleles at Idd18.1. The T1D protection associated with B6 alleles of Idd18.1/Vav3 requires the presence of B6 protective alleles at Idd3, which are correlated with increased IL-2 production and regulatory T cell function. In the absence of B6 protective alleles at Idd3, we detected a second T1D protective B6 locus, Idd18.3, which is closely linked to, but distinct from, Idd18.1. Therefore, genetic mapping, sequencing, and gene expression evidence indicate that alteration of VAV3 expression is an etiological factor in the development of autoimmune beta-cell destruction in NOD mice. This study also demonstrates that a congenic strain mapping approach can isolate closely linked susceptibility genes. PMID:20363978

  4. Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice.

    PubMed

    Sgouroudis, Evridiki; Albanese, Alexandre; Piccirillo, Ciriaco A

    2008-11-01

    Type I diabetes (T1D) susceptibility is inherited through multiple insulin-dependent diabetes (Idd) genes. NOD.B6 Idd3 congenic mice, introgressed with an Idd3 allele from T1D-resistant C57BL/6 mice (Idd3(B6)), show a marked resistance to T1D compared with control NOD mice. The protective function of the Idd3 locus is confined to the Il2 gene, whose expression is critical for naturally occurring CD4(+)Foxp3(+) regulatory T (nT(reg)) cell development and function. In this study, we asked whether Idd3(B6) protective alleles in the NOD mouse model confer T1D resistance by promoting the cellular frequency, function, or homeostasis of nT(reg) cells in vivo. We show that resistance to T1D in NOD.B6 Idd3 congenic mice correlates with increased levels of IL-2 mRNA and protein production in Ag-activated diabetogenic CD4(+) T cells. We also observe that protective IL2 allelic variants (Idd3(B6) resistance allele) also favor the expansion and suppressive functions of CD4(+)Foxp3(+) nT(reg) cells in vitro, as well as restrain the proliferation, IL-17 production, and pathogenicity of diabetogenic CD4(+) T cells in vivo more efficiently than control do nT(reg) cells. Lastly, the resistance to T1D in Idd3 congenic mice does not correlate with an augmented systemic frequency of CD4(+)Foxp3(+) nT(reg) cells but more so with the ability of protective IL2 allelic variants to promote the expansion of CD4(+)Foxp3(+) nT(reg) cells directly in the target organ undergoing autoimmune attack. Thus, protective, IL2 allelic variants impinge the development of organ-specific autoimmunity by bolstering the IL-2 producing capacity of self-reactive CD4(+) T cells and, in turn, favor the function and homeostasis of CD4(+)Foxp3(+) nT(reg) cells in vivo. PMID:18941219

  5. CD8 T cells mediate direct biliary ductule damage in NOD autoimmune biliary disease

    PubMed Central

    Yang, Guo-Xiang; Wu, Yuehong; Tsukamoto, Hiroki; Leung, Patrick S.; Lian, Zhe-Xiong; Rainbow, Daniel B.; Hunter, Kara M.; Morris, Gerard A.; Lyons, Paul A.; Peterson, Laurence B.; Wicker, Linda S.; Gershwin, M.E.; Ridgway, William M.

    2016-01-01

    We previously described the NOD.c3c4 mouse, which is protected from type 1 diabetes (T1D) due to protective alleles at multiple insulin-dependent diabetes (Idd) genes, but develops autoimmune biliary disease (ABD) resembling primary biliary cirrhosis (PBC). Here we characterize the NOD.ABD strain, which is genetically-related to the NOD.c3c4 strain but develops both ABD and T1D. Histologically, NOD.ABD biliary disease is indistinguishable from that in NOD.c3c4 mice. The frequency of effector memory (CD44+CD62L-) and central memory (CD44+CD62L+) CD8 T cells is significantly increased in the intrahepatic lymphocyte fraction of NOD.ABD mice, and NOD.ABD CD8 T cells produce more IFN-γ and TNF-α, compared to controls. NOD.ABD splenocytes can transfer ABD and T1D to NOD.c3c4 scid mice, but only T1D to NOD scid mice, suggesting that the genetic origin of the target organ and/or its innate immune cells is critical to disease pathogenesis. The disease transfer model, importantly, shows that biliary duct damage (characteristic of PBC) and inflammation precede biliary epithelial cell proliferation. Unlike T1D where both CD4 and CD8 T cells are required for disease transfer, purified NOD.ABD CD8 T cells can transfer liver inflammation into NOD.c3c4 scid recipients, and disease transfer is ameliorated by co-transferring T regulatory cells. Unlike NOD.c3c4 mice, NOD.ABD mice do not develop antinuclear or anti-Smith autoantibodies; however, NOD.ABD mice do develop the anti-pyruvate dehydrogenase antibodies typical of human PBC. The NOD.ABD strain is a model of immune dysregulation affecting two organ systems, most likely by mechanisms that do not completely coincide. PMID:21169553

  6. Heparanase and Autoimmune Diabetes

    PubMed Central

    Simeonovic, Charmaine J.; Ziolkowski, Andrew F.; Wu, Zuopeng; Choong, Fui Jiun; Freeman, Craig; Parish, Christopher R.

    2013-01-01

    Heparanase (Hpse) is the only known mammalian endo-β-d-glucuronidase that degrades the glycosaminoglycan heparan sulfate (HS), found attached to the core proteins of heparan sulfate proteoglycans (HSPGs). Hpse plays a homeostatic role in regulating the turnover of cell-associated HS and also degrades extracellular HS in basement membranes (BMs) and the extracellular matrix (ECM), where HSPGs function as a barrier to cell migration. Secreted Hpse is harnessed by leukocytes to facilitate their migration from the blood to sites of inflammation. In the non-obese diabetic (NOD) model of autoimmune Type 1 diabetes (T1D), Hpse is also used by insulitis leukocytes to solubilize the islet BM to enable intra-islet entry of leukocytes and to degrade intracellular HS, an essential component for the survival of insulin-producing islet beta cells. Treatment of pre-diabetic adult NOD mice with the Hpse inhibitor PI-88 significantly reduced the incidence of T1D by ~50% and preserved islet HS. Hpse therefore acts as a novel immune effector mechanism in T1D. Our studies have identified T1D as a Hpse-dependent disease and Hpse inhibitors as novel therapeutics for preventing T1D progression and possibly the development of T1D vascular complications. PMID:24421779

  7. Use of NOD Mice to Understand Human Type 1 Diabetes

    PubMed Central

    Thayer, Terri C.; Wilson, Brian S.; Mathews, Clayton E.

    2010-01-01

    Synopsis In 1922, Leonard Thompson received the first injections of insulin prepared from the pancreas of canine test subjects. From pancreatectomized dogs to the more recent development of animal models that spontaneously develop autoimmune syndromes, animal models have played a meaningful role in furthering diabetes research. Of these animals the non-obese diabetic (NOD) mouse is the most widely used for research in Type 1 Diabetes (T1D) as the NOD shares a number of genetic and immunologic traits with the human form of the disease. In this chapter, we review both similarities and differences in NOD and human T1D and discuss the potential role of NOD mice in future pre-clinical studies aiming to provide a better understanding of the genetic and immune defects that lead to T1D. PMID:20723819

  8. HLA-DR*0401 expression in the NOD mice prevents the development of autoimmune diabetes by multiple alterations in the T-cell compartment.

    PubMed

    Pow Sang, Luis; Surls, Jacqueline; Mendoza, Mirian; Casares, Sofia; Brumeanu, Teodor

    2015-01-01

    Several human HLA alleles have been found associated with type 1 diabetes (T1D), but their precise role is not clearly defined. Herein, we report that a human MHC class II (HLA-DR*0401) allele transgene that has been expressed into NOD (H-2(g7)I-E(null)) mice prone to T1D rendered the mice resistant to the disease. T1D resistance occurred in the context of multi-point T-cell alterations such as: (i) skewed CD4/CD8 T-cell ratio, (ii) decreased size of CD4(+)CD44(high) T memory pool, (iii) aberrant TCR Vβ repertoire, (iv) increased neonatal number of Foxp3(+) and TR-1(+) regulatory cells, and (v) reduced IFN-γ inflammatory response vs. enhanced IL-10 suppressogenic response of T-cells upon polyclonal and antigen-specific stimulation. The T-cells from NOD/DR4 Tg mice were unable to induce or suppress diabetes in NOD/RAG deficient mice. This study describes a multifaceted regulatory function of the HLA-DR*0401 allele strongly associated with the lack of T1D development in NOD mice. PMID:26363521

  9. CRISPR-Cas9-Mediated Modification of the NOD Mouse Genome With Ptpn22R619W Mutation Increases Autoimmune Diabetes.

    PubMed

    Lin, Xiaotian; Pelletier, Stephane; Gingras, Sebastien; Rigaud, Stephanie; Maine, Christian J; Marquardt, Kristi; Dai, Yang D; Sauer, Karsten; Rodriguez, Alberto R; Martin, Greg; Kupriyanov, Sergey; Jiang, Ling; Yu, Liping; Green, Douglas R; Sherman, Linda A

    2016-08-01

    An allelic variant of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), PTPN22(R620W), is strongly associated with type 1 diabetes (T1D) in humans and increases the risk of T1D by two- to fourfold. The NOD mouse is a spontaneous T1D model that shares with humans many genetic pathways contributing to T1D. We hypothesized that the introduction of the murine orthologous Ptpn22(R619W) mutation to the NOD genome would enhance the spontaneous development of T1D. We microinjected CRISPR-Cas9 and a homology-directed repair template into NOD single-cell zygotes to introduce the Ptpn22(R619W) mutation to its endogenous locus. The resulting Ptpn22(R619W) mice showed increased insulin autoantibodies and earlier onset and higher penetrance of T1D. This is the first report demonstrating enhanced T1D in a mouse modeling human PTPN22(R620W) and the utility of CRISPR-Cas9 for direct genetic alternation of NOD mice. PMID:27207523

  10. Genetic analysis of resistance to Type-1 Diabetes in ALR/Lt mice, a NOD-related strain with defenses against autoimmune-mediated diabetogenic stress.

    PubMed

    Mathews, Clayton E; Graser, Robert T; Bagley, Rebecca J; Caldwell, Jason W; Li, Renhua; Churchill, Gary A; Serreze, David V; Leiter, Edward H

    2003-10-01

    ALR mice are closely related to type-1 diabetes mellitus (T1DM)-prone NOD mice. The ALR genome confers systemically elevated free radical defenses, dominantly protecting their pancreatic islets from free radical generating toxins, cytotoxic cytokines, and diabetogenic T cells. The ALR major histocompatibility complex (MHC) ( H2(gx) haplotype) is largely, but not completely identical with the NOD H2(g7) haplotype, sharing alleles from H2-K through the class II and distally into the class III region. This same H2(gx) haplotype in the related CTS strain was linked to the Idd16 resistance locus. In the present study, ALR was outcrossed to NOD to fine map the Idd16 locus and establish chromosomal regions carrying other ALR non-MHC-linked resistance loci. To this end, 120 (NODxALR)xNOD backcross progeny females were monitored for T1DM and genetic linkage analysis was performed on all progeny using 88 markers covering all chromosomes. Glucosuria or end-stage insulitis developed in 32 females, while 88 remained both aglucosuria and insulitis free. Three ALR-derived resistance loci segregated. As expected, one mapped to Chromosome 17, with peak linkage mapping just proximal to H2-K. A novel resistance locus mapped to Chr 8. A pairwise scan for interactions detected a significant interaction between the loci on Chr 8 and Chr 17. On Chr 3, resistance segregated with a marker between previously described Idd loci and coinciding with an independently mapped locus conferring a suppressed superoxide burst by ALR neutrophils (Susp). These results indicate that the Idd16 resistance allele, defined originally by linkage to the H2(gx) haplotype of CTS, is immediately proximal to H2-K. Two additional ALR-contributed resistance loci may be ALR-specific and contribute to this strain's ability to dissipate free-radical stress. PMID:14513297

  11. A Preclinical Consortium Approach for Assessing the Efficacy of Combined Anti-CD3 Plus IL-1 Blockade in Reversing New-Onset Autoimmune Diabetes in NOD Mice.

    PubMed

    Gill, Ronald G; Pagni, Philippe P; Kupfer, Tinalyn; Wasserfall, Clive H; Deng, Songyan; Posgai, Amanda; Manenkova, Yulia; Bel Hani, Amira; Straub, Laura; Bernstein, Philip; Atkinson, Mark A; Herold, Kevan C; von Herrath, Matthias; Staeva, Teodora; Ehlers, Mario R; Nepom, Gerald T

    2016-05-01

    There is an ongoing need to develop strategic combinations of therapeutic agents to prevent type 1 diabetes (T1D) or to preserve islet β-cell mass in new-onset disease. Although clinical trials using candidate therapeutics are commonly based on preclinical studies, concern is growing regarding the reproducibility as well as the potential clinical translation of reported results using animal models of human disorders. In response, the National Institutes of Health Immune Tolerance Network and JDRF established a multicenter consortium of academic institutions designed to assess the efficacy and intergroup reproducibility of clinically applicable immunotherapies for reversing new-onset disease in the NOD mouse model of T1D. Predicated on prior studies, this consortium conducted coordinated, prospective studies, using joint standard operating procedures, fixed criteria for study entry, and common reagents, to optimize combined anti-CD3 treatment plus interleukin-1 (IL-1) blockade to reverse new-onset disease in NOD mice. We did not find that IL-1 blockade with anti-IL-1β monoclonal antibody or IL-1trap provided additional benefit for reversing new-onset disease compared with anti-CD3 treatment alone. These results demonstrate the value of larger, multicenter preclinical studies for vetting and prioritizing therapeutics for future clinical use. PMID:26718498

  12. Fibroblast Cell-Based Therapy for Experimental Autoimmune Diabetes.

    PubMed

    Jalili, Reza B; Zhang, Yun; Hosseini-Tabatabaei, Azadeh; Kilani, Ruhangiz T; Khosravi Maharlooei, Mohsen; Li, Yunyuan; Salimi Elizei, Sanam; Warnock, Garth L; Ghahary, Aziz

    2016-01-01

    Type 1 diabetes (T1D) results from autoimmune destruction of insulin producing β cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual β cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD) mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO), into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory/regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and β cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate β cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes. PMID:26765526

  13. Fibroblast Cell-Based Therapy for Experimental Autoimmune Diabetes

    PubMed Central

    Jalili, Reza B.; Zhang, Yun; Hosseini-Tabatabaei, Azadeh; Kilani, Ruhangiz T.; Khosravi Maharlooei, Mohsen; Li, Yunyuan; Salimi Elizei, Sanam; Warnock, Garth L.; Ghahary, Aziz

    2016-01-01

    Type 1 diabetes (T1D) results from autoimmune destruction of insulin producing β cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual β cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD) mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO), into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory / regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and β cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate β cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes. PMID:26765526

  14. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes.

    PubMed

    Steptoe, Raymond J; Ritchie, Janine M; Harrison, Leonard C

    2003-05-01

    Bone marrow or hematopoietic stem cell transplantation is a potential treatment for autoimmune disease. The clinical application of this approach is, however, limited by the risks associated with allogeneic transplantation. In contrast, syngeneic transplantation would be safe and have wide clinical application. Because T cell tolerance can be induced by presenting antigen on resting antigen-presenting cells (APCs), we reasoned that hematopoietic stem cells engineered to express autoantigen in resting APCs could be used to prevent autoimmune disease. Proinsulin is a major autoantigen associated with pancreatic beta cell destruction in humans with type 1 diabetes (T1D) and in autoimmune NOD mice. Here, we demonstrate that syngeneic transplantation of hematopoietic stem cells encoding proinsulin transgenically targeted to APCs totally prevents the development of spontaneous autoimmune diabetes in NOD mice. This antigen-specific immunotherapeutic strategy could be applied to prevent T1D and other autoimmune diseases in humans. PMID:12727927

  15. Comparative Genetics: Synergizing Human and NOD Mouse Studies for Identifying Genetic Causation of Type 1 Diabetes

    PubMed Central

    Driver, John P.; Chen, Yi-Guang; Mathews, Clayton E.

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come. PMID:23804259

  16. Autoimmune diabetes-prone NOD mice express the Lyt2{sup a} (Lyt2.1) and Lyt3{sup a} (Lyt3.1) alleles of CD8

    SciTech Connect

    Johnson-Tardieu, J.M.; Cornelius, J.G.; Ye, X.

    1996-06-01

    Predisposition to Type I insulin-dependent diabetes (IDD) has a strong underlying genetic basis involving class II major histocompatibility complex (MHC) genes as well as several non-MHC genetic systems. In the non-obese diabetic (NOD) mouse, a model for human IDD, genes associated with the appearance of immune cell infiltrates in the pancreatic islets (insulitis) and/or overt IDD have been mapped to chromosomes 1, 3, 6, 11, and 17. A recent report has suggested that CD8+ lymphocytes of the NOD mouse might be deficient in the expression of the CD8{Beta} molecule, a protein encoded by a gene on chromosome 6. The CD8{Beta} molecule is a T-cell surface marker, the lack of which could affect selection in the thymus, possibly permitting auto-reactive T-cell clones to populate the peripheral lymphoid tissues. For this reason, we examined the expression of the CD8 molecule by lymphocytes in the NOD mouse. Results indicate that the NOD mouse is not deficient in its transcription of detectable mRNA encoding either the CD8{alpha} or {Beta} subunits. However, the NOD mouse expresses the Lyt2{sup a} and Lyt3{sup a} alleles, suggesting that a portion of chromosome 6 centromeric to the diabetes-susceptibility genetic region is derived from an ancestry common to AKR and, like AKR, the CD8{alpha} and CD8{Beta}3.1 (but not CD8{Beta}3.2) subunits are detected on the cell surface of T lymphocytes of the NOD mouse. Interestingly, though, the CD8{Beta}3.1 molecule may not be expressed in the NOD mouse to the same extent as it is expressed in the AKR/J mouse, suggesting the possibility that the NOD mouse possesses a defect somewhere between transcription and cell surface expression of the CD8{Beta} molecule. 36 refs., 5 figs.

  17. BIM Deficiency Protects NOD Mice From Diabetes by Diverting Thymocytes to Regulatory T Cells.

    PubMed

    Krishnamurthy, Balasubramanian; Chee, Jonathan; Jhala, Gaurang; Trivedi, Prerak; Catterall, Tara; Selck, Claudia; Gurzov, Esteban N; Brodnicki, Thomas C; Graham, Kate L; Wali, Jibran A; Zhan, Yifan; Gray, Daniel; Strasser, Andreas; Allison, Janette; Thomas, Helen E; Kay, Thomas W H

    2015-09-01

    Because regulatory T-cell (Treg) development can be induced by the same agonist self-antigens that induce negative selection, perturbation of apoptosis will affect both negative selection and Treg development. But how the processes of thymocyte deletion versus Treg differentiation bifurcate and their relative importance for tolerance have not been studied in spontaneous organ-specific autoimmune disease. We addressed these questions by removing a critical mediator of thymocyte deletion, BIM, in the NOD mouse model of autoimmune diabetes. Despite substantial defects in the deletion of autoreactive thymocytes, BIM-deficient NOD (NODBim(-/-)) mice developed less insulitis and were protected from diabetes. BIM deficiency did not impair effector T-cell function; however, NODBim(-/-) mice had increased numbers of Tregs, including those specific for proinsulin, in the thymus and peripheral lymphoid tissues. Increased levels of Nur77, CD5, GITR, and phosphorylated IκB-α in thymocytes from NODBim(-/-) mice suggest that autoreactive cells receiving strong T-cell receptor signals that would normally delete them escape apoptosis and are diverted into the Treg pathway. Paradoxically, in the NOD model, reduced thymic deletion ameliorates autoimmune diabetes by increasing Tregs. Thus, modulating apoptosis may be one of the ways to increase antigen-specific Tregs and prevent autoimmune disease. PMID:25948683

  18. Vkappa polymorphisms in NOD mice are spread throughout the entire immunoglobulin kappa locus and are shared by other autoimmune strains.

    PubMed

    Henry, Rachel A; Kendall, Peggy L; Woodward, Emily J; Hulbert, Chrys; Thomas, James W

    2010-08-01

    The diversity of immunoglobulin (Ig) and T cell receptor (TCR) genes available to form the lymphocyte repertoire has the capacity to produce a broad array of both protective and harmful specificities. In type 1 diabetes (T1D), the presence of antibodies to insulin and other islet antigens predicts disease development in both mice and humans, and demonstrate that immune tolerance is lost early in the disease process. Anti-insulin T cells isolated from T1D-prone non-obese diabetic (NOD) mice use polymorphic TCRalpha chains, suggesting that the available T cell repertoire is altered in these autoimmune mice. To probe whether insulin-binding B cells also possess polymorphic V genes, Ig light chains were isolated and sequenced from NOD mice that harbor an Ig heavy chain transgene. Three insulin-binding Vkappa genes were identified, all of which were polymorphic to the closest germline sequence matches present in the GenBank database. Additional analysis of over 300 light chain sequences from multiple sources, including germline DNA, shows that polymorphisms are spread throughout the entire NOD Igkappa locus, as these polymorphic sequences represent 43 distinct Vkappa genes which belong to 14 Vkappa families. Database searches reveal that a majority of polymorphic Vkappa genes identified in NOD are identical to Vkappa genes isolated from SLE-prone NZBxNZW F1 or MRL strains of mice, suggesting that a shared Igkappa haplotype may be present. Predicted amino acid changes preferentially occur in CDR, and thus could alter antigen recognition by the germline B cell repertoire of autoimmune versus non-autoimmune mouse strains. PMID:20556377

  19. Aberrant Endometrial Features of Pregnancy in Diabetic NOD Mice

    PubMed Central

    Burke, Suzanne D.; Dong, Hongmei; Hazan, Aleah D.; Croy, B. Anne

    2010-01-01

    Objective Pregnancies in diabetic women are at 4–12 more risk for pre-eclampsia, an urgent, acute onset complication of mid to late gestation, than pregnancies in normal women. Hallmarks of pre-eclampsia are hypertension, proteinuria and incomplete modification of endometrial spiral arteries. Transient, pro-angiogenic lymphocytes called uterine Natural Killer (uNK) cells are implicated in human and rodent spiral artery modification. We studied mid to late gestations in spontaneously type 1 diabetic NOD mice to ask if diabetes alters uNK cell homing and/or function. Research design and method Normoglycemic, prediabetic and diabetic NOD mice and controls were mated. Lymphocytes and endometrial endothelium and decidua were studied histologically and in functional assays. Results Conception accelerated progression to overt diabetes in NOD females who had limited spiral artery development, heavier placentae and lighter fetuses displaying numerous birth defects compared with controls. UNK cell numbers were reduced in the decidua basalis of diabetic females while interferon-γ production was elevated. In diabetic NOD mice, decidual expression of the endothelial cell addressin MAdCAM-1 was aberrant in position while VCAM-1 expression was reduced. Assays of lymphocyte adhesion to tissue sections under shear forces indicated that diabetes compromises the potential homing functions of both endometrial endothelium and peripheral NK cells. Conclusions In diabetes, gestational endometrium has immune and vascular defects that likely to contribute to murine fetal loss and birth defects. Analogous problems and pre-eclampsia in diabetic women may involve similar mechanisms. PMID:17827401

  20. Recombinant human tumor necrosis factor alpha suppresses autoimmune diabetes in nonobese diabetic mice.

    PubMed Central

    Satoh, J; Seino, H; Abo, T; Tanaka, S; Shintani, S; Ohta, S; Tamura, K; Sawai, T; Nobunaga, T; Oteki, T

    1989-01-01

    We previously reported that administration of a streptococcal preparation (OK-432) inhibited insulitis and development of autoimmune diabetes in nonobese diabetic (NOD) mice and BB rats as animals models of insulin-dependent diabetes mellitus. In this study, we screened various cytokines that could be induced by OK-432 in vivo, for their preventive effect against diabetes in NOD mice. Among recombinant mouse IFN gamma, human IL1 alpha, human IL2, mouse granulocyte-macrophage colony-stimulating factor and human TNF alpha, only human TNF alpha suppressed insulitis and significantly (P less than 0.001) inhibited development of diabetes. NOD mice were the lowest producers of the mRNA of TNF and serum TNF on stimulation with OK-432 or with IFN gamma plus LPS, compared with C57BL/6, C3H/He, and Balb/c mice. The results imply a role for low productivity of TNF in the pathogenesis of autoimmune diabetes in NOD mice. Images PMID:2794065

  1. Type 1 diabetes associated autoimmunity.

    PubMed

    Kahaly, George J; Hansen, Martin P

    2016-07-01

    Diabetes mellitus is increasing in prevalence worldwide. The economic costs are considerable given the cardiovascular complications and co-morbidities that it may entail. Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing pancreatic β-cells. The pathogenesis of T1D is complex and multifactorial and involves a genetic susceptibility that predisposes to abnormal immune responses in the presence of ill-defined environmental insults to the pancreatic islets. Genetic background may affect the risk for autoimmune disease and patients with T1D exhibit an increased risk of other autoimmune disorders such as autoimmune thyroid disease, Addison's disease, autoimmune gastritis, coeliac disease and vitiligo. Approximately 20%-25% of patients with T1D have thyroid antibodies, and up to 50% of such patients progress to clinical autoimmune thyroid disease. Approximately 0.5% of diabetic patients have concomitant Addison's disease and 4% have coeliac disease. The prevalence of autoimmune gastritis and pernicious anemia is 5% to 10% and 2.6% to 4%, respectively. Early detection of antibodies and latent organ-specific dysfunction is advocated to alert physicians to take appropriate action in order to prevent full-blown disease. Patients and family members should be educated to be able to recognize signs and symptoms of underlying disease. PMID:26903475

  2. Circulatory and Renal Consequences of Pregnancy in Diabetic NOD Mice

    PubMed Central

    Burke, S.D.; Barrette, V.F.; David, S.; Khankin, E. V.; Adams, M.A.; Croy, B.A.

    2011-01-01

    Objectives Women with diabetes have elevated gestational risks for severe hemodynamic complications, including preeclampsia in mid- to late pregnancy. This study employed continuous, chronic radiotelemetry to compare the hemodynamic patterns in non-obese diabetic (NOD) mice who were overtly diabetic or normoglycemic throughout gestation. We hypothesized that overtly diabetic, pregnant NOD mice would develop gestational hypertension and provide understanding of mechanisms in progression of this pathology. Study Design Telemeter-implanted, age-matched NOD females with and without diabetes were assessed for six hemodynamic parameters (mean, systolic, diastolic, pulse pressures, heart rate and activity) prior to mating, over pregnancy and over a 72 hr post-partum interval. Urinalysis, serum biochemistry and renal histopathology were also conducted. Results Pregnant, normoglycemic NOD mice had a hemodynamic profile similar to other inbred strains, despite insulitis. This pattern was characterized by an interval of pre-implantation stability, post implantation decline in arterial pressure to mid gestation, and then a rebound to pre-pregnancy baseline during later gestation. Overtly diabetic NOD mice had a blood pressure profile that was normal until mid-gestation then become mildly hypotensive (−7mmHg, P<0.05), severely bradycardic (−80bpm, P<0.01) and showed signs of acute kidney injury. Pups born to diabetic dams were viable but growth restricted, despite their mothers’ failing health, which did not rebound post-partum (−10% pre-pregnancy pressure and HR, P<0.05). Conclusions Pregnancy accelerates circulatory and renal pathologies in overtly diabetic NOD mice and is characterized by depressed arterial pressure from mid-gestation and birth of growth 45 restricted offspring. PMID:22014504

  3. Gene therapy with neurogenin3, betacellulin and SOCS1 reverses diabetes in NOD mice.

    PubMed

    Li, R; Buras, E; Lee, J; Liu, R; Liu, V; Espiritu, C; Ozer, K; Thompson, B; Nally, L; Yuan, G; Oka, K; Chang, B; Samson, S; Yechoor, V; Chan, L

    2015-11-01

    Islet transplantation for type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing in vivo islet neogenesis in non-obese diabetic (NOD) diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus carrying neurogenin3 (Ngn3), an islet lineage-defining transcription factor, and betacellulin (Btc), an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these 'neo-islets' from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with Ngn3 and Btc. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing 'neo-islets' in treated mouse livers. Despite evidence of persistent 'insulitis' with activated T cells, these 'neo-islets' persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering in vivo islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice. PMID:26172077

  4. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes

    PubMed Central

    Castro, C N; Barcala Tabarrozzi, A E; Winnewisser, J; Gimeno, M L; Antunica Noguerol, M; Liberman, A C; Paz, D A; Dewey, R A; Perone, M J

    2014-01-01

    Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. PMID

  5. Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes

    SciTech Connect

    Yang Zandong . E-mail: zandong_yang@merck.com; Chen Meng; Carter, Jeffrey D.; Nunemaker, Craig S.; Garmey, James C.; Kimble, Sarah D.; Nadler, Jerry L. . E-mail: jln2n@virginia.edu

    2006-06-09

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease leading to near complete pancreatic {beta}-cell destruction. New evidence suggests that {beta}-cell regeneration is possible, but ongoing autoimmune damage prevents restoration of {beta}-cell mass. We tested the hypothesis that simultaneously blocking autoimmune cytokine damage and supplying a growth-promoting stimulus for {beta}-cells would provide a novel approach to reverse T1DM. Therefore, in this study we combined lisofylline to suppress autoimmunity and exendin-4 to enhance {beta}-cell proliferation for treating autoimmune-mediated diabetes in the non-obese diabetic (NOD) mouse model. We found that this combined therapy effectively reversed new-onset diabetes within a week of therapy, and even maintained euglycemia up to 145 days after treatment withdrawal. The therapeutic effect of this regimen was associated with improved {beta}-cell metabolism and insulin secretion, while reducing {beta}-cell apoptosis. It is possible that such combined therapy could become a new strategy to defeat T1DM in humans.

  6. MicroRNA-26a Promotes Regulatory T cells and Suppresses Autoimmune Diabetes in Mice.

    PubMed

    Ma, Hui; Zhang, Shoutao; Shi, Doufei; Mao, Yanhua; Cui, Jianguo

    2016-02-01

    Type-1 diabetes (TID) is an autoimmune disease in which the body's own immune cells attack islet β cells, the cells in the pancreas that produce and release the hormone insulin. Mir-26a has been reported to play functions in cellular differentiation, cell growth, cell apoptosis, and metastasis. However, the role of microRNA-26a (Mir-26a) in autoimmune TID has never been investigated. In our current study, we found that pre-Mir-26a (LV-26a)-treated mice had significantly longer normoglycemic time and lower frequency of autoreactive IFN-γ-producing CD4(+) cells compared with an empty lentiviral vector (LV-Con)-treated non-obese diabetic (NOD) mice. Mir-26a suppresses autoreactive T cells and expands Tregs in vivo and in vitro. Furthermore, in our adoptive transfer study, the groups receiving whole splenocytes and CD25-depleted splenocytes from LV-Con-treated diabetic NOD mice develop diabetes at 3 to 4 weeks of age. In comparison, mice injected with undepleted splenocytes obtained from LV-26a-treated reversal NOD mice develop diabetes after 6-8 weeks. And depletion of CD25(+) cells in the splenocytes of reversed mice abrogates the delay in diabetes onset. In conclusion, Mir-26a suppresses autoimmune diabetes in NOD mice in part through promoted regulatory T cells (Tregs) expression. PMID:26208605

  7. Gene therapy with Neurogenin3, Betacellulin and SOCS-1 Reverses Diabetes in NOD Mice

    PubMed Central

    Li, Rongying; Buras, Eric; Lee, Jeongkyung; Liu, Ruya; Liu, Victoria; Espiritu, Christie; Ozer, Kerem; Thompson, Bonnie; Nally, Laura; Yuan, Guoyue; Oka, Kazuhiro; Chang, Benny; Samson, Susan; Yechoor, Vijay; Chan, Lawrence

    2015-01-01

    Islet transplantation for Type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing in vivo islet neogenesis in NOD diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus (HDAd) carrying neurogenin3, an islet lineage-defining transcription factor and betacellulin, an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these ‘neo-islets’ from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with neurogenin3 and betacellulin. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing ‘neo-islets’ in treated mouse livers. Despite evidence of persistent ‘insulitis’ with activated T-cells, these ‘neo-islets’ persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering in vivo islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice. PMID:26172077

  8. Longitudinal Frequencies of Blood Leukocyte Subpopulations Differ between NOD and NOR Mice but Do Not Predict Diabetes in NOD Mice

    PubMed Central

    Telieps, Tanja; Köhler, Meike; Treise, Irina; Foertsch, Katharina; Adler, Thure; Busch, Dirk H.; Hrabě de Angelis, Martin; Verschoor, Admar; Adler, Kerstin; Bonifacio, Ezio; Ziegler, Anette-Gabriele

    2016-01-01

    Immune phenotyping provides insight into disease pathogenesis and prognostic markers. Trajectories from age of 4 to 36 weeks were modeled for insulin autoantibodies and for leukocyte subpopulations in peripheral blood from female NOD (n = 58) and NOR (n = 22) mice. NOD mice had higher trajectories of insulin autoantibodies, CD4+ and CD8+ T lymphocytes, B lymphocytes, IgD+IgM− B lymphocytes, and NK cells and lower trajectories of CD4+CD25+ T lymphocytes, IgM+ B lymphocytes, granulocytes, and monocytes than NOR mice (all p < 0.001). Of these, only the increased IAA trajectory was observed in NOD mice that developed diabetes as compared to NOD mice that remained diabetes-free. Therefore, the profound differences in peripheral blood leukocyte proportions observed between the diabetes-prone NOD mice and the diabetes-resistant mice do not explain the variation in diabetes development within NOD mice and do not provide markers for diabetes prediction in this model. PMID:26966692

  9. Centromeric interval of chromosome 4 derived from C57BL/6 mice accelerates type 1 diabetes in NOD.CD72b congenic mice.

    PubMed

    Hou, Rong; Ohtsuji, Mareki; Ohtsuji, Naomi; Zhang, Li; Adachi, Takahiro; Hirose, Sachiko; Tsubata, Takeshi

    2009-02-27

    The nonobese diabetic (NOD) mouse is a useful model of autoimmune type 1 diabetes exhibiting many similarities to human type 1 diabetes patients including the presence of auto-reactive T cells and pancreas-specific autoantiboies. Multiple Idd loci control the development of diabetes in NOD mice. CD72, a B cell membrane-bound glycoprotein carrying a C-type lectin-like domain, is an inhibitory co-receptor of the B cell antigen receptor (BCR) that negatively regulates BCR signaling. Among four known haplotypes of mouse CD72, NOD mice carry the CD72(c) haplotype, whereas most of the other inbred strains of mice carry either CD72(a) or CD72(b). In this study, we generated congenic NOD.CD72(b) mice that carry C57BL/6 (B6) mouse-derived centromeric chromosome 4 interval (24-45cM) surrounding the CD72(b) locus. Unexpectedly, NOD.CD72(b) mice were not protected from diabetes, but rather exhibited accelerated development of both insulitis and diabetes. Our result defines novel locus or loci in the vicinity of CD72 gene that negatively control diabetes, indicating that NOD disease is under complex genetic controls of not only Idd genes but also disease-resistant genes. PMID:19167349

  10. Cell-mediated immunity to pancreatic islet cells in the non-obese diabetic (NOD) mouse: in vitro characterization and time course study.

    PubMed Central

    Timsit, J; Debray-Sachs, M; Boitard, C; Bach, J F

    1988-01-01

    The non-obese diabetic (NOD) mouse is an animal model of insulin-dependent diabetes mellitus (IDDM), in which 80% of the females become diabetic after the age of 12 weeks. Using an in vitro assay we investigated the capacity of spleen lymphocytes from NOD mice to inhibit the insulin secretion of normal islet cells after stimulation by theophylline plus arginine. Spleen cells from diabetic NOD mice inhibited the insulin release of DBA/2 islet cells. Depletion experiments using monoclonal antibodies demonstrated that inhibitory cells belonged to the Lyt2 positive T lymphocyte subset. The phenomenon was not restricted by the MHC class I K region, shared by NOD and DBA/2 mice, since lymphocytes from diabetic NOD mice also inhibited the insulin secretion of normal Wistar rat islet cells. Inhibitory T cells were detected in overtly diabetic mice but also in non-diabetic females aged 5-11 weeks indicating that they are not secondary to metabolic disturbances and might contribute to their onset. Conversely they were not found in male NOD mice although some of these mice show insulitis. The presence of these inhibitory T cells might thus represent an early and sensitive marker of anti-islet cell-mediated autoimmunity. PMID:3052943

  11. Pancreatic β-Cells Limit Autoimmune Diabetes via an Immunoregulatory Antimicrobial Peptide Expressed under the Influence of the Gut Microbiota.

    PubMed

    Sun, Jia; Furio, Laetitia; Mecheri, Ramine; van der Does, Anne M; Lundeberg, Erik; Saveanu, Loredana; Chen, Yongquan; van Endert, Peter; Agerberth, Birgitta; Diana, Julien

    2015-08-18

    Antimicrobial peptides (AMPs) expressed by epithelial and immune cells are largely described for the defense against invading microorganisms. Recently, their immunomodulatory functions have been highlighted in various contexts. However how AMPs expressed by non-immune cells might influence autoimmune responses in peripheral tissues, such as the pancreas, is unknown. Here, we found that insulin-secreting β-cells produced the cathelicidin related antimicrobial peptide (CRAMP) and that this production was defective in non-obese diabetic (NOD) mice. CRAMP administrated to prediabetic NOD mice induced regulatory immune cells in the pancreatic islets, dampening the incidence of autoimmune diabetes. Additional investigation revealed that the production of CRAMP by β-cells was controlled by short-chain fatty acids produced by the gut microbiota. Accordingly, gut microbiota manipulations in NOD mice modulated CRAMP production and inflammation in the pancreatic islets, revealing that the gut microbiota directly shape the pancreatic immune environment and autoimmune diabetes development. PMID:26253786

  12. Studies on the thymus of non-obese diabetic (NOD) mice: effect of transgene expression.

    PubMed Central

    O'Reilly, L A; Healey, D; Simpson, E; Chandler, P; Lund, T; Ritter, M A; Cooke, A

    1994-01-01

    The non-obese diabetic (NOD) mouse is a good model of insulin-dependent diabetes mellitus. Autoreactive T cells may play a fundamental role in disease initiation in this model, while disregulation of such cells may result from an abnormal thymic microenvironment. Diabetes is prevented in NOD mice by direct introduction of an E alpha d transgene (NOD-E) or a modified I-A beta chain of NOD origin (NOD-PRO or NOD-ASP). To investigate if disease pathology in NOD mice, protection from disease in transgenic NOD-E and NOD-PRO and partial protection from disease in NOD-ASP can be attributed to alterations in the thymic microenvironment, immunohistochemical and flow cytometric analysis of the thymi of these mouse strains was studied. Thymi from NOD and NOD-E mice showed a progressive increase in thymic B-cell percentage from 12 weeks of age. This was accompanied by a concomitant loss in thymic epithelial cells with the appearance of large epithelial-free areas mainly at the corticomedullary junction, which increased in size and number with age and contained the B-cell clusters. Such thymic B cells did not express CD5 and were absent in CBA, NOD-ASP and NOD-PRO mice as were the epithelial cell-free spaces, even at 5 months of age. Therefore the mechanisms of disease protection in the transgenic NOD-E and NOD-ASP/NOD-PRO mice may differ if these thymic abnormalities are related to disease. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7523287

  13. Immune Depletion With Cellular Mobilization Imparts Immunoregulation and Reverses Autoimmune Diabetes in Nonobese Diabetic Mice

    PubMed Central

    Parker, Matthew J.; Xue, Song; Alexander, John J.; Wasserfall, Clive H.; Campbell-Thompson, Martha L.; Battaglia, Manuela; Gregori, Silvia; Mathews, Clayton E.; Song, Sihong; Troutt, Misty; Eisenbeis, Scott; Williams, John; Schatz, Desmond A.; Haller, Michael J.; Atkinson, Mark A.

    2009-01-01

    OBJECTIVE The autoimmune destruction of β-cells in type 1 diabetes results in a loss of insulin production and glucose homeostasis. As such, an immense interest exists for the development of therapies capable of attenuating this destructive process through restoration of proper immune recognition. Therefore, we investigated the ability of the immune-depleting agent antithymocyte globulin (ATG), as well as the mobilization agent granulocyte colony–stimulating factor (GCSF), to reverse overt hyperglycemia in the nonobese diabetic (NOD) mouse model of type 1 diabetes. RESEARCH DESIGN AND METHODS Effects of each therapy were tested in pre-diabetic and diabetic female NOD mice using measurements of glycemia, regulatory T-cell (CD4+CD25+Foxp3+) frequency, insulitis, and/or β-cell area. RESULTS Here, we show that combination therapy of murine ATG and GCSF was remarkably effective at reversing new-onset diabetes in NOD mice and more efficacious than either agent alone. This combination also afforded durable reversal from disease (>180 days postonset) in animals having pronounced hyperglycemia (i.e., up to 500 mg/dl). Additionally, glucose control improved over time in mice subject to remission from type 1 diabetes. Mechanistically, this combination therapy resulted in both immunological (increases in CD4-to-CD8 ratios and splenic regulatory T-cell frequencies) and physiological (increase in the pancreatic β-cell area, attenuation of pancreatic inflammation) benefits. CONCLUSIONS In addition to lending further credence to the notion that combination therapies can enhance efficacy in addressing autoimmune disease, these studies also support the concept for utilizing agents designed for other clinical applications as a means to expedite efforts involving therapeutic translation. PMID:19628781

  14. Autoimmune Diabetes: An Overview of Experimental Models and Novel Therapeutics.

    PubMed

    You, Sylvaine; Chatenoud, Lucienne

    2016-01-01

    Type 1 diabetes (T1D) results from a chronic and selective destruction of insulin-secreting β-cells within the islets of Langerhans of the pancreas by autoreactive CD4(+) and CD8(+) T lymphocytes. The use of animal models of T1D was instrumental for deciphering the steps of the autoimmune process leading to T1D. The non-obese diabetic (NOD) mouse and the bio-breeding (BB) rat spontaneously develop the disease similar to the human pathology in terms of the immune responses triggering autoimmune diabetes and of the genetic and environmental factors influencing disease susceptibility. The generation of genetically modified models allowed refining our understanding of the etiology and the pathogenesis of the disease. In the present review, we provide an overview of the experimental models generated and used to gain knowledge on the molecular and cellular mechanisms underlying the breakdown of self-tolerance in T1D and the progression of the autoimmune response. Immunotherapeutic interventions designed in these animal models and translated into the clinical arena in T1D patients will also be discussed. PMID:26530798

  15. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice.

    PubMed

    Homs, Judit; Ariza, Lorena; Pagès, Gemma; Verdú, Enrique; Casals, Laura; Udina, Esther; Chillón, Miguel; Bosch, Assumpció; Navarro, Xavier

    2011-09-01

    The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice. PMID:22003936

  16. Oral administration of synthetic retinoid Am80 inhibits the development of type 1 diabetes in non-obese diabetic (NOD) mice.

    PubMed

    Miwako, Ishido; Shudo, Koichi

    2009-01-01

    Synthetic retinoid Am80 is a potent modulator of the immune system. Am80 is effective in various experimentally induced autoimmune disorders. The purpose of this study is to confirm its effect on non-obese diabetic (NOD) mice, which spontaneously develop autoimmune type 1 diabetes. Am80 was orally administered in feed to 6 NOD mice per group at a dose of 0 (control), 0.1 (low) or 1 (high) mg/kg/d for 19 weeks. During the experiment period, the high urine glucose levels were observed in 33% mice of the control and low Am80 groups, whereas any mouse in the high Am80 group did not show abnormal urine glucose level. Histological examination showed that the average score of insulitis severity in the low Am80 group was similar to that in the control; however in the high Am80 group, the score was significantly reduced compared to that in the control group. Similarly, the severity of lymphocyte infiltration in the submandibular glands showed a tendency to decrease in the high Am80 group, but not in the low Am80 group, compared to the control. These data strongly suggest that the development of type 1 diabetes in NOD mice can be inhibited by oral administration of Am80. PMID:19122301

  17. Combination of worm antigen and proinsulin prevents type 1 diabetes in NOD mice after the onset of insulitis.

    PubMed

    Ajendra, Jesuthas; Berbudi, Afiat; Hoerauf, Achim; Hübner, Marc P

    2016-03-01

    Animal studies demonstrated that administration of helminth products can protect from autoimmune diseases. However, the success of such administrations is limited in the case of type 1 diabetes, as protection is only provided if the administration is started before the development of insulitis. In this study we investigated whether inclusion of helminth antigen administrations to an antigen-specific treatment with proinsulin improves the protective effect by triggering non-specific regulatory immune responses. Using a combination therapy of intraperitoneal Litomosoides sigmodontis antigen and intranasal pro-insulin, onset of diabetes was prevented in NOD mice after insulitis started, while either administration alone failed to protect. This protection was associated with an increased frequency of regulatory T cells within the pancreatic lymph nodes and a reduced inflammation of the pancreatic islets. This suggests that inclusion of helminth antigens improve the protective effect provided by antigen-specific therapies and represent a new potential therapeutic approach against autoimmune diseases. PMID:26898311

  18. Genetic Analysis of Substrain Divergence in Non-Obese Diabetic (NOD) Mice.

    PubMed

    Simecek, Petr; Churchill, Gary A; Yang, Hyuna; Rowe, Lucy B; Herberg, Lieselotte; Serreze, David V; Leiter, Edward H

    2015-05-01

    The non-obese diabetic (NOD) mouse is a polygenic model for type 1 diabetes that is characterized by insulitis, a leukocytic infiltration of the pancreatic islets. During ~35 years since the original inbred strain was developed in Japan, NOD substrains have been established at different laboratories around the world. Although environmental differences among NOD colonies capable of impacting diabetes incidence have been recognized, differences arising from genetic divergence have not been analyzed previously. We use both mouse diversity array and whole-exome capture sequencing platforms to identify genetic differences distinguishing five NOD substrains. We describe 64 single-nucleotide polymorphisms, and two short indels that differ in coding regions of the five NOD substrains. A 100-kb deletion on Chromosome 3 distinguishes NOD/ShiLtJ and NOD/ShiLtDvs from three other substrains, whereas a 111-kb deletion in the Icam2 gene on Chromosome 11 is unique to the NOD/ShiLtDvs genome. The extent of genetic divergence for NOD substrains is compared with similar studies for C57BL6 and BALB/c substrains. As mutations are fixed to homozygosity by continued inbreeding, significant differences in substrain phenotypes are to be expected. These results emphasize the importance of using embryo freezing methods to minimize genetic drift within substrains and of applying appropriate genetic nomenclature to permit substrain recognition when one is used. PMID:25740934

  19. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice.

    PubMed

    Brown, Kirsty; Godovannyi, Artem; Ma, Caixia; Zhang, YiQun; Ahmadi-Vand, Zahra; Dai, Chaunbin; Gorzelak, Monika A; Chan, YeeKwan; Chan, Justin M; Lochner, Arion; Dutz, Jan P; Vallance, Bruce A; Gibson, Deanna L

    2016-02-01

    Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome. PMID:26274050

  20. Toll-Like Receptor 3 Is Critical for Coxsackievirus B4-Induced Type 1 Diabetes in Female NOD Mice

    PubMed Central

    Thuma, Jean R.; Courreges, Maria C.; Benencia, Fabian; James, Calvin B.L.; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L.

    2015-01-01

    Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3+/+) and TLR3 knockout (TLR3−/−) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice. PMID:25422874

  1. The role of Gr1+ cells after anti-CD20 treatment in type 1 diabetes in NOD mice

    PubMed Central

    Hu, Changyun; Du, Wei; Zhang, Xiaojun; Wong, F. Susan; Wen, Li

    2015-01-01

    Studies suggest that Gr1+CD11b+ cells have immunoregulatory function and these cells may play an important role in autoimmune diseases. In this study, we investigated the regulatory role of Gr1+CD11b+ cells in protecting against type 1 diabetes in NOD mice. Here we showed that temporary B cell depletion induced the expansion of Gr1+CD11b+ cells. Gr1+CD11b+ cells not only directly suppress diabetogenic T cell function, but can also induce Treg differentiation in a TGF-β-dependent manner. Furthermore, we found that Gr1+CD11b+ cells could suppress diabetogenic CD4 and CD8 T cell function in an IL-10-, nitric oxide- and cell contact- dependent manner. Interestingly, single anti-Gr1 monoclonal antibody treatment can also induce a transient expansion of Gr1+CD11b+ cells that delayed diabetes development in NOD mice. Our data suggest that Gr1+CD11b+ cells contribute to the establishment of immune tolerance to pancreatic islet autoimmunity. Manipulation of Gr1+CD11b+ cells could be considered as a novel immunotherapy for the prevention of type 1 diabetes. PMID:22140261

  2. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    SciTech Connect

    Zhao, Yan-Ying; Huang, Xin-Yuan; Chen, Zheng-Wang

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  3. Identification of Candidate Tolerogenic CD8+ T Cell Epitopes for Therapy of Type 1 Diabetes in the NOD Mouse Model

    PubMed Central

    Yu, Cailin; Burns, Jeremy C.; Robinson, William H.; Utz, Paul J.; Ho, Peggy P.; Steinman, Lawrence; Frey, Alan B.

    2016-01-01

    Type 1 diabetes is an autoimmune disease in which insulin-producing pancreatic islet β cells are the target of self-reactive B and T cells. T cells reactive with epitopes derived from insulin and/or IGRP are critical for the initiation and maintenance of disease, but T cells reactive with other islet antigens likely have an essential role in disease progression. We sought to identify candidate CD8+ T cell epitopes that are pathogenic in type 1 diabetes. Proteins that elicit autoantibodies in human type 1 diabetes were analyzed by predictive algorithms for candidate epitopes. Using several different tolerizing regimes using synthetic peptides, two new predicted tolerogenic CD8+ T cell epitopes were identified in the murine homolog of the major human islet autoantigen zinc transporter ZnT8 (aa 158–166 and 282–290) and one in a non-β cell protein, dopamine β-hydroxylase (aa 233–241). Tolerizing vaccination of NOD mice with a cDNA plasmid expressing full-length proinsulin prevented diabetes, whereas plasmids encoding ZnT8 and DβH did not. However, tolerizing vaccination of NOD mice with the proinsulin plasmid in combination with plasmids expressing ZnT8 and DβH decreased insulitis and enhanced prevention of disease compared to vaccination with the plasmid encoding proinsulin alone. PMID:27069933

  4. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes.

    PubMed

    Bassi, Ênio J; Moraes-Vieira, Pedro M M; Moreira-Sá, Carla S R; Almeida, Danilo C; Vieira, Leonardo M; Cunha, Cláudia S; Hiyane, Meire I; Basso, Alexandre S; Pacheco-Silva, Alvaro; Câmara, Niels O S

    2012-10-01

    Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-γ levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-β1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional β-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D. PMID:22688334

  5. Congenic mapping and candidate sequencing of susceptibility genes for Type 1 diabetes in the NOD mouse.

    PubMed

    Ikegami, Hiroshi; Fujisawa, Tomomi; Makino, Susumu; Ogihara, Toshio

    2003-11-01

    Inheritance of type 1 diabetes is polygenic with a major susceptibility gene located in the major histocompatibility complex (MHC). In addition to MHC-linked susceptibility, a number of susceptibility genes have been mapped outside the MHC in both humans and animal models. In order to localize and identify susceptibility genes for type 1 diabetes, we have developed a series of congenic strains in which either susceptibility intervals from the NOD mouse, a mouse model of type 1 diabetes, were introgressed onto control background genes or protective intervals from control strains were introgressed onto NOD background genes. NOD. CTS-H-2 congenic mice, which possess recombinant MHC with NOD alleles at class II A and E genes, which are candidates for Idd1, revealed that Idd1 consists of multiple components, one in class II (Idd1) and the other adjacent to, but distinct from, Idd1 (Idd16). Phenotypes of NOD. IIS-Idd3 congenic mice, which share the same alleles at both Il2 and Il21 as the NOD mouse, were indistinguishable from the NOD parental strain, indicating that both Il2 and Il21 are candidates for Idd3. In contrast, NOD. IIS-Idd10 congenic mice, which share the same alleles at Fcgr1, a previous candidate for Idd10, as the NOD mouse, were protected from type 1 diabetes, suggesting that Fcgr1 may not be responsible for the Idd10 effect. These data suggest that the use of strain colony closely related to a disease model to find the same candidate mutation on different haplotypes and make congenic strains with this recombinant chromosome, termed ancestral haplotype congenic mapping, is an effective strategy for fine mapping and identification of genes responsible for complex traits. PMID:14679059

  6. NOD1 expression is increased in the adipose tissue of women with gestational diabetes.

    PubMed

    Lappas, Martha

    2014-07-01

    Maternal peripheral insulin resistance and increased inflammation are two features of pregnancies, complicated by gestational diabetes mellitus (GDM). The nucleotide-binding oligomerisation domain (NOD) intracellular molecules recognise a wide range of microbial products, as well as other intracellular danger signals, thereby initiating inflammation through activation of nuclear factor κB (NFκB). The aim of this study was to determine whether levels of NOD1 and NOD2 are increased in adipose tissue of women with GDM. The effect of NOD1 and NOD2 activation on inflammation and the insulin signalling pathway was also assessed. NOD1, but not NOD2, expression was higher in omental and subcutaneous adipose tissues obtained from women with GDM when compared with those from women with normal glucose tolerance (NGT). In both omental and subcutaneous adipose tissues from NGT and GDM women, the NOD1 ligand g-d-glutamyl-meso-diaminopimelic acid (iE-DAP) significantly induced the expression and secretion of the pro-inflammatory cytokine interleukin 6 (IL6) and chemokine IL8; COX2 (PTGS2) gene expression and subsequent prostaglandin production; the expression and secretion of the extracellular matrix remodelling enzyme matrix metalloproteinase 9 (MMP9) and the gene expression and secretion of the adhesion molecules ICAM1 and VCAM1. There was no effect of the NOD2 ligand muramyl dipeptide on any of the endpoints tested. The effects of the NOD1 ligand iE-DAP were mediated via NFκB, as the NFκB inhibitor BAY 11-7082 significantly attenuated iE-DAP-induced expression and secretion of pro-inflammatory cytokines, COX2 gene expression and subsequent prostaglandin production, MMP9 expression and secretion and ICAM1 and VCAM1 gene expression and secretion. In conclusion, the present findings describe an important role for NOD1 in the development of insulin resistance and inflammation in pregnancies complicated by GDM. PMID:24829218

  7. 1,25-Dihydroxyvitamin D3 restores sensitivity to cyclophosphamide-induced apoptosis in non-obese diabetic (NOD) mice and protects against diabetes

    PubMed Central

    Casteels, K; Waer, M; Bouillon, R; Depovere, J; Valckx, D; Laureys, J; Mathieu, C

    1998-01-01

    The activated form of vitamin D, 1,25(OH)2D3, and its analogues can prevent type I diabetes in NOD mice. Protection is achieved without signs of systemic immunosuppression and is associated with a restoration of the defective immune regulator system of the NOD mice. The aim of the present study was to investigate whether this restoration of regulator cell function is the only mechanism in the prevention of diabetes by 1,25(OH)2D3. We tested therefore if 1,25(OH)2D3 could prevent cyclophosphamide-induced diabetes, since diabetes occurring after cyclophosphamide injection is believed to be due to an elimination of suppresser cells. NOD mice treated with 1,25(OH)2D3 (5 μg/kg every 2 days) from the time of weaning were clearly protected against diabetes induced by cyclophosphamide (200 mg/kg body wt at 70 days old) (2/12 (17%) versus 36/53 (68%) in control mice, P < 0.005). By co-transfer experiments it was demonstrated that cyclophosphamide had indeed eliminated the suppresser cells present in 1,25(OH)2D3-treated mice. Since cyclophosphamide injection did not break the protection offered by 1,25(OH)2D3, it was clear that diabetogenic effector cells were affected by 1,25(OH)2D3 treatment as well. This was confirmed by the finding that splenocytes from 1,25(OH)2D3-treated mice were less capable of transferring diabetes in young, irradiated NOD mice, and by the demonstration of lower Th1 cytokine levels in the pancreases of 1,25(OH)2D3-treated, cyclophosphamide-injected mice. This better elimination of effector cells in 1,25(OH)2D3-treated mice could be explained by a restoration of the sensitivity to cyclophosphamide-induced apoptosis in both thymocytes and splenocytes, in normally apoptosis-resistant NOD mice. Altogether, these data indicate that the protection against diabetes offered by 1,25(OH)2D3 may be independent of the presence of suppresser cells, and may involve increased apoptosis of Th1 autoimmune effector cells. PMID:9649179

  8. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1.

    PubMed

    Rahman, M Jubayer; Rahir, Gwendoline; Dong, Matthew B; Zhao, Yongge; Rodrigues, Kameron B; Hotta-Iwamura, Chie; Chen, Ye; Guerrero, Alan; Tarbell, Kristin V

    2016-03-01

    Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/β receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response. PMID:26826238

  9. Transcriptional regulation of vascular bone morphogenetic protein by endothelin receptors in early autoimmune diabetes mellitus.

    PubMed

    Nett, Philipp C; Ortmann, Jana; Celeiro, Jennifer; Haas, Elvira; Hofmann-Lehmann, Regina; Tornillo, Luigi; Terraciano, Luigi M; Barton, Matthias

    2006-04-01

    Endothelin (ET) and bone morphogenic proteins (BMP) have been implicated in the development of micro- and macrovascular complications of type 2 diabetes mellitus due to atherosclerosis. This study investigated vascular BMP-expression during early development of experimental autoimmune diabetes mellitus and whether ET(A) receptors are involved in its regulation, using the selective ET(A) receptor antagonist BSF461314. Specificity of BSF461314 was confirmed through ET-mediated p44/42 mitogen-activated protein kinase (ERK1/2) phosphorylation experiments. For animal studies, non-obese diabetic (NOD) and control mice at 16 weeks of age were treated with BSF461314 for 6 weeks. Plasma glucose levels were measured before and after treatment and vascular gene expression of BMP-2, BMP-7, and BMP-type II receptor was determined in the aorta by quantitative real-time polymerase chain reaction analysis. At the beginning of the study in all animals, plasma glucose levels were within the normal range. After 6 weeks gene expression of vascular BMP-2, BMP-7 and BMP-type II receptor was almost doubled in NOD mice compared with non-diabetic controls (p < 0.05). Concomitant treatment with BSF461314 significantly reduced expression of all BMPs and lowered plasma glucose levels in NOD mice close to controls (all p < 0.05 versus untreated). In conclusion, vascular BMP-2, BMP-7, and BMP-type II receptor expression is upregulated in early stages of autoimmune diabetes mellitus. The data further indicate that ET(A) receptors inhibit diabetes-associated activation of vascular BMPs and regulate plasma glucose levels suggesting that ET(A) receptors might provide a new therapeutic target to interfere with the early development of atherosclerosis in patients with type 1 diabetes mellitus. PMID:16300798

  10. APC Activation Restores Functional CD4+CD25+ Regulatory T Cells in NOD Mice that Can Prevent Diabetes Development

    PubMed Central

    Manirarora, Jean N.; Kosiewicz, Michele M.; Parnell, Sarah A.; Alard, Pascale

    2008-01-01

    Background Defects in APC and regulatory cells are associated with diabetes development in NOD mice. We have shown previously that NOD APC are not effective at stimulating CD4+CD25+ regulatory cell function in vitro. We hypothesize that failure of NOD APC to properly activate CD4+CD25+ regulatory cells in vivo could compromise their ability to control pathogenic cells, and activation of NOD APC could restore this defect, thereby preventing disease. Methodology/Principal Findings To test these hypotheses, we used the well-documented ability of complete Freund's adjuvant (CFA), an APC activator, to prevent disease in NOD mice. Phenotype and function of CD4+CD25+ regulatory cells from untreated and CFA-treated NOD mice were determined by FACS, and in vitro and in vivo assays. APC from these mice were also evaluated for their ability to activate regulatory cells in vitro. We have found that sick NOD CD4+CD25+ cells expressed Foxp3 at the same percentages, but decreased levels per cell, compared to young NOD or non-NOD controls. Treatment with CFA increased Foxp3 expression in NOD cells, and also increased the percentages of CD4+CD25+Foxp3+ cells infiltrating the pancreas compared to untreated NOD mice. Moreover, CD4+CD25+ cells from pancreatic LN of CFA-treated, but not untreated, NOD mice transferred protection from diabetes. Finally, APC isolated from CFA-treated mice increased Foxp3 and granzyme B expression as well as regulatory function by NOD CD4+CD25+ cells in vitro compared to APC from untreated NOD mice. Conclusions/Significance These data suggest that regulatory T cell function and ability to control pathogenic cells can be enhanced in NOD mice by activating NOD APC. PMID:19011680

  11. Antidiabetic properties of Hibiscus rosa sinensis L. leaf extract fractions on nonobese diabetic (NOD) mouse.

    PubMed

    Moqbel, Fahmi S; Naik, Prakash R; Najma, Habeeb M; Selvaraj, S

    2011-01-01

    On fractionation the ethanolic extract of H. rosa sinensis leaves, 5 fractions were obtained. Of these, fraction-3 (F3) and fraction-5 (F5) were chosen for detailed investigation on non obese diabetic (NOD) mouse to study anti-diabetic properties because they were more active than others. Serum glucose, glycosylated hemoglobin, triglyceride, cholesterol, blood urea, insulin, LDL, VLDL, and HDL were estimated. Both fractions F3 and F5 on oral feeding (100 and 200 mg/kg body weight) demonstrated insulinotropic nature and protective effect in NOD mice. These fractions may contain potential oral hypoglycemic agent. PMID:21365992

  12. A minor subset of Batf3-dependent antigen presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes

    PubMed Central

    Ferris, Stephen T.; Carrero, Javier A.; Mohan, James F.; Calderon, Boris; Murphy, Kenneth M.; Unanue, Emil R.

    2014-01-01

    Summary Autoimmune diabetes is characterized by inflammatory infiltration; however the initiating events are poorly understood. We found that the islets of Langerhans in young non-obese diabetic (NOD) mice contained two antigen presenting cell (APC) populations: a major macrophage and a minor CD103+ dendritic cell (DC) population. By four weeks of age, CD4+ T cells entered islets coincident with an increase of CD103+ DCs. In order to examine the role of the CD103+ DCs in diabetes, we examined Batf3-deficient NOD mice that lacked the CD103+ DCs in islets and pancreatic lymph nodes. This led to a lack of autoreactive T cells in islets and, importantly, no incidence of diabetes. Additional examination revealed that presentation of major histocompatibility complex (MHC) class I epitopes in the pancreatic lymph nodes was absent with a partial impairment of MHC class II presentation. Altogether, this study reveals that CD103+ DCs were essential for autoimmune diabetes development. PMID:25367577

  13. Variation in the Cd3 zeta (Cd247) gene correlates with altered T cell activation and is associated with autoimmune diabetes.

    PubMed

    Lundholm, Marie; Mayans, Sofia; Motta, Vinicius; Löfgren-Burström, Anna; Danska, Jayne; Holmberg, Dan

    2010-05-15

    Tuning of TCR-mediated activation was demonstrated to be critical for lineage fate in T cell development, as well as in the control of autoimmunity. In this study, we identify a novel diabetes susceptibility gene, Idd28, in the NOD mouse and provide evidence that Cd3zeta (Cd247) constitutes a prime candidate gene for this locus. Moreover, we show that the allele of the Cd3zeta gene expressed in NOD and DBA/2 mouse strains confers lower levels of T cell activation compared with the allele expressed by C57BL/6 (B6), BALB/c, and C3H/HeJ mice. These results support a model in which the development of autoimmune diabetes is dependent on a TCR signal mediated by a less-efficient NOD allele of the Cd3zeta gene. PMID:20400699

  14. IFN-{gamma} gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice

    SciTech Connect

    Rabinovitch, A.; Suarez-Pinzon, W.L.; Sorensen, O.

    1995-05-01

    Insulin-dependent diabetes mellitus in nonobese diabetic (NOD) mice results from selective destruction of pancreatic islet {beta}-cells following islet filtration by mononuclear leukocytes. Cytokines produced by islet-infiltrating mononuclear cells may be involved in {beta}-cell destruction. Therefore, we analyzed cytokine mRNA expression, by reverse-transcriptase PCR (RT-PCR) assay, in mononuclear leukocytes isolated from pancreatic islets of four groups of mice: diabetes-prone female NOD mice; female NOD mice protected from diabetes by injection of CFA at an early age; male NOD mice with a low diabetes incidence; and female BALB/c mice that do not develop diabetes. We found that mRNA levels of IL-1{beta}, IL-2, IL-4, IL-10, and IFN-{gamma} in mononuclear cells from islets of diabetes-prone female NOD mice increased progressively as these cells infiltrated the islets from age 5 wk to diabetes onset (>13 wk). However, only IFN-{gamma} mRNA levels were significantly higher in islet mononuclear cells from 12-wk-old diabetes-prone female NOD mice than from less diabetes-prone NOD mice (CFA-treated females, and males) and normal mice (BALB/c). In contrast, IL-4 mRNA levels were lower in islet mononuclear cells from diabetes-prone female NOD mice than from NOD mice with low diabetes incidence (CFA-treated females and males). Splenic cell mRNA levels of IFN-{gamma} and IL-4 were not different in the four groups of mice. These results suggest that islet {beta}-cell destruction and diabetes in female NOD mice are dependent upon intra-islet IFN-{gamma} production by mononuclear cells, and that CFA-treated female NOD mice and male NOD mice may be protected from diabetes development by down-regulation of IFN-{gamma} production in the islets. 56 refs., 4 figs., 3 tabs.

  15. Latent autoimmune diabetes of the adult: current knowledge and uncertainty

    PubMed Central

    Laugesen, E; Østergaard, J A; Leslie, R D G

    2015-01-01

    Patients with adult-onset autoimmune diabetes have less Human Leucocyte Antigen (HLA)-associated genetic risk and fewer diabetes-associated autoantibodies compared with patients with childhood-onset Type 1 diabetes. Metabolic changes at diagnosis reflect a broad clinical phenotype ranging from diabetic ketoacidosis to mild non-insulin-requiring diabetes, also known as latent autoimmune diabetes of the adult (LADA). This latter phenotype is the most prevalent form of adult-onset autoimmune diabetes and probably the most prevalent form of autoimmune diabetes in general. Although LADA is associated with the same genetic and immunological features as childhood-onset Type 1 diabetes, it also shares some genetic features with Type 2 diabetes, which raises the question of genetic heterogeneity predisposing to this form of the disease. The potential value of screening patients with adult-onset diabetes for diabetes-associated autoantibodies to identify those with LADA is emphasized by their lack of clinically distinct features, their different natural history compared with Type 2 diabetes and their potential need for a dedicated management strategy. The fact that, in some studies, patients with LADA show worse glucose control than patients with Type 2 diabetes, highlights the need for further therapeutic studies. Challenges regarding classification, epidemiology, genetics, metabolism, immunology, clinical presentation and treatment of LADA were discussed at a 2014 workshop arranged by the Danish Diabetes Academy. The presentations and discussions are summarized in this review, which sets out the current ideas and controversies surrounding this form of diabetes. What’s new? Latent autoimmune diabetes of the adult (LADA) is an autoimmune diabetes defined by adult-onset, presence of diabetes associated autoantibodies, and no insulin treatment requirement for a period after diagnosis. Immunologically, glutamic acid decarboxylase 65 autoantibodies are by far the most

  16. Systemic alterations in the metabolome of diabetic NOD mice delineate increased oxidative stress accompanied by reduced inflammation and hypertriglyceremia

    PubMed Central

    Fahrmann, Johannes; Grapov, Dmitry; Yang, Jun; Hammock, Bruce; Fiehn, Oliver; Bell, Graeme I.

    2015-01-01

    Nonobese diabetic (NOD) mice are a commonly used model of type 1 diabetes (T1D). However, not all animals will develop overt diabetes despite undergoing similar autoimmune insult. In this study, a comprehensive metabolomic approach, consisting of gas chromatography time-of-flight (GC-TOF) mass spectrometry (MS), ultra-high-performance liquid chromatography-accurate mass quadruple time-of-flight (UHPLC-qTOF) MS and targeted UHPLC-tandem mass spectrometry-based methodologies, was used to capture metabolic alterations in the metabolome and lipidome of plasma from NOD mice progressing or not progressing to T1D. Using this multi-platform approach, we identified >1,000 circulating lipids and metabolites in male and female progressor and nonprogressor animals (n = 71). Statistical and multivariate analyses were used to identify age- and sex-independent metabolic markers, which best differentiated metabolic profiles of progressors and nonprogressors. Key T1D-associated perturbations were related with 1) increases in oxidation products glucono-δ-lactone and galactonic acid and reductions in cysteine, methionine and threonic acid, suggesting increased oxidative stress; 2) reductions in circulating polyunsaturated fatty acids and lipid signaling mediators, most notably arachidonic acid (AA) and AA-derived eicosanoids, implying impaired states of systemic inflammation; 3) elevations in circulating triacylglyercides reflective of hypertriglyceridemia; and 4) reductions in major structural lipids, most notably lysophosphatidylcholines and phosphatidylcholines. Taken together, our results highlight the systemic perturbations that accompany a loss of glycemic control and development of overt T1D. PMID:25852003

  17. Systemic alterations in the metabolome of diabetic NOD mice delineate increased oxidative stress accompanied by reduced inflammation and hypertriglyceremia.

    PubMed

    Fahrmann, Johannes; Grapov, Dmitry; Yang, Jun; Hammock, Bruce; Fiehn, Oliver; Bell, Graeme I; Hara, Manami

    2015-06-01

    Nonobese diabetic (NOD) mice are a commonly used model of type 1 diabetes (T1D). However, not all animals will develop overt diabetes despite undergoing similar autoimmune insult. In this study, a comprehensive metabolomic approach, consisting of gas chromatography time-of-flight (GC-TOF) mass spectrometry (MS), ultra-high-performance liquid chromatography-accurate mass quadruple time-of-flight (UHPLC-qTOF) MS and targeted UHPLC-tandem mass spectrometry-based methodologies, was used to capture metabolic alterations in the metabolome and lipidome of plasma from NOD mice progressing or not progressing to T1D. Using this multi-platform approach, we identified >1,000 circulating lipids and metabolites in male and female progressor and nonprogressor animals (n = 71). Statistical and multivariate analyses were used to identify age- and sex-independent metabolic markers, which best differentiated metabolic profiles of progressors and nonprogressors. Key T1D-associated perturbations were related with 1) increases in oxidation products glucono-δ-lactone and galactonic acid and reductions in cysteine, methionine and threonic acid, suggesting increased oxidative stress; 2) reductions in circulating polyunsaturated fatty acids and lipid signaling mediators, most notably arachidonic acid (AA) and AA-derived eicosanoids, implying impaired states of systemic inflammation; 3) elevations in circulating triacylglyercides reflective of hypertriglyceridemia; and 4) reductions in major structural lipids, most notably lysophosphatidylcholines and phosphatidylcholines. Taken together, our results highlight the systemic perturbations that accompany a loss of glycemic control and development of overt T1D. PMID:25852003

  18. Thymic epithelium determines a spontaneous chronic neuritis in Icam1(tm1Jcgr)NOD mice.

    PubMed

    Meyer zu Horste, Gerd; Mausberg, Anne K; Cordes, Steffen; El-Haddad, Houda; Partke, Hans-Joachim; Leussink, Verena I; Roden, Michael; Martin, Stephan; Steinman, Lawrence; Hartung, Hans-Peter; Kieseier, Bernd C

    2014-09-15

    The NOD mouse strain spontaneously develops autoimmune diabetes. A deficiency in costimulatory molecules, such as B7-2, on the NOD genetic background prevents diabetes but instead triggers an inflammatory peripheral neuropathy. This constitutes a shift in the target of autoimmunity, but the underlying mechanism remains unknown. In this study, we demonstrate that NOD mice deficient for isoforms of ICAM-1, which comediate costimulatory functions, spontaneously develop a chronic autoimmune peripheral neuritis instead of diabetes. The disease is transferred by CD4(+) T cells, which infiltrate peripheral nerves together with macrophages and B cells and are autoreactive against peripheral myelin protein zero. These Icam1(tm1Jcgr)NOD mice exhibit unaltered numbers of regulatory T cells, but increased IL-17-producing T cells, which determine the severity, but not the target specificity, of autoimmunity. Ab-mediated ICAM-1 blockade triggers neuritis only in young NOD mice. Thymic epithelium from Icam1(tm1Jcgr)NOD mice features an altered expression of costimulatory molecules and induces neuritis and myelin autoreactivity after transplantation into nude mice in vivo. Icam1(tm1Jcgr)NOD mice exhibit a specifically altered TCR repertoire. Our findings introduce a novel animal model of chronic inflammatory neuropathies and indicate that altered expression of ICAM-1 on thymic epithelium shifts autoimmunity specifically toward peripheral nerves. This improves our understanding of autoimmunity in the peripheral nervous system with potential relevance for human diseases. PMID:25108020

  19. Deregulation of Protein Phosphatase 2A and Hyperphosphorylation of τ Protein Following Onset of Diabetes in NOD Mice

    PubMed Central

    Papon, Marie-Amélie; El Khoury, Noura B.; Marcouiller, François; Julien, Carl; Morin, Françoise; Bretteville, Alexis; Petry, Franck R.; Gaudreau, Simon; Amrani, Abdelaziz; Mathews, Paul M.; Hébert, Sébastien S.; Planel, Emmanuel

    2013-01-01

    The histopathological hallmarks of Alzheimer disease (AD) include intraneuronal neurofibrillary tangles composed of abnormally hyperphosphorylated τ protein. Insulin dysfunction might influence AD pathology, as population-based and cohort studies have detected higher AD incidence rates in diabetic patients. But how diabetes affects τ pathology is not fully understood. In this study, we investigated the impact of insulin dysfunction on τ phosphorylation in a genetic model of spontaneous type 1 diabetes: the nonobese diabetic (NOD) mouse. Brains of young and adult female NOD mice were examined, but young NOD mice did not display τ hyperphosphorylation. τ phosphorylation at τ-1 and pS422 epitopes was slightly increased in nondiabetic adult NOD mice. At the onset of diabetes, τ was hyperphosphorylated at the τ-1, AT8, CP13, pS262, and pS422. A subpopulation of diabetic NOD mice became hypothermic, and τ hyperphosphorylation further extended to paired helical filament-1 and TG3 epitopes. Furthermore, elevated τ phosphorylation correlated with an inhibition of protein phosphatase 2A (PP2A) activity. Our data indicate that insulin dysfunction in NOD mice leads to AD-like τ hyperphosphorylation in the brain, with molecular mechanisms likely involving a deregulation of PP2A. This model may be a useful tool to address further mechanistic association between insulin dysfunction and AD pathology. PMID:22961084

  20. Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established.

    PubMed

    Kang, Elizabeth M; Zickler, Philipp P; Burns, Sean; Langemeijer, Saskia M; Brenner, Sebastian; Phang, Oswald A; Patterson, Noelle; Harlan, David; Tisdale, John F

    2005-06-01

    The treatment of type I diabetes by islet cell transplantation, while promising, remains restricted due to the incomplete efficacy and toxicity associated with current immunosuppression, and by limited organ availability. Given reports suggesting bone marrow derived stem cell plasticity, we sought to determine whether such cells could give rise to pancreatic islet cells in vivo. In the context of autoimmune diabetes, we transplanted unfractionated bone marrow from beta-gal trangenic donor mice into NOD mice prior to, at, and two weeks beyond the onset of disease. Successful bone marrow engraftment before diabetes onset prevented disease in all mice and for 1 year after transplant. However, despite obtaining full hematopoietic engraftment in over 50 transplanted mice, only one mouse became insulin independent, and no beta-Gal positive islets were detected in any of the mice. To test whether tolerance to islets was achieved, we injected islets obtained from the same allogeneic donor strain as the hematopoietic cells into 4 transplant recipients, and 2 had a reversion of their diabetes. Thus allogeneic bone marrow transplantation prevents autoimmune diabetes and tolerizes the recipient to donor islet grants, even in diabetic animals, yet the capacity of bone marrow derived cells to differentiate into functional islet cells, at least without additional manipulation, is limited in our model. PMID:15911094

  1. Postnatal Hematopoiesis and Gut Microbiota in NOD Mice Deviate from C57BL/6 Mice

    PubMed Central

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss; Wiese, Maria; Lundsager, Mia; Buschard, Karsten Stig; Hansen, Axel Kornerup; Frøkiær, Hanne

    2016-01-01

    Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND) 1–4 in NOD mice. Furthermore, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface in NOD compared to C57BL/6 mice. PMID:26783537

  2. Materno-Fetal Transfer of Preproinsulin Through the Neonatal Fc Receptor Prevents Autoimmune Diabetes.

    PubMed

    Culina, Slobodan; Gupta, Nimesh; Boisgard, Raphael; Afonso, Georgia; Gagnerault, Marie-Claude; Dimitrov, Jordan; Østerbye, Thomas; Justesen, Sune; Luce, Sandrine; Attias, Mikhaël; Kyewski, Bruno; Buus, Søren; Wong, F Susan; Lacroix-Desmazes, Sebastien; Mallone, Roberto

    2015-10-01

    The first signs of autoimmune activation leading to β-cell destruction in type 1 diabetes (T1D) appear during the first months of life. Thus, the perinatal period offers a suitable time window for disease prevention. Moreover, thymic selection of autoreactive T cells is most active during this period, providing a therapeutic opportunity not exploited to date. We therefore devised a strategy by which the T1D-triggering antigen preproinsulin fused with the immunoglobulin (Ig)G Fc fragment (PPI-Fc) is delivered to fetuses through the neonatal Fc receptor (FcRn) pathway, which physiologically transfers maternal IgGs through the placenta. PPI-Fc administered to pregnant PPIB15-23 T-cell receptor-transgenic mice efficiently accumulated in fetuses through the placental FcRn and protected them from subsequent diabetes development. Protection relied on ferrying of PPI-Fc to the thymus by migratory dendritic cells and resulted in a rise in thymic-derived CD4(+) regulatory T cells expressing transforming growth factor-β and in increased effector CD8(+) T cells displaying impaired cytotoxicity. Moreover, polyclonal splenocytes from nonobese diabetic (NOD) mice transplacentally treated with PPI-Fc were less diabetogenic upon transfer into NOD.scid recipients. Transplacental antigen vaccination provides a novel strategy for early T1D prevention and, further, is applicable to other immune-mediated conditions. PMID:25918233

  3. Autoimmune mechanisms in type 1 diabetes.

    PubMed

    Knip, Mikael; Siljander, Heli

    2008-07-01

    Type 1 diabetes (T1D) is perceived as a chronic immune-mediated disease with a subclinical prodromal period characterized by selective loss of insulin-producing beta-cells in the pancreatic islets in genetically susceptible subjects. Autoreactive T cells, both CD4 and CD8 cells, have been implicated as active players in beta-cell destruction. A series of autoantigens have been identified in T1D including insulin, glutamic acid decarboxylase (GAD), the protein tyrosine phosphatase-related islet antigen 2 (IA-2), and most recently the zinc transporter Slc30A8 residing in the insulin secretory granule of the beta-cell. The issue whether there is any primary autoantigen in T1D has remained controversial. Given that there are two major HLA haplotypes conferring disease susceptibility, i.e. the DR3-DQ2 haplotype and the DR4-DQ8 haplotype, one may assume that there will be at least two primary antigens in T1D. The first signs of beta-cell autoimmunity might appear already during the first year of life. Autoantibodies may be considered as markers of an ongoing disease process in the pancreatic islets, and they can be used for prediction of T1D in non-diabetic individuals. Autoantigen-specific T-cell responses have been detected from peripheral blood in both patients with T1D and in unaffected subjects, but a clear discrimination between diabetic and non-diabetic subjects have rarely been seen until recently. PMID:18625444

  4. B CELLS PROMOTE HEPATIC INFLAMMATION, BILIARY CYST FORMATION, AND SALIVARY GLAND INFLAMMATION IN THE NOD.C3C4 MODEL OF AUTOIMMUNE CHOLANGITIS

    PubMed Central

    Moritoki, Yuki; Tsuda, Masanobu; Tsuneyama, Koichi; Zhang, Weici; Yoshida, Katsunori; Lian, Zhe-Xiong; Yang, Guo-Xiang; Ridgway, William M.; Wicker, Linda S.; Ansari, Aftab A.; Gershwin, M. Eric

    2011-01-01

    There are now several murine models of autoimmune cholangitis that have features both similar and distinct from human PBC. One such model, the NOD.c3c4 mouse, manifests portal cell infiltrates, anti-mitochondrial antibodies but also biliary cysts. The biliary cysts are not a component of PBC and not found in the other murine models. To address the immunopathology in these mice, we generated genetically B cell deficient Igμ−/− NOD.c3c4 mice and compared the immunopathology of these animals to control B cell sufficient NOD.c3c4 mice. B cell deficient mice demonstrated decreased number of non-B cells in the liver accompanied by reduced numbers of activated natural killer cells. The degree of granuloma formation and bile duct damage were comparable to NOD.c3c4 mice. In contrast, liver inflammation, biliary cyst formation and salivary gland inflammation was significantly attenuated in these B cell deficient mice. In conclusion, B cells play a critical role in promoting liver inflammation and also contribute to cyst formation as well as salivary gland pathology in autoimmune NOD.c3c4 mice, illustrating a critical role of B cells in modulating specific organ pathology and, in particular, in exacerbating both the biliary disease and the sialadenitis. PMID:21349500

  5. Treatment of autoimmune diabetes by inhibiting the initial event.

    PubMed

    Lee, Myung-Shik

    2013-10-01

    Recent papers have shown that the initial event in the pathogenesis of autoimmune type 1 diabetes (T1D) comprises sensing of molecular patterns released from apoptotic β-cells by innate immune receptors such as toll-like receptor (TLR). We have reported that apoptotic β-cells undergoing secondary necrosis called 'late apoptotic' β-cells stimulate dendritic cells (DCs) and induce diabetogenic T cell priming through TLR2. The role of other innate immune receptors such as TLR7 or TLR9 in the initiation of T1D has also been suggested. We hypothesized that TLR2 blockade could inhibit T1D at the initial step of T1D. Indeed, when a TLR2 agonist, Pam3CSK4 was administered chronically, the development of T1D in nonobese diabetic (NOD) mice was inhibited. Diabetogenic T cell priming by DCs was attenuated by chronic treatment with Pam3CSK4, indicating DC tolerance. For the treatment of established T1D, immune tolerance alone is not enough because β-cell mass is critically reduced. We employed TLR2 tolerance in conjunction with islet transplantation, which led to reversal of newly established T1D. Dipeptidyl peptidase 4 (DPP4) inhibitors are a new class of anti-diabetic agents that have beneficial effects on β-cells. We investigated whether a combination of DPP4 inhibition and TLR2 tolerization could reverse newly established T1D without islet transplantation. We could achieve normoglycemia by TLR2 tolerization in combination with DPP4 inhibition but not by TLR2 tolerization or DPP4 inhibition alone. β-cell mass was significantly increased by combined treatment with TLR2 tolerization and DPP4 inhibition. These results suggest the possibility that a novel strategy of TLR tolerization will be available for the inhibition or treatment of established T1D when combined with measures increasing critically reduced β-cell mass of T1D patients such as DPP4 inhibition or stem cell technology. PMID:24198744

  6. The effect of regulatory T-cell depletion on the spectrum of organ-specific autoimmune diseases in nonobese diabetic mice at different ages.

    PubMed

    Nakahara, Mami; Nagayama, Yuji; Ichikawa, Tatsuki; Yu, Liping; Eisenbarth, George S; Abiru, Norio

    2011-09-01

    The nonobese diabetic (NOD) mouse spontaneously develops several autoimmune diseases, including type 1 diabetes and to a lesser extent thyroiditis and sialitis. Imbalance between effector T cells (Teffs) and regulatory T cells (Tregs) has recently been proposed as a mechanism for the disease pathogenesis in NOD mice, but previous studies have shown the various outcomes by different timing and methods of Treg-depletion. This study was, therefore, designed to compare the consequences of Treg-depletion by the same method (anti-CD25 antibody) on the spectrum of organ-specific autoimmune diseases in NOD mice of different ages. Treg-depletion by anti-CD25 antibody at 10 days of age accelerated development of all three diseases we examined (insulitis/diabetes, thyroiditis, and sialitis); Treg-depletion at 4 weeks of age accelerated only diabetes but not thyroiditis or sialitis; and Treg-depletion at 12 weeks of age hastened only development of thyroiditis and exhibited little influence on diabetes or sialitis. Increased levels of insulin autoantibodies (IAA) were, however, observed in mice depleted of Tregs at 10 days of age, not in those at 4 weeks. Thus, the consequences of Treg-depletion on the spectrum of organ-specific autoimmune diseases depend on the timing of anti-CD25 antibody injection in NOD mice. Aging gradually tips balance between Teffs and Tregs toward Teff-dominance for diabetes, but this balance for thyroiditis and sialitis likely alters more intricately. Our data also suggest that the levels of IAA are not necessarily correlated with diabetes development. PMID:21306188

  7. Oral administration of Lactococcus lactis-expressing heat shock protein 65 and tandemly repeated IA2P2 prevents type 1 diabetes in NOD mice.

    PubMed

    Liu, Kun-Feng; Liu, Xiao-Rui; Li, Guo-Liang; Lu, Shi-Ping; Jin, Liang; Wu, Jie

    2016-06-01

    Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by the destruction of insulin-secreting β cells upon autoreactive T cell attack. Oral administration of autoantigens is an attractive approach to treating T1DM, but an effective carrier should be used in order to protect antigens. Lactococcus lactis, a safe engineering strain, was used for this task in the present study. Two recombinant L. lactis expressing protein HSP65-6IA2P2 were used and be investigated the effects and mechanisms against T1DM in NOD mice. Our findings demonstrate that recombinant L. lactis strains can successfully both deliver antigens to intestinal mucosa and maintain the epitopes for a long time in NOD mice. Oral administration of recombinant L. lactis could prevent hyperglycemia, improve glucose tolerance, and reduce insulitis by inhibiting antigen-specific proliferation of T cells, augmenting regulatory immune reactions, and balancing ratios of Th17/Tregs and Th1/Th2. These results prove that orally administrated L. lactis expressing HSP65-6IA2P2 is an effective approach for the prevention of T1DM in NOD mice. PMID:27085380

  8. Latent autoimmune diabetes of the adult: current knowledge and uncertainty.

    PubMed

    Laugesen, E; Østergaard, J A; Leslie, R D G

    2015-07-01

    Patients with adult-onset autoimmune diabetes have less Human Leucocyte Antigen (HLA)-associated genetic risk and fewer diabetes-associated autoantibodies compared with patients with childhood-onset Type 1 diabetes. Metabolic changes at diagnosis reflect a broad clinical phenotype ranging from diabetic ketoacidosis to mild non-insulin-requiring diabetes, also known as latent autoimmune diabetes of the adult (LADA). This latter phenotype is the most prevalent form of adult-onset autoimmune diabetes and probably the most prevalent form of autoimmune diabetes in general. Although LADA is associated with the same genetic and immunological features as childhood-onset Type 1 diabetes, it also shares some genetic features with Type 2 diabetes, which raises the question of genetic heterogeneity predisposing to this form of the disease. The potential value of screening patients with adult-onset diabetes for diabetes-associated autoantibodies to identify those with LADA is emphasized by their lack of clinically distinct features, their different natural history compared with Type 2 diabetes and their potential need for a dedicated management strategy. The fact that, in some studies, patients with LADA show worse glucose control than patients with Type 2 diabetes, highlights the need for further therapeutic studies. Challenges regarding classification, epidemiology, genetics, metabolism, immunology, clinical presentation and treatment of LADA were discussed at a 2014 workshop arranged by the Danish Diabetes Academy. The presentations and discussions are summarized in this review, which sets out the current ideas and controversies surrounding this form of diabetes. PMID:25601320

  9. Oral Probiotic VSL#3 Prevents Autoimmune Diabetes by Modulating Microbiota and Promoting Indoleamine 2,3-Dioxygenase-Enriched Tolerogenic Intestinal Environment.

    PubMed

    Dolpady, Jayashree; Sorini, Chiara; Di Pietro, Caterina; Cosorich, Ilaria; Ferrarese, Roberto; Saita, Diego; Clementi, Massimo; Canducci, Filippo; Falcone, Marika

    2016-01-01

    The gut microbiota modulates the autoimmune pathogenesis of type 1 diabetes (T1D) via mechanisms that remain largely unknown. The inflammasome components are innate immune sensors that are highly influenced by the gut environment and play pivotal roles in maintaining intestinal immune homeostasis. In this study we show that modifications of the gut microbiota induced by oral treatment with Lactobacillaceae-enriched probiotic VSL#3, alone or in combination with retinoic acid (RA), protect NOD mice from T1D by affecting inflammasome at the intestinal level. In particular, we show that VSL#3 treatment inhibits IL-1β expression while enhancing release of protolerogenic components of the inflammasome, such as indoleamine 2,3-dioxygenase (IDO) and IL-33. Those modifications of the intestinal microenvironment in VSL#3-treated NOD mice modulate gut immunity by promoting differentiation of tolerogenic CD103(+) DCs and reducing differentiation/expansion of Th1 and Th17 cells in the intestinal mucosa and at the sites of autoimmunity, that is, within the pancreatic lymph nodes (PLN) of VSL#3-treated NOD mice. Our data provide a link between dietary factors, microbiota composition, intestinal inflammation, and immune homeostasis in autoimmune diabetes and could pave the way for new therapeutic approaches aimed at changing the intestinal microenvironment with probiotics to counterregulate autoimmunity and prevent T1D. PMID:26779542

  10. Oral Probiotic VSL#3 Prevents Autoimmune Diabetes by Modulating Microbiota and Promoting Indoleamine 2,3-Dioxygenase-Enriched Tolerogenic Intestinal Environment

    PubMed Central

    Dolpady, Jayashree; Sorini, Chiara; Di Pietro, Caterina; Cosorich, Ilaria; Ferrarese, Roberto; Saita, Diego; Clementi, Massimo; Falcone, Marika

    2016-01-01

    The gut microbiota modulates the autoimmune pathogenesis of type 1 diabetes (T1D) via mechanisms that remain largely unknown. The inflammasome components are innate immune sensors that are highly influenced by the gut environment and play pivotal roles in maintaining intestinal immune homeostasis. In this study we show that modifications of the gut microbiota induced by oral treatment with Lactobacillaceae-enriched probiotic VSL#3, alone or in combination with retinoic acid (RA), protect NOD mice from T1D by affecting inflammasome at the intestinal level. In particular, we show that VSL#3 treatment inhibits IL-1β expression while enhancing release of protolerogenic components of the inflammasome, such as indoleamine 2,3-dioxygenase (IDO) and IL-33. Those modifications of the intestinal microenvironment in VSL#3-treated NOD mice modulate gut immunity by promoting differentiation of tolerogenic CD103+ DCs and reducing differentiation/expansion of Th1 and Th17 cells in the intestinal mucosa and at the sites of autoimmunity, that is, within the pancreatic lymph nodes (PLN) of VSL#3-treated NOD mice. Our data provide a link between dietary factors, microbiota composition, intestinal inflammation, and immune homeostasis in autoimmune diabetes and could pave the way for new therapeutic approaches aimed at changing the intestinal microenvironment with probiotics to counterregulate autoimmunity and prevent T1D. PMID:26779542

  11. CXCR4 antagonist AMD3100 ameliorates thyroid damage in autoimmune thyroiditis in NOD.H‑2h4 mice.

    PubMed

    Liu, Xin; Mao, Jinyuan; Han, Cheng; Peng, Shiqiao; Li, Chenyan; Jin, Ting; Fan, Chenling; Shan, Zhongyan; Teng, Weiping

    2016-04-01

    CXC chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor 4 (CXCR4), are upregulated in mice with autoimmune thyroid diseases. However, whether this interaction is involved in the pathophysiology of autoimmune thyroiditis (AIT) remains to be elucidated. In the present study, the effects of the CXCR4 antagonist, AMD3100, in an iodine‑induced autoimmune thyroiditis model were investigated. NOD.H‑2h4 mice were randomly separated into a control, AIT and AIT+AMD3100 groups. The mice were fed with 0.05% sodium iodide water for 8 weeks to induce AIT. The AMD3100‑treated mice were administered with the CXCR4 antagonist at a dose of 10 mg/kg intraperitoneally three times a week during the experimental period. The percentages of CD19+interleukin (IL)10+ B cells and CD4+IL10+ T cells, and the mRNA expression levels of IL10 in the splenocytes were reduced in the AIT group, compared with the control group, however, they increased following AMD3100 treatment, compared with the untreated AIT group. The percentages of CD4+ T cells, CD8+ T cells, CD19+ B cells and CD8+ interferon (IFN)γ+ T cells, and the mRNA expression levels of IFNγ increased in the AIT group, compared with the control group, however, these were reduced in the AMD3100 group, compared with the AIT group. The AMD3100‑treated mice also had lower serum thyroglobulin antibody titers and reduced lymphocytic infiltration in the thyroid, compared with the untreated AIT mice. These results suggested that inhibition of this chemokine axis may offer potential as a therapeutic target for the treatment of AIT. PMID:26935473

  12. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    SciTech Connect

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa

    2015-01-15

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.

  13. The Central Role of Antigen Presentation in Islets of Langerhans in Autoimmune Diabetes

    PubMed Central

    Calderon, Boris; Carrero, Javier A.; Unanue, Emil R.

    2014-01-01

    The islets of Langerhans normally contain resident antigen presenting cells (APCs), which in normal conditions are mostly represented by macrophages, with a few dendritic cells (DC). We present here the features of these islet APCs, making the point that they have a supportive function in islet homeostasis. Islet APCs express high levels of major histocompatibility complexes (MHC) molecules on their surfaces and are highly active in antigen presentation in the autoimmune diabetes of the NOD mouse: they do this by presenting peptides derived from molecules of the β-cells. These APCs also are instrumental in the localization of diabetogenic T cells into islets. The islet APC present exogenous peptides derived from secretory granules of the beta cell, giving rise to unique peptide-MHC complexes (pMHC) that activate those non-conventional T cells that bypass thymus selection. PMID:24556398

  14. The central role of antigen presentation in islets of Langerhans in autoimmune diabetes.

    PubMed

    Calderon, Boris; Carrero, Javier A; Unanue, Emil R

    2014-02-01

    The islets of Langerhans normally contain resident antigen presenting cells (APCs), which in normal conditions are mostly represented by macrophages, with a few dendritic cells (DC). We present here the features of these islet APCs, making the point that they have a supportive function in islet homeostasis. Islet APCs express high levels of major histocompatibility complexes (MHC) molecules on their surfaces and are highly active in antigen presentation in the autoimmune diabetes of the NOD mouse: they do this by presenting peptides derived from molecules of the β-cells. These APCs also are instrumental in the localization of diabetogenic T cells into islets. The islet APC present exogenous peptides derived from secretory granules of the β-cell, giving rise to unique peptide-MHC complexes (pMHC) that activate those non-conventional T cells that bypass thymus selection. PMID:24556398

  15. Contrasting Roles of Islet Resident Immunoregulatory Macrophages and Dendritic Cells in Experimental Autoimmune Type 1 Diabetes

    PubMed Central

    Thornley, Thomas B.; Ma, Lingzhi; Chipashvili, Vaja; Aker, Jonathan E.; Korniotis, Sarantis; Csizmadia, Eva; Strom, Terry B.; Koulmanda, Maria

    2016-01-01

    The innate immune system critically shapes diabetogenic adaptive immunity during type 1 diabetes (T1D) pathogenesis. While the role of tissue-infiltrating monocyte-derived macrophages in T1D is well established, the role of their tissue-resident counterparts remains undefined. We now demonstrate that islet resident macrophages (IRMs) from non-autoimmune mice have an immunoregulatory phenotype and powerfully induce FoxP3+ Tregs in vitro. The immunoregulatory phenotype and function of IRMs is compromised by TLR4 activation in vitro. Moreover, as T1D approaches in NOD mice, the immunoregulatory phenotype of IRMs is diminished as is their relative abundance compared to immunostimulatory DCs. Our findings suggest that maintenance of IRM abundance and their immunoregulatory phenotype may constitute a novel therapeutic strategy to prevent and/or cure T1D. PMID:26943809

  16. Peritoneal cavity is a route for gut-derived microbial signals to promote autoimmunity in non-obese diabetic mice.

    PubMed

    Emani, R; Alam, C; Pekkala, S; Zafar, S; Emani, M R; Hänninen, A

    2015-02-01

    Macrophages play a crucial role in innate immune reactions, and peritoneal macrophages (PMs) guard the sterility of this compartment mainly against microbial threat from the gut. Type 1 diabetes (T1D) is an autoimmune disease in which gut microbiota and gut immune system appear to contribute to disease pathogenesis. We have recently reported elevated free radical production and increased permeability of gut epithelium in non-obese diabetic (NOD) mice. Impaired barrier function could lead to bacterial leakage to the peritoneal cavity. To explore the consequences of impaired gut barrier function on extra-intestinal immune regulation, we characterized peritoneal lavage cells from young newly weaned NOD mice. We detected a rapid increase in the number of macrophages 1-2 weeks after weaning in NOD mice compared to C57BL/6 and BALB/c mice. Interestingly, this increase in macrophages was abrogated in NOD mice that were fed an antidiabetogenic diet (ProSobee), which improves gut barrier function. Macrophages in young (5-week-old) NOD mice displayed a poor TNF-α cytokine response to LPS stimulation and high expression of interleukin-1receptor-associated kinase-M (IRAK-M), indicating prior in vivo exposure to TLR-4 ligand(s). Furthermore, injection of LPS intraperitoneally increased T cell CD69 expression in pancreatic lymph node (PaLN), suggestive of T cell activation. Leakage of bacterial components such as endotoxins into the peritoneal cavity may contribute to auto-reactive T cell activation in the PaLN. PMID:25410403

  17. Type 1 diabetes and polyglandular autoimmune syndrome: A review

    PubMed Central

    Hansen, Martin P; Matheis, Nina; Kahaly, George J

    2015-01-01

    Type 1 diabetes (T1D) is an autoimmune disorder caused by inflammatory destruction of the pancreatic tissue. The etiopathogenesis and characteristics of the pathologic process of pancreatic destruction are well described. In addition, the putative susceptibility genes for T1D as a monoglandular disease and the relation to polyglandular autoimmune syndrome (PAS) have also been well explored. The incidence of T1D has steadily increased in most parts of the world, especially in industrialized nations. T1D is frequently associated with autoimmune endocrine and non-endocrine diseases and patients with T1D are at a higher risk for developing several glandular autoimmune diseases. Familial clustering is observed, which suggests that there is a genetic predisposition. Various hypotheses pertaining to viral- and bacterial-induced pancreatic autoimmunity have been proposed, however a definitive delineation of the autoimmune pathomechanism is still lacking. In patients with PAS, pancreatic and endocrine autoantigens either colocalize on one antigen-presenting cell or are expressed on two/various target cells sharing a common amino acid, which facilitates binding to and activation of T cells. The most prevalent PAS phenotype is the adult type 3 variant or PAS type III, which encompasses T1D and autoimmune thyroid disease. This review discusses the findings of recent studies showing noticeable differences in the genetic background and clinical phenotype of T1D either as an isolated autoimmune endocrinopathy or within the scope of polyglandular autoimmune syndrome. PMID:25685279

  18. Interaction of dendritic cells and T lymphocytes for the therapeutic effect of Dangguiliuhuang decoction to autoimmune diabetes.

    PubMed

    Liu, Tingting; Cao, Hui; Ji, Yachun; Pei, Yufeng; Yu, Zhihong; Quan, Yihong; Xiang, Ming

    2015-01-01

    In traditional Chinese medicine (TCM), Dangguiliuhuang decoction (DGLHD) is an effective treatment of autoimmune diabetes. Here, we studied potential anti-diabetic mechanisms of DGLHD in a non-obese diabetic (NOD) mouse model. In vitro, DGLHD and individual active ingredients enhanced glucose uptake in HepG2 cells, inhibited T lymphocyte proliferation, and suppressed dendritic cells (DCs) function. In vivo, DGLHD significantly inhibited insulitis, delayed the onset and development of diabetes, promoted insulin secretion and sensitivity, and balanced partially normalized Th1 and Th2 cytokines in NOD mice. In addition, DGLHD increased α1-antitrypsin (AAT-1), Bcl-2, and CyclinD1, and decreased Bax levels in pancreas, spleen, thymus, DCs, and a NIT-1 cell line, all consistent with protecting and repairing islet β cell. More detailed studies indicated that DGLHD regulated the maturation and function of DCs, decreased the percentage of merocytic dendritic cells (mcDCs) subset, and increased programmed death ligand-1 (PD-L1) expression in DCs. DGLHD also impeded T lymphocyte proliferation and promoted regulatory T cells (T(regs)) differentiation in vivo. A JAK2-STAT3-dependent pathway was involved in the suppression by DGLHD of interactions between DCs and T lymphocyte. The experiments implicated five active ingredients in specific anti-diabetic actions of DGLHD. The results demonstrated the reasonable composition of the formula. PMID:26358493

  19. α/β–T Cell Receptor (TCR)+CD4−CD8− (NKT) Thymocytes Prevent Insulin-dependent Diabetes Mellitus in Nonobese Diabetic (NOD)/Lt Mice by the Influence of Interleukin (IL)-4 and/or IL-10

    PubMed Central

    Hammond, Kirsten J.L.; Poulton, Lynn D.; Palmisano, Linda J.; Silveira, Pablo A.; Godfrey, Dale I.; Baxter, Alan G.

    1998-01-01

    We have previously shown that nonobese diabetic (NOD) mice are selectively deficient in α/β-T cell receptor (TCR)+CD4−CD8− NKT cells, a defect that may contribute to their susceptibility to the spontaneous development of insulin-dependent diabetes mellitus (IDDM). The role of NKT cells in protection from IDDM in NOD mice was studied by the infusion of thymocyte subsets into young female NOD mice. A single intravenous injection of 106 CD4−/lowCD8− or CD4−CD8− thymocytes from female (BALB/c × NOD)F1 donors protected intact NOD mice from the spontaneous onset of clinical IDDM. Insulitis was still present in some recipient mice, although the cell infiltrates were principally periductal and periislet, rather than the intraislet pattern characteristic of insulitis in unmanipulated NOD mice. Protection was not associated with the induction of “allogenic tolerance” or systemic autoimmunity. Accelerated IDDM occurs after injection of splenocytes from NOD donors into irradiated adult NOD recipients. When α/β-TCR+ and α/β-TCR− subsets of CD4−CD8− thymocytes were transferred with diabetogenic splenocytes and compared for their ability to prevent the development of IDDM in irradiated adult recipients, only the α/β-TCR+ population was protective, confirming that NKT cells were responsible for this activity. The protective effect in the induced model of IDDM was neutralized by anti–IL-4 and anti–IL-10 monoclonal antibodies in vivo, indicating a role for at least one of these cytokines in NKT cell-mediated protection. These results have significant implications for the pathogenesis and potential prevention of IDDM in humans. PMID:9529321

  20. A cholera toxoid-insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes.

    PubMed

    Bergerot, I; Ploix, C; Petersen, J; Moulin, V; Rask, C; Fabien, N; Lindblad, M; Mayer, A; Czerkinsky, C; Holmgren, J; Thivolet, C

    1997-04-29

    Mucosally induced immunological tolerance is an attractive strategy for preventing or treating illnesses resulting from untoward inflammatory immune reactions against self- or non-self-antigens. Oral administration of relevant autoantigens and allergens has been reported to delay or suppress onset of clinical disease in a number of experimental autoimmune and allergic disorders. However, the approach often requires repeated feeding of large amounts of tolerogens over long periods and is only partly effective in animals already systemically sensitized to the ingested antigen such as in animals already harboring autoreactive T cells, and thus presumably also in humans with an autoimmune disease. We have recently shown that oral administration of microgram amounts of antigen coupled to cholera toxin B subunit (CTB), can effectively suppress systemic T cell reactivity in naive as well as in immune animals. We now report that feeding small amounts (2-20 microg) of human insulin conjugated to CTB can effectively suppress beta cell destruction and clinical diabetes in adult nonobese diabetic (NOD) mice. The protective effect could be transferred by T cells from CTB-insulin-treated animals and was associated with reduced lesions of insulitis. Furthermore, adoptive co-transfer experiments involving injection of Thy-1,2 recipients with diabetogenic T cells from syngeneic mice and T cells from congenic Thy-1,1 mice fed with CTB-insulin demonstrated a selective recruitment of Thy-1,1 donor cells in the peripancreatic lymph nodes concomitant with reduced islet cell infiltration. These results suggest that protection against autoimmune diabetes can be achieved by feeding minute amounts of a pancreas islet cell autoantigen linked to CTB and appears to involve the selective migration and retention of protective T cells into lymphoid tissues draining the site of organ injury. PMID:9114038

  1. NOD Dendritic Cells Stimulated with Lactobacilli Preferentially Produce IL-10 versus IL-12 and Decrease Diabetes Incidence

    PubMed Central

    Manirarora, Jean N.; Parnell, Sarah A.; Hu, Yoon-Hyeon; Kosiewicz, Michele M.; Alard, Pascale

    2011-01-01

    Dendritic cells (DCs) from NOD mice produced high levels of IL-12 that induce IFNγ-producing T cells involved in diabetes development. We propose to utilize the microorganism ability to induce tolerogenic DCs to abrogate the proinflammatory process and prevent diabetes development. NOD DCs were stimulated with Lactobacilli (nonpathogenic bacteria targeting TLR2) or lipoteichoic acid (LTA) from Staphylococcus aureus (TLR2 agonist). LTA-treated DCs produced much more IL-12 than IL-10 and accelerated diabetes development when transferred into NOD mice. In contrast, stimulation of NOD DCs with L. casei favored the production of IL-10 over IL-12, and their transfer decreased disease incidence which anti-IL-10R antibodies restored. These data indicated that L. casei can induce NOD DCs to develop a more tolerogenic phenotype via production of the anti-inflammatory cytokine, IL-10. Evaluation of the relative production of IL-10 and IL-12 by DCs may be a very useful means of identifying agents that have therapeutic potential. PMID:21716731

  2. Immune Depletion in Combination with Allogeneic Islets Permanently Restores Tolerance to Self-Antigens in Diabetic NOD Mice

    PubMed Central

    Gagliani, Nicola; Jofra, Tatiana; Posgai, Amanda L.; Atkinson, Mark A.; Battaglia, Manuela

    2015-01-01

    The destruction of beta cells in type 1 diabetes (T1D) results in loss of insulin production and glucose homeostasis. Treatment of non-obese diabetic (NOD) mice with immune-depleting/modulating agents (e.g., anti-CD3, murine anti-thymocyte-globulin (mATG)) can lead to diabetes reversal. However, for preclinical studies with these and other agents seeking to reverse disease at onset, the necessity for exogenous insulin administration is debated. Spontaneously diabetic NOD mice were treated with a short-course of mATG and insulin provided as drug therapy or by way of allogeneic islet implants. Herein we demonstrate that exogenous insulin administration is required to achieve disease reversal with mATG in NOD mice. Unexpectedly, we also observed that provision of insulin by way of allogeneic islet implantation in combination with mATG leads to a pronounced reversal of diabetes as well as restoration of tolerance to self-islets. Expansion/induction of regulatory cells was observed in NOD mice stably cured with mATG and allogeneic islets. These data suggest that transient provision of allogeneic insulin-producing islets might provide a temporary window for immune depletion to be more effective and instilling stable tolerance to endogenous beta cells. These findings support the use of a never before explored approach for preserving beta cell function in patients with recent onset T1D. PMID:26580221

  3. The NOD mouse as a model of SLE.

    PubMed

    Silveira, P A; Baxter, A G

    2001-01-01

    In addition to developing a high incidence of type 1 diabetes caused by a specific autoimmune response against pancreatic beta cells in the islets of Langerhans, NOD mice also demonstrate spontaneous autoimmunity to other targets including the thymus, adrenal gland, salivary glands, thyroid, testis, nuclear components and red blood cells. Moreover, treatment of pre-diabetic NOD mice with an intravenous dose of heat killed Mycobacterium bovis (M. bovis; bacillus Calmette-Guèrin (BCG)) protects them from developing type 1 diabetes, but instead precipitates an autoimmune rheumatic disease similar to systemic lupus erythematosus (SLE), characterised by accelerated and increased incidence of haemolytic anaemia (HA), anti-nuclear autoantibody (ANA) production, exacerbation of sialadenitis, and the appearance of immune complex-mediated glomerulonephritis (GN). The reciprocal switching between the two phenotypes by a single environmental trigger (mycobacterial exposure) raised the possibility that genetic susceptibility for type 1 diabetes and SLE may be conferred by a single collection of genes in the NOD mouse. This review will focus on the genetic components predisposing NOD mice to SLE induced by BCG treatment and compare them to previously determined diabetes susceptibility genes in this strain and SLE susceptibility genes in the BXSB, MRL and the New Zealand mouse strains. PMID:11681493

  4. Celiac Disease Autoimmunity in Patients with Autoimmune Diabetes and Thyroid Disease among Chinese Population.

    PubMed

    Zhao, Zhiyuan; Zou, Jing; Zhao, Lingling; Cheng, Yan; Cai, Hanqing; Li, Mo; Liu, Edwin; Yu, Liping; Liu, Yu

    2016-01-01

    The prevalence of celiac disease autoimmunity or tissue transglutaminase autoantibodies (TGA) amongst patients with type 1 diabetes (T1D) and autoimmune thyroid disease (AITD) in the Chinese population remains unknown. This study examined the rate of celiac disease autoimmunity amongst patients with T1D and AITD in the Chinese population. The study included 178 patients with type 1 diabetes and 119 with AITD where 36 had both T1D and AITD, classified as autoimmune polyglandular syndrome type 3 variant (APS3v). The study also included 145 patients with type 2 diabetes (T2D), 97 patients with non-autoimmune thyroid disease (NAITD), and 102 healthy controls. Serum islet autoantibodies, thyroid autoantibodies and TGA were measured by radioimmunoassay. TGA positivity was found in 22% of patients with either type 1 diabetes or AITD, much higher than that in patients with T2D (3.4%; p< 0.0001) or NAITD (3.1%; P < 0.0001) or healthy controls (1%; p<0.0001). The patients with APS3v having both T1D and AITD were 36% positive for TGA, significantly higher than patients with T1D alone (p = 0.040) or with AITD alone (p = 0.017). T1D and AITD were found to have a 20% and 30% frequency of overlap respectively at diagnosis. In conclusion, TGA positivity was high in the Chinese population having existing T1D and/or AITD, and even higher when both diseases were present. Routine TGA screening in patients with T1D or AITD will be important to early identify celiac disease autoimmunity for better clinical care of patients. PMID:27427767

  5. Celiac Disease Autoimmunity in Patients with Autoimmune Diabetes and Thyroid Disease among Chinese Population

    PubMed Central

    Zhao, Zhiyuan; Zou, Jing; Zhao, Lingling; Cheng, Yan; Cai, Hanqing; Li, Mo; Liu, Edwin; Yu, Liping; Liu, Yu

    2016-01-01

    The prevalence of celiac disease autoimmunity or tissue transglutaminase autoantibodies (TGA) amongst patients with type 1 diabetes (T1D) and autoimmune thyroid disease (AITD) in the Chinese population remains unknown. This study examined the rate of celiac disease autoimmunity amongst patients with T1D and AITD in the Chinese population. The study included 178 patients with type 1 diabetes and 119 with AITD where 36 had both T1D and AITD, classified as autoimmune polyglandular syndrome type 3 variant (APS3v). The study also included 145 patients with type 2 diabetes (T2D), 97 patients with non-autoimmune thyroid disease (NAITD), and 102 healthy controls. Serum islet autoantibodies, thyroid autoantibodies and TGA were measured by radioimmunoassay. TGA positivity was found in 22% of patients with either type 1 diabetes or AITD, much higher than that in patients with T2D (3.4%; p< 0.0001) or NAITD (3.1%; P < 0.0001) or healthy controls (1%; p<0.0001). The patients with APS3v having both T1D and AITD were 36% positive for TGA, significantly higher than patients with T1D alone (p = 0.040) or with AITD alone (p = 0.017). T1D and AITD were found to have a 20% and 30% frequency of overlap respectively at diagnosis. In conclusion, TGA positivity was high in the Chinese population having existing T1D and/or AITD, and even higher when both diseases were present. Routine TGA screening in patients with T1D or AITD will be important to early identify celiac disease autoimmunity for better clinical care of patients. PMID:27427767

  6. Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging.

    PubMed

    Fu, Wenxian; Wojtkiewicz, Gregory; Weissleder, Ralph; Benoist, Christophe; Mathis, Diane

    2012-04-01

    All juvenile mice of the nonobese diabetic (NOD) strain develop insulitis, but there is considerable variation in their progression to diabetes. Here we used a strategy based on magnetic resonance imaging (MRI) of magnetic nanoparticles to noninvasively visualize local effects of pancreatic-islet inflammation to predict the onset of diabetes in NOD mice. MRI signals acquired during a narrow early time window allowed us to sort mice into groups that would progress to clinical disease or not and to estimate the time to diabetes development. We exploited this approach to identify previously unknown molecular and cellular elements correlated with disease protection, including the complement receptor of the immunoglobulin superfamily (CRIg), which marked a subset of macrophages associated with diabetes resistance. Administration of a fusion of CRIg and the Fc portion of immunoglobulin resulted in lower MRI signals and diabetes incidence. In addition to identifying regulators of disease progression, we show here that diabetes is set at an early age in NOD mice. PMID:22366893

  7. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes

    PubMed Central

    Kerkvliet, Nancy I; Steppan, Linda B; Vorachek, William; Oda, Shannon; Farrer, David; Wong, Carmen P; Pham, Duy

    2009-01-01

    The ligand-activated transcription factor, aryl hydrocarbon receptor (AHR), is a novel inducer of adaptive Tregs. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most potent AHR ligand, induces adaptive CD4+CD25+ Tregs during an acute graft-versus-host (GvH) response and prevents the generation of allospecific cytotoxic T lymphocytes. TCDD also suppresses the induction of experimental autoimmune encephalitis in association with an expanded population of Foxp3+ Tregs. In this study, we show that chronic treatment of NOD mice with TCDD potently suppresses the development of autoimmune Type 1 diabetes in parallel with greatly reduced pancreatic islet insulitis and an expanded population of CD4+CD25+Foxp3+ cells in the pancreatic lymph nodes. When treatment with TCDD was terminated after 15 weeks (23 weeks of age), mice developed diabetes over the next 8 weeks in association with lower numbers of Tregs and decreased activation of AHR. Analysis of the expression levels of several genes associated with inflammation, T-cell activation and/or Treg function in pancreatic lymph node cells failed to reveal any differences associated with TCDD treatment. Taken together, the data suggest that AHR activation by TCDD-like ligands may represent a novel avenue for treatment of immune-mediated diseases. PMID:20174617

  8. Acute Versus Progressive Onset of Diabetes in NOD Mice: Potential Implications for Therapeutic Interventions in Type 1 Diabetes.

    PubMed

    Mathews, Clayton E; Xue, Song; Posgai, Amanda; Lightfoot, Yaima L; Li, Xia; Lin, Andrea; Wasserfall, Clive; Haller, Michael J; Schatz, Desmond; Atkinson, Mark A

    2015-11-01

    Most natural history models for type 1 diabetes (T1D) propose that overt hyperglycemia results after a progressive loss of insulin-secreting β-cell mass and/or function. To experimentally address this concept, we prospectively determined morning blood glucose measurements every other day in multiple cohorts (total n = 660) of female NOD/ShiLtJ mice starting at 8 weeks of age until diabetes onset or 26 weeks of age. Consistent with this notion, a majority of mice that developed diabetes (354 of 489 [72%]) displayed a progressive increase in blood glucose with transient excursions >200 mg/dL, followed by acute and persistent hyperglycemia at diabetes onset. However, 135 of the 489 (28%) diabetic animals demonstrated normal glucose values followed by acute (i.e., sudden) hyperglycemia. Interestingly, diabetes onset occurred earlier in mice with acute versus progressive disease onset (15.37 ± 0.3207 vs. 17.44 ± 0.2073 weeks of age, P < 0.0001). Moreover, the pattern of onset (i.e., progressive vs. acute) dramatically influenced the ability to achieve reversal of T1D by immunotherapeutic intervention, with increased effectiveness observed in situations of a progressive deterioration in euglycemia. These studies highlight a novel natural history aspect in this animal model, one that may provide important guidance for the selection of subjects participating in human trials seeking disease reversal. PMID:26216853

  9. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man. PMID:14578206

  10. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young

    PubMed Central

    Lamb, Molly M.; Frederiksen, Brittni; Seifert, Jennifer A.; Kroehl, Miranda; Rewers, Marian; Norris, Jill M.

    2015-01-01

    Aims/hypothesis Dietary sugar intake may increase insulin production, stress the beta cells and increase the risk for islet autoimmunity (IA) and subsequent type 1 diabetes. Methods Since 1993, the Diabetes Autoimmunity Study in the Young (DAISY) has followed children at increased genetic risk for type 1 diabetes for the development of IA (autoantibodies to insulin, GAD or protein tyrosine phosphatase-like protein [IA2] twice or more in succession) and progression to type 1 diabetes. Information on intake of fructose, sucrose, total sugars, sugar-sweetened beverages, beverages with non-nutritive sweetener and juice was collected prospectively throughout childhood via food frequency questionnaires (FFQs). We examined diet records for 1,893 children (mean age at last follow-up 10.2 years); 142 developed IA and 42 progressed to type 1 diabetes. HLA genotype was dichotomised as high risk (HLA-DR3/4,DQB1*0302) or not. All Cox regression models were adjusted for total energy, FFQ type, type 1 diabetes family history, HLA genotype and ethnicity. Results In children with IA, progression to type 1 diabetes was significantly associated with intake of total sugars (HR 1.75, 95% CI 1.07–2.85). Progression to type 1 diabetes was also associated with increased intake of sugar-sweetened beverages in those with the high-risk HLA genotype (HR 1.84, 95% CI 1.25–2.71), but not in children without it (interaction p value = 0.02). No sugar variables were associated with IA risk. Conclusions/interpretation Sugar intake may exacerbate the later stage of type 1 diabetes development; sugar-sweetened beverages may be especially detrimental to children with the highest genetic risk of developing type 1 diabetes. PMID:26048237

  11. Reversible lacrimal gland-protective regulatory T-cell dysfunction underlies male-specific autoimmune dacryoadenitis in the non-obese diabetic mouse model of Sjögren syndrome.

    PubMed

    Lieberman, Scott M; Kreiger, Portia A; Koretzky, Gary A

    2015-06-01

    CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells are required to maintain immunological tolerance; however, defects in specific organ-protective Treg cell functions have not been demonstrated in organ-specific autoimmunity. Non-obese diabetic (NOD) mice spontaneously develop lacrimal and salivary gland autoimmunity and are a well-characterized model of Sjögren syndrome. Lacrimal gland disease in NOD mice is male-specific, but the role of Treg cells in this sex-specificity is not known. This study aimed to determine if male-specific autoimmune dacryoadenitis in the NOD mouse model of Sjögren syndrome is the result of lacrimal gland-protective Treg cell dysfunction. An adoptive transfer model of Sjögren syndrome was developed by transferring cells from the lacrimal gland-draining cervical lymph nodes of NOD mice to lymphocyte-deficient NOD-SCID mice. Transfer of bulk cervical lymph node cells modelled the male-specific dacryoadenitis that spontaneously develops in NOD mice. Female to female transfers resulted in dacryoadenitis if the CD4(+) CD25(+) Treg-enriched population was depleted before transfer; however, male to male transfers resulted in comparable dacryoadenitis regardless of the presence or absence of Treg cells within the donor cell population. Hormone manipulation studies suggested that this Treg cell dysfunction was mediated at least in part by androgens. Surprisingly, male Treg cells were capable of preventing the transfer of dacryoadenitis to female recipients. These data suggest that male-specific factors promote reversible dysfunction of lacrimal gland-protective Treg cells and, to our knowledge, form the first evidence for reversible organ-protective Treg cell dysfunction in organ-specific autoimmunity. PMID:25581706

  12. Should There be Concern About Autoimmune Diabetes in Adults? Current Evidence and Controversies.

    PubMed

    Østergaard, Jakob Appel; Laugesen, Esben; Leslie, R David

    2016-09-01

    Autoimmune diabetes has a heterogeneous phenotype. Although often considered a condition starting in childhood, a substantial proportion of type 1 diabetes presents in adult life. This holds important implications for our understanding of the factors that modify the rate of progression through the disease prodrome to clinical diabetes and for our management of the disease. When autoimmune diabetes develops in adulthood, insulin treatment is often not required at the time of diagnosis, and this autoimmune non-insulin requiring diabetes is generally termed latent autoimmune diabetes in adults (LADA). Patients with LADA are generally leaner, younger at diabetes onset; have a greater reduction in C-peptide; and have a greater likelihood of insulin treatment as compared with patients with type 2 diabetes. The LADA subset of patients with adult-onset autoimmune diabetes has highlighted many shortcomings in the classification of diabetes and invokes the case for more personalized data analysis in line with the move towards precision medicine. Perhaps most importantly, the issues highlight our persistent failure to engage with the heterogeneity within the most common form of autoimmune diabetes, that is adult-onset type 1 diabetes, both insulin-dependent and initially non-insulin requiring (LADA). This review discusses characteristics of autoimmune diabetes and specifically aims to illustrate the heterogeneity of the disease. PMID:27457237

  13. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes.

    PubMed

    Tai, Ningwen; Wong, F Susan; Wen, Li

    2016-07-01

    Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by T cell-mediated destruction of the insulin-producing pancreatic β cells. A combination of genetic and environmental factors eventually leads to the loss of functional β cell mass and hyperglycemia. Both innate and adaptive immunity are involved in the development of T1D. In this review, we have highlighted the most recent findings on the role of innate immunity, especially the pattern recognition receptors (PRRs), in disease development. In murine models and human studies, different PRRs, such as toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat-containing (or Nod-like) receptors (NLRs), have different roles in the pathogenesis of T1D. These PRRs play a critical role in defending against infection by sensing specific ligands derived from exogenous microorganisms to induce innate immune responses and shape adaptive immunity. Animal studies have shown that TLR7, TLR9, MyD88 and NLPR3 play a disease-predisposing role in T1D, while controversial results have been found with other PRRs, such as TLR2, TLR3, TLR4, TLR5 and others. Human studies also shown that TLR2, TLR3 and TLR4 are expressed in either islet β cells or infiltrated immune cells, indicating the innate immunity plays a role in β cell autoimmunity. Furthermore, some human genetic studies showed a possible association of TLR3, TLR7, TLR8 or NLRP3 genes, at single nucleotide polymorphism (SNP) level, with human T1D. Increasing evidence suggest that the innate immunity modulates β cell autoimmunity. Thus, targeting pathways of innate immunity may provide novel therapeutic strategies to fight this disease. PMID:27021275

  14. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice

    PubMed Central

    Macedo, Claudia; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs. PMID:26606254

  15. Growth hormone prevents the development of autoimmune diabetes.

    PubMed

    Villares, Ricardo; Kakabadse, Dimitri; Juarranz, Yasmina; Gomariz, Rosa P; Martínez-A, Carlos; Mellado, Mario

    2013-11-26

    Evidence supports a relationship between the neuroendocrine and the immune systems. Data from mice that overexpress or are deficient in growth hormone (GH) indicate that GH stimulates T and B-cell proliferation and Ig synthesis, and enhances maturation of myeloid progenitor cells. The effect of GH on autoimmune pathologies has nonetheless been little studied. Using a murine model of type 1 diabetes, a T-cell-mediated autoimmune disease characterized by immune cell infiltration of pancreatic islets and destruction of insulin-producing β-cells, we observed that sustained GH expression reduced prodromal disease symptoms and eliminated progression to overt diabetes. The effect involves several GH-mediated mechanisms; GH altered the cytokine environment, triggered anti-inflammatory macrophage (M2) polarization, maintained activity of the suppressor T-cell population, and limited Th17 cell plasticity. In addition, GH reduced apoptosis and/or increased the proliferative rate of β-cells. These results support a role for GH in immune response regulation and identify a unique target for therapeutic intervention in type 1 diabetes. PMID:24218587

  16. Growth hormone prevents the development of autoimmune diabetes

    PubMed Central

    Villares, Ricardo; Kakabadse, Dimitri; Juarranz, Yasmina; Gomariz, Rosa P.; Martínez-A, Carlos; Mellado, Mario

    2013-01-01

    Evidence supports a relationship between the neuroendocrine and the immune systems. Data from mice that overexpress or are deficient in growth hormone (GH) indicate that GH stimulates T and B-cell proliferation and Ig synthesis, and enhances maturation of myeloid progenitor cells. The effect of GH on autoimmune pathologies has nonetheless been little studied. Using a murine model of type 1 diabetes, a T-cell–mediated autoimmune disease characterized by immune cell infiltration of pancreatic islets and destruction of insulin-producing β-cells, we observed that sustained GH expression reduced prodromal disease symptoms and eliminated progression to overt diabetes. The effect involves several GH-mediated mechanisms; GH altered the cytokine environment, triggered anti-inflammatory macrophage (M2) polarization, maintained activity of the suppressor T-cell population, and limited Th17 cell plasticity. In addition, GH reduced apoptosis and/or increased the proliferative rate of β-cells. These results support a role for GH in immune response regulation and identify a unique target for therapeutic intervention in type 1 diabetes. PMID:24218587

  17. Thioreductase-Containing Epitopes Inhibit the Development of Type 1 Diabetes in the NOD Mouse Model

    PubMed Central

    Malek Abrahimians, Elin; Vander Elst, Luc; Carlier, Vincent A.; Saint-Remy, Jean-Marie

    2016-01-01

    Autoreactive CD4+ T cells recognizing islet-derived antigens play a primary role in type 1 diabetes. Specific suppression of such cells therefore represents a strategic target for the cure of the disease. We have developed a methodology by which CD4+ T cells acquire apoptosis-inducing properties on antigen-presenting cells after cognate recognition of natural sequence epitopes. We describe here that inclusion of a thiol-disulfide oxidoreductase (thioreductase) motif within the flanking residues of a single MHC class II-restricted GAD65 epitope induces GAD65-specific cytolytic CD4+ T cells (cCD4+ T). The latter, obtained either in vitro or by active immunization, acquire an effector memory phenotype and lyse APCs by a Fas–FasL interaction. Furthermore, cCD4+ T cells eliminate by apoptosis activated bystander CD4+ T cells recognizing alternative epitopes processed by the same APC. Active immunization with a GAD65 class II-restricted thioreductase-containing T cell epitope protects mice from diabetes and abrogates insulitis. Passive transfer of in vitro-elicited cCD4+ T cells establishes that such cells are efficient in suppressing autoimmunity. These findings provide strong evidence for a new vaccination strategy to prevent type 1 diabetes. PMID:26973647

  18. The urgent need to prevent type 1 autoimmune childhood diabetes.

    PubMed

    Laron, Zvi; Hampe, Christiane S; Shulman, Lester M

    2015-03-01

    Clinical onset of autoimmune Type 1 diabetes mellitus (T1DM) develops after an asymptomatic, complex interaction between host genetic and environmental factors lasting several years. The world-wide increase in T1DM incidence with no cure in sight necessitates the identification of the causative environmental factors in order to develop methods for preventing them from participating in the autoimmune process leading to T1DM. Human trials to prevent insulitis or development of T1DM (secondary prevention trials) have not as yet produced satisfactory outcomes despite promising results from T1DM animal models, possibly because the autoimmune response had already progressed too far and could not be stopped or reversed. Primary prevention trials conducted with individuals with increased genetic risk, but without signs of autoimmune response or metabolic abnormalities have also not yet produced any clear benefit. A correlation between month of birth and T1DM implicated seasonal infectious pathogens in the etiology of T1DM. This has prompted a search for those seasonal pathogens including viruses that might lead to onset of T1DM. Many studies investigated immediate viral triggers, e.g., viral infections at the time of clinical onset of T1DM. Fewer studies have investigated virus infections as the initial or early trigger in a cascade of events leading to development of TIDM. Seasonal virus infections of pregnant women may be transmitted in utero and induce the first damage to the developing fetus's beta-cells. The identification of specific pathogenic viruses may enable development for pregestational vaccines to diminish the incidence of childhood T1DM. PMID:25962204

  19. Intranasal vaccination with proinsulin DNA induces regulatory CD4+ T cells that prevent experimental autoimmune diabetes.

    PubMed

    Every, Alison L; Kramer, David R; Mannering, Stuart I; Lew, Andrew M; Harrison, Leonard C

    2006-04-15

    Insulin, an autoantigen in type 1 diabetes, when administered mucosally to diabetes-prone NOD mice induces regulatory T cells (T(reg)) that protect against diabetes. Compared with protein, Ag encoded as DNA has potential advantages as a therapeutic agent. We found that intranasal vaccination of NOD mice with plasmid DNA encoding mouse proinsulin II-induced CD4+ T(reg) that suppressed diabetes development, both after adoptive cotransfer with "diabetogenic" spleen cells and after transfer into NOD mice given cyclophosphamide to accelerate diabetes onset. In contrast to prototypic CD4+ CD25+ T(reg), CD4+ T(reg) induced by proinsulin DNA were both CD25+ and CD25- and not defined by markers such as glucocorticoid-induced TNFR-related protein (GITR), CD103, or Foxp3. Intriguingly, despite induction of T(reg) and reduced islet inflammation, diabetes incidence in proinsulin DNA-treated mice was unchanged. However, diabetes was prevented when DNA vaccination was performed under the cover of CD40 ligand blockade, known to prevent priming of CTL by mucosal Ag. Thus, intranasal vaccination with proinsulin DNA has therapeutic potential to prevent diabetes, as demonstrated by induction of protective T(reg), but further modifications are required to improve its efficacy, which could be compromised by concomitant induction of pathogenic immunity. PMID:16585551

  20. Bridging Mice to Men: Using HLA Transgenic Mice to Enhance the Future Prediction and Prevention of Autoimmune Type 1 Diabetes in Humans.

    PubMed

    Serreze, David V; Niens, Marijke; Kulik, John; DiLorenzo, Teresa P

    2016-01-01

    Similar to the vast majority of cases in humans, the development of type 1 diabetes (T1D) in the NOD mouse model is due to T-cell mediated autoimmune destruction of insulin producing pancreatic β cells. Particular major histocompatibility complex (MHC) haplotypes (designated HLA in humans; and H2 in mice) provide the primary genetic risk factor for T1D development. It has long been appreciated that within the MHC, particular unusual class II genes contribute to the development of T1D in both humans and NOD mice by allowing for the development and functional activation of β cell autoreactive CD4 T cells. However, studies in NOD mice have revealed that through interactions with other background susceptibility genes, the quite common class I variants (K(d), D(b)) characterizing this strain's H2 (g7) MHC haplotype aberrantly acquire an ability to support the development of β cell autoreactive CD8 T cell responses also essential to T1D development. Similarly, recent studies indicate that in the proper genetic context some quite common HLA class I variants also aberrantly contribute to T1D development in humans. This review focuses on how "humanized" HLA transgenic NOD mice can be created and used to identify class I dependent β cell autoreactive CD8 T cell populations of clinical relevance to T1D development. There is also discussion on how HLA transgenic NOD mice can be used to develop protocols that may ultimately be useful for the prevention of T1D in humans by attenuating autoreactive CD8 T cell responses against pancreatic β cells. PMID:27150089

  1. Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes

    PubMed Central

    Elso, Colleen M.; Chu, Edward P. F.; Alsayb, May A.; Mackin, Leanne; Ivory, Sean T.; Ashton, Michelle P.; Bröer, Stefan; Silveira, Pablo A.; Brodnicki, Thomas C.

    2015-01-01

    A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying “natural” alleles in the human population is to engineer “artificial” alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis. PMID:26438296

  2. Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes.

    PubMed

    Elso, Colleen M; Chu, Edward P F; Alsayb, May A; Mackin, Leanne; Ivory, Sean T; Ashton, Michelle P; Bröer, Stefan; Silveira, Pablo A; Brodnicki, Thomas C

    2015-12-01

    A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying "natural" alleles in the human population is to engineer "artificial" alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis. PMID:26438296

  3. High-throughput sequencing reveals restricted TCR Vβ usage and public TCRβ clonotypes among pancreatic lymph node memory CD4(+) T cells and their involvement in autoimmune diabetes.

    PubMed

    Marrero, Idania; Aguilera, Carlos; Hamm, David E; Quinn, Anthony; Kumar, Vipin

    2016-06-01

    Islet-reactive memory CD4(+) T cells are an essential feature of type 1 diabetes (T1D) as they are involved in both spontaneous disease and in its recurrence after islet transplantation. Expansion and enrichment of memory T cells have also been shown in the peripheral blood of diabetic patients. Here, using high-throughput sequencing, we investigated the clonal diversity of the TCRβ repertoire of memory CD4(+) T cells in the pancreatic lymph nodes (PaLN) of non-obese diabetic (NOD) mice and examined their clonal overlap with islet-infiltrating memory CD4T cells. Both prediabetic and diabetic NOD mice exhibited a restricted TCRβ repertoire dominated by clones expressing TRBV13-2, TRBV13-1 or TRBV5 gene segments. There is a limited degree of TCRβ overlap between the memory CD4 repertoire of PaLN and pancreas as well as between the prediabetic and diabetic group. However, public TCRβ clonotypes were identified across several individual animals, some of them with sequences similar to the TCRs from the islet-reactive T cells suggesting their antigen-driven expansion. Moreover, the majority of the public clonotypes expressed TRBV13-2 (Vβ8.2) gene segment. Nasal vaccination with an immunodominat peptide derived from the TCR Vβ8.2 chain led to protection from diabetes, suggesting a critical role for Vβ8.2(+) CD4(+) memory T cells in T1D. These results suggest that memory CD4(+) T cells bearing limited dominant TRBV genes contribute to the autoimmune diabetes and can be potentially targeted for intervention in diabetes. Furthermore, our results have important implications for the identification of public T cell clonotypes as potential novel targets for immune manipulation in human T1D. PMID:27161799

  4. Structure modeling and antidiabetic activity of a seed protein of Momordica charantia in non-obese diabetic (NOD) mice

    PubMed Central

    Chhabra, Gagan; Dixit, Aparna

    2013-01-01

    Momordica charantia is a well known medicinal plant used in the traditional medicinal system for the treatment of various diseases including diabetes mellitus. Recently, a novel protein termed as ADMc1 from the seed extract of M. charantia has been identified and isolated showing significant antihyperglycemic activity in type 1 diabetic rats in which diabetes was induced. However, the structure of this protein has not yet been analyzed. Homology modeling approach was used to generate a high quality protein 3D structure for the amino acid sequence of the ADMc1 protein in this study. The comparative assessment of secondary structures revealed ADMc1 as an all-alpha helix protein with random coils. Tertiary structure predicted on the template structure of Napin of B. Napus (PDB ID: 1SM7) with which the ADMc1 showed significant sequence similarity, was validated using protein structure validation tools like PROCHECK, WHAT_CHECK, VERIFY3D and ProSA. Arrangement of disulfide bridges formed by cysteine residues were predicted by the Dianna 1.1 server. The presence of multiple disulfide bond confers the stable nature of the ADMc1 protein. Further, the biological activity of the ADMc1 was assessed in non-obese diabetic (NOD) mice which are spontaneous model of type 1 diabetes. Significant reduction in the blood glucose levels of NOD mice was observed up to 8 h post administration of the rADMc1 protein. Overall, the structural characterizations with antihyperglycemic activity of this seed protein of Momordica charantia demonstrate its potential as an antidiabetic agent. PMID:24023418

  5. B Lymphocyte “Original Sin” in the Bone Marrow Enhances Islet Autoreactivity in Type 1 Diabetes-Prone NOD mice1,2,3

    PubMed Central

    Henry-Bonami, Rachel A.; Williams, Jonathan M.; Rachakonda, Amita B.; Karamali, Mariam; Kendall, Peggy L.; Thomas, James W.

    2013-01-01

    Effective central tolerance is required to control the large extent of autoreactivity normally present in the developing B cell repertoire. Insulin-reactive B cells are required for T1D in the NOD mouse, as engineered mice lacking this population are protected from disease. The VH125Tg model is used to define this population, which is found with increased frequency in the periphery of NOD vs. non-autoimmune C57BL/6 VH125Tg mice, but the ontogeny of this disparity is unknown. To better understand the origins of these pernicious B cells, anti-insulin B cells were tracked during development in the polyclonal repertoire of VH125Tg mice. An increased proportion of insulin-binding B cells is apparent in NOD mice at the earliest point of antigen commitment in the bone marrow. Two predominant light chains were identified in B cells that bind heterologous insulin. Interestingly, Vκ4-57-1 polymorphisms that confer a CDR3 Pro-Pro motif enhance self-reactivity in VH125Tg/NOD mice. Despite binding circulating autoantigen in vivo, anti-insulin B cells transition from the parenchyma to the sinusoids in the bone marrow of NOD mice and enter the periphery unimpeded. Anti-insulin B cells expand at the site of autoimmune attack in the pancreas and correlate with increased numbers of IFN-γ producing cells in the repertoire. These data identify failure to cull autoreactive B cells in the bone marrow as the primary source of anti-insulin B cells in NOD mice, and suggest that dysregulation of central tolerance permits escape into the periphery to promote disease. PMID:23677466

  6. Autoimmunity and the pathogenesis of type 1 diabetes.

    PubMed

    Csorba, Thomas R; Lyon, Andrew W; Hollenberg, Morley D

    2010-01-01

    Type 1 diabetes mellitus (TID) is an autoimmune genetic disease with unidentified environmental agents affecting its pathogenesis. Susceptibility is determined by the interaction of MHC and non-MHC genes in the thymus, primarily by the IDDM1 locus, which is extremely polymorphic and thus generates multitudes of predisposing and protective haplotypes for binding self-peptides. By presenting these peptide antigens to immature T-cells for activation and selection, most autoreactive cells will be deleted, but inefficient presentation and subsequent deficiencies of non-MHC genes allow some cells to escape to the periphery and to be eliminated by anergy or regulatory T-cells. T-cell dysregulation to a Th1 response with secretion of inflammatory cytokines promotes a self-perpetuating autoimmune cascade leading to overt disease unless blocked by suppressive cytokines from Th2-type cells. Since autoantibodies reflect target-cell destruction, early insulin autoantibodies may be transient due to benign insulitis induced by insulin or proinsulin. Multiple autoantibodies denote epitope spreading to cryptic autoantigens, likely involving posttranslational variants. Thus, the resulting T1D development requires coordinated abnormal variations, and this requirement limits its occurrence to a small minority of susceptible individuals. PMID:20545565

  7. Truncated pStat5B is associated with the Idd4 locus in NOD mice

    SciTech Connect

    Davoodi-Semiromi, Abdoreza . E-mail: semiromi@pathology.ufl.edu; McDuffie, Marcia; Litherland, Sally; Clare-Salzler, Michael

    2007-05-11

    We investigate JAK-STAT5 activation and its relationship to full-length Stat5B (FL-Stat5) and constitutive phosphorylated carboxy-truncated Stat5B (ct-pStat5) in four different strains of mouse. Our electrophoresis mobility shift assays data indicate constitutive phosphorylation of full-length-Stat5 (p < 0.001) and DNA binding in NOD but not in B6 mice. Our data suggest that the relative ratio of FL-Stat5: ct-Stat5 in NOD is 5- to 8-fold lower (p < 0.0001) when compared with normal B6 mice. Additionally, EMSAs data from B6.NOD/c11 suggest contribution of Idd4 susceptibility locus on chromosome 11 in constitutive phosphorylation of Stat5 in NOD mice. The presence of ct-pStat5 in regulatory T cells of NOD mice suggests this form of Stat5 is associated with impaired function of Tregs in NOD mouse. In agreement with our previous report the JAK-Stat5B defective pathway in NOD mice along with other defective factors is associated with the pathogenesis of autoimmune type 1 diabetes in NOD mice.

  8. Aqueous leaf extract of Passiflora alata Curtis promotes antioxidant and anti-inflammatory effects and consequently preservation of NOD mice beta cells (non-obese diabetic).

    PubMed

    Figueiredo, D; Colomeu, Talita Cristina; Schumacher, Nayara Simon Gonzalez; Stivanin-Silva, L G; Cazarin, Cinthia Baú Betim; Meletti, Laura Maria Molina; Fernandes, Luís Gustavo Romani; Prado, Marcelo Alexandre; Zollner, R L

    2016-06-01

    Passiflora alata Curtis (P. alata) leaves have anti-inflammatory properties; the present study aimed to investigate the anti-diabetogenic properties of P. alata aqueous leaf extract. HPLC analysis identified the phenolic compounds catechin, epicatechin and rutin. The aqueous extract was administered for 30weeks to non-obese diabetic (NOD) mice presenting a decrease of 28.6% in diabetes incidence and the number of inflammatory cells in pancreatic islets, when compared with the control group (water). The P. alata group presented an antioxidant effect and decreased lipid peroxidation in the serum of NOD mice. Increased numbers of insulin-positive cells were also observed in the pancreatic islets of the treated group. The diabetic group exhibited higher levels in the glucose tolerance test and glycemic index, in comparison to the P. alata-treated group and non-diabetic control BALB/c mice. In addition, the P. alata extract reduced the percentage and the proliferation index of NOD mice lymphocytes submitted to in vitro dose/response mitogenic stimulation assays. These results suggest that the aqueous extract of P. alata has anti-inflammatory properties, contributing to the protection of beta cells in pancreatic islets in NOD mice, and presents potential for use a supporting approach to treat type 1 diabetes. PMID:27039211

  9. Dietary supplementation with high doses of regular vitamin D3 safely reduces diabetes incidence in NOD mice when given early and long term.

    PubMed

    Takiishi, Tatiana; Ding, Lei; Baeke, Femke; Spagnuolo, Isabella; Sebastiani, Guido; Laureys, Jos; Verstuyf, Annemieke; Carmeliet, Geert; Dotta, Francesco; Van Belle, Tom L; Gysemans, Conny A; Mathieu, Chantal

    2014-06-01

    High doses of the active form of vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], prevent diabetes in the NOD mouse but also elicit unwanted calcemic side effects. Because immune cells themselves can convert vitamin D3 into 1,25(OH)2D3 locally, we hypothesized that dietary vitamin D3 can also prevent disease. Thus, we evaluated whether dietary administration of high doses of regular vitamin D3 (800 IU/day) during different periods of life (pregnancy and lactation, early life [3-14 weeks of age], or lifelong [3-35 weeks of age]) safely prevents diabetes in NOD mice. We found that only lifelong treatment raised serum 25-hydroxyvitamin D3 from 173 nmol/L in controls to 290 nmol/L, without inducing signs of calcemic or bone toxicity, and significantly reduced diabetes development in both male and female NOD mice. This diabetes protection by vitamin D3 correlated with preserved pancreatic insulin content and improved insulitis scores. Moreover, vitamin D3 treatment decreased interferon-γ-positive CD8(+) T cells and increased CD4(+)(CD25(+))FoxP3(+) T cells in pancreatic draining lymph nodes. In conclusion, this study shows for the first time that high doses of regular dietary vitamin D3 can safely prevent diabetes in NOD mice when administered lifelong, although caution is warranted with regards to administering equivalently high doses in humans. PMID:24550187

  10. Prevention of spontaneous and cyclophosphamide-induced diabetes in non-obese diabetic (NOD) mice with oral 2-acetyl-4-tetrahydroxybutylimidazole (THI), a component of caramel colouring III.

    PubMed Central

    Mandel, T E; Koulmanda, M; Mackay, I R

    1992-01-01

    The effect of oral administration of THI, a compound present in ammonia caramel food colouring, was studied in spontaneous and induced murine diabetes mellitus. Continuous administration of THI at 400 ppm in drinking water reduced the prevalence of spontaneous diabetes in female NOD/Lt mice from 63% in untreated controls to 8% in treated animals. Since cyclophosphamide (CP) accelerates and intensifies diabetes in NOD mice, we also studied the effect of THI in this model. Diabetes incidence was reduced from 100% in mice given only CP to 13-14% in mice given THI either concurrently or from 14 days previously. Histologically, THI greatly reduced the severity of insulitis. As measured by flow cytometry, all THI-treated mice had a 60-80% reduction in splenic CD4+ and CD8+ T cells. THI-treated mice showed no untoward effects and specifically no weight loss, or pathological changes in their livers, kidneys or lungs. However, there was moderate atrophy of the thymus cortex. THI is a small imidazole-containing compound with structural similarity to histamine and urocanic acid, both known to have immunosuppressive properties. It is a widely used food additive with no known long-term toxic effects at low dosage. Thus, THI could be a useful immunosuppressive agent. PMID:1606724

  11. Hematopoietic stem cells from NOD mice exhibit autonomous behavior and a competitive advantage in allogeneic recipients.

    PubMed

    Chilton, Paula M; Rezzoug, Francine; Ratajczak, Mariusz Z; Fugier-Vivier, Isabelle; Ratajczak, Janina; Kucia, Magda; Huang, Yiming; Tanner, Michael K; Ildstad, Suzanne T

    2005-03-01

    Type 1 diabetes is a systemic autoimmune disease that can be cured by transplantation of hematopoietic stem cells (HSCs) from disease-resistant donors. Nonobese diabetic (NOD) mice have a number of features that distinguish them as bone marrow transplant recipients that must be understood prior to the clinical application of chimerism to induce tolerance. In the present studies, we characterized NOD HSCs, comparing their engraftment characteristics to HSCs from disease-resistant strains. Strikingly, NOD HSCs are significantly enhanced in engraftment potential compared with HSCs from disease-resistant donors. Unlike HSCs from disease-resistant strains, they do not require graft-facilitating cells to engraft in allogeneic recipients. Additionally, they exhibit a competitive advantage when coadministered with increasing numbers of syngeneic HSCs, produce significantly more spleen colony-forming units (CFU-Ss) in vivo in allogeneic recipients, and more granulocyte macrophage-colony-forming units (CFU-GMs) in vitro compared with HSCs from disease-resistant controls. NOD HSCs also exhibit significantly enhanced chemotaxis to a stromal cell-derived factor 1 (SDF-1) gradient and adhere significantly better on primary stroma. This enhanced engraftment potential maps to the insulin-dependent diabetes locus 9 (Idd9) locus, and as such the tumor necrosis factor (TNF) receptor family as well as ski/sno genes may be involved in the mechanism underlying the autonomy of NOD HSCs. These findings may have important implications to understand the evolution of autoimmune disease and impact on potential strategies for cure. PMID:15522953

  12. Diabetic ketoacidosis as first presentation of latent autoimmune diabetes in adult.

    PubMed

    Nadhem, Omar; Nakhla, Essam; Smalligan, Roger D

    2015-01-01

    A 54-year-old white female with hypothyroidism presented with abdominal pain, nausea, vomiting, and diarrhea. She was found to have diabetic ketoacidosis (DKA) and admitted to our hospital for treatment. Laboratory workup revealed positive antiglutamic acid decarboxylase antibodies and subsequently she was diagnosed with latent onset autoimmune diabetes in adult (LADA). She was successfully treated with insulin with clinical and laboratory improvement. Diagnosis of LADA has been based on three criteria as given by The Immunology of Diabetes Society: (1) adult age of onset (>30 years of age); (2) presence of at least one circulating autoantibody (GADA/ICA/IAA/IA-2); and (3) initial insulin independence for the first six months. The importance of this case is the unlikely presentation of LADA. We believe that more research is needed to determine the exact proportion of LADA patients who first present with DKA, since similar cases have only been seen in case reports. Adult patients who are obese and have high blood sugar may deserve screening for LADA, especially in the presence of other autoimmune diseases. Those patients once diagnosed with LADA need extensive diabetic education including potentially serious events such as diabetic ketoacidosis. PMID:25834574

  13. Fetal Hox11 expression patterns predict defective target organs: a novel link between developmental biology and autoimmunity

    PubMed Central

    Lonyai, Anna; Kodama, Shohta; Burger, Douglas; Faustman, Denise L

    2014-01-01

    Developmental biology has long been ignored in the etiology and diverse manifestations of autoimmune diseases. Yet a role for development is suggested by intriguing overlaps in particular organs targeted in autoimmune diseases, in this case type 1 diabetes and Sjogren’s syndrome. Patients with type 1 diabetes have high rates of co-occurring Sjogren’s syndrome, and both conditions are associated with hearing loss and tongue abnormalities. All of these co-occurrences are found in organs tracing their lineage to the developmental transcription factor Hox11, which is expressed in embryonic cells destined for the pancreas, salivary glands, tongue, cranial nerves and cochlea. To determine whether development contributes to autoimmunity, we compared four target organs in NOD mice (an animal model for type 1 diabetes and Sjogren’s syndrome) with NOD-SCID mice (which lack lymphocytes) and normal controls. We examined the structure and/or function of the cochlea, salivary glands, pancreas and tongue at early time points after birth. Before the usual time of the onset of type 1 diabetes or Sjogren’s syndrome, we show that all four Hox11-derived organs are structurally abnormal in both NOD mice and NOD-SCID mice versus controls. The most striking functional defect is near complete hearing loss occurring before the normal time of the onset of autoimmunity. The hearing loss is associated with severe structural defects in the cochlea, suggesting that near-deafness occurs independent of autoimmune attack. The pancreas and salivary glands are also structurally abnormal in NOD and NOD-SCID mice, but they are functionally normal. This suggests that autoimmune attack of these two organs is required for functional failure. We conclude that a developmental lineage of cells contributes to autoimmunity and predicts which organs may be targeted, either structurally and/or functionally. Taken together, our findings challenge the orthodoxy that autoimmunity is solely caused by a

  14. Genes within the Idd5 and Idd9/11 Diabetes Susceptibility Loci affect the Pathogenic Activity of B-cells in NOD mice1

    PubMed Central

    Silveira, Pablo A.; Chapman, Harold D.; Stolp, Jessica; Johnson, Ellis; Cox, S. Lewis; Hunter, Kara; Wicker, Linda S.; Serreze, David V.

    2010-01-01

    Autoreactive T-cells clearly mediate the pancreatic β cell destruction causing Type 1 diabetes (T1D)2. However, studies in NOD mice indicate that B-cells also contribute to pathogenesis since their ablation by introduction of an Igμnull mutation elicits T1D resistance. T1D susceptibility is restored in NOD.Igμnull mice that are irradiated and reconstituted with syngeneic bone marrow (SBM) plus NOD B-cells, but not SBM alone. Thus, we hypothesized some non-MHC T1D susceptibility (Idd) genes contribute to disease by allowing development of pathogenic B-cells. Supporting this hypothesis was the finding, that unlike those from NOD donors, engraftment with B-cells from H2g7 MHC matched, but T1D-resistant, NOR mice failed to restore full disease susceptibility in NOD.Igμnull recipients. T1D resistance in NOR mice is mainly encoded within the Idd13, Idd5.2 and Idd9/11 loci. B-cells from NOD congenic stocks containing Idd9/11 or Idd5.1/5.2 resistance loci respectively derived from the NOR or C57BL/10 strains were characterized by suppressed diabetogenic activity. Immature autoreactive B-cells in NOD mice have an impaired ability to be rendered anergic upon antigen engagement. Interestingly, both Idd5.1/5.2 and Idd9/11 resistance loci were found to normalize this B-cell tolerogenic process, which may represent a mechanism contributing to the inhibition of T1D. PMID:17082619

  15. Erythropoietin and its carbamylated derivative prevent the development of experimental diabetic autonomic neuropathy in STZ-induced diabetic NOD-SCID mice.

    PubMed

    Schmidt, Robert E; Green, Karen G; Feng, Dongyan; Dorsey, Denise A; Parvin, Curtis A; Lee, Jin-Moo; Xiao, Qinlgi; Brines, Michael

    2008-01-01

    Autonomic neuropathy is a significant diabetic complication resulting in increased morbidity and mortality. Studies of autopsied diabetic patients and several rodent models demonstrate that the neuropathologic hallmark of diabetic sympathetic autonomic neuropathy in prevertebral ganglia is the occurrence of synaptic pathology resulting in distinctive dystrophic neurites ("neuritic dystrophy"). Our prior studies show that neuritic dystrophy is reversed by exogenous IGF-I administration without altering the metabolic severity of diabetes, i.e. functioning as a neurotrophic substance. The description of erythropoietin (EPO) synergy with IGF-I function and the recent discovery of EPO's multifaceted neuroprotective role suggested it might substitute for IGF-I in treatment of diabetic autonomic neuropathy. Our current studies demonstrate EPO receptor (EPO-R) mRNA in a cDNA set prepared from NGF-maintained rat sympathetic neuron cultures which decreased with NGF deprivation, a result which demonstrates clearly that sympathetic neurons express EPO-R, a result confirmed by immunohistochemistry. Treatment of STZ-diabetic NOD-SCID mice have demonstrated a dramatic preventative effect of EPO and carbamylated EPO (CEPO, which is neuroprotective but not hematopoietic) on the development of neuritic dystrophy. Neither EPO nor CEPO had a demonstrable effect on the metabolic severity of diabetes. Our results coupled with reported salutary effects of EPO on postural hypotension in a few clinical studies of EPO-treated anemic diabetic and non-diabetic patients may reflect a primary neurotrophic effect of EPO on the sympathetic autonomic nervous system, rather than a primary hematopoietic effect. These findings may represent a major clinical advance since EPO has been widely and safely used in anemic patients due to a variety of clinical conditions. PMID:17967455

  16. Combined treatment with sitagliptin and vitamin D in a patient with latent autoimmune diabetes in adults

    PubMed Central

    Rapti, E; Karras, S; Grammatiki, M; Mousiolis, A; Tsekmekidou, X; Potolidis, E; Zebekakis, P; Daniilidis, M

    2016-01-01

    Summary Latent autoimmune diabetes in adults (LADA) is a relatively new type of diabetes with a clinical phenotype of type 2 diabetes (T2D) and an immunological milieu characterized by high titers of islet autoantibodies, resembling the immunological profile of type 1 diabetes (T1D). Herein, we report a case of a young male, diagnosed with LADA based on both clinical presentation and positive anti-glutamic acid decarboxylase antibodies (GAD-abs), which were normalized after combined treatment with a dipeptidyl peptidase-4 inhibitor (DPP-4) (sitagliptin) and cholecalciferol. Learning points Anti-glutamic acid decarboxylase antibodies (GAD-abs) titers in young patients being previously diagnosed as type 2 diabetes (T2D) may help establish the diagnosis of latent autoimmune diabetes in adults (LADA). Sitagliptin administration in patients with LADA might prolong the insulin-free period. Vitamin D administration in patients with LADA might have a protective effect on the progression of the disease. PMID:27252860

  17. β-cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection

    PubMed Central

    El Khatib, Moustafa; Sakuma, Toshie; Tonne, Jason M.; Mohamed, Magid S.; Holditch, Sara J.; Lu, Brian; Kudva, Yogish C.; Ikeda, Yasuhiro

    2015-01-01

    Protection of beta cells from autoimmune destruction potentially cures type 1 diabetes mellitus (T1D). During antigen presentation, interactions between cytotoxic T-lymphocyte antigen-4 (CTLA4) and B7 molecules, or programmed death 1 (PD1) and its ligand PDL1, negatively regulate immune responses in a non-redundant manner. Here, we employed beta cell-targeted adeno-associated virus serotype 8 (AAV8)-based vectors to over-express an artificial PDL1-CTLA4Ig polyprotein or IL10. Beta cell-targeted expression of PDL1-CTLA4Ig or IL10 preserved beta cell mass and protected NOD mice from T1D development. When NOD mice were treated with vectors at early onset of hyperglycemia, PDL1-CTLA4Ig or IL10 alone failed to normalize the early onset of hyperglycemia. When drug-induced diabetic mice received MHC-matched allo-islets, with or without pretreatment of the PDL1-CTLA4Ig-expressing vector, PDL1-CTLA4Ig-expressing islets were protected from rejection for at least 120 days. Similarly, transplantation of PDL1-CTLA4Ig-expressing MHC-matched islets into mice with established T1D resulted in protection of allo-islets from acute rejection, although islet grafts were eventually rejected. Thus, the present study demonstrates the potent immuno-suppressive effects of beta cell-targeted PDL1-CTLA4Ig overexpression against T1D development and allo-islet rejection. The gene-based simultaneous inhibition of PD1 and CTLA4 pathways provides a unique strategy for immunosuppression-free tissue/organ transplantation, especially in the setting of no established autoimmunity. PMID:25786871

  18. The Gene Expression Profile of CD11c+CD8α− Dendritic Cells in the Pre-Diabetic Pancreas of the NOD Mouse

    PubMed Central

    Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2014-01-01

    Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904

  19. Th1-Like ICOS+ Foxp3+ Treg Cells Preferentially Express CXCR3 and Home to β-Islets during Pre-Diabetes in BDC2.5 NOD Mice.

    PubMed

    Kornete, Mara; Mason, Edward S; Girouard, Julien; Lafferty, Erin I; Qureshi, Salman; Piccirillo, Ciriaco A

    2015-01-01

    Type 1 diabetes (T1D) occurs through a breakdown of self-tolerance resulting in the autoimmune destruction of the insulin producing β-islets of the pancreas. A numerical and functional waning of CD4+ Foxp3+ regulatory T (Treg) cells, prompted by a pancreatic IL-2 deficiency, accompanies Th1 autoimmunity and T1D progression in non-obese diabetic (NOD) mice. Recently, we identified a dominant subset of intra-islet Treg cells that expresses the ICOS costimulatory receptor and promotes self-tolerance delaying the onset of T1D. ICOS co-stimulation potently enhances IL-2 induced survival and proliferation, and suppressive activity of Treg cells in situ. Here, we propose an ICOS-dependent mechanism of Treg cell homing to the β-islets during pre-diabetes in the NOD model via upregulation of the CXCR3 chemokine receptor. The islet-specific ICOS+ Treg cell subset preferentially expresses CXCR3 in the pancreatic lymph nodes (pLN) in response to Teff cell-mediated pancreatic inflammation, an expression correlating with the onset and magnitude of IFN-γ production by Teff cells in pancreatic sites. We also reveal that intra-pancreatic APC populations and insulin-producing β, but not α nor δ, islet cells secrete the CXCR3 chemokines, CXCL9, 10 and 11, and selectively promote ICOS+ CXCR3+ Treg cell chemotaxis in vitro. Strikingly, islet-derived Treg cells also produce these chemokines suggesting an auto-regulation of homing by this subset. Unlike ICOS- cells, ICOS+ Treg cells adopt a Th1-like Treg phenotype while maintaining their suppressive capacity, characterized by expression of T-bet and CXCR3 and production of IFN-γ in the draining pLNs. Finally, in vivo neutralization of IFN-γ blocked Treg cell CXCR3 upregulation evincing its role in regulating expression of this chemokine receptor by Treg cells. Thus, CXCR3-mediated trafficking of Treg cells could represent a mechanism of homeostatic immunoregulation during diabetogeneesis. PMID:25946021

  20. Detection of four diabetes specific autoantibodies in a single radioimmunoassay: an innovative high-throughput approach for autoimmune diabetes screening

    PubMed Central

    Tiberti, C; Yu, L; Lucantoni, F; Panimolle, F; Spagnuolo, I; Lenzi, A; Eisenbarth, G S; Dotta, F

    2011-01-01

    Highly sensitive and specific radioimmunoassays have been validated for autoantibodies reacting with the four major autoantigens identified so far in autoimmune diabetes. However, the analysis of this large number of autoantigens has increased the costs and time necessary for complete autoantibody screenings. Our aim was to demonstrate that it is possible to detect the immunoreactivity against a combination of four different autoantigens by a single assay, this representing a rapid, low-cost first approach to evaluate humoral autoimmunity in diabetes. By using this novel multi-autoantigen radioimmunoassay (MAA), in subsequent steps we analysed 830 sera, 476 of known and 354 of unknown diabetes-specific immunoreactivity, collected from various groups of individuals including type 1 and type 2 diabetes patients, autoantibody-positive patients with a clinical diagnosis of type 2 diabetes (LADA), prediabetic subjects, individuals at risk to develop autoimmune diabetes, siblings of type 1 diabetic patients, coeliac patients and healthy control subjects. All sera reacting with one or more of the four autoantigens by single assays also resulted positive with MAA, as well as eight of 24 type 1 diabetic patients classified initially as autoantibody-negative at disease onset based on single autoantibody assays. In addition, MAA showed 92% sensitivity and 99% specificity by analysing 140 blinded sera from type 1 diabetic patients and control subjects provided in the 2010 Diabetes Autoantibody Standardization Program. MAA is the first combined method also able to evaluate, in addition to glutamic acid decarboxylase (GAD) and tyrosine phosphatase (IA)-2, insulin and islet beta-cell zinc cation efflux transporter (ZnT8) autoantibodies. It appears to be particularly appropriate as a first-line approach for large-scale population-based screenings of anti-islet autoimmunity. PMID:22059988

  1. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: The Diabetes Autoimmunity Study in the Young

    PubMed Central

    Norris, Jill M.; Kroehl, Miranda; Fingerlin, Tasha E.; Frederiksen, Brittni N.; Seifert, Jennifer; Wong, Randall; Clare-Salzler, Michael; Rewers, Marian

    2013-01-01

    Aims/hypotheses We previously reported that lower n-3 fatty acid intake and levels in erythrocyte membranes were associated with increased risk of islet autoimmunity (IA) but not progression to type 1 diabetes in children at increased risk for diabetes. We hypothesise that specific n-3 fatty acids and genetic markers contribute synergistically to this increased risk of IA in the Diabetes Autoimmunity Study in the Young (DAISY). Methods DAISY is following 2547 children at increased risk for type 1 diabetes for the development of IA, defined as being positive for glutamic acid decarboxylase (GAD)65, IA-2 or insulin autoantibodies on two consecutive visits. Using a case-cohort design, erythrocyte membrane fatty acids and dietary intake were measured prospectively in 58 IA-positive children and 299 IA-negative children. Results Lower membrane levels of the n-3 fatty acid, docosapentaenoic acid (DPA), were predictive of IA (HR 0.23; 95% CI 0.09,0.55), while alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were not, adjusting for HLA and diabetes family history. We examined whether the effect of dietary intake of the n-3 fatty acid ALA on IA risk was modified by fatty acid elongation and desaturation genes. Adjusting for HLA, diabetes family history, ethnicity, energy intake and questionnaire type, ALA intake was significantly more protective for IA in the presence of an increasing number of minor alleles at FADS1 rs174556 (pinteraction=0.017), at FADS2 rs174570 (pinteraction=0.016) and at FADS2 rs174583 (pinteraction=0.045). Conclusions/interpretation The putative protective effect of n-3 fatty acids on IA may result from a complex interaction between intake and genetically-controlled fatty acid desaturation. PMID:24240437

  2. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    SciTech Connect

    Jin, Yulan; Purohit, Sharad; Chen, Xueqin; Yi, Bing; She, Jin-Xiong

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  3. Induction of late-onset spontaneous autoimmune thyroiditis by a single low-dose irradiation in thyroiditis-prone non-obese diabetic-H2h4 mice.

    PubMed

    Nagayama, Yuji; Ichikawa, Tatsuki; Saitoh, Ohki; Abiru, Norio

    2009-11-01

    The previous data regarding the effect of irradiation on thyroid autoimmunity are controversial. We have recently reported the exacerbation of autoimmune thyroiditis by a single low dose (0.5 Gy) of whole body irradiation in thyroiditis-prone non-obese diabetic (NOD)-H2(h4) mice treated with iodine for 8 weeks. However, it is uncertain in that report whether the results obtained by the provision of iodine in a relatively short period of time (8 weeks) accurately reflects the long-term consequences of low-dose irradiation on thyroid autoimmunity. Therefore, we repeated these experiments with mice that were monitored after irradiation without iodine treatment for up to 15 months. We found that a single low-dose (0.5 Gy) irradiation increased the incidence and severity of thyroiditis and the incidence and titers of anti-thyroglobulin autoantibodies at 15 months of age. The numbers of splenocytes and percentages of various lymphocyte subsets were not affected by irradiation. Thus, we conclude that low-dose irradiation also exacerbates late-onset spontaneous thyroiditis in NOD-H2(h4) mice; one plausible explanation for this may be the acceleration of immunological aging by irradiation. PMID:19755803

  4. Genome-wide end-sequenced BAC resources for the NOD/MrkTac☆ and NOD/ShiLtJ☆☆ mouse genomes

    PubMed Central

    Steward, Charles A.; Humphray, Sean; Plumb, Bob; Jones, Matthew C.; Quail, Michael A.; Rice, Stephen; Cox, Tony; Davies, Rob; Bonfield, James; Keane, Thomas M.; Nefedov, Michael; de Jong, Pieter J.; Lyons, Paul; Wicker, Linda; Todd, John; Hayashizaki, Yoshihide; Gulban, Omid; Danska, Jayne; Harrow, Jen; Hubbard, Tim; Rogers, Jane; Adams, David J.

    2010-01-01

    Non-obese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D) due to the progressive loss of insulin-secreting β-cells by an autoimmune driven process. NOD mice represent a valuable tool for studying the genetics of T1D and for evaluating therapeutic interventions. Here we describe the development and characterization by end-sequencing of bacterial artificial chromosome (BAC) libraries derived from NOD/MrkTac (DIL NOD) and NOD/ShiLtJ (CHORI-29), two commonly used NOD substrains. The DIL NOD library is composed of 196,032 BACs and the CHORI-29 library is composed of 110,976 BACs. The average depth of genome coverage of the DIL NOD library, estimated from mapping the BAC end-sequences to the reference mouse genome sequence, was 7.1-fold across the autosomes and 6.6-fold across the X chromosome. Clones from this library have an average insert size of 150 kb and map to over 95.6% of the reference mouse genome assembly (NCBIm37), covering 98.8% of Ensembl mouse genes. By the same metric, the CHORI-29 library has an average depth over the autosomes of 5.0-fold and 2.8-fold coverage of the X chromosome, the reduced X chromosome coverage being due to the use of a male donor for this library. Clones from this library have an average insert size of 205 kb and map to 93.9% of the reference mouse genome assembly, covering 95.7% of Ensembl genes. We have identified and validated 191,841 single nucleotide polymorphisms (SNPs) for DIL NOD and 114,380 SNPs for CHORI-29. In total we generated 229,736,133 bp of sequence for the DIL NOD and 121,963,211 bp for the CHORI-29. These BAC libraries represent a powerful resource for functional studies, such as gene targeting in NOD embryonic stem (ES) cell lines, and for sequencing and mapping experiments. PMID:19909804

  5. Primary prevention of beta-cell autoimmunity and type 1 diabetes – The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) perspectives

    PubMed Central

    Ziegler, A.G.; Danne, T.; Dunger, D.B.; Berner, R.; Puff, R.; Kiess, W.; Agiostratidou, G.; Todd, J.A.; Bonifacio, E.

    2016-01-01

    Objective Type 1 diabetes can be identified by the presence of beta-cell autoantibodies that often arise in the first few years of life. The purpose of this perspective is to present the case for primary prevention of beta-cell autoimmunity and to provide a study design for its implementation in Europe. Methods We examined and summarized recruitment strategies, enrollment rates, and outcomes in published TRIGR, FINDIA and BABYDIET primary prevention trials, and the TEDDY intensive observational study. A proposal for a recruitment and implementation strategy to perform a phase II/III primary prevention randomized controlled trial in infants with genetic risk for developing beta-cell autoimmunity is outlined. Results Infants with a family history of type 1 diabetes (TRIGR, BABYDIET, TEDDY) and infants younger than age 3 months from the general population (FINDIA, TEDDY) were enrolled into these studies. All studies used HLA genotyping as part of their eligibility criteria. Predicted beta-cell autoimmunity risk in the eligible infants ranged from 3% (FINDIA, TEDDY general population) up to 12% (TRIGR, BABYDIET). Amongst eligible infants, participation was between 38% (TEDDY general population) and 97% (FINDIA). Outcomes, defined as multiple beta-cell autoantibodies, were consistent with predicted risks. We subsequently modeled recruitment into a randomized controlled trial (RCT) that could assess the efficacy of oral insulin treatment as adapted from the Pre-POINT pilot trial. The RCT would recruit infants with and without a first-degree family history of type 1 diabetes and be based on general population genetic risk testing. HLA genotyping and, for the general population, genotyping at additional type 1 diabetes susceptibility SNPs would be used to identify children with around 10% risk of beta-cell autoimmunity. The proposed RCT would have 80% power to detect a 50% reduction in multiple beta-cell autoantibodies by age 4 years at a two-tailed alpha of 0.05, and

  6. Estrogen Therapy Delays Autoimmune Diabetes and Promotes the Protective Efficiency of Natural Killer T-Cell Activation in Female Nonobese Diabetic Mice.

    PubMed

    Gourdy, Pierre; Bourgeois, Elvire A; Levescot, Anaïs; Pham, Linh; Riant, Elodie; Ahui, Marie-Louise; Damotte, Diane; Gombert, Jean-Marc; Bayard, Francis; Ohlsson, Claes; Arnal, Jean-François; Herbelin, André

    2016-01-01

    Therapeutic strategies focused on restoring immune tolerance remain the main avenue to prevent type 1 diabetes (T1D). Because estrogens potentiate FoxP3+ regulatory T cells (Treg) and invariant natural killer T (iNKT) cells, two regulatory lymphocyte populations that are functionally deficient in nonobese diabetic (NOD) mice, we investigated whether estradiol (E2) therapy influences the course of T1D in this model. To this end, female NOD mice were sc implanted with E2- or placebo-delivering pellets to explore the course of spontaneous and cyclophosphamide-induced diabetes. Treg-depleted and iNKT-cell-deficient (Jα18(-/-)) NOD mice were used to assess the respective involvement of these lymphocyte populations in E2 effects. Early E2 administration (from 4 wk of age) was found to preserve NOD mice from both spontaneous and cyclophosphamide-induced diabetes, and a complete protection was also observed throughout treatment when E2 treatment was initiated after the onset of insulitis (from 12 wk of age). This delayed E2 treatment remained fully effective in Treg-depleted mice but failed to entirely protect Jα18(-/-) mice. Accordingly, E2 administration was shown to restore the cytokine production of iNKT cells in response to in vivo challenge with the cognate ligand α-galactosylceramide. Finally, transient E2 administration potentiated the previously described protective action of α-galactosylceramide treatment in NOD females. This study provides original evidence that E2 therapy strongly protects NOD mice from T1D and reveals the estrogen/iNKT cell axis as a new effective target to counteract diabetes onset at the stage of insulitis. Estrogen-based therapy should thus be considered for T1D prevention. PMID:26485613

  7. Circadian rhythm-related genes: implication in autoimmunity and type 1 diabetes.

    PubMed

    Lebailly, B; Boitard, C; Rogner, U C

    2015-09-01

    Recent gene association and functional studies have proven the implication of several circadian rhythm-related genes in diabetes. Diabetes has been related to variation in central circadian regulation and peripheral oscillation. Different transcriptional regulators have been identified. Circadian genes are clearly implicated in metabolic pathways, pancreatic function and in type 2 diabetes. Much less evidence has been shown for the link between circadian regulation and type 1 diabetes. The hypothesis that circadian genes are involved in type 1 diabetes is reinforced by findings that the immune system undergoes circadian variation and that several autoimmune diseases are associated with circadian genes. Recent findings in the non-obese diabetic mouse model pinpoint to specific mechanisms controlling type 1 diabetes by the clock-related gene Arntl2 in the immune system. PMID:26332978

  8. Nodding Syndrome

    PubMed Central

    Sejvar, James J.; Riek, Lul; Vandemaele, Katelijn A.H.; Lamunu, Margaret; Kuesel, Annette C.; Schmutzhard, Erich; Matuja, William; Bunga, Sudhir; Foltz, Jennifer; Nutman, Thomas B.; Winkler, Andrea S.; Mbonye, Anthony K.

    2013-01-01

    An epidemic illness characterized by head nodding associated with onchocerciasis has been described in eastern Africa since the early 1960s; we summarize published reports and recent studies. Onset of nodding occurs in previously healthy 5–15-year-old children and is often triggered by eating or cold temperatures and accompanied by cognitive impairment. Its incidence has increased in Uganda and South Sudan over the past 10 years. Four case–control studies identified modest and inconsistent associations. There were nonspecific lesions seen by magnetic resonance imaging, no cerebrospinal fluid inflammation, and markedly abnormal electroencephalography results. Nodding episodes are atonic seizures. Testing has failed to demonstrate associations with trypanosomiasis, cysticercosis, loiasis, lymphatic filariasis, cerebral malaria, measles, prion disease, or novel pathogens; or deficiencies of folate, cobalamin, pyridoxine, retinol, or zinc; or toxicity from mercury, copper, or homocysteine. There is a consistent enigmatic association with onchocerciasis detected by skin snip or serologic analysis. Nodding syndrome is an unexplained epidemic epilepsy. PMID:23965548

  9. Nodding syndrome.

    PubMed

    Dowell, Scott F; Sejvar, James J; Riek, Lul; Vandemaele, Katelijn A H; Lamunu, Margaret; Kuesel, Annette C; Schmutzhard, Erich; Matuja, William; Bunga, Sudhir; Foltz, Jennifer; Nutman, Thomas B; Winkler, Andrea S; Mbonye, Anthony K

    2013-01-01

    An epidemic illness characterized by head nodding associated with onchocerciasis has been described in eastern Africa since the early 1960s; we summarize published reports and recent studies. Onset of nodding occurs in previously healthy 5-15-year-old children and is often triggered by eating or cold temperatures and accompanied by cognitive impairment. Its incidence has increased in Uganda and South Sudan over the past 10 years. Four case-control studies identified modest and inconsistent associations. There were nonspecific lesions seen by magnetic resonance imaging, no cerebrospinal fluid inflammation, and markedly abnormal electroencephalography results. Nodding episodes are atonic seizures. Testing has failed to demonstrate associations with trypanosomiasis, cysticercosis, loiasis, lymphatic filariasis, cerebral malaria, measles, prion disease, or novel pathogens; or deficiencies of folate, cobalamin, pyridoxine, retinol, or zinc; or toxicity from mercury, copper, or homocysteine. There is a consistent enigmatic association with onchocerciasis detected by skin snip or serologic analysis. Nodding syndrome is an unexplained epidemic epilepsy. PMID:23965548

  10. Novel autoantigens for diabetogenic CD4 T cells in autoimmune diabetes

    PubMed Central

    Delong, Thomas; Baker, Rocky L; He, Jing; Haskins, Kathryn

    2013-01-01

    Autoreactive CD4 T cells play a central role in the development of type 1 diabetes. The BDC-panel of diabetogenic T cell clones was originally isolated from non-obese diabetic (NOD) mice and has been used to study the role of autoreactive CD4 T cells and T cell autoantigens in the development of diabetes. Recent studies by our group have led to the identification of two new target antigens for clones of this panel. This review describes the proteomic strategy used for antigen identification, the antigens identified, and the potential contribution of post-translational modification to autoantigen generation. In addition, we compare peptide epitopes for the T cell clones and discuss their potential applications in investigating the role of T cell autoantigens in the pathogenesis and regulation of disease. PMID:22971988

  11. The autoimmune diseases

    SciTech Connect

    Rose, N.R.; Mackay, I.R.

    1985-01-01

    This book contains 25 chapters. Some of the chapter titles are: Genetic Predisposition to Autoimmune Diseases; Systemic Lupus Erythematosus; Autoimmune Aspects of Rheumatoid Arthritis; Immunology of Insulin-Dependent Diabetes; and Adrenal Autoimmunity and Autoimmune Polyglandular Syndromes.

  12. Immune responses to an encapsulated allogeneic islet {beta}-cell line in diabetic NOD mice

    SciTech Connect

    Black, Sasha P. . E-mail: Sasha.Black@ca.crl.com; Constantinidis, Ioannis; Cui, Hong; Tucker-Burden, Carol; Weber, Collin J.; Safley, Susan A.

    2006-02-03

    Our goal is to develop effective islet grafts for treating type 1 diabetes. Since human islets are scarce, we evaluated the efficacy of a microencapsulated insulin-secreting conditionally transformed allogeneic {beta}-cell line ({beta}TC-tet) in non-obese diabetic mice treated with tetracycline to inhibit cell growth. Relatively low serum levels of tetracycline controlled proliferation of {beta}TC-tet cells without inhibiting effective control of hyperglycemia in recipients. There was no significant host cellular reaction to the allografts or host cell adherence to microcapsules, and host cytokine levels were similar to those of sham-operated controls. We conclude that encapsulated allogeneic {beta}-cell lines may be clinically relevant, because they effectively restore euglycemia and do not elicit a strong cellular immune response following transplantation. To our knowledge, this is First extensive characterization of the kinetics of host cellular and cytokine responses to an encapsulated islet cell line in an animal model of type 1 diabetes.

  13. Novel Mode of Defective Neural Tube Closure in the Non-Obese Diabetic (NOD) Mouse Strain

    PubMed Central

    Salbaum, J. Michael; Kruger, Claudia; MacGowan, Jacalyn; Herion, Nils J.; Burk, David; Kappen, Claudia

    2015-01-01

    Failure to close the neural tube results in birth defects, with severity ranging from spina bifida to lethal anencephaly. Few genetic risk factors for neural tube defects are known in humans, highlighting the critical role of environmental risk factors, such as maternal diabetes. Yet, it is not well understood how altered maternal metabolism interferes with embryonic development, and with neurulation in particular. We present evidence from two independent mouse models of diabetic pregnancy that identifies impaired migration of nascent mesodermal cells in the primitive streak as the morphogenetic basis underlying the pathogenesis of neural tube defects. We conclude that perturbed gastrulation not only explains the neurulation defects, but also provides a unifying etiology for the broad spectrum of congenital malformations in diabetic pregnancies. PMID:26593875

  14. Novel Mode of Defective Neural Tube Closure in the Non-Obese Diabetic (NOD) Mouse Strain.

    PubMed

    Salbaum, J Michael; Kruger, Claudia; MacGowan, Jacalyn; Herion, Nils J; Burk, David; Kappen, Claudia

    2015-01-01

    Failure to close the neural tube results in birth defects, with severity ranging from spina bifida to lethal anencephaly. Few genetic risk factors for neural tube defects are known in humans, highlighting the critical role of environmental risk factors, such as maternal diabetes. Yet, it is not well understood how altered maternal metabolism interferes with embryonic development, and with neurulation in particular. We present evidence from two independent mouse models of diabetic pregnancy that identifies impaired migration of nascent mesodermal cells in the primitive streak as the morphogenetic basis underlying the pathogenesis of neural tube defects. We conclude that perturbed gastrulation not only explains the neurulation defects, but also provides a unifying etiology for the broad spectrum of congenital malformations in diabetic pregnancies. PMID:26593875

  15. Beta cell function and BMI in ethnically diverse children with newly diagnosed autoimmune type 1 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of our study was to examine the relationship between BMI and beta-cell function at diagnosis of autoimmune type 1 diabetes (T1D) in a large group of ethnically diverse children. Cross-sectional analysis of 524 children (60.8% White, 19.5% Hispanic, 14.5% African-American, 5.2% other n...

  16. Protective role of adenovirus vector-mediated interleukin-10 gene therapy on endogenous islet β-cells in recent-onset type 1 diabetes in NOD mice

    PubMed Central

    LI, CHENG; ZHANG, LIJUAN; CHEN, YANYAN; LIN, XIAOJIE; LI, TANG

    2016-01-01

    The aim of the present study was to provide an animal experimental basis for the protective effect of the adenoviral vector-mediated interleukin-10 (Ad-mIL-10) gene on islet β-cells during the early stages of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. A total of 24 female NOD mice at the onset of diabetes were allocated at random into three groups (n=8 per group): Group 1, intraperitoneally injected with 0.1 ml Ad-mIL-10; group 2, intraperitoneally injected with 0.1 ml adenovirus vector; and group 3, was a diabetic control. In addition to groups 1, 2 and 3, 8 age- and gender-matched NOD mice were intraperitoneally injected with 0.1 ml PBS and assigned to group 4 as a normal control. All mice were examined weekly for body weight, urine glucose and blood glucose values prior to onset of diabetes, and at 1, 2 and 3 weeks after that, and all mice were sacrificed 3 weeks after injection. Serum levels of interleukin (IL)-10, interferon (IFN)-γ, IL-4, insulin and C-peptide were evaluated, and in addition the degree of insulitis and the local expression of IL-10 gene in the pancreas were detected. The apoptosis rate of pancreatic β-cells was determined using a TUNEL assay. Compared with groups 2 and 3, IL-10 levels in the serum and pancreas were elevated in group 1. Serum IFN-γ levels were decreased while serum IL-4 levels and IFN-γ/IL-4 ratio were significantly increased in group 1 (P<0.01). C-peptide and insulin levels were higher in group 1 compared with groups 2 and 3, (P<0.01). Furthermore, compared with groups 2 and 3, the degree of insulitis, islet β-cell apoptosis rate and blood glucose values did not change significantly (P>0.05). The administration of the Ad-mIL-10 gene induced limited immune regulatory and protective effects on islet β-cell function in NOD mice with early T1D, while no significant reduction in insulitis, islet β-cell apoptosis rate and blood glucose was observed. PMID:27168782

  17. A "hotspot" for autoimmune T cells in type 1 diabetes.

    PubMed

    Stadinski, Brian D; Obst, Reinhard; Huseby, Eric S

    2016-06-01

    The ability of a single T cell antigen receptor (TCR) to cross-react with multiple antigens allows the finite number of T cells within an organism to respond to the compendium of pathogen challenges faced during a lifetime. Effective immune surveillance, however, comes at a price. TCR cross-reactivity can allow molecular mimics to spuriously activate autoimmune T cells; it also underlies T cell rejection of organ transplants and drives graft-versus-host disease. In this issue of the JCI, Cole and colleagues provide insight into how an insulin-reactive T cell cross-reacts with pathogen-derived antigens by focusing on a limited portion of the peptides to provide a hotspot for binding. These findings dovetail with recent studies of alloreactive and autoimmune TCRs and suggest that the biochemical principles that govern conventional protein-protein interactions may allow the specificity and cross-reactivity profiles of T cells to be predicted. PMID:27183386

  18. Loss of Peripheral Protection in Pancreatic Islets by Proteolysis-Driven Impairment of VTCN1 (B7-H4) Presentation Is Associated with the Development of Autoimmune Diabetes.

    PubMed

    Radichev, Ilian A; Maneva-Radicheva, Lilia V; Amatya, Christina; Salehi, Maryam; Parker, Camille; Ellefson, Jacob; Burn, Paul; Savinov, Alexei Y

    2016-02-15

    Ag-specific activation of T cells is an essential process in the control of effector immune responses. Defects in T cell activation, particularly in the costimulation step, have been associated with many autoimmune conditions, including type 1 diabetes (T1D). Recently, we demonstrated that the phenotype of impaired negative costimulation, due to reduced levels of V-set domain-containing T cell activation inhibitor 1 (VTCN1) protein on APCs, is shared between diabetes-susceptible NOD mice and human T1D patients. In this study, we show that a similar process takes place in the target organ, as both α and β cells within pancreatic islets gradually lose their VTCN1 protein during autoimmune diabetes development despite upregulation of the VTCN1 gene. Diminishment of functional islet cells' VTCN1 is caused by the active proteolysis by metalloproteinase N-arginine dibasic convertase 1 (NRD1) and leads to the significant induction of proliferation and cytokine production by diabetogenic T cells. Inhibition of NRD1 activity, alternatively, stabilizes VTCN1 and dulls the anti-islet T cell responses. Therefore, we suggest a general endogenous mechanism of defective VTCN1 negative costimulation, which affects both lymphoid and peripheral target tissues during T1D progression and results in aggressive anti-islet T cell responses. This mechanism is tied to upregulation of NRD1 expression and likely acts in two synergistic proteolytic modes: cell-intrinsic intracellular and cell-extrinsic systemic. Our results highlight an importance of VTCN1 stabilization on cell surfaces for the restoration of altered balance of immune control during T1D. PMID:26773144

  19. Lessons from type 1 diabetes for understanding natural history and prevention of autoimmune disease

    PubMed Central

    Simmons, Kimber; Michels, Aaron W.

    2014-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disorder resulting from immune mediated destruction of insulin producing beta cells within the pancreatic islets. The natural history of T1D is well defined with distinct stages in disease development. Genetics and environmental factors contribute to disease susceptibility, followed by autoimmune targeting of proteins within beta cells. Preclinical T1D is marked by the presence of islet autoantibodies and normal blood glucose levels. Prediction of T1D is now possible as having two or more islet autoantibodies confers a 100% risk of diabetes development; however the time to disease onset varies amongst individuals. Once enough insulin producing beta cells are destroyed, hyperglycemia results, and treatment with insulin is necessary. With the ability to assess risk and predict disease development, large clinical trials to prevent diabetes onset have been completed and are currently underway. This review focuses on the natural history, prediction, and prevention trials in T1D. We will review the lessons learned from these attempts at preventing a chronic autoimmune disease and apply the paradigm from T1D prevention to other autoimmune disorders including rheumatoid arthritis. PMID:25437293

  20. Autoimmune hepatitis

    MedlinePlus

    ... diseases. These include: Graves disease Inflammatory bowel disease Rheumatoid arthritis Scleroderma Sjogren syndrome Systemic lupus erythematosus Thyroiditis Type 1 diabetes Ulcerative colitis Autoimmune hepatitis may occur in family ...

  1. Genes encoding tumor necrosis factor alpha and granzyme A are expressed during development of autoimmune diabetes.

    PubMed Central

    Held, W; MacDonald, H R; Weissman, I L; Hess, M W; Mueller, C

    1990-01-01

    Progressive destruction of the insulin-producing beta cells in nonobese diabetic mice is observed after infiltration of the pancreas with lymphocytes [Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K. & Tochino, Y. (1980) Exp. Anim. (Tokyo) 29, 1-13]. We show that the genes for tumor necrosis factor alpha and granzyme A, a serine protease associated with cytoplasmic granules of cytotoxic cells, are expressed during the development of spontaneous diabetes mellitus in the nonobese diabetic mouse. Granzyme A-positive cells are found both in and surrounding the islets, implying induction prior to islet infiltration. Tumor necrosis factor alpha expression is exclusively observed in the intra-islet infiltrate, predominantly in lymphocytes adjacent to insulin-producing beta cells, the targets of the autoimmune destruction, implying that tumor necrosis factor alpha expression is induced locally--i.e., in the islet. A considerable portion of cells expressing tumor necrosis factor alpha appear to be CD4+ T cells. This T-cell subset was previously shown to be necessary for development of the disease. Thus, these findings may be important for understanding the pathogenesis of autoimmune diabetes mellitus and potentially also for that of other T-cell-mediated autoimmune diseases. Images PMID:2179951

  2. Lack of Evidence for a Role of Islet Autoimmunity in the Aetiology of Canine Diabetes Mellitus

    PubMed Central

    Landegren, Nils; Grimelius, Lars; von Euler, Henrik; Sundberg, Katarina; Lindblad-Toh, Kerstin; Lobell, Anna; Hedhammar, Åke; Andersson, Göran; Hansson-Hamlin, Helene; Lernmark, Åke; Kämpe, Olle

    2014-01-01

    Aims/Hypothesis Diabetes mellitus is one of the most common endocrine disorders in dogs and is commonly proposed to be of autoimmune origin. Although the clinical presentation of human type 1 diabetes (T1D) and canine diabetes are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported. Methods Sera from 121 diabetic dogs representing 40 different breeds were tested for islet cell antibodies (ICA) and GAD65 autoantibodies (GADA) and compared with sera from 133 healthy dogs. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT) of human and canine GAD65, followed by immune precipitation. Sections of pancreata from five diabetic dogs and two control dogs were examined histopathologically including immunostaining for insulin, glucagon, somatostatin and pancreas polypeptide. Results None of the canine sera analysed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay. Histopathology showed marked degenerative changes in endocrine islets, including vacuolisation and variable loss of immune-staining for insulin. No sign of inflammation was noted. Conclusions/Interpretations Contrary to previous observations, based on results from tests for humoral autoreactivity towards islet proteins using four different assays, and histopathological examinations, we do not find any support for an islet autoimmune aetiology in canine diabetes mellitus. PMID:25153886

  3. The search for the mechanism of early sympathetic islet neuropathy (eSIN) in autoimmune diabetes

    PubMed Central

    Taborsky, Gerald J.; Mei, Qi; Hackney, Daryl J.; Mundinger, Thomas O.

    2014-01-01

    This review outlines our search for the mechanism causing the early loss of islet sympathetic nerves in autoimmune diabetes. Since our previous work has documented the importance of autonomic stimulation of glucagon secretion during hypoglycaemia, the loss of these nerves may contribute to the known impairment of this specific glucagon response early in human type 1 diabetes. We therefore briefly review the contribution that autonomic activation, and sympathetic neural activation in particular, makes to the subsequent glucagon response to hypoglycaemia. We also detail evidence that animal models of autoimmune diabetes mimic both the early loss of islet sympathetic nerves and the impaired glucagon response seen in human type 1 diabetes. Using data from these animal models, we examine mechanisms by which this loss of islet nerves could occur. We provide evidence that it is not due to diabetic hyperglycaemia, but it is related to the lymphocytic infiltration of the islet. Ablating the p75 neurotrophin receptor, which is present on sympathetic axons, prevents eSIN, but, interestingly, not diabetes. Thus, we appear to have separated the immune-related loss of islet sympathetic nerves from the immune-mediated destruction of islet β-cells. Finally, we speculate on a way to restore the sympathetic innervation of the islet. PMID:25200302

  4. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells?

    PubMed

    Askenasy, Nadir

    2016-02-01

    Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction. PMID:26482052

  5. Declined plasma sfrp5 concentration in patients with type 2 diabetes and latent autoimmune diabetes in adults

    PubMed Central

    Cheng, Liqing; Zhang, Dongmei; Chen, Bing

    2015-01-01

    Objective: Secreted frizzled-related protein 5 (sfrp5), like adiponectin, has been identified as a novel insulin-sensitising and anti-inflammatory adipokine. Our objective was to determine whether differences of circulating plasma sfrp5 concentration exist among type 2 diabetes (T2D), latent autoimmune diabetes in adults (LADA) and healthy population. Methods: Enzyme-linked immuno sorbent assay was employed to detect the circulating sfrp5 level in plasma, and other lab tests such as fasting glucose and creatinine were also examined. Correlation analysis between sfrp5 and characteristics of subjects was conducted IBM SPSS Statistics and GraphPad Prism. Results: Circulating sfrp5 level was significantly decreased in T2D and LADA patients plasma compared with that in healthy control (14.14±11.91ng/mL, 14.82±11.27ng/mL, 22.98±12.36ng/mL, respectively), although no differences was observed between LADA and T2D groups. Furthermore, we found sfrp5 was correlated with homeostasis model assessment of insulin resistance (HOMA-IR), diabetes duration and BMI. Finally we found sfrp5 was still negatively correlated with HOMA-IR after being adjusted for disease duration and BMI(r= -0.315, P< 0.05). Conclusions: Our results support a role for SFRP5 as a protective factor in the pathogenesis of autoimmune diabetes and facilitate a novel aspect for diabetes research. PMID:26150852

  6. Multimerized T cell epitopes protect from experimental autoimmune diabetes by inducing dominant tolerance.

    PubMed

    Piaggio, Eliane; Mars, Lennart T; Cassan, Cécile; Cabarrocas, Julie; Hofstätter, Maria; Desbois, Sabine; Bergereau, Emilie; Rötzschke, Olaf; Falk, Kirsten; Liblau, Roland S

    2007-05-29

    Immunotherapy by using multimerized self-peptides has demonstrated a clear protective effect on experimental models of autoimmune diseases. However, the mechanisms involved remain ill-defined. Here we have evaluated the therapeutic efficacy of multimerized self-peptides at the effector phase of autoimmune diabetes and examined their mechanisms of action. Diabetes was induced in rat insulin promoter-hemagglutinin (HA) mice expressing HA in pancreatic beta-cells by adoptive transfer of HA(110-119)-specific T helper 1 cells. Complete protection was provided by low doses of the HA 4-mer consisting of four covalently linked linear HA(107-119) peptides. In vivo, the 4-mer appeared to act directly on the pathogenic HA-specific T helper 1 cells and indirectly by activation/recruitment of lymphocytes with regulatory properties so that mice became resistant to a second transfer of diabetogenic T cells. This effect was associated with a recruitment of Foxp3(+) CD4 T cells around islets. Moreover, we show that dominant protection from autoimmunity was transferable by spleen cells, and that development of this regulatory population was crucially dependent on the lymphocytes from treated rat insulin promoter-HA mice. Thus, immunotherapy using multimerized epitopes emerges as a promising strategy in view of the current identification of self-epitopes that are major targets of the pathogenic CD4 T cell response in autoimmune diseases. PMID:17517665

  7. Multimerized T cell epitopes protect from experimental autoimmune diabetes by inducing dominant tolerance

    PubMed Central

    Piaggio, Eliane; Mars, Lennart T.; Cassan, Cécile; Cabarrocas, Julie; Hofstätter, Maria; Desbois, Sabine; Bergereau, Emilie; Rötzschke, Olaf; Falk, Kirsten; Liblau, Roland S.

    2007-01-01

    Immunotherapy by using multimerized self-peptides has demonstrated a clear protective effect on experimental models of autoimmune diseases. However, the mechanisms involved remain ill-defined. Here we have evaluated the therapeutic efficacy of multimerized self-peptides at the effector phase of autoimmune diabetes and examined their mechanisms of action. Diabetes was induced in rat insulin promoter-hemagglutinin (HA) mice expressing HA in pancreatic β-cells by adoptive transfer of HA110–119-specific T helper 1 cells. Complete protection was provided by low doses of the HA 4-mer consisting of four covalently linked linear HA107–119 peptides. In vivo, the 4-mer appeared to act directly on the pathogenic HA-specific T helper 1 cells and indirectly by activation/recruitment of lymphocytes with regulatory properties so that mice became resistant to a second transfer of diabetogenic T cells. This effect was associated with a recruitment of Foxp3+ CD4 T cells around islets. Moreover, we show that dominant protection from autoimmunity was transferable by spleen cells, and that development of this regulatory population was crucially dependent on the lymphocytes from treated rat insulin promoter-HA mice. Thus, immunotherapy using multimerized epitopes emerges as a promising strategy in view of the current identification of self-epitopes that are major targets of the pathogenic CD4 T cell response in autoimmune diseases. PMID:17517665

  8. Role of humoral beta-cell autoimmunity in type 1 diabetes.

    PubMed

    Knip, Mikael; Siljander, Heli; Ilonen, Jorma; Simell, Olli; Veijola, Riitta

    2016-07-01

    Islet cell antibodies (ICA) were found for the first time more than 40 yr ago in patients with autoimmune endocrine deficiencies, including type 1 diabetes (T1D). ICA detected by indirect immunofluorescence represent a heterogeneous group of autoantibodies targeting a series of biochemical autoantigens, such as the protein tyrosine phosphatase related islet antigen 2 (IA-2), the 65 kD isoform of glutamic acid decarboxylase (GA65), and zinc transporter 8 (ZnT8) as well as currently unidentified autoantigens. The general view is that the diabetes-associated autoantibodies are not directly involved in beta-cell destruction but function as biomarkers of an ongoing destructive process. The diabetes-associated autoantibodies remain the strongest predictive marker for future development of T1D. Positivity for multiple (≥2) autoantibodies is highly predictive of clinical disease both among first-degree relatives and in the general population. Autoantibody titers are highly variable during the preclinical phase, but in many cases the titers tend to decrease before diagnosis. The first signs of beta-cell autoimmunity may appear early during the first months of life. The majority of those individuals diagnosed with T1D before puberty seroconvert to autoantibody positivity before the age of 3 yr. The natural course and duration of preclinical diabetes vary substantially from one individual to another. The characteristics of the isotype-specific response during preclinical diabetes appear to be antigen-specific. Diabetes-associated autoantibodies may be useful surrogate markers of the subsequent development of T1D in primary prevention trials. T1D may occur, albeit rarely, in the absence of any signs of humoral autoimmunity at diagnosis. PMID:27411432

  9. [Genetic and humoral autoimmunity markers of type 1 diabetes: from theory to practice].

    PubMed

    Silva, Maria Elizabeth Rossi da; Mory, Denise; Davini, Elaine

    2008-03-01

    Type 1 A diabetes mellitus (T1AD) results from the autoimmune destruction of the insulin producing pancreatic beta-cells. The largest contribution to genetic susceptibility comes from several genes located in the major histocompatibility complex on chromosome 6p21.3 (IDDM1 locus), accounting for at least 40% of the family aggregation of this disease. The highest-risk human leukocyte antigen HLA genotype for T1AD is DR3-DQA1*0501-DQB1*0201/DR4-DQA1*0301-DQB1*0302, whereas -DR15-DQA1*0102-DQB1*0602 haplotype is associated with dominant protection. Three other T1D loci associated with predisposition are the Variable Number for Tandem Repeats (VNTR) near the insulin gene (IDDM2), which accounts to 10% of genetic susceptibility, the Cytotoxic T-Lymphocyte-associated Antigen (CTLA-4)(IDDM 12) and the Protein Tyrosine Phosphatasis Nonreceptor-type 22 (PTPN22). Many other gene suspected to predispose to autoimmunity have been investigated. T1AD is frequently associated with autoimmune thyroid disease, celiac disase, Addison s disease and many other autoimmune diseases, characterized by organ-specific autoantibodies and related to the same genetic background. Using these autoantibodies, organ specific autoimmunity may be detected before the development of clinical disease preventing significant morbidity. PMID:18438527

  10. Insulinoma-released exosomes or microparticles are immunostimulatory and can activate autoreactive T cells spontaneously developed in nonobese diabetic mice.

    PubMed

    Sheng, Huiming; Hassanali, Saleema; Nugent, Courtney; Wen, Li; Hamilton-Williams, Emma; Dias, Peter; Dai, Yang D

    2011-08-15

    Exosomes (EXO) are secreted intracellular microparticles that can trigger inflammation and induce Ag-specific immune responses. To test possible roles of EXO in autoimmunity, we isolated small microparticles, mainly EXO, from mouse insulinoma and examined their activities to stimulate the autoimmune responses in NOD mice, a model for human type 1 diabetes. We demonstrate that the EXO contains strong innate stimuli and expresses candidate diabetes autoantigens. They can induce secretion of inflammatory cytokines through a MyD88-dependent pathway, and activate purified APC and result in T cell proliferation. To address whether EXO or the secreted microparticles are possible autoimmune targets causing islet-specific inflammation, we monitored the T cell responses spontaneously developed in prediabetic NOD mice for their reactivity to the EXO, and compared this reactivity between diabetes-susceptible and -resistant congenic mouse strains. We found that older NOD females, which have advanced islet destruction, accumulated more EXO-reactive, IFN-γ-producing lymphocytes than younger females or age-matched males, and that pancreatic lymph nodes from the prediabetic NOD, but not from the resistant mice, were also enriched with EXO-reactive Th1 cells. In vivo, immunization with the EXO accelerates insulitis development in nonobese diabetes-resistant mice. Thus, EXO or small microparticles can be recognized by the diabetes-associated autoreactive T cells, supporting that EXO might be a possible autoimmune target and/or insulitis trigger in NOD or congenic mouse strains. PMID:21734072

  11. Fusion protein His-Hsp65-6IA2P2 prevents type 1 diabetes through nasal immunization in NOD Mice.

    PubMed

    Lu, Shiping; Li, Guoliang; Liu, Kunfeng; Yang, Xue; Cao, Rongyue; Zong, Li; Long, Jun; Jin, Liang; Wu, Jie

    2016-06-01

    Human heat shock protein 60 (Hsp60), is an endogenous β-cells autoantigen, it could postpone the onset of insulitis and sooner type 1 diabetes mellitus. P277 is one of Hsp65 determinants at position 437-469 of amino acids cascaded. Meanwhile, it's already well-known that there were several better anti-diabetic B epitopes, such as insulinoma antigen-2 (IA-2). Currently, fusion protein IA2P2 has constructed in order to enhance its pharmacological efficacy. In addition, added homologous bacterial-derived Hsp65 and His tag were beneficial to protein immunogenicity and purification separately. So, finally we examined a fusion protein His-Hsp65-6IA2P2 could regulate Th2 immune response and reduce natural diabetic incidence in NOD mice. We constructed two express vector pET28a-His-Hsp65-6P277 and pET28a-His-Hsp65-6IA2P2. After purification, we observed that triple intranasal administration of these two fusion protein in 4-week-old NOD mice maintained normal blood glucose and weight, with a lower diabetic or insulitis incidence. Consistent with induced splenic T cells proliferation and tolerance, His-Hsp65-6IA2P2-treated mice performed reduced IFN-γ and increased IL-10 level. In conclusion, we suggested that fusion protein His-Hsp65-6IA2P2 could be reconstructed and purified successively. Furthermore, nasal administration of this fusion protein could rebalance T cells population and prevent T1DM. PMID:27082999

  12. Vitamin D supplementation and diabetes-related autoimmunity in the ABIS study.

    PubMed

    Brekke, Hilde K; Ludvigsson, Johnny

    2007-02-01

    Supplementation with vitamin D during infancy, as well as intake of vitamin D during pregnancy, has been associated with decreased risk of type 1 diabetes or diabetes-related autoantibodies in children. The primary aim of this report was to investigate whether vitamin D supplementation during infancy is associated with diabetes-related autoimmunity at 1 and 2.5 yr in the children. Second, we examined whether consumption of vitamin-D-containing supplements during pregnancy is related to risk of autoimmunity in the offspring. Screening questionnaires were completed for 16,070 infants after delivery, including a food-frequency questionnaire regarding the mother's use of dietary supplements during pregnancy. Parents of 11,081 and 8805 infants completed a follow-up questionnaire regarding the use of vitamin supplementation at 1 and 2.5 yr, respectively. Autoantibodies against glutamic acid decarboxylase and islet antigen-2 (IA-2) were analyzed in whole blood from 8694 children at 1 yr and 7766 children at 2.5 yr. Supplementation with AD-drops was not associated with autoantibodies at 1 or 2.5 yr. Use of vitamin-D-containing supplements during pregnancy was associated with reduced diabetes-related autoimmunity at 1 yr (adjusted odds ratio: 0.707, confidence interval: 0.520-0.962, p = 0.028) but not at 2.5 yr. In conclusion, no association was found between an intermediate dose of vitamin D supplementation during infancy and development of diabetes-related autoantibodies at 1 and 2.5 yr. Use of vitamin-D-containing supplements during pregnancy was associated with reduced development of glutamic acid decarboxylase autoantibodies or IA-2A in the offspring at 1 yr, but not at 2.5 yr. PMID:17341286

  13. Identification and Antioxidant Activity of the Extracts of Eugenia uniflora Leaves. Characterization of the Anti-Inflammatory Properties of Aqueous Extract on Diabetes Expression in an Experimental Model of Spontaneous Type 1 Diabetes (NOD Mice)

    PubMed Central

    Simon Gonzalez Schumacher, Nayara; Colomeu, Talita Cristina; de Figueiredo, Daniella; Carvalho, Virginia de Campos; Baú Betim Cazarin, Cinthia; Prado, Marcelo Alexandre; Molina Meletti, Laura Maria; de Lima Zollner, Ricardo

    2015-01-01

    Medical and folklore reports suggest that Eugenia uniflora (E. uniflora) is a functional food that contains numerous compounds in its composition, with anti-inflammatory, antioxidant and anti-diabetic effects. In the present study, we investigated the best solvents (water, ethanol and methanol/acetone) for extracting bioactive compounds of E. uniflora leaves, assessing total phenols and the antioxidant activity of the extracts by 2,2-Diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Oxygen Radical Absorbance Capacity (ORAC) assays, identifying hydrolysable tannins and three phenolic compounds (ellagic acid, gallic acid and rutin) present in the leaves. In addition, we evaluated the incidence of diabetes, degree of insulitis, serum insulin, hepatic glutathione and tolerance test glucose in non-obese diabetic (NOD) mice. Our results suggest that the aqueous extract presents antioxidant activity and high total phenols, which were used as a type 1 diabetes mellitus (DM-1) treatment in NOD mice. We verified that the chronic consumption of aqueous extract reduces the inflammatory infiltrate index in pancreatic islets, maintaining serum insulin levels and hepatic glutathione, and reducing serum lipid peroxidation as well as the risk for diabetes. PMID:26783951

  14. Identification and Antioxidant Activity of the Extracts of Eugenia uniflora Leaves. Characterization of the Anti-Inflammatory Properties of Aqueous Extract on Diabetes Expression in an Experimental Model of Spontaneous Type 1 Diabetes (NOD Mice).

    PubMed

    Schumacher, Nayara Simon Gonzalez; Colomeu, Talita Cristina; de Figueiredo, Daniella; Carvalho, Virginia de Campos; Cazarin, Cinthia Baú Betim; Prado, Marcelo Alexandre; Meletti, Laura Maria Molina; Zollner, Ricardo de Lima

    2015-01-01

    Medical and folklore reports suggest that Eugenia uniflora (E. uniflora) is a functional food that contains numerous compounds in its composition, with anti-inflammatory, antioxidant and anti-diabetic effects. In the present study, we investigated the best solvents (water, ethanol and methanol/acetone) for extracting bioactive compounds of E. uniflora leaves, assessing total phenols and the antioxidant activity of the extracts by 2,2-Diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Oxygen Radical Absorbance Capacity (ORAC) assays, identifying hydrolysable tannins and three phenolic compounds (ellagic acid, gallic acid and rutin) present in the leaves. In addition, we evaluated the incidence of diabetes, degree of insulitis, serum insulin, hepatic glutathione and tolerance test glucose in non-obese diabetic (NOD) mice. Our results suggest that the aqueous extract presents antioxidant activity and high total phenols, which were used as a type 1 diabetes mellitus (DM-1) treatment in NOD mice. We verified that the chronic consumption of aqueous extract reduces the inflammatory infiltrate index in pancreatic islets, maintaining serum insulin levels and hepatic glutathione, and reducing serum lipid peroxidation as well as the risk for diabetes. PMID:26783951

  15. The Gut Microbiota Modulates Glycaemic Control and Serum Metabolite Profiles in Non-Obese Diabetic Mice

    PubMed Central

    Greiner, Thomas U.; Hyötyläinen, Tuulia; Knip, Mikael; Bäckhed, Fredrik; Orešič, Matej

    2014-01-01

    Islet autoimmunity in children who later progress to type 1 diabetes is preceded by dysregulated serum metabolite profiles, but the origin of these metabolic changes is unknown. The gut microbiota affects host metabolism and changes in its composition contribute to several immune-mediated diseases; however, it is not known whether the gut microbiota is involved in the early metabolic disturbances in progression to type 1 diabetes. We rederived non-obese diabetic (NOD) mice as germ free to explore the potential role of the gut microbiota in the development of diabetic autoimmunity and to directly investigate whether the metabolic profiles associated with the development of type 1 diabetes can be modulated by the gut microbiota. The absence of a gut microbiota in NOD mice did not affect the overall diabetes incidence but resulted in increased insulitis and levels of interferon gamma and interleukin 12; these changes were counterbalanced by improved peripheral glucose metabolism. Furthermore, we observed a markedly increased variation in blood glucose levels in the absence of a microbiota in NOD mice that did not progress to diabetes. Additionally, germ-free NOD mice had a metabolite profile similar to that of pre-diabetic children. Our data suggest that germ-free NOD mice have reduced glycaemic control and dysregulated immunologic and metabolic responses. PMID:25390735

  16. Autoimmunity in type 1 diabetes mellitus: a rat model

    SciTech Connect

    Liu, Z.

    1987-01-01

    In this study, we have sought to isolate in vitro, from acutely diabetic BB rats, cytotoxic T lymphocytes, which exhibit specific cytotoxicity toward islet cells. Thoracic duct lymphocytes (TDL) from acutely diabetic BB rats cultured with irradiated MHC matched (RT1.u) islet cells and dendritic cells in vitro were shown to be specifically cytotoxic to MHC matched and mismatched allogeneic (RT1.1) and xenogeneic (hamster) islet target cells in a /sup 3/H-leucine release assay. Two cell lines (V1A8 and V1D11) derived from the TDL culture showed similar patterns of non-MHC restricted islet cell killing which could be blocked by islet cells and cultured rat insulinoma cells (RIN5mF) but not by non-islet cells of various tissue origins. Both V1A8 and V1D11 were not cytotoxic to Natural Killer (NK) sensitive target cells, G1TC and YAC-1. Conventional surface markers for rat helper and suppressor/cytotoxic T cells were not detectable on either cell lines. The V1D11 cell line was positive for W 3/13 (rat T/NK marker) on OX-19 (rat T/macrophage marker), whereas the V1A8 cell line was only positive for W 3/13.

  17. Effect of Associated Autoimmune Diseases on Type 1 Diabetes Mellitus Incidence and Metabolic Control in Children and Adolescents

    PubMed Central

    2016-01-01

    Type 1 diabetes mellitus (T1DM) is one of the most common chronic diseases developing in childhood. The incidence of the disease in children increases for unknown reasons at a rate from 3 to 5% every year worldwide. The background of T1DM is associated with the autoimmune process of pancreatic beta cell destruction, which leads to absolute insulin deficiency and organ damage. Complex interactions between environmental and genetic factors contribute to the development of T1DM in genetically predisposed patients. The T1DM-inducing autoimmune process can also affect other organs, resulting in development of additional autoimmune diseases in the patient, thereby impeding diabetes control. The most common T1DM comorbidities include autoimmune thyroid diseases, celiac disease, and autoimmune gastritis; additionally, diabetes can be a component of PAS (Polyglandular Autoimmune Syndrome). The aim of this review is to assess the prevalence of T1DM-associated autoimmune diseases in children and adolescents and their impact on the course of T1DM. We also present suggestions concerning screening tests. PMID:27525273

  18. Effect of Associated Autoimmune Diseases on Type 1 Diabetes Mellitus Incidence and Metabolic Control in Children and Adolescents.

    PubMed

    Krzewska, Aleksandra; Ben-Skowronek, Iwona

    2016-01-01

    Type 1 diabetes mellitus (T1DM) is one of the most common chronic diseases developing in childhood. The incidence of the disease in children increases for unknown reasons at a rate from 3 to 5% every year worldwide. The background of T1DM is associated with the autoimmune process of pancreatic beta cell destruction, which leads to absolute insulin deficiency and organ damage. Complex interactions between environmental and genetic factors contribute to the development of T1DM in genetically predisposed patients. The T1DM-inducing autoimmune process can also affect other organs, resulting in development of additional autoimmune diseases in the patient, thereby impeding diabetes control. The most common T1DM comorbidities include autoimmune thyroid diseases, celiac disease, and autoimmune gastritis; additionally, diabetes can be a component of PAS (Polyglandular Autoimmune Syndrome). The aim of this review is to assess the prevalence of T1DM-associated autoimmune diseases in children and adolescents and their impact on the course of T1DM. We also present suggestions concerning screening tests. PMID:27525273

  19. Perforin facilitates beta cell killing and regulates autoreactive CD8+ T-cell responses to antigen in mouse models of type 1 diabetes.

    PubMed

    Trivedi, Prerak; Graham, Kate L; Krishnamurthy, Balasubramaninan; Fynch, Stacey; Slattery, Robyn M; Kay, Thomas W H; Thomas, Helen E

    2016-04-01

    In type 1 diabetes, cytotoxic CD8(+) T lymphocytes (CTLs) directly interact with pancreatic beta cells through major histocompatibility complex class I. An immune synapse facilitates delivery of cytotoxic granules, comprised mainly of granzymes and perforin. Perforin deficiency protects the majority of non-obese diabetic (NOD) mice from autoimmune diabetes. Intriguingly perforin deficiency does not prevent diabetes in CD8(+) T-cell receptor transgenic NOD8.3 mice. We therefore investigated the importance of perforin-dependent killing via CTL-beta cell contact in autoimmune diabetes. Perforin-deficient CTL from NOD mice or from NOD8.3 mice were significantly less efficient at adoptive transfer of autoimmune diabetes into NODRag1(-/-) mice, confirming that perforin is essential to facilitate beta cell destruction. However, increasing the number of transferred in vitro-activated perforin-deficient 8.3 T cells reversed the phenotype and resulted in diabetes. Perforin-deficient NOD8.3 T cells were present in increased proportion in islets, and proliferated more in response to antigen in vivo indicating that perforin may regulate the activation of CTLs, possibly by controlling cytokine production. This was confirmed when we examined the requirement for direct interaction between beta cells and CD8(+) T cells in NOD8.3 mice, in which beta cells specifically lack major histocompatibility complex (MHC) class I through conditional deletion of β2-microglobulin. Although diabetes was significantly reduced, 40% of these mice developed diabetes, indicating that NOD8.3 T cells can kill beta cells in the absence of direct interaction. Our data indicate that although perforin delivery is the main mechanism that CTL use to destroy beta cells, they can employ alternative mechanisms to induce diabetes in a perforin-independent manner. PMID:26446877

  20. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases

    PubMed Central

    Correa, Ricardo G.; Milutinovic, Snezana; Reed, John C.

    2012-01-01

    NOD1 {nucleotide-binding oligomerization domain 1; NLRC [NOD-LRR (leucine-rich repeat) family with CARD (caspase recruitment domain) 1]} and NOD2 (NLRC2) are among the most prominent members of the NLR (NOD-LRR) family –proteins that contain nucleotide-binding NACHT domains and receptor-like LRR domains. With over 20 members identified in humans, NLRs represent important components of the mammalian innate immune system, serving as intracellular receptors for pathogens and for endogenous molecules elaborated by tissue injury. NOD1 and NOD2 proteins operate as microbial sensors through the recognition of specific PG (peptidoglycan) constituents of bacteria. Upon activation, these NLR family members initiate signal transduction mechanisms that include stimulation of NF-κB (nuclear factor-κB), stress kinases, IRFs (interferon regulatory factors) and autophagy. Hereditary polymorphisms in the genes encoding NOD1 and NOD2 have been associated with an increasing number of chronic inflammatory diseases. In fact, potential roles for NOD1 and NOD2 in inflammatory disorders have been revealed by investigations using a series of animal models. In the present review, we describe recent experimental findings associating NOD1 and NOD2 with various autoimmune and chronic inflammatory disorders, and we discuss prospects for development of novel therapeutics targeting these NLR family proteins. PMID:22908883

  1. Nonviral-Mediated Hepatic Expression of IGF-I Increases Treg Levels and Suppresses Autoimmune Diabetes in Mice

    PubMed Central

    Anguela, Xavier M.; Tafuro, Sabrina; Roca, Carles; Callejas, David; Agudo, Judith; Obach, Mercè; Ribera, Albert; Ruzo, Albert; Mann, Christopher J.; Casellas, Alba; Bosch, Fatima

    2013-01-01

    In type 1 diabetes, loss of tolerance to β-cell antigens results in T-cell–dependent autoimmune destruction of β cells. The abrogation of autoreactive T-cell responses is a prerequisite to achieve long-lasting correction of the disease. The liver has unique immunomodulatory properties and hepatic gene transfer results in tolerance induction and suppression of autoimmune diseases, in part by regulatory T-cell (Treg) activation. Hence, the liver could be manipulated to treat or prevent diabetes onset through expression of key genes. IGF-I may be an immunomodulatory candidate because it prevents autoimmune diabetes when expressed in β cells or subcutaneously injected. Here, we demonstrate that transient, plasmid-derived IGF-I expression in mouse liver suppressed autoimmune diabetes progression. Suppression was associated with decreased islet inflammation and β-cell apoptosis, increased β-cell replication, and normalized β-cell mass. Permanent protection depended on exogenous IGF-I expression in liver nonparenchymal cells and was associated with increased percentage of intrapancreatic Tregs. Importantly, Treg depletion completely abolished IGF-I-mediated protection confirming the therapeutic potential of these cells in autoimmune diabetes. This study demonstrates that a nonviral gene therapy combining the immunological properties of the liver and IGF-I could be beneficial in the treatment of the disease. PMID:23099863

  2. Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model.

    PubMed

    Jeon, Kilsoo; Lim, Hyejin; Kim, Jung-Hyun; Thuan, Nguyen Van; Park, Seung Hwa; Lim, Yu-Mi; Choi, Hye-Yeon; Lee, Eung-Ryoung; Kim, Jin-Hoi; Lee, Myung-Shik; Cho, Ssang-Goo

    2012-09-20

    The nonobese diabetic (NOD) mouse is a classical animal model for autoimmune type 1 diabetes (T1D), closely mimicking features of human T1D. Thus, the NOD mouse presents an opportunity to test the effectiveness of induced pluripotent stem cells (iPSCs) as a therapeutic modality for T1D. Here, we demonstrate a proof of concept for cellular therapy using NOD mouse-derived iPSCs (NOD-iPSCs). We generated iPSCs from NOD mouse embryonic fibroblasts or NOD mouse pancreas-derived epithelial cells (NPEs), and applied directed differentiation protocols to differentiate the NOD-iPSCs toward functional pancreatic beta cells. Finally, we investigated whether the NPE-iPSC-derived insulin-producing cells could normalize hyperglycemia in transplanted diabetic mice. The NOD-iPSCs showed typical embryonic stem cell-like characteristics such as expression of markers for pluripotency, in vitro differentiation, teratoma formation, and generation of chimeric mice. We developed a method for stepwise differentiation of NOD-iPSCs into insulin-producing cells, and found that NPE-iPSCs differentiate more readily into insulin-producing cells. The differentiated NPE-iPSCs expressed diverse pancreatic beta cell markers and released insulin in response to glucose and KCl stimulation. Transplantation of the differentiated NPE-iPSCs into diabetic mice resulted in kidney engraftment. The engrafted cells responded to glucose by secreting insulin, thereby normalizing blood glucose levels. We propose that NOD-iPSCs will provide a useful tool for investigating genetic susceptibility to autoimmune diseases and generating a cellular interaction model of T1D, paving the way for the potential application of patient-derived iPSCs in autologous beta cell transplantation for treating diabetes. PMID:22512788

  3. HLA, NFKB1 and NFKBIA gene polymorphism profile in autoimmune diabetes mellitus patients.

    PubMed

    Katarina, K; Daniela, P; Peter, N; Marianna, R; Pavlina, C; Stepanka, P; Jan, L; Ludmila, T; Michal, A; Marie, C

    2007-02-01

    Type 1 diabetes mellitus (T1DM) is one of the long-time studied autoimmune disorders. The triggering of the autoimmune process has been ascribed to various genes active in the regulation of the cytokine gene transcription including the Rel/NF-kappaB gene family. In our study the gene polymorphism of HLA class II, NFKB1 (nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) and NFKBIA (inhibitor of nuclear factor kappa B) was tested. Patients were divided into the subgroups in relation to the disease type: T1DM in children, T1DM in adults, and Latent Autoimmune Diabetes in Adults (LADA). HLA-DRB1 (*)04 and HLA-DQB1 (*)0302 have been detected as risk factors for T1DM in adults and particularly in children (P<0.0001, OR=22.9 and 46.5 respectively). HLA-DRB1 (*)03 has been found as a single risk factor for LADA (P<0.0001, OR=4.9). We detected 15 alleles for the NFKB1 gene polymorphism (CA-repeats) in the Czech population. The alleles were ranging in size from 114-142 bp corresponding to 10-25 CA repeats. Frequency of the A7 allele of NFKB1 gene has been significantly increased in T1DM adults (P<0.01). There was no difference in A and a G allele frequency of NFKBIA gene between the control group and patients, but the association of the AA genotype of NFKBIA gene has been found for LADA (P<0.05). Summarizing our results we concluded that there is a high probability of association of gene polymorphism from Rel/NF-kappaB family with an autoimmune diabetes course. Due to the results obtained in the epidemiological study we have been looking also for the function significance of the genetic predisposition. No significant changes have been observed by real time PCR testing of HLA-DRB1 (*)04 gene and NFKB1 gene expression between T1DM diabetic group with different HLA, NFKB1, NFKBIA genetic background. PMID:17318773

  4. Mapping by genetic interaction: high-resolution congenic mapping of the type 1 diabetes loci Idd10 and Idd18 in the NOD mouse.

    PubMed

    Lyons, P A; Armitage, N; Lord, C J; Phillips, M S; Todd, J A; Peterson, L B; Wicker, L S

    2001-11-01

    As many of the linked chromosome regions that predispose to type 1 diabetes in the NOD mouse have been dissected, it has become apparent that the initially observed effect is in fact attributable to several loci. One such cluster of loci on distal chromosome 3, originally described as Idd10, is now known to comprise three separate loci, Idd10, Idd17, and Idd18. Although these loci have a significant combined effect on diabetes development, their individual effects are barely detectable when diabetes is used as a read-out, which makes fine-mapping them by use of a conventional congenic approach impractical. In this study, we demonstrate that it is possible to map loci, with modest effects, to regions small enough for systematic gene identification by capitalizing on the fact that the combined loci provide more profound, measurable protection. We have mapped the Idd10 and Idd18 loci to 1.3- and 2.0-cM intervals, respectively, by holding the Idd3 allele constant. In addition, we have excluded Csf1 and Nras as candidates for both loci. PMID:11679445

  5. Multiple endocrinopathies (growth hormone deficiency, autoimmune hypothyroidism and diabetes mellitus) in Kearns-Sayre syndrome.

    PubMed

    Berio, A; Piazzi, A

    2013-01-01

    Kearns-Sayre syndrome is characterized by onset before 20 years, chronic progressive external opthalmoplegia, pigmentary retinal degeneration, and ataxia (and/or hearth block, and/or high protein content in the cerebrospinal fluid) in the presence of mtDNA rearrangements. Multiple endocrine dysfunction associated with this syndrome was rarely reported. In this paper, the Authors report on a female patient with Kearns-Sayre syndrome with large heteroplasmic mtDNA deletion, absence of cytochrome c oxidase in many muscle fibers, partial GH deficiency, hypothyroidism and subsequently insulin dependent diabetes mellitus (IDDM). Anti-thyroid peroxidase and antithyreoglobulin antibodies were present in high titer in serum while anti-islet cell antibodies were absent. The patient developed thyroiditis with Hashimoto encephalopathy. The presence of GH deficiency, autoimmune thyroiditis with hypothyroidism and IDDM distinguishes this case from others and confirms the association of Kearns-Sayre syndrome with multiple endocrine dysfunction. Hashimoto encephalopathy and anti-thyroideal antibodies suggest that in this patient, predisposed by a genetic factor (a mitochondrial deletion) anti-thyroideal antibodies may have contributed to the hypothyroidism and, by interfering with cerebral mitochondrial function, may have caused the encephalopathy. GH deficiency and IDDM can be attributed to oxidative phosphorylation deficiency but the autoimmunity may also have played a role in the production of glandular insufficiencies. It seems important to search for endocrine autoimmunity in every case of KSS. PMID:23947115

  6. The autoimmunity-associated gene RGS1 affects the frequency of T follicular helper cells.

    PubMed

    Caballero-Franco, C; Kissler, S

    2016-06-01

    RGS1 (regulator of G-protein signaling 1) has been associated with multiple autoimmune disorders including type I diabetes. RGS1 desensitizes the chemokine receptors CCR7 and CXCR4 that are critical to the localization of T and B cells in lymphoid organs. To explore how RGS1 variation contributes to autoimmunity, we generated Rgs1 knockdown (KD) mice in the nonobese diabetic (NOD) model for type I diabetes. We found that Rgs1 KD increased the size of germinal centers, but decreased the frequency of T follicular helper (TFH) cells. We show that loss of Rgs1 in T cells had both a T cell-intrinsic effect on migration and TFH cell frequency, and an indirect effect on B-cell migration and germinal center formation. Notably, several recent publications described an increase in circulating TFH cells in patients with type I diabetes, suggesting this cell population is involved in pathogenesis. Though Rgs1 KD was insufficient to alter diabetes frequency in the NOD model, our findings raise the possibility that RGS1 plays a role in autoimmunity owing to its function in TFH cells. This mechanistic link, although speculative at this time, would lend support to the notion that TFH cells are key participants in autoimmunity and could explain the association of RGS1 with several immune-mediated diseases. PMID:27029527

  7. Bruton's Tyrosine Kinase Synergizes with Notch2 to Govern Marginal Zone B Cells in Nonobese Diabetic Mice1,2

    PubMed Central

    Nyhoff, Lindsay E.; Steinberg, Hannah E.; Sullivan, Allison M.; Kendall, Peggy L.

    2015-01-01

    Expansion of autoimmune-prone marginal zone (MZ) B cells has been implicated in type 1 diabetes (T1D). To test disease contributions of MZ B cells in NOD mice, Notch2 haploinsufficiency (Notch2+/−) was introduced, but failed to eliminate the MZ, as it does in C57BL/6 mice. Notch2+/−/NOD have MZ B cell numbers similar to WT C57BL/6, yet still develop diabetes. To test whether BCR-signaling supports Notch2+/−/NOD MZ B cells, Bruton's tyrosine kinase (Btk)-deficiency was introduced. Surprisingly, MZ B cells failed to develop in Btk-deficient Notch2+/−/NOD mice. Expression of Notch2 and its transcriptional target, Hes5, were increased in NOD MZ B cells compared with C57BL/6 MZ B cells. Btk-deficiency reduced Notch2+/− signaling exclusively in NOD B cells, suggesting that BCR-signaling enhances Notch2 signaling in this autoimmune model. The role of BCR-signaling was further investigated using an anti-insulin transgenic BCR (125Tg). Anti-insulin B cells in 125Tg/Notch2+/−/NOD mice populate an enlarged MZ, suggesting that low level BCR signaling overcomes reliance on Notch2. Tracking clonotypes of anti-insulin B cells in H chain only VH125Tg/NOD mice showed that BTK-dependent selection into the MZ depends on strength of antigenic binding, while Notch2-mediated selection does not. Importantly, anti-insulin B cell numbers were reduced by Btk-deficiency, but not Notch2-haploinsufficiency. These studies show that: 1) Notch2-haploinsufficiency limits NOD MZ B cell expansion without preventing T1D, 2) BTK supports the Notch2 pathway in NOD MZ B cells, and 3) autoreactive NOD B cell survival relies on BTK more than Notch2, regardless of MZ location, which may have important implications for disease-intervention strategies. PMID:26034172

  8. Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes.

    PubMed

    Jyoti; Mir, Abdul Rouf; Habib, Safia; Siddiqui, Sheelu Shafiq; Ali, Asif; Moinuddin

    2016-05-01

    Glyco-oxidation of proteins has implications in the progression of diabetes type 2. Human serum albumin is prone to glyco-oxidative attack by sugars and methylglyoxal being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. This study has probed the methylglyoxal mediated modifications of HSA, the alterations in its immunological characteristics and possible role in autoantibody induction. We observed an exposure of chromophoric groups, loss in the fluorescence intensity, generation of AGEs, formation of cross-linked products, decrease in α-helical content, increase in hydrophobic clusters, FTIR band shift, attachment of methylglyoxal to HSA and the formation of N(ε)-(carboxyethyl) lysine in the modified HSA, when compared to the native albumin. MG-HSA was found to be highly immunogenic with additional immunogenicity invoking a highly specific immune response than its native counterpart. The binding characteristics of circulating autoantibodies in type 2 diabetes mellitus (DM) patients showed the generation of anti-MG-HSA auto-antibodies in the these patients, that are preferentially recognized by the modified albumin. We propose that MG induced structural perturbations in HSA, result in the generation of neo-epitopes leading to an aggressive auto-immune response and may contribute to the immunopathogenesis of diabetes type 2 associated complications. PMID:26861824

  9. Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset.

    PubMed

    Costa, Frederico R C; Françozo, Marcela C S; de Oliveira, Gabriela G; Ignacio, Aline; Castoldi, Angela; Zamboni, Dario S; Ramos, Simone G; Câmara, Niels O; de Zoete, Marcel R; Palm, Noah W; Flavell, Richard A; Silva, João S; Carlos, Daniela

    2016-06-27

    Type 1 diabetes (T1D) is an autoimmune disease that is triggered by both genetic and environmental factors, resulting in the destruction of pancreatic β cells. The disruption of the intestinal epithelial barrier and consequent escape of microbial products may be one of these environmental triggers. However, the immune receptors that are activated in this context remain elusive. We show here that during streptozotocin (STZ)-induced T1D, the nucleotide-binding oligomerization domain containing 2 (NOD2), but not NOD1, participates in the pathogenesis of the disease by inducing T helper 1 (Th1) and Th17 cells in the pancreatic LNs (PLNs) and pancreas. Additionally, STZ-injected wild-type (WT) diabetic mice displayed an altered gut microbiota compared with vehicle-injected WT mice, together with the translocation of bacteria to the PLNs. Interestingly, WT mice treated with broad-spectrum antibiotics (Abx) were fully protected from STZ-induced T1D, which correlated with the abrogation of bacterial translocation to the PLNs. Notably, when Abx-treated STZ-injected WT mice received the NOD2 ligand muramyl dipeptide, both hyperglycemia and the proinflammatory immune response were restored. Our results demonstrate that the recognition of bacterial products by NOD2 inside the PLNs contributes to T1D development, establishing a new putative target for intervention during the early stages of the disease. PMID:27325889

  10. The Humanized NOD/SCID Mouse as a Preclinical Model to Study the Fate of Encapsulated Human Islets

    PubMed Central

    Vaithilingam, Vijayaganapathy; Oberholzer, Jose; Guillemin, Gilles J.; Tuch, Bernard E.

    2010-01-01

    Despite encouraging results in animal models, the transplantation of microencapsulated islets into humans has not yet reached the therapeutic level. Recent clinical trials using microencapsulated human islets in barium alginate showed the presence of dense fibrotic overgrowth around the microcapsules with no viable islets. The major reason for this is limited understanding of what occurs when encapsulated human islets are allografted. This warrants the need for a suitable small animal model. In this study, we investigated the usefulness of NOD/SCID mice reconstituted with human PBMCs (called humanized NOD/SCID mice) as a preclinical model. In this model, human T cell engraftment could be achieved, and CD45+ cells were observed in the spleen and peripheral blood. Though the engrafted T cells caused a small fibrotic overgrowth around the microencapsulated human islets, this failed to stop the encapsulated islets from functioning in the diabetic recipient mice. The ability of encapsulated islets to survive in this mouse model might partly be attributed to the presence of Th2 cytokines IL-4 and IL-10, which are known to induce graft tolerance. In conclusion, this study showed that the hu-NOD/SCID mouse is not a suitable preclinical model to study the allograft rejection mechanisms of encapsulated human islets. As another result, the maintained viability of transplanted islets on the NOD/SCID background emphasized a critical role of protective mechanisms in autoimmune diabetes transplanted subjects due to specific immunoregulatory effects provided by IL-4 and IL-10. PMID:20703439

  11. Lessons From Pancreas Transplantation in Type 1 Diabetes: Recurrence of Islet Autoimmunity.

    PubMed

    Burke, George W; Vendrame, Francesco; Virdi, Sahil K; Ciancio, G; Chen, Linda; Ruiz, Phillip; Messinger, Shari; Reijonen, Helena K; Pugliese, Alberto

    2015-12-01

    Type 1 diabetes recurrence (T1DR) affecting pancreas transplants was first reported in recipients of living-related pancreas grafts from twins or HLA identical siblings; given HLA identity, recipients received no or minimal immunosuppression. This observation provided critical evidence that type 1 diabetes (T1D) is an autoimmune disease. However, T1DR is traditionally considered very rare in immunosuppressed recipients of pancreas grafts from organ donors, representing the majority of recipients, and immunological graft failures are ascribed to chronic rejection. We have been performing simultaneous pancreas-kidney (SPK) transplants for over 25 years and find that 6-8 % of our recipients develop T1DR, with symptoms usually becoming manifest on extended follow-up. T1DR is typically characterized by (1) variable degree of insulitis and loss of insulin staining, on pancreas transplant biopsy (with most often absent), minimal to moderate and rarely severe pancreas, and/or kidney transplant rejection; (2) the conversion of T1D-associated autoantibodies (to the autoantigens GAD65, IA-2, and ZnT8), preceding hyperglycemia by a variable length of time; and (3) the presence of autoreactive T cells in the peripheral blood, pancreas transplant, and/or peripancreatic transplant lymph nodes. There is no therapeutic regimen that so far has controlled the progression of islet autoimmunity, even when additional immunosuppression was added to the ongoing chronic regimens; we hope that further studies and, in particular, in-depth analysis of pancreas transplant biopsies with recurrent diabetes will help identify more effective therapeutic approaches. PMID:26547222

  12. Diabetes Care, Glycemic Control, Complications, and Concomitant Autoimmune Diseases in Children with Type 1 Diabetes in Turkey: A Multicenter Study

    PubMed Central

    Şimşek, Damla Gökşen; Aycan, Zehra; Özen, Samim; Çetinkaya, Semra; Kara, Cengiz; Abalı, Saygın; Demir, Korcan; Tunç, Özgül; Uçaktürk, Ahmet; Asar, Gülgün; Baş, Firdevs; Çetinkaya, Ergun; Aydın, Murat; Karagüzel, Gülay; Orbak, Zerrin; Orbak, Zerrin; Şıklar, Zeynep; Altıncık, Ayça; Ökten, Ayşenur; Özkan, Behzat; Öçal, Gönül; Semiz, Serap; Arslanoğlu, İlknur; Evliyaoğlu, Olcay; Bundak, Rüveyde; Darcan, Şükran

    2013-01-01

    Objective: Epidemiologic and clinical features of type 1 diabetes mellitus (T1DM) may show substantial differences among countries. The primary goal in the management of T1DM is to prevent micro- and macrovascular complications by achieving good glycemic control. The present study aimed to assess metabolic control, presence of concomitant autoimmune diseases, and of acute and long-term complications in patients diagnosed with T1DM during childhood and adolescence. The study also aimed to be a first step in the development of a national registry system for T1DM, in Turkey. Methods: Based on hospital records, this cross-sectional, multicenter study included 1 032 patients with T1DM from 12 different centers in Turkey, in whom the diagnosis was established during childhood. Epidemiological and clinical characteristics of the patients were recorded. Metabolic control, diabetes care, complications, and concomitant autoimmune diseases were evaluated. Results: Mean age, diabetes duration, and hemoglobin A1c level were 12.5±4.1 years, 4.7±3.2 years, and 8.5±1.6%, respectively. Acute complications noted in the past year included ketoacidosis in 5.2% of the patients and severe hypoglycemia in 4.9%. Chronic lymphocytic thyroiditis was noted in 12%, Graves’ disease in 0.1%, and celiac disease in 4.3% of the patients. Chronic complications including neuropathy, retinopathy, and persistent microalbuminuria were present in 2.6%, 1.4%, and 5.4% of the patients, respectively. Diabetic nephropathy was not present in any of the patients. Mean diabetes duration and age of patients with neuropathy, retinopathy and microalbuminuria were significantly different from the patients without these long-term complications (p<0.01). A significant difference was found between pubertal and prepubertal children in terms of persistent microalbuminuria and neuropathy (p=0.02 and p<0.001, respectively). Of the patients, 4.4% (n:38) were obese and 5% had short stature; 17.4% of the patients had

  13. Usp18 Driven Enforced Viral Replication in Dendritic Cells Contributes to Break of Immunological Tolerance in Autoimmune Diabetes

    PubMed Central

    Zhang, Dong-Er; Iliakis, George; Xu, Haifeng C.; Häussinger, Dieter; Recher, Mike; Löhning, Max

    2013-01-01

    Infection with viruses carrying cross-reactive antigens is associated with break of immunological tolerance and induction of autoimmune disease. Dendritic cells play an important role in this process. However, it remains unclear why autoimmune-tolerance is broken during virus infection, but usually not during exposure to non-replicating cross-reactive antigens. Here we show that antigen derived from replicating virus but not from non-replicating sources undergoes a multiplication process in dendritic cells in spleen and lymph nodes. This enforced viral replication was dependent on Usp18 and was essential for expansion of autoreactive CD8+ T cells. Preventing enforced virus replication by depletion of CD11c+ cells, genetically deleting Usp18, or pharmacologically inhibiting of viral replication blunted the expansion of autoreactive CD8+ T cells and prevented autoimmune diabetes. In conclusion, Usp18-driven enforced viral replication in dendritic cells can break immunological tolerance and critically influences induction of autoimmunity. PMID:24204252

  14. Novel diagnostic and therapeutic approaches for autoimmune diabetes – a prime time to treat insulitis as a disease

    PubMed Central

    Grönholm, Juha; Lenardo, Michael J

    2015-01-01

    Type 1 diabetes is a progressive autoimmune disease with no curative treatment, making prevention critical. At the time of diagnosis, a majority of the insulin secreting β-cells has already been destroyed. Insulitis, lymphocytic infiltration to the pancreatic islets, is believed to begin months to years before the clinical symptoms of insulin deficiency appear. Insulitis should be treated as its own disease, for it is a known precursor to autoimmune diabetes. Because it is difficult to detect insulitic cellular infiltrates noninvasively, considerable interest has been focused on the levels of islet autoantibodies in blood as measurable diagnostic markers for islet autoimmunity. The traditional islet autoantibody detection assays have many limitations. New electrochemiluminescence-based autoantibody detection assays have the potential to overcome these challenges and they offer promising, cost-effective screening tools in identifying high-risk individuals for trials of preventive interventions. Here, we outline diagnostic and therapeutic strategies to overcome pancreatic β-cell destroying insulitis. PMID:25486604

  15. Early infant feeding and risk of developing islet autoimmunity and type 1 diabetes.

    PubMed

    Chmiel, Ruth; Beyerlein, Andreas; Knopff, Annette; Hummel, Sandra; Ziegler, Anette-G; Winkler, Christiane

    2015-06-01

    We investigated whether food supplementation within the first year life or age at introduction of gluten-containing foods influenced the risk of developing islet autoimmunity and type 1 diabetes. A total of 2,291 children with a family history of type 1 diabetes were prospectively followed from birth for 28,983 patient years (median 13.1 years). Dietary exposure data were collected by questionnaires, food records and by family interview. Exposure to gluten-containing foods before age 3 months, which occurred in 19 children, increased the risk of developing islet autoantibodies (n = 4), multiple islet autoantibodies (n = 4), and type 1 diabetes (n = 3) compared to exclusive breastfeeding within the first 3 months [adjusted hazard ratio (HR) 3.97 (95 % confidence interval 1.41-11.17), 5.39 (1.89-15.35), and 3.45 (1.04-11.48), respectively] and also compared to first exposure to gluten between 3.1 and 6.0 months of age [adjusted HR 3.40 (1.19-9.70), 4.25 (1.47-12.26), and 3.43 (1.01-11.66), respectively]. Children who received infant formula or other solid food within the first 3 months and children who received gluten-containing foods after age 6 months did not have an increased risk of islet autoantibodies, multiple islet autoantibodies or type 1 diabetes. Our present data affirm that compliance to infant feeding guidelines is a possible way to reduce type 1 diabetes risk in genetically susceptible children. PMID:25038720

  16. An association analysis of the HLA gene region in latent autoimmune diabetes in adults

    PubMed Central

    2011-01-01

    Aims/hypothesis Pathophysiological similarities between latent autoimmune diabetes in adults (LADA) and type 1 diabetes indicate an overlap in genetic susceptibility. HLA-DRB1 and HLA-DQB1 are major susceptibility genes for type 1 diabetes but studies of these genes in LADA have been limited. Our aim was to define patterns of HLA-encoded susceptibility/protection in a large, well characterised LADA cohort, and to establish association with disease and age at diagnosis. Materials and methods Patients with LADA (n=387, including 211 patients from the UK Prospective Diabetes Study) and non-diabetic control subjects (n=327) were of British/Irish European origin. The HLA-DRB1 and -DQB1 genes were genotyped by sequence-specific PCR. Results As in type 1 diabetes mellitus, DRB1*0301_DQB1*0201 (odds ratio [OR]=3.08, 95% CI 2.32–4.12, p=1.2× 10−16) and DRB1*0401_DQB1*0302 (OR=2.57, 95% CI 1.80–3.73, p=4.5×10−8) were the main susceptibility haplotypes in LADA, and DRB1*1501_DQB1*0602 was protective (OR=0.21, 95% CI 0.13–0.34, p=4.2×10−13). Differential susceptibility was conferred by DR4 subtypes: DRB1*0401 was predisposing (OR=1.79, 95% CI 1.35–2.38, p=2.7×10−5) whereas DRB1*0403 was protective (OR=0.37, 95% CI 0.13–0.97, p=0.033). The highest-risk genotypes were DRB1*0301/DRB1*0401 and DQB1*0201/DQB1*0302 (OR=5.14, 95% CI 2.68–10.69, p=1.3×10−8; and OR=6.88, 95% CI 3.54–14.68, p=1.2×10−11, respectively). These genotypes and those containing DRB1*0401 and DQB1*0302 associated with a younger age at diagnosis in LADA, whereas genotypes containing DRB1*1501 and DQB1*0602 associated with an older age at diagnosis. Conclusions/interpretation Patterns of susceptibility at the HLA-DRB1 and HLA-DQB1 loci in LADA are similar to those reported for type 1 diabetes, supporting the hypothesis that autoimmune diabetes occurring in adults is an age-related extension of the pathophysiological process presenting as childhood-onset type 1 diabetes. PMID

  17. Genetic interrelationship between insulin-dependent diabetes mellitus, the autoimmune thyroid diseases, and rheumatoid arthritis.

    PubMed Central

    Torfs, C P; King, M C; Huey, B; Malmgren, J; Grumet, F C

    1986-01-01

    To investigate the possible coinheritance of autoimmune diseases that are associated with the same HLA antigen, we studied 70 families in which at least two siblings had either type I diabetes mellitus (IDDM), autoimmune thyroid disease (ATD), rheumatoid arthritis (RA), or a combination of these diseases. HLA-A, B, and C typing was performed on all affected sibs in one generation or more. First, we estimated by sib-pair analysis the disease allele frequency (pD) and the mode of inheritance for each disease. According to the method of ascertainment entered into the analysis, the pD for ATD ranged from .120 to .180, for an additive (dominant) mode of inheritance. For RA, the pD ranged from .254 to .341, also for additive inheritance, although recessive inheritance could not be excluded. For IDDM, the pD ranged from .336 to .337 for recessive inheritance; additive inheritance was rejected. Second, we examined the distribution of shared parental haplotypes in pairs of siblings that were discordant for their autoimmune diseases. The results suggested that the same haplotype may predispose to both IDDM and ATD, or IDDM and RA, but not to both RA and ATD. Analysis of pedigrees supported this hypothesis. In 16 families typed for HLA-DR also, the haplotype predisposing to both IDDM and ATD was assigned from pedigree information to DR3 (44%), DR4 (39%), or DR5, DR6, or DR7 (5.5% each). In some families, these haplotypes segregated over several generations with ATD only (either clinical or subclinical), suggesting that in such families, ATD was a marker for a susceptibility to IDDM. In several families, an IDDM haplotype segregated with RA but not with ATD. This suggests that ATD- and RA-associated susceptibilities to IDDM may be biologically different and thus independently increase the risk of IDDM. PMID:3456197

  18. Effects of synthetic retinoid Am80 on iodide-induced autoimmune thyroiditis in nonobese diabetic mice.

    PubMed

    Morohoshi, Kazuki; Yoshida, Katsumi; Nakagawa, Yoshinori; Hoshikawa, Saeko; Ozaki, Hiroshi; Takahashi, Yurie; Ito, Sadayoshi; Mori, Kouki

    2011-01-01

    We examined whether a synthetic retinoid Am80 prevented the development of autoimmune thyroiditis in iodide-treated nonobese diabetic mice, an animal model of Hashimoto's thyroiditis (HT). Am80 (0, 0.1 or 1 mg/kg/day) was orally administered in feed during the 8-week iodide treatment. While iodide ingestion effectively induced thyroiditis, Am80 administration failed to interfere with thyroiditis development and serum anti-thyroglobulin antibody levels regardless of the dose of the retinoid. Splenic T cell numbers, splenocyte proliferation and interferon-γ production were decreased in the Am80-treated mice. Our data suggest that Am80 is not a candidate for use in the prevention of HT. PMID:21601836

  19. Potential role of TRAIL in the management of autoimmune diabetes mellitus.

    PubMed

    Bernardi, Stella; Norcio, Alessia; Toffoli, Barbara; Zauli, Giorgio; Secchiero, Paola

    2012-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease, due to the immune-mediated destruction of pancreatic β-cells, whose incidence has been steadily increasing during the last decades. Insulin replacement therapy can treat T1DM, which, however, is still associated with substantial morbidity and mortality. For this reason, great effort is being put into developing strategies that could eventually prevent and/or cure this disease. These strategies are mainly focused on blocking the immune system from attacking β-cells together with functional islet restoration either by regeneration or transplantation. Recent experimental evidences suggest that TNFrelated apoptosis-inducing ligand (TRAIL), which is an immune system modulator protein, could represent an interesting candidate for the cure for T1DM and/or its complications. Here we review the evidences on the potential role of TRAIL in the management of T1DM. PMID:22726118

  20. GIMAP GTPase Family Genes: Potential Modifiers in Autoimmune Diabetes, Asthma, and Allergy

    PubMed Central

    Heinonen, Mirkka T.; Laine, Antti-Pekka; Söderhäll, Cilla; Gruzieva, Olena; Rautio, Sini; Melén, Erik; Pershagen, Göran; Lähdesmäki, Harri J.; Knip, Mikael; Ilonen, Jorma; Henttinen, Tiina A.; Kere, Juha

    2015-01-01

    GTPase of the immunity-associated protein (GIMAP) family members are differentially regulated during human Th cell differentiation and have been previously connected to immune-mediated disorders in animal studies. GIMAP4 is believed to contribute to the Th cell subtype–driven immunological balance via its role in T cell survival. GIMAP5 has a key role in BB-DR rat and NOD mouse lymphopenia. To elucidate GIMAP4 and GIMAP5 function and role in human immunity, we conducted a study combining genetic association in different immunological diseases and complementing functional analyses. Single nucleotide polymorphisms tagging the GIMAP haplotype variation were genotyped in Finnish type 1 diabetes (T1D) families and in a prospective Swedish asthma and allergic sensitization birth cohort. Initially, GIMAP5 rs6965571 was associated with risk for asthma and allergic sensitization (odds ratio [OR] 3.74, p = 0.00072, and OR 2.70, p = 0.0063, respectively) and protection from T1D (OR 0.64, p = 0.0058); GIMAP4 rs13222905 was associated with asthma (OR 1.28, p = 0.035) and allergic sensitization (OR 1.27, p = 0.0068). However, after false discovery rate correction for multiple testing, only the associations of GIMAP4 with allergic sensitization and GIMAP5 with asthma remained significant. In addition, transcription factor binding sites surrounding the associated loci were predicted. A gene–gene interaction in the T1D data were observed between the IL2RA rs2104286 and GIMAP4 rs9640279 (OR 1.52, p = 0.0064) and indicated between INS rs689 and GIMAP5 rs2286899. The follow-up functional analyses revealed lower IL-2RA expression upon GIMAP4 knockdown and an effect of GIMAP5 rs2286899 genotype on protein expression. Thus, the potential role of GIMAP4 and GIMAP5 as modifiers of immune-mediated diseases cannot be discarded. PMID:25964488

  1. Association of major histocompatibility complex class 1 chain-related gene a dimorphism with type 1 diabetes and latent autoimmune diabetes in adults in the Algerian population.

    PubMed

    Raache, Rachida; Belanteur, Khadidja; Amroun, Habiba; Benyahia, Amel; Heniche, Amel; Azzouz, Malha; Mimouni, Safia; Gervais, Thibaud; Latinne, Dominique; Boudiba, Aissa; Attal, Nabila; Abbadi, Mohamed Cherif

    2012-04-01

    Major histocompatibility complex class I chain-related gene A (MICA-129) dimorphism was investigated in 73 autoimmune diabetes patients (type 1 diabetes and latent autoimmune diabetes in adults) and 75 controls from Algeria. Only MICA-129 Val allele and MICA-129 Val/Val genotype frequencies were higher among patients than in the control group. Statistical analysis of the estimated extended HLA-DR-DQ-MICA haplotypes shown that individual effects of MICA alleles on HLA-DQ2-DR3-MICA-129 Val/Val and HLA-DQ8-DR4-MICA-129 Val/Val haplotypes were significantly higher in patients than in the control groups. These preliminary data might suggest a relevant role of MICA-129 Val/Val single nucleotide polymorphism (weak/weak binders of NKG2D receptor) in the pathogenesis of T1D and LADA. PMID:22323559

  2. Association of Major Histocompatibility Complex Class 1 Chain-Related Gene A Dimorphism with Type 1 Diabetes and Latent Autoimmune Diabetes in Adults in the Algerian Population

    PubMed Central

    Belanteur, Khadidja; Amroun, Habiba; Benyahia, Amel; Heniche, Amel; Azzouz, Malha; Mimouni, Safia; Gervais, Thibaud; Latinne, Dominique; Boudiba, Aissa; Attal, Nabila; Abbadi, Mohamed Cherif

    2012-01-01

    Major histocompatibility complex class I chain-related gene A (MICA-129) dimorphism was investigated in 73 autoimmune diabetes patients (type 1 diabetes and latent autoimmune diabetes in adults) and 75 controls from Algeria. Only MICA-129 Val allele and MICA-129 Val/Val genotype frequencies were higher among patients than in the control group. Statistical analysis of the estimated extended HLA-DR-DQ-MICA haplotypes shown that individual effects of MICA alleles on HLA-DQ2-DR3-MICA-129 Val/Val and HLA-DQ8-DR4-MICA-129 Val/Val haplotypes were significantly higher in patients than in the control groups. These preliminary data might suggest a relevant role of MICA-129 Val/Val single nucleotide polymorphism (weak/weak binders of NKG2D receptor) in the pathogenesis of T1D and LADA. PMID:22323559

  3. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice.

    PubMed

    Robert, Sofie; Gysemans, Conny; Takiishi, Tatiana; Korf, Hannelie; Spagnuolo, Isabella; Sebastiani, Guido; Van Huynegem, Karolien; Steidler, Lothar; Caluwaerts, Silvia; Demetter, Pieter; Wasserfall, Clive H; Atkinson, Mark A; Dotta, Francesco; Rottiers, Pieter; Van Belle, Tom L; Mathieu, Chantal

    2014-08-01

    Growing insight into the pathogenesis of type 1 diabetes (T1D) and numerous studies in preclinical models highlight the potential of antigen-specific approaches to restore tolerance efficiently and safely. Oral administration of protein antigens is a preferred method for tolerance induction, but degradation during gastrointestinal passage can impede such protein-based therapies, reducing their efficacy and making them cost-ineffective. To overcome these limitations, we generated a tolerogenic bacterial delivery technology based on live Lactococcus lactis (LL) bacteria for controlled secretion of the T1D autoantigen GAD65370-575 and the anti-inflammatory cytokine interleukin-10 in the gut. In combination with short-course low-dose anti-CD3, this treatment stabilized insulitis, preserved functional β-cell mass, and restored normoglycemia in recent-onset NOD mice, even when hyperglycemia was severe at diagnosis. Combination therapy did not eliminate pathogenic effector T cells, but increased the presence of functional CD4(+)Foxp3(+)CD25(+) regulatory T cells. These preclinical data indicate a great therapeutic potential of orally administered autoantigen-secreting LL for tolerance induction in T1D. PMID:24677716

  4. Compromised central tolerance of ICA69 induces multiple organ autoimmunity

    PubMed Central

    Fan, Yong; Gualtierotti, Giulio; Tajima, Asako; Grupillo, Maria; Coppola, Antonina; He, Jing; Bertera, Suzanne; Owens, Gregory; Pietropaolo, Massimo; Rudert, William A.; Trucco, Massimo

    2015-01-01

    For reasons not fully understood, patients with an organ-specific autoimmune disease have increased risks of developing autoimmune responses against other organs/tissues. We identified ICA69, a known β-cell autoantigen in Type 1 diabetes, as a potential common target in multi-organ autoimmunity. NOD mice immunized with ICA69 polypeptides exhibited exacerbated inflammation not only in the islets, but also in the salivary glands. To further investigate ICA69 autoimmunity, two genetically modified mouse lines were generated to modulate thymic ICA69 expression: the heterozygous ICA69del/wt line and the thymic medullary epithelial cell-specific deletion Aire-ΔICA69 line. Suboptimal central negative selection of ICA69-reactive T-cells was observed in both lines. Aire-ΔICA69 mice spontaneously developed coincident autoimmune responses to the pancreas, the salivary glands, the thyroid, and the stomach. Our findings establish a direct link between compromised thymic ICA69 expression and autoimmunity against multiple ICA69-expressing organs, and identify a potential novel mechanism for the development of multi-organ autoimmune diseases. PMID:25088457

  5. Type 1 diabetes: can exercise impair the autoimmune event? The L-arginine/glutamine coupling hypothesis.

    PubMed

    Krause, Maurício da Silva; de Bittencourt, Paulo Ivo Homem

    2008-06-01

    Prevention of type 1 diabetes mellitus (T1DM) requires early intervention in the autoimmune process directed against beta-cells of the pancreatic islets of Langerhans, which is believed to result from a disorder of immunoregulation. According to this concept, a T-helper lymphocyte of type 1 (Th1) subset of T-lymphocytes and their cytokine products, the type 1 cytokines [e.g. interleukin 2 (IL-2), interferon gamma (IFN-gamma) and tumour necrosis factor beta (TNF-beta)] prevail over immunoregulatory (anti-inflammatory) Th2 subset and its cytokine products, i.e. type 2 cytokines (e.g. IL-4, IL-6 and IL-10). This allows type 1 cytokines to initiate a cascade of immune/inflammatory processes in the islet (insulitis), culminating in beta-cell destruction. Activation of sympathetic-corticotropin-releasing hormone (CRH) axis by psychological stress induces specifically Th1 cell overactivity that determines enhanced glutamine utilization and consequent poor L-arginine supply for nitric oxide (NO)-assisted insulin secretion. This determines the shift of intraislet glutamate metabolism from the synthesis of glutathione (GSH) to that of L-arginine, leading to a redox imbalance that activates nuclear factor kappaB exacerbating inflammation and NO-mediated cytotoxicity. Physical exercise is capable of inducing changes in the pattern of cytokine production and release towards type 2 class and to normalize the glutamine supply to the circulation, which reduces the need for glutamate, whose metabolic fate may be restored in the direction of GSH synthesis and antioxidant defence. Also, the 70-kDa heat shock protein (hsp70), which is immunoregulatory, may modulate exercise-induced anti-inflammation. In this work, we envisage how exercise can intervene in the mechanisms involved in the autoimmune process against beta-cells and how novel therapeutic approaches may be inferred from these observations. PMID:18383559

  6. Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus

    PubMed Central

    Barcala Tabarrozzi, A E; Castro, C N; Dewey, R A; Sogayar, M C; Labriola, L; Perone, M J

    2013-01-01

    Type 1 diabetes mellitus (T1DM) results from death of insulin-secreting β cells mediated by self-immune cells, and the consequent inability of the body to maintain insulin levels for appropriate glucose homeostasis. Probably initiated by environmental factors, this disease takes place in genetically predisposed individuals. Given the autoimmune nature of T1DM, therapeutics targeting immune cells involved in disease progress have been explored over the last decade. Several high-cost trials have been attempted to prevent and/or reverse T1DM. Although a definitive solution to cure T1DM is not yet available, a large amount of information about its nature and development has contributed greatly to both the improvement of patient's health care and design of new treatments. In this study, we discuss the role of different types of immune cells involved in T1DM pathogenesis and their therapeutic potential as targets and/or modified tools to treat patients. Recently, encouraging results and new approaches to sustain remnant β cell mass and to increase β cell proliferation by different cell-based means have emerged. Results coming from ongoing clinical trials employing cell therapy designed to arrest T1DM will probably proliferate in the next few years. Strategies under consideration include infusion of several types of stem cells, dendritic cells and regulatory T cells, either manipulated genetically ex vivo or non-manipulated. Their use in combination approaches is another therapeutic alternative. Cell-based interventions, without undesirable side effects, directed to block the uncontrollable autoimmune response may become a clinical reality in the next few years for the treatment of patients with T1DM. PMID:23286940

  7. Association of type 1 diabetes mellitus and autoimmune disorders in Brazilian children and adolescents

    PubMed Central

    Alves, Crésio; Santos, Larissa Siqueira; Toralles, Maria Betânia P.

    2016-01-01

    Context: Type 1 diabetes mellitus (T1DM) is caused by an immune-mediated destruction of pancreatic beta cells. Other autoimmune diseases can be observed in association with T1DM. The screening for celiac disease (CD) and Hashimoto's thyroiditis is necessary due to the increased prevalence of these pathologies in T1DM patients. Aims: This study aimed to investigate the prevalence of autoimmune markers for pancreatitis, thyroiditis, and CD in racially admixtured children and adolescents with T1DM. Settings and Design: Cross-sectional clinic-based study. Methods: Seventy-one patients with T1DM (average: 11.6 ± 5.1 years). In all patients, the following antibodies were surveyed: Anti-glutamic acid decarboxylase (anti-GAD), immunoglobulin A (IgA) anti-transglutaminase (anti-tTG), Antithyroglobulin (AAT), anti-thyroid peroxidase (anti-TPO), and IgA. Statistical Analysis Used: The quantitative variables were expressed as a mean and standard deviation and the qualitative variables in contingency tables. Student's t-test and χ2 tests were used to assess the differences between the groups. The level of significance was established as P < 0.05. Results: The prevalence of anti-GAD antibodies was 5.9%; anti-tTG IgA, 7.4%; anti-TPO, 11.8%; and AAT, 11.8%. Conclusions: Children and adolescents with T1DM have increased the prevalence of antithyroid and CD-related antibodies. The positivity for anti-GAD and antithyroid antibodies was less frequent than in other studies. The prevalence of anti-tTG antibodies was similar to the literature. PMID:27186558

  8. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin 1.

    PubMed Central

    Jacob, C O; Aiso, S; Michie, S A; McDevitt, H O; Acha-Orbea, H

    1990-01-01

    The role of tumor necrosis factor alpha (TNF-alpha) in the pathogenesis of autoimmune diabetes mellitus was tested in the nonobese mouse (NOD) model system. The effects of TNF-alpha were assessed on three levels: (i) insulitis development, (ii) development of overt diabetes, (iii) adoptive transfer of diabetes by splenic lymphocytes. Spontaneous diabetes mellitus was blocked in NOD mice by long-term treatment with recombinant TNF-alpha. Treatment with TNF-alpha caused a significant reduction in the lymphocytic infiltration associated with the destruction of the insulin-producing beta cells. Class II major histocompatibility complex Ia expression by islet cells was not up-regulated by TNF-alpha. Moreover, TNF-alpha was able to suppress the induction of diabetes in adoptive transfer of lymphocytes from diabetic female mice to young nondiabetic male NOD mice. These activities of TNF-alpha were shared by interleukin 1 alpha in this system. These studies have implications for the pathogenesis and therapy of autoimmune diabetes mellitus. Images PMID:2405400

  9. Growth and Risk for Islet Autoimmunity and Progression to Type 1 Diabetes in Early Childhood: The Environmental Determinants of Diabetes in the Young Study.

    PubMed

    Elding Larsson, Helena; Vehik, Kendra; Haller, Michael J; Liu, Xiang; Akolkar, Beena; Hagopian, William; Krischer, Jeffrey; Lernmark, Åke; She, Jin-Xiong; Simell, Olli; Toppari, Jorma; Ziegler, Anette-G; Rewers, Marian

    2016-07-01

    Increased growth in early childhood has been suggested to increase the risk of type 1 diabetes. This study explored the relationship between weight or height and development of persistent islet autoimmunity and progression to type 1 diabetes during the first 4 years of life in 7,468 children at genetic risk for type 1 diabetes followed in Finland, Germany, Sweden, and the U.S. Growth data collected every third month were used to estimate individual growth curves by mixed models. Cox proportional hazards models were used to evaluate body size and risk of islet autoimmunity and type 1 diabetes. In the overall cohort, development of islet autoimmunity (n = 575) was related to weight z scores at 12 months (hazard ratio [HR] 1.16 per 1.14 kg in males or per 1.02 kg in females, 95% CI 1.06-1.27, P < 0.001, false discovery rate [FDR] = 0.008) but not at 24 or 36 months. A similar relationship was seen between weight z scores and development of multiple islet autoantibodies (1 year: HR 1.21, 95% CI 1.08-1.35, P = 0.001, FDR = 0.008; 2 years: HR 1.18, 95% CI 1.06-1.32, P = 0.004, FDR = 0.02). No association was found between weight or height and type 1 diabetes (n = 169). In conclusion, greater weight in the first years of life was associated with an increased risk of islet autoimmunity. PMID:26993064

  10. The Autoimmunity-Associated Gene CLEC16A Modulates Thymic Epithelial Cell Autophagy and Alters T Cell Selection.

    PubMed

    Schuster, Cornelia; Gerold, Kay D; Schober, Kilian; Probst, Lilli; Boerner, Kevin; Kim, Mi-Jeong; Ruckdeschel, Anna; Serwold, Thomas; Kissler, Stephan

    2015-05-19

    CLEC16A variation has been associated with multiple immune-mediated diseases, including type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, celiac disease, Crohn's disease, Addison's disease, primary biliary cirrhosis, rheumatoid arthritis, juvenile idiopathic arthritis, and alopecia areata. Despite strong genetic evidence implicating CLEC16A in autoimmunity, this gene's broad association with disease remains unexplained. We generated Clec16a knock-down (KD) mice in the nonobese diabetic (NOD) model for type 1 diabetes and found that Clec16a silencing protected against autoimmunity. Disease protection was attributable to T cell hyporeactivity, which was secondary to changes in thymic epithelial cell (TEC) stimuli that drive thymocyte selection. Our data indicate that T cell selection and reactivity were impacted by Clec16a variation in thymic epithelium owing to Clec16a's role in TEC autophagy. These findings provide a functional link between human CLEC16A variation and the immune dysregulation that underlies the risk of autoimmunity. PMID:25979422

  11. NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn's Disease

    PubMed Central

    Strober, Warren; Watanabe, Tomohiro

    2013-01-01

    Nucleotide binding oligomerization domain 2 (NOD2) is an intracellular sensor for small peptides derived from the bacterial cell wall component, peptidoglycan. Recent studies have uncovered unexpected functions of NOD2 in innate immune responses such as induction of type I IFN and facilitation of autophagy; moreover, they have disclosed extensive cross-talk between NOD2 and Toll-like receptors which plays an indispensable role both in host defense against microbial infection and in the development of autoimmunity. Of particular interest, polymorphisms of CARD15 encoding NOD2 are associated with Crohn's disease and other autoimmune states such as graft versus host disease. In this review, we summarize recent findings regarding normal functions of NOD2 and discuss the mechanisms by which NOD2 polymorphisms associated with Crohn's disease lead to intestinal inflammation. PMID:21750585

  12. Regulatory T and B lymphocytes in a spontaneous autoimmune polyneuropathy.

    PubMed

    Quan, S; Sheng, J R; Abraham, P M; Soliven, B

    2016-04-01

    B7-2(-/-) non-obese diabetic (NOD) mice develop a spontaneous autoimmune polyneuropathy (SAP) that mimics the progressive form of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). In this study, we focused on the role of regulatory T cells (Tregs ) and regulatory B cells (Bregs ) in SAP. We found that deletion of B7-2 in female NOD mice led to a lower frequency and number of Tregs and Bregs in spleens and lymph nodes. Tregs but not Bregs suppressed antigen-stimulated splenocyte proliferation, whereas Bregs inhibited the T helper type 1 (Th1) cytokine response. Both Tregs and Bregs induced an increase in CD4(+) interleukin (IL)-10(+) cells, although less effectively in the absence of B7-2. Adoptive transfer studies revealed that Tregs , but not Bregs , suppressed SAP, while Bregs attenuated disease severity when given prior to symptom onset. B cell deficiency in B cell-deficient (muMT)/B7-2(-/-) NOD mice prevented the development of SAP, which would indicate that the pathogenic role of B cells predominates over its regulatory role in this model. We conclude that Bregs and Tregs control the immunopathogenesis and progression of SAP in a non-redundant fashion, and that therapies aimed at expansion of Bregs and Tregs may be an effective approach in autoimmune neuropathies. PMID:26671281

  13. Characterization of the autoimmune response against the nerve tissue S100β in patients with type 1 diabetes

    PubMed Central

    Gómez-Touriño, I; Simón-Vázquez, R; Alonso-Lorenzo, J; Arif, S; Calviño-Sampedro, C; González-Fernández, Á; Pena-González, E; Rodríguez, J; Viñuela-Roldán, J; Verdaguer, J; Cordero, O J; Peakman, M; Varela-Calvino, R

    2015-01-01

    Type 1 diabetes results from destruction of insulin-producing beta cells in pancreatic islets and is characterized by islet cell autoimmunity. Autoreactivity against non-beta cell-specific antigens has also been reported, including targeting of the calcium-binding protein S100β. In preclinical models, reactivity of this type is a key component of the early development of insulitis. To examine the nature of this response in type 1 diabetes, we identified naturally processed and presented peptide epitopes derived from S100β, determined their affinity for the human leucocyte antigen (HLA)-DRB1*04:01 molecule and studied T cell responses in patients, together with healthy donors. We found that S100β reactivity, characterized by interferon (IFN)-γ secretion, is a characteristic of type 1 diabetes of varying duration. Our results confirm S100β as a target of the cellular autoimmune response in type 1 diabetes with the identification of new peptide epitopes targeted during the development of the disease, and support the preclinical findings that autoreactivity against non-beta cell-specific autoantigens may have a role in type 1 diabetes pathogenesis. PMID:25516468

  14. Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Syndrome (APECED): A "Rare" Manifestation in a "Rare" Disease.

    PubMed

    Fierabracci, Alessandra

    2016-01-01

    Type 1 autoimmune polyglandular syndrome (APS1) is a rare autosomal recessive disease, caused by mutations in the autoimmune regulator gene (AIRE); the encoded Aire protein plays an important role in the establishment of the immunological tolerance acting as a transcriptional regulator of the expression of organ-specific antigens within the thymus in perinatal age. While a high prevalence for this rare syndrome is reported in Finland and Scandinavia (Norway), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) cohorts of patients are also detected in continental Italy and Sardinia, among Iranian Jews, as well as in other countries. The syndrome is diagnosed when patients present at least two out of the three fundamental disorders including chronic mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Among the associated conditions insulin-dependent diabetes mellitus (Type 1 diabetes) has been rarely reported in different series of patients and occurring more frequently in Finnish APECED patients. In this review, we analyze the incidence of Type 1 diabetes as a clinical manifestation of APECED in different populations highlighting the peculiar genetic and immunological features of the disease when occurring in the context of this syndrome. PMID:27420045

  15. Oral Tolerance: Therapeutic Implications for Autoimmune Diseases

    PubMed Central

    Faria, Ana M. C.; Weiner, Howard L.

    2006-01-01

    Oral tolerance is classically defined as the suppression of immune responses to antigens (Ag) that have been administered previously by the oral route. Multiple mechanisms of tolerance are induced by oral Ag. Low doses favor active suppression, whereas higher doses favor clonal anergy/deletion. Oral Ag induces Th2 (IL-4/IL-10) and Th3 (TGF-β) regulatory T cells (Tregs) plus CD4+CD25+ regulatory cells and LAP+T cells. Induction of oral tolerance is enhanced by IL-4, IL-10, anti-IL-12, TGF-β, cholera toxin B subunit (CTB), Flt-3 ligand, anti-CD40 ligand and continuous feeding of Ag. In addition to oral tolerance, nasal tolerance has also been shown to be effective in suppressing inflammatory conditions with the advantage of a lower dose requirement. Oral and nasal tolerance suppress several animal models of autoimmune diseases including experimental allergic encephalomyelitis (EAE), uveitis, thyroiditis, myasthenia, arthritis and diabetes in the nonobese diabetic (NOD) mouse, plus non-autoimmune diseases such as asthma, atherosclerosis, colitis and stroke. Oral tolerance has been tested in human autoimmune diseases including MS, arthritis, uveitis and diabetes and in allergy, contact sensitivity to DNCB, nickel allergy. Positive results have been observed in phase II trials and new trials for arthritis, MS and diabetes are underway. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time and Ag-specific mechanism of action. The successful application of oral tolerance for the treatment of human diseases will depend on dose, developing immune markers to assess immunologic effects, route (nasal versus oral), formulation, mucosal adjuvants, combination therapy and early therapy. PMID:17162357

  16. Doubly Reactive INS-IGF2 Autoantibodies in Children with Newly Diagnosed Autoimmune (type 1) Diabetes.

    PubMed

    Kanatsuna, N; Delli, A; Andersson, C; Nilsson, A-L; Vaziri-Sani, F; Larsson, K; Carlsson, A; Cedervall, E; Jönsson, B; Neiderud, J; Elding Larsson, H; Ivarsson, S-A; Törn, C; Fex, M; Lernmark, Å

    2015-10-01

    The splice variant INS-IGF2 entails the preproinsulin signal peptide, the insulin B-chain, eight amino acids of the C-peptide and 138 unique amino acids from an ORF in the IGF2 gene. The aim of this study was to determine whether levels of specific INS-IGF2 autoantibodies (INS-IGF2A) were related to age at diagnosis, islet autoantibodies, HLA-DQ or both, in patients and controls with newly diagnosed type 1 diabetes. Patients (n = 676), 0-18 years of age, diagnosed with type 1 diabetes in 1996-2005 and controls (n = 363) were analysed for specific INS-IGF2A after displacement with both cold insulin and INS-IGF2 to correct for non-specific binding and identify double reactive sera. GADA, IA-2A, IAA, ICA, ZnT8RA, ZnT8WA, ZnT8QA and HLA-DQ genotypes were also determined. The median level of specific INS-IGF2A was higher in patients than in controls (P < 0.001). Irrespective of age at diagnosis, 19% (126/676) of the patients had INS-IGF2A when the cut-off was the 95th percentile of the controls (P < 0.001). The risk of INS-IGF2A was increased among HLA-DQ2/8 (OR = 1.509; 95th CI 1.011, 2.252; P = 0.045) but not in 2/2, 2/X, 8/8, 8/X or X/X (X is neither 2 nor 8) patients. The association with HLA-DQ2/8 suggests that this autoantigen may be presented on HLA-DQ trans-heterodimers, rather than cis-heterodimers. Autoantibodies reactive with both insulin and INS-IGF2A at diagnosis support the notion that INS-IGF2 autoimmunity contributes to type 1 diabetes. PMID:26073034

  17. Are insights gained from NOD mice sufficient to guide clinical translation? Another inconvenient truth.

    PubMed

    Roep, Bart O

    2007-04-01

    Despite decades of research using various animal models for type 1 diabetes, we are still struggling to define the initiating autoantigens, the precise mechanisms of beta cell destruction, and suitable immune-based interventions to prevent or treat human diabetes. Animal models, such as the non-obese diabetic (NOD) mouse and the biobreeding (BB) rat, develop immune-mediated diseases with features resembling type 1 diabetes in humans. Although these animal models of autoimmune diabetes have proved to be valuable tools to study certain aspects of the disease process, they have also led to misconceptions and erroneous extrapolations, as well as false expectations with regard to the efficacy of immunotherapy. It is therefore time to ask ourselves whether we are making major strategic mistakes when employing rodent models for the study of type 1 diabetes. This review will describe where rodent models have provided us with proper guidance and where they have misled us, concluding that each model only offers partial information with undefined clinical value. Therefore, a more critical attitude and repetition of crucial observations in different model settings will be necessary in the future. I will argue that animal models have limited but evident value when it comes to teaching us about type 1 diabetes in humans, and we can take advantage of this value more efficiently. PMID:17376838

  18. Detection of GAD65 antibodies in diabetes and other autoimmune diseases using a simple radioligand assay.

    PubMed

    Petersen, J S; Hejnaes, K R; Moody, A; Karlsen, A E; Marshall, M O; Høier-Madsen, M; Boel, E; Michelsen, B K; Dyrberg, T

    1994-03-01

    Autoantibodies to glutamic acid decarboxylase (GAD) are frequent at or before the onset of insulin-dependent diabetes mellitus (IDDM). We have developed a simple, reproducible, and quantitative immunoprecipitation radioligand assay using as antigen in vitro transcribed and translated [35S]methionine-labeled human islet GAD65. By using this assay, 77% (77 of 100) of serum samples from recent-onset IDDM patients were positive for GAD65 antibodies compared with 4% (4 of 100) of serum samples from healthy control subjects. In competition analysis with unlabeled purified recombinant human islet GAD65, binding to tracer was inhibited in 74% (74 of 100) of the GAD65-positive IDDM serum samples compared with 2% of the control samples. The levels of GAD antibodies expressed as an index value relative to a standard serum, analyzed with or without competition, were almost identical (r = 0.991). The intra- and interassay variations of a positive control serum sample were 2.9 and 7.6%, respectively (n = 4). The frequency of GAD antibodies was significantly higher with IDDM onset before the age of 30 (80%, 59 of 74) than after the age of 30 (48%, 10 of 21) (P < 0.01). The prevalence of islet cell antibodies showed a similar pattern relative to age at onset. Because simultaneous occurrences of multiple autoimmune phenomena are common, we analyzed sera from patients with other autoimmune diseases. The frequency of GAD antibodies in sera positive for DNA autoantibodies (8% [2 of 25] and 4% [1 of 25] in competition analysis) or rheuma factor autoantibodies [12% (4 of 35) and 3% (1 of 35) in competition analysis] was not different from that in control samples. In contrast, in sera positive for ribonucleoprotein antibodies the frequency of GAD antibodies was significantly increased (73% [51 of 70] and 10% [7 of 70] in competition analysis [P < 0.025]). In conclusion, even large numbers of serum samples can now be tested for GAD65 antibodies in a relatively short time, allowing

  19. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    SciTech Connect

    Kishi, Minoru; Yasuda, Hisafumi; Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao

    2010-03-26

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cells induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  20. Moderate Intensity Training Impact on the Inflammatory Status and Glycemic Profiles in NOD Mice

    PubMed Central

    Codella, Roberto; Lanzoni, Giacomo; Zoso, Alessia; Caumo, Andrea; Montesano, Anna; Terruzzi, Ileana M.; Ricordi, Camillo; Luzi, Livio; Inverardi, Luca

    2015-01-01

    The nonobese diabetic (NOD) mouse represents a well-established experimental model analogous to human type 1 diabetes mellitus (T1D) as it is characterized by progressive autoimmune destruction of pancreatic β-cells. Experiments were designed to investigate the impact of moderate-intensity training on T1D immunomodulation and inflammation. Under a chronic exercise regime, NOD mice were trained on a treadmill for 12 weeks (12 m/min for 30 min, 5 d/wk) while age-matched, control animals were left untrained. Prior to and upon completion of the training period, fed plasma glucose and immunological soluble factors were monitored. Both groups showed deteriorated glycemic profiles throughout the study although trained mice tended to be more compensated than controls after 10 weeks of training. An exercise-induced weight loss was detected in the trained mice with respect to the controls from week 6. After 12 weeks, IL-6 and MIP-1β were decreased in the trained animals compared to their baseline values and versus controls, although not significantly. Morphometric analysis of pancreata revealed the presence of larger infiltrates along with decreased α-cells areas in the control mice compared to trained mice. Exercise may exert positive immunomodulation of systemic functions with respect to both T1D and inflammation, but only in a stringent therapeutic window. PMID:26347378

  1. NOD1 and NOD2 signalling links ER stress with inflammation.

    PubMed

    Keestra-Gounder, A Marijke; Byndloss, Mariana X; Seyffert, Núbia; Young, Briana M; Chávez-Arroyo, Alfredo; Tsai, April Y; Cevallos, Stephanie A; Winter, Maria G; Pham, Oanh H; Tiffany, Connor R; de Jong, Maarten F; Kerrinnes, Tobias; Ravindran, Resmi; Luciw, Paul A; McSorley, Stephen J; Bäumler, Andreas J; Tsolis, Renée M

    2016-04-21

    Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn disease and type 2 diabetes. ER stress induces the unfolded protein response, which involves activation of three transmembrane receptors, ATF6, PERK and IRE1α. Once activated, IRE1α recruits TRAF2 to the ER membrane to initiate inflammatory responses via the NF-κB pathway. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors or nucleotide-binding oligomerization domain (NOD)-like receptors, detect tissue damage or microbial infection. However, it is not clear which PRRs have a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NOD-like receptor family of PRRs, are important mediators of ER-stress-induced inflammation in mouse and human cells. The ER stress inducers thapsigargin and dithiothreitol trigger production of the pro-inflammatory cytokine IL-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system effector protein VceC into host cells, is TRAF2, NOD1/2 and RIP2-dependent and can be reduced by treatment with the ER stress inhibitor tauroursodeoxycholate or an IRE1α kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1α/TRAF2 signalling pathway provides a novel link between innate immunity and ER-stress-induced inflammation. PMID:27007849

  2. Perspectives on autoimmunity

    SciTech Connect

    Cohen, I.R.

    1987-01-01

    The contents of this book are: HLA and Autoimmunity; Self-Recognition and Symmetry in the Immune System; Immunology of Insulin Dependent Diabetes Mellitus; Multiple Sclerosis; Autoimmunity and Immune Pathological Aspects of Virus Disease; Analyses of the Idiotypes and Ligand Binding Characteristics of Human Monoclonal Autoantibodies to DNA: Do We Understand Better Systemic Lupus Erythematosus. Autoimmunity and Rheumatic Fever; Autoimmune Arthritis Induced by Immunization to Mycobacterial Antigens; and The Interaction Between Genetic Factors and Micro-Organisms in Ankylosing Spondylitis: Facts and Fiction.

  3. Thymic negative selection is functional in NOD mice

    PubMed Central

    Mingueneau, Michael; Jiang, Wenyu; Feuerer, Markus

    2012-01-01

    Based on analyses of multiple TCR transgenic (tg) models, the emergence of pathogenic T cells in diabetes-prone NOD mice has been ascribed to a failure to censure autoreactive clones in the thymus. In contrast, using isolated and preselected thymocytes, we show that nonobese diabetic (NOD) genetic variation impairs neither clonal deletion nor downstream transcriptional programs. However, we find that NOD genetic variation influences αβ/γδ-lineage decisions promoted by early expression of tg αβ-TCRs at the double-negative (DN) stage. In B6 and other genetic backgrounds, tg αβ-TCRs behave like γδ-TCRs and commit a large fraction of DNs toward the γδ-lineage, thereby decreasing the size of the double-positive (DP) pool, which is efficiently positively and negatively selected. In NOD DNs, αβ-TCR signalosomes instead behave like pre-TCRs, resulting in high numbers of DPs competing for limited selection niches, and poor positive and negative selection. Once niche effects are neutralized in mixed bone marrow chimeras, positive and negative selection are equally efficient on B6 and NOD backgrounds. Biochemical analysis revealed a selective defect in the activation of Erk1/2 downstream of NOD αβ-TCR signalosomes. Therefore, NOD genetic variation influences αβ/γδ-lineage decisions when the αβ-TCR heterodimer is prematurely expressed, but not the process of negative selection. PMID:22329992

  4. A Type I Interferon Transcriptional Signature Precedes Autoimmunity in Children Genetically at Risk for Type 1 Diabetes

    PubMed Central

    Ferreira, Ricardo C.; Guo, Hui; Coulson, Richard M.R.; Smyth, Deborah J.; Pekalski, Marcin L.; Burren, Oliver S.; Cutler, Antony J.; Doecke, James D.; Flint, Shaun; McKinney, Eoin F.; Lyons, Paul A.; Smith, Kenneth G.C.; Achenbach, Peter; Beyerlein, Andreas; Dunger, David B.; Clayton, David G.; Wicker, Linda S.; Bonifacio, Ezio

    2014-01-01

    Diagnosis of the autoimmune disease type 1 diabetes (T1D) is preceded by the appearance of circulating autoantibodies to pancreatic islets. However, almost nothing is known about events leading to this islet autoimmunity. Previous epidemiological and genetic data have associated viral infections and antiviral type I interferon (IFN) immune response genes with T1D. Here, we first used DNA microarray analysis to identify IFN-β–inducible genes in vitro and then used this set of genes to define an IFN-inducible transcriptional signature in peripheral blood mononuclear cells from a group of active systemic lupus erythematosus patients (n = 25). Using this predefined set of 225 IFN signature genes, we investigated the expression of the signature in cohorts of healthy controls (n = 87), patients with T1D (n = 64), and a large longitudinal birth cohort of children genetically predisposed to T1D (n = 109; 454 microarrayed samples). Expression of the IFN signature was increased in genetically predisposed children before the development of autoantibodies (P = 0.0012) but not in patients with established T1D. Upregulation of IFN-inducible genes was transient, temporally associated with a recent history of upper respiratory tract infections (P = 0.0064), and marked by increased expression of SIGLEC-1 (CD169), a lectin-like receptor expressed on CD14+ monocytes. DNA variation in IFN-inducible genes altered T1D risk (P = 0.007), as exemplified by IFIH1, one of the genes in our IFN signature for which increased expression is a known risk factor for disease. These findings identify transient increased expression of type I IFN genes in preclinical diabetes as a risk factor for autoimmunity in children with a genetic predisposition to T1D. PMID:24561305

  5. A unique combination of autoimmune limbic encephalitis, type 1 diabetes, and Stiff person syndrome associated with GAD-65 antibody

    PubMed Central

    Sharma, Chandra Mohan; Pandey, Rajendra Kumar; Kumawat, Banshi Lal; Khandelwal, Dinesh; Gandhi, Pankaj

    2016-01-01

    Antibodies to GAD-65 have been implicated in the pathogenesis of type 1 diabetes, limbic encephalitis and Stiff person syndrome, however these diseases rarely occur concurrently. We intend to present a rare case of 35 year old female who was recently diagnosed as having type 1 diabetes presented with 1½ month history of recurrent seizures, subacute onset gait ataxia, dysathria, psychiatric disturbance and cognitive decline. No tumor was found on imaging and the classic paraneoplastic panel was negative. Cerebrospinal fluid and blood was positive for GAD-65 antibodies. Patient showed significant improvement with immunomodulatory therapy. Association of GAD-65 antibodies has been found with various disorders including type 1 diabetes, limbic encephalitis, Stiff person syndrome, cerebellar ataxia and palatal myoclonus. This case presents with unique combination of type 1 diabetes, Stiff person syndrome and limbic encephalitis associated with GAD-65 antibodies that is responsive to immunotherapy. It also highlights the emerging concept of autoimmunity in the causation of various disorders and there associations. PMID:27011652

  6. DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes.

    PubMed

    Price, Jeffrey D; Hotta-Iwamura, Chie; Zhao, Yongge; Beauchamp, Nicole M; Tarbell, Kristin V

    2015-10-01

    During autoimmunity, the normal ability of dendritic cells (DCs) to induce T-cell tolerance is disrupted; therefore, autoimmune disease therapies based on cell types and molecular pathways that elicit tolerance in the steady state may not be effective. To determine which DC subsets induce tolerance in the context of chronic autoimmunity, we used chimeric antibodies specific for DC inhibitory receptor 2 (DCIR2) or DEC-205 to target self-antigen to CD11b(+) (cDC2) DCs and CD8(+) (cDC1) DCs, respectively, in autoimmune-prone nonobese diabetic (NOD) mice. Antigen presentation by DCIR2(+) DCs but not DEC-205(+) DCs elicited tolerogenic CD4(+) T-cell responses in NOD mice. β-Cell antigen delivered to DCIR2(+) DCs delayed diabetes induction and induced increased T-cell apoptosis without interferon-γ (IFN-γ) or sustained expansion of autoreactive CD4(+) T cells. These divergent responses were preceded by differential gene expression in T cells early after in vivo stimulation. Zbtb32 was higher in T cells stimulated with DCIR2(+) DCs, and overexpression of Zbtb32 in T cells inhibited diabetes development, T-cell expansion, and IFN-γ production. Therefore, we have identified DCIR2(+) DCs as capable of inducing antigen-specific tolerance in the face of ongoing autoimmunity and have also identified Zbtb32 as a suppressive transcription factor that controls T cell-mediated autoimmunity. PMID:26070317

  7. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes.

    PubMed

    Dooley, James; Tian, Lei; Schonefeldt, Susann; Delghingaro-Augusto, Viviane; Garcia-Perez, Josselyn E; Pasciuto, Emanuela; Di Marino, Daniele; Carr, Edward J; Oskolkov, Nikolay; Lyssenko, Valeriya; Franckaert, Dean; Lagou, Vasiliki; Overbergh, Lut; Vandenbussche, Jonathan; Allemeersch, Joke; Chabot-Roy, Genevieve; Dahlstrom, Jane E; Laybutt, D Ross; Petrovsky, Nikolai; Socha, Luis; Gevaert, Kris; Jetten, Anton M; Lambrechts, Diether; Linterman, Michelle A; Goodnow, Chris C; Nolan, Christopher J; Lesage, Sylvie; Schlenner, Susan M; Liston, Adrian

    2016-05-01

    Type 1 (T1D) and type 2 (T2D) diabetes share pathophysiological characteristics, yet mechanistic links have remained elusive. T1D results from autoimmune destruction of pancreatic beta cells, whereas beta cell failure in T2D is delayed and progressive. Here we find a new genetic component of diabetes susceptibility in T1D non-obese diabetic (NOD) mice, identifying immune-independent beta cell fragility. Genetic variation in Xrcc4 and Glis3 alters the response of NOD beta cells to unfolded protein stress, enhancing the apoptotic and senescent fates. The same transcriptional relationships were observed in human islets, demonstrating the role of beta cell fragility in genetic predisposition to diabetes. PMID:26998692

  8. Autoantigen-specific B-cell depletion overcomes failed immune tolerance in type 1 diabetes.

    PubMed

    Henry, Rachel A; Kendall, Peggy L; Thomas, James W

    2012-08-01

    Eliminating autoantigen-specific B cells is an attractive alternative to global B-cell depletion for autoimmune disease treatment. To identify the potential for targeting a key autoimmune B-cell specificity in type 1 diabetes, insulin-binding B cells were tracked within a polyclonal repertoire using heavy chain B-cell receptor (BCR) transgenic (VH125Tg) mice. Insulin-specific B cells are rare in the periphery of nonautoimmune VH125Tg/C57BL/6 mice and WT/NOD autoimmune mice, whereas they clearly populate 1% of mature B-cell subsets in VH125Tg/NOD mice. Autoantigen upregulates CD86 in anti-insulin B cells, suggesting they are competent to interact with T cells. Endogenous insulin occupies anti-insulin BCR beginning with antigen commitment in bone marrow parenchyma, as identified by a second anti-insulin monoclonal antibody. Administration of this monoclonal antibody selectively eliminates insulin-reactive B cells in vivo and prevents disease in WT/NOD mice. Unexpectedly, developing B cells are less amenable to depletion, despite increased BCR sensitivity. These findings exemplify how a critical type 1 diabetes B-cell specificity escapes immune tolerance checkpoints. Disease liability is corrected by eliminating this B-cell specificity, providing proof of concept for a novel therapeutic approach for autoimmune disease. PMID:22698916

  9. The Gut Microbiome in the NOD Mouse.

    PubMed

    Peng, Jian; Hu, Youjia; Wong, F Susan; Wen, Li

    2016-01-01

    The microbiome (or microbiota) are an ecological community of commensal, symbiotic, and pathogenic microorganisms that outnumber the cells of the human body tenfold. These microorganisms are most abundant in the gut where they play an important role in health and disease. Alteration of the homeostasis of the gut microbiota can have beneficial or harmful consequences to health. There has recently been a major increase in studies on the association of the gut microbiome composition with disease phenotypes.The nonobese diabetic (NOD) mouse is an excellent mouse model to study spontaneous type 1 diabetes development. We, and others, have reported that gut bacteria are critical modulators for type 1 diabetes development in genetically susceptible NOD mice.Here we present our standard protocol for gut microbiome analysis in NOD mice that has been routinely implemented in our research laboratory. This incorporates the following steps: (1) Isolation of total DNA from gut bacteria from mouse fecal samples or intestinal contents; (2) bacterial DNA sequencing, and (3) basic data analysis. PMID:27032947

  10. Accelerated type 1 diabetes induction in mice by adoptive transfer of diabetogenic CD4+ T cells.

    PubMed

    Berry, Gregory; Waldner, Hanspeter

    2013-01-01

    The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes after 12 weeks of age and is the most extensively studied animal model of human Type 1 diabetes (T1D). Cell transfer studies in irradiated recipient mice have established that T cells are pivotal in T1D pathogenesis in this model. We describe herein a simple method to rapidly induce T1D by adoptive transfer of purified, primary CD4+ T cells from pre-diabetic NOD mice transgenic for the islet-specific T cell receptor (TCR) BDC2.5 into NOD.SCID recipient mice. The major advantages of this technique are that isolation and adoptive transfer of diabetogenic T cells can be completed within the same day, irradiation of the recipients is not required, and a high incidence of T1D is elicited within 2 weeks after T cell transfer. Thus, studies of pathogenesis and therapeutic interventions in T1D can proceed at a faster rate than with methods that rely on heterogenous T cell populations or clones derived from diabetic NOD mice. PMID:23685789

  11. The Effect of Childhood Cow's Milk Intake and HLA-DR Genotype on Risk of Islet Autoimmunity and Type 1 Diabetes: The Diabetes Autoimmunity Study in the Young (DAISY)

    PubMed Central

    Lamb, Molly M.; Miller, Melissa; Seifert, Jennifer A.; Frederiksen, Brittni; Kroehl, Miranda; Rewers, Marian; Norris, Jill M.

    2014-01-01

    Background Cow's milk intake has been inconsistently associated with islet autoimmunity (IA) and type 1 diabetes (T1D) development. Genetic and environmental factors may modify the effect of cow's milk on IA and T1D risk. Methods The Diabetes Autoimmunity Study in the Young (DAISY) follows children at increased T1D risk for IA (presence of autoantibodies to insulin, GAD65 or IA-2 twice in succession) and T1D development. We examined 1,835 DAISY children with data on cow's milk intake: 143 developed IA, 40 subsequently developed T1D. Cow's milk protein and lactose intake were calculated from prospectively collected parent- and self-reported food frequency questionnaires (FFQ). High risk HLA-DR genotype: HLA-DR3/4,DQB1*0302; low/moderate risk: all other genotypes. We examined interactions between cow's milk intake, age at cow's milk introduction, and HLA-DR genotype in IA and T1D development. Interaction models contained the base terms (e.g., cow's milk protein and HLA-DR genotype) and an interaction term (cow's milk protein*HLA-DR genotype). Results In survival models adjusted for total calories, FFQ type, T1D family history, and ethnicity, greater cow's milk protein intake was associated with increased IA risk in children with low/moderate risk HLA-DR genotypes (Hazard Ratio (HR): 1.41, 95% Confidence Interval (CI): 1.08–1.84), but not in children with high risk HLA-DR genotypes. Cow's milk protein intake was associated with progression to T1D (HR: 1.59, CI: 1.13–2.25) in children with IA. Conclusions Greater cow's milk intake may increase risk of IA and progression to T1D. Early in the T1D disease process, cow's milk intake may be more influential in children with low/moderate genetic T1D risk. PMID:24444005

  12. Preventative role of interleukin-17 producing regulatory T helper type 17 (Treg 17) cells in type 1 diabetes in non-obese diabetic mice.

    PubMed

    Bellemore, S M; Nikoopour, E; Schwartz, J A; Krougly, O; Lee-Chan, E; Singh, B

    2015-12-01

    T helper type 17 (Th17) cells have been shown to be pathogenic in autoimmune diseases; however, their role in type 1 diabetes (T1D) remains inconclusive. We have found that Th17 differentiation of CD4(+) T cells from BDC2·5 T cell receptor transgenic non-obese diabetic (NOD) mice can be driven by interleukin (IL)-23+IL-6 to produce large amounts of IL-22, and these cells induce T1D in young NOD mice upon adoptive transfer. Conversely, polarizing these cells with transforming growth factor (TGF)-β+IL-6 led to non-diabetogenic regulatory Th17 (Treg 17) cells that express high levels of aryl hydrocarbon receptor (AhR) and IL-10 but produced much reduced levels of IL-22. The diabetogenic potential of these Th17 subsets was assessed by adoptive transfer studies in young NOD mice and not NOD.severe combined immunodeficient (SCID) mice to prevent possible transdifferentiation of these cells in vivo. Based upon our results, we suggest that both pathogenic Th17 cells and non-pathogenic regulatory Treg 17 cells can be generated from CD4(+) T cells under appropriate polarization conditions. This may explain the contradictory role of Th17 cells in T1D. The IL-17 producing Treg 17 cells offer a novel regulatory T cell population for the modulation of autoimmunity. PMID:26250153

  13. Dietary polyherbal supplementation decreases CD3+ cell infiltration into pancreatic islets and prevents hyperglycemia in nonobese diabetic mice.

    PubMed

    Burke, Susan J; Karlstad, Michael D; Conley, Caroline P; Reel, Danielle; Whelan, Jay; Collier, J Jason

    2015-04-01

    Type 1 diabetes mellitus results from autoimmune-mediated destruction of pancreatic islet β-cells, a process associated with inflammatory signals. We hypothesized that dietary supplementation with botanicals known to contain anti-inflammatory properties would prevent losses in functional β-cell mass in nonobese diabetic (NOD) mice, a rodent model of autoimmune-mediated islet inflammation that spontaneously develops diabetes. Female NOD mice, a model of spontaneous autoimmune diabetes, were fed a diet supplemented with herbal extracts (1.916 g total botanical extracts per 1 kg of diet) over a 12-week period. The mice consumed isocaloric matched diets without (controls) and with polyherbal supplementation (PHS) ad libitum starting at a prediabetic stage (age 6 weeks) for 12 weeks. Control mice developed hyperglycemia (>180 mg/dL) within 16 weeks (n = 9). By contrast, mice receiving the PHS diet did not develop hyperglycemia by 18 weeks (n = 8). Insulin-positive cell mass within pancreatic islets was 31.9% greater in PHS mice relative to controls. We also detected a 26% decrease in CD3(+) lymphocytic infiltration in PHS mice relative to mice consuming a control diet. In vitro assays revealed reduced β-cell expression of the chemokines CCL2 and CXCL10 after overnight PHS addition to the culture media. We conclude that dietary PHS delays initiation of autoimmune-mediated β-cell destruction and subsequent onset of diabetes mellitus by diminishing islet inflammatory responses. PMID:25640963

  14. IGRP and insulin vaccination induce CD8+ T cell-mediated autoimmune diabetes in the RIP-CD80GP mouse.

    PubMed

    Fuchs, Y F; Adler, K; Lindner, A; Karasinsky, A; Wilhelm, C; Weigelt, M; Balke, H; Förtsch, K; Mortler-Hildebrandt, L F; Harlan, D M; Pechhold, K; Ziegler, A-G; Bonifacio, E

    2014-05-01

    Autoimmune diabetes is characterized by autoantigen-specific T cell-mediated destruction of pancreatic islet beta cells, and CD8(+) T cells are key players during this process. We assessed whether the bitransgenic RIP-CD80 x RIP-LCMV-GP (RIP-CD80GP) mice may be a versatile antigen-specific model of inducible CD8(+) T cell-mediated autoimmune diabetes. Antigen-encoding DNA, peptide-loaded dendritic cells and antigen plus incomplete Freund's adjuvant were used for vaccination. Of 14 pancreatic proteins tested by DNA vaccination, murine pre-proinsulin 2 (100% of mice; median time after vaccination, 60 days) and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) (77%, 58 days) could induce diabetes. Vaccination with DNA encoding for zinc transporter 8, Ia-2, Ia-2β, glutamic acid decarboxylase 67 (Gad67), chromogranin A, insulinoma amyloid polypeptide and homeobox protein Nkx-2.2 induced diabetes development in 25-33% of mice. Vaccination with DNA encoding for Gad65, secretogranin 5, pancreas/duodenum homeobox protein 1 (Pdx1), carboxyl ester lipase, glucagon and control hepatitis B surface antigen (HBsAg) induced diabetes in <20% of mice. Diabetes induction efficiency could be increased by DNA vaccination with a vector encoding a ubiquitin-antigen fusion construct. Diabetic mice had florid T cell islet infiltration. CD8(+) T cell targets of IGRP were identified with a peptide library-based enzyme-linked immunospot assay, and diabetes could also be induced by vaccination with major histocompatibility complex (MHC) class I-restricted IGRP peptides loaded on mature dendritic cells. Vaccination with antigen plus incomplete Freund's adjuvant, which can prevent diabetes in other models, led to rapid diabetes development in the RIP-CD80GP mouse. We conclude that RIP-CD80GP mice are a versatile model of antigen specific autoimmune diabetes and may complement existing mouse models of autoimmune diabetes for evaluating CD8(+) T cell

  15. 1,25-Dihydroxyvitamin D3 promotes tolerogenic dendritic cells with functional migratory properties in NOD mice.

    PubMed

    Ferreira, Gabriela B; Gysemans, Conny A; Demengeot, Jocelyne; da Cunha, João Paulo M C M; Vanherwegen, An-Sofie; Overbergh, Lut; Van Belle, Tom L; Pauwels, Femke; Verstuyf, Annemieke; Korf, Hannelie; Mathieu, Chantal

    2014-05-01

    The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is able to promote the generation of tolerogenic mature dendritic cells (mDCs) with an impaired ability to activate autoreactive T cells. These cells could represent a reliable tool for the promotion or restoration of Ag-specific tolerance through vaccination strategies, for example in type 1 diabetes patients. However, successful transfer of 1,25(OH)2D3-treated mDCs (1,25D3-mDCs) depends on the capacity of 1,25(OH)2D3 to imprint a similar tolerogenic profile in cells derived from diabetes-prone donors as from diabetes-resistant donors. In this study, we examined the impact of 1,25(OH)2D3 on the function and phenotype of mDCs originating from healthy (C57BL/6) and diabetes-prone (NOD) mice. We show that 1,25(OH)2D3 is able to imprint a phenotypic tolerogenic profile on DCs derived from both mouse strains. Both NOD- and C57BL/6-derived 1,25D3-mDCs decreased the proliferation and activation of autoreactive T cells in vitro, despite strain differences in the regulation of cytokine/chemokine expression. In addition, 1,25D3-mDCs from diabetes-prone mice expanded CD25(+)Foxp3(+) regulatory T cells and induced intracellular IL-10 production by T cells in vitro. Furthermore, 1,25D3-mDCs exhibited an intact functional migratory capacity in vivo that favors homing to the liver and pancreas of adult NOD mice. More importantly, when cotransferred with activated CD4(+) T cells into NOD.SCID recipients, 1,25D3-mDCs potently dampened the proliferation of autoreactive donor T cells in the pancreatic draining lymph nodes. Altogether, these results argue for the potential of 1,25D3-mDCs to restore Ag-specific immune tolerance and arrest autoimmune disease progression in vivo. PMID:24663679

  16. ATPase4A Autoreactivity and Its Association With Autoimmune Phenotypes in the Type 1 Diabetes Genetics Consortium Study.

    PubMed

    Wenzlau, Janet M; Fain, Pamela R; Gardner, Thomas J; Frisch, Lisa M; Annibale, Bruno; Hutton, John C

    2015-10-01

    Autoantibodies targeting the H+/K+-ATPase proton pump of the gastric parietal cell (parietal cell antibodies [PCA]) are diagnostic of atrophic body gastritis (ABG) leading to pernicious anemia (PA). PCA, ABG, and PA occur in increased frequency in patients with type 1 diabetes and their relatives and are considered "minor" components of forms of autoimmune polyglandular syndrome (APS). A customized radioimmunoprecipitation assay was applied to 6,749 samples from the Type 1 Diabetes Genetics Consortium to measure ATP4A autoreactivity. Autoantibody prevalence was correlated with variants in HLA class II, PTPN22, and CTLA4 genes. With an ATP4A radioimmunoprecipitation assay, PCA were detected in sera from 20.9% of affected individuals. PCA prevalence increased with age and was greater in females (25.3%) than males (16.5%) and among Hispanics (36.3%) and blacks (26.2%) compared with non-Hispanic whites (20.8%) and Asians (16.7%). PCA and other organ-specific autoantibodies GAD65, IA-2, thyroid peroxidase (TPO), 21-hydroxylase (21-OH), and transglutaminase (TG) clustered within families with heritability estimates from 71 to 95%. PCA clustered with TPO, 21-OH, and persistent GAD65 autoantibodies but not with celiac (TG) or IA-2 autoantibodies. PCA-positive subjects showed an increased frequency of DRB1*0404, DPB1*0201, and PTPN22 R620W (rs2476601-T) and a decreased frequency of DRB1*0101, DPB1*0301, and CTLA4 CT60 (rs3087243-T). Genetic variants accounted for 4-5% of the heritable risk for PCA. The same alleles were associated with other autoantibody phenotypes in a consistent pattern. Whereas most of the heritable risk for PCA and other antibodies reflects genetic effects that are tissue specific, parietal cell autoimmunity is a major pathogenetic contributor in APS2. PMID:26405069

  17. Lymphocyte function associated antigen-1, integrin alpha 4, and L-selectin mediate T-cell homing to the pancreas in the model of adoptive transfer of diabetes in NOD mice.

    PubMed

    Fabien, N; Bergerot, I; Orgiazzi, J; Thivolet, C

    1996-09-01

    The involvement of adhesion molecule in the process of T-cell homing to the pancreas was investigated in the model of the T-cell transfer of type I diabetes in NOD mice. Treatment of mice using monoclonal anti-lymphocyte function associated antigen (LFA)-1, anti-integrin alpha 4, anti-intercellular adhesion molecule (ICAM)-1, and anti-L-selectin antibodies (monoclonal antibodies [mAbs]) gave rise to a partial or complete prevention of diabetes via different mechanisms of protection. On day 20 posttransfer, diabetes was only observed in control mice (26 of 32) and in few mice treated with the anti-L-selectin mAbs (3 of 24). On day 60, the best protection was observed using the anti-LFA-1 or the anti-integrin alpha 4 mAbs with 3 of 11 and 2 of 5 diabetic mice, respectively. On day 20, no insulitis was observed in the pancreases of mice treated with these mAbs compared with the pancreases of controls, suggesting that such treatment blocked the penetration of T-cells into the islets. In vitro adhesion assays confirmed that adhesion of T-cells to the pancreatic endothelium was blocked, except when using the anti-L-selectin mAb, which induced a modification of the traffic of the transferred T-cells; the ability of T-cells to migrate into the pancreatic lymph nodes was significantly reduced (10.4 vs. 22%). Anti-LFA-1 mAbs did not modify such T-cell trafficking. The present study, therefore, elucidates the role of LFA-1, integrin alpha 4, and L-selectin in T-cell homing to the pancreas, first step of the cascade of events leading to type I diabetes. PMID:8772719

  18. DIABETES

    PubMed Central

    Urano, Fumihiko

    2014-01-01

    Limited options for clinical management of patients with juvenile-onset diabetes mellitus call for a novel therapeutic paradigm. Two innovative studies support endoplasmic reticulum as an emerging target for combating both autoimmune and heritable forms of this disease. PMID:24393784

  19. Dynamic changes of the Th17/Tc17 and regulatory T cell populations interfere in the experimental autoimmune diabetes pathogenesis.

    PubMed

    Yaochite, Juliana Navarro Ueda; Caliari-Oliveira, Carolina; Davanso, Mariana Rodrigues; Carlos, Daniela; Malmegrim, Kelen Cristina Ribeiro; Cardoso, Cristina Ribeiro de Barros; Ramalho, Leandra Naira Zambelli; Palma, Patricia Vianna Bonini; da Silva, João Santana; Cunha, Fernando Queiróz; Covas, Dimas Tadeu; Voltarelli, Júlio César

    2013-03-01

    A balance between proinflammatory (Th17 and Tc17) and anti-inflammatory (regulatory T cells) subsets of T cells is essential to maintain immunological tolerance and prevent the onset of several autoimmune diseases, including type 1 diabetes. However, the kinetics of these subsets and disease severity during the streptozotocin (STZ)-induced diabetes course has not been determined. Thus, susceptible C57BL/6 mice were administrated with multiple low doses of STZ and we evaluated the frequency/absolute number of these T cell subsets in the pancreatic lymph nodes (PLNs) and spleen and Th1, Th17, Treg cytokine production in the pancreatic tissue. At different time points of the disease progression (6, 11, 18 and 25 days after the last STZ administration), the histopathological alterations were also evaluated by H&E and immunohistochemistry staining. During the initial phase of diabetes development (day 6), we noted increased numbers of CD4(+) and CD8(+) T cells in spleen and PLNs. At the same time, the frequencies of Th17 and Tc17 cells in PLNs were also enhanced. In addition, the early augment of interferon gamma (IFN-γ), tumoral necrosis factor (TNF-α), IL-6 and IL-17 levels in pancreatic tissue correlated with pancreatic islet inflammation and mild β-cell damage. Notably, the absolute number of Treg cells increased in PLNs during over time when compared to control group. Interestingly, increased IL-10 levels were associated with control of the inflammatory process during the late phase of the type 1 diabetes (day 25). In agreement, mice lacking the expression of IL-17 receptor (Il17r) showed impairment in STZ-induced diabetes progression, reduced peri-insulitis and beta cells preservation when compared with wild-type mice. Our findings suggest that dynamic changes of pathogenic Th17/Tc17 and regulatory T cell subsets numbers is associated with early strong inflammation in the pancreatic islets followed by late regulatory profile during the experimental STZ

  20. Clustering of immunological, metabolic and genetic features in latent autoimmune diabetes in adults: evidence from principal component analysis.

    PubMed

    Pes, Giovanni Mario; Delitala, Alessandro Palmerio; Errigo, Alessandra; Delitala, Giuseppe; Dore, Maria Pina

    2016-06-01

    Latent autoimmune diabetes in adults (LADA) which accounts for more than 10 % of all cases of diabetes is characterized by onset after age 30, absence of ketoacidosis, insulin independence for at least 6 months, and presence of circulating islet-cell antibodies. Its marked heterogeneity in clinical features and immunological markers suggests the existence of multiple mechanisms underlying its pathogenesis. The principal component (PC) analysis is a statistical approach used for finding patterns in data of high dimension. In this study the PC analysis was applied to a set of variables from a cohort of Sardinian LADA patients to identify a smaller number of latent patterns. A list of 11 variables including clinical (gender, BMI, lipid profile, systolic and diastolic blood pressure and insulin-free time period), immunological (anti-GAD65, anti-IA-2 and anti-TPO antibody titers) and genetic features (predisposing gene variants previously identified as risk factors for autoimmune diabetes) retrieved from clinical records of 238 LADA patients referred to the Internal Medicine Unit of University of Sassari, Italy, were analyzed by PC analysis. The predictive value of each PC on the further development of insulin dependence was evaluated using Kaplan-Meier curves. Overall 4 clusters were identified by PC analysis. In component PC-1, the dominant variables were: BMI, triglycerides, systolic and diastolic blood pressure and duration of insulin-free time period; in PC-2: genetic variables such as Class II HLA, CTLA-4 as well as anti-GAD65, anti-IA-2 and anti-TPO antibody titers, and the insulin-free time period predominated; in PC-3: gender and triglycerides; and in PC-4: total cholesterol. These components explained 18, 15, 12, and 12 %, respectively, of the total variance in the LADA cohort. The predictive power of insulin dependence of the four components was different. PC-2 (characterized mostly by high antibody titers and presence of predisposing genetic markers

  1. Environmental determinants of islet autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes

    PubMed Central

    2013-01-01

    Background The incidence of type 1 diabetes has increased worldwide, particularly in younger children and those with lower genetic susceptibility. These observations suggest factors in the modern environment promote pancreatic islet autoimmunity and destruction of insulin-producing beta cells. The Environmental Determinants of Islet Autoimmunity (ENDIA) Study is investigating candidate environmental exposures and gene-environment interactions that may contribute to the development of islet autoimmunity and type 1 diabetes. Methods/design ENDIA is the only prospective pregnancy/birth cohort study in the Southern Hemisphere investigating the determinants of type 1 diabetes in at-risk children. The study will recruit 1,400 unborn infants or infants less than six months of age with a first-degree relative (i.e. mother, father or sibling) with type 1 diabetes, across five Australian states. Pregnant mothers/infants will be followed prospectively from early pregnancy through childhood to investigate relationships between genotype, the development of islet autoimmunity (and subsequently type 1 diabetes), and prenatal and postnatal environmental factors. ENDIA will evaluate the microbiome, nutrition, bodyweight/composition, metabolome-lipidome, insulin resistance, innate and adaptive immune function and viral infections. A systems biology approach will be used to integrate these data. Investigation will be by 3-monthly assessments of the mother during pregnancy, then 3-monthly assessments of the child until 24 months of age and 6-monthly thereafter. The primary outcome measure is persistent islet autoimmunity, defined as the presence of autoantibodies to one or more islet autoantigens on consecutive tests. Discussion Defining gene-environment interactions that initiate and/or promote destruction of the insulin-producing beta cells in early life will inform approaches to primary prevention of type 1 diabetes. The strength of ENDIA is the prospective, comprehensive and

  2. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination.

    PubMed

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-01-01

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3(+) CD25(+) CD4(+) Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8(+) T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced K(b)/A12-21-monospecific CD8(+) T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical K(b)/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3(+) CD25(+) Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3(+) CD25(+) Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1(-/-) hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76-90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8(+) T cells in this diabetes model. PMID:27406624

  3. Exploring the induction of preproinsulin-specific Foxp3+ CD4+ Treg cells that inhibit CD8+ T cell-mediated autoimmune diabetes by DNA vaccination

    PubMed Central

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-01-01

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model. PMID:27406624

  4. Suppression of Th1-Mediated Autoimmunity by Embryonic Stem Cell-Derived Dendritic Cells

    PubMed Central

    Ikeda, Tokunori; Hirata, Shinya; Takamatsu, Koutaro; Haruta, Miwa; Tsukamoto, Hirotake; Ito, Takaaki; Uchino, Makoto; Ando, Yukio; Nagafuchi, Seiho; Nishimura, Yasuharu; Senju, Satoru

    2014-01-01

    We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs) using two models of autoimmune disease, namely non-obese diabetic (NOD) mice and experimental autoimmune encephalomyelitis (EAE). Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases. PMID:25522369

  5. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells.

    PubMed

    Ikeda, Tokunori; Hirata, Shinya; Takamatsu, Koutaro; Haruta, Miwa; Tsukamoto, Hirotake; Ito, Takaaki; Uchino, Makoto; Ando, Yukio; Nagafuchi, Seiho; Nishimura, Yasuharu; Senju, Satoru

    2014-01-01

    We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs) using two models of autoimmune disease, namely non-obese diabetic (NOD) mice and experimental autoimmune encephalomyelitis (EAE). Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases. PMID:25522369

  6. SIRTF nod maneuvers

    NASA Technical Reports Server (NTRS)

    Rajan, N.

    1988-01-01

    The response of the Space Infrared Telescope Facility's attitude control system to a nod command is studied under a wide variety of conditions. Several engineering issues are explored: the effects of variations in the structural model, relocation of sensors and actuators, the influence of the fine guidance sensor sampling period, resolution and noise on the system response, torque and rate integrating gyro noise and disturbances. Simulation results using control moment gyros and reaction wheels as actuators are presented.

  7. GENOME WIDE IDENTIFICATION OF NEW GENES AND PATHWAYS IN PATIENTS WITH BOTH AUTOIMMUNE THYROIDITIS AND TYPE 1 DIABETES

    PubMed Central

    Tomer, Yaron; Dolan, Lawrence M.; Kahaly, George; Divers, Jasmin; D’Agostino, Ralph B.; Imperatore, Giuseppina; Dabelea, Dana; Marcovina, Santica; Black, Mary Helen; Pihoker, Catherine; Hasham, Alia; Salehi Hammerstad, Sara; Greenberg, David A.; Lotay, Vaneet; Zhang, Weijia; Monti, Maria Cristina; Matheis, Nina

    2015-01-01

    Autoimmune thyroid diseases (AITD) and Type 1 diabetes (T1D) frequently occur in the same individual pointing to a strong shared genetic susceptibility. Indeed, the cooccurrence of T1D and AITD in the same individual is classified as a variant of the autoimmune polyglandular syndrome type 3 (designated APS3v). Our aim was to identify new genes and mechanisms causing the co-occurrence of T1D+AITD (APS3v) in the same individual using a genome-wide approach. For our discovery set we analyzed 346 Caucasian APS3v patients and 727 gender and ethnicity matched healthy controls. Genotyping was performed using the Illumina Human660W-Quad.v1. The replication set included 185 APS3v patients and 340 controls. Association analyses were performed using the PLINK program, and pathway analyses were performed using the MAGENTA software. We identified multiple signals within the HLA region and conditioning studies suggested that a few of them contributed independently to the strong association of the HLA locus with APS3v. Outside the HLA region, variants in GPR103, a gene not suggested by previous studies of APS3v, T1D, or AITD, showed genome-wide significance (p<5×10−8). In addition, a locus on 1p13 containing the PTPN22 gene showed genome-wide significant associations. Pathway analysis demonstrated that cell cycle, B-cell development, CD40, and CTLA-4 signaling were the major pathways contributing to the pathogenesis of APS3v. These findings suggest that complex mechanisms involving T-cell and B-cell pathways are involved in the strong genetic association between AITD and T1D. PMID:25936594

  8. Genome wide identification of new genes and pathways in patients with both autoimmune thyroiditis and type 1 diabetes.

    PubMed

    Tomer, Yaron; Dolan, Lawrence M; Kahaly, George; Divers, Jasmin; D'Agostino, Ralph B; Imperatore, Giuseppina; Dabelea, Dana; Marcovina, Santica; Black, Mary Helen; Pihoker, Catherine; Hasham, Alia; Hammerstad, Sara Salehi; Greenberg, David A; Lotay, Vaneet; Zhang, Weijia; Monti, Maria Cristina; Matheis, Nina

    2015-06-01

    Autoimmune thyroid diseases (AITD) and Type 1 diabetes (T1D) frequently occur in the same individual pointing to a strong shared genetic susceptibility. Indeed, the co-occurrence of T1D and AITD in the same individual is classified as a variant of the autoimmune polyglandular syndrome type 3 (designated APS3v). Our aim was to identify new genes and mechanisms causing the co-occurrence of T1D + AITD (APS3v) in the same individual using a genome-wide approach. For our discovery set we analyzed 346 Caucasian APS3v patients and 727 gender and ethnicity matched healthy controls. Genotyping was performed using the Illumina Human660W-Quad.v1. The replication set included 185 APS3v patients and 340 controls. Association analyses were performed using the PLINK program, and pathway analyses were performed using the MAGENTA software. We identified multiple signals within the HLA region and conditioning studies suggested that a few of them contributed independently to the strong association of the HLA locus with APS3v. Outside the HLA region, variants in GPR103, a gene not suggested by previous studies of APS3v, T1D, or AITD, showed genome-wide significance (p < 5 × 10(-8)). In addition, a locus on 1p13 containing the PTPN22 gene showed genome-wide significant associations. Pathway analysis demonstrated that cell cycle, B-cell development, CD40, and CTLA-4 signaling were the major pathways contributing to the pathogenesis of APS3v. These findings suggest that complex mechanisms involving T-cell and B-cell pathways are involved in the strong genetic association between AITD and T1D. PMID:25936594

  9. Genetic and physiological association of diabetes susceptibility with raised Na+/H+ exchange activity.

    PubMed Central

    Morahan, G; McClive, P; Huang, D; Little, P; Baxter, A

    1994-01-01

    Insulin-dependent diabetes mellitus is a multigenic autoimmune disease, for which one of the best animal models is the nonobese diabetic (NOD) mouse strain. In both humans and NOD mice, major histocompatibility complex genes are implicated as risk factors in the disease process. Other susceptibility genes are also involved, and a number have been mapped in the mouse to specific chromosomal locations. To identify further susceptibility genes, diabetic backcross mice, produced after crossing NOD/Lt to the nondiabetic strains SJL and C57BL/6 (B6), were examined for markers not previously associated with disease susceptibility. Linkage was found to loci on chromosomes 4 and 14. Of the candidate loci on chromosome 4, the gene encoding the Na+/H+ exchanger-1, Nhe-1, was the most likely, since the NOD allele was different from that of both nondiabetic strains. NOD lymphocytes were found to have a higher level of Na+/H+ exchange activity than lymphocytes from either B6 or SJL mice. Since the chromosome 4 susceptibility gene is recessive, the B6 allele should prevent diabetes. This prediction was tested in fourth-generation backcross mice, selected for retention of the B6 allele at Nhe-1. Mice homozygous for Nhe-1 developed diabetes after cyclophosphamide treatment, but heterozygotes were largely protected from disease. These results implicate the Na+/H+ exchanger (antiporter) in the development of type 1 diabetes and may provide a screening test for at-risk individuals as well as offering prospects for disease prevention. Images PMID:8016086

  10. The Clinical Significance of Glycoprotein Phospholipase D Levels in Distinguishing Early Stage Latent Autoimmune Diabetes in Adults and Type 2 Diabetes

    PubMed Central

    Qin, Wen; Liang, Yu-Zhen; Qin, Bao-Yu; Zhang, Jia-Li; Xia, Ning

    2016-01-01

    Autoantibodies have been widely used as markers of latent autoimmune diabetes in adults (LADA); however, the specificity and sensitivity of autoantibodies as markers of LADA are weak compared with those found in type 1 diabetes (T1DM). In this study, we aimed to identify other plasma proteins as potential candidates that can be used effectively to determine early stage LADA and type 2 diabetes (T2DM) to facilitate early diagnosis and treatment. These issues were addressed by studying new-onset ‘classic’ T1DM (n = 156), LADA (n = 174), T2DM (n = 195) and healthy cohorts (n = 166). Plasma samples were obtained from the four cohorts. We employed isobaric tag for relative and absolute quantitation (iTRAQ) together with liquid chromatography tandem mass spectrometry (LC-MS) to identify plasma proteins with significant changes in LADA. The changes were validated by Western blot and ELISA analyses. Among the four cohorts, 311 unique proteins were identified in three iTRAQ runs, with 157 present across the three data sets. Among them, 49/311 (16.0%) proteins had significant changes in LADA compared with normal controls, including glycoprotein phospholipase D (GPLD1), which was upregulated in LADA. Western blot and ELISA analyses showed that GPLD1 levels were higher in both LADA and T1DM cohorts than in both T2DM and healthy cohorts, while there were no significant differences in the plasma concentrations of GPLD1 between the LADA and T1DM cohorts. GPLD1 is implicated as a potential candidate plasma protein for determining early stage LADA and T2DM. PMID:27351175

  11. Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Syndrome (APECED): A “Rare” Manifestation in a “Rare” Disease

    PubMed Central

    Fierabracci, Alessandra

    2016-01-01

    Type 1 autoimmune polyglandular syndrome (APS1) is a rare autosomal recessive disease, caused by mutations in the autoimmune regulator gene (AIRE); the encoded Aire protein plays an important role in the establishment of the immunological tolerance acting as a transcriptional regulator of the expression of organ-specific antigens within the thymus in perinatal age. While a high prevalence for this rare syndrome is reported in Finland and Scandinavia (Norway), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) cohorts of patients are also detected in continental Italy and Sardinia, among Iranian Jews, as well as in other countries. The syndrome is diagnosed when patients present at least two out of the three fundamental disorders including chronic mucocutaneous candidiasis, hypoparathyroidism, and Addison’s disease. Among the associated conditions insulin-dependent diabetes mellitus (Type 1 diabetes) has been rarely reported in different series of patients and occurring more frequently in Finnish APECED patients. In this review, we analyze the incidence of Type 1 diabetes as a clinical manifestation of APECED in different populations highlighting the peculiar genetic and immunological features of the disease when occurring in the context of this syndrome. PMID:27420045

  12. Peripherin: an islet antigen that is cross-reactive with nonobese diabetic mouse class II gene products.

    PubMed Central

    Boitard, C; Villa, M C; Becourt, C; Gia, H P; Huc, C; Sempe, P; Portier, M M; Bach, J F

    1992-01-01

    The nonobese diabetic (NOD) mouse, in which major histocompatibility complex genes may be involved in the susceptibility to diabetes, has been developed as a model of autoimmune diabetes. The NOD mouse expresses I-A-encoded class II major histocompatibility complex antigens, which differ from those of other mouse haplotypes by the presence of a serine at position 57 of the A beta chain. Identifying islet autoantigens may help elucidate the role of class II antigens in the activation of autoreactive T cells and, thus, in the development of diabetes. We have detected autoantibodies directed against a 58-kDa islet cell antigen in NOD mice but not in other strains, including lupus-prone mice. Apart from insulin-secreting cells, the 58-kDa antigen was only found to be expressed by neuroblastoma cells and was identified as peripherin, an intermediate filament protein previously characterized in well-defined neuronal populations. This autoantigen cross-reacted with I-Anod class II antigens, suggesting that it may contribute to defective self-tolerance of islet beta cells in the NOD mouse. Images PMID:1729686

  13. Drak2 Regulates the Survival of Activated T Cells and Is Required for Organ-Specific Autoimmune Disease1

    PubMed Central

    McGargill, Maureen A.; Choy, Carmen; Wen, Ben G.; Hedrick, Stephen M.

    2009-01-01

    Drak2 is a serine/threonine kinase expressed in T and B cells. The absence of Drak2 renders T cells hypersensitive to suboptimal stimulation, yet Drak2–/– mice are enigmatically resistant to experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. We show in this study that Drak2–/– mice were also completely resistant to type 1 diabetes when bred to the NOD strain of mice that spontaneously develop autoimmune diabetes. However, there was not a generalized suppression of the immune system, because Drak2–/– mice remained susceptible to other models of autoimmunity. Adoptive transfer experiments revealed that resistance to disease was intrinsic to the T cells and was due to a loss of T cell survival under conditions of chronic autoimmune stimulation. Importantly, the absence of Drak2 did not alter the survival of naive T cells, memory T cells, or T cells responding to an acute viral infection. These experiments reveal a distinction between the immune response to persistent self-encoded molecules and transiently present infectious agents. We present a model whereby T cell survival depends on a balance of TCR and costimulatory signals to explain how the absence of Drak2 affects autoimmune disease without generalized suppression of the immune system. PMID:19017948

  14. Insulin-dependent diabetes mellitus associated with presumed autoimmune polyendocrine syndrome in a mare

    PubMed Central

    Giri, Jill K.; Magdesian, K. Gary; Gaffney, Patricia M.

    2011-01-01

    A 5-year-old Thoroughbred-cross mare was diagnosed with insulin-dependent diabetes mellitus. Partial glycemic control and clinical improvement were achieved with daily insulin administration for 18 mo. The mare subsequently developed evidence of hypoadrenocorticism and died. Necropsy findings included lymphocytic infiltration of the pancreas, adrenal cortex, adrenal medulla, and thyroid glands, suggestive of an immune-mediated polyendocrinopathy. PMID:22043070

  15. Mucosal Tolerance to Prevent Type 1 Diabetes: Can the Outcome Be Improved in Humans?

    PubMed Central

    Hanninen, Arno; Harrison, Leonard C.

    2004-01-01

    The results of trials in which autoantigens have been fed to individuals affected by autoimmune diseases - multiple sclerosis, rheumatoid arthritis and type 1 diabetes - have been disappointing in terms of clinical improvement. This is in striking contrast to the results in experimental rodent models of these diseases. The outcome of the recent DPT-1 trial testing oral insulin in individuals at risk of type 1 diabetes was also disappointing, in contrast to the effects of oral insulin in the non-obese diabetic (NOD) mouse model of type 1 diabetes. However, it is premature to conclude that mucosal tolerance works only in in-bred rodents and not in humans with autoimmune disease. Except for oral insulin in DPT-1, the human trials were performed in individuals with end-stage disease when this form of immune regulation might not be expected to be effective. Importantly, in no trial was an immune response to the autoantigen documented, to demonstrate that the dose was at least bioavailable. Furthermore, mucosal autoantigen administration is a 'double-edged sword' and in rodents can lead not only to regulatory and protective immunity but also to pathogenic, tissue-destructive immunity and exacerbation of autoimmune disease. When suppression of autoimmune disease is observed it may be because autoantigen was administered under conditions which minimize induction of pathogenic immunity. Thus, clinical protocols for mucosal autoantigen administration may need to be modified to favor induction of regulatory immunity. In this short review, we discuss recent studies in autoimmune diabetes-prone NOD mice indicating that with novel modifications mucosal autoantigen administration could be harnessed to prevent type 1 diabetes in humans. PMID:17491673

  16. NOD1 and NOD2 Signaling in Infection and Inflammation

    PubMed Central

    Moreira, Lilian O.; Zamboni, Dario S.

    2012-01-01

    Sensing intracellular pathogens is a process mediated by innate immune cells that is crucial for the induction of inflammatory processes and effective adaptive immune responses against pathogenic microbes. NOD-like receptors (NLRs) comprise a family of intracellular pattern recognition receptors that are important for the recognition of damage and microbial-associated molecular patterns. NOD1 and NOD2 are specialized NLRs that participate in the recognition of a subset of pathogenic microorganisms that are able to invade and multiply intracellularly. Once activated, these molecules trigger intracellular signaling pathways that lead to the activation of transcriptional responses culminating in the expression of a subset of inflammatory genes. In this review, we will focus on the role of NOD1 and NOD2 in the recognition and response to intracellular pathogens, including Gram-positive and Gram-negative bacteria, and on their ability to signal in response to non-peptidoglycan-containing pathogens, such as viruses and protozoan parasites. PMID:23162548

  17. Aberrant Accumulation of the Diabetes Autoantigen GAD65 in Golgi Membranes in Conditions of ER Stress and Autoimmunity.

    PubMed

    Phelps, Edward A; Cianciaruso, Chiara; Michael, Iacovos P; Pasquier, Miriella; Kanaani, Jamil; Nano, Rita; Lavallard, Vanessa; Billestrup, Nils; Hubbell, Jeffrey A; Baekkeskov, Steinunn

    2016-09-01

    Pancreatic islet β-cells are particularly susceptible to endoplasmic reticulum (ER) stress, which is implicated in β-cell dysfunction and loss during the pathogenesis of type 1 diabetes (T1D). The peripheral membrane protein GAD65 is an autoantigen in human T1D. GAD65 synthesizes γ-aminobutyric acid, an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary β-cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes. The palmitoylated form has heightened immunogenicity, exhibiting increased uptake by antigen-presenting cells and T-cell stimulation compared with the nonpalmitoylated form. Similar accumulation of GAD65 in Golgi membranes is observed in human β-cells in pancreatic sections from GAD65 autoantibody-positive individuals who have not yet progressed to clinical onset of T1D and from patients with T1D with residual β-cell mass and ongoing T-cell infiltration of islets. We propose that aberrant accumulation of immunogenic GAD65 in Golgi membranes facilitates inappropriate presentation to the immune system after release from stressed and/or damaged β-cells, triggering autoimmunity. PMID:27284108

  18. Genetically Engineered Islets and Alternative Sources of Insulin-Producing Cells for Treating Autoimmune Diabetes: Quo Vadis?

    PubMed Central

    Chou, Feng-Cheng; Huang, Shing-Hwa; Sytwu, Huey-Kang

    2012-01-01

    Islet transplantation is a promising therapy for patients with type 1 diabetes that can provide moment-to-moment metabolic control of glucose and allow them to achieve insulin independence. However, two major problems need to be overcome: (1) detrimental immune responses, including inflammation induced by the islet isolation/transplantation procedure, recurrence autoimmunity, and allorejection, can cause graft loss and (2) inadequate numbers of organ donors. Several gene therapy approaches and pharmaceutical treatments have been demonstrated to prolong the survival of pancreatic islet grafts in animal models; however, the clinical applications need to be investigated further. In addition, for an alternative source of pancreatic β-cell replacement therapy, the ex vivo generation of insulin-secreting cells from diverse origins of stem/progenitor cells has become an attractive option in regenerative medicine. This paper focuses on the genetic manipulation of islets during transplantation therapy and summarizes current strategies to obtain functional insulin-secreting cells from stem/progenitor cells. PMID:22690214

  19. Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rγnull (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells

    PubMed Central

    Covassin, L; Jangalwe, S; Jouvet, N; Laning, J; Burzenski, L; Shultz, L D; Brehm, M A

    2013-01-01

    Immunodeficient mice bearing targeted mutations in the IL2rg gene and engrafted with human immune systems are effective tools for the study of human haematopoiesis, immunity, infectious disease and transplantation biology. The most robust human immune model is generated by implantation of human fetal thymic and liver tissues in irradiated recipients followed by intravenous injection of autologous fetal liver haematopoietic stem cells [often referred to as the BLT (bone marrow, liver, thymus) model]. To evaluate the non-obese diabetic (NOD)-scid IL2rγnull (NSG)–BLT model, we have assessed various engraftment parameters and how these parameters influence the longevity of NSG–BLT mice. We observed that irradiation and subrenal capsule implantation of thymus/liver fragments was optimal for generating human immune systems. However, after 4 months, a high number of NSG–BLT mice develop a fatal graft-versus-host disease (GVHD)-like syndrome, which correlates with the activation of human T cells and increased levels of human immunoglobulin (Ig). Onset of GVHD was not delayed in NSG mice lacking murine major histocompatibility complex (MHC) classes I or II and was not associated with a loss of human regulatory T cells or absence of intrathymic cells of mouse origin (mouse CD45+). Our findings demonstrate that NSG–BLT mice develop robust human immune systems, but that the experimental window for these mice may be limited by the development of GVHD-like pathological changes. PMID:23869841

  20. Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes.

    PubMed

    Rondas, Dieter; Crèvecoeur, Inne; D'Hertog, Wannes; Ferreira, Gabriela Bomfim; Staes, An; Garg, Abhishek D; Eizirik, Decio L; Agostinis, Patrizia; Gevaert, Kris; Overbergh, Lut; Mathieu, Chantal

    2015-02-01

    Posttranslational modifications of self-proteins play a substantial role in the initiation or propagation of the autoimmune attack in several autoimmune diseases, but their contribution to type 1 diabetes is only recently emerging. In the current study, we demonstrate that inflammatory stress, induced by the cytokines interleukin-1β and interferon-γ, leads to citrullination of GRP78 in β-cells. This is coupled with translocation of this endoplasmic reticulum chaperone to the β-cell plasma membrane and subsequent secretion. Importantly, expression and activity of peptidylarginine deiminase 2, one of the five enzymes responsible for citrullination and a candidate gene for type 1 diabetes in mice, is increased in islets from diabetes-prone nonobese diabetic (NOD) mice. Finally, (pre)diabetic NOD mice have autoantibodies and effector T cells that react against citrullinated GRP78, indicating that inflammation-induced citrullination of GRP78 in β-cells generates a novel autoantigen in type 1 diabetes, opening new avenues for biomarker development and therapeutic intervention. PMID:25204978

  1. Maternal Antibiotic Treatment Protects Offspring from Diabetes Development in Nonobese Diabetic Mice by Generation of Tolerogenic APCs.

    PubMed

    Hu, Youjia; Peng, Jian; Tai, Ningwen; Hu, Changyun; Zhang, Xiaojun; Wong, F Susan; Wen, Li

    2015-11-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that involves the slow, progressive destruction of islet β cells and loss of insulin production, as a result of interaction with environmental factors, in genetically susceptible individuals. The gut microbiome is established very early in life. Commensal microbiota establish mutualism with the host and form an important part of the environment to which individuals are exposed in the gut, providing nutrients and shaping immune responses. In this study, we studied the impact of targeting most Gram-negative bacteria in the gut of NOD mice at different time points in their life, using a combination of three antibiotics--neomycin, polymyxin B, and streptomycin--on diabetes development. We found that the prenatal period is a critical time for shaping the immune tolerance in the progeny, influencing development of autoimmune diabetes. Prenatal neomycin, polymyxin B, and streptomycin treatment protected NOD mice from diabetes development through alterations in the gut microbiota, as well as induction of tolerogenic APCs, which led to reduced activation of diabetogenic CD8 T cells. Most importantly, we found that the protective effect was age dependent, and the most profound protection was found when the mice were treated before birth. This indicates the importance of the prenatal environment and early exposure to commensal bacteria in shaping the host immune system and health. PMID:26401004

  2. Environmental Triggers of Autoimmune Thyroiditis

    PubMed Central

    Burek, C. Lynne; Talor, Monica V.

    2009-01-01

    Autoimmune thyroiditis is among the most prevalent of all the autoimmunities. Autoimmune thyroiditis is multifactorial with contributions from genetic and environmental factors. Much information has been published about the genetic predisposition to autoimmune thyroiditis both in experimental animals and humans. There is, in contrast, very little data on environmental agents that can serve as the trigger or autoimmunity in a genetically predisposed host. The best-established environmental factor is excess dietary iodine. Increased iodine consumption is strongly implicated as a trigger for thyroiditis, but only in genetically susceptible individuals. However, excess iodine is not the only environmental agent implicated as a trigger leading to autoimmune thyroiditis. There are a wide variety of other synthetic chemicals that affect the thyroid gland or have the ability to promote immune dysfunction in the host. These chemicals are released into the environment by design, such as in pesticides, or as a by-product of industry. Candidate pollutants include polyaromatic hydrocarbons, polybrominated biphenols, and polychlorinated biphenols, among others. Infections are also reputed to trigger autoimmunity and may act alone or in concert with environmental chemicals. We have utilized a unique animal model, the NOD.H2h4 mouse to explore the influence of iodine and other environmental factors on autoimmune thyroiditis. PMID:19818584

  3. Environmental triggers of autoimmune thyroiditis.

    PubMed

    Burek, C Lynne; Talor, Monica V

    2009-01-01

    Autoimmune thyroiditis is among the most prevalent of all the autoimmunities. Autoimmune thyroiditis is multifactorial with contributions from genetic and environmental factors. Much information has been published about the genetic predisposition to autoimmune thyroiditis both in experimental animals and humans. There is, in contrast, very little data on environmental agents that can serve as the trigger for autoimmunity in a genetically predisposed host. The best-established environmental factor is excess dietary iodine. Increased iodine consumption is strongly implicated as a trigger for thyroiditis, but only in genetically susceptible individuals. However, excess iodine is not the only environmental agent implicated as a trigger leading to autoimmune thyroiditis. There are a wide variety of other synthetic chemicals that affect the thyroid gland or have the ability to promote immune dysfunction in the host. These chemicals are released into the environment by design, such as in pesticides, or as a by-product of industry. Candidate pollutants include polyaromatic hydrocarbons, polybrominated biphenols, and polychlorinated biphenols, among others. Infections are also reputed to trigger autoimmunity and may act alone or in concert with environmental chemicals. We have utilized a unique animal model, the NOD.H2(h4) mouse to explore the influence of iodine and other environmental factors on autoimmune thyroiditis. PMID:19818584

  4. Role of Nucleotide-binding and Oligomerization Domain 2 Protein (NOD2) in the Development of Atherosclerosis

    PubMed Central

    2015-01-01

    NOD2 (nucleotide-binding and oligomerization domain 2) was initially reported as a susceptibility gene for Crohn's disease, with several studies focused on elucidating its molecular mechanism in the progression of Crohn's disease. We now know that NOD2 is an intracellular bacterial sensing receptor, and that MDP-mediated NOD2 activation drives inflammatory signaling. Various mutations in NOD2 have been reported, with NOD2 loss of function being associated with the development of Crohn's disease and other autoimmune diseases. These results suggest that NOD2 not only has an immune stimulatory function, but also an immune regulatory function. Atherosclerosis is a chronic inflammatory disease of the arterial wall; its pathologic progression is highly dependent on the immune balance. This immune balance is regulated by infiltrating monocytes and macrophages, both of which express NOD2. These findings indicate a potential role of NOD2 in atherosclerosis. The purpose of this review is to outline the known roles of NOD2 signaling in the pathogenesis of atherosclerosis. PMID:26557013

  5. NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum.

    PubMed Central

    Loh, J; Garcia, M; Stacey, G

    1997-01-01

    In Bradyrhizobium japonicum, members of two global regulatory families, a LysR-type regulator, NodD1, and a two-component regulatory system, NodVW, positively regulate nod gene expression in response to plant-produced isoflavone signals. By analogy to other two-component systems, NodV and NodW are thought to activate transcription via a series of phosphorylation steps. These include the phosphorylation of NodV in response to the plant signal and the subsequent activation of NodW via the transfer of the phosphoryl group to an aspartate residue in the receiver domain of NodW. In this study, we demonstrated that NodW can be phosphorylated in vitro by both acetyl phosphate and its cognate kinase, NodV. In addition, in vivo experiments indicate that phosphorylation is induced by genistein, a known isoflavone nod gene inducer in B. japonicum. By using site-directed mutagenesis, a NodWD70N mutant in which the aspartate residue at the proposed phosphorylation site was converted to an asparagine residue was generated. This mutant was not phosphorylated in either in vitro or in vivo assays. Comparisons of the biological activity of both the wild-type and mutant proteins indicate that phosphorylation of NodW is essential for the ability of NodW to activate nod gene expression. PMID:9139921

  6. Tc17 CD8+ T cells potentiate Th1-mediated autoimmune diabetes in a mouse model.

    PubMed

    Saxena, Amit; Desbois, Sabine; Carrié, Nadège; Lawand, Myriam; Mars, Lennart T; Liblau, Roland S

    2012-09-15

    An increase in IL-17-producing CD8+ T (Tc17) cells has been reported in the peripheral blood of children with recent onset type 1 diabetes (T1D), but their contribution to disease pathogenesis is still unknown. To directly study the pathogenic potential of β cell-specific Tc17 cells, we used an experimental model of T1D based on the expression of the neo-self Ag hemagglutinin (HA) in the β cells of the pancreas. When transferred alone, the IL-17-producing HA-specific CD8+ T cells homed to the pancreatic lymph nodes without causing any pancreatic infiltration or tissue destruction. When transferred together with small numbers of diabetogenic HA-specific CD4+ T cells, a strikingly different phenotype developed. Under these conditions, Tc17 cells sustained disease progression, driving the destruction of β-islet cells, causing hyperglycemia and ultimately death. Disease progression did not correlate with functional or numerical alterations among the HA-specific CD4+ T cells. Rather, the transferred CD8+ T cells accumulated in the pancreatic islets and a considerable fraction converted, under the control of IL-12, to an IFN-γ-producing phenotype. Our data indicate that Tc17 cells are not diabetogenic but can potentiate a Th1-mediated disease. Plasticity of the Tc17 lineage is associated with transition to overt disease in this experimental model of T1D. PMID:22904307

  7. Progress toward production of immunologic tolerance with no or minimal toxic immunosuppression for prevention of immunodeficiency and autoimmune diseases.

    PubMed

    Good, R A

    2000-07-01

    With donor and recipient matched at the major histocompatibility complex (MHC) locus, peripheral lymphoid tissue transplantation can be carried out without producing a graft-versus-host reaction or graft-versus-host disease (GVHD), thus correcting profound T cell immunodeficiencies of neonatally thymectomized mice. This analysis set the stage for clinical application of bone marrow transplantation (BMT) to provide for the first time cure of a human disease. With successful BMT, we cured immunologic deficiencies of a patient with XL severe combined immunodeficiency; thereafter we were the first to employ BMT to cure aplastic anemia. BMT regularly corrects immune and hematologic deficiencies caused by fatal irradiation without producing GVHD if the bone marrow (BM) used for the transplants has been purged of postthymic T cells. Over two decades in conjunction with Ikehara et al., we have shown that lethal total body irradiation (TBI) plus allogeneic BMT prevents or cures many organ-specific and systemic experimental autoimmune diseases. Animal models successfully treated by BMT include type I diabetes in nonobese diabetes (NOD) mice, type II diabetes in insulin-insensitive, glucose intolerant, diabetes mellitus (KK/Ay) mice, and autoimmune lupus erythematosus (LE) and glomerulonephritis in New Zealand Black x New Zealand White first generation hybrid (NZB x NZW)F1 females. El-Badri extended Ildstad's original research showing a high frequency of survival with a normal functioning immune system after stable mixed chimerism is produced by mixed BMT in C57BL/6 (normal long-lived black strain) mice transplanted with T cell-depleted marrow (TCDM) from BALB/c ("normal" long-lived strain) allogeneic donors and C57BL/6 syngeneic donors. We showed that osteoblasts act as facilitator cells for allogeneic BMT and promote engraftment of allogeneic hematopoietic stem cells. Wang et al. then showed that the autoimmunities and fulminating renal disease of BXSB (C57BL x SB cross and

  8. Serum 25-Hydroxyvitamin D Concentrations in Children Progressing to Autoimmunity and Clinical Type 1 Diabetes

    PubMed Central

    Mykkänen, Juha; Koskinen, Maarit; Simell, Ville; Veijola, Riitta; Hyöty, Heikki; Ilonen, Jorma; Knip, Mikael; Simell, Olli; Toppari, Jorma

    2016-01-01

    Context: The role of vitamin D in the development of type 1 diabetes (T1D) remains controversial. Objective: The objective of the investigation was to study whether there are detectable differences in serum 25-hydroxyvitamin D (25[OH]D) concentrations between children who later progressed to T1D (cases) and matched children who remained nondiabetic and negative for islet autoantibodies (controls) when followed up from birth until disease onset. Design: A total of 3702 prospective serum samples from 252 children were measured for 25(OH)D from the age of 3 months onward using an enzyme immunoassay. Differences between the groups were compared by the mixed-model analysis of variance. Setting: T1D prediction and prevention study clinics in Turku, Oulu, and Tampere University Hospitals, Finland, participated in the study. Participants: By the end of 2012, all 126 case children were diagnosed with T1D. The control children (n = 126) were matched for age, sex, study site, and human leukocyte antigen-HLA-DQ-conferred risk for T1D. Main Outcome Measure: Median circulating 25(OH)D concentration (nanomoles per liter) was measured. Results: The patterns of variation in circulating 25(OH)D concentrations were similar between cases and controls and did not correlate with the age at seroconversion to autoantibody positivity (P = .79) or disease onset (P = .13). The median concentration of all collected samples did not differ between case and control children (66.6 nmol/L [range 14.0–262.8] vs 67.4 nmol/L [range 19.9–213.0]) P = .56). Conclusions: This study shows that serum 25(OH)D concentrations are not associated with the development of T1D in Finland. PMID:26695863

  9. Autoimmunity in picornavirus infections.

    PubMed

    Massilamany, Chandirasegaran; Koenig, Andreas; Reddy, Jay; Huber, Sally; Buskiewicz, Iwona

    2016-02-01

    Enteroviruses are small, non-enveloped, positive-sense single-strand RNA viruses, and are ubiquitously found throughout the world. These viruses usually cause asymptomatic or mild febrile illnesses, but have a propensity to induce severe diseases including type 1 diabetes and pancreatitis, paralysis and neuroinflammatory disease, myocarditis, or hepatitis. This pathogenicity may result from induction of autoimmunity to organ-specific antigens. While enterovirus-triggered autoimmunity can arise from multiple mechanisms including antigenic mimicry and release of sequestered antigens, the recent demonstration of T cells expressing dual T cell receptors arising as a natural consequence of Theiler's virus infection is the first demonstration of this autoimmune mechanism. PMID:26554915

  10. From immunobiology to β-cell biology: the changing perspective on type 1 diabetes.

    PubMed

    Maganti, Aarthi; Evans-Molina, Carmella; Mirmira, Raghavendra

    2014-01-01

    Type 1 Diabetes (T1D) is characterized by the immune mediated destruction of β cells. Clinical studies have focused on drug therapies to modulate autoimmunity, yet none of these interventions has resulted in durable preservation of β-cell function. These findings raise the possibility that initiating or propagating events outside of the immune system should be considered in future efforts to prevent or reverse T1D. An emerging concept suggests that defects inherent to the β cell may trigger autoimmunity. A study by Engin et al. in type 1 diabetic NOD mice suggests that excessive β-cell endoplasmic reticulum stress arising from environmental insults results in abnormal protein synthesis, folding, and/or processing. Administration of the chemical protein folding chaperone TUDCA resulted in recovery of β-cell endoplasmic reticulum function and a diminished incidence of diabetes in NOD mice. We propose here that these data and others support a model whereby an inadequate or defective β-cell endoplasmic reticulum response results in the release of β-cell antigens and neoantigens that initiate autoimmunity. Pharmacologic therapies that either mitigate these early β-cell stressors or enhance the ability of β cells to cope with such stressors may prove to be effective in the prevention or treatment of T1D. PMID:25483958

  11. Screening of endocrine organ-specific humoral autoimmunity in 47,XXY Klinefelter's syndrome reveals a significant increase in diabetes-specific immunoreactivity in comparison with healthy control men.

    PubMed

    Panimolle, Francesca; Tiberti, Claudio; Granato, Simona; Semeraro, Antonella; Gianfrilli, Daniele; Anzuini, Antonella; Lenzi, Andrea; Radicioni, Antonio

    2016-04-01

    The aim of this study was to evaluate the frequency of humoral endocrine organ-specific autoimmunity in 47,XXY Klinefelter's syndrome (KS) by investigating the autoantibody profile specific to type 1 diabetes (T1DM), Addison's disease (AD), Hashimoto thyroiditis (HT), and autoimmune chronic atrophic gastritis (AG). Sixty-one adult Caucasian 47,XXY KS patients were tested for autoantibodies specific to T1DM (Insulin Abs, GAD Abs, IA-2 Abs, Znt8 Abs), HT (TPO Abs), AD (21-OH Abs), and AG (APC Abs). Thirty-five of these patients were not undergoing testosterone replacement therapy TRT (Group 1) and the remaining 26 patients started TRT before the beginning of the study (Group 2). KS autoantibody frequencies were compared to those found in 122 control men. Six of 61 KS patients (9.8 %) were positive for at least one endocrine autoantibody, compared to 6.5 % of controls. Interestingly, KS endocrine immunoreactivity was directed primarily against diabetes-specific autoantigens (8.2 %), with a significantly higher frequency than in controls (p = 0.016). Two KS patients (3.3 %) were TPO Ab positive, whereas no patients were positive for AD- and AG-related autoantigens. The autoantibody endocrine profile of untreated and treated KS patients was not significantly different. Our findings demonstrate for the first time that endocrine humoral immunoreactivity is not rare in KS patients and that it is more frequently directed against type 1 diabetes-related autoantigens, thus suggesting the importance of screening for organ-specific autoimmunity in clinical practice. Follow-up studies are needed to establish if autoantibody-positive KS patients will develop clinical T1DM. PMID:25935328

  12. ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: why can't we prevent or reverse this disease?

    PubMed

    Atkinson, Mark A

    2005-05-01

    Thirty years ago, a convergence of investigational observations lead to the now widely accepted notion that type 1 diabetes results from an autoimmune destruction of insulin-producing beta-cells in subjects genetically predisposed to the disease. Improvements in understanding of the natural history of type 1 diabetes, the biochemical identification of autoantigens, the discovery of spontaneous animal models for the disease, the availability of immune-modulating agents, and other important facets, including disease prediction, drove an early sense of optimism that the prevention of type 1 diabetes was possible and, in some research circles, that ability was thought to be within a not-to-distant reach. Unfortunately, those early expectations proved overly optimistic, and despite the aforementioned knowledge gains, the generation of improved investigational tools, the identification of methods to prevent the disease in animal models, and the formation of very large disease prevention trials, a means to prevent type 1 diabetes in humans continues to remain elusive. Believing in the concept of "informative failures" (a.k.a., wise people learn from their mistakes), this lecture reviews the knowledge base collected over this time period and, when combined with an analysis of those research experiences, sets forth a proposal for future investigations that will, hopefully, turn discoveries into a means for the prevention or reversal of type 1 diabetes. PMID:15855308

  13. Cutting Edge: Commensal Microbiota Has Disparate Effects on Manifestations of Polyglandular Autoimmune Inflammation.

    PubMed

    Hansen, Camilla H F; Yurkovetskiy, Leonid A; Chervonsky, Alexander V

    2016-08-01

    Polyglandular autoimmune inflammation accompanies type 1 diabetes (T1D) in NOD mice, affecting organs like thyroid and salivary glands. Although commensals are not required for T1D progression, germ-free (GF) mice had a very low degree of sialitis, which was restored by colonization with select microbial lineages. Moreover, unlike T1D, which is blocked in mice lacking MyD88 signaling adaptor under conventional, but not GF, housing conditions, sialitis did not develop in MyD88(-/-) GF mice. Thus, microbes and MyD88-dependent signaling are critical for sialitis development. The severity of sialitis did not correlate with the degree of insulitis in the same animal and was less sensitive to a T1D-reducing diet, but it was similar to T1D with regard to microbiota-dependent sexual dimorphism. The unexpected distinction in requirements for the microbiota for different autoimmune pathologies within the same organism is crucial for understanding the nature of microbial involvement in complex autoimmune disorders, including human autoimmune polyglandular syndromes. PMID:27324130

  14. Enhanced immunogenicity of peptide P277 by heat shock protein HSP65 vector carrying tandem repeats of P277 to prevent type 1 diabetes in NOD mice.

    PubMed

    Liang, J; Aihua, Z; Yu, W; Jingjing, L

    2008-10-01

    The peptide P277 contains a target epitope for diabetogenic T cells and it has been used as an ideal target antigen to develop vaccines against type 1 diabetes. A major problem in developing P277 vaccine is its low immunogenicity. Recent applications involving multiple copies of self-peptide in linear alignment and conjugation with carrier proteins appear to increase the immune response. In this study, we designed a method based on isocaudamer technique to repeat tandemly the 24-residue sequence P277, then 6 tandemly repeated copies of the peptide P277 were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-6xP277 as an immunogen. We examined the effect of the tandem repeats of the peptide P277 in eliciting an immune response by comparing the immunogenicity of the three immunogens: P277, HSP65-P277 and HSP65-6xP277. Immunization of mice with the fusion protein HSP65-6xP277 elicited much higher levels of specific anti-P277 antibodies than with P277 and HSP65-P277, which should suggest that multiple tandem repeats of a certain epitope is an efficient method to overcome the low immunogenicity of self-peptide antigens and the immunogen HSP65-6xP277 might be further developed to a vaccine against type 1 diabetes. PMID:18473288

  15. Autoimmune Hepatitis

    MedlinePlus

    ... Organizations ​​ (PDF, 341 KB)​​​​​ Alternate Language URL Autoimmune Hepatitis Page Content On this page: What is autoimmune ... Points to Remember Clinical Trials What is autoimmune hepatitis? Autoimmune hepatitis is a chronic—or long lasting— ...

  16. Nod-like receptors have a grip on stem cells.

    PubMed

    Fritz, Jörg H

    2014-06-11

    Two reports in this issue of Cell Host & Microbe establish that Nod-like receptor proteins NOD1 and NOD2 regulate stem cell function. Burberry et al. (2014) demonstrate that NOD1 and NOD2 synergize with TLRs to mobilize hematopoietic stem cells. Nigro et al. (2014) report that NOD2 provides cytoprotection to intestinal stem cells. PMID:24922568

  17. IDO-Expressing Fibroblasts Protect Islet Beta Cells From Immunological Attack and Reverse Hyperglycemia in Non-Obese Diabetic Mice.

    PubMed

    Zhang, Yun; Jalili, Reza B; Kilani, Ruhangiz T; Elizei, Sanam Salimi; Farrokhi, Ali; Khosravi-Maharlooei, Mohsen; Warnock, Garth L; Ao, Ziliang; Marzban, Lucy; Ghahary, Aziz

    2016-09-01

    Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1β and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1β levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc. PMID:26743772

  18. Aerosol Insulin Induces Regulatory CD8 γδ T Cells That Prevent Murine Insulin-dependent Diabetes

    PubMed Central

    Harrison, Leonard C.; Dempsey-Collier, Majella; Kramer, David R.; Takahashi, Kazuma

    1996-01-01

    Cellular immune hyporesponsiveness can be induced by the presentation of soluble protein antigens to mucosal surfaces. Most studies of mucosa-mediated tolerance have used the oral route of antigen delivery and few have examined autoantigens in natural models of autoimmune disease. Insulin is an autoantigen in humans and nonobese diabetic (NOD) mice with insulindependent diabetes mellitus (IDDM). When we administered insulin aerosol to NOD mice after the onset of subclinical disease, pancreatic islet pathology and diabetes incidence were both significantly reduced. Insulin-treated mice had increased circulating antibodies to insulin, absent splenocyte proliferation to the major epitope, insulin B chain amino acids 9–23, which was associated with increased IL-4 and particularly IL-10 secretion, and reduced proliferation to glutamic acid decarboxylase, another islet autoantigen. The ability of splenocytes from insulin-treated mice to suppress the adoptive transfer of diabetes to nondiabetic mice by T cells of diabetic mice was shown to be caused by small numbers of CD8 γδ T cells. These findings reveal a novel mechanism for suppressing cell-mediated autoimmune disease. Induction of regulatory CD8 γδ T cells by aerosol insulin is a therapeutic strategy with implications for the prevention of human IDDM. PMID:8976172

  19. Exercise-induced cardiac performance in autoimmune (type 1) diabetes is associated with a decrease in myocardial diacylglycerol.

    PubMed

    Loganathan, Rajprasad; Novikova, Lesya; Boulatnikov, Igor G; Smirnova, Irina V

    2012-09-01

    One of the fundamental biochemical defects underlying the complications of diabetic cardiovascular system is elevation of diacylglycerol (DAG) and its effects on protein kinase C (PKC) signaling. It has been noted that exercise training attenuates poor cardiac performance in Type 1 diabetes. However, the role of PKC signaling in exercise-induced alleviation of cardiac abnormalities in diabetes is not clear. We investigated the possibility that exercise training modulates PKC-βII signaling to elicit its beneficial effects on the diabetic heart. bio-breeding diabetic resistant rats, a model reminiscent of Type 1 diabetes in humans, were randomly assigned to four groups: 1) nonexercised nondiabetic (NN); 2) nonexercised diabetic (ND); 3) exercised nondiabetic; and 4) exercised diabetic. Treadmill training was initiated upon the onset of diabetes. At the end of 8 wk, left ventricular (LV) hemodynamic assessment revealed compromised function in ND compared with the NN group. LV myocardial histology revealed increased collagen deposition in ND compared with the NN group, while electron microscopy showed a reduction in the viable mitochondrial fraction. Although the PKC-βII levels and activity were unchanged in the diabetic heart, the DAG levels were increased. With exercise training, the deterioration of LV structure and function in diabetes was attenuated. Notably, improved cardiac performance in training was associated with a decrease in myocardial DAG levels in diabetes. Exercise-induced benefits on cardiac performance in diabetes may be mediated by prevention of an increase in myocardial DAG levels. PMID:22797313

  20. IFN Regulatory Factors 4 and 8 Expression in the NOD Mouse

    PubMed Central

    Besin, Gilles; Gaudreau, Simon; Dumont-Blanchette, Émilie; Ménard, Michael; Guindi, Chantal; Dupuis, Gilles; Amrani, Abdelaziz

    2011-01-01

    Dendritic cells (DCs) contribute to islet inflammation and its progression to diabetes in NOD mouse model and human. DCs play a crucial role in the presentation of autoantigen and activation of diabetogenic T cells, and IRF4 and IRF8 are crucial genes involved in the development of DCs. We have therefore investigated the expression of these genes in splenic DCs during diabetes progression in NOD mice. We found that IRF4 expression was upregulated in splenocytes and in splenic CD11c+ DCs of NOD mice as compared to BALB/c mice. In contrast, IRF8 gene expression was higher in splenocytes of NOD mice whereas its expression was similar in splenic CD11c+ DCs of NOD and BALB/c mice. Importantly, levels of IRF4 and IRF8 expression were lower in tolerogenic bone marrow derived DCs (BMDCs) generated with GM-CSF as compared to immunogenic BMDCs generated with GM-CSF and IL-4. Analysis of splenic DCs subsets indicated that high expression of IRF4 was associated with increased levels of CD4+CD8α−IRF4+CD11c+ DCs but not CD4−CD8α+IRF8+CD11c+ DCs in NOD mice. Our results showed that IRF4 expression was up-regulated in NOD mice and correlated with the increased levels of CD4+CD8α− DCs, suggesting that IRF4 may be involved in abnormal DC functions in type 1 diabetes in NOD mice. PMID:21647406

  1. Temporal changes in salivary glands of non-obese diabetic mice as a model for Sjögren’s syndrome

    PubMed Central

    Roescher, N; Lodde, BM; Vosters, JL; Tak, PP; Catalan, MA; Illei, GG; Chiorini, JA

    2012-01-01

    OBJECTIVE Non-obese diabetic (NOD) mice develop an autoimmune exocrinopathy that shows similarities with Sjögren’s syndrome. They provide an experimental model to study the pathoetiogenesis of this disease. MATERIALS AND METHODS Salivary gland (SG) function and salivary sodium content were measured in 8-, 12-, 16- and 20-week-old NOD and age-matched CB6 mice. In NOD mice, SG expression of phenotypic cell markers, B cell-stimulating and costimulatory molecules were evaluated. Cytokine levels were measured in serum and SG homogenates. RESULTS Microscopically evident SG inflammation in NOD mice was preceded by expression of intercellular adhesion molecule 1 on epithelial cells in the presence of macrophages and relatively high levels of cytokines. Next, an influx consisting of mainly T, B, natural killer, plasma and dendritic cells was seen. Most cytokines, except for interleukin (IL)12 /IL23p40 and B cell-activating factor, decreased or remained stable over time, while glandular function deteriorated from 16 weeks of age onward compared with CB6 mice. CONCLUSION Sjögren’s syndrome-like disease in NOD mice occurs in multiple stages; immunological and physiological abnormalities can be detected before focal inflammation appears and salivary output declines. Extrapolating this knowledge to human subjects could help in understanding the pathogenesis and aid the identification of potential therapeutic targets. PMID:21914088

  2. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets.

    PubMed

    McCarty, Mark F

    2014-09-01

    Third World quasi-vegan cultures have been characterized by low risks for "Western" cancers, autoimmune disorders, obesity, and diabetes. The relatively low essential amino acid contents of many vegan diets may play a role in this regard. It is proposed that such diets modestly activate the kinase GCN2 - a physiological detector of essential amino acid paucity - within the liver, resulting in up-regulated production of fibroblast growth factor 21 (FGF21). FGF21, by opposing the stimulatory effect of growth hormone on hepatic IGF-I production, may be responsible for the down-regulation of plasma IGF-I observed in vegans consuming diets of modest protein content. Decreased IGF-I bioactivity throughout life can be expected to have a favorable impact on cancer risk, as observed in rodents that are calorie restricted or genetically defective in IGF-I activity. Increased FGF21 in vegans might also contribute to their characteristic leanness and low LDL cholesterol by promoting hepatic lipid oxidation while inhibiting lipogenesis. Direct trophic effects of FGF21 on pancreatic beta-cells may help to explain the low risk for diabetes observed in vegans, and the utility of vegan diets in diabetes management. And up-regulation of GCN2 in immune cells, by boosting T regulatory activity, might play some role in the reduced risk for autoimmunity reported in some quasi-vegan cultures. The fact that bone density tends to be no greater in vegans than omnivores, despite consumption of a more "alkaline" diet, might be partially attributable to the fact that FGF21 opposes osteoblastogenesis and decreases IGF-I. If these speculations have merit, it should be possible to demonstrate that adoption of a vegan diet of modest protein content increases plasma FGF21 levels. PMID:25015767

  3. [Polyglandular autoimmune syndromes : An overview].

    PubMed

    Komminoth, P

    2016-05-01

    Polyglandular autoimmune syndromes (PGAS), also known as autoimmune polyendocrinopathy syndromes (APS), are a heterogeneous group of rare, genetically caused diseases of the immune system which lead to inflammatory damage of various endocrine glands resulting in malfunctions. In addition, autoimmune diseases of non-endocrine organs may also be found. Early diagnosis of PGAS is often overlooked because of heterogeneous symptoms and the progressive occurrence of the individual diseases. The two most important forms of PGAS are the juvenile and adult types. The juvenile type (PGAS type 1) is caused by mutations in the autoimmune regulator (AIRE) gene on chromosome 21, exhibits geographic variations in incidence and is defined by the combination of mucocutaneous candidiasis, Addison's disease and hypoparathyroidism. In addition, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome and other autoimmune diseases can also occur. The adult form of PGAS (PGAS type 2) is a multigenetic disorder associated with some HLA haplotypes, is more common than the juvenile type, shows female predominance and exhibits the combination of type 1 diabetes, autoimmune thyroid disease, Addison's disease and other autoimmune disorders. The histological alterations in affected organs of PGAS patients are similar to findings in sporadically occurring autoimmune diseases of these organs but there are no pathognomic fine tissue findings. If patients exhibit autoimmune changes in two different endocrine glands or if there are indications of several autoimmune disorders from the patient history, it is important to consider PGAS and inform the clinicians of this suspicion. PMID:27099223

  4. Identifying type 1 diabetes candidate genes by DNA microarray analysis of islet-specific CD4 + T cells.

    PubMed

    Berry, Gregory J; Frielle, Christine; Brucklacher, Robert M; Salzberg, Anna C; Waldner, Hanspeter

    2015-09-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease resulting from the destruction of insulin-producing pancreatic beta cells and is fatal unless treated with insulin. During the last four decades, multiple insulin-dependent diabetes (Idd) susceptibility/resistance loci that regulate T1D development have been identified in humans and non-obese diabetic (NOD) mice, an established animal model for T1D. However, the exact mechanisms by which these loci confer diabetes risk and the identity of the causative genes remain largely elusive. To identify genes and molecular mechanisms that control the function of diabetogenic T cells, we conducted DNA microarray analysis in islet-specific CD4 + T cells from BDC2.5 TCR transgenic NOD mice that contain the Idd9 locus from T1D-susceptible NOD mice or T1D-resistant C57BL/10 mice. Here we describe in detail the contents and analyses for these gene expression data associated with our previous study [1]. Gene expression data are available at the Gene Expression Omnibus (GEO) repository from the National Center for Biotechnology Information (accession number GSE64674). PMID:26484253

  5. [Spontaneous animal models for insulin-dependent diabetes (type 1 diabetes)].

    PubMed

    Saï, P; Gouin, E

    1997-01-01

    Insulin dependent (type 1) diabetes in humans is a polygenic, auto-immune disease that is characterized, among other things, by the infiltration of the islets of Langerhans by immune cells (insulite) as well as many serum auto-antibodies (including islet cell antibodies: ICA). The medical goal is to diagnose the condition at a sub-clinical stage and then to prevent the disease from developing. Spontaneous diabetic rodent models, in particular the NOD mouse and BB rat are invaluable to the continuing progress of the work aimed at better understanding the human disease. In addition to these models, the study of type 1 diabetes in larger animals, having a longer life-span would also be helpful. In dogs and cats, certain minor kinds of diabetes appear to be of type 1. The classification of diabetes types in carnivores remains poorly defined, however, epidemiological, genetic and metabolic studies are required before these diabetes can be used as operational models for the human pathology. Even if the classification of these diseases is clarified, the ethical and social considerations involved with the use of companion animals, will limit the use of these animals as models for spontaneous diabetes. The selection of a specific line of diabetic dogs should perhaps be considered. PMID:9273084

  6. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant

    PubMed Central

    Piston, David W.

    2015-01-01

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954

  7. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant.

    PubMed

    Gunawardana, Subhadra C; Piston, David W

    2015-06-15

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954

  8. The Soluble CTLA-4 Splice Variant Protects From Type 1 Diabetes and Potentiates Regulatory T-Cell Function

    PubMed Central

    Gerold, Kay D.; Zheng, Peilin; Rainbow, Daniel B.; Zernecke, Alma; Wicker, Linda S.; Kissler, Stephan

    2011-01-01

    OBJECTIVE CTLA4 gene variation associates with multiple autoimmune disorders, including type 1 diabetes. The CTLA4 susceptibility allele was found to generate decreased levels of mRNA encoding soluble CTLA-4 (sCTLA-4) relative to the full-length isoform, the functional consequence of which is as yet unknown. In this study, we investigated the contribution of sCTLA-4 to immune regulation with the aim to elucidate the functional basis of the disease association of CTLA4. RESEARCH DESIGN AND METHODS To model the disease-associated splicing variation of CTLA4, we generated NOD mice in which sCTLA-4 mRNA is silenced by RNA interference. RESULTS We found that loss of sCTLA-4 impairs the function of regulatory T (Treg) cells. This functional defect could be attributed, at least in part, to the failure of sCTLA-4 knockdown (KD) Treg cells to downregulate dendritic cell costimulation. sCTLA-4 KD Treg cells, in contrast with wild-type Treg cells, failed to inhibit colitis induced by transfer of CD4+CD45RBhi cells into NOD.SCID animals. Furthermore, diminished sCTLA-4 expression accelerated the onset of autoimmune diabetes in transgenic mice. CONCLUSIONS Our results demonstrate that sCTLA-4 participates in immune regulation by potentiating the function of Treg cells. The functional outcome of silencing this splice variant in the NOD model provides an explanation for the association of CTLA4 variation with autoimmunity. Lower sCTLA-4 expression from the susceptibility allele may directly affect the suppressive capacity of Treg cells and thereby modulate disease risk. Our unprecedented approach establishes the feasibility of modeling splicing variations relevant to autoimmunity. PMID:21602513

  9. Nodding syndrome - South Sudan, 2011.

    PubMed

    2012-01-27

    In November 2010, the Ministry of Health of the proposed nation of South Sudan requested CDC assistance in investigating a recent increase and geographic clustering of an illness resulting in head nodding and seizures. The outbreak was suspected to be nodding syndrome, an unexplained neurologic condition characterized by episodes of repetitive dropping forward of the head, often accompanied by other seizure-like activity, such as convulsions or staring spells. The condition predominantly affects children aged 5-15 years and has been reported in South Sudan from the states of Western and Central Equatoria and in Northern Uganda and southern Tanzania. Because of visa and security concerns, CDC investigators did not travel to South Sudan until May 2011. On arrival, a case-control study was conducted that included collecting exposure information and biologic specimens to assess the association of nodding syndrome with suspected risk factors. A total of 38 matched case-control pairs were enrolled from two different communities: Maridi and Witto. Overall, current infection with Onchocerca volvulus diagnosed by skin snip was more prevalent among the 38 case-patients (76.3%) than the controls (47.4%) (matched odds ratio [mOR] = 3.2). This difference was driven by the 25 pairs in Maridi (88.0% among case-patients, 44.0% among controls, mOR=9.3); among the 13 pairs in Witto, no significant association with onchocerciasis (known as river blindness) was observed. Although onchocerciasis was more prevalent among case-patients, whether infection preceded or followed nodding syndrome onset was unknown. Priorities for nodding syndrome investigations include improving surveillance to monitor the number of cases and their geographic distribution and continued work to determine the etiology of the syndrome. PMID:22278159

  10. Autoimmune liver disease, autoimmunity and liver transplantation.

    PubMed

    Carbone, Marco; Neuberger, James M

    2014-01-01

    Primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH) represent the three major autoimmune liver diseases (AILD). PBC, PSC, and AIH are all complex disorders in that they result from the effects of multiple genes in combination with as yet unidentified environmental factors. Recent genome-wide association studies have identified numerous risk loci for PBC and PSC that host genes involved in innate or acquired immune responses. These loci may provide a clue as to the immune-based pathogenesis of AILD. Moreover, many significant risk loci for PBC and PSC are also risk loci for other autoimmune disorders, such type I diabetes, multiple sclerosis and rheumatoid arthritis, suggesting a shared genetic basis and possibly similar molecular pathways for diverse autoimmune conditions. There is no curative treatment for all three disorders, and a significant number of patients eventually progress to end-stage liver disease requiring liver transplantation (LT). LT in this context has a favourable overall outcome with current patient and graft survival exceeding 80% at 5years. Indications are as for other chronic liver disease although recent data suggest that while lethargy improves after transplantation, the effect is modest and variable so lethargy alone is not an indication. In contrast, pruritus rapidly responds. Cholangiocarcinoma, except under rigorous selection criteria, excludes LT because of the high risk of recurrence. All three conditions may recur after transplantation and are associated with a greater risk of both acute cellular and chronic ductopenic rejection. It is possible that a crosstalk between alloimmune and autoimmune response perpetuate each other. An immunological response toward self- or allo-antigens is well recognised after LT in patients transplanted for non-autoimmune indications and sometimes termed "de novo autoimmune hepatitis". Whether this is part of the spectrum of rejection or an autoimmune

  11. Types of pediatric diabetes mellitus defined by anti-islet autoimmunity and random C-peptide at diagnosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to test the hypothesis that anti-islet autoantibody expression and random serum C-peptide obtained at diagnosis define phenotypes of pediatric diabetes with distinct clinical features. We analyzed 607 children aged <19 yr consecutively diagnosed with diabetes after ex...

  12. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease

    PubMed Central

    Bilbao, Daniel; Luciani, Luisa; Johannesson, Bjarki; Piszczek, Agnieszka; Rosenthal, Nadia

    2014-01-01

    The recent precipitous rise in autoimmune diseases is placing an increasing clinical and economic burden on health systems worldwide. Current therapies are only moderately efficacious, often coupled with adverse side effects. Here, we show that recombinant human insulin-like growth factor-1 (rhIGF-1) stimulates proliferation of both human and mouse regulatory T (Treg) cells in vitro and when delivered systemically via continuous minipump, it halts autoimmune disease progression in mouse models of type 1 diabetes (STZ and NOD) and multiple sclerosis (EAE) in vivo. rhIGF-1 administration increased Treg cells in affected tissues, maintaining their suppressive properties. Genetically, ablation of the IGF-1 receptor specifically on Treg cell populations abrogated the beneficial effects of rhIGF-1 administration on the progression of multiple sclerotic symptoms in the EAE model, establishing a direct effect of IGF-1 on Treg cell proliferation. These results establish systemically delivered rhIGF-1 as a specific, effective stimulator of Treg cell action, underscoring the clinical feasibility of manipulating natural tolerance mechanisms to suppress autoimmune disease. PMID:25339185

  13. Natural Killer Cells From Children With Type 1 Diabetes Have Defects in NKG2D-Dependent Function and Signaling

    PubMed Central

    Qin, Huilian; Lee, I-Fang; Panagiotopoulos, Constadina; Wang, Xiaoxia; Chu, Alvina D.; Utz, Paul J.; Priatel, John J.; Tan, Rusung

    2011-01-01

    OBJECTIVE Natural killer (NK) cells from NOD mice have numeric and functional abnormalities, and restoration of NK cell function prevents autoimmune diabetes in NOD mice. However, little is known about the number and function of NK cells in humans affected by type 1 diabetes. Therefore, we evaluated the phenotype and function of NK cells in a large cohort of type 1 diabetic children. RESEARCH DESIGN AND METHODS Peripheral blood mononuclear blood cells were obtained from subjects whose duration of disease was between 6 months and 2 years. NK cells were characterized by flow cytometry, enzyme-linked immunosorbent spot assays, and cytotoxicity assays. Signaling through the activating NK cell receptor, NKG2D, was assessed by immunoblotting and reverse-phase phosphoprotein lysate microarray. RESULTS NK cells from type 1 diabetic subjects were present at reduced cell numbers compared with age-matched, nondiabetic control subjects and had diminished responses to the cytokines interleukin (IL)-2 and IL-15. Analysis before and after IL-2 stimulation revealed that unlike NK cells from nondiabetic control subjects, NK cells from type 1 diabetic subjects failed to downregulate the NKG2D ligands, major histocompatibility complex class I–related chains A and B, upon activation. Moreover, type 1 diabetic NK cells also exhibited decreased NKG2D-dependent cytotoxicity and interferon-γ secretion. Finally, type 1 diabetic NK cells showed clear defects in NKG2D-mediated activation of the phosphoinositide 3-kinase–AKT pathway. CONCLUSIONS These results are the first to demonstrate that type 1 diabetic subjects have aberrant signaling through the NKG2D receptor and suggest that NK cell dysfunction contributes to the autoimmune pathogenesis of type 1 diabetes. PMID:21270236

  14. Thyroid autoimmunity and polyglandular endocrine syndromes.

    PubMed

    Wémeau, Jean-Louis; Proust-Lemoine, Emmanuelle; Ryndak, Amélie; Vanhove, Laura

    2013-01-01

    Even though autoimmune thyroiditis is considered as the most emblematic type of organ-specific autoimmune disorder of autoimmunity, autoimmune thyroid diseases can be associated with other autoimmune endocrine failures or non-endocrine diseases (namely vitiligo, pernicious anemia, myasthenia gravis, autoimmune gastritis, celiac disease, hepatitis). Thyroid disorders, which are the most frequent expression of adult polyendocrine syndrome type 2, occur concomitantly with or secondarily to insulinodependent diabetes, premature ovarian failure, Addison's disease (Schmidt syndrome, or Carpenter syndrome if associated with diabetes). Testicular failure and hypoparathyroidism are unusual. The disease is polygenic and multifactorial. Disorders of thyroid autoimmunity are, surprisingly, very rare in polyendocrine syndrome type 1 (or APECED) beginning during childhood. They are related to mutations of the AIRE gene that encodes for a transcriptional factor implicated in central and peripheral immune tolerance. Hypothyroidism can also be observed in the very rare IPEX and POEMS syndromes. PMID:23624130

  15. NOD1 and NOD2: Signaling, Host Defense, and Inflammatory Disease

    PubMed Central

    Caruso, Roberta; Warner, Neil; Inohara, Naohiro; Núñez, Gabriel

    2014-01-01

    Summary The nucleotide-binding oligomerization domain (NOD) proteins, NOD1 and NOD2, the founding members of the intracellular NOD-like receptor family, sense conserved motifs in bacterial peptidoglycan and induce pro-inflammatory and anti-microbial responses. Here we discuss recent developments about the mechanisms by which NOD1 and NOD2 are activated by bacterial ligands, the regulation of their signaling pathways, and their role in host defense and inflammatory disease. Several routes for the entry of peptidoglycan ligands to the host cytosol to trigger activation of NOD1 and NOD2 have been elucidated. Furthermore, genetic screens and biochemical analyses have revealed mechanisms that regulate NOD1 and NOD2 signaling. Finally, recent studies suggest several mechanisms to account for the link between NOD2 mutations and susceptibility to Crohn’s disease. Further understanding of NOD1 and NOD2 should provide new insight into the pathogenesis of disease and the development of new strategies to treat inflammatory and infectious disorders. PMID:25526305

  16. Diabetes

    MedlinePlus

    ... version of this page please turn Javascript on. Diabetes What is Diabetes? Too Much Glucose in the Blood Diabetes means ... high, causing pre-diabetes or diabetes. Types of Diabetes There are three main kinds of diabetes: type ...

  17. Microbiota regulates type 1 diabetes through Toll-like receptors

    PubMed Central

    Burrows, Michael P.; Volchkov, Pavel; Kobayashi, Koichi S.; Chervonsky, Alexander V.

    2015-01-01

    Deletion of the innate immune adaptor myeloid differentiation primary response gene 88 (MyD88) in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) results in microbiota-dependent protection from the disease: MyD88-negative mice in germ-free (GF), but not in specific pathogen-free conditions develop the disease. These results could be explained by expansion of particular protective bacteria (“specific lineage hypothesis”) or by dominance of negative (tolerizing) signaling over proinflammatory signaling (“balanced signal hypothesis”) in mutant mice. Here we found that colonization of GF mice with a variety of intestinal bacteria was capable of reducing T1D in MyD88-negative (but not wild-type NOD mice), favoring the balanced signal hypothesis. However, the receptors and signaling pathways involved in prevention or facilitation of the disease remained unknown. The protective signals triggered by the microbiota were revealed by testing NOD mice lacking MyD88 in combination with knockouts of several critical components of innate immune sensing for development of T1D. Only MyD88- and TIR-domain containing adapter inducing IFN β (TRIF) double deficient NOD mice developed the disease. Thus, TRIF signaling (likely downstream of Toll-like receptor 4, TLR4) serves as one of the microbiota-induced tolerizing pathways. At the same time another TLR (TLR2) provided prodiabetic signaling by controlling the microbiota, as reduction in T1D incidence caused by TLR2 deletion was reversed in GF TLR2-negative mice. Our results support the balanced signal hypothesis, in which microbes provide signals that both promote and inhibit autoimmunity by signaling through different receptors, including receptors of the TLR family. PMID:26216961

  18. Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population.

    PubMed

    Kimpimäki, T; Kulmala, P; Savola, K; Kupila, A; Korhonen, S; Simell, T; Ilonen, J; Simell, O; Knip, M

    2002-10-01

    thoroughly standardized assay appear to be more specific for the screening of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes in the Finnish population, which has the highest incidence of type 1 diabetes in the world. PMID:12364437

  19. Nodding syndrome, western Uganda, 1994.

    PubMed

    Kaiser, Christoph; Rubaale, Tom; Tukesiga, Ephraim; Kipp, Walter; Asaba, George

    2015-07-01

    Nodding syndrome (NS) is a poorly understood condition, which was delineated in 2008 as a new epilepsy syndrome. So far, confirmed cases of NS have been observed in three circumscribed African areas: southern Tanzania, southern Sudan, and northern Uganda. Case-control studies have provided evidence of an association between NS and infection with Onchocerca volvulus, but the causation of NS is still not fully clarified. We report a case of a 15-year old boy with head nodding seizures and other characteristic features of NS from an onchocerciasis endemic area in western Uganda, with no contiguity to the hitherto known areas. We suggest that the existence of NS should be systematically investigated in other areas. PMID:25918208

  20. The Dual NOD1/NOD2 Agonism of Muropeptides Containing a Meso-Diaminopimelic Acid Residue

    PubMed Central

    Dagil, Yulia A.; Arbatsky, Nikolai P.; Alkhazova, Biana I.; L’vov, Vyacheslav L.; Mazurov, Dmitriy V.; Pashenkov, Mikhail V.

    2016-01-01

    Muropeptides are fragments of peptidoglycan that trigger innate immune responses by activating nucleotide-binding oligomerization domain (NOD) 1 and NOD2. Muropeptides from Gram-negative bacteria contain a meso-diaminopimelic acid (meso-DAP) residue in either a terminal or a non-terminal position. While the former ones are known to be recognized by NOD1, much less is known about recognition of muropeptides with non-terminal meso-DAP, which are most abundant moieties of Gram-negative peptidoglycans. Here, we developed a novel system to assess biological activity of muropeptides, based on CRISPR/Cas9-mediated knockout (KO) of NOD1 and NOD2 genes in modified HEK293T cells. Using NOD1/NOD2 knockout and overexpression systems, as well as human monocytes and macrophages, we refine the current view of muropeptide recognition. We show that NOD2 can recognize different natural muropeptides containing a meso-DAP residue (preferably in a non-terminal position), provided they are present at micromolar concentrations. NOD2 accepts muropeptides with long and branched peptide chains and requires an intact N-acetylmuramyl residue. Muropeptides with non-terminal meso-DAP can activate NOD1 as well, but, in this case, probably require peptidase pre-processing to expose the meso-DAP residue. Depending on NOD1/NOD2 ratio in specific cell types, meso-DAP-containing muropeptides can be recognized either primarily via NOD2 (in monocytes) or via NOD1 (in monocyte-derived macrophages and HEK293T-derived cells). The dual NOD1/NOD2 agonism of meso-DAP-containing muropeptides should be taken into account when assessing cellular responses to muropeptides and designing muropeptide immunostimulants and vaccine adjuvants. PMID:27513337

  1. A cluster of coregulated genes determines TGF-beta-induced regulatory T-cell (Treg) dysfunction in NOD mice.

    PubMed

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A; Mathis, Diane; Benoist, Christophe

    2011-05-24

    Foxp3(+) regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4(+) T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility. PMID:21543717

  2. In Autoimmune Diabetes the Transition from Benign to Pernicious Insulitis Requires an Islet Cell Response to Tumor Necrosis Factor α

    PubMed Central

    Pakala, Syamasundar V.; Chivetta, Marylee; Kelly, Colleen B.; Katz, Jonathan D.

    1999-01-01

    The islet-infiltrating and disease-causing leukocytes that are a hallmark of insulin-dependent diabetes mellitus produce and respond to a set of cytokine molecules. Of these, interleukin 1β, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ are perhaps the most important. However, as pleiotropic molecules, they can impact the path leading to β cell apoptosis and diabetes at multiple points. To understand how these cytokines influence both the formative and effector phases of insulitis, it is critical to determine their effects on the assorted cell types comprising the lesion: the effector T cells, antigen-presenting cells, vascular endothelium, and target islet tissue. Here, we report using nonobese diabetic chimeric mice harboring islets deficient in specific cytokine receptors or cytokine-induced effector molecules to assess how these compartmentalized loss-of-function mutations alter the events leading to diabetes. We found that islets deficient in Fas, IFN-γ receptor, or inducible nitric oxide synthase had normal diabetes development; however, the specific lack of TNF- α receptor 1 (p55) afforded islets a profound protection from disease by altering the ability of islet-reactive, CD4+ T cells to establish insulitis and subsequently destroy islet β cells. These results argue that islet cells play a TNF-α–dependent role in their own demise. PMID:10190896

  3. Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity

    SciTech Connect

    Atkinson, E.M.; Long, S.R. ); Palcic, M.M.; Hindsgaul, O. )

    1994-08-30

    Rhizobium bacteria synthesize N-acylated [beta]-1,4-N-acetylglucosamine lipooligosaccharides, called Nod factors, which act as morphogenic signal molecules to legume roots during development of nitrogen-fixing nodules. The biosynthesis of Nod factors is genetically dependent upon the nodulation (nod) genes, including the common nod genes nodABC. We used the Rhizobium meliloti NodH sulfotransferase to prepare [sup 35]S-labeled oligosaccharides which served as metabolic tracers for Nod enzyme activities. This approach provides a general method for following chitooligosaccharide modifications. We found nodAB-dependent conversion of N-acetylchitotetraose (chitotetraose) monosulfate into hydrophobic compounds which by chromatographic and chemical tests were equivalent to acylated Nod factors. Sequential incubation of labeled intermediates with Escherichia coli containing either NodA or NodB showed that NodB was required before NodA during Nod factor biosynthesis. The acylation activity was sensitive to oligosaccharide chain length, with chitotetraose serving as a better substrate than chitobiose or chitotriose. We constructed a putative Nod factor intermediate, GlcN-[beta]1,4-(GlcNac)[sub 3], by enzymatic synthesis and labeled it by NodH-mediated sulfation to create a specific metabolic probe. Acylation of this oligosaccharide required only NodA. These results confirm previous reports that NodB is an N-deacetylase and suggest that NodA is an N-acyltransferase. 31 refs., 6 figs.

  4. Statistical evaluation of multiple-locus linkage data in experimental species and its relevance to human studies: Application to nonobese diabetic (NOD) mouse and human insulin-dependent diabetes mellitus (IDDM)

    SciTech Connect

    Risch, N. ); Ghosh, S.; Todd, J.A.

    1993-09-01

    Common, familial human disorders generally do not follow Mendelian inheritance patterns, presumably because multiple loci are involved in disease susceptibility. One approach to mapping genes for such traits in humans is to first study an analogous form in an animal model, such as mouse, by using inbred strains and backcross experiments. Here the authors describe methodology for analyzing multiple-locus linkage data from such experimental backcrosses, particularly in light of multilocus genetic models, including the effects of epistasis. They illustrate these methods by using data from backcrosses involving nonobese diabetic mouse, which serves as an animal model for human insulin-dependent diabetes mellitus. They show that it is likely that a minimum of nine loci contribute to susceptibility, with strong epistasis effects among these loci. Three of the loci actually confer a protective effect in the homozygote, compared with the heterozygote. Further, they discuss the relevance of these studies for analogous studies of the human form of the trait. Specifically, they show that the magnitude of the gene effect in the experimental backcross is likely to correlate only weakly, at best, with the expected magnitude of effect for a human form, because in humans the gene effect will depend more heavily on disease allele frequencies than on the observed penetrance ratios; such allele frequencies are unpredictable. Hence, the major benefit from animal studies may be a better understanding of the disease process itself, rather than identification of cells through comparison mapping in humans by using regions of homology. 12 refs., 7 tabs.

  5. Autoimmune myelopathies.

    PubMed

    Flanagan, Eoin P

    2016-01-01

    Autoimmune myelopathies are a heterogeneous group of immune-mediated spinal cord disorders with a broad differential diagnosis. They encompass myelopathies with an immune attack on the spinal cord (e.g., aquaporin-4-IgG (AQP4-IgG) seropositive neuromyelitis optica (NMO) and its spectrum disorders (NMOSD)), myelopathies occurring with systemic autoimmune disorders (which may also be due to coexisting NMO/NMOSD), paraneoplastic autoimmune myelopathies, postinfectious autoimmune myelopathies (e.g., acute disseminated encephalomyelitis), and myelopathies thought to be immune-related (e.g., multiple sclerosis and spinal cord sarcoidosis). Spine magnetic resonance imaging is extremely useful in the evaluation of autoimmune myelopathies as the location of signal change, length of the lesion, gadolinium enhancement pattern, and evolution over time narrow the differential diagnosis considerably. The recent discovery of multiple novel neural-specific autoantibodies accompanying autoimmune myelopathies has improved their classification. These autoantibodies may be pathogenic (e.g., AQP4-IgG) or nonpathogenic and more reflective of a cytotoxic T-cell-mediated autoimmune response (collapsin response mediator protein-5(CRMP5)-IgG). The presence of an autoantibody may help guide cancer search, assist treatment decisions, and predict outcome/relapse. With paraneoplastic myelopathies the initial goal is detection and treatment of the underlying cancer. The aim of immunotherapy in all autoimmune myelopathies is to maximize reversibility, maintain benefits (while preventing relapse), and minimize side effects. PMID:27112686

  6. HLA-E–restricted regulatory CD8+ T cells are involved in development and control of human autoimmune type 1 diabetes

    PubMed Central

    Jiang, Hong; Canfield, Steve M.; Gallagher, Mary P.; Jiang, Hong H.; Jiang, Yihua; Zheng, Zongyu; Chess, Leonard

    2010-01-01

    A key feature of the immune system is its ability to discriminate self from nonself. Breakdown in any of the mechanisms that maintain unresponsiveness to self (a state known as self-tolerance) contributes to the development of autoimmune conditions. Recent studies in mice show that CD8+ T cells specific for the unconventional MHC class I molecule Qa-1 bound to peptides derived from the signal sequence of Hsp60 (Hsp60sp) contribute to self/nonself discrimination. However, it is unclear whether they exist in humans and play a role in human autoimmune diseases. Here we have shown that CD8+ T cells specific for Hsp60sp bound to HLA-E (the human homolog of Qa-1) exist and play an important role in maintaining peripheral self-tolerance by discriminating self from nonself in humans. Furthermore, in the majority of type 1 diabetes (T1D) patients tested, there was a specific defect in CD8+ T cell recognition of HLA-E/Hsp60sp, which was associated with failure of self/nonself discrimination. However, the defect in the CD8+ T cells from most of the T1D patients tested could be corrected in vitro by exposure to autologous immature DCs loaded with the Hsp60sp peptide. These data suggest that HLA-E–restricted CD8+ T cells may play an important role in keeping self-reactive T cells in check. Thus, correction of this defect could be a potentially effective and safe approach in the therapy of T1D. PMID:20877010

  7. Caring and Competence: Nel Noddings' Curriculum Thought.

    ERIC Educational Resources Information Center

    Thornton, Stephen J.

    Nel Noddings makes the case that producing caring and competent people ought to be the principal goal of education, suggesting that educators establish the conditions in which students with differing interests, capacities, and needs can achieve things that are educationally worthwhile. This paper considers how Noddings approaches two questions…

  8. NOD-Like Receptor Signaling in Cholesteatoma

    PubMed Central

    Leichtle, Anke; Klenke, Christin; Ebmeyer, Joerg; Daerr, Markus; Bruchhage, Karl-Ludwig; Hoffmann, Anna Sophie; Ryan, Allen F.; Wollenberg, Barbara; Sudhoff, Holger

    2015-01-01

    Background. Cholesteatoma is a destructive process of the middle ear resulting in erosion of the surrounding bony structures with consequent hearing loss, vestibular dysfunction, facial paralysis, or intracranial complications. The etiopathogenesis of cholesteatoma is controversial but is associated with recurrent ear infections. The role of intracellular innate immune receptors, the NOD-like receptors, and their associated signaling networks was investigated in cholesteatoma, since mutations in NOD-like receptor-related genes have been implicated in other chronic inflammatory disorders. Results. The expression of NOD2 mRNA and protein was significantly induced in cholesteatoma compared to the external auditory canal skin, mainly located in the epithelial layer of cholesteatoma. Microarray analysis showed significant upregulation for NOD2, not for NOD1, TLR2, or TLR4 in cholesteatoma. Moreover, regulation of genes in an interaction network of the NOD-adaptor molecule RIPK2 was detected. In addition to NOD2, NLRC4, and PYCARD, the downstream molecules IRAK1 and antiapoptotic regulator CFLAR showed significant upregulation, whereas SMAD3, a proapoptotic inducer, was significantly downregulated. Finally, altered regulation of inflammatory target genes of NOD signaling was detected. Conclusions. These results indicate that the interaction of innate immune signaling mediated by NLRs and their downstream target molecules is involved in the etiopathogenesis and growth of cholesteatoma. PMID:25922834

  9. Differential expression analysis of nuclear oligomerization domain proteins NOD1 and NOD2 in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Hou, Qing-Hua; Yi, Shi-Bai; Ding, Xu; Zhang, Hui-Xian; Sun, Yan; Zhang, Yong; Liu, Xiao-Chun; Lu, Dan-Qi; Lin, Hao-Ran

    2012-11-01

    Nucleotide-binding oligomerization domain-containing proteins-1 and -2 (NOD1 and NOD2) are members of the NOD-like receptors (NLRs) family. They are both cytoplasmic receptors, and sense microbial infections/danger molecules to induce host innate immune response. In this study, the full-length ORF sequences of NOD1 and NOD2 were cloned, and the putative amino acid sequences were identified in orange-spotted grouper (Epinephelus coioides). The complete open reading frame (ORF) of grouper NOD1 contained 2823 bp encoding a 940 amino acid protein. Grouper NOD2 cDNA contained a 2967 bp ORF, encoding a protein of 988 amino acid residues. Both grouper NOD1 and NOD2 had similar domains to human and fish counterparts. Phylogenetic tree analysis showed that grouper NOD1 clustered with grass carp, zebrafish and channel catfish, while NOD2 was most closely related to fugu. Expression patterns of grouper NOD1 and NOD2 were next studied. NOD1 had the highest level of expression in skin while NOD2 in trunk kidney. Post Vibrio alginolyticus (strain EcGS020401), lipopolysaccharide (LPS) or PolyI:C challenges, gene expression of grouper NOD1 and NOD2 was stimulated to different extents. NOD1 showed a significant enhancement after LPS stimulation, but NOD2 increased more significantly after PolyI:C invasion, indicating that NOD1 and NOD2 may exert different effects on the eradication of bacteria and virus. The adaptor protein RIP-like-interacting CLARP kinase (RICK) and downstream molecule interleukin-8 (IL-8) were also induced at different levels after stimulation, which indicated that NOD1 and NOD2 signal transduction was involved in grouper innate immune protection against bacterial and viral infections. PMID:22982325

  10. Characterization of Insulin Antibodies by Surface Plasmon Resonance in Two Clinical Cases: Brittle Diabetes and Insulin Autoimmune Syndrome

    PubMed Central

    Trabucchi, Aldana; Iacono, Ruben F.; Guerra, Luciano L.; Faccinetti, Natalia I.; Krochik, Andrea G.; Arriazu, María C.; Poskus, Edgardo; Valdez, Silvina N.

    2013-01-01

    In this study, the characterization of insulin (auto)antibodies has been described, mainly in terms of concentration (q), affinity (Ka) and Ig (sub)isotypes by Surface Plasmon Resonance (SPR) in two particular clinical cases of individuals with severe episodes of impaired glycemia. Subject 1 suffers from brittle diabetes associated with circulating insulin antibodies (IA) due to insulin treatment. Subject 2 has insulin autoantibodies (IAA) associated with hypoglycemia in spite of not being diabetic and not having ever received exogenous insulin therapy. After conventional screening for IA/IAA by radioligand binding assay (RBA), we further characterized IA/IAA in sera of both patients in terms of concentration (q), affinity (Ka) and Ig (sub)isotypes by means of SPR technology. In both cases, q values were higher and Ka values were lower than those obtained in type 1 diabetic patients, suggesting that IA/IAA:insulin immunocomplexes could be responsible for the uncontrolled glycemia. Moreover, subject 1 had a predominat IgG1 response and subject 2 had an IgG3 response. In conclusion, SPR technology is useful for the complete characterization of IA/IAA which can be used in special cases where the simple positive/negative determination is not enough to achieve a detailed description of the disease fisiopathology. PMID:24386337

  11. Characterization of insulin antibodies by Surface Plasmon Resonance in two clinical cases: brittle diabetes and insulin autoimmune syndrome.

    PubMed

    Trabucchi, Aldana; Iacono, Ruben F; Guerra, Luciano L; Faccinetti, Natalia I; Krochik, Andrea G; Arriazu, María C; Poskus, Edgardo; Valdez, Silvina N

    2013-01-01

    In this study, the characterization of insulin (auto)antibodies has been described, mainly in terms of concentration (q), affinity (Ka) and Ig (sub)isotypes by Surface Plasmon Resonance (SPR) in two particular clinical cases of individuals with severe episodes of impaired glycemia. Subject 1 suffers from brittle diabetes associated with circulating insulin antibodies (IA) due to insulin treatment. Subject 2 has insulin autoantibodies (IAA) associated with hypoglycemia in spite of not being diabetic and not having ever received exogenous insulin therapy. After conventional screening for IA/IAA by radioligand binding assay (RBA), we further characterized IA/IAA in sera of both patients in terms of concentration (q), affinity (Ka) and Ig (sub)isotypes by means of SPR technology. In both cases, q values were higher and Ka values were lower than those obtained in type 1 diabetic patients, suggesting that IA/IAA:insulin immunocomplexes could be responsible for the uncontrolled glycemia. Moreover, subject 1 had a predominat IgG1 response and subject 2 had an IgG3 response. In conclusion, SPR technology is useful for the complete characterization of IA/IAA which can be used in special cases where the simple positive/negative determination is not enough to achieve a detailed description of the disease fisiopathology. PMID:24386337

  12. Usefulness of postmortem biochemistry in identification of ketosis: Diagnosis of ketoacidosis at the onset of autoimmune type 1 diabetes in an autopsy case with cold exposure and malnutrition.

    PubMed

    Tani, Naoto; Michiue, Tomomi; Chen, Jian-Hua; Oritani, Shigeki; Ishikawa, Takaki

    2016-09-01

    A severely malnourished, Japanese female in her twenties was found dead in her apartment. On autopsy, most of the findings from the internal examination were suggestive of hypothermia. Postmortem biochemistry, however, showed severely increased levels of glycated hemoglobin (HbA1c) and blood and urine glucose levels. Levels of acetone, 3-hydroxybutyric acid, and acetoacetate in various body fluids were also highly increased, indicating ketosis. The serum insulin and c-peptide levels were severely low, and subsequent testing was positive for anti-GAD antibodies. Immunohistochemical examination of the pancreatic islet cells revealed few insulin-positive cells but many glucagon-positive cells on staining. Furthermore, slight invasion of CD8-positive lymphocytes in the pancreatic islets of Langerhans was observed. Results of immunostaining of the pancreatic and bronchial epithelial tissues were partly positive for the Influenza A virus. We concluded that severe ketoacidosis associated with rapid-onset hyperglycemia due to autoimmune type 1 diabetes (AT1D) had occurred shortly before death. However, the ketosis was accompanied by hypothermia and malnutrition as well as diabetic ketoacidosis (DKA). Therefore, we retrospectively collected biochemical data on cases of hypothermia and malnutrition and compared them with the present case. Serum glucose, acetone, 3-hydroxybutyric acid, and acetoacetic acid can be used for screening and diagnosis to distinguish DKA from ketosis due to hypothermia and malnutrition. Therefore, in the present case, we diagnosed that the natural cause of death was due to AT1D. In conclusion, screening investigations for relevant biochemical markers can provide essential information for the diagnosis of metabolic disturbances, which fail to demonstrate characteristic autopsy findings. PMID:27591535

  13. Nod-Like Receptors: Cytosolic Watchdogs for Immunity against Pathogens

    PubMed Central

    Sirard, Jean-Claude; Vignal, Cécile; Dessein, Rodrigue; Chamaillard, Mathias

    2007-01-01

    In mammals, tissue-specific sets of pattern-recognition molecules, including Nod-like receptors (NLR), enable concomitant and sequential detection of microbial-associated molecular patterns from both the extracellular and intracellular microenvironment. Repressing and de-repressing the cytosolic surveillance machinery contributes to vital immune homeostasis and protective responses within specific tissues. Conversely, defective biology of NLR drives the development of recurrent infectious, autoimmune and/or inflammatory diseases by failing to mount barrier functions against pathogens, to tolerate commensals, and/or to instruct the adaptive immune response against microbes. Better decoding microbial strategies that are evolved to circumvent NLR sensing will provide clues for the development of rational therapies aimed at curing and/or preventing common and emerging immunopathologies. PMID:18166077

  14. Pathogenic Mechanisms in Type 1 Diabetes: The Islet is Both Target and Driver of Disease

    PubMed Central

    Graham, Kate L.; Sutherland, Robyn M.; Mannering, Stuart I.; Zhao, Yuxing; Chee, Jonathan; Krishnamurthy, Balasubramanian; Thomas, Helen E.; Lew, Andrew M.; Kay, Thomas W.H.

    2012-01-01

    Recent advances in our understanding of the pathogenesis of type 1 diabetes have occurred in all steps of the disease. This review outlines the pathogenic mechanisms utilized by the immune system to mediate destruction of the pancreatic beta-cells. The autoimmune response against beta-cells appears to begin in the pancreatic lymph node where T cells, which have escaped negative selection in the thymus, first meet beta-cell antigens presented by dendritic cells. Proinsulin is an important antigen in early diabetes. T cells migrate to the islets via the circulation and establish insulitis initially around the islets. T cells within insulitis are specific for islet antigens rather than bystanders. Pathogenic CD4+ T cells may recognize peptides from proinsulin which are produced locally within the islet. CD8+ T cells differentiate into effector T cells in islets and then kill beta-cells, primarily via the perforin-granzyme pathway. Cytokines do not appear to be important cytotoxic molecules in vivo. Maturation of the immune response within the islet is now understood to contribute to diabetes, and highlights the islet as both driver and target of the disease. The majority of our knowledge of these pathogenic processes is derived from the NOD mouse model, although some processes are mirrored in the human disease. However, more work is required to translate the data from the NOD mouse to our understanding of human diabetes pathogenesis. New technology, especially MHC tetramers and modern imaging, will enhance our understanding of the pathogenic mechanisms. PMID:23804258

  15. Oral ingestion of Capsaicin, the pungent component of chili pepper, enhances a discreet population of macrophages and confers protection from autoimmune diabetes.

    PubMed

    Nevius, E; Srivastava, P K; Basu, S

    2012-01-01

    Vanilloid receptor 1 (VR1) is expressed on immune cells as well as on sensory neurons. Here we report that VR1 can regulate immunological events in the gut in response to its ligand Capsaicin (CP), a nutritional factor, the pungent component of chili peppers. Oral administration of CP attenuates the proliferation and activation of autoreactive T cells in pancreatic lymph nodes (PLNs) but not other lymph nodes, and protects mice from development of type 1 diabetes (T1D). This is a general phenomenon and not restricted to one particular strain of mice. Engagement of VR1 enhances a discreet population of CD11b(+)/F4/80(+) macrophages in PLN, which express anti-inflammatory factors interleukin (IL)-10 and PD-L1. This population is essential for CP-mediated attenuation of T-cell proliferation in an IL-10-dependent manner. Lack of VR1 expression fails to inhibit proliferation of autoreactive T cells, which is partially reversed in (VR1(+/+) → VR1(-/-)) bone marrow chimeric mice, implying the role of VR1 in crosstalk between neuronal and immunological responses in vivo. These findings imply that endogenous ligands of VR1 can have profound effect on gut-mediated immune tolerance and autoimmunity by influencing the nutrient-immune interactions. PMID:22113584

  16. Pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome is associated with severe chronic inflammation and cardiomyopathy, and represents a new monogenic autoinflammatory syndrome.

    PubMed

    Senniappan, Senthil; Hughes, Marina; Shah, Pratik; Shah, Vanita; Kaski, Juan Pablo; Brogan, Paul; Hussain, Khalid

    2013-01-01

    Mutations in SLC29A3 lead to pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) and H syndromes, familial Rosai-Dorfman disease, and histiocytosis-lymphadenopathy plus syndrome. We report a new association of PHID syndrome with severe systemic inflammation, scleroderma-like changes, and cardiomyopathy. A 12-year-old girl with PHID syndrome presented with shortness of breath, hepatosplenomegaly, and raised erythrocyte sedimentation rate and C-reactive protein. An echocardiogram showed biventricular myocardial hypertrophy, and cardiac magnetic resonance imaging showed circumferential late gadolinium enhancement of the myocardium. No systemic amyloid deposits were observed on a whole-body serum amyloid P scintigraphy scan. Abdominal ultrasound revealed intra-abdominal fat surrounding the solid organs, suggesting a possibility of evolving lipodystrophy with visceral adiposity. PHID syndrome is a novel monogenic autoinflammatory syndrome (AIS) associated with severe elevation of serum amyloid. Lipodystrophy, cutaneous sclerodermatous changes, and cardiomyopathy were also present in this case. In contrast to other AIS, blockade of interleukin-1 and tumor necrosis-α was ineffective. PMID:23729543

  17. Autoimmune hepatitis

    MedlinePlus

    Lupoid hepatitis; Chronic acute liver disease ... This form of hepatitis is an autoimmune disease . The body's immune system cannot tell the difference between healthy body tissue and harmful, outside ...

  18. Autoimmune disorders

    MedlinePlus

    ... exact cause of autoimmune disorders is unknown. One theory is that some microorganisms (such as bacteria or viruses) or drugs may trigger changes that confuse the immune system. This may happen ...

  19. Effect of 'antidiabetis' herbal preparation on serum glucose and fructosamine in NOD mice.

    PubMed

    Petlevski, R; Hadzija, M; Slijepcevic, M; Juretic, D

    2001-05-01

    The antihyperglycemic effect of the Antidiabetis herbal preparation ((Myrtilli folium (Vaccinium myrtillus L.), Taraxaci radix (Taraxacum officinale Web.), Cichorii radix (Cichorium intybus L.), Juniperi fructus (Juniperus communis L.), Centaurii herba (Centaurium umbellatum Gilib.), Phaseoli pericarpium (Phaseolus vulgaris), Millefollii herba (Achillea millefolium L.), Morii folium (Morus nigra L.), Valeriane radix (Valleriana officinalis L.), Urticae herba et radix (Urtica dioica L.)), patent No. P-9801091 Zagreb, Croatia was investigated. Two extracts were prepared: ethanol extract (extract 1), and ethanol extract from which ethanol was evaporated on a rotatory evaporator at a temperature of 45 degrees C (extract 2). Extract 1 and extract 2 were administered (in experiment 1) to alloxan-induced non-obese diabetic (NOD) mice in the same dose of 20 mg/kg. Blood glucose was determined before, and 10, 30, 60 and 120 min after the preparation administration. Extract 1 and extract 2 decreased the level of blood glucose by 10 and 20%, respectively, of the initial value (at 0 min, mean = 22.6 +/- 8.3 mmol/l). Serum levels of glucose and fructosamine were determined in NOD mice, NOD mice administered extract 2 in a dose of 20 mg/kg of extract 2, and NOD mice administered acarbose in a dose of 25 mg/100 g chow, in order to verify the hypoglycemic action of extract 2 (in experiment 2). Extract 2 and acarbose were admixed to the chow. The duration of treatment was 7 days. Significantly lower glucose (P < 0.05) and fructosamine (P < 0.001) levels were recorded in extract 2 treated NOD mice as compared with NOD mice. Study results showed extract 2 to significantly decrease the level of glucose and fructosamine in alloxan induced NOD mice. Our future studies will be focused on the search of active principles of the extracts. PMID:11297848

  20. [Autoimmune encephalitis].

    PubMed

    Davydovskaya, M V; Boyko, A N; Beliaeva, I A; Martynov, M Yu; Gusev, E I

    2015-01-01

    The authors consider the issues related to pathogenesis, clinical features, diagnosis and treatment of autoimmune encephalitis. It has been demonstrated that the development of autoimmune encephalitis can be associated with the oncologic process or be of idiopathic character. The pathogenesis of autoimmune encephalitis is caused by the production of antibodies that directly or indirectly (via T-cell mechanism) damage exo-and/or endocellular structures of the nerve cells. The presence of antobodies to endocellular structures of neurons in the cerebrospinal fluid of patients with autoimmune encephalitis in the vast majority of cases (> 95%) indicates the concomitant oncologic process, the presence of antibodies to membranes or neuronal synapses can be not associated with the oncologic process. Along with complex examination, including neuroimaging, EEG, cerebrospinal fluid and antibodies, the diagnostic algorithm in autoimmune encephalitis should include the search for the nidus of cancer. The treatment algorithm in autoimmune encephalitis included the combined immunosupressive therapy, plasmapheresis, immunoglobulines, cytostatics as well as treatment of the oncologic process. PMID:26322363

  1. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  2. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  3. CXCL13 blockade disrupts B lymphocyte organization in tertiary lymphoid structures without altering B cell receptor bias or preventing diabetes in nonobese diabetic mice.

    PubMed

    Henry, Rachel A; Kendall, Peggy L

    2010-08-01

    Lymphocytes that invade nonlymphoid tissues often organize into follicle-like structures known as tertiary lymphoid organs (TLOs). These structures resemble those found in spleen or lymph nodes, but their function is unknown. TLOs are recognized in many autoimmune diseases, including the NOD mouse model of type 1 diabetes. In some cases, TLOs have been associated with the B lymphocyte chemoattractant, CXCL13. Studies presented in this article show that CXCL13 is present in inflamed islets of NOD mice. Ab blockade of this chemokine unraveled B lymphocyte organization in islet TLOs, without reducing their proportion in the islets. These chaotic milieus contained B lymphocytes with the same distinct repertoire of B cell receptors as those found in mice with well-organized structures. Somatic hypermutation, associated with T-B interactions, was not impaired in these disorganized insulitis lesions. Finally, loss of B lymphocyte organization in islets did not provide disease protection. Thus, B lymphocytes infiltrating islets in NOD mice do not require the morphology of secondary lymphoid tissues to support their role in disease. PMID:20574003

  4. Interleukin 2 Topical Cream for Treatment of Diabetic Foot Ulcer: Experiment Protocol

    PubMed Central

    2015-01-01

    Background It is estimated there are 2.9 million diabetic patients in the United Kingdom, and around 5%-7% of patients have diabetic ulcers. This number will continue to increase globally. Diabetic ulcers are a major economic burden on the healthcare system. More than £650 million is spent on foot ulcers or amputations each year, and up to 100 people a week have a limb amputated due to diabetes. In T1DM, the level of IL-2 is reduced, and hence, wound healing is in a prolonged inflammatory phase. It is not known if IL-2 topical cream can shorten the healing process in T1DM patients. Objective The objective of this study is to understand the pathophysiology in type 1 diabetes (T1DM) and investigate possible future treatment based on its clinical features. The hypothesis is that IL-2 cream can speed up wound healing in NOD mice and that this can be demonstrated in a ten-week study. An experiment protocol is designed in a mouse model for others to conduct the experiment. The discussion is purely based on diabetic conditions; lifestyle influences like smoking and drinking are not considered. Methods Skin incisions will be created on 20 nonobese diabetic (NOD) mice, and IL-2 topical cream will be applied in a 10-week study to prove the hypothesis. Mice will be randomly and equally divide into two groups with one being the control group. Results T1DM patients have a decreased number of T regulatory (Treg) cells and interleukin 2 (IL-2). These are the keys to the disease progression and delay in wound healing. Diabetic ulcer is a chronic wound and characterized by a prolonged inflammatory phase. Conclusions If the experiment is successful, T1DM patients will have an alternative, noninvasive treatment of foot ulcers. In theory, patients with other autoimmune diseases could also use IL-2 topical cream for treatment. PMID:26276522

  5. Autoimmune encephalopathies

    PubMed Central

    Leypoldt, Frank; Armangue, Thaís; Dalmau, Josep

    2014-01-01

    Over the last 10 years the continual discovery of novel forms of encephalitis associated with antibodies to cell-surface or synaptic proteins has changed the paradigms for diagnosing and treating disorders that were previously unknown or mischaracterized. We review here the process of discovery, the symptoms, and the target antigens of twelve autoimmune encephatilic disorders, grouped by syndromes and approached from a clinical perspective. Anti-NMDAR encephalitis, several subtypes of limbic encephalitis, stiff-person spectrum disorders, and other autoimmune encephalitides that result in psychosis, seizures, or abnormal movements are described in detail. We include a novel encephalopathy with prominent sleep dysfunction that provides an intriguing link between chronic neurodegeneration and cell-surface autoimmunity (IgLON5). Some of the caveats of limited serum testing are outlined. In addition, we review the underlying cellular and synaptic mechanisms that for some disorders confirm the antibody pathogenicity. The multidisciplinary impact of autoimmune encephalitis has been expanded recently by the discovery that herpes simplex encephalitis is a robust trigger of synaptic autoimmunity, and that some patients may develop overlapping syndromes, including anti-NMDAR encephalitis and neuromyelitis optica or other demyelinating diseases. PMID:25315420

  6. Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice.

    PubMed

    Fraser, Heather I; Howlett, Sarah; Clark, Jan; Rainbow, Daniel B; Stanford, Stephanie M; Wu, Dennis J; Hsieh, Yi-Wen; Maine, Christian J; Christensen, Mikkel; Kuchroo, Vijay; Sherman, Linda A; Podolin, Patricia L; Todd, John A; Steward, Charles A; Peterson, Laurence B; Bottini, Nunzio; Wicker, Linda S

    2015-11-15

    By congenic strain mapping using autoimmune NOD.C57BL/6J congenic mice, we demonstrated previously that the type 1 diabetes (T1D) protection associated with the insulin-dependent diabetes (Idd)10 locus on chromosome 3, originally identified by linkage analysis, was in fact due to three closely linked Idd loci: Idd10, Idd18.1, and Idd18.3. In this study, we define two additional Idd loci--Idd18.2 and Idd18.4--within the boundaries of this cluster of disease-associated genes. Idd18.2 is 1.31 Mb and contains 18 genes, including Ptpn22, which encodes a phosphatase that negatively regulates T and B cell signaling. The human ortholog of Ptpn22, PTPN22, is associated with numerous autoimmune diseases, including T1D. We, therefore, assessed Ptpn22 as a candidate for Idd18.2; resequencing of the NOD Ptpn22 allele revealed 183 single nucleotide polymorphisms with the C57BL/6J (B6) allele--6 exonic and 177 intronic. Functional studies showed higher expression of full-length Ptpn22 RNA and protein, and decreased TCR signaling in congenic strains with B6-derived Idd18.2 susceptibility alleles. The 953-kb Idd18.4 locus contains eight genes, including the candidate Cd2. The CD2 pathway is associated with the human autoimmune disease, multiple sclerosis, and mice with NOD-derived susceptibility alleles at Idd18.4 have lower CD2 expression on B cells. Furthermore, we observed that susceptibility alleles at Idd18.2 can mask the protection provided by Idd10/Cd101 or Idd18.1/Vav3 and Idd18.3. In summary, we describe two new T1D loci, Idd18.2 and Idd18.4, candidate genes within each region, and demonstrate the complex nature of genetic interactions underlying the development of T1D in the NOD mouse model. PMID:26438525

  7. Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice

    PubMed Central

    Fraser, Heather I.; Howlett, Sarah; Clark, Jan; Rainbow, Daniel B.; Stanford, Stephanie M.; Wu, Dennis J.; Hsieh, Yi-Wen; Maine, Christian J.; Christensen, Mikkel; Kuchroo, Vijay; Sherman, Linda A.; Podolin, Patricia L.; Todd, John A.; Steward, Charles A.; Peterson, Laurence B.; Bottini, Nunzio

    2015-01-01

    By congenic strain mapping using autoimmune NOD.C57BL/6J congenic mice, we demonstrated previously that the type 1 diabetes (T1D) protection associated with the insulin-dependent diabetes (Idd)10 locus on chromosome 3, originally identified by linkage analysis, was in fact due to three closely linked Idd loci: Idd10, Idd18.1, and Idd18.3. In this study, we define two additional Idd loci—Idd18.2 and Idd18.4—within the boundaries of this cluster of disease-associated genes. Idd18.2 is 1.31 Mb and contains 18 genes, including Ptpn22, which encodes a phosphatase that negatively regulates T and B cell signaling. The human ortholog of Ptpn22, PTPN22, is associated with numerous autoimmune diseases, including T1D. We, therefore, assessed Ptpn22 as a candidate for Idd18.2; resequencing of the NOD Ptpn22 allele revealed 183 single nucleotide polymorphisms with the C57BL/6J (B6) allele—6 exonic and 177 intronic. Functional studies showed higher expression of full-length Ptpn22 RNA and protein, and decreased TCR signaling in congenic strains with B6-derived Idd18.2 susceptibility alleles. The 953-kb Idd18.4 locus contains eight genes, including the candidate Cd2. The CD2 pathway is associated with the human autoimmune disease, multiple sclerosis, and mice with NOD-derived susceptibility alleles at Idd18.4 have lower CD2 expression on B cells. Furthermore, we observed that susceptibility alleles at Idd18.2 can mask the protection provided by Idd10/Cd101 or Idd18.1/Vav3 and Idd18.3. In summary, we describe two new T1D loci, Idd18.2 and Idd18.4, candidate genes within each region, and demonstrate the complex nature of genetic interactions underlying the development of T1D in the NOD mouse model. PMID:26438525

  8. Can CD44 Be a Mediator of Cell Destruction? The Challenge of Type 1 Diabetes

    PubMed Central

    Assayag-Asherie, Nathalie; Sever, Dror; Bogdani, Marika; Johnson, Pamela; Weiss, Talya; Ginzberg, Ariel; Perles, Sharon; Weiss, Lola; Sebban, Lora Eshkar; Turley, Eva A.; Okon, Elimelech; Raz, Itamar; Naor, David

    2015-01-01

    CD44 is a multi-functional receptor with multiple of isoforms engaged in modulation of cell trafficking and transmission of apoptotic signals. We have previously shown that injection of anti-CD44 antibody into NOD mice induced resistance to type 1 diabetes (T1D). In this communication we describe our efforts to understand the mechanism underlying this effect. We found that CD44-deficient NOD mice develop stronger resistance to T1D than wild-type littermates. This effect is not explained by the involvement of CD44 in cell migration, because CD44-deficient inflammatory cells surprisingly had greater invasive potential than the corresponding wild type cells, probably owing to molecular redundancy. We have previously reported and we show here again that CD44 expression and hyaluronic acid (HA, the principal ligand for CD44) accumulation are detected in pancreatic islets of diabetic NOD mice, but not of non-diabetic DBA/1 mice. Expression of CD44 on insulin-secreting β cells renders them susceptible to the autoimmune attack, and is associated with a diminution in β-cells function (e.g., less insulin production and/or insulin secretion) and possibly also with an enhanced apoptosis rate. The diabetes-supportive effect of CD44 expression on β cells was assessed by the TUNEL assay and further strengthened by functional assays exhibiting increased nitric oxide release, reduced insulin secretion after glucose stimulation and decreased insulin content in β cells. All these parameters could not be detected in CD44-deficient islets. We further suggest that HA-binding to CD44-expressing β cells is implicated in β-cell demise. Altogether, these data agree with the concept that CD44 is a receptor capable of modulating cell fate. This finding is important for other pathologies (e.g., cancer, neurodegenerative diseases) in which CD44 and HA appear to be implicated. PMID:26624007

  9. Can CD44 Be a Mediator of Cell Destruction? The Challenge of Type 1 Diabetes.

    PubMed

    Assayag-Asherie, Nathalie; Sever, Dror; Bogdani, Marika; Johnson, Pamela; Weiss, Talya; Ginzberg, Ariel; Perles, Sharon; Weiss, Lola; Sebban, Lora Eshkar; Turley, Eva A; Okon, Elimelech; Raz, Itamar; Naor, David

    2015-01-01

    CD44 is a multi-functional receptor with multiple of isoforms engaged in modulation of cell trafficking and transmission of apoptotic signals. We have previously shown that injection of anti-CD44 antibody into NOD mice induced resistance to type 1 diabetes (T1D). In this communication we describe our efforts to understand the mechanism underlying this effect. We found that CD44-deficient NOD mice develop stronger resistance to T1D than wild-type littermates. This effect is not explained by the involvement of CD44 in cell migration, because CD44-deficient inflammatory cells surprisingly had greater invasive potential than the corresponding wild type cells, probably owing to molecular redundancy. We have previously reported and we show here again that CD44 expression and hyaluronic acid (HA, the principal ligand for CD44) accumulation are detected in pancreatic islets of diabetic NOD mice, but not of non-diabetic DBA/1 mice. Expression of CD44 on insulin-secreting β cells renders them susceptible to the autoimmune attack, and is associated with a diminution in β-cells function (e.g., less insulin production and/or insulin secretion) and possibly also with an enhanced apoptosis rate. The diabetes-supportive effect of CD44 expression on β cells was assessed by the TUNEL assay and further strengthened by functional assays exhibiting increased nitric oxide release, reduced insulin secretion after glucose stimulation and decreased insulin content in β cells. All these parameters could not be detected in CD44-deficient islets. We further suggest that HA-binding to CD44-expressing β cells is implicated in β-cell demise. Altogether, these data agree with the concept that CD44 is a receptor capable of modulating cell fate. This finding is important for other pathologies (e.g., cancer, neurodegenerative diseases) in which CD44 and HA appear to be implicated. PMID:26624007

  10. Prolactin as an Adjunct for Type 1 Diabetes Immunotherapy.

    PubMed

    Hyslop, Colin M; Tsai, Sue; Shrivastava, Vipul; Santamaria, Pere; Huang, Carol

    2016-01-01

    Type 1 diabetes is caused by autoimmune destruction of β-cells. Although immunotherapy can restore self-tolerance thereby halting continued immune-mediated β-cell loss, residual β-cell mass and function is often insufficient for normoglycemia. Using a growth factor to boost β-cell mass can potentially overcome this barrier and prolactin (PRL) may fill this role. Previous studies have shown that PRL can stimulate β-cell proliferation and up-regulate insulin synthesis and secretion while reducing lymphocytic infiltration of islets, suggesting that it may restore normoglycemia through complementary mechanisms. Here, we test the hypothesis that PRL can improve the efficacy of an immune modulator, the anticluster of differentiation 3 monoclonal antibody (aCD3), in inducing diabetes remission by up-regulating β-cell mass and function. Diabetic nonobese diabetic (NOD) mice were treated with a 5-day course of aCD3 with or without a concurrent 3-week course of PRL. We found that a higher proportion of diabetic mice treated with the aCD3 and PRL combined therapy achieved diabetes reversal than those treated with aCD3 alone. The aCD3 and PRL combined group had a higher β-cell proliferation rate, an increased β-cell fraction, larger islets, higher pancreatic insulin content, and greater glucose-stimulated insulin release. Lineage-tracing analysis found minimal contribution of β-cell neogenesis to the formation of new β-cells. Although we did not detect a significant difference in the number or proliferative capacity of T cells, we observed a higher proportion of insulitis-free islets in the aCD3 and PRL group. These results suggest that combining a growth factor with an immunotherapy may be an effective treatment paradigm for autoimmune diabetes. PMID:26512750

  11. Autoimmune synaptopathies.

    PubMed

    Crisp, Sarah J; Kullmann, Dimitri M; Vincent, Angela

    2016-02-01

    Autoantibodies targeting proteins at the neuromuscular junction are known to cause several distinct myasthenic syndromes. Recently, autoantibodies targeting neurotransmitter receptors and associated proteins have also emerged as a cause of severe, but potentially treatable, diseases of the CNS. Here, we review the clinical evidence as well as in vitro and in vivo experimental evidence that autoantibodies account for myasthenic syndromes and autoimmune disorders of the CNS by disrupting the functional or structural integrity of synapses. Studying neurological and psychiatric diseases of autoimmune origin may provide new insights into the cellular and circuit mechanisms underlying a broad range of CNS disorders. PMID:26806629

  12. Single-cell mass cytometry of TCR signaling: amplification of small initial differences results in low ERK activation in NOD mice.

    PubMed

    Mingueneau, Michael; Krishnaswamy, Smita; Spitzer, Matthew H; Bendall, Sean C; Stone, Erica L; Hedrick, Stephen M; Pe'er, Dana; Mathis, Diane; Nolan, Garry P; Benoist, Christophe

    2014-11-18

    Signaling from the T-cell receptor (TCR) conditions T-cell differentiation and activation, requiring exquisite sensitivity and discrimination. Using mass cytometry, a high-dimensional technique that can probe multiple signaling nodes at the single-cell level, we interrogate TCR signaling dynamics in control C57BL/6 and autoimmunity-prone nonobese diabetic (NOD) mice, which show ineffective ERK activation after TCR triggering. By quantitating signals at multiple steps along the signaling cascade and parsing the phosphorylation level of each node as a function of its predecessors, we show that a small impairment in initial pCD3ζ activation resonates farther down the signaling cascade and results in larger defects in activation of the ERK1/2-S6 and IκBα modules. This nonlinear property of TCR signaling networks, which magnifies small initial differences during signal propagation, also applies in cells from B6 mice activated at different levels of intensity. Impairment in pCD3ζ and pSLP76 is not a feedback consequence of a primary deficiency in ERK activation because no proximal signaling defect was observed in Erk2 KO T cells. These defects, which were manifest at all stages of T-cell differentiation from early thymic pre-T cells to memory T cells, may condition the imbalanced immunoregulation and tolerance in NOD T cells. More generally, this amplification of small initial differences in signal intensity may explain how T cells discriminate between closely related ligands and adopt strongly delineated cell fates. PMID:25362052

  13. Single-cell mass cytometry of TCR signaling: Amplification of small initial differences results in low ERK activation in NOD mice

    PubMed Central

    Mingueneau, Michael; Krishnaswamy, Smita; Spitzer, Matthew H.; Bendall, Sean C.; Stone, Erica L.; Hedrick, Stephen M.; Pe'er, Dana; Mathis, Diane; Nolan, Garry P.; Benoist, Christophe

    2014-01-01

    Signaling from the T-cell receptor (TCR) conditions T-cell differentiation and activation, requiring exquisite sensitivity and discrimination. Using mass cytometry, a high-dimensional technique that can probe multiple signaling nodes at the single-cell level, we interrogate TCR signaling dynamics in control C57BL/6 and autoimmunity-prone nonobese diabetic (NOD) mice, which show ineffective ERK activation after TCR triggering. By quantitating signals at multiple steps along the signaling cascade and parsing the phosphorylation level of each node as a function of its predecessors, we show that a small impairment in initial pCD3ζ activation resonates farther down the signaling cascade and results in larger defects in activation of the ERK1/2–S6 and IκBα modules. This nonlinear property of TCR signaling networks, which magnifies small initial differences during signal propagation, also applies in cells from B6 mice activated at different levels of intensity. Impairment in pCD3ζ and pSLP76 is not a feedback consequence of a primary deficiency in ERK activation because no proximal signaling defect was observed in Erk2 KO T cells. These defects, which were manifest at all stages of T-cell differentiation from early thymic pre-T cells to memory T cells, may condition the imbalanced immunoregulation and tolerance in NOD T cells. More generally, this amplification of small initial differences in signal intensity may explain how T cells discriminate between closely related ligands and adopt strongly delineated cell fates. PMID:25362052

  14. Diabetes mellitus, tuberculosis and the mycobacteria: two millenia of enigma.

    PubMed

    Broxmeyer, Lawrence

    2005-01-01

    been shown recently not only to cause "autoimmune" Type-1 diabetes in NOD (non-obese diabetic) mice, but act as a vaccine to stop the inevitable diabetes that would otherwise materialize. The documentation of patient cases where TB has preceded and come before the development of diabetes is extensive yet underplayed and both Lin's and Tsai's studies speak of tuberculosis complicated by diabetes. Diabetes has been around since the first century AD, in a perpetual state of coping and managing. It is time, it is long past time, to cure diabetes. But current models as to its cause are not equipping us to do so. PMID:15967589

  15. Inflammasomes and human autoimmunity: A comprehensive review.

    PubMed

    Yang, Chin-An; Chiang, Bor-Luen

    2015-07-01

    Inflammasomes are multi-protein complexes composed of a NOD-like receptor (NLR)/an AIM-like receptor (ALR), the adapter molecule apoptosis-associated speck-like protein that contains a CARD (ASC), and caspase-1. Active caspase-1 cleaves pro-IL-1β and pro-IL-18 to IL-1β and IL-18, resulting in inflammation. Genetic mutations in inflammasomes were first recognized to result in autoinflammatory diseases, which are characterized by the absence of both autoantibodies and autoreactive-T/B cells. However, there is increasing attention being placed on genetic polymorphisms that are involved in the components of inflammasomes, and these have implications for innate immunity and the natural history of autoimmune diseases. For example, while the NOD-like receptor family, pyrin domain containing 1 (NLRP1) haplotypes contributes to susceptibility to developing vitiligo; there are other single nucleotide polymorphisms (SNPs) that alters the susceptibility and severity of rheumatoid arthritis (RA) and juvenile idiopathic arthritis. Indeed, there are multiple factors that contribute to lowering the threshold of immunity and inflammasomes play a key role in this threshold. For example, IL-1β and IL-18 further perpetuate Th17 responses and endothelial cell damage, which potentiate a number of autoimmune diseases, including synovitis in RA, cardiovascular disease, and systemic lupus erythematosus (SLE). There is also increasing data on the role of innate immunity in experimental autoimmune encephalomyelitis (EAE), in lupus nephritis, and in a variety of autoimmune pathologies in which activation of the innate immune system is the driver for the adaptive system. Indeed, it is likely that the chronic pathology of autoimmunity is mediated in part by otherwise innocent bystander cells, augmented by inflammasomes. PMID:26005048

  16. Chronic exposure in vivo to thyrotropin receptor stimulating monoclonal antibodies sustains high thyroxine levels and thyroid hyperplasia in thyroid autoimmunity-prone HLA-DRB1*0301 transgenic mice

    PubMed Central

    Flynn, Jeffrey C; Gilbert, Jacqueline A; Meroueh, Chady; Snower, Daniel P; David, Chella S; Kong, Yi-chi M; Paul Banga, J

    2007-01-01

    We have examined the induction of autoimmunity and the maintenance of sustained hyperthyroidism in autoimmunity-prone human leucocyte antigen (HLA) DR3 transgenic non-obese diabetic (NOD) mice following chronic stimulation of the thyrotropin receptor (TSHR) by monoclonal thyroid-stimulating autoantibodies (TSAbs). Animals received weekly injections over the course of 9 weeks of monoclonal antibodies (mAbs) with strong thyroid-stimulating properties. Administration of the mAbs KSAb1 (IgG2b) or KSAb2 (IgG2a), which have similar stimulating properties but different TSH-binding blocking activity, resulted in significantly elevated serum thyroxine (T4) levels and thyroid hyperplasia. After the first injection, an initial surge then fall in serum T4 levels was followed by sustained elevated levels with subsequent injections for at least 63 days. Examination of KSAb1 and KSAb2 serum bioactivity showed that the accumulation of the TSAbs in serum was related to their subclass half-lives. The thyroid glands were enlarged and histological examination showed hyperplastic follicles, with minimal accompanying thyroid inflammation. Our results show that chronic in vivo administration of mAbs with strong thyroid-stimulating activity resulted in elevated T4 levels, suggesting persistent stimulation without receptor desensitization, giving a potential explanation for the sustained hyperthyroid status in patients with Graves' disease. Moreover, despite the presence of HLA disease susceptibility alleles and the autoimmune prone NOD background genes, chronic stimulation of the thyroid gland did not lead to immune cell-mediated follicular destruction, suggesting the persistence of immunoregulatory influences to suppress autoimmunity. PMID:17535305

  17. NOD2 regulates CXCR3-dependent CD8+ T cell accumulation in intestinal tissues with acute injury

    PubMed Central

    Wu, Xingxin; Lahiri, Amit; Haines, G. Kenneth; Flavell, Richard A.; Abraham, Clara

    2014-01-01

    Polymorphisms in NOD2 confer risk for Crohn’s disease (CD), characterized by intestinal inflammation. How NOD2 regulates both inflammatory and regulatory intestinal T cells, which are critical to intestinal immune homeostasis, is not well-understood. Anti-CD3 monoclonal antibody (mAb) administration is used as therapy in human autoimmune diseases, as well as a model of transient intestinal injury. The stages of T cell activation, intestinal injury, and subsequent T tolerance are dependent on migration of T cells into the small intestinal (SI) lamina propria. Upon anti-CD3 mAb treatment of mice, we found that NOD2 was required for optimal small intestinal IL-10 production, in particular from CD8+ T cells. This requirement was associated with a critical role for NOD2 in SI CD8+ T cell accumulation and induction of the CXCR3 ligands CXCL9 and CXCL10, which regulate T cell migration. NOD2 was required in both the hematopoietic and non-hematopoietic compartments for optimal expression of CXCR3 ligands in intestinal tissues. NOD2 synergized with IFN-γ to induce CXCL9 and CXCL10 secretion in dendritic cells, macrophages and intestinal stromal cells in vitro. Consistent with the in vitro studies, during anti-CD3 mAb treatment in vivo, CXCR3 blockade, CD8+ T cell depletion or IFN-γ neutralization each inhibited SI CD8+ T cell recruitment, and reduced chemokine expression and IL-10 expression. Thus NOD2 synergizes with IFN-γ to promote CXCL9 and CXCL10 expression, thereby amplifying CXCR3-dependent SI CD8+ T cell migration during T cell activation, which in turn contributes to induction of both inflammatory and regulatory T cell outcomes in the intestinal environment. PMID:24591373

  18. Altered expression of genes functioning in lipid homeostasis is associated with lipid deposition in NOD mouse lacrimal gland

    PubMed Central

    Wu, Kaijin; Joffre, Corrine; Li, Xiaodong; MacVeigh-Aloni, Michelle; Hom, Melinda; Hwang, Juliana; Ding, Chuanqing; Gregoire, Stephane; Bretillon, Lionel; Zhong, Jiang F.; Hamm-Alvarez, Sarah F.

    2009-01-01

    Functional atrophy and accompanying lymphocytic infiltration and destruction of the lacrimal gland (LG) are characteristics of Sjögren’s Syndrome (SjS). The male NOD mouse is an experimental model for the autoimmune exocrinopathy that develops in the LG of SjS patients. Acinar cells in LG of male NOD mice aged 3 – 4 months were previously shown to accumulate lipid droplets. In the current study, analysis of lipid components revealed that the accumulated lipids were mostly cholesteryl esters (CE). Gene expression microarray analysis followed by real-time RT-PCR revealed alterations in the expression of several genes involved in lipid homeostasis in LG of 12-week-old male NOD mice relative to matched BALB/c controls. A series of upregulated genes including apolipoprotein E, apolipoprotein F, hepatic lipase, phosphomevalonate kinase, ATP-binding cassette D1 and ATP-binding cassette G1 were identified. Comparison of liver mRNAs to LG mRNAs in BALB/c and NOD mice revealed that the differential expressions were LG-specific. Gene expression profiles were also characterized in LGs of female mice, younger mice and immune-incompetent NOD SCID mice. Investigation of the cellular distribution of Apo-E and Apo-F proteins suggested that these proteins normally coordinate to mediate lipid efflux from the acinar cells but that dysfunction of these processes due to missorting of Apo-F may contribute to CE deposition. Finally, the initiation and extent of lipid deposition were correlated with lymphocytic infiltration in the LG of male NOD mice. We propose that impaired lipid efflux contributes to lipid deposition, an event that may contribute to the development and/or progression of dacryoadenitis in the male NOD mouse. PMID:19345210

  19. NOD2 regulates CXCR3-dependent CD8+ T cell accumulation in intestinal tissues with acute injury.

    PubMed

    Wu, Xingxin; Lahiri, Amit; Haines, G Kenneth; Flavell, Richard A; Abraham, Clara

    2014-04-01

    Polymorphisms in NOD2 confer risk for Crohn's disease, characterized by intestinal inflammation. How NOD2 regulates both inflammatory and regulatory intestinal T cells, which are critical to intestinal immune homeostasis, is not well understood. Anti-CD3 mAb administration is used as therapy in human autoimmune diseases, as well as a model of transient intestinal injury. The stages of T cell activation, intestinal injury, and subsequent T tolerance are dependent on migration of T cells into the small intestinal (SI) lamina propria. Upon anti-CD3 mAb treatment of mice, we found that NOD2 was required for optimal small intestinal IL-10 production, in particular from CD8(+) T cells. This requirement was associated with a critical role for NOD2 in SI CD8(+) T cell accumulation and induction of the CXCR3 ligands CXCL9 and CXCL10, which regulate T cell migration. NOD2 was required in both the hematopoietic and nonhematopoietic compartments for optimal expression of CXCR3 ligands in intestinal tissues. NOD2 synergized with IFN-γ to induce CXCL9 and CXCL10 secretion in dendritic cells, macrophages, and intestinal stromal cells in vitro. Consistent with the in vitro studies, during anti-CD3 mAb treatment in vivo, CXCR3 blockade, CD8(+) T cell depletion, or IFN-γ neutralization each inhibited SI CD8(+) T cell recruitment, and reduced chemokine expression and IL-10 expression. Thus, NOD2 synergizes with IFN-γ to promote CXCL9 and CXCL10 expression, thereby amplifying CXCR3-dependent SI CD8(+) T cell migration during T cell activation, which, in turn, contributes to induction of both inflammatory and regulatory T cell outcomes in the intestinal environment. PMID:24591373

  20. [Autoimmune encephalitis].

    PubMed

    Günther, Albrecht; Schubert, Julia; Brämer, Dirk; Witte, Otto Wilhelm

    2016-08-01

    Autoimmune encephalitis, an inflammatory disease of the brain, is usually attributed to antibody-mediated damage and dysfunction of neuronal structures. A distinction is made between onconeuronal antibodies (directed against intracellular neuronal antigens with resulting paraneoplastic neurological syndromes) and antibodies directed against neuronal cell surface proteins (with resulting synaptic encephalopathies). Anti-NMDA-Receptor-Encephalitis, the most common form of autoimmune encephalopathy, is characterized by a phased course of disease. Early disease phase involves nonspecific prodromes (fatigue, fever, headache) which lead to family doctor or emergency department consultation. Subsequently, neuropsychiatric behavioural problems, seizures, disturbance of memory and finally coma, dysautonomia and respiratory insufficiency often result in major complications (e.g. status epilepticus) necessitating intensive care treatment. The diagnosis is secured by detection of auto-antibodies in serum or cerebrospinal fluid. An intensive search for tumors is also recommended. The treatment of autoimmune encephalitis comprises of immunomodulatory and immunosuppessive strategies. Tumor therapy is the most important treatment of autoimmune encephalitis by onconeuronal antibodies. PMID:27557073

  1. Autoimmune Hepatitis

    MedlinePlus

    ... provider will closely monitor and manage any side effects that may occur, as high doses of prednisone are often prescribed to treat autoimmune hepatitis. Immune system suppressors. Medications that suppress the immune system prevent the body from making autoantibodies and block the immune reaction ...

  2. The Non-Obese Diabetic Mouse Strain as a Model to Study CD8+ T Cell Function in Relapsing and Progressive Multiple Sclerosis

    PubMed Central

    Ignatius Arokia Doss, Prenitha Mercy; Roy, Andrée-Pascale; Wang, AiLi; Anderson, Ana Carrizosa; Rangachari, Manu

    2015-01-01

    Multiple sclerosis (MS) is a neurodegenerative disease resulting from an autoimmune attack on central nervous system (CNS) myelin. Although CD4+ T cell function in MS pathology has been extensively studied, there is also strong evidence that CD8+ T lymphocytes play a key role. Intriguingly, CD8+ T cells accumulate in great numbers in the CNS in progressive MS, a form of the disease that is refractory to current disease-modifying therapies that target the CD4+ T cell response. Here, we discuss the function of CD8+ T cells in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In particular, we describe EAE in non-obese diabetic (NOD) background mice, which develop a pattern of disease characterized by multiple attacks and remissions followed by a progressively worsening phase. This is highly reminiscent of the pattern of disease observed in nearly half of MS patients. Particular attention is paid to a newly described transgenic mouse strain (1C6) on the NOD background whose CD4+ and CD8+ T cells are directed against the encephalitogenic peptide MOG[35–55]. Use of this model will give us a more complete picture of the role(s) played by distinct T cell subsets in CNS autoimmunity. PMID:26557120

  3. Autoimmune type 1 diabetes genetic susceptibility encoded by human leukocyte antigen DRB1 and DQB1 genes in Tunisia.

    PubMed

    Stayoussef, Mouna; Benmansour, Jihen; Al-Irhayim, Abdul-Qader; Said, Hichem B; Rayana, Chiheb B; Mahjoub, Touhami; Almawi, Wassim Y

    2009-08-01

    Human leukocyte antigen (HLA) class II genes contribute to the genetic susceptibility to type 1 diabetes (T1D), and susceptible alleles and haplotypes were implicated in the pathogenesis of T1D. This study investigated the heterogeneity in HLA class II haplotype distribution among Tunisian patients with T1D. This was a retrospective case control study done in Monastir in central Tunisia. The subjects comprised 88 T1D patients and 112 healthy controls. HLA-DRB1 and -DQB1 genotyping was done by PCR-sequence-specific priming. Significant DRB1 and DQB1 allelic differences were seen between T1D patients and controls; these differences comprised DRB1*030101 and DQB1*0302, which were higher in T1D patients than in control subjects, and DRB1*070101, DRB1*110101, DQB1*030101, and DQB1*060101, which were lower in T1D patients than in control subjects. In addition, the frequencies of DRB1*030101-DQB1*0201 and DRB1*040101-DQB1*0302 were higher in T1D patients than in control subjects, and the frequencies of DRB1*070101-DQB1*0201 and DRB1*110101-DQB1*030101 haplotypes were lower in T1D patients than in control subjects. Multiple logistic regression analysis revealed the positive association of DRB1*030101-DQB1*0201 and DRB1*040101-DQB1*0302 and the negative association of only DRB1*070101-DQB1*0201 haplotypes with T1D. Furthermore, a significantly increased prevalence of DRB1*030101-DQB1*0201 homozygotes was seen for T1D subjects than for control subjects. Our results confirm the association of specific HLA-DR and -DQ alleles and haplotypes with T1D in Tunisians. The identification of similar and unique haplotypes in Tunisians compared to other Caucasians highlights the need for evaluating the contribution of HLA class II to the genetic susceptibility to T1D with regard to haplotype usage and also to ethnic origin and racial background. PMID:19553558

  4. Autoimmune Type 1 Diabetes Genetic Susceptibility Encoded by Human Leukocyte Antigen DRB1 and DQB1 Genes in Tunisia▿

    PubMed Central

    Stayoussef, Mouna; Benmansour, Jihen; Al-Irhayim, Abdul-Qader; Said, Hichem B.; Rayana, Chiheb B.; Mahjoub, Touhami; Almawi, Wassim Y.

    2009-01-01

    Human leukocyte antigen (HLA) class II genes contribute to the genetic susceptibility to type 1 diabetes (T1D), and susceptible alleles and haplotypes were implicated in the pathogenesis of T1D. This study investigated the heterogeneity in HLA class II haplotype distribution among Tunisian patients with T1D. This was a retrospective case control study done in Monastir in central Tunisia. The subjects comprised 88 T1D patients and 112 healthy controls. HLA-DRB1 and -DQB1 genotyping was done by PCR-sequence-specific priming. Significant DRB1 and DQB1 allelic differences were seen between T1D patients and controls; these differences comprised DRB1*030101 and DQB1*0302, which were higher in T1D patients than in control subjects, and DRB1*070101, DRB1*110101, DQB1*030101, and DQB1*060101, which were lower in T1D patients than in control subjects. In addition, the frequencies of DRB1*030101-DQB1*0201 and DRB1*040101-DQB1*0302 were higher in T1D patients than in control subjects, and the frequencies of DRB1*070101-DQB1*0201 and DRB1*110101-DQB1*030101 haplotypes were lower in T1D patients than in control subjects. Multiple logistic regression analysis revealed the positive association of DRB1*030101-DQB1*0201 and DRB1*040101-DQB1*0302 and the negative association of only DRB1*070101-DQB1*0201 haplotypes with T1D. Furthermore, a significantly increased prevalence of DRB1*030101-DQB1*0201 homozygotes was seen for T1D subjects than for control subjects. Our results confirm the association of specific HLA-DR and -DQ alleles and haplotypes with T1D in Tunisians. The identification of similar and unique haplotypes in Tunisians compared to other Caucasians highlights the need for evaluating the contribution of HLA class II to the genetic susceptibility to T1D with regard to haplotype usage and also to ethnic origin and racial background. PMID:19553558

  5. Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice

    PubMed Central

    Hanes, William M; Olofsson, Peder S; Kwan, Kevin; Hudson, LaQueta K; Chavan, Sangeeta S; Pavlov, Valentin A; Tracey, Kevin J

    2015-01-01

    Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic β-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach. PMID:26322849

  6. The role of NOD1 and NOD2 in host defense against chlamydial infection.

    PubMed

    Zou, Yan; Lei, Wenbo; He, Zhansheng; Li, Zhongyu

    2016-09-01

    Chlamydial species are common intracellular parasites that cause various diseases, mainly characterized by persistent infection, which lead to inflammatory responses modulated by pattern recognition receptors (PRRs). The best understood PRRs are the extracellular Toll-like receptors, but recent significant advances have focused on two important proteins, NOD1 and NOD2, which are members of the intracellular nucleotide-binding oligomerization domain receptor family and are capable of triggering the host innate immune signaling pathways. This results in the production of pro-inflammatory cytokines, which is vital for an adequate host defense against intracellular chlamydial infection. NOD1/2 ligands are known to derive from peptidoglycan, and the latest research has resolved the paradox of whether chlamydial species possess this bacterial cell wall component; this finding is likely to promote in-depth investigations into the interaction between the NOD proteins and chlamydial pathogens. In this review, we summarize the basic characteristics and signal transduction functions of NOD1 and NOD2 and highlight the new research on the roles of NOD1 and NOD2 in the host defense against chlamydial infection. PMID:27421958

  7. A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway.

    PubMed

    Keestra, A Marijke; Winter, Maria G; Klein-Douwel, Daisy; Xavier, Mariana N; Winter, Sebastian E; Kim, Anita; Tsolis, Renée M; Bäumler, Andreas J

    2011-01-01

    The invasion-associated type III secretion system (T3SS-1) of Salmonella enterica serotype Typhimurium (S. Typhimurium) activates the transcription factor NF-κB in tissue culture cells and induces inflammatory responses in animal models through unknown mechanisms. Here we show that bacterial delivery or ectopic expression of SipA, a T3SS-1-translocated protein, led to the activation of the NOD1/NOD2 signaling pathway and consequent RIP2-mediated induction of NF-κB-dependent inflammatory responses. SipA-mediated activation of NOD1/NOD2 signaling was independent of bacterial invasion in vitro but required an intact T3SS-1. In the mouse colitis model, SipA triggered mucosal inflammation in wild-type mice but not in NOD1/NOD2-deficient mice. These findings implicate SipA-driven activation of the NOD1/NOD2 signaling pathway as a mechanism by which the T3SS-1 induces inflammatory responses in vitro and in vivo. PMID:22186610

  8. A Salmonella Virulence Factor Activates the NOD1/NOD2 Signaling Pathway

    PubMed Central

    Marijke Keestra, A.; Winter, Maria G.; Klein-Douwel, Daisy; Xavier, Mariana N.; Winter, Sebastian E.; Kim, Anita; Tsolis, Renée M.; Bäumler, Andreas J.

    2011-01-01

    ABSTRACT The invasion-associated type III secretion system (T3SS-1) of Salmonella enterica serotype Typhimurium (S. Typhimurium) activates the transcription factor NF-κB in tissue culture cells and induces inflammatory responses in animal models through unknown mechanisms. Here we show that bacterial delivery or ectopic expression of SipA, a T3SS-1-translocated protein, led to the activation of the NOD1/NOD2 signaling pathway and consequent RIP2-mediated induction of NF-κB-dependent inflammatory responses. SipA-mediated activation of NOD1/NOD2 signaling was independent of bacterial invasion in vitro but required an intact T3SS-1. In the mouse colitis model, SipA triggered mucosal inflammation in wild-type mice but not in NOD1/NOD2-deficient mice. These findings implicate SipA-driven activation of the NOD1/NOD2 signaling pathway as a mechanism by which the T3SS-1 induces inflammatory responses in vitro and in vivo. PMID:22186610

  9. Autoantibodies in Autoimmune Pancreatitis

    PubMed Central

    Smyk, Daniel S.; Rigopoulou, Eirini I.; Koutsoumpas, Andreas L.; Kriese, Stephen; Burroughs, Andrew K.; Bogdanos, Dimitrios P.

    2012-01-01

    Autoimmune pancreatitis (AIP) was first used to describe cases of pancreatitis with narrowing of the pancreatic duct, enlargement of the pancreas, hyper-γ-globulinaemia, and antinuclear antibody (ANA) positivity serologically. The main differential diagnosis, is pancreatic cancer, which can be ruled out through radiological, serological, and histological investigations. The targets of ANA in patients with autoimmune pancreatitis do not appear to be similar to those found in other rheumatological diseases, as dsDNA, SS-A, and SS-B are not frequently recognized by AIP-related ANA. Other disease-specific autoantibodies, such as, antimitochondrial, antineutrophil cytoplasmic antibodies or diabetes-specific autoantibodies are virtually absent. Further studies have focused on the identification of pancreas-specific autoantigens and reported significant reactivity to lactoferrin, carbonic anhydrase, pancreas secretory trypsin inhibitor, amylase-alpha, heat-shock protein, and plasminogen-binding protein. This paper discusses the findings of these investigations and their relevance to the diagnosis, management, and pathogenesis of autoimmune pancreatitis. PMID:22844291

  10. Specific association of a CLEC16A/KIAA0350 polymorphism with NOD2/CARD15− Crohn's disease patients

    PubMed Central

    Márquez, Ana; Varadé, Jezabel; Robledo, Gema; Martínez, Alfonso; Mendoza, Juan Luis; Taxonera, Carlos; Fernández-Arquero, Miguel; Díaz-Rubio, Manuel; Gómez-García, María; López-Nevot, Miguel Angel; de la Concha, Emilio G; Martín, Javier; Urcelay, Elena

    2009-01-01

    Independent genome-wide association studies highlighted the function of CLEC16A/KIAA0350 polymorphisms modifying the risk to either multiple sclerosis (rs6498169) or type 1 diabetes (rs2903692). This C-type lectin gene maps to a linkage disequilibrium block at 16p13 and a functional role of this gene could be envisaged for other immune-related conditions, such as inflammatory bowel disease (IBD). The present study, aimed at investigating the association of those two polymorphisms with IBD, included 720 IBD patients and 550 ethnically matched healthy controls. The effect of rs2903692 previously described in diabetes was observed specifically for Crohn's disease (CD) patients lacking the main susceptibility factor described to date, that is, three polymorphisms within another pattern recognition gene, NOD2/CARD15 (NOD2− vs NOD2+ CD patients, G vs A: P=0.008; OR (95% CI)=1.54 (1.10–2.15); NOD2− CD patients vs controls: P=0.008; OR (95% CI)=1.37 (1.08–1.73)). Replication of these findings was performed in independent Spanish cohorts of 544 IBD patients and 340 controls and the combined data yielded significant differences (405 NOD2− vs 204 NOD2+ CD patients, G vs A: P=0.0012; ORM-H (95% CI)=1.49 (1.17–1.90); NOD2− CD patients vs controls: P=0.0007; ORM-H (95% CI)=1.35 (1.13–1.60)). The pooled analysis of the ulcerative colitis patients vs controls also yielded a significant risk (P=0.0005; OR (95% CI)=1.52 (1.19–1.93)). These data would suggest that microbial recognition through different pathways seems to converge in the development of these polygenic bowel diseases. PMID:19337309

  11. Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling.

    PubMed

    Pane, Jessica A; Fleming, Fiona E; Graham, Kate L; Thomas, Helen E; Kay, Thomas W H; Coulson, Barbara S

    2016-01-01

    Rotavirus infection is associated with childhood progression to type 1 diabetes. Infection by monkey rotavirus RRV accelerates diabetes onset in non-obese diabetic (NOD) mice, which relates to regional lymph node infection and a T helper 1-specific immune response. When stimulated ex vivo with RRV, plasmacytoid dendritic cells (pDCs) from naïve NOD mice secrete type I interferon, which induces the activation of bystander lymphocytes, including islet-autoreactive T cells. This is our proposed mechanism for diabetes acceleration by rotaviruses. Here we demonstrate bystander lymphocyte activation in RRV-infected NOD mice, which showed pDC activation and strong upregulation of interferon-dependent gene expression, particularly within lymph nodes. The requirement for type I interferon signalling was analysed using NOD mice lacking a functional type I interferon receptor (NOD.IFNAR1(-/-) mice). Compared with NOD mice, NOD.IFNAR1(-/-) mice showed 8-fold higher RRV titers in lymph nodes and 3-fold higher titers of total RRV antibody in serum. However, RRV-infected NOD.IFNAR1(-/-) mice exhibited delayed pDC and lymphocyte activation, no T helper 1 bias in RRV-specific antibodies and unaltered diabetes onset when compared with uninfected controls. Thus, the type I interferon signalling induced by RRV infection is required for bystander lymphocyte activation and accelerated type 1 diabetes onset in genetically susceptible mice. PMID:27405244

  12. Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling

    PubMed Central

    Pane, Jessica A.; Fleming, Fiona E.; Graham, Kate L.; Thomas, Helen E.; Kay, Thomas W. H.; Coulson, Barbara S.

    2016-01-01

    Rotavirus infection is associated with childhood progression to type 1 diabetes. Infection by monkey rotavirus RRV accelerates diabetes onset in non-obese diabetic (NOD) mice, which relates to regional lymph node infection and a T helper 1-specific immune response. When stimulated ex vivo with RRV, plasmacytoid dendritic cells (pDCs) from naïve NOD mice secrete type I interferon, which induces the activation of bystander lymphocytes, including islet-autoreactive T cells. This is our proposed mechanism for diabetes acceleration by rotaviruses. Here we demonstrate bystander lymphocyte activation in RRV-infected NOD mice, which showed pDC activation and strong upregulation of interferon-dependent gene expression, particularly within lymph nodes. The requirement for type I interferon signalling was analysed using NOD mice lacking a functional type I interferon receptor (NOD.IFNAR1−/− mice). Compared with NOD mice, NOD.IFNAR1−/− mice showed 8-fold higher RRV titers in lymph nodes and 3-fold higher titers of total RRV antibody in serum. However, RRV-infected NOD.IFNAR1−/− mice exhibited delayed pDC and lymphocyte activation, no T helper 1 bias in RRV-specific antibodies and unaltered diabetes onset when compared with uninfected controls. Thus, the type I interferon signalling induced by RRV infection is required for bystander lymphocyte activation and accelerated type 1 diabetes onset in genetically susceptible mice. PMID:27405244

  13. Cytotoxic T-cells from T-cell receptor transgenic NOD8.3 mice destroy beta-cells via the perforin and Fas pathways.

    PubMed

    Dudek, Nadine L; Thomas, Helen E; Mariana, Lina; Sutherland, Robyn M; Allison, Janette; Estella, Eugene; Angstetra, Eveline; Trapani, Joseph A; Santamaria, Pere; Lew, Andrew M; Kay, Thomas W H

    2006-09-01

    Cytotoxic T-cells are the major mediators of beta-cell destruction in type 1 diabetes, but the molecular mechanisms are not definitively established. We have examined the contribution of perforin and Fas ligand to beta-cell destruction using islet-specific CD8(+) T-cells from T-cell receptor transgenic NOD8.3 mice. NOD8.3 T-cells killed Fas-deficient islets in vitro and in vivo. Perforin-deficient NOD8.3 T-cells were able to destroy wild-type but not Fas-deficient islets in vitro. These results imply that NOD8.3 T-cells use both pathways and that Fas is required for beta-cell killing only when perforin is missing. Consistent with this theory, transgenic NOD8.3 mice with beta-cells that do not respond to Fas ligation were not protected from diabetes. We next investigated the mechanism of protection provided by overexpression of suppressor of cytokine signaling-1 (SOCS-1) in beta-cells of NOD8.3 mice. SOCS-1 islets remained intact when grafted into NOD8.3 mice and were less efficiently killed in vitro. However, addition of exogenous peptide rendered SOCS-1 islets susceptible to 8.3 T-cell-mediated lysis. Therefore, NOD8.3 T-cells use both perforin and Fas pathways to kill beta-cells and the surprising blockade of NOD8.3 T-cell-mediated beta-cell death by SOCS-1 overexpression may be due in part to reduced target cell recognition. PMID:16936188

  14. Interaction between NOD2 and CARD9 involves the NOD2 NACHT and the linker region between the NOD2 CARDs and NACHT domain.

    PubMed

    Parkhouse, Rhiannon; Boyle, Joseph P; Mayle, Sophie; Sawmynaden, Kovilen; Rittinger, Katrin; Monie, Tom P

    2014-08-25

    NOD2 activation by muramyl dipeptide causes a proinflammatory immune response in which the adaptor protein CARD9 works synergistically with NOD2 to drive p38 and c-Jun N-terminal kinase (JNK) signalling. To date the nature of the interaction between NOD2 and CARD9 remains undetermined. Here we show that this interaction is not mediated by the CARDs of NOD2 and CARD9 as previously suggested, but that NOD2 possesses two interaction sites for CARD9; one in the CARD-NACHT linker and one in the NACHT itself. PMID:24960071

  15. Diabetes

    MedlinePlus

    ... Diabetic retinopathy Islets of Langerhans Pancreas Insulin pump Type I diabetes Diabetic blood circulation in foot Food and insulin release ... Saunders; 2015:chap 39. Dungan KM. Management of type 2 diabetes mellitus. In: Jameson JL, De Groot LJ, de ... hyperglycemic hyperosmolar syndrome Gestational diabetes Hardening of the ...

  16. Autoreactive T-cell receptor (Vbeta/D/Jbeta) sequences in diabetes are homologous to insulin, glucagon, the insulin receptor, and the glucagon receptor.

    PubMed

    Root-Bernstein, Robert

    2009-01-01

    The hypervariable (Vbeta/D/Jbeta) regions of T-cell receptors (TCR) have been sequenced in a variety of autoimmune diseases by various investigators. An analysis of some of these sequences shows that TCR from both human diabetics and NOD mice mimic insulin, glucagon, the insulin receptor, and the glucagon receptor. Such similarities are not found in the TCR produced in other human autoimmune diseases. These data may explain how insulin, glucagon, and their receptors are targets of autoimmunity in diabetes and also suggest that TCR mimicking insulin and its receptor may be targets of anti-insulin autoantibodies. Such intra-systemic mimicry of self-proteins also raises complex questions about how "self" and "nonself" are regulated during TCR production, especially in light of the complementarity of insulin for its receptor and glucagon for its receptor. The data presented here suggest that some TCR may be complementary to other TCR in autoimmune diseases, a possibility that is experimentally testable. Such complementarity, if it exists, could either serve to down-regulate the clones bearing such TCR or, alternatively, trigger an intra-immune system civil war between them. PMID:19051206

  17. Role for erbin in bacterial activation of Nod2.

    PubMed

    Kufer, T A; Kremmer, E; Banks, D J; Philpott, D J

    2006-06-01

    Intracellular peptidoglycan (PG) recognition in human cells is mediated by the NACHT-LRR proteins Nod1 and Nod2. Elicitation of these proteins by PG motifs released from invasive bacteria triggers signaling events, resulting in the activation of the NF-kappaB pathway. In order to decipher the molecular components involved in Nod2 signal transduction, we set out to identify new interaction partners of Nod2 by using a yeast two-hybrid screen. Besides the known interaction partner RIP2, the screen identified the leucine-rich repeat (LRR)- and PDZ domain-containing family member Erbin as a binding partner of Nod2. Erbin showed a specific interaction with Nod2 in coimmunoprecipitation experiments with human HEK 293T cells. Immunofluorescence microscopy with a newly generated anti-Nod2 monoclonal antibody showed that Erbin and Nod2 partially colocalize in human cells. Subsequent analysis of the Erbin/Nod2 interaction revealed that the LRR of Erbin and the caspase activating and recruiting domains of Nod2 were necessary for this interaction. No significant interaction was observed with a Walker B box mutant of Nod2 or a Crohn's disease-associated frameshift mutant of Nod2, indicating that complex formation is dependent on the activity of the molecule. In addition, a change in the dynamics of the Erbin/Nod2 complex was observed during Shigella flexneri infection. Furthermore, ectopic expression of increasing amounts of Erbin or short hairpin RNA-mediated knockdown of Erbin showed a negative influence of Erbin on Nod2/muramyl-dipeptide-mediated NF-kappaB activation. These results implicate Erbin as a potential negative regulator of Nod2 and show that bacterial infection has an impact on Nod2/Erbin complex formation within cells. PMID:16714539

  18. Rapid engraftment of human ALL in NOD/SCID mice involves deficient apoptosis signaling.

    PubMed

    Queudeville, M; Seyfried, F; Eckhoff, S M; Trentin, L; Ulrich, S; Schirmer, M; Debatin, K-M; Meyer, L H

    2012-01-01

    Previously, we found that rapid leukemia engraftment (short time to leukemia, TTL(short)) in the NOD/SCID/huALL (non-obese diabetic/severe combined immuno-deficiency/human acute lymphoblastic leukemia) xenograft model is indicative of early patient relapse. As earlier intact apoptosis sensitivity was predictive for good prognosis in patients, we investigated the importance of apoptosis signaling on NOD/SCID/huALL engraftment. Intact apoptosome function as reflected by cytochrome c-related activation of caspase-3 (CRAC-positivity) was strongly associated with prolonged NOD/SCID engraftment (long time to leukemia, TTL(long)) of primary leukemia cells, good treatment response and superior patient survival. Conversely, deficient apoptosome function (CRAC-negativity) was associated with rapid engraftment (TTL(short)) and early relapse. Moreover, an intact apoptosis signaling was associated with high transcript and protein levels of the pro-apoptotic death-associated protein kinase1 (DAPK1). Our data strongly emphasize the impact of intrinsic apoptosis sensitivity of ALL cells on the engraftment phenotype in the NOD/SCID/huALL model, and most importantly also on patient outcome. PMID:22875001

  19. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP.

    PubMed

    Krishnamurthy, Balasubramanian; Dudek, Nadine L; McKenzie, Mark D; Purcell, Anthony W; Brooks, Andrew G; Gellert, Shane; Colman, Peter G; Harrison, Leonard C; Lew, Andrew M; Thomas, Helen E; Kay, Thomas W H

    2006-12-01

    Type 1 diabetes (T1D) is characterized by immune responses against several autoantigens expressed in pancreatic beta cells. T cells specific for proinsulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) can induce T1D in NOD mice. However, whether immune responses to multiple autoantigens are caused by spreading from one to another or whether they develop independently of each other is unknown. As cytotoxic T cells specific for IGRP were not detected in transgenic NOD mice tolerant to proinsulin, we determined that immune responses against proinsulin are necessary for IGRP-specific T cells to develop. On the other hand, transgenic overexpression of IGRP resulted in loss of intra-islet IGRP-specific T cells but did not protect NOD mice from insulitis or T1D, providing direct evidence that the response against IGRP is downstream of the response to proinsulin. Our results suggest that pathogenic proinsulin-specific immunity in NOD mice subsequently spreads to other antigens such as IGRP. PMID:17143333

  20. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP

    PubMed Central

    Krishnamurthy, Balasubramanian; Dudek, Nadine L.; McKenzie, Mark D.; Purcell, Anthony W.; Brooks, Andrew G.; Gellert, Shane; Colman, Peter G.; Harrison, Leonard C.; Lew, Andrew M.; Thomas, Helen E.; Kay, Thomas W.H.

    2006-01-01

    Type 1 diabetes (T1D) is characterized by immune responses against several autoantigens expressed in pancreatic β cells. T cells specific for proinsulin and islet-specific glucose-6-phosphatase catalytic subunit–related protein (IGRP) can induce T1D in NOD mice. However, whether immune responses to multiple autoantigens are caused by spreading from one to another or whether they develop independently of each other is unknown. As cytotoxic T cells specific for IGRP were not detected in transgenic NOD mice tolerant to proinsulin, we determined that immune responses against proinsulin are necessary for IGRP-specific T cells to develop. On the other hand, transgenic overexpression of IGRP resulted in loss of intra-islet IGRP-specific T cells but did not protect NOD mice from insulitis or T1D, providing direct evidence that the response against IGRP is downstream of the response to proinsulin. Our results suggest that pathogenic proinsulin-specific immunity in NOD mice subsequently spreads to other antigens such as IGRP. PMID:17143333

  1. Altered connexin 43 expression underlies age-dependent decrease of regulatory T cell suppressor function in nonobese diabetic mice.

    PubMed

    Kuczma, Michal; Wang, Cong-Yi; Ignatowicz, Leszek; Gourdie, Robert; Kraj, Piotr

    2015-06-01

    Type 1 diabetes is one of the most extensively studied autoimmune diseases, but the cellular and molecular mechanisms leading to T cell-mediated destruction of insulin-producing β cells are still not well understood. In this study, we show that regulatory T cells (T(regs)) in NOD mice undergo age-dependent loss of suppressor functions exacerbated by the decreased ability of activated effector T cells to upregulate Foxp3 and generate T(regs) in the peripheral organs. This age-dependent loss is associated with reduced intercellular communication mediated by gap junctions, which is caused by impaired upregulation and decreased expression of connexin 43. Regulatory functions can be corrected, even in T cells isolated from aged, diabetic mice, by a synergistic activity of retinoic acid, TGF-β, and IL-2, which enhance connexin 43 and Foxp3 expression in T(regs) and restore the ability of conventional CD4(+) T cells to upregulate Foxp3 and generate peripherally derived T(regs). Moreover, we demonstrate that suppression mediated by T(regs) from diabetic mice is enhanced by a novel reagent, which facilitates gap junction aggregation. In summary, our report identifies gap junction-mediated intercellular communication as an important component of the T(reg) suppression mechanism compromised in NOD mice and suggests how T(reg) mediated immune regulation can be improved. PMID:25911751

  2. Autoimmune disorders

    MedlinePlus

    ... Multiple sclerosis Myasthenia gravis Pernicious anemia Reactive arthritis Rheumatoid arthritis Sjögren syndrome Systemic lupus erythematosus Type I diabetes Symptoms Symptoms will vary based on the type ...

  3. Data in support of the bone analysis of NOD-SCID mice treated with zoledronic acid and prednisolone.

    PubMed

    Hori, Naoko; Abe, Takahiro; Sato, Tsuyoshi; Kokabu, Shoichiro; Shimamura, Yumiko; Sato, Tomoya; Yoda, Tetsuya

    2016-06-01

    This paper reports data on the bone, specifically the tibia and mandible, of nonobese diabetic mice with severe combined immunodeficiency disease (NOD-SCID mice) treated with zoledronic acid (ZA) and prednisolone (PSL). The data described here are related to the research article titled "Zoledronic acid basically increases circulating soluble RANKL level in mice, and in glucocorticoid-administrated mice, more increases lymphocytes derived sRANKL by bacterial endotoxic stimuli" [1]. The present data and the NOD-SCID mice experiments described contain insights into the role of bone-remodeling factors induced by ZA treatment. PMID:27182545

  4. Effect of iodine excess on Th1, Th2, Th17, and Treg cell subpopulations in the thyroid of NOD.H-2h4 mice.

    PubMed

    Yang, Xiao; Gao, Tianshu; Shi, Rui; Zhou, Xiyu; Qu, Jinqiao; Xu, Jia; Shan, Zhongyan; Teng, Weiping

    2014-06-01

    Iodine is an indispensable micronutrient for thyroid hormone synthesis and metabolism. Iodine excess may trigger and exacerbate autoimmune thyroiditis (AIT). The pathogenetic mechanism of iodine excess-induced AIT is partly regarded as T helper type 1 (Th1) cell and/or T helper type 17 (Th17) cell dominant autoimmune disease. It is still unknown whether other cluster of differentiation 4+ T (CD4+T) cell subpopulations are involved. Therefore, we studied the profile of all the CD4+T cell subpopulations of the thyroid in iodine excess-induced nonobese diabetic-H2h4 (NOD.H-2h4) mice to explore the potential immunologic mechanism of iodine excess-induced AIT. A total of 40 healthy 8-week-old NOD.H-2h4 mice were randomly allocated into the normal group (NG, n=20) and the test group (TG, n=20), which were fed with double-distilled water and 0.05% sodium iodine (NaI) for 8 weeks, respectively. Compared to the NG, in the TG, the incidence of AIT was significantly higher, the expressions of interleukin-17 (IL-17), interleukin-23 (IL-23), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β) remarkably increased by immunohistochemistry, which were further verified by reverse transcription polymerase chain reaction (RT-PCR), while the protein and mRNA expressions of interleukin-4 (IL-4) and interferon-γ (INF-γ) decreased markedly. In the AIT mice, the expressions of retinoic acid-related orphan receptor gamma t (RORγt), retinoic acid-related orphan receptor alpha (RORα), and signal transducer and activator of transcription 3 (STAT3) were much higher, the expression of forkhead/winged helix transcription factor p3 (Foxp3) significantly lower by western blot, and the proportion of Th17 cells by flow cytometry method (FCM) much larger compared to those of the NG group. In conclusion, Th17 cells may promote an inflammatory reaction in the development of iodine-excess-induced AIT, which is negatively regulated by Th1, T helper type 2 (Th2), and regulatory T (Treg

  5. Nodding Syndrome in Uganda: Field Observations, Challenges and Research Agenda

    PubMed Central

    Feldmeier, Hermann; Komazawa, Osuke; Moji, Kazuhiko

    2014-01-01

    This article summarizes observations made in Northern Uganda and a lecture given at the Nodding Syndrome Workshop in Nagasaki September 2013. The objective of the manuscript is to summarize the current knowledge on nodding syndrome and to provide an agenda for investigations into the epidemiology, pathophysiology, diagnosis and care management of nodding syndrome in Uganda. PMID:25425959

  6. Nodding syndrome in Uganda: field observations, challenges and research agenda.

    PubMed

    Feldmeier, Hermann; Komazawa, Osuke; Moji, Kazuhiko

    2014-06-01

    This article summarizes observations made in Northern Uganda and a lecture given at the Nodding Syndrome Workshop in Nagasaki September 2013. The objective of the manuscript is to summarize the current knowledge on nodding syndrome and to provide an agenda for investigations into the epidemiology, pathophysiology, diagnosis and care management of nodding syndrome in Uganda. PMID:25425959

  7. Autoimmune liver disease panel

    MedlinePlus

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cirrhosis. This group of tests helps your health care provider diagnose ...

  8. Protection Against Type 1 Diabetes Upon Coxsackievirus B4 Infection and iNKT-Cell Stimulation

    PubMed Central

    Ghazarian, Liana; Diana, Julien; Beaudoin, Lucie; Larsson, Pär G.; Puri, Raj K.; van Rooijen, Nico; Flodström-Tullberg, Malin; Lehuen, Agnès

    2013-01-01

    Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2–deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes. PMID:23894189

  9. Autoimmune pancreatitis.

    PubMed

    Omiyale, Ayodeji Oluwarotimi

    2016-06-01

    Autoimmune pancreatitis (AIP) is a rare, distinct and increasingly recognized form of pancreatitis which has autoimmune features. The international consensus diagnostic criteria (ICDC) for AIP recently described two subtypes; type 1[lymphoplasmacytic sclerosing pancreatitis (LPSP)] and type 2 [idiopathic duct-centric pancreatitis (IDCP) or AIP with granulocytic epithelial lesion (GEL)]. Type 1 is the more common form of the disease worldwide and current understanding suggests that it is a pancreatic manifestation of immunoglobulin G4-related disease (IgG4-RD). In contrast, type 2 AIP is a pancreas-specific disease not associated with IgG4 and mostly without the overt extra-pancreatic organ involvement seen in type 1. The pathogenesis of AIP is not completely understood and its clinical presentation is non-specific. It shares overlapping features with more sinister pathologies such as cancer of the pancreas, which continues to pose a diagnostic challenge for clinicians. The diagnostic criteria requires a variable combination of histopathological, imaging and serological features in the presence of typical extrapancreatic lesions and a predictable response to steroids. PMID:27294040

  10. Autoimmune pancreatitis

    PubMed Central

    2016-01-01

    Autoimmune pancreatitis (AIP) is a rare, distinct and increasingly recognized form of pancreatitis which has autoimmune features. The international consensus diagnostic criteria (ICDC) for AIP recently described two subtypes; type 1[lymphoplasmacytic sclerosing pancreatitis (LPSP)] and type 2 [idiopathic duct-centric pancreatitis (IDCP) or AIP with granulocytic epithelial lesion (GEL)]. Type 1 is the more common form of the disease worldwide and current understanding suggests that it is a pancreatic manifestation of immunoglobulin G4-related disease (IgG4-RD). In contrast, type 2 AIP is a pancreas-specific disease not associated with IgG4 and mostly without the overt extra-pancreatic organ involvement seen in type 1. The pathogenesis of AIP is not completely understood and its clinical presentation is non-specific. It shares overlapping features with more sinister pathologies such as cancer of the pancreas, which continues to pose a diagnostic challenge for clinicians. The diagnostic criteria requires a variable combination of histopathological, imaging and serological features in the presence of typical extrapancreatic lesions and a predictable response to steroids. PMID:27294040

  11. Oral Administration of Recombinant Lactococcus lactis Expressing HSP65 and Tandemly Repeated P277 Reduces the Incidence of Type I Diabetes in Non-Obese Diabetic Mice

    PubMed Central

    Ma, Yanjun; Liu, Jingjing; Hou, Jing; Dong, Yuankai; Lu, Yong; Jin, Liang; Cao, Rongyue; Li, Taiming; Wu, Jie

    2014-01-01

    Diabetes mellitus type 1 (DM1) is an autoimmune disease that gradually destroys insulin-producing beta-cells. We have previously reported that mucosal administration of fusion protein of HSP65 with tandem repeats of P277 (HSP65-6P277) can reduce the onset of DM1 in non-obese diabetic (NOD) mice. To deliver large amounts of the fusion protein and to enhance long-term immune tolerance effects, in the present study, we investigated the efficacy of using orally administrated L. lactis expressing HSP65-6P277 to reduce the incidence of DM1 in NOD mice. L. lactis strain NZ9000 was engineered to express HSP65-6P277 either constitutively or by nisin induction. After immunization via gavage with the recombinant L. lactis strains to groups of 4-week old female NOD mice for 36 weeks, we observed that oral administration of recombinant L. Lactis resulted in the prevention of hyperglycemia, improved glucose tolerance and reduced insulitis. Immunologic analysis showed that treatment with recombinant L. lactis induced HSP65- and P277- specific T cell immuno-tolerance, as well as antigen-specific proliferation of splenocytes. The results revealed that the DM1-preventing function was in part caused by a reduction in the pro-inflammatory cytokine IFN-γ and an increase in the anti-inflammatory cytokine IL-10. Orally administered recombinant L. lactis delivering HSP65-6P277 may be an effective therapeutic approach in preventing DM1. PMID:25157497

  12. Reply to Noddings, Darwall, Wren, and Fullinwider

    ERIC Educational Resources Information Center

    Slote, Michael

    2010-01-01

    I respond to Noddings with further clarification of the notion of empathy and also argue that previous care ethics has put too much of an exclusive emphasis on relationships. I respond to Darwall by pointing out some implausible implications of his own and Kantian views about respect and by showing how a sentimentalist approach can avoid those…

  13. NOD2 Status and Human Ileal Gene Expression

    PubMed Central

    Hamm, Christina M.; Reimers, Melissa A.; McCullough, Casey K.; Gorbe, Elizabeth B.; Lu, Jianyun; Gu, C. Charles; Li, Ellen; Dieckgraefe, Brian K.; Gong, Qingqing; Stappenbeck, Thaddeus S.; Stone, Christian D.; Dietz, David W.; Hunt, Steven R.

    2014-01-01

    Background NOD2 single nucleotide polymorphisms have been associated with increased risk of ileal Crohn’s disease. This exploratory study was conducted to compare ileal mucosal gene expression in Crohn’s disease (CD) patients with and without NOD2 risk alleles. Methods Ileal samples were prospectively collected from eighteen non-smoking CD patients not treated with anti-TNFα biologics and nine non-smoking control patients without inflammatory bowel disease undergoing initial resection, and genotyped for the three major NOD2 risk alleles (Arg702Trp, Gly908Arg, Leu1007fs). Microarray analysis was performed in samples from four NOD2R (at least one risk allele) CD patients, four NOD2NR (no risk alleles) CD patients and four NOD2NR controls. Candidate genes selected by significance analysis of microarrays (SAM) were confirmed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays of all the samples. Results SAM detected upregulation of 18 genes in affected ileum in NOD2R compared to NOD2NR CD patients, including genes related to lymphocyte activation. SAM also detected altered ileal gene expression in unaffected NOD2NR ileal mucosal CD samples compared to NOD2NR control samples. QRT-PCR conducted on all the samples confirmed that increased CD3D expression in affected samples was associated with NOD2R status, and that increased MUC1, DUOX2, DMBT1 and decreased C4orf7 expression in unaffected samples was associated with CD, independent of NOD2 status. Conclusions The results support the concept that NOD2 risk alleles contribute to impaired regulation of inflammation in the ileum. Furthermore, altered ileal gene expression, independent of NOD2 status, is detected in the unaffected proximal margin of resected ileum from CD patients. PMID:20155851

  14. NOD-Like Receptors: Master Regulators of Inflammation and Cancer

    PubMed Central

    Saxena, Mansi; Yeretssian, Garabet

    2014-01-01

    Cytosolic NOD-like receptors (NLRs) have been associated with human diseases including infections, cancer, and autoimmune and inflammatory disorders. These innate immune pattern recognition molecules are essential for controlling inflammatory mechanisms through induction of cytokines, chemokines, and anti-microbial genes. Upon activation, some NLRs form multi-protein complexes called inflammasomes, while others orchestrate caspase-independent nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) signaling. Moreover, NLRs and their downstream signaling components engage in an intricate crosstalk with cell death and autophagy pathways, both critical processes for cancer development. Recently, increasing evidence has extended the concept that chronic inflammation caused by abberant NLR signaling is a powerful driver of carcinogenesis, where it abets genetic mutations, tumor growth, and progression. In this review, we explore the rapidly expanding area of research regarding the expression and functions of NLRs in different types of cancers. Furthermore, we particularly focus on how maintaining tissue homeostasis and regulating tissue repair may provide a logical platform for understanding the liaisons between the NLR-driven inflammatory responses and cancer. Finally, we outline novel therapeutic approaches that target NLR signaling and speculate how these could be developed as potential pharmaceutical alternatives for cancer treatment. PMID:25071785

  15. Autoimmune Encephalitis

    PubMed Central

    Leypoldt, Frank; Wandinger, Klaus-Peter; Bien, Christian G; Dalmau, Josep

    2016-01-01

    The term autoimmune encephalitis is used to describe a group of disorders characterised by symptoms of limbic and extra-limbic dysfunction occurring in association with antibodies against synaptic antigens and proteins localised on the neuronal cell surface. In recent years there has been a rapidly expanding knowledge of these syndromes resulting in a shift in clinical paradigms and new insights into pathogenic mechanisms. Since many patients respond well to immunosuppressive treatment, the recognition of these disorders is of utmost importance. In general, there are no brain-imaging modalities or biomarkers specific of these disorders other than the demonstration of the neuronal antibodies. A disease classification based on these antibodies provides information on prognosis and paraneoplastic aetiology. This article focuses on recent clinical advances, newly characterised antibodies and treatment approaches to these disorders. PMID:27330568

  16. Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity.

    PubMed Central

    Schwedock, J S; Liu, C; Leyh, T S; Long, S R

    1994-01-01

    The nodulation genes nodP and nodQ are required for production of Rhizobium meliloti nodulation (Nod) factors. These sulfated oligosaccharides act as morphogenic signals to alfalfa, the symbiotic host of R. meliloti. In previous work, we have shown that nodP and nodQ encode ATP sulfurylase, which catalyzes the formation of APS (adenosine 5'-phosphosulfate) and PPi. In the subsequent metabolic reaction, APS is converted to PAPS (3'-phosphoadenosine 5'-phosphosulfate) by APS kinase. In Escherichia coli, cysD and cysN encode ATP sulfurylase; cysC encodes APS kinase. Here, we present genetic, enzymatic, and sequence similarity data demonstrating that nodP and nodQ encode both ATP sulfurylase and APS kinase activities and that these enzymes associate into a multifunctional protein complex which we designate the sulfate activation complex. We have previously described the presence of a putative GTP-binding site in the nodQ sequence. The present report also demonstrates that GTP enhances the rate of PAPS synthesis from ATP and sulfate (SO4(2-)) by NodP and NodQ expressed in E. coli. Thus, GTP is implicated as a metabolic requirement for synthesis of the R. meliloti Nod factors. Images PMID:7961471

  17. Defining and analyzing geoepidemiology and human autoimmunity.

    PubMed

    Shapira, Yinon; Agmon-Levin, Nancy; Shoenfeld, Yehuda

    2010-05-01

    Autoimmune diseases cumulatively affect 5-10% of the industrial world population and are a significant cause of morbidity and mortality. In recent decades rates are rising worldwide, and autoimmunity can no longer be associated solely with the more developed "Western" countries. Geoepidemiology of autoimmune diseases portrays the burden of these illnesses across various regions and ethnic populations. Furthermore, Geoepidemiology may yield important clues to the genetic and triggering environmental mechanisms of autoimmunity. In this review we compiled and discuss in depth abundant geoepidemiological data pertaining to four major autoimmune conditions, namely type-1 diabetes mellitus, multiple sclerosis, autoimmune thyroid disease, and inflammatory bowel disease. The following key results manifested in this review: 1) Ethno-geographic gradients in autoimmune disease risk are attributable to a complex interplay of genetic and environmental pressures. 2) Industrial regions, particularly Northern Europe and North America, still exhibit the highest rates for most autoimmune diseases. 3) Methods particularly useful in demonstrating the significant influence of genetic and environmental factors include comparative ethnic differences studies, migration studies, and recognition of 'hotspots'. 4) Key environmental determinants of geographical differences include diminished ultraviolet radiation exposure, Western or affluence-related lifestyle, infection exposure, environmental pollutants, nutritional factors and disease-specific precipitants (e.g., iodine exposure). PMID:20034761

  18. Celiac disease and autoimmune thyroid disease.

    PubMed

    Ch'ng, Chin Lye; Jones, M Keston; Kingham, Jeremy G C

    2007-10-01

    Celiac disease (CD) or gluten sensitive enteropathy is relatively common in western populations with prevalence around 1%. With the recent availability of sensitive and specific serological testing, many patients who are either asymptomatic or have subtle symptoms can be shown to have CD. Patients with CD have modest increases in risks of malignancy and mortality compared to controls. The mortality among CD patients who comply poorly with a gluten-free diet is greater than in compliant patients. The pattern of presentation of CD has altered over the past three decades. Many cases are now detected in adulthood during investigation of problems as diverse as anemia, osteoporosis, autoimmune disorders, unexplained neurological syndromes, infertility and chronic hypertransaminasemia of uncertain cause. Among autoimmune disorders, increased prevalence of CD has been found in patients with autoimmune thyroid disease, type 1 diabetes mellitus, autoimmune liver diseases and inflammatory bowel disease. Prevalence of CD was noted to be 1% to 19% in patients with type 1 diabetes mellitus, 2% to 5% in autoimmune thyroid disorders and 3% to 7% in primary biliary cirrhosis in prospective studies. Conversely, there is also an increased prevalence of immune based disorders among patients with CD. The pathogenesis of co-existent autoimmune thyroid disease and CD is not known, but these conditions share similar HLA haplotypes and are associated with the gene encoding cytotoxic T-lymphocyte-associated antigen-4. Screening high risk patients for CD, such as those with autoimmune diseases, is a reasonable strategy given the increased prevalence. Treatment of CD with a gluten-free diet should reduce the recognized complications of this disease and provide benefits in both general health and perhaps life expectancy. It also improves glycemic control in patients with type 1 diabetes mellitus and enhances the absorption of medications for associated hypothyroidism and osteoporosis. It

  19. Diabetes

    MedlinePlus

    ... glucose or pre-diabetes. These levels are risk factors for type 2 diabetes. Hemoglobin A1c (A1C) test: Normal is less than 5.7%; prediabetes is 5.7 to 6.4%; and diabetes is 6.5% or higher. Oral ...

  20. Pathway for Biodegrading Nodularin (NOD) by Sphingopyxis sp. USTB-05.

    PubMed

    Feng, Nan; Yang, Fan; Yan, Hai; Yin, Chunhua; Liu, Xiaolu; Zhang, Haiyang; Xu, Qianqian; Lv, Le; Wang, Huasheng

    2016-01-01

    Nodularin (NOD) is greatly produced by Nodularia spumigena and released into the environment when toxic cyanobacterial blooms happened in natural water body, which is seriously harmful to human and animals. The promising bacterial strain of Sphingopyxis sp. USTB-05 was found to have an ability in biodegrading NOD. Initially, 11.6 mg/L of NOD could be completely eliminated within 72 h by whole cells of USTB-05, and within 36 h by its crude enzymes (CEs) of 570 mg/L, respectively. During the enzymatic biodegradation process of NOD, two products were observed on the profiles of HPLC. Based on the analysis of m/z ratios of NOD and its two products on a rapid-resolution liquid chromatogram-mass spectrum (RRLC-MS), we suggested that at least two enzymes of USTB-05 participated in biodegrading NOD. The first enzyme hydrolyzed Arg-Adda peptide bond of cyclic NOD and converted it to linear NOD as the first product. The second enzyme was found to cut off the target peptide bond between Adda and Glu of linearized NOD, and Adda was produced as a second and dead-end product. This finding is very important in both basic research and the application of USTB-05 on the removal of NOD from a water environment. PMID:27153090

  1. Pathway for Biodegrading Nodularin (NOD) by Sphingopyxis sp. USTB-05

    PubMed Central

    Feng, Nan; Yang, Fan; Yan, Hai; Yin, Chunhua; Liu, Xiaolu; Zhang, Haiyang; Xu, Qianqian; Lv, Le; Wang, Huasheng

    2016-01-01

    Nodularin (NOD) is greatly produced by Nodularia spumigena and released into the environment when toxic cyanobacterial blooms happened in natural water body, which is seriously harmful to human and animals. The promising bacterial strain of Sphingopyxis sp. USTB-05 was found to have an ability in biodegrading NOD. Initially, 11.6 mg/L of NOD could be completely eliminated within 72 h by whole cells of USTB-05, and within 36 h by its crude enzymes (CEs) of 570 mg/L, respectively. During the enzymatic biodegradation process of NOD, two products were observed on the profiles of HPLC. Based on the analysis of m/z ratios of NOD and its two products on a rapid-resolution liquid chromatogram-mass spectrum (RRLC-MS), we suggested that at least two enzymes of USTB-05 participated in biodegrading NOD. The first enzyme hydrolyzed Arg-Adda peptide bond of cyclic NOD and converted it to linear NOD as the first product. The second enzyme was found to cut off the target peptide bond between Adda and Glu of linearized NOD, and Adda was produced as a second and dead-end product. This finding is very important in both basic research and the application of USTB-05 on the removal of NOD from a water environment. PMID:27153090

  2. Infections and autoimmune diseases.

    PubMed

    Bach, Jean-François

    2005-01-01

    The high percentage of disease-discordant pairs of monozygotic twins demonstrates the central role of environmental factors in the etiology of autoimmune diseases. Efforts were first focussed on the search for triggering factors. The study of animal models has clearly shown that infections may trigger autoimmune diseases, as in the case of Coxsackie B4 virus in type I diabetes and the encephalomyocarditis virus in autoimmune myositis, two models in which viruses are thought to act by increasing immunogenicity of autoantigens secondary to local inflammation. The induction of a Guillain-Barré syndrome in rabbits after immunization with a peptide derived from Campylobacter jejuni is explained by mimicry between C. jejuni antigens and peripheral nerve axonal antigens. Other models involve chemical modification of autoantigens, as in the case of iodine-induced autoimmune thyroiditis. These mechanisms have so far only limited clinical counterparts (rheumatic fever, Guillain-Barré syndrome and drug-induced lupus or myasthenia gravis) but one may assume that unknown viruses may be at the origin of a number of chronic autoimmune diseases, such as type I diabetes and multiple sclerosis) as illustrated by the convergent data incriminating IFN-alpha in the pathophysiology of type I diabetes and systemic lupus erythematosus. Perhaps the difficulties met in identifying the etiologic viruses are due to the long lag time between the initial causal infection and onset of clinical disease. More surprisingly, infections may also protect from autoimmune diseases. Western countries are being confronted with a disturbing increase in the incidence of most immune disorders, including autoimmune and allergic diseases, inflammatory bowel diseases, and some lymphocyte malignancies. Converging epidemiological evidence indicates that this increase is linked to improvement of the socio-economic level of these countries, posing the question of the causal relationship and more precisely the

  3. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    SciTech Connect

    Zhao, Yong; Guo, Chengshan; Hwang, David; Lin, Brian; Dingeldein, Michael; Mihailescu, Dan; Sam, Susan; Sidhwani, Seema; Zhang, Yongkang; Jain, Sumit; Skidgel, Randal A.; Prabhakar, Bellur S.; Mazzone, Theodore; Holterman, Mark J.

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  4. Diet, microbiota and autoimmune diseases.

    PubMed

    Vieira, S M; Pagovich, O E; Kriegel, M A

    2014-05-01

    There is growing evidence that the commensal bacteria in the gastrointestinal tract (the gut microbiota) influence the development of autoimmunity in rodent models. Since humans have co-evolved with commensals for millennia, it is likely that people, who are genetically predisposed to autoimmunity, harbor gut microbial communities that similarly influence the onset and/or severity of disease. Beyond the current efforts to identify such disease-promoting or -preventing commensals ("pathobionts" or "symbionts"), it will be important to determine what factors modulate them. Dietary changes are known to affect both the composition and function of the gut microbial communities, which in turn can alter the innate and adaptive immune system. In this review, we focus on the relationships between diet, microbiota, and autoimmune diseases. We hypothesize that the beneficial and life-prolonging effects of caloric restriction on a variety of autoimmune models including lupus might partly be mediated by its effects on the gut microbiome and associated virome, the collection of all viruses in the gut. We give recent examples of the immunomodulatory potential of select gut commensals and their products or diet-derived metabolites in murine models of arthritis, multiple sclerosis, and type 1 diabetes. Lastly, we summarize the published phenotypes of germ-free mouse models of lupus and speculate on any role of the diet-sensitive microbiome and virome in systemic lupus and the related antiphospholipid syndrome. PMID:24763536

  5. Reversal of New-Onset Type 1 Diabetes With an Agonistic TLR4/MD-2 Monoclonal Antibody.

    PubMed

    Bednar, Kyle J; Tsukamoto, Hiroki; Kachapati, Kritika; Ohta, Shoichiro; Wu, Yuehong; Katz, Jonathan D; Ascherman, Dana P; Ridgway, William M

    2015-10-01

    Type 1 diabetes (T1D) is currently an incurable disease, characterized by a silent prodromal phase followed by an acute clinical phase, reflecting progressive autoimmune destruction of insulin-producing pancreatic β-cells. Autoreactive T cells play a major role in β-cell destruction, but innate immune cell cytokines and costimulatory molecules critically affect T-cell functional status. We show that an agonistic monoclonal antibody to TLR4/MD-2 (TLR4-Ab) reverses new-onset diabetes in a high percentage of NOD mice. TLR4-Ab induces antigen-presenting cell (APC) tolerance in vitro and in vivo, resulting in an altered cytokine profile, decreased costimulatory molecule expression, and decreased T-cell proliferation in APC:T-cell assays. TLR4-Ab treatment increases T-regulatory cell (Treg) numbers in both the periphery and the pancreatic islet, predominantly expanding the Helios(+)Nrp-1(+)Foxp3(+) Treg subset. TLR4-Ab treatment in the absence of B cells in NOD.scid mice prevents subsequent T cell-mediated disease, further suggesting a major role for APC tolerization in disease protection. Specific stimulation of the innate immune system through TLR4/MD-2, therefore, can restore tolerance in the aberrant adaptive immune system and reverse new-onset T1D, suggesting a novel immunological approach to treatment of T1D in humans. PMID:26130764

  6. Comparative Genomic and Sequence Analysis Provides Insight into the Molecular Functionality of NOD1 and NOD2

    PubMed Central

    Boyle, Joseph P.; Mayle, Sophie; Parkhouse, Rhiannon; Monie, Tom P.

    2013-01-01

    Amino acids with functional or key structural roles display higher degrees of conservation through evolution. The comparative analysis of protein sequences from multiple species and/or between homologous proteins can be highly informative in the identification of key structural and functional residues. Residues which in turn provide insight into the molecular mechanisms of protein function. We have explored the genomic and amino acid conservation of the prototypic innate immune genes NOD1 and NOD2. NOD1 orthologs were found in all vertebrate species analyzed, whilst NOD2 was absent from the genomes of avian, reptilian and amphibian species. Evolutionary trace analysis was used to identify highly conserved regions of NOD1 and NOD2 across multiple species. Consistent with the known functions of NOD1 and NOD2 highly conserved patches were identified that matched the Walker A and B motifs and provided interaction surfaces for the adaptor protein RIP2. Other patches of high conservation reflect key structural functions as predicted by homology models. In addition, the pattern of residue conservation within the leucine-rich repeat (LRR) region of NOD1 and NOD2 is indicative of a conserved mechanism of ligand recognition involving the concave surface of the LRRs. PMID:24109482

  7.  An autoimmune polyglandular syndrome complicated with celiac disease and autoimmune hepatitis.

    PubMed

    Dieli-Crimi, Romina; Núñez, Concepción; Estrada, Lourdes; López-Palacios, Natalia

    2016-01-01

     Autoimmune polyglandular syndrome (APS) is a combination of different autoimmune diseases. The close relationship between immune-mediated disorders makes it mandatory to perform serological screening periodically in order to avoid delayed diagnosis of additional autoimmune diseases. We studied a patient with type 1 diabetes (T1D) who later developed an autoimmune thyroid disease (ATD) and was referred to our hospital with a serious condition of his clinical status. The patient was suffering from an advance stage of celiac disease (CD), the delay in its diagnosis and in the establishment of a gluten-free dietled the patient to a severe proteincalorie malnutrition. Later, the patient developed an autoimmune hepatitis (AIH). We consider that clinical deterioration in patients with APS should alert physicians about the possible presence of other immune-mediated diseases. Periodic screening for autoantibodies would help to prevent delayed diagnosis and would improve patient's quality of life. PMID:27236159

  8. NodD1 and NodD2 Are Not Required for the Symbiotic Interaction of Bradyrhizobium ORS285 with Nod-Factor-Independent Aeschynomene Legumes

    PubMed Central

    Fardoux, Joel; Giraud, Eric

    2016-01-01

    Photosynthetic Bradyrhizobium strain ORS285 forms nitrogen-fixing nodules on the roots and stems of tropical aquatic legumes of the Aeschynomene genus. Depending on the Aeschynomene species, this symbiotic interaction does or does not rely on the synthesis of Nod-factors (NFs). However, whether during the interaction of Bradyrhizobium ORS285 with NF-independent Aeschynomene species the nod genes are expressed and if the general regulator NodD plays a symbiotic role is unknown. Expression studies showed that in contrast to the interaction with the NF-dependent Aeschynomene species, A. afraspera, the Bradyrhizobium ORS285 nod genes are not induced upon contact with the NF-independent host plant A. indica. Mutational analysis of the two nodD genes present in ORS285, showed that deletion of nodD1 and nodD2 did not affect the symbiotic interaction between Bradyrhizobium ORS285 and A. indica whereas the deletions had an effect on the symbiotic interaction with A. afraspera plants. In addition, when the expression of nod genes was artificially induced by adding naringenin to the plant growth medium, the nodulation of A. indica by Bradyrhizobium ORS285 is delayed and resulted in lower nodule numbers. PMID:27315080

  9. Prevention of diabetes in nonobese diabetic mice by anti-I-A monoclonal antibodies: transfer of protection by splenic T cells.

    PubMed Central

    Boitard, C; Bendelac, A; Richard, M F; Carnaud, C; Bach, J F

    1988-01-01

    The nonobese diabetic (NOD) mouse has been developed as a model for insulin-dependent diabetes. One gene required for the development of diabetes is associated with the major histocompatibility complex. This gene possibly could be linked to class II genes, which show a unique pattern in NOD mice. To evaluate the role of the I-A class II antigen expressed in NOD mice, we studied the effect of anti-I-A monoclonal antibodies on disease onset in vivo. Long-term treatment with anti-class II IgG2a antibodies specific for NOD I-A antigen prevented the spontaneous development of diabetes, as opposed to control antibodies shown not to react with NOD I-A antigen. Anti-class II antibodies apparently elicited active immune suppression, requiring a fully immunocompetent host, rather than passive blockade of class II antigen. Treatment with anti-class II antibody effectively prevented the adoptive transfer of diabetes produced by splenocytes from diabetic NOD mice into newborn mice but failed to prevent adoptive transfer into irradiated adult NOD recipients. Direct evidence for the induction of suppressor cells was obtained from the passive transfer of spleen cells from anti-class II antibody-treated NOD donors. The injection of anti-class II antibody-treated spleen cells collected from NOD donors prevented the development of diabetes, which normally follows transfer of diabetogenic spleen cells into irradiated 8-week-old male NOD recipients. Depletion experiments indicate that CD4+ cells are responsible for anti-class II-induced protection transferred by spleen cells. PMID:3264405

  10. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.

    PubMed

    Marchesan, J; Jiao, Y Z; Schaff, R A; Hao, J; Morelli, T; Kinney, J S; Gerow, E; Sheridan, R; Rodrigues, V; Paster, B J; Inohara, N; Giannobile, W V

    2016-06-01

    Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). PMID:26177212

  11. Autism and Autoimmune Disease: A Family Study

    ERIC Educational Resources Information Center

    Money, John; And Others

    1971-01-01

    Described in a family in which the youngest boy has early infantile autism, Addison's disease, and moniliasis and two older boys have autoimmune disease with hypoparathyroidism, Addison's disease, moniliasis, and either alopecia totalis or diabetes mellitus, while the oldest boy and parents are symptom free. (KW)

  12. Central tolerance spares the private high-avidity CD4(+) T-cell repertoire specific for an islet antigen in NOD mice.

    PubMed

    Serre, Laurent; Fazilleau, Nicolas; Guerder, Sylvie

    2015-07-01

    Although central tolerance induces the deletion of most autoreactive T cells, some autoreactive T cells escape thymic censorship. Whether potentially harmful autoreactive T cells present distinct TCRαβ features remains unclear. Here, we analyzed the TCRαβ repertoire of CD4(+) T cells specific for the S100β protein, an islet antigen associated with type 1 diabetes. We found that diabetes-resistant NOD mice deficient for thymus specific serine protease (TSSP), a protease that impairs class II antigen presentation by thymic stromal cells, were hyporesponsive to the immunodominant S100β1-15 epitope, as compared to wild-type NOD mice, due to intrathymic negative selection. In both TSSP-deficient and wild-type NOD mice, the TCRαβ repertoire of S100β-specific CD4(+) T cells though diverse showed a specific bias for dominant TCRα rearrangements with limited CDR3α diversity. These dominant TCRα chains were public since they were found in all mice. They were of intermediate- to low-avidity. In contrast, high-avidity T cells expressed unique TCRs specific to each individual (private TCRs) and were only found in wild-type NOD mice. Hence, in NOD mice, the autoreactive CD4(+) T-cell compartment has two major components, a dominant and public low-avidity TCRα repertoire and a private high-avidity CD4(+) T-cell repertoire; the latter is deleted by re-enforced negative selection. PMID:25884569

  13. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice.

    PubMed

    Bonami, Rachel H; Thomas, James W

    2015-11-15

    Autoreactive B lymphocytes that commonly arise in the developing repertoire can be salvaged by receptor editing, a central tolerance mechanism that alters BCR specificity through continued L chain rearrangement. It is unknown whether autoantigens with weak cross-linking potential, such as insulin, elicit receptor editing, or whether this process is dysregulated in related autoimmunity. To resolve these issues, we developed an editing-competent model in which anti-insulin Vκ125 was targeted to the Igκ locus and paired with anti-insulin VH125Tg. Physiologic, circulating insulin increased RAG-2 expression and was associated with BCR replacement that eliminated autoantigen recognition in a proportion of developing anti-insulin B lymphocytes. The proportion of anti-insulin B cells that underwent receptor editing was reduced in the type 1 diabetes-prone NOD strain relative to a nonautoimmune strain. Resistance to editing was associated with increased surface IgM expression on immature (but not transitional or mature) anti-insulin B cells in the NOD strain. The actions of mAb123 on central tolerance were also investigated, because selective targeting of insulin-occupied BCR by mAb123 eliminates anti-insulin B lymphocytes and prevents type 1 diabetes. Autoantigen targeting by mAb123 increased RAG-2 expression and dramatically enhanced BCR replacement in newly developed B lymphocytes. Administering F(ab')2123 induced IgM downregulation and reduced the frequency of anti-insulin B lymphocytes within the polyclonal repertoire of VH125Tg/NOD mice, suggesting enhanced central tolerance by direct BCR interaction. These findings indicate that weak or faulty checkpoints for central tolerance can be overcome by autoantigen-specific immunomodulatory therapy. PMID:26432895

  14. Structural models of zebrafish (Danio rerio) NOD1 and NOD2 NACHT domains suggest differential ATP binding orientations: insights from computational modeling, docking and molecular dynamics simulations.

    PubMed

    Maharana, Jitendra; Sahoo, Bikash Ranjan; Bej, Aritra; Jena, Itishree; Parida, Arunima; Sahoo, Jyoti Ranjan; Dehury, Budheswar; Patra, Mahesh Chandra; Martha, Sushma Rani; Balabantray, Sucharita; Pradhan, Sukanta Kumar; Behera, Bijay Kumar

    2015-01-01

    Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio) using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved 'Lysine' at Walker A formed hydrogen bonds (H-bonds) and Aspartic acid (Walker B) formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. 'Proline' of GxP motif (Pro386 of NOD1 and Pro464 of NOD2) interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2. PMID:25811192

  15. Structural Models of Zebrafish (Danio rerio) NOD1 and NOD2 NACHT Domains Suggest Differential ATP Binding Orientations: Insights from Computational Modeling, Docking and Molecular Dynamics Simulations

    PubMed Central

    Maharana, Jitendra; Sahoo, Bikash Ranjan; Bej, Aritra; Sahoo, Jyoti Ranjan; Dehury, Budheswar; Patra, Mahesh Chandra; Martha, Sushma Rani; Balabantray, Sucharita; Pradhan, Sukanta Kumar; Behera, Bijay Kumar

    2015-01-01

    Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio) using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved ‘Lysine’ at Walker A formed hydrogen bonds (H-bonds) and Aspartic acid (Walker B) formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. ‘Proline’ of GxP motif (Pro386 of NOD1 and Pro464 of NOD2) interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2. PMID:25811192

  16. Discovery of Native Autoantigens via Antigen Surrogate Technology: Application to Type 1 Diabetes

    PubMed Central

    2014-01-01

    A fundamental goal in understanding the mechanisms of autoimmune disease is the characterization of autoantigens that are targeted by autoreactive antibodies and T cells. Unfortunately, the identification of autoantigens is a difficult problem. We have begun to explore a novel route to the discovery of autoantibody/autoantigen pairs that involves comparative screening of combinatorial libraries of unnatural, synthetic molecules for compounds that bind antibodies present at much higher levels in the serum of individuals with a given autoimmune disease than in the serum of control individuals. We have shown that this approach can yield “antigen surrogates” capable of capturing disease-specific autoantibodies from serum. In this report, we demonstrate that the synthetic antigen surrogates can be used to affinity purify the autoantibodies from serum and that these antibodies can then be used to identify their cognate autoantigen in an appropriate tissue lysate. Specifically, we report the discovery of a peptoid able to bind autoantibodies present in about one-third of nonobese diabetic (NOD) mice. The peptoid-binding autoantibodies were highly enriched through peptoid affinity chromatography and employed to probe mouse pancreatic and brain lysates. This resulted in identification of murine GAD65 as the native autoantigen. GAD65 is a known humoral autoantigen in human type 1 diabetes mellitus (T1DM), but its existence in mice had been controversial. This study demonstrates the potential of this chemical approach for the unbiased identification of autoantigen/autoantibody complexes. PMID:25474415

  17. Detection of vasostatin-1-specific CD8(+) T cells in non-obese diabetic mice that contribute to diabetes pathogenesis.

    PubMed

    Nikoopour, E; Krougly, O; Lee-Chan, E; Mansour Haeryfar, S M; Singh, B

    2016-09-01

    Chromogranin A (ChgA) is an antigenic target of pathogenic CD4(+) T cells in a non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D). Vasostatin-1 is a naturally processed fragment of ChgA. We have now identified a novel H2-K(d) -restricted epitope of vasostatin-1, ChgA 36-44, which elicits CD8(+) T cell responses in NOD mice. By using ChgA 36-44/K(d) tetramers we have determined the frequency of vasostatin-1-specific CD8(+) T cells in pancreatic islets and draining lymph nodes of NOD mice. We also demonstrate that vasostatin-1-specific CD4(+) and CD8(+) T cells constitute a significant fraction of islet-infiltrating T cells in diabetic NOD mice. Adoptive transfer of T cells from ChgA 36-44 peptide-primed NOD mice into NOD/severe combined immunodeficiency (SCID) mice led to T1D development. These findings indicate that vasostatin-1-specific CD8(+) T cells contribute to the pathogenesis of type 1 diabetes in NOD mice. PMID:27185276

  18. Autoimmune Inner Ear Disease

    MedlinePlus

    ... Find an ENT Doctor Near You Autoimmune Inner Ear Disease Autoimmune Inner Ear Disease Patient Health Information ... with a hearing loss. How Does the Healthy Ear Work? The ear has three main parts: the ...

  19. Diabetes

    MedlinePlus

    ... to develop type 2 diabetes later in life. Polycystic ovary syndrome Polycystic ovary syndrome (PCOS) is a condition that occurs when an imbalance ... to form on the ovaries. Women who have PCOS are at an increased risk of developing type ...

  20. Predominant Occupation of the Class I MHC Molecule H-2Kwm7 with a Single Self-peptide Suggests a Mechanism for its Diabetes-protective Effect

    SciTech Connect

    Brims, D.; Qian, J; Jarchum, I; Mikesh, L; Palmieri, E; Ramagopal, U; Malashkevich, V; Chaparro, R; Lund, T; et. al.

    2010-01-01

    Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic {beta} cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD{sup 4+} and CD{sup 8+} T cells in the pathogenesis of T1D. Although a large body of work has permitted the identification of multiple mechanisms to explain the diabetes-protective effect of particular class II MHC alleles, studies examining the protective influence of class I alleles are lacking. Here, we explored this question by performing biochemical and structural analyses of the murine class I MHC molecule H-2K{sup wm7}, which exerts a diabetes-protective effect in NOD mice. We have found that H-2K{sup wm7} molecules are predominantly occupied by the single self-peptide VNDIFERI, derived from the ubiquitous protein histone H2B. This unexpected finding suggests that the inability of H-2K{sup wm7} to support T1D development could be due, at least in part, to the failure of peptides from critical {beta}-cell antigens to adequately compete for binding and be presented to T cells. Predominant presentation of a single peptide would also be expected to influence T-cell selection, potentially leading to a reduced ability to select a diabetogenic CD{sup 8+} T-cell repertoire. The report that one of the predominant peptides bound by T1D-protective HLA-A*31 is histone derived suggests the potential translation of our findings to human diabetes-protective class I MHC molecules.

  1. Autoimmunity in Coxsackievirus B3 induced myocarditis: role of estrogen in suppressing autoimmunity

    PubMed Central

    2010-01-01

    SUMMARY Picornaviruses are small, non-enveloped, single stranded, positive sense RNA viruses which cause multiple diseases including myocarditis/dilated cardiomyopathy, type 1 diabetes, encephalitis, myositis, orchitis and hepatitis. Although picornaviruses directly kill cells, tissue injury primarily results from autoimmunity to self antigens. Viruses induce autoimmunity by: aborting deletion of self-reactive T cells during T cell ontogeny; reversing anergy of peripheral autoimmune T cells; eliminating T regulatory cells; stimulating self-reactive T cells through antigenic mimicry or cryptic epitopes; and acting as an adjuvant for self molecules released during virus infection. Most autoimmune diseases (SLE, rheumatoid arthritis, Grave’s disease) predominate in females, but diseases associated with picornavirus infections predominate in males. T regulatory cells are activated in infected females because of the combined effects of estrogen and innate immunity. PMID:20963181

  2. Antiaging Gene Klotho Attenuates Pancreatic β-Cell Apoptosis in Type 1 Diabetes.

    PubMed

    Lin, Yi; Sun, Zhongjie

    2015-12-01

    Apoptosis is the major cause of death of insulin-producing β-cells in type 1 diabetes mellitus (T1DM). Klotho is a recently discovered antiaging gene. We found that the Klotho gene is expressed in pancreatic β-cells. Interestingly, halplodeficiency of Klotho (KL(+/-)) exacerbated streptozotocin (STZ)-induced diabetes (a model of T1DM), including hyperglycemia, glucose intolerance, diminished islet insulin storage, and increased apoptotic β-cells. Conversely, in vivo β-cell-specific expression of mouse Klotho gene (mKL) attenuated β-cell apoptosis and prevented STZ-induced diabetes. mKL promoted cell adhesion to collagen IV, increased FAK and Akt phosphorylation, and inhibited caspase 3 cleavage in cultured MIN6 β-cells. mKL abolished STZ- and TNFα-induced inhibition of FAK and Akt phosphorylation, caspase 3 cleavage, and β-cell apoptosis. These promoting effects of Klotho can be abolished by blocking integrin β1. Therefore, these cell-based studies indicated that Klotho protected β-cells by inhibiting β-cell apoptosis through activation of the integrin β1-FAK/Akt pathway, leading to inhibition of caspase 3 cleavage. In an autoimmune T1DM model (NOD), we showed that in vivo β-cell-specific expression of mKL improved glucose tolerance, attenuated β-cell apoptosis, enhanced insulin storage in β-cells, and increased plasma insulin levels. The beneficial effect of Klotho gene delivery is likely due to attenuation of T-cell infiltration in pancreatic islets in NOD mice. Overall, our results demonstrate for the first time that Klotho protected β-cells in T1DM via attenuating apoptosis. PMID:26340932

  3. Dermatophagoides pteronyssinus group 2 allergen bound to 8-OH modified adenine reduces the Th2-mediated airway inflammation without inducing a Th17 response and autoimmunity.

    PubMed

    Pratesi, Sara; Nencini, Francesca; Filì, Lucia; Occhiato, Ernesto G; Romagnani, Sergio; Parronchi, Paola; Maggi, Enrico; Vultaggio, Alessandra

    2016-09-01

    8-OH modified adenine bound to Dermatophagoides pteronyssinus group 2 (nDer p2-Conj), a novel allergen-TLR7 agonist conjugate, improves murine airway inflammation in priming and therapeutic settings, however no data are known on the activity of this construct on Th17 cells. The aim of the study was to evaluate if nDer p2-Conj elicited in vivo Th17 cells and Th17-driven autoimmune responses, by using both short- and long-term priming and therapeutic protocols in a nDer p2-driven model of murine airway inflammation. The conjugate induced the in vitro production of cytokines favouring the Th17 polarization by bone marrow-derived dendritic cells. In short-term protocols, the priming or treatment with the conjugate ameliorated the airway inflammation by shifting Th2 allergen-specific cells into T cells producing IFN-γ, IL-10, but not IL-17A. Similar results were found in long-term protocol where the conjugate down-regulated airway inflammation without any evidence of autoimmune response and B cell compartment expansion. nDer p2-Conj also failed to shorten the spontaneous onset of diabetes on conjugates-primed NOD/LtJ mice. We found that neutrophils in BALF, ROR-γt and IL-17A expression in lungs were increased in conjugate-treated IL-10KO mice. These data emphasize the role of conjugate-driven IL-10 production, which can regulate the activity of memory Th17 cells and prevent the onset of autoimmune response. PMID:27475304

  4. Promotion of Autoimmune Diabetes by Cereal Diet in the Presence or Absence of Microbes Associated With Gut Immune Activation, Regulatory Imbalance, and Altered Cathelicidin Antimicrobial Peptide

    PubMed Central

    Patrick, Christopher; Wang, Gen-Sheng; Lefebvre, David E.; Crookshank, Jennifer A.; Sonier, Brigitte; Eberhard, Chandra; Mojibian, Majid; Kennedy, Christopher R.; Brooks, Stephen P.J.; Kalmokoff, Martin L.; Maglio, Mariantonia; Troncone, Riccardo; Poussier, Philippe; Scott, Fraser W.

    2013-01-01

    We are exposed to millions of microbial and dietary antigens via the gastrointestinal tract, which likely play a key role in type 1 diabetes (T1D). We differentiated the effects of these two major environmental factors on gut immunity and T1D. Diabetes-prone BioBreeding (BBdp) rats were housed in specific pathogen-free (SPF) or germ-free (GF) conditions and weaned onto diabetes-promoting cereal diets or a protective low-antigen hydrolyzed casein (HC) diet, and T1D incidence was monitored. Fecal microbiota 16S rRNA genes, immune cell distribution, and gene expression in the jejunum were analyzed. T1D was highest in cereal-SPF (65%) and cereal-GF rats (53%) but inhibited and delayed in HC-fed counterparts. Nearly all HC-GF rats remained diabetes-free, whereas HC-fed SPF rats were less protected (7 vs. 29%). Bacterial communities differed in SPF rats fed cereal compared with HC. Cereal-SPF rats displayed increased gut CD3+ and CD8α+ lymphocytes, ratio of Ifng to Il4 mRNA, and Lck expression, indicating T-cell activation. The ratio of CD3+ T cells expressing the Treg marker Foxp3+ was highest in HC-GF and lowest in cereal-SPF rats. Resident CD163+ M2 macrophages were increased in HC-protected rats. The cathelicidin antimicrobial peptide (Camp) gene was upregulated in the jejunum of HC diet–protected rats, and CAMP+ cells colocalized with CD163. A cereal diet was a stronger promoter of T1D than gut microbes in association with impaired gut immune homeostasis. PMID:23349499

  5. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.

    PubMed

    Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun

    2014-04-01

    Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury. PMID:24014157

  6. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    SciTech Connect

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  7. Sirolimus for Autoimmune Disease of Blood Cells

    ClinicalTrials.gov

    2016-04-22

    Autoimmune Pancytopenia; Autoimmune Lymphoproliferative Syndrome (ALPS); Evans Syndrome; Idiopathic Thrombocytopenic Purpura; Anemia, Hemolytic, Autoimmune; Autoimmune Neutropenia; Lupus Erythematosus, Systemic; Inflammatory Bowel Disease; Rheumatoid Arthritis

  8. Environmental Basis of Autoimmunity.

    PubMed

    Floreani, Annarosa; Leung, Patrick S C; Gershwin, M Eric

    2016-06-01

    The three common themes that underlie the induction and perpetuation of autoimmunity are genetic predisposition, environmental factors, and immune regulation. Environmental factors have gained much attention for their role in triggering autoimmunity, with increasing evidence of their influence as demonstrated by epidemiological studies, laboratory research, and animal studies. Environmental factors known to trigger and perpetuate autoimmunity include infections, gut microbiota, as well as physical and environmental agents. To address these issues, we will review major potential mechanisms that underlie autoimmunity including molecular mimicry, epitope spreading, bystander activation, polyclonal activation of B and T cells, infections, and autoinflammatory activation of innate immunity. The association of the gut microbiota on autoimmunity will be particularly highlighted by their interaction with pharmaceutical agents that may lead to organ-specific autoimmunity. Nonetheless, and we will emphasize this point, the precise mechanism of environmental influence on disease pathogenesis remains elusive. PMID:25998909

  9. The IL-1β Receptor Antagonist SER140 Postpones the Onset of Diabetes in Female Nonobese Diabetic Mice

    PubMed Central

    Cucak, Helena; Hansen, Gitte; Vrang, Niels; Skarsfeldt, Torben; Steiness, Eva; Jelsing, Jacob

    2016-01-01

    The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways. PMID:26953152

  10. Inflammatory Tendencies and Overproduction of IL-17 in the Colon of Young NOD Mice Are Counteracted With Diet Change

    PubMed Central

    Alam, Catharina; Valkonen, Suvi; Palagani, Vindhya; Jalava, Jari; Eerola, Erkki; Hänninen, Arno

    2010-01-01

    OBJECTIVE Dietary factors influence diabetes development in the NOD mouse. Diet affects the composition of microbiota in the distal intestine, which may subsequently influence intestinal immune homeostasis. However, the specific effects of antidiabetogenic diets on gut immunity and the explicit associations between intestinal immune disruption and type 1 diabetes onset remain unclear. RESEARCH DESIGN AND METHODS Gut microbiota of NOD mice fed a conventional diet or ProSobee formula were compared using gas chromatography. Colonic lamina propria immune cells were characterized in terms of activation markers, cytokine mRNA and Th17 and Foxp3+ T-cell numbers, using real-time PCR and flow cytometry. Activation of diabetogenic CD4 T-cells by purified B-cells was assessed in both groups. Immune tolerance to autologous commensal bacteria was evaluated in vitro using thymidine-incorporation tests. RESULTS Young NOD mice showed a disturbed tolerance to autologous commensal bacteria. Increased numbers of activated CD4 T-cells and (CD11b+CD11c+) dendritic cells and elevated levels of Th17 cells and IL23 mRNA were moreover observed in colon lamina propria. These phenomena were abolished when mice were fed an antidiabetogenic diet. The antidiabetogenic diet also altered the expression levels of costimulatory molecules and the capacity of peritoneal B-cells to induce insulin-specific CD4 T-cell proliferation. CONCLUSIONS Young NOD mice show signs of subclinical colitis, but the symptoms are alleviated by a diet change to an antidiabetogenic diet. Disrupted immune tolerance in the distal intestine may influence peritoneal cell pools and B-cell–mediated activation of diabetogenic T-cells. PMID:20547977

  11. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  12. American Autoimmune Related Diseases Association

    MedlinePlus

    ... With #25FOR25 Campaign During National Autoimmune Disease Awareness Month AARDA officially kicks of National Autoimmune DIsease Awareness ... Click here to read more. Autoimmune Disease Awareness Month AARDA and the NCAPG held two important events ...

  13. Autoimmune Hepatitis with Anti Centromere Antibodies

    PubMed Central

    Lodh, Moushumi; Pradhan, Debkant; Parida, Ashok

    2013-01-01

    We present the case report of a 49-year-old type 2 diabetes mellitus patient presenting with abdominal pain and black stool for 15 days. A proper workup of laboratory investigations helped us diagnose autoimmune hepatitis with anticentromere antibodies. The authors would like to highlight that screening AIH patients for anticentromere antibody is not mandatory but can be considered, especially in the presence of disease-related symptomatology for quicker, more accurate diagnosis and optimum management. PMID:25379307

  14. Heme Oxygenase-1 Induction Prevents Autoimmune Diabetes in Association With Pancreatic Recruitment of M2-Like Macrophages, Mesenchymal Cells, and Fibrocytes.

    PubMed

    Husseini, Mahmoud; Wang, Gen-Sheng; Patrick, Christopher; Crookshank, Jennifer A; MacFarlane, Amanda J; Noel, J Ariana; Strom, Alexander; Scott, Fraser W

    2015-11-01

    Immunoregulatory and regenerative processes are activated in the pancreas during the development of type 1 diabetes (T1D) but are insufficient to prevent the disease. We hypothesized that the induction of cytoprotective heme oxygenase-1 (HO-1) by cobalt protophoryrin (CoPP) would prevent T1D by promoting anti-inflammatory and pro-repair processes. Diabetes-prone BioBreeding rats received ip CoPP or saline twice per week for 3 weeks, starting at 30 days and were monitored for T1D. Immunohistochemistry, confocal microscopy, quantitative RT-PCR, and microarrays were used to evaluate postinjection pancreatic changes at 51 days, when islet inflammation is first visible. T1D was prevented in CoPP-treated rats (29% vs 73%). Pancreatic Hmox1 was up-regulated along with islet-associated CD68(+)HO-1(+) cells, which were also observed in a striking peri-lobular interstitial infiltrate. Most interstitial cells expressed the mesenchymal marker vimentin and the hematopoietic marker CD34. Spindle-shaped, CD34(+)vimentin(+) cells coexpressed collagen V, characteristic of fibrocytes. M2 macrophage factors Krüppel-like factor 4, CD163, and CD206 were expressed by interstitial cells, consistent with pancreatic upregulation of several M2-associated genes. CoPP upregulated islet-regenerating REG genes and increased neogenic REG3β(+) and insulin(+) clusters. Thus, short-term induction of HO-1 promoted a protective M2-like milieu in the pancreas and recruited mesenchymal cells, M2 macrophages, and fibrocytes that imparted immunoregulatory and pro-repair effects, preventing T1D. PMID:26252059

  15. Glutathione S-transferases and malondialdehyde in the liver of NOD mice on short-term treatment with plant mixture extract P-9801091.

    PubMed

    Petlevski, R; Hadzija, M; Slijepcević, M; Juretić, D; Petrik, J

    2003-04-01

    Changes in the concentration of glutathione S-transferases (GSTs) and malondialdehyde (MDA) were assessed in the liver of normal and diabetic NOD mice with and without treatment with the plant extract P-9801091. The plant extract P-9801091 is an antihyperglycaemic preparation containing Myrtilli folium (Vaccinium myrtillus L.), Taraxaci radix (Taraxacum of fi cinale Web.), Cichorii radix (Cichorium intybus L.), Juniperi fructus (Juniperus communis L.), Centaurii herba (Centaurium umbellatum Gilib.), Phaseoli pericarpium (Phaseolus vulgaris L.), Millefoliiherba (Achillea millefolium L.), Mori folium (Morus nigra L.), Valerianae radix (Valeriana of ficinalis L.) and Urticae herba et radix (Urtica dioica L). Hyperglycaemia in diabetes mellitus is responsible for the development of oxidative stress (via glucose auto-oxidation and protein glycation), which is characterized by increased lipid peroxide production (MDA is a lipid peroxidation end product) and/or decreased antioxidative defence (GST in the liver is predominantly an alpha enzyme, which has antioxidative activity). The catalytic concentration of GSTs in the liver was significantly reduced in diabetic NOD mice compared with normal NOD mice (p < 0.01), while the concentration of MDA showed a rising tendency (not significant). The results showed that statistically significant changes in antioxidative defence occurred in the experimental model of short-term diabetes mellitus. A 7-day treatment with P-9801091 plant extract at a dose of 20 mg/kg body mass led to a significant increase in the catalytic concentration of GSTs in the liver of diabetic NOD mice (p < 0.01) and a decrease in MDA concentration (not significant), which could be explained by its antihyperglycaemic effect. PMID:12722130

  16. The Autoimmune Ecology

    PubMed Central

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Alzate, Maria A.; Molano-Gonzalez, Nicolas; Rojas-Villarraga, Adriana

    2016-01-01

    Autoimmune diseases (ADs) represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation). As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology). In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures – internal and external – across the lifespan, interacting with hereditary factors (both genetics and epigenetics) to favor or protect against autoimmunity and its outcomes. Herein, we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status (SES), gender and sex hormones, vitamin D, organic solvents, and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied. PMID:27199979

  17. The Autoimmune Ecology.

    PubMed

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Alzate, Maria A; Molano-Gonzalez, Nicolas; Rojas-Villarraga, Adriana

    2016-01-01

    Autoimmune diseases (ADs) represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation). As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology). In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures - internal and external - across the lifespan, interacting with hereditary factors (both genetics and epigenetics) to favor or protect against autoimmunity and its outcomes. Herein, we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status (SES), gender and sex hormones, vitamin D, organic solvents, and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied. PMID:27199979

  18. Genetic basis of autoimmunity

    PubMed Central

    Marson, Alexander; Housley, William J.; Hafler, David A.

    2015-01-01

    Autoimmune diseases affect up to approximately 10% of the population. While rare Mendelian autoimmunity syndromes can result from monogenic mutations disrupting essential mechanisms of central and peripheral tolerance, more common human autoimmune diseases are complex disorders that arise from the interaction between polygenic risk factors and environmental factors. Although the risk attributable to most individual nucleotide variants is modest, genome-wide association studies (GWAS) have the potential to provide an unbiased view of biological pathways that drive human autoimmune diseases. Interpretation of GWAS requires integration of multiple genomic datasets including dense genotyping, cis-regulatory maps of primary immune cells, and genotyped studies of gene expression in relevant cell types and cellular conditions. Improved understanding of the genetic basis of autoimmunity may lead to a more sophisticated understanding of underlying cellular phenotypes and, eventually, novel diagnostics and targeted therapies. PMID:26030227

  19. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response

    PubMed Central

    Mavrogiorgos, Nikolaos; Mekasha, Samrawit; Yang, Yibin; Kelliher, Michelle A.; Ingalls, Robin R.

    2013-01-01

    Nucleotide-binding oligomerization domain (NOD)-1 and NOD2 are members of the NOD-like receptor family of cytosolic pattern recognition receptors that recognize specific fragments of the bacterial cell wall component peptidoglycan. Neisseria species are unique amongst Gram-negative bacteria in that they turn over large amounts of peptidoglycan during growth. In this study we examined the ability of NOD1 and NOD2 to recognize N. gonorrhoeae, and determined the role of NOD-dependent signaling in regulating the immune response to gonococcal infection. We found that gonococci, as well as conditioned medium from mid-logarithmic phase grown bacteria, were capable of activating both human NOD1 and NOD2, as well as mouse NOD2, leading to the activation of the transcription factor NF-κB and polyubiquitination of the adaptor receptor-interacting serine-threonine kinase 2 (RIPK2). We identified a number of cytokines and chemokines that were differentially expressed in wild type vs. NOD2 deficient macrophages in response to gonococcal infection. Moreover, NOD2 signaling upregulated complement pathway components and cytosolic nucleic acid sensors, suggesting a broad impact of NOD activation on innate immunity. These data demonstrate that NOD1 and NOD2 are important intracellular regulators of the immune response to infection with N. gonorrhoeae. Given the intracellular lifestyle of this pathogen, we believe these cytosolic receptors may provide a key innate immune defense mechanism for the host during gonococcal infection. PMID:23884094

  20. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response.

    PubMed

    Mavrogiorgos, Nikolaos; Mekasha, Samrawit; Yang, Yibin; Kelliher, Michelle A; Ingalls, Robin R

    2014-05-01

    NOD1 and NOD2 are members of the NOD-like receptor family of cytosolic pattern recognition receptors that recognize specific fragments of the bacterial cell wall component peptidoglycan. Neisseria species are unique amongst Gram-negative bacteria in that they turn over large amounts of peptidoglycan during growth. We examined the ability of NOD1 and NOD2 to recognize Neisseria gonorrhoeae, and determined the role of NOD-dependent signaling in regulating the immune response to gonococcal infection. Gonococci, as well as conditioned medium from mid-logarithmic phase grown bacteria, were capable of activating both human NOD1 and NOD2, as well as mouse NOD2, leading to the activation of the transcription factor NF-κB and polyubiquitination of the adaptor receptor-interacting serine-threonine kinase 2. We identified a number of cytokines and chemokines that were differentially expressed in wild type versus NOD2-deficient macrophages in response to gonococcal infection. Moreover, NOD2 signaling up-regulated complement pathway components and cytosolic nucleic acid sensors, suggesting a broad impact of NOD activation on innate immunity. Thus, NOD1 and NOD2 are important intracellular regulators of the immune response to infection with N. gonorrhoeae. Given the intracellular lifestyle of this pathogen, we believe these cytosolic receptors may provide a key innate immune defense mechanism for the host during gonococcal infection. PMID:23884094

  1. The Nod1, Nod2, and Rip2 Axis Contributes to Host Immune Defense against Intracellular Acinetobacter baumannii Infection

    PubMed Central

    Bist, Pradeep; Dikshit, Neha; Koh, Tse Hsien; Mortellaro, Alessandra; Tan, Thuan Tong

    2014-01-01

    Acinetobacter baumannii is a major extensively drug-resistant lethal human nosocomial bacterium. However, the host innate immune mechanisms controlling A. baumannii are not well understood. Although viewed as an extracellular pathogen, A. baumannii can also invade and survive intracellularly. However, whether host innate immune pathways sensing intracellular bacteria contribute to immunity against A. baumannii is not known. Here, we provide evidence for the first time that intracellular antibacterial innate immune receptors Nod1 and Nod2, and their adaptor Rip2, play critical roles in the sensing and clearance of A. baumannii by human airway epithelial cells in vitro. A. baumannii infection upregulated Rip2 expression. Silencing of Nod1, Nod2, and Rip2 expression profoundly increased intracellular invasion and prolonged the multiplication and survival of A. baumannii in lung epithelial cells. Notably, the Nod1/2-Rip2 axis did not contribute to the control of A. baumannii infection of human macrophages, indicating that they play cell type-specific roles. The Nod1/2-Rip2 axis was needed for A. baumannii infection-induced activation of NF-κB but not mitogen-activated protein kinases. Moreover, the Nod1/2-Rip2 axis was critical to induce optimal cytokine and chemokine responses to A. baumannii infection. Mechanistic studies showed that the Nod1/2 pathway contributed to the innate control of A. baumannii infection through the production of β-defensin 2 by airway epithelial cells. This study revealed new insights into the immune control of A. baumannii and may contribute to the development of effective immune therapeutics and vaccines against A. baumannii. PMID:24366254

  2. Expression profiling pre-diabetic mice to uncover drugs with clinical application to type 1 diabetes.

    PubMed

    Pang, Dimeng; Irvine, Katharine M; Mehdi, Ahmed M; Thomas, Helen E; Harris, Mark; Hamilton-Williams, Emma E; Thomas, Ranjeny

    2015-08-01

    In the NOD mouse model of type 1 diabetes (T1D), genetically identical mice in the same environment develop diabetes at different rates. Similar heterogeneity in the rate of progression to T1D exists in humans, but the underlying mechanisms are unclear. Here, we aimed to discover peripheral blood (PB) genes in NOD mice predicting insulitis severity and rate of progression to diabetes. We then wished to use these genes to mine existing databases to identify drugs effective in diabetes. In a longitudinal study, we analyzed gene expression in PB samples from NOD.CD45.2 mice at 10 weeks of age, then scored pancreatic insulitis at 14 weeks or determined age of diabetes onset. In a multilinear regression model, Tnf and Tgfb mRNA expression in PB predicted insulitis score (R (2)=0.56, P=0.01). Expression of these genes did not predict age of diabetes onset. However, by expression-profiling PB genes in 10-week-old NOD.CD45.2 mice, we found a signature of upregulated genes that predicted delayed or no diabetes. Major associated pathways included chromatin organization, cellular protein location and regulation of nitrogen compounds and RNA. In a clinical cohort, three of these genes were differentially expressed between first-degree relatives, T1D patients and controls. Bioinformatic analysis of differentially expressed genes in NOD.CD45.2 PB identified drugs that are predicted to delay or prevent diabetes. Of these drugs, 11 overlapped with drugs predicted to induce a human 'non-progressor' expression profile. These data demonstrate that disease heterogeneity in diabetes-prone mice can be exploited to mine novel clinical T1D biomarkers and drug targets. PMID:26366287

  3. Expression profiling pre-diabetic mice to uncover drugs with clinical application to type 1 diabetes

    PubMed Central

    Pang, Dimeng; Irvine, Katharine M; Mehdi, Ahmed M; Thomas, Helen E; Harris, Mark; Hamilton-Williams, Emma E; Thomas, Ranjeny

    2015-01-01

    In the NOD mouse model of type 1 diabetes (T1D), genetically identical mice in the same environment develop diabetes at different rates. Similar heterogeneity in the rate of progression to T1D exists in humans, but the underlying mechanisms are unclear. Here, we aimed to discover peripheral blood (PB) genes in NOD mice predicting insulitis severity and rate of progression to diabetes. We then wished to use these genes to mine existing databases to identify drugs effective in diabetes. In a longitudinal study, we analyzed gene expression in PB samples from NOD.CD45.2 mice at 10 weeks of age, then scored pancreatic insulitis at 14 weeks or determined age of diabetes onset. In a multilinear regression model, Tnf and Tgfb mRNA expression in PB predicted insulitis score (R2=0.56, P=0.01). Expression of these genes did not predict age of diabetes onset. However, by expression-profiling PB genes in 10-week-old NOD.CD45.2 mice, we found a signature of upregulated genes that predicted delayed or no diabetes. Major associated pathways included chromatin organization, cellular protein location and regulation of nitrogen compounds and RNA. In a clinical cohort, three of these genes were differentially expressed between first-degree relatives, T1D patients and controls. Bioinformatic analysis of differentially expressed genes in NOD.CD45.2 PB identified drugs that are predicted to delay or prevent diabetes. Of these drugs, 11 overlapped with drugs predicted to induce a human ‘non-progressor' expression profile. These data demonstrate that disease heterogeneity in diabetes-prone mice can be exploited to mine novel clinical T1D biomarkers and drug targets. PMID:26366287

  4. Interleukin-35 administration counteracts established murine type 1 diabetes – possible involvement of regulatory T cells

    PubMed Central

    Singh, Kailash; Kadesjö, Erik; Lindroos, Julia; Hjort, Marcus; Lundberg, Marcus; Espes, Daniel; Carlsson, Per-Ola; Sandler, Stellan; Thorvaldson, Lina

    2015-01-01

    The anti-inflammatory cytokine IL-35 is produced by regulatory T (Treg) cells to suppress autoimmune and inflammatory responses. The role of IL-35 in type 1 diabetes (T1D) remains to be answered. To elucidate this, we investigated the kinetics of Treg cell response in the multiple low dose streptozotocin induced (MLDSTZ) T1D model and measured the levels of IL-35 in human T1D patients. We found that Treg cells were increased in MLDSTZ mice. However, the Treg cells showed a decreased production of anti-inflammatory (IL-10, IL-35, TGF-β) and increased pro-inflammatory (IFN-γ, IL-2, IL-17) cytokines, indicating a phenotypic shift of Treg cells under T1D condition. IL-35 administration effectively both prevented development of, and counteracted established MLDSTZ T1D, seemingly by induction of Eos expression and IL-35 production in Treg cells, thus reversing the phenotypic shift of the Treg cells. IL-35 administration reversed established hyperglycemia in NOD mouse model of T1D. Moreover, circulating IL-35 levels were decreased in human T1D patients compared to healthy controls. These findings suggest that insufficient IL-35 levels play a pivotal role in the development of T1D and that treatment with IL-35 should be investigated in treatment of T1D and other autoimmune diseases. PMID:26224624

  5. p62/SQSTM1 Enhances NOD2-Mediated Signaling and Cytokine Production through Stabilizing NOD2 Oligomerization

    PubMed Central

    Park, Sangwook; Ha, Soon-Duck; Coleman, Macon; Meshkibaf, Shahab; Kim, Sung Ouk

    2013-01-01

    NOD2 is a cytosolic pattern-recognition receptor that senses muramyl dipeptide of peptidoglycan that constitutes the bacterial cell wall, and plays an important role in maintaining immunological homeostasis in the intestine. To date, multiple molecules have shown to be involved in regulating NOD2 signaling cascades. p62 (sequestosome-1; SQSTM1) is a multifaceted scaffolding protein involved in trafficking molecules to autophagy, and regulating signal cascades activated by Toll-like receptors, inflammasomes and several cytokine receptors. Here, we show that p62 positively regulates NOD2-induced NF-κB activation and p38 MAPK, and subsequent production of cytokines IL-1β and TNF-α. p62 associated with the nucleotide binding domain of NOD2 through a bi-directional interaction mediated by either TRAF6-binding or ubiquitin-associated domains. NOD2 formed a large complex with p62 in an electron-dense area of the cytoplasm, which increased its signaling cascade likely through preventing its degradation. This study for the first time demonstrates a novel role of p62 in enhancing NOD2 signaling effects. PMID:23437331

  6. Autoimmune autonomic disorders.

    PubMed

    Mckeon, Andrew; Benarroch, Eduardo E

    2016-01-01

    Autoimmune autonomic disorders occur because of an immune response directed against sympathetic, parasympathetic, and enteric ganglia, autonomic nerves, or central autonomic pathways. In general, peripheral autoimmune disorders manifest with either generalized or restricted autonomic failure, whereas central autoimmune disorders manifest primarily with autonomic hyperactivity. Some autonomic disorders are generalized, and others are limited in their anatomic extent, e.g., isolated gastrointestinal dysmotility. Historically, these disorders were poorly recognized, and thought to be neurodegenerative. Over the last 20 years a number of autoantibody biomarkers have been discovered that have enabled the identification of certain patients as having an autoimmune basis for either autonomic failure or hyperactivity. Peripheral autoimmune autonomic disorders include autoimmune autonomic ganglionopathy (AAG), paraneoplastic autonomic neuropathy, and acute autonomic and sensory neuropathy. AAG manifests with acute or subacute onset of generalized or selective autonomic failure. Antibody targeting the α3 subunit of the ganglionic-type nicotinic acetylcholine receptor (α3gAChR) is detected in approximately 50% of cases of AAG. Some other disorders are characterized immunologically by paraneoplastic antibodies with a high positive predictive value for cancer, such as antineuronal nuclear antibody, type 1 (ANNA-1: anti-Hu); others still are seronegative. Recognition of an autoimmune basis for autonomic disorders is important, as their manifestations are disabling, may reflect an underlying neoplasm, and have the potential to improve with a combination of symptomatic and immune therapies. PMID:27112689

  7. Association of Single Nucleotide Polymorphisms in Cytotoxic T-Lymphocyte Antigen 4 and Susceptibility to Autoimmune Type 1 Diabetes in Tunisians▿

    PubMed Central

    Benmansour, Jihen; Stayoussef, Mouna; Al-Jenaidi, Fayza A.; Rajab, Mansoor H.; Rayana, Chiheb B.; Said, Hichem B.; Mahjoub, Touhami; Almawi, Wassim Y.

    2010-01-01

    In addition to HLA and insulin genes, the costimulatory molecule CTLA-4 gene is a confirmed type 1 diabetes (T1D) susceptibility gene. Previous studies investigated the association of CTLA-4 genetic variants with the risk of T1D, but with inconclusive findings. Here, we tested the contributions of common CTLA-4 gene variants to T1D susceptibility in Tunisian patients and control subjects. The study subjects comprised 228 T1D patients (47.8% females) and 193 unrelated healthy controls (45.6% females). Genotyping for CTLA-4 CT60A/G (rs3087243), +49A/G (rs231775), and −318C/T (rs5742909) was performed by PCR-restriction fragment length polymorphism (RFLP) analysis. The minor-allele frequencies (MAF) for the three CTLA-4 variants were significantly higher in T1D patients, and significantly higher frequencies of homozygous +49G/G and homozygous CT60G/G genotypes were seen in patients, which was confirmed by univariate regression analysis (taking the homozygous wild type as a reference). Of the eight possible three-locus CTLA-4 haplotypes (+49A/G, −318C/T, and CT60A/G) identified, multivariate regression analysis confirmed the positive association of ACG (odds ratio [OR], 1.93; 95% confidence interval [CI], 1.26 to 2.94), GCG (OR, 2.40; 95% CI, 1.11 to 5.21), and GTA (OR, 4.67; 95% CI, 1.52 to 14.39) haplotypes with T1D, after confounding variables were adjusted for. Our results indicate that CTLA-4 gene variants are associated with increased T1D susceptibility in Tunisian patients, further supporting a central role for altered T-cell costimulation in T1D pathogenesis. PMID:20610662

  8. Association of single nucleotide polymorphisms in cytotoxic T-lymphocyte antigen 4 and susceptibility to autoimmune type 1 diabetes in Tunisians.

    PubMed

    Benmansour, Jihen; Stayoussef, Mouna; Al-Jenaidi, Fayza A; Rajab, Mansoor H; Rayana, Chiheb B; Said, Hichem B; Mahjoub, Touhami; Almawi, Wassim Y

    2010-09-01

    In addition to HLA and insulin genes, the costimulatory molecule CTLA-4 gene is a confirmed type 1 diabetes (T1D) susceptibility gene. Previous studies investigated the association of CTLA-4 genetic variants with the risk of T1D, but with inconclusive findings. Here, we tested the contributions of common CTLA-4 gene variants to T1D susceptibility in Tunisian patients and control subjects. The study subjects comprised 228 T1D patients (47.8% females) and 193 unrelated healthy controls (45.6% females). Genotyping for CTLA-4 CT60A/G (rs3087243), +49A/G (rs231775), and -318C/T (rs5742909) was performed by PCR-restriction fragment length polymorphism (RFLP) analysis. The minor-allele frequencies (MAF) for the three CTLA-4 variants were significantly higher in T1D patients, and significantly higher frequencies of homozygous +49G/G and homozygous CT60G/G genotypes were seen in patients, which was confirmed by univariate regression analysis (taking the homozygous wild type as a reference). Of the eight possible three-locus CTLA-4 haplotypes (+49A/G, -318C/T, and CT60A/G) identified, multivariate regression analysis confirmed the positive association of ACG (odds ratio [OR], 1.93; 95% confidence interval [CI], 1.26 to 2.94), GCG (OR, 2.40; 95% CI, 1.11 to 5.21), and GTA (OR, 4.67; 95% CI, 1.52 to 14.39) haplotypes with T1D, after confounding variables were adjusted for. Our results indicate that CTLA-4 gene variants are associated with increased T1D susceptibility in Tunisian patients, further supporting a central role for altered T-cell costimulation in T1D pathogenesis. PMID:20610662

  9. Bacterial peptidoglycan stimulates adipocyte lipolysis via NOD1.

    PubMed

    Chi, Wendy; Dao, Dyda; Lau, Trevor C; Henriksbo, Brandyn D; Cavallari, Joseph F; Foley, Kevin P; Schertzer, Jonathan D

    2014-01-01

    Obesity is associated with inflammation that can drive metabolic defects such as hyperlipidemia and insulin resistance. Specific metabolites can contribute to inflammation, but nutrient intake and obesity are also associated with altered bacterial load in metabolic tissues (i.e. metabolic endotoxemia). These bacterial cues can contribute to obesity-induced inflammation. The specific bacterial components and host receptors that underpin altered metabolic responses are emerging. We previously showed that Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) activation with bacterial peptidoglycan (PGN) caused insulin resistance in mice. We now show that PGN induces cell-autonomous lipolysis in adipocytes via NOD1. Specific bacterial PGN motifs stimulated lipolysis in white adipose tissue (WAT) explants from WT, but not NOD1⁻/⁻mice. NOD1-activating PGN stimulated mitogen activated protein kinases (MAPK),protein kinase A (PKA), and NF-κB in 3T3-L1 adipocytes. The NOD1-mediated lipolysis response was partially reduced by inhibition of ERK1/2 or PKA alone, but not c-Jun N-terminal kinase (JNK). NOD1-stimulated lipolysis was partially dependent on NF-κB and was completely suppressed by inhibiting ERK1/2 and PKA simultaneously or hormone sensitive lipase (HSL). Our results demonstrate that bacterial PGN stimulates lipolysis in adipocytes by engaging a stress kinase, PKA, NF-κB-dependent lipolytic program. Bacterial NOD1 activation is positioned as a component of metabolic endotoxemia that can contribute to hyperlipidemia, systemic inflammation and insulin resistance by acting directly on adipocytes. PMID:24828250

  10. Autoimmunity in visual loss.

    PubMed

    Petzold, Axel; Wong, Sui; Plant, Gordon T

    2016-01-01

    There are a number of autoimmune disorders which can affect visual function. There are a very large number of mechanisms in the visual pathway which could potentially be the targets of autoimmune attack. In practice it is the retina and the anterior visual pathway (optic nerve and chiasm) that are recognised as being affected in autoimmune disorders. Multiple Sclerosis is one of the commonest causes of visual loss in young adults because of the frequency of attacks of optic neuritis in that condition, however the basis of the inflammation in Multiple Sclerosis and the confirmation of autoimmunity is lacking. The immune process is known to be highly unusual in that it is not systemic and confined to the CNS compartment. Previously an enigmatic partner to Multiple Sclerosis, Neuromyelitis Optica is now established to be autoimmune and two antibodies - to Aquaporin4 and to Myelin Oligodendrocyte Glycoprotein - have been implicated in the pathogenesis. The term Chronic Relapsing Inflammatory Optic Neuropathy is applied to those cases of optic neuritis which require long term immunosuppression and hence are presumed to be autoimmune but where no autoimmune pathogenesis has been confirmed. Optic neuritis occurring post-infection and post vaccination and conditions such as Systemic Lupus Erythematosus and various vasculitides may cause direct autoimmune attack to visual structures or indirect damage through occlusive vasculopathy. Chronic granulomatous disorders such as Sarcoidosis affect vision commonly by a variety of mechanisms, whether and how these are placed in the autoimmune panoply is unknown. As far as the retina is concerned Cancer Associated Retinopathy and Melanoma Associated Retinopathy are well characterised clinically but a candidate autoantibody (recoverin) is only described in the former disorder. Other, usually monophasic, focal retinal inflammatory disorders (Idiopathic Big Blind Spot Syndrome, Acute Zonal Occult Outer Retinopathy and Acute Macular

  11. Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti.

    PubMed Central

    Debellé, F; Rosenberg, C; Vasse, J; Maillet, F; Martinez, E; Dénarié, J; Truchet, G

    1986-01-01

    Rhizobium meliloti nodulation (nod) genes required for specific infection and nodulation of alfalfa have been cloned. Transposon Tn5 mutagenesis defined three nod regions spanning 16 kilobases of the pSym megaplasmid. Genetic and cytological studies of 62 nodulation-defective mutants allowed the assignment of symbiotic developmental phenotypes to common and specific nod loci. Root hair curling was determined by both common (region I) and specific (region III) nod transcription units; locus IIIb (nodH gene) positively controlled curling on the homologous host alfalfa, whereas loci IIIa (nodFE) and IIIb (nodH) negatively controlled curling on heterologous hosts. Region I (nodABC) was required for bacterial penetration and infection thread initiation in shepherd's crooks, and the nodFE transcription unit controlled infection thread development within the alfalfa root hair. In contrast, induction of nodule organogenesis, which can be triggered from a distance, seemed to be controlled by common nodABC genes and not to require specific nod genes nodFE and nodH. Region II affected the efficiency of hair curling and infection thread formation. Images PMID:3023297

  12. New Murine Model of Early Onset Autoimmune Thyroid Disease/Hypothyroidism and Autoimmune Exocrinopathy of the Salivary Gland.

    PubMed

    Kayes, Timothy Daniel; Weisman, Gary A; Camden, Jean M; Woods, Lucas T; Bredehoeft, Cole; Downey, Edward F; Cole, James; Braley-Mullen, Helen

    2016-09-15

    Sixty to seventy percent of IFN-γ(-/-) NOD.H-2h4 mice given sodium iodide (NaI)-supplemented water develop a slow onset autoimmune thyroid disease, characterized by thyrocyte epithelial cell (TEC) hyperplasia and proliferation (H/P). TEC H/P develops much earlier in CD28(-/-) mice and nearly 100% (both sexes) have severe TEC H/P at 4 mo of age. Without NaI supplementation, 50% of 5- to 6-mo-old CD28(-/-)IFN-γ(-/-) mice develop severe TEC H/P, and 2-3 wk of NaI is sufficient for optimal development of severe TEC H/P. Mice with severe TEC H/P are hypothyroid, and normalization of serum thyroxine levels does not reduce TEC H/P. Activated CD4(+) T cells are sufficient to transfer TEC H/P to SCID recipients. Thyroids of mice with TEC H/P have infiltrating T cells and expanded numbers of proliferating thyrocytes that highly express CD40. CD40 facilitates, but is not required for, development of severe TEC H/P, as CD40(-/-)IFN-γ(-/-)CD28(-/-) mice develop severe TEC H/P. Accelerated development of TEC H/P in IFN-γ(-/-)CD28(-/-) mice is a result of reduced regulatory T cell (Treg) numbers, as CD28(-/-) mice have significantly fewer Tregs, and transfer of CD28(+) Tregs inhibits TEC H/P. Essentially all female IFN-γ(-/-)CD28(-/-) NOD.H-2h4 mice have substantial lymphocytic infiltration of salivary glands and reduced salivary flow by 6 mo of age, thereby providing an excellent new model of autoimmune exocrinopathy of the salivary gland. This is one of very few models where autoimmune thyroid disease and hypothyroidism develop in most mice by 4 mo of age. This model will be useful for studying the effects of hypothyroidism on multiple organ systems. PMID:27521344

  13. Comparative Genomic Analysis of Buffalo (Bubalus bubalis) NOD1 and NOD2 Receptors and Their Functional Role in In-Vitro Cellular Immune Response

    PubMed Central

    Brahma, Biswajit; Kumar, Sushil; De, Bidhan Chandra; Mishra, Purusottam; Patra, Mahesh Chandra; Gaur, Deepak; Chopra, Meenu; Gautam, Devika; Mahanty, Sourav; Malik, Hrudananda; Malakar, Dhruba; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) are innate immune receptors that recognize bacterial cell wall components and initiate host immune response. Structure and function of NLRs have been well studied in human and mice, but little information exists on genetic composition and role of these receptors in innate immune system of water buffalo—a species known for its exceptional disease resistance. Here, a comparative study on the functional domains of NOD1 and NOD2 was performed across different species. The NOD mediated in-vitro cellular responses were studied in buffalo peripheral blood mononuclear cells, resident macrophages, mammary epithelial, and fibroblast cells. Buffalo NOD1 (buNOD1) and buNOD2 showed conserved domain architectures as found in other mammals. The domains of buNOD1 and buNOD2 showed analogy in secondary and tertiary conformations. Constitutive expressions of NODs were ubiquitous in different tissues. Following treatment with NOD agonists, peripheral lymphocytes showed an IFN-γ response along-with production of pro-inflammatory cytokines. Alveolar macrophages and mammary epithelial cells showed NOD mediated in-vitro immune response through NF-κB dependent pathway. Fibroblasts showed pro-inflammatory cytokine response following agonist treatment. Our study demonstrates that both immune and non-immune cells could generate NOD-mediated responses to pathogens though the type and magnitude of response depend on the cell types. The structural basis of ligand recognition by buffalo NODs and knowledge of immune response by different cell types could be useful for development of non-infective innate immune modulators and next generation anti-inflammatory compounds. PMID:25786158

  14. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice.

    PubMed

    Roggli, Elodie; Gattesco, Sonia; Caille, Dorothée; Briet, Claire; Boitard, Christian; Meda, Paolo; Regazzi, Romano

    2012-07-01

    During the initial phases of type 1 diabetes, pancreatic islets are invaded by immune cells, exposing β-cells to proinflammatory cytokines. This unfavorable environment results in gene expression modifications leading to loss of β-cell functions. To study the contribution of microRNAs (miRNAs) in this process, we used microarray analysis to search for changes in miRNA expression in prediabetic NOD mice islets. We found that the levels of miR-29a/b/c increased in islets of NOD mice during the phases preceding diabetes manifestation and in isolated mouse and human islets exposed to proinflammatory cytokines. Overexpression of miR-29a/b/c in MIN6 and dissociated islet cells led to impairment in glucose-induced insulin secretion. Defective insulin release was associated with diminished expression of the transcription factor Onecut2, and a consequent rise of granuphilin, an inhibitor of β-cell exocytosis. Overexpression of miR-29a/b/c also promoted apoptosis by decreasing the level of the antiapoptotic protein Mcl1. Indeed, a decoy molecule selectively masking the miR-29 binding site on Mcl1 mRNA protected insulin-secreting cells from apoptosis triggered by miR-29 or cytokines. Taken together, our findings suggest that changes in the level of miR-29 family members contribute to cytokine-mediated β-cell dysfunction occurring during the initial phases of type 1 diabetes. PMID:22537941

  15. Changes in MicroRNA Expression Contribute to Pancreatic β-Cell Dysfunction in Prediabetic NOD Mice

    PubMed Central

    Roggli, Elodie; Gattesco, Sonia; Caille, Dorothée; Briet, Claire; Boitard, Christian; Meda, Paolo; Regazzi, Romano

    2012-01-01

    During the initial phases of type 1 diabetes, pancreatic islets are invaded by immune cells, exposing β-cells to proinflammatory cytokines. This unfavorable environment results in gene expression modifications leading to loss of β-cell functions. To study the contribution of microRNAs (miRNAs) in this process, we used microarray analysis to search for changes in miRNA expression in prediabetic NOD mice islets. We found that the levels of miR-29a/b/c increased in islets of NOD mice during the phases preceding diabetes manifestation and in isolated mouse and human islets exposed to proinflammatory cytokines. Overexpression of miR-29a/b/c in MIN6 and dissociated islet cells led to impairment in glucose-induced insulin secretion. Defective insulin release was associated with diminished expression of the transcription factor Onecut2, and a consequent rise of granuphilin, an inhibitor of β-cell exocytosis. Overexpression of miR-29a/b/c also promoted apoptosis by decreasing the level of the antiapoptotic protein Mcl1. Indeed, a decoy molecule selectively masking the miR-29 binding site on Mcl1 mRNA protected insulin-secreting cells from apoptosis triggered by miR-29 or cytokines. Taken together, our findings suggest that changes in the level of miR-29 family members contribute to cytokine-mediated β-cell dysfunction occurring during the initial phases of type 1 diabetes. PMID:22537941

  16. Analysis of antigen specific T cells in diabetes - Lessons from pre-clinical studies and early clinical trials.

    PubMed

    Krishnamurthy, Balasubramanian; Selck, Claudia; Chee, Jonathan; Jhala, Guarang; Kay, Thomas W H

    2016-07-01

    Antigen-specific immune tolerance promises to provide safe and effective therapies to prevent type 1 diabetes (T1D). Antigen-specific therapy requires two components: well-defined, clinically relevant autoantigens; and safe approaches to inducing tolerance in T cells specific for these antigens. Proinsulin is a critical autoantigen in both NOD mice, based on knockout mouse studies and induction of immune tolerance to proinsulin preventing disease whereas most antigens cannot, and also in human T1D based on proinsulin-specific T cells being found in the islets of affected individuals and the early appearance of insulin autoantibodies. Effective antigen-specific therapies that prevent T1D in humans have not yet been developed although doubt remains about the best molecular form of the antigen, the dose and the route of administration. Preclinical studies suggest that antigen specific therapy is most useful when administered before onset of autoimmunity but this time-window has not been tested in humans until the recent "pre-point" study. There may be a 'window of opportunity' during the neonatal period when 'vaccine' like administration of proinsulin for a short period may be sufficient to prevent diabetes. After the onset of autoimmunity, naive antigen-specific T cells have differentiated into antigen-experienced memory cells and the immune responses have spread to multiple antigens. Induction of tolerance at this stage becomes more difficult although recent studies have suggested generation of antigen-specific TR1 cells can inhibit memory T cells. Preclinical studies are required to identify additional 'help' that is required to induce tolerance to memory T cells and develop protocols for effective therapy in individuals with established autoimmunity. PMID:27083395

  17. The emerging role of the CTLA-4 gene in autoimmune endocrinopathies.

    PubMed

    Vaidya, Bijay; Pearce, Simon

    2004-05-01

    It is thought that the majority of autoimmune endocrinopathies, including Graves' disease, autoimmune hypothyroidism, type 1 diabetes mellitus and autoimmune Addison's disease (sporadic and as well as autoimmune polyendocrinopathy syndrome type 2) are inherited as complex genetic traits. Multiple genetic and environmental factors interact with each other to confer susceptibility to these disorders. In recent years there have been considerable efforts towards defining susceptibility genes for complex traits. These investigations have shown, with increasing evidence, that the cytotoxic T lymphocyte antigen-4 (CTLA-4) gene is an important susceptibility locus for autoimmune endocrinopathies and other autoimmune disorders. Here we review the genetic and functional analyses of the CTLA-4 locus in autoimmune endocrinopathies, and discuss the recent efforts in fine-mapping this locus. PMID:15132716

  18. Autoimmune liver disease panel

    MedlinePlus

    ... common of these diseases are autoimmune hepatitis and primary biliary cirrhosis. This group of tests helps your health care ... anti-mitochondrial antibodies, you are likely to have primary biliary cirrhosis. If the immune proteins are high and albumin ...

  19. Understanding Autoimmune Diseases

    MedlinePlus

    ... Autoimmune Diseases Progress and Promise Key Words The Immune System Your immune system is the network of cells and tissues throughout ... having two parts: the acquired and the innate immune systems. The acquired (or adaptive) immune system develops as ...

  20. Autoimmune Autonomic Ganglionopathy

    MedlinePlus

    ... usf.edu/ARDCRC/professional/register/index.htm Organizations Organizations Listen Nonprofit support and advocacy groups bring together ... endorsement by GARD. Suggest an organization to add. Organizations Supporting this Disease American Autoimmune Related Diseases Association ( ...

  1. Autoimmunity in 2014.

    PubMed

    Selmi, Carlo

    2015-10-01

    Our PubMed search for peer-reviewed articles published in the 2014 solar year retrieved a significantly higher number of hits compared to 2013 with a net 28 % increase. Importantly, full articles related to autoimmunity constitute approximately 5 % of immunology articles. We confirm that our understanding of autoimmunity is becoming a translational paradigm with pathogenetic elements rapidly followed by new treatment options. Furthermore, numerous clinical and pathogenetic elements and features are shared among autoimmune diseases, and this is well illustrated in the recent literature. More specifically, the past year witnessed critical revisions of our understanding and management of antiphospholipid syndrome with new exciting data on the pathogenicity of the serum anti-beta2 glycoprotein autoantibody, a better understanding of the current and new treatments for rheumatoid arthritis, and new position papers on important clinical questions such as vaccinations in patients with autoimmune disease, comorbidities, or new classification criteria. Furthermore, data confirming the important connections between innate immunity and autoimmunity via toll-like receptors or the critical role of T regulatory cells in tolerance breakdown and autoimmunity perpetuation were also reported. Lastly, genetic and epigenetic data were provided to confirm that the mosaic of autoimmunity warrants a susceptible individual background which may be geographically determined and contribute to the geoepidemiology of diseases. The 2014 literature in the autoimmunity world should be cumulatively regarded as part of an annus mirabilis in which, on a different level, the 2014 Annual Meeting of the American College of Rheumatology in Boston was attended by over 16,000 participants with over selected 3000 abstracts. PMID:26335699

  2. Silica, Silicosis, and Autoimmunity

    PubMed Central

    Pollard, Kenneth Michael

    2016-01-01

    Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. PMID:27014276

  3. Silica, Silicosis, and Autoimmunity.

    PubMed

    Pollard, Kenneth Michael

    2016-01-01

    Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. PMID:27014276

  4. Differential Modulation of Nods Signaling Pathways by Fatty Acids in Human Colonic Epithelial HCT116 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nucleotide-binding oligomerization domain containing proteins (Nods) are intracellular pattern recognition receptors (PRRs) recognizing conserved moieties of bacterial peptidoglycan through their leucine-rich repeats (LRR) domain. The agonists for Nods activate proinflammtory signaling pathways incl...

  5. Opportunistic autoimmune disorders

    PubMed Central

    Kong, Yi-chi M.; Wei, Wei-Zen; Tomer, Yaron

    2013-01-01

    Rapid advances in our understanding of the immune network have led to treatment modalities for malignancies and autoimmune diseases based on modulation of the immune response. Yet therapeutic modulation has resulted in immune dysregulation and opportunistic autoimmune sequelae, despite prescreening efforts in clinical trials. This review focuses on recent clinical data on opportunistic autoimmune disorders arising from three immunotherapeutic modalities: (1) systemic immunomodulators, including interferon-α (also used to treat hepatitis C patients) and interferon-β; (2) monoclonal antibodies to CTLA-4 and CD52, and (3) hematopoietic stem cell transplantation. Uncategorized predisposing factors in these patients include major histocompatibility complex and gender genetics, prevalence of different autoimmune diseases, prior chemotherapy, underlying disorder (e.g., hepatitis C), and preconditioning regimens as part of organ and stem cell transplants. Not unexpectedly, the prevalent autoimmune thyroid disease surfaced frequently. Our combination models to study the balance between thyroid autoimmunity and tumor immunity upon regulatory T-cell perturbation are briefly described. PMID:20146718

  6. Autoimmunity in 2013.

    PubMed

    Selmi, Carlo

    2014-08-01

    The peer-reviewed publications in the field of autoimmunity published in 2013 represented a significant proportion of immunology articles and grew since the previous year to indicate that more immune-mediated phenomena may recognize an autoimmune mechanism and illustrated by osteoarthritis and atherosclerosis. As a result, our understanding of the mechanisms of autoimmunity is becoming the paradigm for translational research in which the progress in disease pathogenesis for both tolerance breakdown and inflammation perpetuation is rapidly followed by new treatment approaches and clinical management changes. The similarities across the autoimmune disease spectrum outnumber differences, particularly when treatments are compared. Indeed, the therapeutics of autoimmune diseases are based on a growing armamentarium that currently includes monoclonal antibodies and small molecules which act by targeting molecular markers or intracellular mediators with high specificity. Among the over 100 conditions considered as autoimmune, the common grounds are well illustrated by the data reported for systemic lupus erythematosus and rheumatoid arthritis or by the plethora of studies on Th17 cells and biomarkers, particularly serum autoantibodies. Further, we are particularly intrigued by studies on the genomics, epigenetics, and microRNA at different stages of disease development or on the safe and effective use of abatacept acting on the costimulation of T and B cells in rheumatoid arthritis. We are convinced that the data published in 2013 represent a promising background for future developments that will exponentially impact the work of laboratory and clinical scientists over the next years. PMID:24819586

  7. Follicular Helper T Cells in Autoimmunity.

    PubMed

    Scherm, Martin G; Ott, Verena B; Daniel, Carolin

    2016-08-01

    The development of multiple disease-relevant autoantibodies is a hallmark of autoimmune diseases. In autoimmune type 1 diabetes (T1D), a variable time frame of autoimmunity precedes the clinically overt disease. The relevance of T follicular helper (TFH) cells for the immune system is increasingly recognized. Their pivotal contribution to antibody production by providing help to germinal center (GC) B cells facilitates the development of a long-lived humoral immunity. Their complex differentiation process, involving various stages and factors like B cell lymphoma 6 (Bcl6), is strictly controlled, as anomalous regulation of TFH cells is connected w