Science.gov

Sample records for automata linear rules

  1. Boolean linear differential operators on elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, Ángel

    2014-12-01

    In this paper, the notion of boolean linear differential operator (BLDO) on elementary cellular automata (ECA) is introduced and some of their more important properties are studied. Special attention is paid to those differential operators whose coefficients are the ECA with rule numbers 90 and 150.

  2. Complex dynamics of cellular automata rule 119

    NASA Astrophysics Data System (ADS)

    Chen, Fang-Fang; Chen, Fang-Yue

    2009-03-01

    In this paper, the dynamical behaviors of cellular automata rule 119 are studied from the viewpoint of symbolic dynamics in the bi-infinite symbolic sequence space Σ2. It is shown that there exists one Bernoulli-measure global attractor of rule 119, which is also the nonwandering set of the rule. Moreover, it is demonstrated that rule 119 is topologically mixing on the global attractor and possesses the positive topological entropy. Therefore, rule 119 is chaotic in the sense of both Li-Yorke and Devaney on the global attractor. It is interesting that rule 119, a member of Wolfram’s class II which was said to be simple as periodic before, actually possesses a chaotic global attractor in Σ2. Finally, it is noted that the method presented in this work is also applicable to studying the dynamics of other rules, especially the 112 Bernoulli-shift rules therein.

  3. Linear System Control Using Stochastic Learning Automata

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  4. Identifying patterns from one-rule-firing cellular automata.

    PubMed

    Shin, Jae Kyun

    2011-01-01

    A new firing scheme for cellular automata in which only one rule is fired at a time produces myriad patterns. In addition to geometric patterns, natural patterns such as flowers and snow crystals were also generated. This study proposes an efficient method identifying the patterns using a minimal number of digits. Complexity of the generated patterns is discussed in terms of the shapes and colors of the patterns. PMID:21087150

  5. Rule matrices, degree vectors, and preimages for cellular automata

    SciTech Connect

    Jen, E.

    1989-01-01

    Cellular automata are mathematical systems characterized by discreteness (in space, time, and state values), determinism, and local interaction. Few analytical techniques exist for such systems. The rule matrix and degree vectors of a cellular automaton -- both of which are determined a priori from the function defining the automaton, rather than a posteriori from simulations of its evolution -- are introduced here as tools for understanding certain qualitative features of automaton behavior. The rule matrix represents in convenient form the information contained in an automaton's rule table; the degree vectors are computed from the rule matrix, and reflect the extent to which the system is one-to-one'' versus many-to-one'' on restricted subspaces of the mapping. The rule matrix and degree vectors determine, for example, several aspects of the enumeration and prediction'' of preimages for spatial sequences evolving under the rule, where the preimages of a sequence S are defined to be the set of sequences mapped by the automaton rule onto S. 2 figs., 2 tabs.

  6. Aperiodicity in one-dimensional cellular automata

    SciTech Connect

    Jen, E.

    1990-01-01

    Cellular automata are a class of mathematical systems characterized by discreteness (in space, time, and state values), determinism, and local interaction. A certain class of one-dimensional, binary site-valued, nearest-neighbor automata is shown to generate infinitely many aperiodic temporal sequences from arbitrary finite initial conditions on an infinite lattice. The class of automaton rules that generate aperiodic temporal sequences are characterized by a particular form of injectivity in their interaction rules. Included are the nontrivial linear'' automaton rules (that is, rules for which the superposition principle holds); certain nonlinear automata that retain injectivity properties similar to those of linear automata; and a wider subset of nonlinear automata whose interaction rules satisfy a weaker form of injectivity together with certain symmetry conditions. A technique is outlined here that maps this last set of automata onto a linear automaton, and thereby establishes the aperiodicity of their temporal sequences. 12 refs., 3 figs.

  7. Chaos of elementary cellular automata rule 42 of Wolfram's class II.

    PubMed

    Chen, Fang-Yue; Jin, Wei-Feng; Chen, Guan-Rong; Chen, Fang-Fang; Chen, Lin

    2009-03-01

    In this paper, the dynamics of elementary cellular automata rule 42 is investigated in the bi-infinite symbolic sequence space. Rule 42, a member of Wolfram's class II which was said to be simply as periodic before, actually defines a chaotic global attractor; that is, rule 42 is topologically mixing on its global attractor and possesses the positive topological entropy. Therefore, rule 42 is chaotic in the sense of both Li-Yorke and Devaney. Meanwhile, the characteristic function and the basin tree diagram of rule 42 are explored for some finite length of binary strings, which reveal its Bernoulli characteristics. The method presented in this work is also applicable to studying the dynamics of other rules, especially the 112 Bernoulli-shift rules of the elementary cellular automata. PMID:19335004

  8. Chaos of elementary cellular automata rule 42 of Wolfram's class II

    NASA Astrophysics Data System (ADS)

    Chen, Fang-Yue; Jin, Wei-Feng; Chen, Guan-Rong; Chen, Fang-Fang; Chen, Lin

    2009-03-01

    In this paper, the dynamics of elementary cellular automata rule 42 is investigated in the bi-infinite symbolic sequence space. Rule 42, a member of Wolfram's class II which was said to be simply as periodic before, actually defines a chaotic global attractor; that is, rule 42 is topologically mixing on its global attractor and possesses the positive topological entropy. Therefore, rule 42 is chaotic in the sense of both Li-Yorke and Devaney. Meanwhile, the characteristic function and the basin tree diagram of rule 42 are explored for some finite length of binary strings, which reveal its Bernoulli characteristics. The method presented in this work is also applicable to studying the dynamics of other rules, especially the 112 Bernoulli-shift rules of the elementary cellular automata.

  9. Evolutionary Design of one-dimensional Rule Changing cellular automata using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Yun, Wu; Kanoh, Hitoshi

    In this paper we propose a new method to obtain transition rules of one-dimensional two-state cellular automata (CAs) using genetic algorithms (GAs). CAs have the advantages of producing complex systems from the interaction of simple elements, and have attracted increased research interest. However, the difficulty of designing CAs' transition rules to perform a particular task has severely limited their applications. The evolutionary design of CA rules has been studied by the EVCA group in detail. A GA was used to evolve CAs for two tasks: density classification and synchronization problems. That GA was shown to have discovered rules that gave rise to sophisticated emergent computational strategies. Sipper has studied a cellular programming algorithm for 2-state non-uniform CAs, in which each cell may contain a different rule. Meanwhile, Land and Belew proved that the perfect two-state rule for performing the density classification task does not exist. However, Fuks´ showed that a pair of human written rules performs the task perfectly when the size of neighborhood is one. In this paper, we consider a pair of rules and the number of rule iterations as a chromosome, whereas the EVCA group considers a rule as a chromosome. The present method is meant to reduce the complexity of a given problem by dividing the problem into smaller ones and assigning a distinct rule to each one. Experimental results for the two tasks prove that our method is more efficient than a conventional method. Some of the obtained rules agree with the human written rules shown by Fuks´. We also grouped 1000 rules with high fitness into 4 classes according to the Langton's λ parameter. The rules obtained by the proposed method belong to Class- I, II, III or IV, whereas most of the rules by the conventional method belong to Class-IV only. This result shows that the combination of simple rules can perform complex tasks.

  10. Rule-based modelling and simulation of biochemical systems with molecular finite automata.

    PubMed

    Yang, J; Meng, X; Hlavacek, W S

    2010-11-01

    The authors propose a theoretical formalism, molecular finite automata (MFA), to describe individual proteins as rule-based computing machines. The MFA formalism provides a framework for modelling individual protein behaviours and systems-level dynamics via construction of programmable and executable machines. Models specified within this formalism explicitly represent the context-sensitive dynamics of individual proteins driven by external inputs and represent protein-protein interactions as synchronised machine reconfigurations. Both deterministic and stochastic simulations can be applied to quantitatively compute the dynamics of MFA models. They apply the MFA formalism to model and simulate a simple example of a signal-transduction system that involves an MAP kinase cascade and a scaffold protein. PMID:21073243

  11. Numerically evaluated functional equivalence between chaotic dynamics in neural networks and cellular automata under totalistic rules.

    PubMed

    Takada, Ryu; Munetaka, Daigo; Kobayashi, Shoji; Suemitsu, Yoshikazu; Nara, Shigetoshi

    2007-09-01

    Chaotic dynamics in a recurrent neural network model and in two-dimensional cellular automata, where both have finite but large degrees of freedom, are investigated from the viewpoint of harnessing chaos and are applied to motion control to indicate that both have potential capabilities for complex function control by simple rule(s). An important point is that chaotic dynamics generated in these two systems give us autonomous complex pattern dynamics itinerating through intermediate state points between embedded patterns (attractors) in high-dimensional state space. An application of these chaotic dynamics to complex controlling is proposed based on an idea that with the use of simple adaptive switching between a weakly chaotic regime and a strongly chaotic regime, complex problems can be solved. As an actual example, a two-dimensional maze, where it should be noted that the spatial structure of the maze is one of typical ill-posed problems, is solved with the use of chaos in both systems. Our computer simulations show that the success rate over 300 trials is much better, at least, than that of a random number generator. Our functional simulations indicate that both systems are almost equivalent from the viewpoint of functional aspects based on our idea, harnessing of chaos. PMID:19003512

  12. Quantum features of natural cellular automata

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2016-03-01

    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schrödinger equation. This includes corresponding conservation laws. The class of “natural” Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, “deformed” quantum mechanical models with a finite discreteness scale l are obtained, which for l → 0 reproduce familiar continuum results. We have recently demonstrated that such automata can form “multipartite” systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce the essential quantum effects of interference and entanglement.

  13. Finite state automata resulting from temporal information maximization and a temporal learning rule.

    PubMed

    Wennekers, Thomas; Ay, Nihat

    2005-10-01

    We extend Linkser's Infomax principle for feedforward neural networks to a measure for stochastic interdependence that captures spatial and temporal signal properties in recurrent systems. This measure, stochastic interaction, quantifies the Kullback-Leibler divergence of a Markov chain from a product of split chains for the single unit processes. For unconstrained Markov chains, the maximization of stochastic interaction, also called Temporal Infomax, has been previously shown to result in almost deterministic dynamics. This letter considers Temporal Infomax on constrained Markov chains, where some of the units are clamped to prescribed stochastic processes providing input to the system. Temporal Infomax in that case leads to finite state automata, either completely deterministic or weakly nondeterministic. Transitions between internal states of these systems are almost perfectly predictable given the complete current state and the input, but the activity of each single unit alone is virtually random. The results are demonstrated by means of computer simulations and confirmed analytically. It is furthermore shown numerically that Temporal Infomax leads to a high information flow from the input to internal units and that a simple temporal learning rule can approximately achieve the optimization of temporal interaction. We relate these results to experimental data concerning the correlation dynamics and functional connectivities observed in multiple electrode recordings. PMID:16105225

  14. Refining Linear Fuzzy Rules by Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil

    1996-01-01

    Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.

  15. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  16. Monitoring with Data Automata

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    We present a form of automaton, referred to as data automata, suited for monitoring sequences of data-carrying events, for example emitted by an executing software system. This form of automata allows states to be parameterized with data, forming named records, which are stored in an efficiently indexed data structure, a form of database. This very explicit approach differs from other automaton-based monitoring approaches. Data automata are also characterized by allowing transition conditions to refer to other parameterized states, and by allowing transitions sequences. The presented automaton concept is inspired by rule-based systems, especially the Rete algorithm, which is one of the well-established algorithms for executing rule-based systems. We present an optimized external DSL for data automata, as well as a comparable unoptimized internal DSL (API) in the Scala programming language, in order to compare the two solutions. An evaluation compares these two solutions to several other monitoring systems.

  17. Global properties of cellular automata

    SciTech Connect

    Jen, E.

    1986-04-01

    Cellular automata are discrete mathematical systems that generate diverse, often complicated, behavior using simple deterministic rules. Analysis of the local structure of these rules makes possible a description of the global properties of the associated automata. A class of cellular automata that generate infinitely many aperoidic temporal sequences is defined,a s is the set of rules for which inverses exist. Necessary and sufficient conditions are derived characterizing the classes of ''nearest-neighbor'' rules for which arbitrary finite initial conditions (i) evolve to a homogeneous state; (ii) generate at least one constant temporal sequence.

  18. Deriving urban dynamic evolution rules from self-adaptive cellular automata with multi-temporal remote sensing images

    NASA Astrophysics Data System (ADS)

    He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun

    2015-06-01

    Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.

  19. Two-lane traffic rules for cellular automata: A systematic approach

    SciTech Connect

    Nagel, K. |; Wolf, D.E. |; Wagner, P. |; Simon, P.

    1997-11-05

    Microscopic modeling of multi-lane traffic is usually done by applying heuristic lane changing rules, and often with unsatisfying results. Recently, a cellular automation model for two-lane traffic was able to overcome some of these problems and to produce a correct density inversion at densities somewhat below the maximum flow density. In this paper, the authors summarize different approaches to lane changing and their results, and propose a general scheme, according to which realistic lane changing rules can be developed. They test this scheme by applying it to several different lane changing rules, which, in spite of their differences, generate similar and realistic results. The authors thus conclude that, for producing realistic results, the logical structure of the lane changing rules, as proposed here, is at least as important as the microscopic details of the rules.

  20. Usage Automata

    NASA Astrophysics Data System (ADS)

    Bartoletti, Massimo

    Usage automata are an extension of finite stata automata, with some additional features (e.g. parameters and guards) that improve their expressivity. Usage automata are expressive enough to model security requirements of real-world applications; at the same time, they are simple enough to be statically amenable, e.g. they can be model-checked against abstractions of program usages. We study here some foundational aspects of usage automata. In particular, we discuss about their expressive power, and about their effective use in run-time mechanisms for enforcing usage policies.

  1. Probabilistic cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Giuclea, Marius

    2014-09-01

    Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata. PMID:24999557

  2. Linear mixing rule in screened binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Chabrier, G.; Ashcroft, N. W.

    1990-01-01

    The validity of the linear mixing rule is examined for the following two cases (1) when the response of the electron gas is taken into account in the effective ionic interaction and (2) when finite-temperature effects are included in the dielectric response of the electrons, i.e., when the ions interact with both temperature- and density-dependent screened Coulomb potentials. It is found that the linear mixing rule remains valid when the electron response is taken into account in the interionic potential at any density, even though the departure from linearity can reach a few percent for the asymmetric mixtures in the region of weak degeneracy for the electron gas. A physical explanation of this behavior is proposed which is based on a simple additional length scale.

  3. Nonsynchronous updating in the multiverse of cellular automata.

    PubMed

    Reia, Sandro M; Kinouchi, Osame

    2015-04-01

    In this paper we study updating effects on cellular automata rule space. We consider a subset of 6144 order-3 automata from the space of 262144 bidimensional outer-totalistic rules. We compare synchronous to asynchronous and sequential updatings. Focusing on two automata, we discuss how update changes destroy typical structures of these rules. Besides, we show that the first-order phase transition in the multiverse of synchronous cellular automata, revealed with the use of a recently introduced control parameter, seems to be robust not only to changes in update schema but also to different initial densities. PMID:25974442

  4. Nonsynchronous updating in the multiverse of cellular automata

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Kinouchi, Osame

    2015-04-01

    In this paper we study updating effects on cellular automata rule space. We consider a subset of 6144 order-3 automata from the space of 262144 bidimensional outer-totalistic rules. We compare synchronous to asynchronous and sequential updatings. Focusing on two automata, we discuss how update changes destroy typical structures of these rules. Besides, we show that the first-order phase transition in the multiverse of synchronous cellular automata, revealed with the use of a recently introduced control parameter, seems to be robust not only to changes in update schema but also to different initial densities.

  5. Symmetry analysis of cellular automata

    NASA Astrophysics Data System (ADS)

    García-Morales, V.

    2013-01-01

    By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.

  6. Cellular Automata Generalized To An Inferential System

    NASA Astrophysics Data System (ADS)

    Blower, David J.

    2007-11-01

    Stephen Wolfram popularized elementary one-dimensional cellular automata in his book, A New Kind of Science. Among many remarkable things, he proved that one of these cellular automata was a Universal Turing Machine. Such cellular automata can be interpreted in a different way by viewing them within the context of the formal manipulation rules from probability theory. Bayes's Theorem is the most famous of such formal rules. As a prelude, we recapitulate Jaynes's presentation of how probability theory generalizes classical logic using modus ponens as the canonical example. We emphasize the important conceptual standing of Boolean Algebra for the formal rules of probability manipulation and give an alternative demonstration augmenting and complementing Jaynes's derivation. We show the complementary roles played in arguments of this kind by Bayes's Theorem and joint probability tables. A good explanation for all of this is afforded by the expansion of any particular logic function via the disjunctive normal form (DNF). The DNF expansion is a useful heuristic emphasized in this exposition because such expansions point out where relevant 0s should be placed in the joint probability tables for logic functions involving any number of variables. It then becomes a straightforward exercise to rely on Boolean Algebra, Bayes's Theorem, and joint probability tables in extrapolating to Wolfram's cellular automata. Cellular automata are seen as purely deductive systems, just like classical logic, which probability theory is then able to generalize. Thus, any uncertainties which we might like to introduce into the discussion about cellular automata are handled with ease via the familiar inferential path. Most importantly, the difficult problem of predicting what cellular automata will do in the far future is treated like any inferential prediction problem.

  7. Are nonlinear discrete cellular automata compatible with quantum mechanics?

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2015-07-01

    We consider discrete and integer-valued cellular automata (CA). A particular class of which comprises “Hamiltonian CA” with equations of motion that bear similarities to Hamilton's equations, while they present discrete updating rules. The dynamics is linear, quite similar to unitary evolution described by the Schrödinger equation. This has been essential in our construction of an invertible map between such CA and continuous quantum mechanical models, which incorporate a fundamental discreteness scale. Based on Shannon's sampling theory, it leads, for example, to a one-to-one relation between quantum mechanical and CA conservation laws. The important issue of linearity of the theory is examined here by incorporating higher-order nonlinearities into the underlying action. These produce inconsistent nonlocal (in time) effects when trying to describe continuously such nonlinear CA. Therefore, in the present framework, only linear CA and local quantum mechanical dynamics are compatible.

  8. Dynamical Systems Perspective of Wolfram's Cellular Automata

    NASA Astrophysics Data System (ADS)

    Courbage, M.; Kamiński, B.

    2013-01-01

    Leon Chua, following Wolfram, devoted a big effort to understand deeply the wealth of complexity of the rules of all elementary one-dimensional cellular automata from the point of view of the nonlinear dynamicist. Here we complete this point of view by a dynamical system perspective, extending them to the limit of infinite number of sites.

  9. Quantum Features of Natural Cellular Automata

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    We review the properties of discrete and integer-valued, hence "natural", cellular automata (CA), a particular class of which comprises "Hamiltonian CA" with equations of motion that bear strong similarities to Hamilton's equations, despite presenting discrete updating rules. The resulting dynamics is linear in the same sense as unitary evolution described by the Schrödinger equation. Employing Shannon's Sampling Theorem, we construct an invertible map between such CA and continuous quantum mechanical models which incorporate a fundamental discreteness scale. This leads to one-to-one correspondence of quantum mechanical and CA conservation laws. In order to illuminate the all-important issue of linearity, we presently introduce an extension of the class of CA incorporating nonlinearities. We argue that these imply non-local effects in the continuous quantum mechanical description of intrinsically local discrete CA, enforcing locality entails linearity. We recall the construction of admissible CA observables and the existence of solutions of the modified dispersion relation for stationary states, besides discussing next steps of the deconstruction of quantum mechanical models in terms of deterministic CA.

  10. From deterministic cellular automata to coupled map lattices

    NASA Astrophysics Data System (ADS)

    García-Morales, Vladimir

    2016-07-01

    A general mathematical method is presented for the systematic construction of coupled map lattices (CMLs) out of deterministic cellular automata (CAs). The entire CA rule space is addressed by means of a universal map for CAs that we have recently derived and that is not dependent on any freely adjustable parameters. The CMLs thus constructed are termed real-valued deterministic cellular automata (RDCA) and encompass all deterministic CAs in rule space in the asymptotic limit κ \\to 0 of a continuous parameter κ. Thus, RDCAs generalize CAs in such a way that they constitute CMLs when κ is finite and nonvanishing. In the limit κ \\to ∞ all RDCAs are shown to exhibit a global homogeneous fixed-point that attracts all initial conditions. A new bifurcation is discovered for RDCAs and its location is exactly determined from the linear stability analysis of the global quiescent state. In this bifurcation, fuzziness gradually begins to intrude in a purely deterministic CA-like dynamics. The mathematical method presented allows to get insight in some highly nontrivial behavior found after the bifurcation.

  11. Lempel-Ziv complexity analysis of one dimensional cellular automata.

    PubMed

    Estevez-Rams, E; Lora-Serrano, R; Nunes, C A J; Aragón-Fernández, B

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules. PMID:26723145

  12. Lempel-Ziv complexity analysis of one dimensional cellular automata

    NASA Astrophysics Data System (ADS)

    Estevez-Rams, E.; Lora-Serrano, R.; Nunes, C. A. J.; Aragón-Fernández, B.

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

  13. Automata-Based Verification of Temporal Properties on Running Programs

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Havelund, Klaus; Lan, Sonie (Technical Monitor)

    2001-01-01

    This paper presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to Buchi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.

  14. Data Automata in Scala

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    The field of runtime verification has during the last decade seen a multitude of systems for monitoring event sequences (traces) emitted by a running system. The objective is to ensure correctness of a system by checking its execution traces against formal specifications representing requirements. A special challenge is data parameterized events, where monitors have to keep track of the combination of control states as well as data constraints, relating events and the data they carry across time points. This poses a challenge wrt. efficiency of monitors, as well as expressiveness of logics. Data automata is a form of automata where states are parameterized with data, supporting monitoring of data parameterized events. We describe the full details of a very simple API in the Scala programming language, an internal DSL (Domain-Specific Language), implementing data automata. The small implementation suggests a design pattern. Data automata allow transition conditions to refer to other states than the source state, and allow target states of transitions to be inlined, offering a temporal logic flavored notation. An embedding of a logic in a high-level language like Scala in addition allows monitors to be programmed using all of Scala's language constructs, offering the full flexibility of a programming language. The framework is demonstrated on an XML processing scenario previously addressed in related work.

  15. Using Linear versus Quadratic Rules in Predictive and Descriptive Discriminant Analysis.

    ERIC Educational Resources Information Center

    McGee, Jennifer

    Both predictive discriminant analysis (PDA) and descriptive discriminant analysis (DDA) require a decision to pool group covariance matrices, or alternatively, to retain separate group covariance matrices when the group covariance matrices are too dissimilar to pool. Pooling the group covariance matrices involves the so-called "linear" rule,…

  16. GARDENS OF EDEN OF ELEMENTARY CELLULAR AUTOMATA.

    SciTech Connect

    Barrett, C. L.; Chen, W. Y. C.; Reidys, C. M.

    2001-01-01

    Using de Bruijn graphs, we give a characterization of elementary cellular automata on the linear lattice that do not have any Gardens of Eden. It turns out that one can easily recoginze a CA that does not have any Gardens of Eden by looking at its de Bruijn graph. We also present a sufficient condition for the set of words accepted by a CA not to constitute a finite-complement language.

  17. Non-Condon nonequilibrium Fermi's golden rule rates from the linearized semiclassical method

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Geva, Eitan

    2016-08-01

    The nonequilibrium Fermi's golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi's golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable to the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi's golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.

  18. Predictability in cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case. PMID:25271778

  19. Actin Automata with Memory

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Adamatzky, Andy

    Actin is a globular protein which forms long polar filaments in eukaryotic. The actin filaments play the roles of cytoskeleton, motility units, information processing and learning. We model actin filament as a double chain of finite state machines, nodes, which take states “0” and “1”. The states are abstractions of absence and presence of a subthreshold charge on actin units corresponding to the nodes. All nodes update their state in parallel to discrete time. A node updates its current state depending on states of two closest neighbors in the node chain and two closest neighbors in the complementary chain. Previous models of actin automata consider momentary state transitions of nodes. We enrich the actin automata model by assuming that states of nodes depend not only on the current states of neighboring node but also on their past states. Thus, we assess the effect of memory of past states on the dynamics of acting automata. We demonstrate in computational experiments that memory slows down propagation of perturbations, decrease entropy of space-time patterns generated, transforms traveling localizations to stationary oscillators, and stationary oscillations to still patterns.

  20. Configurable Cellular Automata for Pseudorandom Number Generation

    NASA Astrophysics Data System (ADS)

    Quieta, Marie Therese; Guan, Sheng-Uei

    This paper proposes a generalized structure of cellular automata (CA) — the configurable cellular automata (CoCA). With selected properties from programmable CA (PCA) and controllable CA (CCA), a new approach to cellular automata is developed. In CoCA, the cells are dynamically reconfigured at run-time via a control CA. Reconfiguration of a cell simply means varying the properties of that cell with time. Some examples of properties to be reconfigured are rule selection, boundary condition, and radius. While the objective of this paper is to propose CoCA as a new CA method, the main focus is to design a CoCA that can function as a good pseudorandom number generator (PRNG). As a PRNG, CoCA can be a suitable candidate as it can pass 17 out of 18 Diehard tests with 31 cells. CoCA PRNG's performance based on Diehard test is considered superior over other CA PRNG works. Moreover, CoCA opens new rooms for research not only in the field of random number generation, but in modeling complex systems as well.

  1. Synchronization of One-Dimensional Stochastically Coupled Cellular Automata

    NASA Astrophysics Data System (ADS)

    Mrowinski, Maciej J.; Kosinski, Robert A.

    In this work the authors study synchronization resulting from the asymmetric stochastic coupling between two one-dimensional chaotic cellular automata and provide a simple analytical model to explain this phenomenon. The authors also study synchronization in a more general case, using sets of rules with a different number of states and different values of Langton's parameter λ.

  2. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  3. Control of cellular automata

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco; Rechtman, Raúl; El Yacoubi, Samira

    2012-12-01

    We study the problem of master-slave synchronization and control of totalistic cellular automata. The synchronization mechanism is that of setting a fraction of sites of the slave system equal to those of the master one (pinching synchronization). The synchronization observable is the distance between the two configurations. We present three control strategies that exploit local information (the number of nonzero first-order Boolean derivatives) in order to choose the sites to be synchronized. When no local information is used, we speak of simple pinching synchronization. We find the critical properties of control and discuss the best control strategy compared with simple synchronization.

  4. Linear solvation energy relationships: "rule of thumb" for estimation of variable values

    USGS Publications Warehouse

    Hickey, James P.; Passino-Reader, Dora R.

    1991-01-01

    For the linear solvation energy relationship (LSER), values are listed for each of the variables (Vi/100, π*, &betam, αm) for fundamental organic structures and functional groups. We give the guidelines to estimate LSER variable values quickly for a vast array of possible organic compounds such as those found in the environment. The difficulty in generating these variables has greatly discouraged the application of this quantitative structure-activity relationship (QSAR) method. This paper present the first compilation of molecular functional group values together with a utilitarian set of the LSER variable estimation rules. The availability of these variable values and rules should facilitate widespread application of LSER for hazard evaluation of environmental contaminants.

  5. Weighted Watson-Crick automata

    NASA Astrophysics Data System (ADS)

    Tamrin, Mohd Izzuddin Mohd; Turaev, Sherzod; Sembok, Tengku Mohd Tengku

    2014-07-01

    There are tremendous works in biotechnology especially in area of DNA molecules. The computer society is attempting to develop smaller computing devices through computational models which are based on the operations performed on the DNA molecules. A Watson-Crick automaton, a theoretical model for DNA based computation, has two reading heads, and works on double-stranded sequences of the input related by a complementarity relation similar with the Watson-Crick complementarity of DNA nucleotides. Over the time, several variants of Watson-Crick automata have been introduced and investigated. However, they cannot be used as suitable DNA based computational models for molecular stochastic processes and fuzzy processes that are related to important practical problems such as molecular parsing, gene disease detection, and food authentication. In this paper we define new variants of Watson-Crick automata, called weighted Watson-Crick automata, developing theoretical models for molecular stochastic and fuzzy processes. We define weighted Watson-Crick automata adapting weight restriction mechanisms associated with formal grammars and automata. We also study the generative capacities of weighted Watson-Crick automata, including probabilistic and fuzzy variants. We show that weighted variants of Watson-Crick automata increase their generative power.

  6. Weighted Watson-Crick automata

    SciTech Connect

    Tamrin, Mohd Izzuddin Mohd; Turaev, Sherzod; Sembok, Tengku Mohd Tengku

    2014-07-10

    There are tremendous works in biotechnology especially in area of DNA molecules. The computer society is attempting to develop smaller computing devices through computational models which are based on the operations performed on the DNA molecules. A Watson-Crick automaton, a theoretical model for DNA based computation, has two reading heads, and works on double-stranded sequences of the input related by a complementarity relation similar with the Watson-Crick complementarity of DNA nucleotides. Over the time, several variants of Watson-Crick automata have been introduced and investigated. However, they cannot be used as suitable DNA based computational models for molecular stochastic processes and fuzzy processes that are related to important practical problems such as molecular parsing, gene disease detection, and food authentication. In this paper we define new variants of Watson-Crick automata, called weighted Watson-Crick automata, developing theoretical models for molecular stochastic and fuzzy processes. We define weighted Watson-Crick automata adapting weight restriction mechanisms associated with formal grammars and automata. We also study the generative capacities of weighted Watson-Crick automata, including probabilistic and fuzzy variants. We show that weighted variants of Watson-Crick automata increase their generative power.

  7. Mining Distance Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule

    NASA Technical Reports Server (NTRS)

    Bay, Stephen D.; Schwabacher, Mark

    2003-01-01

    Defining outliers by their distance to neighboring examples is a popular approach to finding unusual examples in a data set. Recently, much work has been conducted with the goal of finding fast algorithms for this task. We show that a simple nested loop algorithm that in the worst case is quadratic can give near linear time performance when the data is in random order and a simple pruning rule is used. We test our algorithm on real high-dimensional data sets with millions of examples and show that the near linear scaling holds over several orders of magnitude. Our average case analysis suggests that much of the efficiency is because the time to process non-outliers, which are the majority of examples, does not depend on the size of the data set.

  8. Efficient Translation of LTL Formulae into Buchi Automata

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Lerda, Flavio

    2001-01-01

    Model checking is a fully automated technique for checking that a system satisfies a set of required properties. With explicit-state model checkers, properties are typically defined in linear-time temporal logic (LTL), and are translated into B chi automata in order to be checked. This report presents how we have combined and improved existing techniques to obtain an efficient LTL to B chi automata translator. In particular, we optimize the core of existing tableau-based approaches to generate significantly smaller automata. Our approach has been implemented and is being released as part of the Java PathFinder software (JPF), an explicit state model checker under development at the NASA Ames Research Center.

  9. Non-Condon equilibrium Fermi's golden rule electronic transition rate constants via the linearized semiclassical method.

    PubMed

    Sun, Xiang; Geva, Eitan

    2016-06-28

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi's golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space. PMID:27369495

  10. Non-Condon equilibrium Fermi's golden rule electronic transition rate constants via the linearized semiclassical method

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Geva, Eitan

    2016-06-01

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi's golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space.

  11. Spectral Analysis of Transition Operators, Automata Groups and Translation in BBS

    NASA Astrophysics Data System (ADS)

    Kato, Tsuyoshi; Tsujimoto, Satoshi; Zuk, Andrzej

    2016-06-01

    We give the automata that describe time evolution rules of the box-ball system with a carrier. It can be shown by use of tropical geometry that such systems are ultradiscrete analogues of KdV equation. We discuss their relation with the lamplighter group generated by an automaton. We present spectral analysis of the stochastic matrices induced by these automata and verify their spectral coincidence.

  12. Particles and Patterns in Cellular Automata

    SciTech Connect

    Jen, E.; Das, R.; Beasley, C.E.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Our objective has been to develop tools for studying particle interactions in a class of dynamical systems characterized by discreteness, determinism, local interaction, and an inherently parallel form of evolution. These systems can be described by cellular automata (CA) and the behavior we studied has improved our understanding of the nature of patterns generated by CAs, their ability to perform global computations, and their relationship to continuous dynamical systems. We have also developed a rule-table mathematics that enables one to custom-design CA rule tables to generate patterns of specified types, or to perform specified computational tasks.

  13. Nonequilibrium Fermi's Golden Rule Charge Transfer Rates via the Linearized Semiclassical Method.

    PubMed

    Sun, Xiang; Geva, Eitan

    2016-06-14

    Nonequilibrium Fermi's golden rule (NE-FGR) describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state when the nuclear degrees of freedom start out in a nonequilibrium state. In this article, we derive a new expression for NE-FGR within the framework of the linearized semiclassical approximation. The new expression opens the door for applications of NE-FGR in complex condensed-phase molecular systems described in terms of anharmonic force fields. We show that the linearized semiclassical expression for NE-FGR yields the exact fully quantum-mechanical result for the canonical Marcus model, where the coupling between donor and acceptor is assumed constant (the Condon approximation) and the donor and acceptor potential energy surfaces are parabolic and identical except for a shift in the equilibrium energy and geometry. For this model, we also present a comprehensive comparison between the linearized semiclassical expression and a hierarchy of more approximate expressions, in both normal and inverted regions and over a wide range of initial nonequilibrium states, temperatures, and frictions. PMID:27128887

  14. Definition and evolution of quantum cellular automata with two qubits per cell

    SciTech Connect

    Karafyllidis, Ioannis G.

    2004-10-01

    Studies of quantum computer implementations suggest cellular quantum computer architectures. These architectures can simulate the evolution of quantum cellular automata, which can possibly simulate both quantum and classical physical systems and processes. It is however known that except for the trivial case, unitary evolution of one-dimensional homogeneous quantum cellular automata with one qubit per cell is not possible. Quantum cellular automata that comprise two qubits per cell are defined and their evolution is studied using a quantum computer simulator. The evolution is unitary and its linearity manifests itself as a periodic structure in the probability distribution patterns.

  15. A Study on Sequence Generation Powers of Small Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kamikawa, Naoki; Umeo, Hiroshi

    A model of cellular automata (CA) is considered to be a well-studied non-linear model of complex systems in which an infinite one-dimensional array of finite state machines (cells) updates itself in a synchronous manner according to a uniform local rule. A sequence generation problem on the CAs has been studied and many scholars proposed several real-time sequence generation algorithms for a variety of non-regular sequences such as prime, Fibonacci, and {2n|n=1,2,3,...} sequences etc. The paper describes the sequence generation powers of CAs having a small number of states, focusing on the CAs with one, two, and three internal states, respectively. The authors enumerate all of the sequences generated by two-state CAs and present several non-regular sequences that can be generated in real-time by three-state CAs, but not generated by any two-state CA. It is shown that there exists a sequence generation gap among the powers of those small CAs.

  16. Construction of living cellular automata using the Physarum plasmodium

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomohiro; Sato, Hiroshi; Ishiguro, Shinji

    2015-04-01

    The plasmodium of Physarum polycephalum is a unicellular and multinuclear giant amoeba that has an amorphous cell body. To clearly observe how the plasmodium makes decisions in its motile and exploratory behaviours, we developed a new experimental system to pseudo-discretize the motility of the organism. In our experimental space that has agar surfaces arranged in a two-dimensional lattice, the continuous and omnidirectional movement of the plasmodium was limited to the stepwise one, and the direction of the locomotion was also limited to four neighbours. In such an experimental system, a cellular automata-like system was constructed using the living cell. We further analysed the exploratory behaviours of the plasmodium by duplicating the experimental results in the simulation models of cellular automata. As a result, it was revealed that the behaviours of the plasmodium are not reproduced by only local state transition rules; and for the reproduction, a kind of historical rule setting is needed.

  17. Is there a sharp phase transition for deterministic cellular automata

    SciTech Connect

    Wootters, W.K. Los Alamos National Lab., NM Williams Coll., Williamstown, MA . Dept. of Physics); Langton, C.G. )

    1990-01-01

    Previous work has suggested that there is a kind of phase transition between deterministic automata exhibiting periodic behavior and those exhibiting chaotic behavior. However, unlike the usual phase transitions of physics, this transition takes place over a range of values of the parameter rather than at a specific value. The present paper asks whether the transition can be made sharp, either by taking the limit of an infinitely large rule table, or by changing the parameter in terms of which the space of automata is explored. We find strong evidence that, for the class of automata we consider, the transition does become sharp in the limit of an infinite number of symbols, the size of the neighborhood being held fixed. Our work also suggests an alternative parameter in terms of which it is likely that the transition will become fairly sharp even if one does not increase the number of symbols. In the course of our analysis, we find that mean field theory, which is our main tool, gives surprisingly good predictions of the statistical properties of the class of automata we consider. 18 refs., 6 figs.

  18. Return of the Quantum Cellular Automata: Episode VI

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Hillberry, Logan E.; Rall, Patrick; Halpern, Nicole Yunger; Bao, Ning; Montangero, Simone

    2016-05-01

    There are now over 150 quantum simulators or analog quantum computers worldwide. Although exploring quantum phase transitions, many-body localization, and the generalized Gibbs ensemble are exciting and worthwhile endeavors, there are totally untapped directions we have not yet pursued. One of these is quantum cellular automata. In the past a principal goal of quantum cellular automata was to reproduce continuum single particle quantum physics such as the Schrodinger or Dirac equation from simple rule sets. Now that we begin to really understand entanglement and many-body quantum physics at a deeper level, quantum cellular automata present new possibilities. We explore several time evolution schemes on simple spin chains leading to high degrees of quantum complexity and nontrivial quantum dynamics. We explain how the 256 known classical elementary cellular automata reduce to just a few exciting quantum cases. Our analysis tools include mutual information based complex networks as well as more familiar quantifiers like sound speed and diffusion rate. Funded by NSF and AFOSR.

  19. An autonomous DNA model for finite state automata.

    PubMed

    Martinez-Perez, Israel M; Zimmermann, Karl-Heinz; Ignatova, Zoya

    2009-01-01

    In this paper we introduce an autonomous DNA model for finite state automata. This model called sticker automaton model is based on the hybridisation of single stranded DNA molecules (stickers) encoding transition rules and input data. The computation is carried out in an autonomous manner by one enzyme which allows us to determine whether a resulting double-stranded DNA molecule belongs to the automaton's language or not. PMID:19136366

  20. Quantum cellular automata

    NASA Astrophysics Data System (ADS)

    Porod, Wolfgang; Lent, Craig S.; Bernstein, Gary H.

    1994-06-01

    The Notre Dame group has developed a new paradigm for ultra-dense and ultra-fast information processing in nanoelectronic systems. These Quantum Cellular Automata (QCA's) are the first concrete proposal for a technology based on arrays of coupled quantum dots. The basic building block of these cellular arrays is the Notre Dame Logic Cell, as it has been called in the literature. The phenomenon of Coulomb exclusion, which is a synergistic interplay of quantum confinement and Coulomb interaction, leads to a bistable behavior of each cell which makes possible their use in large-scale cellular arrays. The physical interaction between neighboring cells has been exploited to implement logic functions. New functionality may be achieved in this fashion, and the Notre Dame group invented a versatile majority logic gate. In a series of papers, the feasibility of QCA wires, wire crossing, inverters, and Boolean logic gates was demonstrated. A major finding is that all logic functions may be integrated in a hierarchial fashion which allows the design of complicated QCA structures. The most complicated system which was simulated to date is a one-bit full adder consisting of some 200 cells. In addition to exploring these new concepts, efforts are under way to physically realize such structures both in semiconductor and metal systems. Extensive modeling work of semiconductor quantum dot structures has helped identify optimum design parameters for QCA experimental implementations.

  1. On Matrices, Automata, and Double Counting

    NASA Astrophysics Data System (ADS)

    Beldiceanu, Nicolas; Carlsson, Mats; Flener, Pierre; Pearson, Justin

    Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variables M, with the same constraint defined by a finite-state automaton A on each row of M and a global cardinality constraint gcc on each column of M. We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the gcc constraints from the automaton A. The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We evaluate the impact of our methods on a large set of nurse rostering problem instances.

  2. Adaptive stochastic cellular automata: Applications

    NASA Astrophysics Data System (ADS)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  3. Quantum cellular automata without particles

    NASA Astrophysics Data System (ADS)

    Meyer, David A.; Shakeel, Asif

    2016-01-01

    Quantum cellular automata (QCA) constitute space and time homogeneous discrete models for quantum field theories (QFTs). Although QFTs are defined without reference to particles, computations are done in terms of Feynman diagrams, which are explicitly interpreted in terms of interacting particles. Similarly, the easiest QCA to construct are quantum lattice gas automata (QLGA). A natural question then is, which QCA are not QLGA? Here we construct a nontrivial example of such a QCA; it provides a simple model in 1 +1 dimensions with no particle interpretation at the scale where the QCA dynamics are homogeneous.

  4. Mitochondrial fusion through membrane automata.

    PubMed

    Giannakis, Konstantinos; Andronikos, Theodore

    2015-01-01

    Studies have shown that malfunctions in mitochondrial processes can be blamed for diseases. However, the mechanism behind these operations is yet not sufficiently clear. In this work we present a novel approach to describe a biomolecular model for mitochondrial fusion using notions from the membrane computing. We use a case study defined in BioAmbient calculus and we show how to translate it in terms of a P automata variant. We combine brane calculi with (mem)brane automata to produce a new scheme capable of describing simple, realistic models. We propose the further use of similar methods and the test of other biomolecular models with the same behaviour. PMID:25417022

  5. SELF-ORGANIZED CRITICALITY AND CELLULAR AUTOMATA

    SciTech Connect

    CREUTZ,M.

    2007-01-01

    Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.

  6. Cellular Automata and the Humanities.

    ERIC Educational Resources Information Center

    Gallo, Ernest

    1994-01-01

    The use of cellular automata to analyze several pre-Socratic hypotheses about the evolution of the physical world is discussed. These hypotheses combine characteristics of both rigorous and metaphoric language. Since the computer demands explicit instructions for each step in the evolution of the automaton, such models can reveal conceptual…

  7. From quantum cellular automata to quantum lattice gases

    SciTech Connect

    Meyer, D.A.

    1996-12-01

    A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in one dimension, we weaken the homogeneity condition and show that there are nontrivial, exactly unitary, partitioning cellular automata. We find a one-parameter family of evolution rules which are best interpreted as those for a one-particle quantum automaton. This model is naturally reformulated as a two component cellular automaton which we demonstrate to limit to the Dirac equation. We describe two generalizations of this automaton, the second of which, to multiple interacting particles, is the correct definition of a quantum lattice gas.

  8. Generalized hydrodynamic transport in lattice-gas automata

    NASA Technical Reports Server (NTRS)

    Luo, Li-Shi; Chen, Hudong; Chen, Shiyi; Doolen, Gary D.; Lee, Yee-Chun

    1991-01-01

    The generalized hydrodynamics of two-dimensional lattice-gas automata is solved analytically in the linearized Boltzmann approximation. The dependence of the transport coefficients (kinematic viscosity, bulk viscosity, and sound speed) upon wave number k is obtained analytically. Anisotropy of these coefficients due to the lattice symmetry is studied for the entire range of wave number, k. Boundary effects due to a finite mean free path (Knudsen layer) are analyzed, and accurate comparisons are made with lattice-gas simulations.

  9. Generalized hydrodynamic transport in lattice-gas automata

    SciTech Connect

    Luo, L. School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 ); Chen, H. Department of Physics, Dartmouth College, Hanover, New Hampshire 03755 ); Chen, S. Bartol Research Institute, University of Delaware, Newark, Delaware 19716 ); Doolen, G.D.; Lee, Y. )

    1991-06-15

    The generalized hydrodynamics of two-dimensional lattice-gas automata is solved analytically in the linearized Boltzmann approximation. The dependence of the transport coefficients (kinematic viscosity, bulk viscosity, and sound speed) upon wave number {bold k} is obtained analytically. Anisotropy of these coefficients due to the lattice symmetry is studied for the entire range of wave number, {bold k}. Boundary effects due to a finite mean free path (Knudsen layer) are analyzed, and accurate comparisons are made with lattice-gas simulations.

  10. Modeling Pseudorandom Sequence Generators using Cellular Automata: The Alternating Step Generator

    NASA Astrophysics Data System (ADS)

    Pazo-Robles, María Eugenia; Fúster-Sabater, Amparo

    2007-12-01

    Stream ciphers are pseudorandom bit generators whose output sequences are combined with the sensitive information by means of a mathematical function currently an addition module 2. The Alternating Step Generator is a pseudorandom sequence generator with good cryptographic properties and non-linear structure. In this work, we propose two different ways to model such a generator by using linear and discrete mathematical functions e.g. Cellular Automata. One of these ways deals with the realization of a linear model from a pair of basic automata provided by the Catell and Muzio algorithm. The other way is a new approach based on automata's addition consisting in the realization of a new automaton with non-primitive polynomial and short length. Both methods provide linear models able to generate the output sequence of the Alternating Step Generator.

  11. Free Quantum Field Theory from Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).

  12. Xtoys: Cellular automata on xwindows

    SciTech Connect

    Creutz, M.

    1995-08-15

    Xtoys is a collection of xwindow programs for demonstrating simulations of various statistical models. Included are xising, for the two dimensional Ising model, xpotts, for the q-state Potts model, xautomalab, for a fairly general class of totalistic cellular automata, xsand, for the Bak-Tang-Wiesenfield model of self organized criticality, and xfires, a simple forest fire simulation. The programs should compile on any machine supporting xwindows.

  13. Unstable vicinal crystal growth from cellular automata

    NASA Astrophysics Data System (ADS)

    Krasteva, A.; Popova, H.; KrzyŻewski, F.; Załuska-Kotur, M.; Tonchev, V.

    2016-03-01

    In order to study the unstable step motion on vicinal crystal surfaces we devise vicinal Cellular Automata. Each cell from the colony has value equal to its height in the vicinal, initially the steps are regularly distributed. Another array keeps the adatoms, initially distributed randomly over the surface. The growth rule defines that each adatom at right nearest neighbor position to a (multi-) step attaches to it. The update of whole colony is performed at once and then time increases. This execution of the growth rule is followed by compensation of the consumed particles and by diffusional update(s) of the adatom population. Two principal sources of instability are employed - biased diffusion and infinite inverse Ehrlich-Schwoebel barrier (iiSE). Since these factors are not opposed by step-step repulsion the formation of multi-steps is observed but in general the step bunches preserve a finite width. We monitor the developing surface patterns and quantify the observations by scaling laws with focus on the eventual transition from diffusion-limited to kinetics-limited phenomenon. The time-scaling exponent of the bunch size N is 1/2 for the case of biased diffusion and 1/3 for the case of iiSE. Additional distinction is possible based on the time-scaling exponents of the sizes of multi-step Nmulti, these are 0.36÷0.4 (for biased diffusion) and 1/4 (iiSE).

  14. Generalized information-lossless automata. I

    SciTech Connect

    Speranskii, D.V.

    1995-01-01

    Huffman and Even introduced classes of abstract automata, which they called respectively information-lossless automata (ILL) and information-lossless automata of finite order (ILLFO). The underlying property of these automata is the ability to reconstruct unknown input sequences from observations of the output response, assuming that the true initial state of the automaton is known. Similar classes of automata introduced in are called essentially information-lossless automata, and they are capable of reconstructing the unknown input word without knowledge of the initial state of the automaton. It is only assumed that the set of possible initial states of the automaton is the set of all automaton states. In this paper we analyze a structural analog of an abstract ILL-automaton whose set of initial states may be of arbitrary cardinality. This class of automata is thus a generalization of the classical ILL-automata, which allows not only for the structure of the input and output alphabets, but also for the configuration of the set of possible initial states.

  15. Order of the transition versus space dimension in a family of cellular automata

    NASA Astrophysics Data System (ADS)

    Bidaux, Roger; Boccara, Nini; Chaté, Hugues

    1989-03-01

    A mean-field theory of (probabilistic) cellular automata is developed and used to select a typical local rule whose mean-field analysis predicts first-order phase transitions. The corresponding automaton is then studied numerically on regular lattices for space dimensions d between 1 and 4. At odds with usual beliefs on two-state automata with one absorbing phase, first-order transitions are indeed exhibited as soon as d>1, with closer quantitative agreement with mean-field predictions for high space dimensions. For d=1, the transition is continuous, but with critical exponents different from those of directed percolation.

  16. Simulation of root forms using cellular automata model

    NASA Astrophysics Data System (ADS)

    Winarno, Nanang; Prima, Eka Cahya; Afifah, Ratih Mega Ayu

    2016-02-01

    This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled "A New Kind of Science" discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram's investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.

  17. Generic framework for mining cellular automata models on protein-folding simulations.

    PubMed

    Diaz, N; Tischer, I

    2016-01-01

    Cellular automata model identification is an important way of building simplified simulation models. In this study, we describe a generic architectural framework to ease the development process of new metaheuristic-based algorithms for cellular automata model identification in protein-folding trajectories. Our framework was developed by a methodology based on design patterns that allow an improved experience for new algorithms development. The usefulness of the proposed framework is demonstrated by the implementation of four algorithms, able to obtain extremely precise cellular automata models of the protein-folding process with a protein contact map representation. Dynamic rules obtained by the proposed approach are discussed, and future use for the new tool is outlined. PMID:27323045

  18. Towards a voxel-based geographic automata for the simulation of geospatial processes

    NASA Astrophysics Data System (ADS)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.

  19. Supervised nuclear track detection of CR-39 detectors by cellular automata

    NASA Astrophysics Data System (ADS)

    Chahkandi Nejad, Hadi; Khayat, Omid; Mohammadi, Kheirollah; Tavakoli, Saeed

    2014-05-01

    In this paper, cellular automata are used to detect the nuclear tracks in the track images captured from the surface of CR-39 detectors. Parameters of the automaton as the states, neighborhood, rules and quality parameters are defined optimally for the track image data set under analysis. The presented method is a supervised computational algorithm which comprises a rule definition phase as the learning procedure. Parameter optimization is also performed to adapt the algorithm to the data set used.

  20. Game level layout generation using evolved cellular automata

    NASA Astrophysics Data System (ADS)

    Pech, Andrew; Masek, Martin; Lam, Chiou-Peng; Hingston, Philip

    2016-01-01

    Design of level layouts typically involves the production of a set of levels which are different, yet display a consistent style based on the purpose of a particular level. In this paper, a new approach to the generation of unique level layouts, based on a target set of attributes, is presented. These attributes, which are learned automatically from an example layout, are used for the off-line evolution of a set of cellular automata rules. These rules can then be used for the real-time generation of level layouts that meet the target parameters. The approach is demonstrated on a set of maze-like level layouts. Results are presented to show the effect of various CA parameters and rule representation.

  1. Universal map for cellular automata

    NASA Astrophysics Data System (ADS)

    García-Morales, V.

    2012-08-01

    A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived.

  2. Stochastic computing with biomolecular automata

    NASA Astrophysics Data System (ADS)

    Adar, Rivka; Benenson, Yaakov; Linshiz, Gregory; Rosner, Amit; Tishby, Naftali; Shapiro, Ehud

    2004-07-01

    Stochastic computing has a broad range of applications, yet electronic computers realize its basic step, stochastic choice between alternative computation paths, in a cumbersome way. Biomolecular computers use a different computational paradigm and hence afford novel designs. We constructed a stochastic molecular automaton in which stochastic choice is realized by means of competition between alternative biochemical pathways, and choice probabilities are programmed by the relative molar concentrations of the software molecules coding for the alternatives. Programmable and autonomous stochastic molecular automata have been shown to perform direct analysis of disease-related molecular indicators in vitro and may have the potential to provide in situ medical diagnosis and cure.

  3. Distribution functions of probabilistic automata

    NASA Technical Reports Server (NTRS)

    Vatan, F.

    2001-01-01

    Each probabilistic automaton M over an alphabet A defines a probability measure Prob sub(M) on the set of all finite and infinite words over A. We can identify a k letter alphabet A with the set {0, 1,..., k-1}, and, hence, we can consider every finite or infinite word w over A as a radix k expansion of a real number X(w) in the interval [0, 1]. This makes X(w) a random variable and the distribution function of M is defined as usual: F(x) := Prob sub(M) { w: X(w) < x }. Utilizing the fixed-point semantics (denotational semantics), extended to probabilistic computations, we investigate the distribution functions of probabilistic automata in detail. Automata with continuous distribution functions are characterized. By a new, and much more easier method, it is shown that the distribution function F(x) is an analytic function if it is a polynomial. Finally, answering a question posed by D. Knuth and A. Yao, we show that a polynomial distribution function F(x) on [0, 1] can be generated by a prob abilistic automaton iff all the roots of F'(x) = 0 in this interval, if any, are rational numbers. For this, we define two dynamical systems on the set of polynomial distributions and study attracting fixed points of random composition of these two systems.

  4. Algorithmic crystal chemistry: A cellular automata approach

    SciTech Connect

    Krivovichev, S. V.

    2012-01-15

    Atomic-molecular mechanisms of crystal growth can be modeled based on crystallochemical information using cellular automata (a particular case of finite deterministic automata). In particular, the formation of heteropolyhedral layered complexes in uranyl selenates can be modeled applying a one-dimensional three-colored cellular automaton. The use of the theory of calculations (in particular, the theory of automata) in crystallography allows one to interpret crystal growth as a computational process (the realization of an algorithm or program with a finite number of steps).

  5. Topology regulates pattern formation capacity of binary cellular automata on graphs

    NASA Astrophysics Data System (ADS)

    Marr, Carsten; Hütt, Marc-Thorsten

    2005-08-01

    We study the effect of topology variation on the dynamic behavior of a system with local update rules. We implement one-dimensional binary cellular automata on graphs with various topologies by formulating two sets of degree-dependent rules, each containing a single parameter. We observe that changes in graph topology induce transitions between different dynamic domains (Wolfram classes) without a formal change in the update rule. Along with topological variations, we study the pattern formation capacities of regular, random, small-world and scale-free graphs. Pattern formation capacity is quantified in terms of two entropy measures, which for standard cellular automata allow a qualitative distinction between the four Wolfram classes. A mean-field model explains the dynamic behavior of random graphs. Implications for our understanding of information transport through complex, network-based systems are discussed.

  6. A Decomposition Theorem for Finite Automata.

    ERIC Educational Resources Information Center

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  7. Cellular automata to describe seismicity: A review

    NASA Astrophysics Data System (ADS)

    Jiménez, Abigail

    2013-12-01

    Cellular Automata have been used in the literature to describe seismicity. We first historically introduce Cellular Automata and provide some important definitions. Then we proceed to review the most important models, most of them being variations of the spring-block model proposed by Burridge and Knopoff, and describe the most important results obtained from them. We discuss the relation with criticality and also describe some models that try to reproduce real data.

  8. Complexity of analysis and verification problems for communicating automata and discrete dynamical systems.

    SciTech Connect

    Hunt, H. B.; Rosenkrantz, D. J.; Barrett, C. L.; Marathe, M. V.; Ravi, S. S.

    2001-01-01

    We identify several simple but powerful concepts, techniques, and results; and we use them to characterize the complexities of a number of basic problems II, that arise in the analysis and verification of the following models M of communicating automata and discrete dynamical systems: systems of communicating automata including both finite and infinite cellular automata, transition systems, discrete dynamical systems, and succinctly-specified finite automata. These concepts, techniques, and results are centered on the following: (1) reductions Of STATE-REACHABILITY problems, especially for very simple systems of communicating copies of a single simple finite automaton, (2) reductions of generalized CNF satisfiability problems [Sc78], especially to very simple communicating systems of copies of a few basic acyclic finite sequential machines, and (3) reductions of the EMPTINESS and EMPTINESS-OF-INTERSECTION problems, for several kinds of regular set descriptors. For systems of communicating automata and transition systems, the problems studied include: all equivalence relations and simulation preorders in the Linear-time/Branching-time hierarchies of equivalence relations and simulation preorders of [vG90, vG93], both without and with the hiding abstraction. For discrete dynamical systems, the problems studied include the INITIAL and BOUNDARY VALUE PROBLEMS (denoted IVPs and BVPs, respectively), for nonlinear difference equations over many different algebraic structures, e.g. all unitary rings, all finite unitary semirings, and all lattices. For succinctly specified finite automata, the problems studied also include the several problems studied in [AY98], e.g. the EMPTINESS, EMPTINESS-OF-INTERSECTION, EQUIVALENCE and CONTAINMENT problems. The concepts, techniques, and results presented unify and significantly extend many of the known results in the literature, e.g. [Wo86, Gu89, BPT91, GM92, Ra92, HT94, SH+96, AY98, AKY99, RH93, SM73, Hu73, HRS76, HR78], for

  9. COMPLEXITY OF ANALYSIS & VERIFICATION PROBLEMS FOR COMMUNICATING AUTOMATA & DISCRETE DYNAMICAL SYSTEMS

    SciTech Connect

    H. B. HUNT; D. J. ROSENKRANTS; ET AL

    2001-03-01

    We identify several simple but powerful concepts, techniques, and results; and we use them to characterize the complexities of a number of basic problems II, that arise in the analysis and verification of the following models M of communicating automata and discrete dynamical systems: systems of communicating automata including both finite and infinite cellular automata, transition systems, discrete dynamical systems, and succinctly-specified finite automata. These concepts, techniques, and results are centered on the following: (i) reductions Of STATE-REACHABILITY problems, especially for very simple systems of communicating copies of a single simple finite automaton, (ii) reductions of generalized CNF satisfiability problems [Sc78], especially to very simple communicating systems of copies of a few basic acyclic finite sequential machines, and (iii) reductions of the EMPTINESS and EMPTINESS-OF-INTERSECTION problems, for several kinds of regular set descriptors. For systems of communicating automata and transition systems, the problems studied include: all equivalence relations and simulation preorders in the Linear-time/Branching-time hierarchies of equivalence relations and simulation preorders of [vG90, vG93], both without and with the hiding abstraction. For discrete dynamical systems, the problems studied include the INITIAL and BOUNDARY VALUE PROBLEMS (denoted IVPs and BVPS, respectively), for nonlinear difference equations over many different algebraic structures, e.g. all unitary rings, all finite unitary semirings, and all lattices. For succinctly-specified finite automata, the problems studied also include the several problems studied in [AY98], e.g. the EMPTINESS, EMPTINESS-OF-INTERSECTION, EQUIVALENCE and CONTAINMENT problems. The concepts, techniques, and results presented unify and significantly extend many of the known results in the literature, e.g. [Wo86, Gu89, BPT91, GM92, Ra92, HT94, SH+96, AY98, AKY99, RH93, SM73, Hu73, HRS76, HR78], for

  10. Encoding nondeterministic fuzzy tree automata into recursive neural networks.

    PubMed

    Gori, Marco; Petrosino, Alfredo

    2004-11-01

    Fuzzy neural systems have been a subject of great interest in the last few years, due to their abilities to facilitate the exchange of information between symbolic and subsymbolic domains. However, the models in the literature are not able to deal with structured organization of information, that is typically required by symbolic processing. In many application domains, the patterns are not only structured, but a fuzziness degree is attached to each subsymbolic pattern primitive. The purpose of this paper is to show how recursive neural networks, properly conceived for dealing with structured information, can represent nondeterministic fuzzy frontier-to-root tree automata. Whereas available prior knowledge expressed in terms of fuzzy state transition rules are injected into a recursive network, unknown rules are supposed to be filled in by data-driven learning. We also prove the stability of the encoding algorithm, extending previous results on the injection of fuzzy finite-state dynamics in high-order recurrent networks. PMID:15565771

  11. An image encryption based on elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Jin, Jun

    2012-12-01

    This paper presents a new image encryption/decryption scheme. The behavior of a number of elementary cellular automata (ECA) of length 8 with periodic boundary conditions is investigated. It is found in the state-transition diagram that some ECA rules result in state attractors which satisfies basic requirement of the encryption scheme that can perform encrypting function to transform the pixel values. The generation of these attractors depending only on the rule and initial state of the CA, without any additional hardware cost for the implementation, and requires minimized computational resources. Simulation results on some grayscale and color images show that the proposed image encryption method satisfies the properties of confusion and diffusion, execution speed and has perfect information concealing.

  12. Fuzzy automata and pattern matching

    NASA Technical Reports Server (NTRS)

    Setzer, C. B.; Warsi, N. A.

    1986-01-01

    A wide-ranging search for articles and books concerned with fuzzy automata and syntactic pattern recognition is presented. A number of survey articles on image processing and feature detection were included. Hough's algorithm is presented to illustrate the way in which knowledge about an image can be used to interpret the details of the image. It was found that in hand generated pictures, the algorithm worked well on following the straight lines, but had great difficulty turning corners. An algorithm was developed which produces a minimal finite automaton recognizing a given finite set of strings. One difficulty of the construction is that, in some cases, this minimal automaton is not unique for a given set of strings and a given maximum length. This algorithm compares favorably with other inference algorithms. More importantly, the algorithm produces an automaton with a rigorously described relationship to the original set of strings that does not depend on the algorithm itself.

  13. Incremental Learning of Cellular Automata for Parallel Recognition of Formal Languages

    NASA Astrophysics Data System (ADS)

    Nakamura, Katsuhiko; Imada, Keita

    Parallel language recognition by cellular automata (CAs) is currently an important subject in computation theory. This paper describes incremental learning of one-dimensional, bounded, one-way, cellular automata (OCAs) that recognize formal languages from positive and negative sample strings. The objectives of this work are to develop automatic synthesis of parallel systems and to contribute to the theory of real-time recognition by cellular automata. We implemented methods to learn the rules of OCAs in the Occam system, which is based on grammatical inference of context-free grammars (CFGs) implemented in Synapse. An important feature of Occam is incremental learning by a rule generation mechanism called bridging and the search for rule sets. The bridging looks for and fills gaps in incomplete space-time transition diagrams for positive samples. Another feature of our approach is that the system synthesizes minimal or semi-minimal rule sets of CAs. This paper reports experimental results on learning several OCAs for fundamental formal languages including sets of balanced parentheses and palindromes as well as the set {a n b n c n | n ≥ 1}.

  14. A Cellular Automata Model for the Study of Landslides

    NASA Astrophysics Data System (ADS)

    Liucci, Luisa; Suteanu, Cristian; Melelli, Laura

    2016-04-01

    Power-law scaling has been observed in the frequency distribution of landslide sizes in many regions of the world, for landslides triggered by different factors, and in both multi-temporal and post-event datasets, thus indicating the universal character of this property of landslides and suggesting that the same mechanisms drive the dynamics of mass wasting processes. The reasons for the scaling behavior of landslide sizes are widely debated, since their understanding would improve our knowledge of the spatial and temporal evolution of this phenomenon. Self-Organized Critical (SOC) dynamics and the key role of topography have been suggested as possible explanations. The scaling exponent of the landslide size-frequency distribution defines the probability of landslide magnitudes and it thus represents an important parameter for hazard assessment. Therefore, another - still unanswered - important question concerns the factors on which its value depends. This paper investigates these issues using a Cellular Automata (CA) model. The CA uses a real topographic surface acquired from a Digital Elevation Model to represent the initial state of the system, where the states of cells are defined in terms of altitude. The stability criterion is based on the slope gradient. The system is driven to instability through a temporal decrease of the stability condition of cells, which may be thought of as representing the temporal weakening of soil caused by factors like rainfall. A transition rule defines the way in which instabilities lead to discharge from unstable cells to the neighboring cells, deciding upon the landslide direction and the quantity of mass involved. Both the direction and the transferred mass depend on the local topographic features. The scaling properties of the area-frequency distributions of the resulting landslide series are investigated for several rates of weakening and for different time windows, in order to explore the response of the system to model

  15. A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi

    2015-08-01

    Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.

  16. Statistical Mechanics of Surjective Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kari, Jarkko; Taati, Siamak

    2015-09-01

    Reversible cellular automata are seen as microscopic physical models, and their states of macroscopic equilibrium are described using invariant probability measures. We establish a connection between the invariance of Gibbs measures and the conservation of additive quantities in surjective cellular automata. Namely, we show that the simplex of shift-invariant Gibbs measures associated to a Hamiltonian is invariant under a surjective cellular automaton if and only if the cellular automaton conserves the Hamiltonian. A special case is the (well-known) invariance of the uniform Bernoulli measure under surjective cellular automata, which corresponds to the conservation of the trivial Hamiltonian. As an application, we obtain results indicating the lack of (non-trivial) Gibbs or Markov invariant measures for "sufficiently chaotic" cellular automata. We discuss the relevance of the randomization property of algebraic cellular automata to the problem of approach to macroscopic equilibrium, and pose several open questions. As an aside, a shift-invariant pre-image of a Gibbs measure under a pre-injective factor map between shifts of finite type turns out to be always a Gibbs measure. We provide a sufficient condition under which the image of a Gibbs measure under a pre-injective factor map is not a Gibbs measure. We point out a potential application of pre-injective factor maps as a tool in the study of phase transitions in statistical mechanical models.

  17. Varieties of learning automata: an overview.

    PubMed

    Thathachar, M L; Sastry, P S

    2002-01-01

    Automata models of learning systems introduced in the 1960s were popularized as learning automata (LA) in a survey paper by Narendra and Thathachar (1974). Since then, there have been many fundamental advances in the theory as well as applications of these learning models. In the past few years, the structure of LA, has been modified in several directions to suit different applications. Concepts such as parameterized learning automata (PLA), generalized learning,automata (GLA), and continuous action-set learning automata (CALA) have been proposed, analyzed, and applied to solve many significant learning problems. Furthermore, groups of LA forming teams and feedforward networks have been shown to converge to desired solutions under appropriate learning algorithms. Modules of LA have been used for parallel operation with consequent increase in speed of convergence. All of these concepts and results are relatively new and are scattered in technical literature. An attempt has been made in this paper to bring together the main ideas involved in a unified framework and provide pointers to relevant references. PMID:18244878

  18. Cellular-automata method for phase unwrapping

    SciTech Connect

    Ghiglia, D.C.; Mastin, G.A.; Romero, L.A.

    1987-01-01

    Research into two-dimensional phase unwrapping has uncovered interesting and troublesome inconsistencies that cause path-dependent results. Cellular automata, which are simple, discrete mathematical systems, offered promise of computation in nondirectional, parallel manner. A cellular automaton was discovered that can unwrap consistent phase data in n dimensions in a path-independent manner and can automatically accommodate noise-induced (pointlike) inconsistencies and arbitrary boundary conditions (region partitioning). For data with regional (nonpointlike) inconsistencies, no phase-unwrapping algorithm will converge, including the cellular-automata approach. However, the automata method permits more simple visualization of the regional inconsistencies. Examples of its behavior on one- and two-dimensional data are presented.

  19. Infrared image enhancement using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2016-05-01

    Image enhancement is a crucial technique for infrared images. The clear image details are important for improving the quality of infrared images in computer vision. In this paper, we propose a new enhancement method based on two priors via Cellular Automata. First, we directly learn the gradient distribution prior from the images via Cellular Automata. Second, considering the importance of image details, we propose a new gradient distribution error to encode the structure information via Cellular Automata. Finally, an iterative method is applied to remap the original image based on two priors, further improving the quality of enhanced image. Our method is simple in implementation, easy to understand, extensible to accommodate other vision tasks, and produces more accurate results. Experiments show that the proposed method performs better than other methods using qualitative and quantitative measures.

  20. Benchmark study between FIDAP and a cellular automata code

    SciTech Connect

    Akau, R.L.; Stockman, H.W.

    1991-01-01

    A fluid flow benchmark exercise was conducted to compare results between a cellular automata code and FIDAP. Cellular automata codes are free from gridding constraints, and are generally used to model slow (Reynolds number {approx} 1) flows around complex solid obstacles. However, the accuracy of cellular automata codes at higher Reynolds numbers, where inertial terms are significant, is not well-documented. In order to validate the cellular automata code, two fluids problems were investigated. For both problems, flow was assumed to be laminar, two-dimensional, isothermal, incompressible and periodic. Results showed that the cellular automata code simulated the overall behavior of the flow field. 7 refs., 12 figs.

  1. Automata in random environments with application to machine intelligence

    SciTech Connect

    Wegman, E.J.; Gould, J.

    1982-09-01

    Computers and brains are modeled by finite and probabilistic automata, respectively. Probabilistic automata are known to be strictly more powerful than finite automata. The observation that the environment affects behavior of both computer and brain is made. Automata are then modeled in an environment. Theorem 1 shows that useful environmental models are those which are infinite sets. A probabilistic structure is placed on the environment set. Theorem 2 compares the behavior of finite (deterministic) and probabilistic automata in random environments. Several interpretations of theorem 2 are discussed which offer some insight into some mathematical limits of machine intelligence. 15 references.

  2. Self-organized perturbations enhance class IV behavior and 1/f power spectrum in elementary cellular automata.

    PubMed

    Nakajima, Kohei; Haruna, Taichi

    2011-09-01

    In this paper, we propose a new class of cellular automata based on the modification of its state space. It is introduced to model a computation which is exposed to an environment. We formalized the computation as extension and projection processes of its state space and resulting misidentifications of the state. This is motivated to embed the role of an environment into the system itself, which naturally induces self-organized internal perturbations rather than the usual external perturbations. Implementing this structure into the elementary cellular automata, we characterized its effect by means of input entropy and power spectral analysis. As a result, the cellular automata with this structure showed robust class IV behavior and a 1/f power spectrum in a wide range of rule space comparative to the notion of the edge of chaos. PMID:21600265

  3. Cellular automata modeling of weld solidification structure

    SciTech Connect

    Dress, W.B.; Zacharia, T.; Radhakrishnan, B.

    1993-12-31

    The authors explore the use of cellular automata in modeling arc-welding processes. A brief discussion of cellular automata and their previous use in micro-scale solidification simulations is presented. Macro-scale thermal calculations for arc-welding at a thin plate are shown to give good quantitative and qualitative results. Combining the two calculations in a single cellular array provides a realistic simulation of grain growth in a welding process. Results of simulating solidification in a moving melt pool in a poly-crystalline alloy sheet are presented.

  4. Modelling and synthesis of automata in HDLs

    NASA Astrophysics Data System (ADS)

    Chmielewski, Sławomir; Węgrzyn, Marek

    2006-10-01

    In the paper digital modelling and synthesis of automata in Hardware Description Languages is described. There is presented different kinds of automata and methods of realization using languages like VHDL and Verilog. Basic models for control units are: Finite State Machine (FSM), Algorithmic State Machine (ASM) and Linked State Machine (LSM). FSM, ASM and LSM can be represented graphically, which would help a designer to visualize and design in a more efficient way. On the other hand, a designer needs a fast and direct way to convert the considered designs into Hardware Description Language (HDL) codes for simulation and analysis it for synthesis and implementation.

  5. Towards modeling DNA sequences as automata

    NASA Astrophysics Data System (ADS)

    Burks, Christian; Farmer, Doyne

    1984-01-01

    We seek to describe a starting point for modeling the evolution and role of DNA sequences within the framework of cellular automata by discussing the current understanding of genetic information storage in DNA sequences. This includes alternately viewing the role of DNA in living organisms as a simple scheme and as a complex scheme; a brief review of strategies for identifying and classifying patterns in DNA sequences; and finally, notes towards establishing DNA-like automata models, including a discussion of the extent of experimentally determined DNA sequence data present in the database at Los Alamos.

  6. An Asynchronous Cellular Automata-Based Adaptive Illumination Facility

    NASA Astrophysics Data System (ADS)

    Bandini, Stefania; Bonomi, Andrea; Vizzari, Giuseppe; Acconci, Vito

    The term Ambient Intelligence refers to electronic environments that are sensitive and responsive to the presence of people; in the described scenario the environment itself is endowed with a set of sensors (to perceive humans or other physical entities such as dogs, bicycles, etc.), interacting with a set of actuators (lights) that choose their actions (i.e. state of illumination) in an attempt improve the overall experience of these users. The model for the interaction and action of sensors and actuators is an asynchronous Cellular Automata (CA) with memory, supporting a self-organization of the system as a response to the presence and movements of people inside it. The paper will introduce the model, as well as an ad hoc user interface for the specification of the relevant parameters of the CA transition rule that determines the overall system behaviour.

  7. Physical modeling of traffic with stochastic cellular automata

    SciTech Connect

    Schreckenberg, M.; Nagel, K. |

    1995-09-01

    A new type of probabilistic cellular automaton for the physical description of single and multilane traffic is presented. In this model space, time and the velocity of the cars are represented by integer numbers (as usual in cellular automata) with local update rules for the velocity. The model is very efficient for both numerical simulations and analytical investigations. The numerical results from extensive simulations reproduce very well data taken from real traffic (e.g. fundamental diagrams). Several analytical results for the model are presented as well as new approximation schemes for stationary traffic. In addition the relation to continuum hydrodynamic theory (Lighthill-Whitham) and the follow-the-leader models is discussed. The model is part of an interdisciplinary research program in Northrhine-Westfalia (``NRW Forschungsverbund Verkehrssimulation``) for the construction of a large scale microsimulation model for network traffic, supported by the government of NRW.

  8. Cellular automata and complex dynamics of driven elastic media

    SciTech Connect

    Coppersmith, S.N.; Littlewodd, P.B.; Sibani, P.

    1995-12-01

    Several systems of importance in condensed matter physics can be modelled as an elastic medium in a disordered environment and driven by an external force. In the simplest cases, the equation of motion involves competition between a local non-linear potential (fluctuating in space) and elastic coupling, as well as relaxational (inertialess) dynamics. Despite a simple mathematical description, the interactions between many degrees of freedom lead to the emergence of time and length scales much longer than those set by the microscopic dynamics. Extensive computations have improved the understanding of the behavior of such models, but full solutions of the equations of motion for very large systems are time-consuming and may obscure important physical principles in a massive volume of output. The development of cellular automata models has been crucial, both in conceptual simplification and in allowing the collection of data on many replicas of very large systems. We will discuss how the marriage of cellular automata models and parallel computation on a MasPar MP-1216 computer has helped to elucidate the dynamical properties of these many-degree-of-freedom systems.

  9. Runtime Analysis of Linear Temporal Logic Specifications

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Havelund, Klaus

    2001-01-01

    This report presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to B chi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.

  10. Automata theory. 1964-May 1983 (Citations from the NTIS Data Base)

    SciTech Connect

    Not Available

    1983-06-01

    Research reports are cited on pushdown automata, tessellation automata, web automata, and finite state automata. Studies on finite state machines, turing machines, and sequential machines are included. Research on Boolean functions, recursive functions, the Moore model, and the Mealey model, as applied to automata theory, are also covered. (This updated bibliography contains 298 citations, 41 of which are new entries to the previous edition.)

  11. Computing cellular automata spectra under fixed boundary conditions via limit graphs

    NASA Astrophysics Data System (ADS)

    Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.

    2016-01-01

    Cellular automata are fully discrete complex systems with parallel and homogeneous behavior studied both from the theoretical and modeling viewpoints. The limit behaviors of such systems are of particular interest, as they give insight into their emerging properties. One possible approach to investigate such limit behaviors is the analysis of the growth of graphs describing the finite time behavior of a rule in order to infer its limit behavior. Another possibility is to study the Fourier spectrum describing the average limit configurations obtained by a rule. While the former approach gives the characterization of the limit configurations of a rule, the latter yields a qualitative and quantitative characterisation of how often particular blocks of states are present in these limit configurations. Since both approaches are closely related, it is tempting to use one to obtain information about the other. Here, limit graphs are automatically adjusted by configurations directly generated by their respective rules, and use the graphs to compute the spectra of their rules. We rely on a set of elementary cellular automata rules, on lattices with fixed boundary condition, and show that our approach is a more reliable alternative to a previously described method from the literature.

  12. Fuzzy cellular automata models in immunology

    NASA Astrophysics Data System (ADS)

    Ahmed, E.

    1996-10-01

    The self-nonself character of antigens is considered to be fuzzy. The Chowdhury et al. cellular automata model is generalized accordingly. New steady states are found. The first corresponds to a below-normal help and suppression and is proposed to be related to autoimmune diseases. The second corresponds to a below-normal B-cell level.

  13. Self-reproduction in small cellular automata

    NASA Astrophysics Data System (ADS)

    Byl, John

    1989-01-01

    Self-reproduction in cellular automata is discussed with reference to Langton's criteria as to what constitutes genuine self-reproduction. It is found that it is possible to construct self-reproducing structures that are substantially less complex than that presented by Langton.

  14. Partial Derivative Automata Formalized in Coq

    NASA Astrophysics Data System (ADS)

    Almeida, José Bacelar; Moreira, Nelma; Pereira, David; de Sousa, Simão Melo

    In this paper we present a computer assisted proof of the correctness of a partial derivative automata construction from a regular expression within the Coq proof assistant. This proof is part of a formalization of Kleene algebra and regular languages in Coq towards their usage in program certification.

  15. Fuzzy tree automata and syntactic pattern recognition.

    PubMed

    Lee, E T

    1982-04-01

    An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems. PMID:21869062

  16. Additive Cellular Automata and Volume Growth

    NASA Astrophysics Data System (ADS)

    Ward, Thomas B.

    2000-09-01

    A class of dynamical systems associated to rings of S-integers in rational function fields is described. General results about these systems give a rather complete description of the well-known dynamics in one-dimensional additive cellular automata with prime alphabet, including simple formulæ for the topological entropy and the number of periodic configurations. For these systems the periodic points are uniformly distributed along some subsequence with respect to the maximal measure, and in particular are dense. Periodic points may be constructed arbitrarily close to a given configuration, and rationality of the dynamical zeta function is characterized. Throughout the emphasis is to place this particular family of cellular automata into the wider context of S-integer dynamical systems, and to show how the arithmetic of rational function fields determines their behaviour. Using a covering space the dynamics of additive cellular automata are related to a form of hyperbolicity in completions of rational function fields. This expresses the topological entropy of the automata directly in terms of volume growth in the covering space.

  17. A cellular automata model of traffic flow with variable probability of randomization

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-Fan; Zhang, Ji-Ye

    2015-05-01

    Research on the stochastic behavior of traffic flow is important to understand the intrinsic evolution rules of a traffic system. By introducing an interactional potential of vehicles into the randomization step, an improved cellular automata traffic flow model with variable probability of randomization is proposed in this paper. In the proposed model, the driver is affected by the interactional potential of vehicles before him, and his decision-making process is related to the interactional potential. Compared with the traditional cellular automata model, the modeling is more suitable for the driver’s random decision-making process based on the vehicle and traffic situations in front of him in actual traffic. From the improved model, the fundamental diagram (flow-density relationship) is obtained, and the detailed high-density traffic phenomenon is reproduced through numerical simulation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172247, 61273021, 61373009, and 61100118).

  18. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    NASA Astrophysics Data System (ADS)

    Jin, Sheng; Qu, Xiaobo; Xu, Cheng; Ma, Dongfang; Wang, Dianhai

    2015-10-01

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model.

  19. Solving multiconstraint assignment problems using learning automata.

    PubMed

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the

  20. a Predator-Prey Model Based on the Fully Parallel Cellular Automata

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Ruan, Hongbo; Yu, Changliang

    We presented a predator-prey lattice model containing moveable wolves and sheep, which are characterized by Penna double bit strings. Sexual reproduction and child-care strategies are considered. To implement this model in an efficient way, we build a fully parallel Cellular Automata based on a new definition of the neighborhood. We show the roles played by the initial densities of the populations, the mutation rate and the linear size of the lattice in the evolution of this model.

  1. Hybrid automata as a unifying framework for modeling excitable cells.

    PubMed

    Ye, P; Entcheva, E; Smolka, S A; True, M R; Grosu, R

    2006-01-01

    We propose hybrid automata (HA) as a unifying framework for computational models of excitable cells. HA, which combine discrete transition graphs with continuous dynamics, can be naturally used to obtain a piecewise, possibly linear, approximation of a nonlinear excitable-cell model. We first show how HA can be used to efficiently capture the action-potential morphology--as well as reproduce typical excitable-cell characteristics such as refractoriness and restitution--of the dynamic Luo-Rudy model of a guinea-pig ventricular myocyte. We then recast two well-known computational models, Biktashev's and Fenton-Karma, as HA without any loss of expressiveness. Given that HA possess an intuitive graphical representation and are supported by a rich mathematical theory and numerous analysis tools, we argue that they are well positioned as a computational model for biological processes. PMID:17947070

  2. Cellular automata model for citrus variegated chlorosis.

    PubMed

    Martins, M L; Ceotto, G; Alves, S G; Bufon, C C; Silva, J M; Laranjeira, F F

    2000-11-01

    A cellular automata model is proposed to analyze the progress of citrus variegated chlorosis epidemics in São Paulo orange plantations. In this model epidemiological and environmental features, such as motility of sharpshooter vectors that perform Lévy flights, level of plant hydric and nutritional stress, and seasonal climatic effects, are included. The observed epidemic data were quantitatively reproduced by the proposed model on varying the parameters controlling vector motility, plant stress, and initial population of diseased plants. PMID:11102058

  3. Phase transitions in coupled map lattices and in associated probabilistic cellular automata.

    PubMed

    Just, Wolfram

    2006-10-01

    Analytical tools are applied to investigate piecewise linear coupled map lattices in terms of probabilistic cellular automata. The so-called disorder condition of probabilistic cellular automata is closely related with attracting sets in coupled map lattices. The importance of this condition for the suppression of phase transitions is illustrated by spatially one-dimensional systems. Invariant densities and temporal correlations are calculated explicitly. Ising type phase transitions are found for one-dimensional coupled map lattices acting on repelling sets and for a spatially two-dimensional Miller-Huse-like system with stable long time dynamics. Critical exponents are calculated within a finite size scaling approach. The relevance of detailed balance of the resulting probabilistic cellular automaton for the critical behavior is pointed out. PMID:17155155

  4. An authenticated image encryption scheme based on chaotic maps and memory cellular automata

    NASA Astrophysics Data System (ADS)

    Bakhshandeh, Atieh; Eslami, Ziba

    2013-06-01

    This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.

  5. Modeling biological pathway dynamics with timed automata.

    PubMed

    Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N

    2014-05-01

    Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience. PMID:24808226

  6. Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata

    SciTech Connect

    Cameron, S.M.; Robinett, R.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-03-11

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with knowledge, the

  7. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  8. Modeling dynamical geometry with lattice gas automata

    SciTech Connect

    Hasslacher, B.; Meyer, D.A.

    1998-06-27

    Conventional lattice gas automata consist of particles moving discretely on a fixed lattice. While such models have been quite successful for a variety of fluid flow problems, there are other systems, e.g., flow in a flexible membrane or chemical self-assembly, in which the geometry is dynamical and coupled to the particle flow. Systems of this type seem to call for lattice gas models with dynamical geometry. The authors construct such a model on one dimensional (periodic) lattices and describe some simulations illustrating its nonequilibrium dynamics.

  9. Application of local linearization and the transonic equivalence rule to the flow about slender analytic bodies at Mach numbers near 1.0

    NASA Technical Reports Server (NTRS)

    Tyson, R. W.; Muraca, R. J.

    1975-01-01

    The local linearization method for axisymmetric flow is combined with the transonic equivalence rule to calculate pressure distribution on slender bodies at free-stream Mach numbers from .8 to 1.2. This is an approximate solution to the transonic flow problem which yields results applicable during the preliminary design stages of a configuration development. The method can be used to determine the aerodynamic loads on parabolic arc bodies having either circular or elliptical cross sections. It is particularly useful in predicting pressure distributions and normal force distributions along the body at small angles of attack. The equations discussed may be extended to include wing-body combinations.

  10. Study of hotspot repair using cellular automata method

    NASA Astrophysics Data System (ADS)

    Nagase, Norimasa; Takeuchi, Kanji; Sakurai, Mitsuo; Itoh, Takahisa; Okada, Tomoyuki

    2014-07-01

    In advanced semiconductor manufacturing, model-based optical proximity correction is commonly used to compensate for image errors. The final pattern is generated using correction values determined by lithography simulation. Image errors such as patterns with insufficient correction or patterns with excessive correction can be generated. These patterns with errors are called hotspots. Such errors are conventionally detected by lithography simulation of OPC patterns. When a hotspot is detected by lithography simulation, it has to be repaired manually or by repeated use of OPC tool. However, it is difficult to obtain correct pattern for a complicated shape, and the correction procedure may require a significant amount of additional processing. In order to solve this issue, we examine application of cellular automata (CA) method for hotspot correction. It is known that CA method can be used for weather or traffic analysis and prediction. In this report, we studied the CA method for deriving simple hotspot repair rule based on lattice cell-like models for light intensity distribution and OPC patterns. We will report on the results of hotspot correction technique with the OPC pattern using CA method.

  11. Modeling the Sinoatrial Node by Cellular Automata with Irregular Topology

    NASA Astrophysics Data System (ADS)

    Makowiec, Danuta

    The role of irregularity in intercellular connections is studied in the first natural human pacemaker called the sinoatrial node by modeling with the Greenberg-Hastings cellular automata. Facts from modern physiology about the sinoatrial node drive modeling. Heterogeneity between cell connections is reproduced by a rewiring procedure applied to a square lattice. The Greenberg-Hastings rule, representing the intrinsic cellular dynamics, is modified to imitate self-excitation of each pacemaker cell. Moreover, interactions with nearest neighbors are changed to heterogeneous ones by enhancing horizontal connections. Stationary states of the modeled system emerge as self-organized robust oscillatory states. Since the sinoatrial node role relies on a single cell cyclic activity, properties of single cells are studied. It appears that the strength and diversity of cellular oscillations depend directly on properties of intrinsic cellular dynamics. But these oscillations also depend on the underlying topology. Moderate nonuniformity of intercellular connections are found vital for proper function of the sinoatrial node, namely, for producing robust oscillatory states that are able to respond effectively to the autonomic system control.

  12. Modeling Second-Order Chemical Reactions using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Hunter, N. E.; Barton, C. C.; Seybold, P. G.; Rizki, M. M.

    2012-12-01

    Cellular automata (CA) are discrete, agent-based, dynamic, iterated, mathematical computational models used to describe complex physical, biological, and chemical systems. Unlike the more computationally demanding molecular dynamics and Monte Carlo approaches, which use "force fields" to model molecular interactions, CA models employ a set of local rules. The traditional approach for modeling chemical reactions is to solve a set of simultaneous differential rate equations to give deterministic outcomes. CA models yield statistical outcomes for a finite number of ingredients. The deterministic solutions appear as limiting cases for conditions such as a large number of ingredients or a finite number of ingredients and many trials. Here we present a 2-dimensional, probabilistic CA model of a second-order gas phase reaction A + B → C, using a MATLAB basis. Beginning with a random distribution of ingredients A and B, formation of C emerges as the system evolves. The reaction rate can be varied based on the probability of favorable collisions of the reagents A and B. The model permits visualization of the conversion of reagents to products, and allows one to plot concentration vs. time for A, B and C. We test hypothetical reaction conditions such as: limiting reagents, the effects of reaction probabilities, and reagent concentrations on the reaction kinetics. The deterministic solutions of the reactions emerge as statistical averages in the limit of the large number of cells in the array. Modeling results for dynamic processes in the atmosphere will be presented.

  13. Probabilistic arithmetic automata and their applications.

    PubMed

    Marschall, Tobias; Herms, Inke; Kaltenbach, Hans-Michael; Rahmann, Sven

    2012-01-01

    We present a comprehensive review on probabilistic arithmetic automata (PAAs), a general model to describe chains of operations whose operands depend on chance, along with two algorithms to numerically compute the distribution of the results of such probabilistic calculations. PAAs provide a unifying framework to approach many problems arising in computational biology and elsewhere. We present five different applications, namely 1) pattern matching statistics on random texts, including the computation of the distribution of occurrence counts, waiting times, and clump sizes under hidden Markov background models; 2) exact analysis of window-based pattern matching algorithms; 3) sensitivity of filtration seeds used to detect candidate sequence alignments; 4) length and mass statistics of peptide fragments resulting from enzymatic cleavage reactions; and 5) read length statistics of 454 and IonTorrent sequencing reads. The diversity of these applications indicates the flexibility and unifying character of the presented framework. While the construction of a PAA depends on the particular application, we single out a frequently applicable construction method: We introduce deterministic arithmetic automata (DAAs) to model deterministic calculations on sequences, and demonstrate how to construct a PAA from a given DAA and a finite-memory random text model. This procedure is used for all five discussed applications and greatly simplifies the construction of PAAs. Implementations are available as part of the MoSDi package. Its application programming interface facilitates the rapid development of new applications based on the PAA framework. PMID:22868683

  14. Astrobiological complexity with probabilistic cellular automata.

    PubMed

    Vukotić, Branislav; Ćirković, Milan M

    2012-08-01

    The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches. PMID:22832998

  15. Astrobiological Complexity with Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Vukotić, Branislav; Ćirković, Milan M.

    2012-08-01

    The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.

  16. Weyl, Dirac and Maxwell Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    Recent advances on quantum foundations achieved the derivation of free quantum field theory from general principles, without referring to mechanical notions and relativistic invariance. From the aforementioned principles a quantum cellular automata (QCA) theory follows, whose relativistic limit of small wave-vector provides the free dynamics of quantum field theory. The QCA theory can be regarded as an extended quantum field theory that describes in a unified way all scales ranging from an hypothetical discrete Planck scale up to the usual Fermi scale. The present paper reviews the automaton theory for the Weyl field, and the composite automata for Dirac and Maxwell fields. We then give a simple analysis of the dynamics in the momentum space in terms of a dispersive differential equation for narrowband wave-packets. We then review the phenomenology of the free-field automaton and consider possible visible effects arising from the discreteness of the framework. We conclude introducing the consequences of the automaton dispersion relation, leading to a deformed Lorentz covariance and to possible effects on the thermodynamics of ideal gases.

  17. The Neurona at Home project: Simulating a large-scale cellular automata brain in a distributed computing environment

    NASA Astrophysics Data System (ADS)

    Acedo, L.; Villanueva-Oller, J.; Moraño, J. A.; Villanueva, R.-J.

    2013-01-01

    The Berkeley Open Infrastructure for Network Computing (BOINC) has become the standard open source solution for grid computing in the Internet. Volunteers use their computers to complete an small part of the task assigned by a dedicated server. We have developed a BOINC project called Neurona@Home whose objective is to simulate a cellular automata random network with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its behaviour and to compare it with the electroencephalographic signals measured in real brains.

  18. The Carrying Capacity Under Four-Aspect Color Light Automatic Block Signaling Based on Cellular Automata

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Qian, Yong-Sheng; Guang, Xiao-Ping; Zeng, Jun-Wei; Jia, Zhi-Long; Wang, Xin

    2013-05-01

    With the application of the dynamic control system, Cellular Automata model has become a valued tool for the simulation of human behavior and traffic flow. As an integrated kind of railway signal-control pattern, the four-aspect color light automatic block signaling has accounted for 50% in the signal-control system in China. Thus, it is extremely important to calculate correctly its carrying capacity under the automatic block signaling. Based on this fact the paper proposes a new kind of "cellular automata model" for the four-aspect color light automatic block signaling under different speed states. It also presents rational rules for the express trains with higher speed overtaking trains with lower speed in a same or adjacent section and the departing rules in some intermediate stations. In it, the state of mixed-speed trains running in the section composed of many stations is simulated with CA model, and the train-running diagram is acquired accordingly. After analyzing the relevant simulation results, the needed data are achieved herewith for the variation of section carrying capacity, the average train delay, the train speed with the change of mixed proportion, as well as the distance between the adjacent stations.

  19. PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.

    PubMed

    Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold

    2016-01-21

    The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two. PMID:26549468

  20. Reversible elementary cellular automaton with rule number 150 and periodic boundary conditions over 𝔽p

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, A.; Rodríguez Sánchez, G.

    2015-03-01

    The study of the reversibility of elementary cellular automata with rule number 150 over the finite state set 𝔽p and endowed with periodic boundary conditions is done. The dynamic of such discrete dynamical systems is characterized by means of characteristic circulant matrices, and their analysis allows us to state that the reversibility depends on the number of cells of the cellular space and to explicitly compute the corresponding inverse cellular automata.

  1. Cellular automata based byte error correcting codes over finite fields

    NASA Astrophysics Data System (ADS)

    Köroğlu, Mehmet E.; Şiap, İrfan; Akın, Hasan

    2012-08-01

    Reed-Solomon codes are very convenient for burst error correction which occurs frequently in applications, but as the number of errors increase, the circuit structure of implementing Reed-Solomon codes becomes very complex. An alternative solution to this problem is the modular and regular structure of cellular automata which can be constructed with VLSI economically. Therefore, in recent years, cellular automata have became an important tool for error correcting codes. For the first time, cellular automata based byte error correcting codes analogous to extended Reed-Solomon codes over binary fields was studied by Chowdhury et al. [1] and Bhaumik et al. [2] improved the coding-decoding scheme. In this study cellular automata based double-byte error correcting codes are generalized from binary fields to primitive finite fields Zp.

  2. Viewing hybrid systems as products of control systems and automata

    NASA Technical Reports Server (NTRS)

    Grossman, R. L.; Larson, R. G.

    1992-01-01

    The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.

  3. Quantum-cellular-automata quantum computing with endohedral fullerenes

    NASA Astrophysics Data System (ADS)

    Twamley, J.

    2003-05-01

    We present a scheme to perform universal quantum computation using global addressing techniques as applied to a physical system of endohedrally doped fullerenes. The system consists of an ABAB linear array of group-V endohedrally doped fullerenes. Each molecule spin site consists of a nuclear spin coupled via a hyperfine interaction to an electron spin. The electron spin of each molecule is in a quartet ground state S=3/2. Neighboring molecular electron spins are coupled via a magnetic dipole interaction. We find that an all-electron construction of a quantum cellular automaton is frustrated due to the degeneracy of the electronic transitions. However, we can construct a quantum-cellular-automata quantum computing architecture using these molecules by encoding the quantum information on the nuclear spins while using the electron spins as a local bus. We deduce the NMR and ESR pulses required to execute the basic cellular automaton operation and obtain a rough figure of merit for the number of gate operations per decoherence time. We find that this figure of merit compares well with other physical quantum computer proposals. We argue that the proposed architecture meets well the first four DiVincenzo criteria and we outline various routes toward meeting the fifth criterion: qubit readout.

  4. Traffic jam dynamics in stochastic cellular automata

    SciTech Connect

    Nagel, K. |; Schreckenberg, M.

    1995-09-01

    Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA) and in NRW (Germany) for large scale microsimulations of network traffic.

  5. Cellular automata model based on GIS and urban sprawl dynamics simulation

    NASA Astrophysics Data System (ADS)

    Mu, Fengyun; Zhang, Zengxiang

    2005-10-01

    The simulation of land use change process needs the support of Geographical Information System (GIS) and other relative technologies. While the present commercial GIS lack capabilities of distribution, prediction, and simulation of spatial-temporal data. Cellular automata (CA) provide dynamically modeling "from bottom-to-top" framework and posses the capability of modeling spatial-temporal evolvement process of a complicated geographical system, which is composed of a fourfold: cells, states, neighbors and rules. The simplicity and flexibility make CA have the ability to simulate a variety of behaviors of complex systems. One of the most potentially useful applications of cellular automata from the point of view of spatial planning is their use in simulations of urban sprawl at local and regional level. The paper firstly introduces the principles and characters of the cellular automata, and then discusses three methods of the integration of CA and GIS. The paper analyses from a practical point of view the factors that effect urban activities in the science of spatial decision-making. The status of using CA to dynamic simulates of urban expansion at home and abroad is analyzed. Finally, the problems and tendencies that exist in the application of CA model are detailed discussed, such as the quality of the data that the CA needs, the self-organization of the CA roots in the mutual function among the elements of the system, the partition of the space scale, the time calibration of the CA and the integration of the CA with other modular such as artificial nerve net modular and population modular etc.

  6. Linear solvation energy relationships (LSER): 'rules of thumb' for Vi/100, π*, Βm, and αm estimation and use in aquatic toxicology

    USGS Publications Warehouse

    Hickey, James P.

    1996-01-01

    This chapter provides a listing of the increasing variety of organic moieties and heteroatom group for which Linear Solvation Energy Relationship (LSER) values are available, and the LSER variable estimation rules. The listings include values for typical nitrogen-, sulfur- and phosphorus-containing moieties, and general organosilicon and organotin groups. The contributions by an ion pair situation to the LSER values are also offered in Table 1, allowing estimation of parameters for salts and zwitterions. The guidelines permit quick estimation of values for the four primary LSER variables Vi/100, π*, Βm, and αm by summing the contribtuions from its components. The use of guidelines and Table 1 significantly simplifies computation of values for the LSER variables for most possible organic comppounds in the environment, including the larger compounds of environmental and biological interest.

  7. Quasi-linear magnetoresistance and the violation of Kohler’s rule in the quasi-one-dimensional Ta4Pd3Te16 superconductor

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Jiao, W. H.; Zhou, N.; Guo, Y.; Li, Y. K.; Dai, Jianhui; Lin, Z. Q.; Liu, Y. J.; Zhu, Zengwei; Lu, Xin; Yuan, H. Q.; Cao, Guanghan

    2015-08-01

    We report on the quasi-linear in field intrachain magnetoresistance in the normal state of a quasi-one-dimensional superconductor Ta4Pd3Te16 ({{T}\\text{c}}˜ 4.6 K). Both the longitudinal and transverse in-chain magnetoresistance shows a power-law dependence, Δ ρ \\propto Bα , with the exponent α close to 1 over a wide temperature and field range. The magnetoresistance shows no sign of saturation up to 50 T studied. The linear magnetoresistance observed in Ta4Pd3Te16 is found to be overall inconsistent with the interpretations based on the Dirac fermions in the quantum limit, charge conductivity fluctuations as well as quantum electron-electron interference. Moreover, it is observed that the Kohler’s rule, regardless of the field orientations, is violated in its normal state. This result suggests the loss of charge carriers in the normal state of this chain-containing compound, due presumably to the charge-density-wave fluctuations.

  8. Quasi-linear magnetoresistance and the violation of Kohler's rule in the quasi-one-dimensional Ta₄Pd₃Te₁₆ superconductor.

    PubMed

    Xu, Xiaofeng; Jiao, W H; Zhou, N; Guo, Y; Li, Y K; Dai, Jianhui; Lin, Z Q; Liu, Y J; Zhu, Zengwei; Lu, Xin; Yuan, H Q; Cao, Guanghan

    2015-08-26

    We report on the quasi-linear in field intrachain magnetoresistance in the normal state of a quasi-one-dimensional superconductor Ta4Pd3Te16 (Tc ~ 4.6 K). Both the longitudinal and transverse in-chain magnetoresistance shows a power-law dependence, Δρ∝B(α) with the exponent α close to 1 over a wide temperature and field range. The magnetoresistance shows no sign of saturation up to 50 T studied. The linear magnetoresistance observed in Ta4Pd3Te16 is found to be overall inconsistent with the interpretations based on the Dirac fermions in the quantum limit, charge conductivity fluctuations as well as quantum electron-electron interference. Moreover, it is observed that the Kohler's rule, regardless of the field orientations, is violated in its normal state. This result suggests the loss of charge carriers in the normal state of this chain-containing compound, due presumably to the charge-density-wave fluctuations. PMID:26222182

  9. Dynamic behavior of multirobot systems using lattice gas automata

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Cameron, Stewart M.; Robinett, Rush D., III; Trahan, Michael W.; Wagner, John S.

    1999-07-01

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems (or swarms). Our group has been studying the collective, autonomous behavior of these such systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi- agents architectures. Our goal is to coordinate a constellation of point sensors using unmanned robotic vehicles (e.g., RATLERs, Robotic All-Terrain Lunar Exploration Rover- class vehicles) that optimizes spatial coverage and multivariate signal analysis. An overall design methodology evolves complex collective behaviors realized through local interaction (kinetic) physics and artificial intelligence. Learning objectives incorporate real-time operational responses to environmental changes. This paper focuses on our recent work understanding the dynamics of many-body systems according to the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's rate of deformation, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent nonlinearity of the dynamical equations describing large ensembles, stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots maneuvering past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with

  10. Optimal design of sewer networks using cellular automata-based hybrid methods: Discrete and continuous approaches

    NASA Astrophysics Data System (ADS)

    Afshar, M. H.; Rohani, M.

    2012-01-01

    In this article, cellular automata based hybrid methods are proposed for the optimal design of sewer networks and their performance is compared with some of the common heuristic search methods. The problem of optimal design of sewer networks is first decomposed into two sub-optimization problems which are solved iteratively in a two stage manner. In the first stage, the pipe diameters of the network are assumed fixed and the nodal cover depths of the network are determined by solving a nonlinear sub-optimization problem. A cellular automata (CA) method is used for the solution of the optimization problem with the network nodes considered as the cells and their cover depths as the cell states. In the second stage, the nodal cover depths calculated from the first stage are fixed and the pipe diameters are calculated by solving a second nonlinear sub-optimization problem. Once again a CA method is used to solve the optimization problem of the second stage with the pipes considered as the CA cells and their corresponding diameters as the cell states. Two different updating rules are derived and used for the CA of the second stage depending on the treatment of the pipe diameters. In the continuous approach, the pipe diameters are considered as continuous variables and the corresponding updating rule is derived mathematically from the original objective function of the problem. In the discrete approach, however, an adhoc updating rule is derived and used taking into account the discrete nature of the pipe diameters. The proposed methods are used to optimally solve two sewer network problems and the results are presented and compared with those obtained by other methods. The results show that the proposed CA based hybrid methods are more efficient and effective than the most powerful search methods considered in this work.

  11. A Cellular Automata Based Model for Simulating Surface Hydrological Processes in Catchments

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Baumgartl, Thomas; Huang, Longbin; Weatherley, Dion

    2014-05-01

    The Runoff Model Based on Cellular Automata (RunCA) has been developed to simulate the surface hydrological processes at the catchment scale by integrating basic cellular automata (CA) rules with fundamental measureable hydraulic properties. In this model, a two-dimensional lattice composed of a series of rectangular cells was employed to cover the study area. Runoff production within each cell was simulated by determining its water depth based on the rainfall, interception, infiltration and the balance between inflows and outflows. Particularly different infiltration equations were incorporated to make the model applicable for both single rainfall event (short term simulation) and multiple rainfall events (long term simulation). The distribution of water flow among cells was determined by applying CA transition rules based on the improved minimization-of-difference algorithm and the calculated spatially and temporally varied flow velocities according to the Manning's equation. RunCA was tested and validated at two catchments (Pine Glen Basin and Snow Shoe Basin, USA) with data taken from literature. The predicted hydrographs agreed well with the measured results. Simulated flow maps also demonstrated the model capability in capturing both the spatial and temporal variations in the runoff process. Model sensitivity analysis results showed that the simulated hydrographs were mostly influenced by the input parameters that represent the final steady infiltration rate, as well as the model settings of time step and cell size. Compared to some conventional distributed hydrologic models that calculate the runoff routing process by solving complex continuity equations, this model integrates a novel method and is expected to be more computationally efficient as it is based on simple CA transition rules when determining the flow distribution.

  12. Cells as strain-cued automata

    NASA Astrophysics Data System (ADS)

    Cox, Brian N.; Snead, Malcolm L.

    2016-02-01

    We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, "enhanced shear motility", accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in

  13. Cellular automata modelling of biomolecular networks dynamics.

    PubMed

    Bonchev, D; Thomas, S; Apte, A; Kier, L B

    2010-01-01

    The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk. PMID:20373215

  14. Solving initial and boundary value problems using learning automata particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Nemati, Kourosh; Mariyam Shamsuddin, Siti; Darus, Maslina

    2015-05-01

    In this article, the particle swarm optimization (PSO) algorithm is modified to use the learning automata (LA) technique for solving initial and boundary value problems. A constrained problem is converted into an unconstrained problem using a penalty method to define an appropriate fitness function, which is optimized using the LA-PSO method. This method analyses a large number of candidate solutions of the unconstrained problem with the LA-PSO algorithm to minimize an error measure, which quantifies how well a candidate solution satisfies the governing ordinary differential equations (ODEs) or partial differential equations (PDEs) and the boundary conditions. This approach is very capable of solving linear and nonlinear ODEs, systems of ordinary differential equations, and linear and nonlinear PDEs. The computational efficiency and accuracy of the PSO algorithm combined with the LA technique for solving initial and boundary value problems were improved. Numerical results demonstrate the high accuracy and efficiency of the proposed method.

  15. On the applications of multiplicity automata in learning

    SciTech Connect

    Beimel, A.; Bergadano, F.; Bshouty, N.H.

    1996-12-31

    Recently the learnability of multiplicity automata attracted a lot of attention, mainly because of its implications on the learnability of several classes of DNF formulae. In this paper we further study the learnability of multiplicity automata. Our starting point is a known theorem from automata theory relating the number of states in a minimal multiplicity automaton for a function f to the rank of a certain matrix F. With this theorem in hand we obtain the following results: (1) A new simple algorithm for learning multiplicity automata in the spirit with a better query complexity. As a result, we improve the complexity for all classes that use the algorithms of and also obtain the best query complexity for several classes known to be learnable by other methods such as decision trees and polynomials over GF(2). (2) We prove the learnability of some new classes that were not known to be learnable before. Most notably, the class of polynomials over finite fields, the class of bounded-degree polynomials over infinite fields, the class of XOR of terms, and a certain class of decision-trees. (3) While multiplicity automata were shown to be useful to prove the learnability of some subclasses of DNF formulae and various other classes, we study the limitations of this method. We prove that this method cannot be used to resolve the learnability of some other open problems such as the learnability of general DNF formulae or even k -term DNF for k = {omega}(log n) or satisfy-s DNF formulae for s = {omega}(1). These results are proven by exhibiting functions in the above classes that require multiplicity automata with superpolynomial number of states.

  16. The 3-dimensional cellular automata for HIV infection

    NASA Astrophysics Data System (ADS)

    Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei

    2014-04-01

    The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.

  17. Revisiting Decidability and Optimum Reachability for Multi-Priced Timed Automata

    NASA Astrophysics Data System (ADS)

    Fränzle, Martin; Swaminathan, Mani

    We investigate the optimum reachability problem for Multi-Priced Timed Automata (MPTA) that admit both positive and negative costs on edges and locations, thus bridging the gap between the results of Bouyer et al. (2007) and of Larsen and Rasmussen (2008). Our contributions are the following: (1) We show that even the location reachability problem is undecidable for MPTA equipped with both positive and negative costs, provided the costs are subject to a bounded budget, in the sense that paths of the underlying Multi-Priced Transition System (MPTS) that operationally exceed the budget are considered as not being viable. This undecidability result follows from an encoding of Stop-Watch Automata using such MPTA, and applies to MPTA with as few as two cost variables, and even when no costs are incurred upon taking edges. (2) We then restrict the MPTA such that each viable quasi-cyclic path of the underlying MPTS incurs a minimum absolute cost. Under such a condition, the location reachability problem is shown to be decidable and the optimum cost is shown to be computable for MPTA with positive and negative costs and a bounded budget. These results follow from a reduction of the optimum reachability problem to the solution of a linear constraint system representing the path conditions over a finite number of viable paths of bounded length.

  18. Ergodic properties and thermodynamic behavior of elementary reversible cellular automata. I. Basic properties

    SciTech Connect

    Takesue, Shinji )

    1989-08-01

    This is the first part of a series devoted to the study of thermodynamic behavior of large dynamical systems with the use of a family of full-discrete and conservative models named elementary reversible cellular automata (ERCAs). In this paper, basic properties such as conservation laws and phase space structure are investigated in preparation for the later studies. ERCAs are a family of one-dimensional reversible cellular automata having two Boolean variables on each site. Reflection and Boolean conjugation symmetries divide them into 88 equivalence classes. For each rule, additive conserved quantities written in a certain form are regarded as a kind of energy, if they exist. By the aid of the discreteness of the variables, every ERCA satisfies the Liouville theorem or the preservation of phase space volume. Thus, if an energy exists in the above sense, statistical mechanics of the model can formally be constructed. If a locally defined quantity is conserved, however, it prevents the realization of statistical mechanics. The existence of such a quantity is examined for each class and a number of rules which have at least one energy but no local conservation laws are selected as hopeful candidates for the realization of thermodynamic behavior. In addition, the phase space structure of ERCAs is analyzed by enumerating cycles exactly in the phase space for systems of comparatively small sizes. As a result, it is revealed that a finite ERCA is not ergodic, that is, a large number of orbits coexist on an energy surface. It is argued that this fact does not necessarily mean the failure of thermodynamic behavior on the basis of an analogy with the ergodic nature of infinite systems.

  19. Preliminary cellular-automata forecast of permit activity from 1998 to 2010, Idaho and Western Montana

    USGS Publications Warehouse

    Raines, G.L.; Zientek, M.L.; Causey, J.D.; Boleneus, D.E.

    2002-01-01

    For public land management in Idaho and western Montana, the U.S. Forest Service (USFS) has requested that the U.S. Geological Survey (USGS) predict where mineral-related activity will occur in the next decade. Cellular automata provide an approach to simulation of this human activity. Cellular automata (CA) are defined by an array of cells, which evolve by a simple transition rule, the automaton. Based on exploration trends, we assume that future exploration will focus in areas of past exploration. Spatial-temporal information about mineral-related activity, that is permits issued by USFS and Bureau of Land Management (BLM) in the last decade, and spatial information about undiscovered resources, provide a basis to calibrate a CA. The CA implemented is a modified annealed voting rule that simulates mineral-related activity with spatial and temporal resolution of 1 mi2 and 1 year based on activity from 1989 to 1998. For this CA, the state of the economy and exploration technology is assumed constant for the next decade. The calibrated CA reproduces the 1989-1998-permit activity with an agreement of 94%, which increases to 98% within one year. Analysis of the confusion matrix and kappa correlation statistics indicates that the CA underestimates high activity and overestimates low activity. Spatially, the major differences between the actual and calculated activity are that the calculated activity occurs in a slightly larger number of small patches and is slightly more uneven than the actual activity. Using the calibrated CA in a Monte Carlo simulation projecting from 1998 to 2010, an estimate of the probability of mineral activity shows high levels of activity in Boise, Caribou, Elmore, Lincoln, and western Valley counties in Idaho and Beaverhead, Madison, and Stillwater counties in Montana, and generally low activity elsewhere. ?? 2002 International Association for Mathematical Geology.

  20. RunCA: A cellular automata model for simulating surface runoff at different scales

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Weatherley, Dion; Huang, Longbin; Baumgartl, Thomas

    2015-10-01

    The Runoff Model Based on Cellular Automata (RunCA) has been developed to simulate surface runoff at different scales by integrating basic cellular automata (CA) rules with fundamental measureable hydraulic properties. In this model, a two-dimensional lattice composed of a series of rectangular cells was employed to cover the study area. Runoff production within each cell was simulated by determining the cell state (height) that consists of both cell elevation and water depth. The distribution of water flow among cells was determined by applying CA transition rules based on the minimization-of-difference algorithm and the calculated spatially varied flow velocities. RunCA was verified and validated by three steps. Good agreement with the analytical solution was achieved under simplified conditions in the first step. Then, results from runoff experiments on small laboratory plots (2 m × 1 m) showed that the model was able to well predict the hydrographs, with the mean Nash-Sutcliffe efficiency greater than 0.90. RunCA was also applied to a large scale site (Pine Glen Basin, USA) with data taken from literature. The predicted hydrograph agreed well with the measured results. Simulated flow maps in this basin also demonstrated the model capability in capturing both the spatial and temporal variations in the runoff process. Model sensitivity analysis results showed that the calculated total runoff and total infiltration were most sensitive to the input parameters representing the final steady infiltration rate at both scales. The Manning's roughness coefficient and the setting of cell size did not affect the results much at the small plot scale, but had large influences at the large basin scale.

  1. Cellular Automata Models Applied to the Study of Landslide Dynamics

    NASA Astrophysics Data System (ADS)

    Liucci, Luisa; Melelli, Laura; Suteanu, Cristian

    2015-04-01

    Landslides are caused by complex processes controlled by the interaction of numerous factors. Increasing efforts are being made to understand the spatial and temporal evolution of this phenomenon, and the use of remote sensing data is making significant contributions in improving forecast. This paper studies landslides seen as complex dynamic systems, in order to investigate their potential Self Organized Critical (SOC) behavior, and in particular, scale-invariant aspects of processes governing the spatial development of landslides and their temporal evolution, as well as the mechanisms involved in driving the system and keeping it in a critical state. For this purpose, we build Cellular Automata Models, which have been shown to be capable of reproducing the complexity of real world features using a small number of variables and simple rules, thus allowing for the reduction of the number of input parameters commonly used in the study of processes governing landslide evolution, such as those linked to the geomechanical properties of soils. This type of models has already been successfully applied in studying the dynamics of other natural hazards, such as earthquakes and forest fires. The basic structure of the model is composed of three modules: (i) An initialization module, which defines the topographic surface at time zero as a grid of square cells, each described by an altitude value; the surface is acquired from real Digital Elevation Models (DEMs). (ii) A transition function, which defines the rules used by the model to update the state of the system at each iteration. The rules use a stability criterion based on the slope angle and introduce a variable describing the weakening of the material over time, caused for example by rainfall. The weakening brings some sites of the system out of equilibrium thus causing the triggering of landslides, which propagate within the system through local interactions between neighboring cells. By using different rates of

  2. Comprehensive bidding strategies with genetic programming/finite state automata

    SciTech Connect

    Richter, C.W. Jr.; Sheble, G.B.; Ashlock, D.

    1999-11-01

    This research is an extension of the authors' previous work in double auctions aimed at developing bidding strategies for electric utilities which trade electricity competitively. The improvements detailed in this paper come from using data structures which combine genetic programming and finite state automata termed GP-Automata. The strategies developed by the method described here are adaptive--reacting to inputs--whereas the previously developed strategies were only suitable in the particular scenario for which they had been designed. The strategies encoded in the GP-Automata are tested in an auction simulator. The simulator pits them against other distribution companies (distcos) and generation companies (gencos), buying and selling power via double auctions implemented in regional commodity exchanges. The GP-Automata are evolved with a genetic algorithm so that they possess certain characteristics. In addition to designing successful bidding strategies (whose usage would result in higher profits) the resulting strategies can also be designed to imitate certain types of trading behaviors. The resulting strategies can be implemented directly in on-line trading, or can be used as realistic competitors in an off-line trading simulator.

  3. On the Reversibility of 150 Wolfram Cellular Automata

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    In this paper, the reversibility problem for 150 Wolfram cellular automata is tackled for null boundary conditions. It is explicitly shown that the reversibility depends on the number of cells of the cellular automaton. The inverse cellular automaton for each case is also computed.

  4. Knot invariants and the thermodynamics of lattice gas automata

    SciTech Connect

    Meyer, D.A.

    1992-01-01

    The goal of this project is to build on the understanding of the connections between knot invariants, exactly solvable statistical mechanics models and discrete dynamical systems that we have gained in earlier work, toward an answer to the question of how early and robust thermodynamic behavior appears in lattice gas automata.

  5. Cellular Automata Ideas in Digital Circuits and Switching Theory.

    ERIC Educational Resources Information Center

    Siwak, Pawel P.

    1985-01-01

    Presents two examples which illustrate the usefulness of ideas from cellular automata. First, Lee's algorithm is recalled and its cellular nature shown. Then a problem from digraphs, which has arisen from analyzing predecessing configurations in the famous Conway's "game of life," is considered. (Author/JN)

  6. A full computation-relevant topological dynamics classification of elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Schüle, Martin; Stoop, Ruedi

    2012-12-01

    Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos."

  7. Quantum dot spin cellular automata for realizing a quantum processor

    NASA Astrophysics Data System (ADS)

    Bayat, Abolfazl; Creffield, Charles E.; Jefferson, John H.; Pepper, Michael; Bose, Sougato

    2015-10-01

    We show how single quantum dots, each hosting a singlet-triplet qubit, can be placed in arrays to build a spin quantum cellular automaton. A fast (˜10 ns) deterministic coherent singlet-triplet filtering, as opposed to current incoherent tunneling/slow-adiabatic based quantum gates (operation time ˜300 ns), can be employed to produce a two-qubit gate through capacitive (electrostatic) couplings that can operate over significant distances. This is the coherent version of the widely discussed charge and nano-magnet cellular automata, and would increase speed, reduce dissipation, and perform quantum computation while interfacing smoothly with its classical counterpart. This combines the best of two worlds—the coherence of spin pairs known from quantum technologies, and the strength and range of electrostatic couplings from the charge-based classical cellular automata. Significantly our system has zero electric dipole moment during the whole operation process, thereby increasing its charge dephasing time.

  8. Abductive learning of quantized stochastic processes with probabilistic finite automata.

    PubMed

    Chattopadhyay, Ishanu; Lipson, Hod

    2013-02-13

    We present an unsupervised learning algorithm (GenESeSS) to infer the causal structure of quantized stochastic processes, defined as stochastic dynamical systems evolving over discrete time, and producing quantized observations. Assuming ergodicity and stationarity, GenESeSS infers probabilistic finite state automata models from a sufficiently long observed trace. Our approach is abductive; attempting to infer a simple hypothesis, consistent with observations and modelling framework that essentially fixes the hypothesis class. The probabilistic automata we infer have no initial and terminal states, have no structural restrictions and are shown to be probably approximately correct-learnable. Additionally, we establish rigorous performance guarantees and data requirements, and show that GenESeSS correctly infers long-range dependencies. Modelling and prediction examples on simulated and real data establish relevance to automated inference of causal stochastic structures underlying complex physical phenomena. PMID:23277601

  9. On the secure obfuscation of deterministic finite automata.

    SciTech Connect

    Anderson, William Erik

    2008-06-01

    In this paper, we show how to construct secure obfuscation for Deterministic Finite Automata, assuming non-uniformly strong one-way functions exist. We revisit the software protection approaches originally proposed by [5, 10, 12, 17] and revise them to the current obfuscation setting of Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some 'small' secret about the original program. Using this secret, we can construct an obfuscator and two-party protocol that securely obfuscates Deterministic Finite Automata against malicious adversaries. The security of this model retains the strong 'virtual black box' property originally proposed in [2] while incorporating the stronger condition of dependent auxiliary inputs in [15]. Additionally, we show that our techniques remain secure under concurrent self-composition with adaptive inputs and that Turing machines are obfuscatable under this model.

  10. Extended Self Organised Criticality in Asynchronously Tuned Cellular Automata

    NASA Astrophysics Data System (ADS)

    Gunji, Yukio-Pegio

    2014-12-01

    Systems at a critical point in phase transitions can be regarded as being relevant to biological complex behaviour. Such a perspective can only result, in a mathematical consistent manner, from a recursive structure. We implement a recursive structure based on updating by asynchronously tuned elementary cellular automata (AT ECA), and show that a large class of elementary cellular automata (ECA) can reveal critical behavior due to the asynchronous updating and tuning.We show that the obtained criticality coincides with the criticality in phase transitions of asynchronous ECA with respect to density decay, and that multiple distributed ECAs, synchronously updated, can emulate critical behavior in AT ECA. Our approach draws on concepts and tools from category and set theory, in particular on "adjunction dualities" of pairs of adjoint functors.

  11. Relational String Verification Using Multi-track Automata

    NASA Astrophysics Data System (ADS)

    Yu, Fang; Bultan, Tevfik; Ibarra, Oscar H.

    Verification of string manipulation operations is a crucial problem in computer security. In this paper, we present a new relational string verification technique based on multi-track automata. Our approach is capable of verifying properties that depend on relations among string variables. This enables us to prove that vulnerabilities that result from improper string manipulation do not exist in a given program. Our main contributions in this paper can be summarized as follows: (1) We formally characterize the string verification problem as the reachability analysis of string systems and show decidability/undecidability results for several string analysis problems. (2) We develop a sound symbolic analysis technique for string verification that over-approximates the reachable states of a given string system using multi-track automata and summarization. (3) We evaluate the presented techniques with respect to several string analysis benchmarks extracted from real web applications.

  12. Automata-theoretic models of mutation and alignment

    SciTech Connect

    Searls, D.B.; Murphy, K.P.

    1995-12-31

    Finite-state automata called transducers, which have both input and output, can be used to model simple mechanisms of biological mutation. We present a methodology whereby numerically-weighted versions of such specifications can be mechanically adapted to create string edit machines that are essentially equivalent to recurrence relations of the sort that characterize dynamic programming alignment algorithms. Based on this, we have developed a visual programming system for designing new alignment algorithms in a rapid-prototyping fashion.

  13. Supervisory control of (max,+) automata: extensions towards applications

    NASA Astrophysics Data System (ADS)

    Lahaye, Sébastien; Komenda, Jan; Boimond, Jean-Louis

    2015-12-01

    In this paper, supervisory control of (max,+) automata is studied. The synthesis of maximally permissive and just-in-time supervisor, as well as the synthesis of minimally permissive and just-after-time supervisor, are proposed. Results are also specialised to non-decreasing solutions, because only such supervisors can be realised in practice. The inherent issue of rationality raised recently is discussed. An illustration of concepts and results is presented through an example of a flexible manufacturing system.

  14. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology. PMID:26886735

  15. Anticipating the Filtrons of Automata by Complex Discrete Systems Analysis

    NASA Astrophysics Data System (ADS)

    Siwak, Pawel

    2002-09-01

    Filtrons of automata are coherent structures (discrete solitons) supported by iterated automata maps (IAMs). They differ from signals of cellular automata. The signals emerge during parallel processing of strings, while IAMs transform strings in serial. We relate the filtron and its supporting automaton with a particular complex discrete system (CDS). This CDS has the form of a processing ring net. Its computation is characterized by four components: instructions of processing nodes (I), inter-processor communication constraints (C), initial data (D), and synchronization (S). We present an analysis of a computation performed within this CDS. It is useful in the problems of searching for any of the mentioned four components assuming that remaining three are known. We give a technique of anticipating the filtrons with a desired parameter C when I, S and D are given. We show how to decide the synchronization S when I, C and D are assumed, and how to determine instructions I when the desired filtron is described by known C, D and S.

  16. Electrical substation service-area estimation using Cellular Automata: An initial report

    SciTech Connect

    Fenwick, J.W.; Dowell, L.J.

    1998-07-01

    The service areas for electric power substations can be estimated using a Cellular Automata (CA) model. The CA model is a discrete, iterative process whereby substations acquire service area by claiming neighboring cells. The service area expands from a substation until a neighboring substation service area is met or the substation`s total capacity or other constraints are reached. The CA-model output is dependent on the rule set that defines cell interactions. The rule set is based on a hierarchy of quantitative metrics that represent real-world factors such as land use and population density. Together, the metrics determine the rate of cell acquisition and the upper bound for service area size. Assessing the CA-model accuracy requires comparisons to actual service areas. These actual service areas can be extracted from distribution maps. Quantitative assessment of the CA-model accuracy can be accomplished by a number of methods. Some are as simple as finding the percentage of cells predicted correctly, while others assess a penalty based on the distance from an incorrectly predicted cell to its correct service area. This is an initial report of a work in progress.

  17. Coarse-graining of cellular automata, emergence, and the predictability of complex systems

    NASA Astrophysics Data System (ADS)

    Israeli, Navot; Goldenfeld, Nigel

    2006-02-01

    We study the predictability of emergent phenomena in complex systems. Using nearest-neighbor, one-dimensional cellular automata (CA) as an example, we show how to construct local coarse-grained descriptions of CA in all classes of Wolfram’s classification. The resulting coarse-grained CA that we construct are capable of emulating the large-scale behavior of the original systems without accounting for small-scale details. Several CA that can be coarse-grained by this construction are known to be universal Turing machines; they can emulate any CA or other computing devices and are therefore undecidable. We thus show that because in practice one only seeks coarse-grained information, complex physical systems can be predictable and even decidable at some level of description. The renormalization group flows that we construct induce a hierarchy of CA rules. This hierarchy agrees well with apparent rule complexity and is therefore a good candidate for a complexity measure and a classification method. Finally we argue that the large-scale dynamics of CA can be very simple, at least when measured by the Kolmogorov complexity of the large-scale update rule, and moreover exhibits a novel scaling law. We show that because of this large-scale simplicity, the probability of finding a coarse-grained description of CA approaches unity as one goes to increasingly coarser scales. We interpret this large-scale simplicity as a pattern formation mechanism in which large-scale patterns are forced upon the system by the simplicity of the rules that govern the large-scale dynamics.

  18. Lithology intelligent identification using support vector machine and adaptive cellular automata in multispectral remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Niu, Ruiqing; Wu, Ke

    2011-07-01

    Remote sensing provides a new idea and an advanced method for lithology identification, but lithology identification by remote sensing is quite difficult because 1. the disciplines of lithology identification in a concrete region are often quite different from the experts' experience; 2. in the regions with flourishing vegetation, lithology information is poor, so it is very difficult to identify the lithologies by remote sensing images. At present, the studies on lithology identification by remote sensing are primarily conducted on the regions with low vegetation coverage and high rock bareness. And there is no mature method of lithology identification in the regions with flourishing vegetation. Traditional methods lacking in the mining and extraction of the various complicated lithology information from a remote sensing image, often need much manual intervention and possess poor intelligence and accuracy. An intelligent method proposed in this paper for lithology identification based on support vector machine (SVM) and adaptive cellular automata (ACA) is expected to solve the above problems. The method adopted Landsat-7 ETM+ images and 1:50000 geological map as the data origins. It first derived the lithology identification factors on three aspects: 1. spectra, 2. texture and 3. vegetation cover. Second, it plied the remote sensing images with the geological map and established the SVM to obtain the transition rules according to the factor values of the samples. Finally, it established an ACA model to intelligently identify the lithologies according to the transition and neighborhood rules. In this paper an ACA model is proposed and compared with the traditional one. Results of 2 real-world examples show that: 1. The SVM-ACA method obtains a good result of lithology identification in the regions with flourishing vegetation; 2. it possesses high accuracies of lithology identification (with the overall accuracies of 92.29% and 85.54%, respectively, in the two

  19. Analytical Solution of Traffic Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Ching; Hsu, Chia-Hung

    2009-08-01

    Complex traffic system seems to be simulated successfully by cellular automaton (CA) models. Various models are developed to understand single-lane traffic, multilane traffic, lane-changing behavior and network traffic situations. However, the result of CA simulation can only be obtained after massive microscopic computation. Although, the mean field theory (MFT) has been studied to be the approximation of CA model, the MFT can only applied to the simple CA rules or small value of parameters. In this study, we simulate traffic flow by the NaSch model under different combination of parameters, which are maximal speed, dawdling probability and density. After that, the position of critical density, the slope of free-flow and congested regime are observed and modeled due to the simulated data. Finally, the coefficients of the model will be calibrated by the simulated data and the analytical solution of traffic CA is obtained.

  20. [Simulation of urban ecological security pattern based on cellular automata: a case of Dongguan City, Guangdong Province of South China].

    PubMed

    Yang, Qing-Sheng; Qiao, Ji-Gang; Ai, Bin

    2013-09-01

    Taking the Dongguan City with rapid urbanization as a case, and selecting landscape ecological security level as evaluation criterion, the urbanization cellular number of 1 km x 1 km ecological security cells was obtained, and imbedded into the transition rules of cellular automata (CA) as the restraint term to control urban development, establish ecological security urban CA, and simulate ecological security urban development pattern. The results showed the integrated landscape ecological security index of the City decreased from 0.497 in 1998 to 0.395 in 2005, indicating that the ecological security at landscape scale was decreased. The CA-simulated integrated ecological security index of the City in 2005 was increased from the measured 0.395 to 0.479, showing that the simulated urban landscape ecological pressure from human became lesser, ecological security became better, and integrated landscape ecological security became higher. CA could be used as an effective tool in researching urban ecological security. PMID:24417120

  1. Bus Automata For Intelligent Robots And Computer Vision

    NASA Astrophysics Data System (ADS)

    Rothstein, Jerome

    1988-02-01

    Bus automata (BA's) are arrays of automata, each controlling a module of a global interconnection network, an automaton and its module constituting a cell. Connecting modules permits cells to become effectively nearest neighbors even when widely separated. This facilitates parallelism in computation far in excess of that allowed by the "bucket-brigade" communication bottleneck of traditional cellular automata (CA's). Distributed information storage via local automaton states permits complex parallel data processing for rapid pattern recognition, language parsing and other distributed computation at systolic array rates. Global BA architecture can be entirely changed in the time to make one cell state transition. The BA is thus a neural model (cells correspond to neurons) with network plasticity attractive for brain models. Planar (chip) BA's admitting optical input (phototransistors) become powerful retinal models. The distributed input pattern is optically fed directly to distributed local memory, ready for distributed processing, both "retinally" and cooperatively with other BA chips ("brain"). This composite BA can compute control signals for output organs, and sensory inputs other than visual can be utilized similarly. In the BA retina is essentially brain, as in mammals (retina and brain are embryologically the same). The BA can also model opto-motor response (frogs, insects) or sonar response (dolphins, bats), and is proposed as the model of choice for the brains of future intelligent robots and for computer eyes with local parallel image processing capability. Multidimensional formal languages are introduced, corresponding to BA's and patterns the way generative grammars correspond to sequential machines, and applied to fractals and their recognition by BA's.

  2. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  3. All-DNA finite-state automata with finite memory.

    PubMed

    Wang, Zhen-Gang; Elbaz, Johann; Remacle, F; Levine, R D; Willner, Itamar

    2010-12-21

    Biomolecular logic devices can be applied for sensing and nano-medicine. We built three DNA tweezers that are activated by the inputs H(+)/OH(-); ; nucleic acid linker/complementary antilinker to yield a 16-states finite-state automaton. The outputs of the automata are the configuration of the respective tweezers (opened or closed) determined by observing fluorescence from a fluorophore/quencher pair at the end of the arms of the tweezers. The system exhibits a memory because each current state and output depend not only on the source configuration but also on past states and inputs. PMID:21135212

  4. Cellular Automata with network incubation in information technology diffusion

    NASA Astrophysics Data System (ADS)

    Guseo, Renato; Guidolin, Mariangela

    2010-06-01

    Innovation diffusion of network goods determines direct network externalities that depress sales for long periods and delay full benefits. We model this effect through a multiplicative dynamic market potential driven by a latent individual threshold embedded in a special Cellular Automata representation. The corresponding mean field approximation of its aggregate version is a Riccati equation with a closed form solution. This allows the detection of a change-point time separating an incubation period from a subsequent take-off due to a collective threshold (critical mass). Weighted nonlinear least squares are the main inferential methodology. An application is analysed with reference to USA fax machine diffusion.

  5. Reasoning about real-time systems with temporal interval logic constraints on multi-state automata

    NASA Technical Reports Server (NTRS)

    Gabrielian, Armen

    1991-01-01

    Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.

  6. Studies of vehicle lane-changing to avoid pedestrians with cellular automata

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Sun, Jian-Qiao

    2015-11-01

    This paper presents studies of interactions between vehicles and crossing pedestrians. A cellular automata system model of the traffic is developed, which includes a number of subsystem models such as the single-lane vehicle model, pedestrian model, interaction model and lane-changing model. The random street crossings of pedestrians are modeled as a Poisson process. The drivers of the passing vehicles are assumed to follow a safety-rule in order not to hit the pedestrians. The results of both single and multiple car simulations are presented. We have found that in general, the traffic can benefit from vehicle lane-changing to avoid road-crossing pedestrians. The traffic flow and average vehicle speed can be increased, which leads to higher traffic efficiency. The interactions between vehicles and pedestrians are reduced, which results in shorter vehicle decelerating time due to pedestrians and less switches of the driving mode, thus leads to the better energy economy. The traffic safety can be improved in the perspective of both vehicles and pedestrians. Finally, pedestrians can cross road faster. The negative effect of lane-changing is that pedestrians have to stay longer between the lanes in the crossing.

  7. Development of a Bacteria Computer: From in silico Finite Automata to in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yasubumi

    We overview a series of our research on implementing finite automata in vitro and in vivo in the framework of DNA-based computing [1,2]. First, we employ the length-encoding technique proposed and presented in [3,4] to implement finite automata in test tube. In the length-encoding method, the states and state transition functions of a target finite automaton are effectively encoded into DNA sequences, a computation (accepting) process of finite automata is accomplished by self-assembly of encoded complementary DNA strands, and the acceptance of an input string is determined by the detection of a completely hybridized double-strand DNA. Second, we report our intensive in vitro experiments in which we have implemented and executed several finite-state automata in test tube. We have designed and developed practical laboratory protocols which combine several in vitro operations such as annealing, ligation, PCR, and streptavidin-biotin bonding to execute in vitro finite automata based on the length-encoding technique. We have carried laboratory experiments on various finite automata with 2 up to 6 states for several input strings. Third, we present a novel framework to develop a programmable and autonomous in vivo computer using Escherichia coli (E. coli), and implement in vivo finite-state automata based on the framework by employing the protein-synthesis mechanism of E. coli. We show some successful experiments to run an in vivo finite-state automaton on E. coli.

  8. A Programmable Cellular-Automata Polarized Dirac Vacuum

    NASA Astrophysics Data System (ADS)

    Osoroma, Drahcir S.

    2013-09-01

    We explore properties of a `Least Cosmological Unit' (LCU) as an inherent spacetime raster tiling or tessellating the unique backcloth of Holographic Anthropic Multiverse (HAM) cosmology as an array of programmable cellular automata. The HAM vacuum is a scale-invariant HD extension of a covariant polarized Dirac vacuum with `bumps' and `holes' typically described by extended electromagnetic theory corresponding to an Einstein energy-dependent spacetime metric admitting a periodic photon mass. The new cosmology incorporates a unique form of M-Theoretic Calabi-Yau-Poincaré Dodecadedral-AdS5-DS5space (PDS) with mirror symmetry best described by an HD extension of Cramer's Transactional Interpretation when integrated also with an HD extension of the de Broglie-Bohm-Vigier causal interpretation of quantum theory. We incorporate a unique form of large-scale additional dimensionality (LSXD) bearing some similarity to that conceived by Randall and Sundrum; and extend the fundamental basis of our model to the Unified Field, UF. A Sagnac Effect rf-pulsed incursive resonance hierarchy is utilized to manipulate and ballistically program the geometric-topological properties of this putative LSXD space-spacetime network. The model is empirically testable; and it is proposed that a variety of new technologies will arise from ballistic programming of tessellated LCU vacuum cellular automata.

  9. Quantifying a cellular automata simulation of electric vehicles

    NASA Astrophysics Data System (ADS)

    Hill, Graeme; Bell, Margaret; Blythe, Phil

    2014-12-01

    Within this work the Nagel-Schreckenberg (NS) cellular automata is used to simulate a basic cyclic road network. Results from SwitchEV, a real world Electric Vehicle trial which has collected more than two years of detailed electric vehicle data, are used to quantify the results of the NS automata, demonstrating similar power consumption behavior to that observed in the experimental results. In particular the efficiency of the electric vehicles reduces as the vehicle density increases, due in part to the reduced efficiency of EVs at low speeds, but also due to the energy consumption inherent in changing speeds. Further work shows the results from introducing spatially restricted speed restriction. In general it can be seen that induced congestion from spatially transient events propagates back through the road network and alters the energy and efficiency profile of the simulated vehicles, both before and after the speed restriction. Vehicles upstream from the restriction show a reduced energy usage and an increased efficiency, and vehicles downstream show an initial large increase in energy usage as they accelerate away from the speed restriction.

  10. Sampling from complex networks using distributed learning automata

    NASA Astrophysics Data System (ADS)

    Rezvanian, Alireza; Rahmati, Mohammad; Meybodi, Mohammad Reza

    2014-02-01

    A complex network provides a framework for modeling many real-world phenomena in the form of a network. In general, a complex network is considered as a graph of real world phenomena such as biological networks, ecological networks, technological networks, information networks and particularly social networks. Recently, major studies are reported for the characterization of social networks due to a growing trend in analysis of online social networks as dynamic complex large-scale graphs. Due to the large scale and limited access of real networks, the network model is characterized using an appropriate part of a network by sampling approaches. In this paper, a new sampling algorithm based on distributed learning automata has been proposed for sampling from complex networks. In the proposed algorithm, a set of distributed learning automata cooperate with each other in order to take appropriate samples from the given network. To investigate the performance of the proposed algorithm, several simulation experiments are conducted on well-known complex networks. Experimental results are compared with several sampling methods in terms of different measures. The experimental results demonstrate the superiority of the proposed algorithm over the others.

  11. Stochastic Games for Verification of Probabilistic Timed Automata

    NASA Astrophysics Data System (ADS)

    Kwiatkowska, Marta; Norman, Gethin; Parker, David

    Probabilistic timed automata (PTAs) are used for formal modelling and verification of systems with probabilistic, nondeterministic and real-time behaviour. For non-probabilistic timed automata, forwards reachability is the analysis method of choice, since it can be implemented extremely efficiently. However, for PTAs, such techniques are only able to compute upper bounds on maximum reachability probabilities. In this paper, we propose a new approach to the analysis of PTAs using abstraction and stochastic games. We show how efficient forwards reachability techniques can be extended to yield both lower and upper bounds on maximum (and minimum) reachability probabilities. We also present abstraction-refinement techniques that are guaranteed to improve the precision of these probability bounds, providing a fully automatic method for computing the exact values. We have implemented these techniques and applied them to a set of large case studies. We show that, in comparison to alternative approaches to verifying PTAs, such as backwards reachability and digital clocks, our techniques exhibit superior performance and scalability.

  12. 1/ fα spectra in elementary cellular automata and fractal signals

    NASA Astrophysics Data System (ADS)

    Nagler, Jan; Claussen, Jens Christian

    2005-06-01

    We systematically compute the power spectra of the one-dimensional elementary cellular automata introduced by Wolfram. On the one hand our analysis reveals that one automaton displays 1/f spectra though considered as trivial, and on the other hand that various automata classified as chaotic or complex display no 1/f spectra. We model the results generalizing the recently investigated Sierpinski signal to a class of fractal signals that are tailored to produce 1/fα spectra. From the widespread occurrence of (elementary) cellular automata patterns in chemistry, physics, and computer sciences, there are various candidates to show spectra similar to our results.

  13. Optimal design of variable-stiffness fiber-reinforced composites using cellular automata

    NASA Astrophysics Data System (ADS)

    Setoodeh, Shahriar

    The growing number of applications of composite materials in aerospace and naval structures along with advancements in manufacturing technologies demand continuous innovations in the design of composite structures. In the traditional design of composite laminates, fiber orientation angles are constant for each layer and are usually limited to 0, 90, and +/-45 degrees. To fully benefit from the directional properties of composite laminates, such limitations have to be removed. The concept of variable-stiffness laminates allows the stiffness properties to vary spatially over the laminate. Through tailoring of fiber orientations and laminate thickness spatially in an optimal fashion, mechanical properties of a part can be improved. In this thesis, the optimal design of variable-stiffness fiber-reinforced composite laminates is studied using an emerging numerical engineering optimization scheme based on the cellular automata paradigm. A cellular automaton (CA) based design scheme uses local update rule for both field variables (displacements) and design variables (lay-up configuration and laminate density measure) in an iterative fashion to convergence to an optimal design. In the present work, the displacements are updated based on the principle of local equilibrium and the design variables are updated according to the optimality criteria for minimum compliance design. A closed form displacement update rule for constant thickness isotropic continua is derived, while for the general anisotropic continua with variable thickness a numeric update rule is used. Combined lay-up and topology design of variable-stiffness flat laminates is performed under the action of in-plane loads and bending loads. An optimality criteria based formulation is used to obtain local design rules for minimum compliance design subject to a volume constraint. It is shown that the design rule splits into a two step application. In the first step an optimal lay-up configuration is computed and in

  14. Born Rule(s)

    NASA Astrophysics Data System (ADS)

    Sinha, Urbasi

    2011-09-01

    This paper is based on work published in [1]. It describes a triple slit experiment using single photons that has been used to provide a bound on one of the most fundamental axioms of quantum mechanics i.e. Born's rule for probabilities [2]. In spite of being one of the most successful theories which describes various natural phenomena, quantum mechanics has enough intricacies and "weirdness" associated with it which makes many physicists believe that it may not be the final theory and hints towards the possibility of more generalized versions. Quantum interference as shown by a double slit diffraction experiment only occurs from pairs of paths. Even in multi-slit versions, interference can only occur between pairs of possibilities and increasing the number of slits does not increase the complexity of the theory that still remains second-order. However, more generalized versions of quantum mechanics may allow for multi-path i.e. higher than second order interference. This experiment also provides a bound on the magnitude of such higher order interference. We have been able to bound the magnitude of three-path interference to less than 10-2 of the expected two-path interference, thus ruling out third and higher order interference and providing a bound on the accuracy of Born's rule.

  15. Estimation of daily Snow Cover Area combining MODIS and LANDSAT information by using cellular automata

    NASA Astrophysics Data System (ADS)

    Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David

    2016-04-01

    The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.

  16. A cellular automata approach for modeling surface water runoff

    NASA Astrophysics Data System (ADS)

    Jozefik, Zoltan; Nanu Frechen, Tobias; Hinz, Christoph; Schmidt, Heiko

    2015-04-01

    This abstract reports the development and application of a two-dimensional cellular automata based model, which couples the dynamics of overland flow, infiltration processes and surface evolution through sediment transport. The natural hill slopes are represented by their topographic elevation and spatially varying soil properties infiltration rates and surface roughness coefficients. This model allows modeling of Hortonian overland flow and infiltration during complex rainfall events. An advantage of the cellular automata approach over the kinematic wave equations is that wet/dry interfaces that often appear with rainfall overland flows can be accurately captured and are not a source of numerical instabilities. An adaptive explicit time stepping scheme allows for rainfall events to be adequately resolved in time, while large time steps are taken during dry periods to provide for simulation run time efficiency. The time step is constrained by the CFL condition and mass conservation considerations. The spatial discretization is shown to be first-order accurate. For validation purposes, hydrographs for non-infiltrating and infiltrating plates are compared to the kinematic wave analytic solutions and data taken from literature [1,2]. Results show that our cellular automata model quantitatively accurately reproduces hydrograph patterns. However, recent works have showed that even through the hydrograph is satisfyingly reproduced, the flow field within the plot might be inaccurate [3]. For a more stringent validation, we compare steady state velocity, water flux, and water depth fields to rainfall simulation experiments conducted in Thies, Senegal [3]. Comparisons show that our model is able to accurately capture these flow properties. Currently, a sediment transport and deposition module is being implemented and tested. [1] M. Rousseau, O. Cerdan, O. Delestre, F. Dupros, F. James, S. Cordier. Overland flow modeling with the Shallow Water Equation using a well balanced

  17. Automata network theories in immunology: their utility and their underdetermination.

    PubMed

    Atlan, H

    1989-01-01

    Small networks of threshold automata are used to model complex interactions between populations of regulatory cells (helpers and suppressors, antigen specific and anti-idiotypic) which participate in the immune response. The models, being discrete and semiquantitative, are well adapted to the situation of incomplete information often encountered in vivo. However, the dynamics of many different network structures usually end up in the same attractor set. Thus, many different theories are equivalent in their explicative power for the same facts. This property, known as underdetermination of the theories by the facts, is given a quantitative estimate. It appears that such an underdetermination, as a kind of irreducible complexity, can be expected in many in vivo biological processes, even when the number of interacting and functionally coupled elements is relatively small. PMID:2924021

  18. Towards Time Automata and Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Hutzler, G.; Klaudel, H.; Wang, D. Y.

    2004-01-01

    The design of reactive systems must comply with logical correctness (the system does what it is supposed to do) and timeliness (the system has to satisfy a set of temporal constraints) criteria. In this paper, we propose a global approach for the design of adaptive reactive systems, i.e., systems that dynamically adapt their architecture depending on the context. We use the timed automata formalism for the design of the agents' behavior. This allows evaluating beforehand the properties of the system (regarding logical correctness and timeliness), thanks to model-checking and simulation techniques. This model is enhanced with tools that we developed for the automatic generation of code, allowing to produce very quickly a running multi-agent prototype satisfying the properties of the model.

  19. Narrow-band oscillations in probabilistic cellular automata.

    PubMed

    Puljic, Marko; Kozma, Robert

    2008-08-01

    Dynamical properties of neural populations are studied using probabilistic cellular automata. Previous work demonstrated the emergence of critical behavior as the function of system noise and density of long-range axonal connections. Finite-size scaling theory identified critical properties, which were consistent with properties of a weak Ising universality class. The present work extends the studies to neural populations with excitatory and inhibitory interactions. It is shown that the populations can exhibit narrow-band oscillations when confined to a range of inhibition levels, with clear boundaries marking the parameter region of prominent oscillations. Phase diagrams have been constructed to characterize unimodal, bimodal, and quadromodal oscillatory states. The significance of these findings is discussed in the context of large-scale narrow-band oscillations in neural tissues, as observed in electroencephalographic and magnetoencephalographic measurements. PMID:18850928

  20. Cellular automata simulation of medication-induced autoimmune diseases

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich; Proykova, Ana

    2004-01-01

    We implement the cellular automata model proposed by Stauffer and Weisbuch in 1992 to describe the response of the immune system to antigens in the presence of medications. The model contains two thresholds, θ1 and θ2, suggested by de Boer, Segel, and Perelson to present the minimum field needed to stimulate the proliferation of the receptors and to suppress it, respectively. The influence of the drug is mimicked by increasing the second threshold, thus enhancing the immune response. If this increase is too strong, the immune response is triggered in the whole immune repertoire, causing it to attack the own body. This effect is seen in our simulations to depend both on the ratio of the thresholds and on their absolute values.

  1. Dynamics of HIV infection on 2D cellular automata

    NASA Astrophysics Data System (ADS)

    Benyoussef, A.; HafidAllah, N. El; ElKenz, A.; Ez-Zahraouy, H.; Loulidi, M.

    2003-05-01

    We use a cellular automata approach to describe the interactions of the immune system with the human immunodeficiency virus (HIV). We study the evolution of HIV infection, particularly in the clinical latency period. The results we have obtained show the existence of four different behaviours in the plane of death rate of virus-death rate of infected T cell. These regions meet at a critical point, where the virus density and the infected T cell density remain invariant during the evolution of disease. We have introduced two kinds of treatments, the protease inhibitors and the RT inhibitors, in order to study their effects on the evolution of HIV infection. These treatments are powerful in decreasing the density of the virus in the blood and the delay of the AIDS onset.

  2. History dependent quantum random walks as quantum lattice gas automata

    SciTech Connect

    Shakeel, Asif E-mail: dmeyer@math.ucsd.edu Love, Peter J. E-mail: dmeyer@math.ucsd.edu; Meyer, David A. E-mail: dmeyer@math.ucsd.edu

    2014-12-15

    Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the history information arise naturally as geometrical degrees of freedom on the lattice.

  3. Critical Probabilities and Convergence Time of Percolation Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Taggi, Lorenzo

    2015-05-01

    This paper considers a class of probabilistic cellular automata undergoing a phase transition with an absorbing state. Denoting by the neighbourhood of site , the transition probability is if or otherwise, . For any there exists a non-trivial critical probability that separates a phase with an absorbing state from a fluctuating phase. This paper studies how the neighbourhood affects the value of and provides lower bounds for . Furthermore, by using dynamic renormalization techniques, we prove that the expected convergence time of the processes on a finite space with periodic boundaries grows exponentially (resp. logarithmically) with the system size if (resp. ). This provides a partial answer to an open problem in Toom et al. (Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis, pp. 1-182. Manchester University Press, Manchester, 1990; Topics in Contemporary Probability and its Applications, pp. 117-157. CRC Press, Boca Raton, 1995).

  4. Mosquito population dynamics from cellular automata-based simulation

    NASA Astrophysics Data System (ADS)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  5. Cellular automata simulation of traffic including cars and bicycles

    NASA Astrophysics Data System (ADS)

    Vasic, Jelena; Ruskin, Heather J.

    2012-04-01

    As 'greening' of all aspects of human activity becomes mainstream, transportation science is also increasingly focused around sustainability. Modal co-existence between motorised and non-motorised traffic on urban networks is, in this context, of particular interest for traffic flow modelling. The main modelling problems here are posed by the heterogeneity of vehicles, including size and dynamics, and by the complex interactions at intersections. Herein we address these with a novel technique, based on one-dimensional cellular automata components, for modelling network infrastructure and its occupancy by vehicles. We use this modelling approach, together with a corresponding vehicle behaviour model, to simulate combined car and bicycle traffic for two elemental scenarios-examples of components that would be used in the building of an arbitrary network. Results of simulations performed on these scenarios, (i) a stretch of road and (ii) an intersection causing conflict between cars and bicycles sharing a lane, are presented and analysed.

  6. Density Effects in Cellular Automata Models of Granular Materials

    NASA Astrophysics Data System (ADS)

    Baxter, G. W.; Behringer, R. P.

    1996-11-01

    We have studied density waves in a two dimensional cellular automata model of the gravity-driven flow of ellipsoidal particles through a wedge-shaped hopper(G. W. Baxter and R. P. Behringer, PRA 42), 1017 (1990).. The density variations form above the apex of the hopper and move upward, opposite the grain motion, with a well defined velocity. The waves become more pronounced as they travel. Density waves and alignment of particles are competing effects. Nearest-neighbor interactions which lead to alignment of neighboring grains can destroy the density waves. The relationship of these results to previous studies of density waves in real granular materials will be discussed(G. W. Baxter, R. P. Behringer, T. Fagert, and G. A. Johnson, PRL 62), 2825 (1989)..

  7. History dependent quantum random walks as quantum lattice gas automata

    NASA Astrophysics Data System (ADS)

    Shakeel, Asif; Meyer, David A.; Love, Peter J.

    2014-12-01

    Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the history information arise naturally as geometrical degrees of freedom on the lattice.

  8. Behavioral Modeling Based on Probabilistic Finite Automata: An Empirical Study.

    PubMed

    Tîrnăucă, Cristina; Montaña, José L; Ontañón, Santiago; González, Avelino J; Pardo, Luis M

    2016-01-01

    Imagine an agent that performs tasks according to different strategies. The goal of Behavioral Recognition (BR) is to identify which of the available strategies is the one being used by the agent, by simply observing the agent's actions and the environmental conditions during a certain period of time. The goal of Behavioral Cloning (BC) is more ambitious. In this last case, the learner must be able to build a model of the behavior of the agent. In both settings, the only assumption is that the learner has access to a training set that contains instances of observed behavioral traces for each available strategy. This paper studies a machine learning approach based on Probabilistic Finite Automata (PFAs), capable of achieving both the recognition and cloning tasks. We evaluate the performance of PFAs in the context of a simulated learning environment (in this case, a virtual Roomba vacuum cleaner robot), and compare it with a collection of other machine learning approaches. PMID:27347956

  9. Lattice-gas automata for the Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Frisch, U.; Hasslacher, B.; Pomeau, Y.

    1986-04-01

    It is shown that a class of deterministic lattice gases with discrete Boolean elements simulates the Navier-Stokes equations, and can be used to design simple, massively parallel computing machines. A hexagonal lattice gas (HLG) model consisting of a triangular lattice with hexagonal symmetry is developed, and is shown to lead to the two-dimensional Navier-Stokes equations. The three-dimensional formulation is obtained by a splitting method in which the nonlinear term in the three-dimensional Navier-Stokes equation is recasts as the sum of two terms, each containing spurious elements and each realizable on a different lattice. Freed slip and rigid boundary conditions are easily implemented. It is noted that lattice-gas models must be run at moderate Mach numbers to remain incompressible, and to avoid spurious high-order nonlinear terms. The model gives a concrete hydrodynamical example of how cellular automata can be used to simulate classical nonlinear fields.

  10. LAHS: A novel harmony search algorithm based on learning automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Yousefi, Moslem; Abdullah, Abdul Hanan; Darus, Amer Nordin

    2013-12-01

    This study presents a learning automata-based harmony search (LAHS) for unconstrained optimization of continuous problems. The harmony search (HS) algorithm performance strongly depends on the fine tuning of its parameters, including the harmony consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth (bw). Inspired by the spur-in-time responses in the musical improvisation process, learning capabilities are employed in the HS to select these parameters based on spontaneous reactions. An extensive numerical investigation is conducted on several well-known test functions, and the results are compared with the HS algorithm and its prominent variants, including the improved harmony search (IHS), global-best harmony search (GHS) and self-adaptive global-best harmony search (SGHS). The numerical results indicate that the LAHS is more efficient in finding optimum solutions and outperforms the existing HS algorithm variants.

  11. Renormalisation of 2D Cellular Automata with an Absorbing State

    NASA Astrophysics Data System (ADS)

    Weaver, Iain S.; Prügel-Bennett, Adam

    2015-04-01

    We describe a real-space renormalisation scheme for non-equilibrium probabilistic cellular automata (PCA) models, and apply it to a two-dimensional binary PCA. An exact renormalisation scheme is rare, and therefore we provide a method for computing the stationary probability distribution of states for such models with which to weight the renormalisation, effectively minimising the error in the scale transformation. While a mean-field approximation is trivial, we use the principle of maximum entropy to incorporate nearest-neighbour spin-correlations in the steady-state probability distribution. In doing so we find the fixed point of the renormalisation is modified by the steady-state approximation order.

  12. Evolving cellular automata to perform computations. Final technical report

    SciTech Connect

    Crutchfield, J.P.; Mitchell, M.

    1998-04-01

    The overall goals of the project are to determine the usefulness of genetic algorithms (GAs) in designing spatially extended parallel systems to perform computational tasks and to develop theoretical frameworks both for understanding the computation in the systems evolved by the GA and for understanding the evolutionary process which successful systems are designed. In the original proposal the authors scheduled the first year of the project to be devoted to experimental grounding. During the first year they developed the simulation and graphics software necessary for doing experiments and analysis on one dimensional cellular automata (CAs), and they performed extensive experiments and analysis concerning two computational tasks--density classification and synchronization. Details of these experiments and results, and a list of resulting publications, were given in the 1994--1995 report. The authors scheduled the second year to be devoted to theoretical development. (A third year, to be funded by the National Science Foundation, will be devoted to applications.) Accordingly, most of the effort during the second year was spent on theory, both of GAs and of the CAs that they evolve. A central notion is that of the computational strategy of a CA, which they formalize in terms of domains, particles, and particle interactions. This formalization builds on the computational mechanics framework developed by Crutchfield and Hanson for understanding intrinsic computation in spatially extended dynamical systems. They have made significant progress in the following areas: (1) statistical dynamics of GAs; (2) formalizing particle based computation in cellular automata; and (3) computation in two-dimensional CAs.

  13. Simulations of Living Cell Origins Using a Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  14. Development and Evaluation of a Cellular Automata Model for Simulating Tillage Erosion in the Presence of Obstacles

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, T.; Jiménez-Hornero, F. J.; Giráldez, J. V.; Laguna, A.

    2009-04-01

    The process of tillage translocation is well studied and can be described adequately by different existing models. Nevertheless, in complex environments such as olive orchards, characterized by numerous obstacles, application of such conventional tillage erosion models is not straightforward. However, these obstacles have important effects on the spatial pattern of soil redistribution and on resulting soil properties. In this kind of environment, cellular automata could provide a valuable alternative. This study aims at developing a cellular automata model for tillage translocation (CATT) that can take into account such obstacles and at exploring its possibilities and limitations. A simple model was developed, which main parameters are tillage direction, speed and depth. Firstly, the modeĺs outcome was tested against existing 137Cs inventories for a study site in the Belgian loam belt. The observed spatial soil redistribution patterns could be adequately represented by the CATT model. Secondly, a sensitivity analysis was performed to explore the effect of input uncertainty on several selected model outputs. The variance-based extended FAST method was used to determine first and total order sensitivity indices. Tillage depth was identified as the input parameter that determined most of the output variance, followed respectively by tillage direction and speed. The difference between the total and first-order sensitivity indices, between 0.8 and 2, indicated that, in spite of the simple model structure, the model behaves non-linearly with respect to some of the model output variables. Higher-order interactions were especially important for determining the proportion of eroding and deposition cells. Finally, simulations were performed to analyse the model behaviour in complex landscapes, applying it to a field with protruding obstacles (e.g. olive trees). The model adequately represented some morphological features observed in the olive orchards, such as mounds around

  15. Simple Derivation of Some Basic Selection Rules.

    ERIC Educational Resources Information Center

    Sannigrahi, A. B.; Das, Ranjan

    1980-01-01

    Presents the selection rules for all four quantum numbers of the hydrogen atom and for a linear harmonic oscillator. Suggests that these rules deserve special mention in an elementary course of quantum chemistry. (Author/JN)

  16. Conway's game of life is a near-critical metastable state in the multiverse of cellular automata

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Kinouchi, Osame

    2014-05-01

    Conway's cellular automaton Game of Life has been conjectured to be a critical (or quasicritical) dynamical system. This criticality is generally seen as a continuous order-disorder transition in cellular automata (CA) rule space. Life's mean-field return map predicts an absorbing vacuum phase (ρ =0) and an active phase density, with ρ =0.37, which contrasts with Life's absorbing states in a square lattice, which have a stationary density of ρ2D≈0.03. Here, we study and classify mean-field maps for 6144 outer-totalistic CA and compare them with the corresponding behavior found in the square lattice. We show that the single-site mean-field approach gives qualitative (and even quantitative) predictions for most of them. The transition region in rule space seems to correspond to a nonequilibrium discontinuous absorbing phase transition instead of a continuous order-disorder one. We claim that Life is a quasicritical nucleation process where vacuum phase domains invade the alive phase. Therefore, Life is not at the "border of chaos," but thrives on the "border of extinction."

  17. Conway's Game of Life is a near-critical metastable state in the multiverse of cellular automata.

    PubMed

    Reia, Sandro M; Kinouchi, Osame

    2014-05-01

    Conway's cellular automaton Game of Life has been conjectured to be a critical (or quasicritical) dynamical system. This criticality is generally seen as a continuous order-disorder transition in cellular automata (CA) rule space. Life's mean-field return map predicts an absorbing vacuum phase (ρ = 0) and an active phase density, with ρ = 0.37, which contrasts with Life's absorbing states in a square lattice, which have a stationary density of ρ(2D) ≈ 0.03. Here, we study and classify mean-field maps for 6144 outer-totalistic CA and compare them with the corresponding behavior found in the square lattice. We show that the single-site mean-field approach gives qualitative (and even quantitative) predictions for most of them. The transition region in rule space seems to correspond to a nonequilibrium discontinuous absorbing phase transition instead of a continuous order-disorder one. We claim that Life is a quasicritical nucleation process where vacuum phase domains invade the alive phase. Therefore, Life is not at the "border of chaos," but thrives on the "border of extinction." PMID:25353755

  18. A Group Interpretation of Particles Generated by One-Dimensional Cellular Automaton, Wolfram's Rule 54

    NASA Astrophysics Data System (ADS)

    Martin, Bruno

    One-dimensional cellular automata are known to be able to present complex behaviors. In some cases, their evolution may be understood as movings, collisions, or creations of particles. In the case of the special Wolfram's rule 54, Boccara has previously pointed out basic particles. In this paper, we introduce a group which allows the formal study of interactions between these particles. Coming back to the complexity of rule 54 and using the new algebraic classification of Rapaport, we prove that rule 54 is not simple.

  19. Phonematic recognition by linear prediction: Experiment

    NASA Astrophysics Data System (ADS)

    Miclet, L.; Grenier, Y.; Leroux, J.

    The recognition of speech signals analyzed by linear prediction is introduced. The principle of the channel adapted vocoder (CAV) is outlined. The learning of each channel model and adaptation to the speaker are discussed. A method stemming from the canonical analysis of correlations is given. This allows, starting with the CAV of one speaker, the calculation of that of another. The projection function is learned from a series of key words pronounced by both speakers. The reconstruction of phonemes can be explained by recognition factors arising from the vocoder. Automata associated with the channels are used for local smoothing and series of segments are treated in order to produce a phonemic lattice.

  20. Cramer's Rule Revisited

    ERIC Educational Resources Information Center

    Ayoub, Ayoub B.

    2005-01-01

    In 1750, the Swiss mathematician Gabriel Cramer published a well-written algebra book entitled "Introduction a l'Analyse des Lignes Courbes Algebriques." In the appendix to this book, Cramer gave, without proof, the rule named after him for solving a linear system of equations using determinants (Kosinki, 2001). Since then several derivations of…

  1. Association Rules

    NASA Astrophysics Data System (ADS)

    Höppner, Frank

    Association rules are rules of the kind "70% of the customers who buy vine and cheese also buy grapes". While the traditional field of application is market basket analysis, association rule mining has been applied to various fields since then, which has led to a number of important modifications and extensions. We discuss the most frequently applied approach that is central to many extensions, the Apriori algorithm, and briefly review some applications to other data types, well-known problems of rule evaluation via support and confidence, and extensions of or alternatives to the standard framework.

  2. Devising an unconventional formal logic for bioinspired spacefaring automata

    NASA Astrophysics Data System (ADS)

    Santoli, Salvatore

    2011-03-01

    The field of robotics is increasingly moving from robots confined to factory floors and assembly lines and bound to perform the same tasks over and over in an uncertainty-free, well foreseeable environment, to robots designed for operating in highly dynamic and uncertainty domains, like those of interest in space exploration. According to an idea of a "new system of formal logic less rigid than past and present formal logic" advocated by von Neumann for building a powerful theory of automata, such system should be "closer to another discipline which has been little linked in the past with logic, i.e. thermodynamics, primarily in the form it was received by Boltzmann". Following that idea, which is particularly interesting now with the emerging computational nano-sciences, it is stressed here that a full set of isomorphisms can be established between the fundamental logical principles and the information flows, Hamiltonian or dissipative, in phase space. This form of logic, dubbed here kinetic logic, takes standard formal logic out of the field of combinatorics and into the field of the Boltzmannian form of thermodynamics, i.e. kinetics.

  3. Critical Behavior in Cellular Automata Animal Disease Transmission Model

    NASA Astrophysics Data System (ADS)

    Morley, P. D.; Chang, Julius

    Using cellular automata model, we simulate the British Government Policy (BGP) in the 2001 foot and mouth epidemic in Great Britain. When clinical symptoms of the disease appeared in a farm, there is mandatory slaughter (culling) of all livestock in an infected premise (IP). Those farms in the neighboring of an IP (contiguous premise, CP), are also culled, aka nearest neighbor interaction. Farms where the disease may be prevalent from animal, human, vehicle or airborne transmission (dangerous contact, DC), are additionally culled, aka next-to-nearest neighbor interactions and lightning factor. The resulting mathematical model possesses a phase transition, whereupon if the physical disease transmission kernel exceeds a critical value, catastrophic loss of animals ensues. The nonlocal disease transport probability can be as low as 0.01% per day and the disease can still be in the high mortality phase. We show that the fundamental equation for sustainable disease transport is the criticality equation for neutron fission cascade. Finally, we calculate that the percentage of culled animals that are actually healthy is ≈30%.

  4. Using Cellular Automata for Parking Recommendations in Smart Environments

    PubMed Central

    Horng, Gwo-Jiun

    2014-01-01

    In this work, we propose an innovative adaptive recommendation mechanism for smart parking. The cognitive RF module will transmit the vehicle location information and the parking space requirements to the parking congestion computing center (PCCC) when the driver must find a parking space. Moreover, for the parking spaces, we use a cellular automata (CA) model mechanism that can adjust to full and not full parking lot situations. Here, the PCCC can compute the nearest parking lot, the parking lot status and the current or opposite driving direction with the vehicle location information. By considering the driving direction, we can determine when the vehicles must turn around and thus reduce road congestion and speed up finding a parking space. The recommendation will be sent to the drivers through a wireless communication cognitive radio (CR) model after the computation and analysis by the PCCC. The current study evaluates the performance of this approach by conducting computer simulations. The simulation results show the strengths of the proposed smart parking mechanism in terms of avoiding increased congestion and decreasing the time to find a parking space. PMID:25153671

  5. Epileptic spike recognition in electroencephalogram using deterministic finite automata.

    PubMed

    Keshri, Anup Kumar; Sinha, Rakesh Kumar; Hatwal, Rajesh; Das, Barda Nand

    2009-06-01

    This Paper presents an automated method of Epileptic Spike detection in Electroencephalogram (EEG) using Deterministic Finite Automata (DFA). It takes prerecorded single channel EEG data file as input and finds the occurrences of Epileptic Spikes data in it. The EEG signal was recorded at 256 Hz in two minutes separate data files using the Visual Lab-M software (ADLink Technology Inc., Taiwan). It was preprocessed for removal of baseline shift and band pass filtered using an infinite impulse response (IIR) Butterworth filter. A system, whose functionality was modeled with DFA, was designed. The system was tested with 10 EEG signal data files. The recognition rate of Epileptic Spike as on average was 95.68%. This system does not require any human intrusion. Also it does not need any short of training. The result shows that the application of DFA can be useful in detection of different characteristics present in EEG signals. This approach could be extended to a continuous data processing system. PMID:19408450

  6. Using cellular automata for parking recommendations in smart environments.

    PubMed

    Horng, Gwo-Jiun

    2014-01-01

    In this work, we propose an innovative adaptive recommendation mechanism for smart parking. The cognitive RF module will transmit the vehicle location information and the parking space requirements to the parking congestion computing center (PCCC) when the driver must find a parking space. Moreover, for the parking spaces, we use a cellular automata (CA) model mechanism that can adjust to full and not full parking lot situations. Here, the PCCC can compute the nearest parking lot, the parking lot status and the current or opposite driving direction with the vehicle location information. By considering the driving direction, we can determine when the vehicles must turn around and thus reduce road congestion and speed up finding a parking space. The recommendation will be sent to the drivers through a wireless communication cognitive radio (CR) model after the computation and analysis by the PCCC. The current study evaluates the performance of this approach by conducting computer simulations. The simulation results show the strengths of the proposed smart parking mechanism in terms of avoiding increased congestion and decreasing the time to find a parking space. PMID:25153671

  7. A Cellular Automata occupant evacuation model considering gathering behavior

    NASA Astrophysics Data System (ADS)

    Zhao, Daoliang; Wang, Jinhui; Zhang, Xiaoliang; Wang, Xiaoqun

    2015-01-01

    A two-dimensional (2D) Cellular Automata (CA) random model is developed to simulate occupant evacuation considering gathering behavior. The movement process from random distribution to gathering state can be simulated based on the map of the position repulsive force. Evacuations with random distribution and gathering distribution are compared. Visual field means object area coverage considered by the individual in the current cell, representing by the radius of visual field, VR. The simulation results with VR = 1 and 2 have little difference while the simulation with VR = 3 can reasonably represent gathering process. When the occupant density is less than 0.64 people/m2, the time of gathering process increases very fast with the increase of density; when the density is larger than 1.28 people/m2, the time of gathering decreases with the increase of density. When the initial density is less than 1.44 people/m2, the evacuation times with random distribution are always less than those with gathering distribution. When the initial density is larger than 1.44 people/m2, the evacuation times with gathering or random distribution are almost the same. Our model can simulate the gathering and evacuation process with more than two rally points. The number and distribution of rally points can deeply affect the evacuation time.

  8. Cellular automata model for traffic flow with safe driving conditions

    NASA Astrophysics Data System (ADS)

    María, Elena Lárraga; Luis, Alvarez-Icaza

    2014-05-01

    In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner microscopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in platoons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model.

  9. Stochastic cellular automata model for wildland fire spread dynamics

    NASA Astrophysics Data System (ADS)

    Maduro Almeida, Rodolfo; Macau, Elbert E. N.

    2011-03-01

    A stochastic cellular automata model for wildland fire spread under flat terrain and no-wind conditions is proposed and its dynamics is characterized and analyzed. One of three possible states characterizes each cell: vegetation cell, burning cell and burnt cell. The dynamics of fire spread is modeled as a stochastic event with an effective fire spread probability S which is a function of three probabilities that characterize: the proportion of vegetation cells across the lattice, the probability of a burning cell becomes burnt, and the probability of the fire spread from a burning cell to a neighboring vegetation cell. A set of simulation experiments is performed to analyze the effects of different values of the three probabilities in the fire pattern. Monte-Carlo simulations indicate that there is a critical line in the model parameter space that separates the set of parameters which a fire can propagate from those for which it cannot propagate. Finally, the relevance of the model is discussed under the light of computational experiments that illustrate the capability of the model catches both the dynamical and static qualitative properties of fire propagation.

  10. Robustness of a cellular automata model for the HIV infection

    NASA Astrophysics Data System (ADS)

    Figueirêdo, P. H.; Coutinho, S.; Zorzenon dos Santos, R. M.

    2008-11-01

    An investigation was conducted to study the robustness of the results obtained from the cellular automata model which describes the spread of the HIV infection within lymphoid tissues [R.M. Zorzenon dos Santos, S. Coutinho, Phys. Rev. Lett. 87 (2001) 168102]. The analysis focused on the dynamic behavior of the model when defined in lattices with different symmetries and dimensionalities. The results illustrated that the three-phase dynamics of the planar models suffered minor changes in relation to lattice symmetry variations and, while differences were observed regarding dimensionality changes, qualitative behavior was preserved. A further investigation was conducted into primary infection and sensitiveness of the latency period to variations of the model’s stochastic parameters over wide ranging values. The variables characterizing primary infection and the latency period exhibited power-law behavior when the stochastic parameters varied over a few orders of magnitude. The power-law exponents were approximately the same when lattice symmetry varied, but there was a significant variation when dimensionality changed from two to three. The dynamics of the three-dimensional model was also shown to be insensitive to variations of the deterministic parameters related to cell resistance to the infection, and the necessary time lag to mount the specific immune response to HIV variants. The robustness of the model demonstrated in this work reinforce that its basic hypothesis are consistent with the three-stage dynamic of the HIV infection observed in patients.

  11. Some properties of the floor field cellular automata evacuation model

    NASA Astrophysics Data System (ADS)

    Gwizdałła, Tomasz M.

    2015-02-01

    We study the process of evacuation of pedestrians from the room with the given arrangement of doors and obstacles by using the cellular automata technique. The technique which became quite popular is characterized by the discretization of time as well as space. For such a discretized space we use so-called floor field model which generally corresponds to the description of every cell by some monotonic function of distance between this cell and the closest exit. We study several types of effects. We start from some general features of model like the kind of a neighborhood or the factors disrupting the motion. Then we analyze the influence of asymmetry and size on the evacuation time. Finally we show characteristics concerning different arrangements of exits and include a particular approach to the proxemics effects. The scaling analyses help us to distinguish these cases which just reflect the geometry of the system and those which depend also on the simulation properties. All calculations are performed for a wide range of initial densities corresponding to different occupation rates as described by the typical crowd counting techniques.

  12. Cellular automata for traffic flow modeling. Final report

    SciTech Connect

    Benjaafar, S.; Dooley, K.; Setyawan, W.

    1997-12-01

    In this paper, the authors explore the usefulness of cellular automata to traffic flow modeling. The authors extend some of the existing CA models to capture characteristics of traffic flow that have not been possible to model using either conventional analytical models or existing simulation techniques. In particular, the authors examine higher moments of traffic flow and evaluate their effect on overall traffic performance. The behavior of these higher moments is found to be surprising, somewhat counter-intuitive, and to have important implications for design and control of traffic systems. For example, the authors show that the density of maximum throughput is near the density of maximum speed variance. Contrary to current practice, traffic should, therefore, be steered away from this density region. For deterministic systems the authors found traffic flow to possess a finite period which is highly sensitive to density in a non-monotonic fashion. The authors show that knowledge of this periodic behavior to be very useful in designing and controlling automated systems. These results are obtained for both single and two lane systems. For two lane systems, the authors also examine the relationship between lane changing behavior and flow performance. The authors show that the density of maximum land changing frequency occurs past the density of maximum throughput. Therefore, traffic should also be steered away from this density region.

  13. Correlation velocities in heterogeneous bidirectional cellular automata traffic flow

    NASA Astrophysics Data System (ADS)

    Lakouari, N.; Bentaleb, K.; Ez-Zahraouy, H.; Benyoussef, A.

    2015-12-01

    Traffic flow behavior and velocity correlation in a bidirectional two lanes road are studied using Cellular Automata (CA) model within a mixture of fast and slow vehicles. The behaviors of the Inter-lane and Intra-lane Velocity Correlation Coefficients (V.C.C.) due to the interactions between vehicles in the same lane and the opposite lane as a function of the density are investigated. It is shown that high densities in one lane lead to large cluster in the second one, which decreases the Intra-lane velocity correlations and thereby form clusters in the opposite lane. Moreover, we have found that there is a critical density over which the Inter-lane V.C.C. occurs, but below which no Inter-lane V.C.C. happens. The spatiotemporal diagrams correspond to those regions are derived numerically. Furthermore, the effect of the overtaking probability in one lane on the Intra-lane V.C.C. in the other lane is also investigated. It is shown that the decrease of the overtaking probability in one lane decreases slightly the Intra-lane V.C.C. at intermediate density regimes in the other lane, which improves the current, as well as the Inter-lane V.C.C. decreases.

  14. Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Mozumder, Chandan K.

    The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety

  15. Artificial life simulation of self-assembly in bacteriophage by movable finite automata.

    PubMed

    Shirayama, Masatoshi; Koshino, Makoto; Hatakeyama, Toyomasa; Kimura, Haruhiko

    2004-11-01

    This paper presents a model which is based on biological research using the movable finite automata (MFA) on a self-assembly of T4 phage, and exhibits the results of artificial life simulation. In the previous work, Thompson and Goel [Artificial Life, Addison Weley, 1989, pp. 317-340; Biosystems 18 (1985) 23; J. Theor. Biol. 131 (1988) 351] presented the movable finite automata (MFA) which has a capability of moving on finite automata, and simulated on a computer. They were represented individual rectangular boxes, however, the results of simulation was different from real T4 phage. We propose the sphere model as a protein structure, and simulate the self-assembly of the entire structure of the T4 phage on a computer. PMID:15527954

  16. A novel image encryption algorithm using chaos and reversible cellular automata

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Luan, Dapeng

    2013-11-01

    In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.

  17. A comparative analysis of electronic and molecular quantum dot cellular automata

    SciTech Connect

    Umamahesvari, H. E-mail: ajithavijay1@gmail.com; Ajitha, D. E-mail: ajithavijay1@gmail.com

    2015-06-24

    This paper presents a comparative analysis of electronic quantum-dot cellular automata (EQCA) and Magnetic quantum dot Cellular Automata (MQCA). QCA is a computing paradigm that encodes and processes information by the position of individual electrons. To enhance the high dense and ultra-low power devices, various researches have been actively carried out to find an alternative way to continue and follow Moore’s law, so called “beyond CMOS technology”. There have been several proposals for physically implementing QCA, EQCA and MQCA are the two important QCAs reported so far. This paper provides a comparative study on these two QCAs.

  18. A comparative analysis of electronic and molecular quantum dot cellular automata

    NASA Astrophysics Data System (ADS)

    Umamahesvari, H.; Ajitha, D.

    2015-06-01

    This paper presents a comparative analysis of electronic quantum-dot cellular automata (EQCA) and Magnetic quantum dot Cellular Automata (MQCA). QCA is a computing paradigm that encodes and processes information by the position of individual electrons. To enhance the high dense and ultra-low power devices, various researches have been actively carried out to find an alternative way to continue and follow Moore's law, so called "beyond CMOS technology". There have been several proposals for physically implementing QCA, EQCA and MQCA are the two important QCAs reported so far. This paper provides a comparative study on these two QCAs

  19. Ecological risk assessment of genetically modified crops based on cellular automata modeling.

    PubMed

    Yang, Jun; Wang, Zhi-Rui; Yang, De-Li; Yang, Qing; Yan, Jun; He, Ming-Feng

    2009-01-01

    The assessment of ecological risk in genetically modified (GM) biological systems is critically important for decision-making and public acceptance. Cellular automata (CA) provide a potential modeling and simulation framework for representing relationships and interspecies interactions both temporally and spatially. In this paper, a simple subsystem contains only four species: crop, target pest, non-target pest and enemy insect, and a three layer arrangement of LxL stochastic cellular automata with a periodic boundary were established. The simulation of this simplified system showed abundant and sufficient complexity in population assembly and densities, suggesting a prospective application in ecological risk assessment of GM crops. PMID:19477260

  20. Quantum mechanics of lattice gas automata: One-particle plane waves and potentials

    SciTech Connect

    Meyer, D.A.

    1997-05-01

    Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined {ital quantum} lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. {copyright} {ital 1997} {ital The American Physical Society}

  1. Max-out-in pivot rule with Dantzig's safeguarding rule for the simplex method

    NASA Astrophysics Data System (ADS)

    Tipawanna, Monsicha; Sinapiromsaran, Krung

    2014-03-01

    The simplex method is used to solve linear programming problem by improving the current basic feasible solution. It uses a pivot rule to guide the search in the feasible region. The pivot rule is used to select an entering index in simplex method. Nowadays, many pivot rule have been presented, but no pivot rule shows superior performance than other. Therefore, this is still an active research in linear programming. In this research, we present the max-out-in pivot rule with Dantzig's safeguarding for simplex method. This rule is based on maximum improvement of objective value of the current basic feasible point similar to the Dantzig's rule. We can illustrate by Klee and Minty problems that our rule outperforms that of Dantzig's rule by the number of iterations for solving linear programming problems.

  2. Linear quantum feedback networks

    NASA Astrophysics Data System (ADS)

    Gough, J. E.; Gohm, R.; Yanagisawa, M.

    2008-12-01

    The mathematical theory of quantum feedback networks has recently been developed [J. Gough and M. R. James, e-print arXiv:0804.3442v2] for general open quantum dynamical systems interacting with bosonic input fields. In this article we show, for the special case of linear dynamical Markovian systems with instantaneous feedback connections, that the transfer functions can be deduced and agree with the algebraic rules obtained in the nonlinear case. Using these rules, we derive the transfer functions for linear quantum systems in series, in cascade, and in feedback arrangements mediated by beam splitter devices.

  3. A stochastic parameterization for deep convection using cellular automata

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in

  4. Lower bounds on parallel, distributed, and automata computations

    SciTech Connect

    Gereb-Graus, M.

    1989-01-01

    In this thesis the author presents a collection of lower bound results from several areas of computer science. Conventional wisdom states that lower bounds are much more difficult to prove than upper bounds. To get an upper bound one has to demonstrate just one scheme with the appropriate complexity. On the other hand, to prove lower bounds one has to deal with all possible schemes. The difficulty of lower bounds can be further demonstrated by the fact that wherever for some problem he has a very large gap between the lower and the upper bound, the conjecture for the truth usually is the known upper bound. His first two results are impossibility results for finite state automata. A hierarchy of complexity classes on tree languages (analogous to the polynomial hierarchy) accepted by alternating finite state machines is introduced. It turns out that the alternating class is equal to the well known tree language class accepted by the treeautomata. By separating the deterministic and the nondeterministic classes of his hierarchy he gives a negative answer to the folklore question whether the expressive power of the treeautomata is the same as that of the finite state automaton that can walk on the edges of the tree (bugautomaton). He proves that three-head one-way DFA cannot perform string-matching, that is, no three-head one-way DFA accepts the language L = (x{number sign}y {vert bar} x is a substring of y, where x,y {element of} (0,1){sup *}). He proves that in a one round fair coin flipping (or voting) scheme with n participants, there is at least one participant who has a chance to decide the outcome with probability at least 3/n {minus} o(1/n).

  5. Modeling pedestrian behaviors under attracting incidents using cellular automata

    NASA Astrophysics Data System (ADS)

    Chen, Yanyan; Chen, Ning; Wang, Yang; Wang, Zhenbao; Feng, Guochen

    2015-08-01

    Compared to vehicular flow, pedestrian flow is more complicated as it is free from the restriction of the lane and more flexible. Due to the lack of modeling pedestrian behaviors under attracting incidents (incidents which attract pedestrians around to gather), this paper proposes a new cellular automata model aiming to reproduce the behaviors induced by such attracting incidents. When attracting incidents occur, the proposed model will classify pedestrians around the incidents into three groups: the "unaffected" type, the "stopped" type and the "onlooking" type. The "unaffected" type represents the pedestrians who are not interested in the attracting incidents and its dynamics are the same as that under normal circumstances which are the main target in the previous works. The "stopped" type represents the pedestrians are somewhat interested in the attracting incidents, but unwilling to move close to the venues. Its dynamics are determined by "stopped" utility which can make the pedestrians stop for a while. The "onlooking" type represents the pedestrians who show strong interest in the attracting incidents and intend to move close to the venues to gain more information. The "onlooking" pedestrians will take a series of reactions to attracting incidents, such as approaching to the venues, stopping and watching the attracting incidents, leaving the venues, which have all been considered in the proposed model. The simulation results demonstrate that the proposed model can capture the macro-characteristics of pedestrian traffic flow under normal circumstances and possesses the fundamental characteristics of the pedestrian behaviors under attracting incidents around which a torus-shaped crowd is typically formed.

  6. Validating Cellular Automata Lava Flow Emplacement Algorithms with Standard Benchmarks

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Connor, L.; Charbonnier, S. J.; Connor, C.; Gallant, E.

    2015-12-01

    A major existing need in assessing lava flow simulators is a common set of validation benchmark tests. We propose three levels of benchmarks which test model output against increasingly complex standards. First, imulated lava flows should be morphologically identical, given changes in parameter space that should be inconsequential, such as slope direction. Second, lava flows simulated in simple parameter spaces can be tested against analytical solutions or empirical relationships seen in Bingham fluids. For instance, a lava flow simulated on a flat surface should produce a circular outline. Third, lava flows simulated over real world topography can be compared to recent real world lava flows, such as those at Tolbachik, Russia, and Fogo, Cape Verde. Success or failure of emplacement algorithms in these validation benchmarks can be determined using a Bayesian approach, which directly tests the ability of an emplacement algorithm to correctly forecast lava inundation. Here we focus on two posterior metrics, P(A|B) and P(¬A|¬B), which describe the positive and negative predictive value of flow algorithms. This is an improvement on less direct statistics such as model sensitivity and the Jaccard fitness coefficient. We have performed these validation benchmarks on a new, modular lava flow emplacement simulator that we have developed. This simulator, which we call MOLASSES, follows a Cellular Automata (CA) method. The code is developed in several interchangeable modules, which enables quick modification of the distribution algorithm from cell locations to their neighbors. By assessing several different distribution schemes with the benchmark tests, we have improved the performance of MOLASSES to correctly match early stages of the 2012-3 Tolbachik Flow, Kamchakta Russia, to 80%. We also can evaluate model performance given uncertain input parameters using a Monte Carlo setup. This illuminates sensitivity to model uncertainty.

  7. Cellular automata (CA) simulation of the interaction of vehicle flows and pedestrian crossings on urban low-grade uncontrolled roads

    NASA Astrophysics Data System (ADS)

    Chen, Qun; Wang, Yan

    2015-08-01

    This paper discusses the interaction of vehicle flows and pedestrian crossings on uncontrolled low-grade roads or branch roads without separating barriers in cities where pedestrians may cross randomly from any location on both sides of the road. The rules governing pedestrian street crossings are analyzed, and a cellular automata (CA) model to simulate the interaction of vehicle flows and pedestrian crossings is proposed. The influence of the interaction of vehicle flows and pedestrian crossings on the volume and travel time of the vehicle flow and the average wait time for pedestrians to cross is investigated through simulations. The main results of the simulation are as follows: (1) The vehicle flow volume decreases because of interruption from pedestrian crossings, but a small number of pedestrian crossings do not cause a significant delay to vehicles. (2) If there are many pedestrian crossings, slow vehicles will have little chance to accelerate, causing travel time to increase and the vehicle flow volume to decrease. (3) The average wait time for pedestrians to cross generally decreases with a decrease in vehicle flow volume and also decreases with an increase in the number of pedestrian crossings. (4) Temporal and spatial characteristics of vehicle flows and pedestrian flows and some interesting phenomena such as "crossing belt" and "vehicle belt" are found through the simulations.

  8. Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata.

    PubMed

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472

  9. Simulating the Conversion of Rural Settlements to Town Land Based on Multi-Agent Systems and Cellular Automata

    PubMed Central

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472

  10. A cellular automata model of land cover change to integrate urban growth with open space conservation

    EPA Science Inventory

    The preservation of riparian zones and other environmentally sensitive areas has long been recognized as one of the most cost-effective methods of managing stormwater and providing a broad range of ecosystem services. In this research, a cellular automata (CA)—Markov chain model ...

  11. Simulation of deformations in magnetic media by the movable cellular automata method

    NASA Astrophysics Data System (ADS)

    Usachev, Victor V.; Andriushchenko, Petr D.; Afremov, Leonid L.

    2015-09-01

    A deformable model of the magnetic medium is considered in the research paper. Simulating algorithms of the impact of the external magnetic field on the deformation of the magnetic medium have been developed on the basis of the movable cellular automata (MCA) method.

  12. Applications of automata and graphs: Labeling operators in Hilbert space. II

    SciTech Connect

    Cho, Ilwoo; Jorgensen, Palle E. T.

    2009-06-15

    We introduced a family of infinite graphs directly associated with a class of von Neumann automaton model A{sub G}. These are finite state models used in symbolic dynamics: stimuli models and in control theory. In the context of groupoid von Neumann algebras, and an associated fractal group, we prove a classification theorem for representations of automata.

  13. Statistical properties of cellular automata in the context of learning and recognition: Part 1, Introduction

    SciTech Connect

    Gutowitz, H.A.

    1988-11-17

    In this lecture the map from a cellular automaton to a sequence of analytical approximations called the local structure theory is described. Connections are drawn between cellular automata and neural network models. It is suggested that the process by which a cellular automaton holds particular probability measures invariant is an appropriate model for biological memory. 20 figs.

  14. Simulating the immune response to the HIV-1 virus with cellular automata

    NASA Astrophysics Data System (ADS)

    Kougias, Ch. F.; Schulte, J.

    1990-07-01

    Two cellular automata models are presented which simulate the immune response to the HIV-1 virus at the early stage of the infection. The simple model A is based on the generalized nearest neighbor interaction, and the complex model B on the explicitly defined local interactions between the neighboring sites. These two models are discussed in the context of related work by Pandey.

  15. Stimulus-Response Theory of Finite Automata, Technical Report No. 133.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    The central aim of this paper and its projected successors is to prove in detail that stimulus-response theory, or at least a mathematically precise version, can give an account of the learning of many phrase-structure grammars. Section 2 is concerned with standard notions of finite and probabilistic automata. An automaton is defined as a device…

  16. Cellular automata with object-oriented features for parallel molecular network modeling.

    PubMed

    Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan

    2005-06-01

    Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented. PMID:16117022

  17. Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios

    NASA Astrophysics Data System (ADS)

    Avolio, MV; Di Gregorio, Salvatore; Mantovani, Franco; Pasuto, Alessandro; Rongo, Rocco; Silvano, Sandro; Spataro, William

    Cellular Automata are a powerful tool for modelling natural and artificial systems, which can be described in terms of local interactions of their constituent parts. Some types of landslides, such as debris/mud flows, match these requirements. The 1992 Tessina landslide has characteristics (slow mud flows) which make it appropriate for modelling by means of Cellular Automata, except for the initial phase of detachment, which is caused by a rotational movement that has no effect on the mud flow path. This paper presents the Cellular Automata approach for modelling slow mud/debris flows, the results of simulation of the 1992 Tessina landslide and future hazard scenarios based on the volumes of masses that could be mobilised in the future. They were obtained by adapting the Cellular Automata Model called SCIDDICA, which has been validated for very fast landslides. SCIDDICA was applied by modifying the general model to the peculiarities of the Tessina landslide. The simulations obtained by this initial model were satisfactory for forecasting the surface covered by mud. Calibration of the model, which was obtained from simulation of the 1992 event, was used for forecasting flow expansion during possible future reactivation. For this purpose two simulations concerning the collapse of about 1 million m 3 of material were tested. In one of these, the presence of a containment wall built in 1992 for the protection of the Tarcogna hamlet was inserted. The results obtained identified the conditions of high risk affecting the villages of Funes and Lamosano and show that this Cellular Automata approach can have a wide range of applications for different types of mud/debris flows.

  18. Beyond classical nucleation theory: A 2-D lattice-gas automata model

    NASA Astrophysics Data System (ADS)

    Hickey, Joseph

    Nucleation is the first step in the formation of a new phase in a thermodynamic system. The Classical Nucleation Theory (CNT) is the traditional theory used to describe this phenomenon. The object of this thesis is to investigate nucleation beyond one of the most significant limitations of the CNT: the assumption that the surface tension of a nucleating cluster of the new phase is independent of the cluster's size and has the same value that it would have in the bulk of the new phase. In order to accomplish this, we consider a microscopic, two-dimensional Lattice Gas Automata (LGA) model of precipitate nucleation in a supersaturated system, with model input parameters Ess (solid particle-to-solid particle bonding energy), Esw (solid particle-to-water particle bonding energy), eta (next-to-nearest neighbour bonding coeffiicent in solid phase), and Cin (initial solute concentration). The LGA method was chosen for its advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system's concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the system's equilibrium concentration. A mean first-passage time (MFPT) technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation are evaluated using a modification to the CNT that incorporates a two-dimensional, radius-dependent surface tension term. The Tolman parameter, delta, which controls the radius-dependence of the surface tension, decreases (increases) as a function of the magnitude of Ess (Esw), at fixed values of eta and Esw (Ess). On the other hand, delta increases as eta increases while E ss and Esw are held constant. The constant surface tension term of the CNT, Sigma0, increases (decreases) with increasing magnitudes of Ess (Esw) fixed values of Esw (Ess), and increases as eta is increased. Together

  19. Distributed learning automata-based algorithm for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Khomami, Mohammad Mehdi Daliri; Rezvanian, Alireza; Meybodi, Mohammad Reza

    2016-03-01

    Community structure is an important and universal topological property of many complex networks such as social and information networks. The detection of communities of a network is a significant technique for understanding the structure and function of networks. In this paper, we propose an algorithm based on distributed learning automata for community detection (DLACD) in complex networks. In the proposed algorithm, each vertex of network is equipped with a learning automation. According to the cooperation among network of learning automata and updating action probabilities of each automaton, the algorithm interactively tries to identify high-density local communities. The performance of the proposed algorithm is investigated through a number of simulations on popular synthetic and real networks. Experimental results in comparison with popular community detection algorithms such as walk trap, Danon greedy optimization, Fuzzy community detection, Multi-resolution community detection and label propagation demonstrated the superiority of DLACD in terms of modularity, NMI, performance, min-max-cut and coverage.

  20. Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments

    SciTech Connect

    Nishawala, Vinesh V.; Ostoja-Starzewski, Martin; Leamy, Michael J.; Demmie, Paul N.

    2015-09-10

    Peridynamics is a non-local continuum mechanics formulation that can handle spatial discontinuities as the governing equations are integro-differential equations which do not involve gradients such as strains and deformation rates. This paper employs bond-based peridynamics. Cellular Automata is a local computational method which, in its rectangular variant on interior domains, is mathematically equivalent to the central difference finite difference method. However, cellular automata does not require the derivation of the governing partial differential equations and provides for common boundary conditions based on physical reasoning. Both methodologies are used to solve a half-space subjected to a normal load, known as Lamb’s Problem. The results are compared with theoretical solution from classical elasticity and experimental results. Furthermore, this paper is used to validate our implementation of these methods.

  1. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong

    2016-08-01

    This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

  2. An Efficient Translation of Timed-Arc Petri Nets to Networks of Timed Automata

    NASA Astrophysics Data System (ADS)

    Byg, Joakim; Jørgensen, Kenneth Yrke; Srba, Jiří

    Bounded timed-arc Petri nets with read-arcs were recently proven equivalent to networks of timed automata, though the Petri net model cannot express urgent behaviour and the described mutual translations are rather inefficient. We propose an extension of timed-arc Petri nets with invariants to enforce urgency and with transport arcs to generalise the read-arcs. We also describe a novel translation from the extended timed-arc Petri net model to networks of timed automata. The translation is implemented in the tool TAPAAL and it uses UPPAAL as the verification engine. Our experiments confirm the efficiency of the translation and in some cases the translated models verify significantly faster than the native UPPAAL models do.

  3. From QCA (Quantum Cellular Automata) to Organocatalytic Reactions with Stabilized Carbenium Ions.

    PubMed

    Gualandi, Andrea; Mengozzi, Luca; Manoni, Elisabetta; Giorgio Cozzi, Pier

    2016-06-01

    What do quantum cellular automata (QCA), "on water" reactions, and SN 1-type organocatalytic transformations have in common? The link between these distant arguments is the practical access to useful intermediates and key products through the use of stabilized carbenium ions. Over 10 years, starting with a carbenium ion bearing a ferrocenyl group, to the 1,3-benzodithiolylium carbenium ion, our group has exploited the use of these intermediates in useful and practical synthetic transformations. In particular, we have applied the use of carbenium ions to stereoselective organocatalytic alkylation reactions, showing a possible solution for the "holy grail of organocatalysis". Examples of the use of these quite stabilized intermediates are now also considered in organometallic chemistry. On the other hand, the stable carbenium ions are also applied to tailored molecules adapted to quantum cellular automata, a new possible paradigm for computation. Carbenium ions are not a problem, they can be a/the solution! PMID:27062088

  4. Coulomb coupling and the role of symmetries in quantum-dot arrays for cellular automata

    SciTech Connect

    Ramirez, F.; Cota, E.; Ulloa, S. E.

    2000-07-15

    Using a group-theoretical analysis of the symmetries of a quantum dot array, we investigate the role of defects on the energetics of the system and the resulting charge configurations (or polarization of the cell). We find that for the typical four- or five-element geometries proposed, even small asymmetries introduced by defects in the system, or variations in the local electrostatic environment, can give rise to large effects on the polarization of the ground state and the corresponding low-energy excitations. These shifts are likely to produce important effects in the operation of the cellular automata proposed using these quantum dots. In particular, we find that the sensitivity to polarization changes induced by a driver cell decreases dramatically, and the polarization values are no longer fully defined. These effects would both force the use of stronger driving fields, and may also complicate the dynamical behavior of the cellular automata. (c) 2000 The American Physical Society.

  5. Spatial organization and evolution period of the epidemic model using cellular automata.

    PubMed

    Liu, Quan-Xing; Jin, Zhen; Liu, Mao-Xing

    2006-09-01

    We investigate epidemic models with spatial structure based on the cellular automata method. The construction of the cellular automata is from the study by Weimar and Boon about the reaction-diffusion equations [Phys. Rev. E 49, 1749 (1994)]. Our results show that the spatial epidemic models exhibit the spontaneous formation of irregular spiral waves at large scales within the domain of chaos. Moreover, the irregular spiral waves grow stably. The system also shows a spatial period-2 structure at one dimension outside the domain of chaos. It is interesting that the spatial period-2 structure will break and transform into a spatial synchronous configuration in the domain of chaos. Our results confirm that populations embed and disperse more stably in space than they do in nonspatial counterparts. PMID:17025597

  6. Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments

    DOE PAGESBeta

    Nishawala, Vinesh V.; Ostoja-Starzewski, Martin; Leamy, Michael J.; Demmie, Paul N.

    2015-09-10

    Peridynamics is a non-local continuum mechanics formulation that can handle spatial discontinuities as the governing equations are integro-differential equations which do not involve gradients such as strains and deformation rates. This paper employs bond-based peridynamics. Cellular Automata is a local computational method which, in its rectangular variant on interior domains, is mathematically equivalent to the central difference finite difference method. However, cellular automata does not require the derivation of the governing partial differential equations and provides for common boundary conditions based on physical reasoning. Both methodologies are used to solve a half-space subjected to a normal load, known as Lamb’smore » Problem. The results are compared with theoretical solution from classical elasticity and experimental results. Furthermore, this paper is used to validate our implementation of these methods.« less

  7. Efficient process development for bulk silicon etching using cellular automata simulation techniques

    NASA Astrophysics Data System (ADS)

    Marchetti, James; He, Yie; Than, Olaf; Akkaraju, Sandeep

    1998-09-01

    This paper describes cellular automata simulation techniques used to predict the anisotropic etching of single-crystal silicon. In particular, this paper will focus on the application of wet etching of silicon wafers using typical anisotropic etchants such as KOH, TMAH, and EDP. Achieving a desired final 3D geometry of etch silicon wafers often is difficult without requiring a number of fabrication design iterations. The result is wasted time and resources. AnisE, a tool to simulate anisotropic etching of silicon wafers using cellular automata simulation, was developed in order to efficiently prototype and manufacture MEMS devices. AnisE has been shown to effectively decrease device development time and costs by up to 50% and 60%, respectively.

  8. Classifying elementary cellular automata using compressibility, diversity and sensitivity measures

    NASA Astrophysics Data System (ADS)

    Ninagawa, Shigeru; Adamatzky, Andrew

    2014-10-01

    An elementary cellular automaton (ECA) is a one-dimensional, synchronous, binary automaton, where each cell update depends on its own state and states of its two closest neighbors. We attempt to uncover correlations between the following measures of ECA behavior: compressibility, sensitivity and diversity. The compressibility of ECA configurations is calculated using the Lempel-Ziv (LZ) compression algorithm LZ78. The sensitivity of ECA rules to initial conditions and perturbations is evaluated using Derrida coefficients. The generative morphological diversity shows how many different neighborhood states are produced from a single nonquiescent cell. We found no significant correlation between sensitivity and compressibility. There is a substantial correlation between generative diversity and compressibility. Using sensitivity, compressibility and diversity, we uncover and characterize novel groupings of rules.

  9. Synchronization, TIGoRS, and Information Flow in Complex Systems: Dispositional Cellular Automata.

    PubMed

    Sulis, William H

    2016-04-01

    Synchronization has a long history in physics where it refers to the phase matching of two identical oscillators. This notion has been extensively studied in physics as well as in biology, where it has been applied to such widely varying phenomena as the flashing of fireflies and firing of neurons in the brain. Human behavior, however, may be recurrent but it is not oscillatory even though many physiological systems do exhibit oscillatory tendencies. Moreover, much of human behaviour is collaborative and cooperative, where the individual behaviours may be distinct yet contemporaneous (if not simultaneous) and taken collectively express some functionality. In the context of behaviour, the important aspect is the repeated co-occurrence in time of behaviours that facilitate the propagation of information or of functionality, regardless of whether or not these behaviours are similar or identical. An example of this weaker notion of synchronization is transient induced global response synchronization (TIGoRS). Previous work has shown that TIGoRS is a ubiquitous phenomenon among complex systems, enabling them to stably parse environmental transients into salient units to which they stably respond. This leads to the notion of Sulis machines, which emergently generate a primitive linguistic structure through their dynamics. This article reviews the notion of TIGoRS and its expression in several complex systems models including tempered neural networks, driven cellular automata and cocktail party automata. The emergent linguistics of Sulis machines are discussed. A new class of complex systems model, the dispositional cellular automaton is introduced. A new metric for TIGoRS, the excess synchronization, is introduced and applied to the study of TIGoRS in dispositional cellular automata. It is shown that these automata exhibit a nonlinear synchronization response to certain perturbing transients. PMID:27033136

  10. Identification of finite state automata with a class of recurrent neural networks.

    PubMed

    Won, Sung Hwan; Song, Iickho; Lee, Sun Young; Park, Cheol Hoon

    2010-09-01

    A class of recurrent neural networks is proposed and proven to be capable of identifying any discrete-time dynamical system. The application of the proposed network is addressed in the encoding, identification, and extraction of finite state automata (FSAs). Simulation results show that the identification of FSAs using the proposed network, trained by the hybrid greedy simulated annealing with a modified cost function in the training stage, generally exhibits better performance than the conventional identification procedures. PMID:20709639

  11. Exploiting the features of the finite state automata for biomolecular computing.

    PubMed

    Martínez-Pérez, Israel Marck; Ignatova, Zoya; Zimmermann, Karl-Heinz

    2009-01-01

    Here, we review patents that have emerged in the field of DNA-based computing focusing thereby on the discoveries using the concept of molecular finite state automata. A finite state automaton, operating on a finite sequence of symbols and converting information from one to another, provides a basis for developing molecular-scale autonomous programmable models of biomolecular computation at cellular level. We also provide a brief overview on inventions which methodologically support the DNA-based computational approach. PMID:19519583

  12. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  13. A model for electrical tree growth in solid insulating materials using cellular automata

    SciTech Connect

    Danikas, M.G.; Karafyllidis, I.; Thanailakis, A.; Bruning, A.M.

    1996-12-31

    Models proposed to explain the breakdown mechanisms of the solid insulating materials are based, among others, on electromagnetic theory, avalanche theory and fractals. In this paper the breakdown of insulating materials is simulated using von Neumann`s Cellular Automata (CAs). An algorithm for solid dielectric breakdown simulation based on CAs is presented with a point/plane electrode arrangement. The algorithm is also used to simulate breakdown in a solid dielectric having a spherical void.

  14. REVIEWS OF TOPICAL PROBLEMS: Study of spatially extended dynamical systems using probabilistic cellular automata

    NASA Astrophysics Data System (ADS)

    Vanag, Vladimir K.

    1999-05-01

    Spatially extended dynamical systems are ubiquitous and include such things as insect and animal populations; complex chemical, technological, and geochemical processes; humanity itself, and much more. It is clearly desirable to have a certain universal tool with which the highly complex behaviour of nonlinear dynamical systems can be analyzed and modelled. For this purpose, cellular automata seem to be good candidates. In the present review, emphasis is placed on the possibilities that various types of probabilistic cellular automata (PCA), such as DSMC (direct simulation Monte Carlo) and LGCA (lattice-gas cellular automata), offer. The methods are primarily designed for modelling spatially extended dynamical systems with inner fluctuations accounted for. For the Willamowskii-Roessler and Oregonator models, PCA applications to the following problems are illustrated: the effect of fluctuations on the dynamics of nonlinear systems; Turing structure formation; the effect of hydrodynamic modes on the behaviour of nonlinear chemical systems (stirring effects); bifurcation changes in the dynamical regimes of complex systems with restricted geometry or low spatial dimension; and the description of chemical systems in microemulsions.

  15. The use of hybrid automata for fault-tolerant vibration control for parametric failures

    NASA Astrophysics Data System (ADS)

    Byreddy, Chakradhar; Frampton, Kenneth D.; Yongmin, Kim

    2006-03-01

    The purpose of this work is to make use of hybrid automata for vibration control reconfiguration under system failures. Fault detection and isolation (FDI) filters are used to monitor an active vibration control system. When system failures occur (specifically parametric faults) the FDI filters detect and identify the specific failure. In this work we are specifically interested in parametric faults such as changes in system physical parameters; however this approach works equally well with additive faults such as sensor or actuator failures. The FDI filter output is used to drive a hybrid automaton, which selects the appropriate controller and FDI filter from a library. The hybrid automata also implements switching between controllers and filters in order to maintain optimal performance under faulty operating conditions. The biggest challenge in developing this system is managing the switching and in maintaining stability during the discontinuous switches. Therefore, in addition to vibration control, the stability associated with switching compensators and FDI filters is studied. Furthermore, the performance of two types of FDI filters is compared: filters based on parameter estimation methods and so called "Beard-Jones" filters. Finally, these simulations help in understanding the use of hybrid automata for fault-tolerant control.

  16. Regulation Effects by Programmed Molecules for Transcription-Based Diagnostic Automata towards Therapeutic Use

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Miki; Ohashi, Hirotada; Kubo, Tai

    We have presented experimental analysis on the controllability of our transcription-based diagnostic biomolecular automata by programmed molecules. Focusing on the noninvasive transcriptome diagnosis by salivary mRNAs, we already proposed the novel concept of diagnostic device using DNA computation. This system consists of the main computational element which has a stem shaped promoter region and a pseudo-loop shaped read-only memory region for transcription regulation through the conformation change caused by the recognition of disease-related biomarkers. We utilize the transcription of malachite green aptamer sequence triggered by the target recognition for observation of detection. This algorithm makes it possible to release RNA-aptamer drugs multiply, different from the digestion-based systems by the restriction enzyme which was proposed previously, for the in-vivo use, however, the controllability of aptamer release is not enough at the previous stage. In this paper, we verified the regulation effect on aptamer transcription by programmed molecules in basic conditions towards the developm! ent of therapeutic automata. These results would bring us one step closer to the realization of new intelligent diagnostic and therapeutic automata based on molecular circuits.

  17. Query Monitoring and Analysis for Database Privacy - A Security Automata Model Approach

    PubMed Central

    Kumar, Anand; Ligatti, Jay; Tu, Yi-Cheng

    2015-01-01

    Privacy and usage restriction issues are important when valuable data are exchanged or acquired by different organizations. Standard access control mechanisms either restrict or completely grant access to valuable data. On the other hand, data obfuscation limits the overall usability and may result in loss of total value. There are no standard policy enforcement mechanisms for data acquired through mutual and copyright agreements. In practice, many different types of policies can be enforced in protecting data privacy. Hence there is the need for an unified framework that encapsulates multiple suites of policies to protect the data. We present our vision of an architecture named security automata model (SAM) to enforce privacy-preserving policies and usage restrictions. SAM analyzes the input queries and their outputs to enforce various policies, liberating data owners from the burden of monitoring data access. SAM allows administrators to specify various policies and enforces them to monitor queries and control the data access. Our goal is to address the problems of data usage control and protection through privacy policies that can be defined, enforced, and integrated with the existing access control mechanisms using SAM. In this paper, we lay out the theoretical foundation of SAM, which is based on an automata named Mandatory Result Automata. We also discuss the major challenges of implementing SAM in a real-world database environment as well as ideas to meet such challenges. PMID:26997936

  18. Collaboration rules.

    PubMed

    Evans, Philip; Wolf, Bob

    2005-01-01

    Corporate leaders seeking to boost growth, learning, and innovation may find the answer in a surprising place: the Linux open-source software community. Linux is developed by an essentially volunteer, self-organizing community of thousands of programmers. Most leaders would sell their grandmothers for workforces that collaborate as efficiently, frictionlessly, and creatively as the self-styled Linux hackers. But Linux is software, and software is hardly a model for mainstream business. The authors have, nonetheless, found surprising parallels between the anarchistic, caffeinated, hirsute world of Linux hackers and the disciplined, tea-sipping, clean-cut world of Toyota engineering. Specifically, Toyota and Linux operate by rules that blend the self-organizing advantages of markets with the low transaction costs of hierarchies. In place of markets' cash and contracts and hierarchies' authority are rules about how individuals and groups work together (with rigorous discipline); how they communicate (widely and with granularity); and how leaders guide them toward a common goal (through example). Those rules, augmented by simple communication technologies and a lack of legal barriers to sharing information, create rich common knowledge, the ability to organize teams modularly, extraordinary motivation, and high levels of trust, which radically lowers transaction costs. Low transaction costs, in turn, make it profitable for organizations to perform more and smaller transactions--and so increase the pace and flexibility typical of high-performance organizations. Once the system achieves critical mass, it feeds on itself. The larger the system, the more broadly shared the knowledge, language, and work style. The greater individuals' reputational capital, the louder the applause and the stronger the motivation. The success of Linux is evidence of the power of that virtuous circle. Toyota's success is evidence that it is also powerful in conventional companies. PMID

  19. Linearly Adjustable International Portfolios

    SciTech Connect

    Fonseca, R. J.; Kuhn, D.; Rustem, B.

    2010-09-30

    We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.

  20. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  1. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  2. Classical nucleation theory with a radius-dependent surface tension: A two-dimensional lattice-gas automata model

    NASA Astrophysics Data System (ADS)

    Hickey, Joseph; L'Heureux, Ivan

    2013-02-01

    The constant surface tension assumption of the Classical Nucleation Theory (CNT) is known to be flawed. In order to probe beyond this limitation, we consider a microscopic, two-dimensional Lattice-Gas Automata (LGA) model of nucleation in a supersaturated system, with model input parameters Ess (solid particle-to-solid particle bonding energy), Esw (solid particle-to-water bonding energy), η (next-to-nearest-neighbor bonding coefficient in solid phase), and Cin (initial solute concentration). The LGA method has the advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system's concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the equilibrium concentration. The “Mean First-Passage Time” technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation data are evaluated using a modification to the CNT that incorporates a two-dimensional radius-dependent surface tension term. The Tolman parameter, δ, which controls the radius dependence of the surface tension, decreases (increases) as a function of the magnitude of Ess (Esw), at fixed values of η and Esw (Ess). On the other hand, δ increases as η increases while Ess and Esw are held constant. The constant surface tension term of the CNT, Σ0, increases (decreases) with increasing magnitudes of Ess (Esw) at fixed values of Esw (Ess) and increases as η is increased. Σ0 increases linearly as a function of the change in energy during an attachment or detachment reaction, |ΔE|, however, with a slope less than that predicted for a crystal that is uniformly packed at maximum density. These results indicate an increase in the radius-dependent surface tension, Σ, with respect to increasing magnitude of the difference between Ess and Esw.

  3. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.

    PubMed

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-11-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed. PMID:23336016

  4. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo

    PubMed Central

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-01-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed. PMID:23336016

  5. Parallel biomolecular computation on surfaces with advanced finite automata.

    PubMed

    Soreni, Michal; Yogev, Sivan; Kossoy, Elizaveta; Shoham, Yuval; Keinan, Ehud

    2005-03-23

    A biomolecular, programmable 3-symbol-3-state finite automaton is reported. This automaton computes autonomously with all of its components, including hardware, software, input, and output being biomolecules mixed together in solution. The hardware consisted of two enzymes: an endonuclease, BbvI, and T4 DNA ligase. The software (transition rules represented by transition molecules) and the input were double-stranded (ds) DNA oligomers. Computation was carried out by autonomous processing of the input molecules via repetitive cycles of restriction, hybridization, and ligation reactions to produce a final-state output in the form of a dsDNA molecule. The 3-symbol-3-state deterministic automaton is an extension of the 2-symbol-2-state automaton previously reported, and theoretically it can be further expanded to a 37-symbol-3-state automaton. The applicability of this design was further amplified by employing surface-anchored input molecules, using the surface plasmon resonance technology to monitor the computation steps in real time. Computation was performed by alternating the feed solutions between endonuclease and a solution containing the ligase, ATP, and appropriate transition molecules. The output detection involved final ligation with one of three soluble detection molecules. Parallel computation and stepwise detection were carried out automatically with a Biacore chip that was loaded with four different inputs. PMID:15771530

  6. Fluctuation in option pricing using cellular automata based market models

    NASA Astrophysics Data System (ADS)

    Gao, Yuying; Beni, Gerardo

    2005-05-01

    A new agent-based Cellular Automaton (CA) computational algorithm for option pricing is proposed. CAs have been extensively used in modeling complex dynamical systems but not in modeling option prices. Compared with traditional tools, which rely on guessing volatilities to calculate option prices, the CA model is directly addressing market mechanisms and simulates price fluctuation from aggregation of actions made by interacting individual market makers in a large population. This paper explores whether CA models can provide reasonable good answers to pricing European options. The Black-Scholes model and the Binomial Tree model are used for comparison. Comparison reveals that CA models perform reasonably well in pricing options, reproducing overall characteristics of random walk based model, while at the same time providing plausible results for the 'fat-tail' phenomenon observed in many markets. We also show that the binomial tree model can be obtained from a CA rule. Thus, CA models are suitable tools to generalize the standard theories of option pricing.

  7. Multifractal analyses of row sum signals of elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Murguía, J. S.; Rosu, H. C.

    2012-07-01

    We first apply the WT-MFDFA, MFDFA, and WTMM multifractal methods to binomial multifractal time series of three different binomial parameters and find that the WTMM method indicates an enhanced difference between the fractal components than the known theoretical result. Next, we make use of the same methods for the time series of the row sum signals of the two complementary ECA pairs of rules (90,165) and (150,105) for ten initial conditions going from a single 1 in the central position up to a set of ten 1's covering the ten central positions in the first row. Since the members of the pairs are actually similar from the statistical point of view, we can check which method is the most stable numerically by recording the differences provided by the methods between the two members of the pairs for various important quantities of the scaling analyses, such as the multifractal support, the most frequent Hölder exponent, and the Hurst exponent and considering as the better one the method that provides the minimum differences. According to this criterion, our results show that the MFDFA performs better than WT-MFDFA and WTMM in the case of the multifractal support, while for the other two scaling parameters the WT-MFDFA is the best. The employed set of initial conditions does not generate any specific trend in the values of the multifractal parameters.

  8. Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing.

    PubMed

    Yilmaz, Ozgur

    2015-12-01

    This letter introduces a novel framework of reservoir computing that is capable of both connectionist machine intelligence and symbolic computation. A cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells, and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is shown to be capable of long-term memory, and it requires orders of magnitude less computation compared to echo state networks. As the focus of the letter, we suggest that binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing. To demonstrate the capability of the proposed system, we make analogies directly on image data by asking, What is the automobile of air? PMID:26496041

  9. A verification strategy for web services composition using enhanced stacked automata model.

    PubMed

    Nagamouttou, Danapaquiame; Egambaram, Ilavarasan; Krishnan, Muthumanickam; Narasingam, Poonkuzhali

    2015-01-01

    Currently, Service-Oriented Architecture (SOA) is becoming the most popular software architecture of contemporary enterprise applications, and one crucial technique of its implementation is web services. Individual service offered by some service providers may symbolize limited business functionality; however, by composing individual services from different service providers, a composite service describing the intact business process of an enterprise can be made. Many new standards have been defined to decipher web service composition problem namely Business Process Execution Language (BPEL). BPEL provides an initial work for forming an Extended Markup Language (XML) specification language for defining and implementing business practice workflows for web services. The problems with most realistic approaches to service composition are the verification of composed web services. It has to depend on formal verification method to ensure the correctness of composed services. A few research works has been carried out in the literature survey for verification of web services for deterministic system. Moreover the existing models did not address the verification properties like dead transition, deadlock, reachability and safetyness. In this paper, a new model to verify the composed web services using Enhanced Stacked Automata Model (ESAM) has been proposed. The correctness properties of the non-deterministic system have been evaluated based on the properties like dead transition, deadlock, safetyness, liveness and reachability. Initially web services are composed using Business Process Execution Language for Web Service (BPEL4WS) and it is converted into ESAM (combination of Muller Automata (MA) and Push Down Automata (PDA)) and it is transformed into Promela language, an input language for Simple ProMeLa Interpreter (SPIN) tool. The model is verified using SPIN tool and the results revealed better recital in terms of finding dead transition and deadlock in contrast to the

  10. The two populations’ cellular automata model with predation based on the Penna model

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Lin, Jing; Jiang, Heng; Liu, Xin

    2002-09-01

    In Penna's single-species asexual bit-string model of biological ageing, the Verhulst factor has too strong a restraining effect on the development of the population. Danuta Makowiec gave an improved model based on the lattice, where the restraining factor of the four neighbours take the place of the Verhulst factor. Here, we discuss the two populations’ Penna model with predation on the planar lattice of two dimensions. A cellular automata model containing movable wolves and sheep has been built. The results show that both the quantity of the wolves and the sheep fluctuate in accordance with the law that one quantity increases while the other one decreases.

  11. Stability of Cellular Automata Trajectories Revisited: Branching Walks and Lyapunov Profiles

    NASA Astrophysics Data System (ADS)

    Baetens, Jan M.; Gravner, Janko

    2016-05-01

    We study non-equilibrium defect accumulation dynamics on a cellular automaton trajectory: a branching walk process in which a defect creates a successor on any neighborhood site whose update it affects. On an infinite lattice, defects accumulate at different exponential rates in different directions, giving rise to the Lyapunov profile. This profile quantifies instability of a cellular automaton evolution and is connected to the theory of large deviations. We rigorously and empirically study Lyapunov profiles generated from random initial states. We also introduce explicit and computationally feasible variational methods to compute the Lyapunov profiles for periodic configurations, thus developing an analog of Floquet theory for cellular automata.

  12. The Design of Fault Tolerant Quantum Dot Cellular Automata Based Logic

    NASA Technical Reports Server (NTRS)

    Armstrong, C. Duane; Humphreys, William M.; Fijany, Amir

    2002-01-01

    As transistor geometries are reduced, quantum effects begin to dominate device performance. At some point, transistors cease to have the properties that make them useful computational components. New computing elements must be developed in order to keep pace with Moore s Law. Quantum dot cellular automata (QCA) represent an alternative paradigm to transistor-based logic. QCA architectures that are robust to manufacturing tolerances and defects must be developed. We are developing software that allows the exploration of fault tolerant QCA gate architectures by automating the specification, simulation, analysis and documentation processes.

  13. The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic

    NASA Technical Reports Server (NTRS)

    Armstrong, Curtis D.; Humphreys, William M.

    2003-01-01

    We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.

  14. The Effect of Mixed Vehicles on Traffic Flow in Two Lane Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Jia, Bin; Jiang, Rui; Gao, Zi-You; Zhao, Xiao-Mei

    In real traffic, the traffic system is usually composed of different types of vehicles, which have different parameters. How these parameters, especially the lengths of the vehicles, influence the traffic behaviors and transportation capability has seldom been investigated. In this paper, we study the mixed traffic system using the cellular automata traffic flow model. The simulation results show that when the road occupancy rate is large, increasing the fraction of long vehicles can apparently, improve the transportation capability. The influence of slow vehicles fraction on the average velocity of vehicles has been discussed, and it is found that the influences are very different when the difference of vehicle length is considered or not.

  15. Analysis of information gain and Kolmogorov complexity for structural evaluation of cellular automata configurations

    NASA Astrophysics Data System (ADS)

    Javaheri Javid, Mohammad Ali; Blackwell, Tim; Zimmer, Robert; Majid al-Rifaie, Mohammad

    2016-04-01

    Shannon entropy fails to discriminate structurally different patterns in two-dimensional images. We have adapted information gain measure and Kolmogorov complexity to overcome the shortcomings of entropy as a measure of image structure. The measures are customised to robustly quantify the complexity of images resulting from multi-state cellular automata (CA). Experiments with a two-dimensional multi-state cellular automaton demonstrate that these measures are able to predict some of the structural characteristics, symmetry and orientation of CA generated patterns.

  16. Linear Collisions

    ERIC Educational Resources Information Center

    Walkiewicz, T. A.; Newby, N. D., Jr.

    1972-01-01

    A discussion of linear collisions between two or three objects is related to a junior-level course in analytical mechanics. The theoretical discussion uses a geometrical approach that treats elastic and inelastic collisions from a unified point of view. Experiments with a linear air track are described. (Author/TS)

  17. Dynamic and quantitative method of analyzing service consistency evolution based on extended hierarchical finite state automata.

    PubMed

    Fan, Linjun; Tang, Jun; Ling, Yunxiang; Li, Benxian

    2014-01-01

    This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA). Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service's evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA) is constructed based on finite state automata (FSA), which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs) based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average) is the biggest influential factor, the noncomposition of atomic services (13.12%) is the second biggest one, and the service version's confusion (1.2%) is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA. PMID:24772033

  18. Stair evacuation simulation based on cellular automata considering evacuees’ walk preferences

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Zhang, Hui; Chen, Tao; Peter, B. Luh

    2015-06-01

    As a physical model, the cellular automata (CA) model is widely used in many areas, such as stair evacuation. However, existing CA models do not consider evacuees’ walk preferences nor psychological status, and the structure of the basic model is unapplicable for the stair structure. This paper is to improve the stair evacuation simulation by addressing these issues, and a new cellular automata model is established. Several evacuees’ walk preference and how evacuee’s psychology influences their behaviors are introduced into this model. Evacuees’ speeds will be influenced by these features. To validate this simulation, two fire drills held in two high-rise buildings are video-recorded. It is found that the simulation results are similar to the fire drill results. The structure of this model is simple, and it is easy to further develop and utilize in different buildings with various kinds of occupants. Project supported by the National Basic Research Program of China (Grant No. 2012CB719705) and the National Natural Science Foundation of China (Grant Nos. 91224008, 91024032, and 71373139).

  19. Calibrating Cellular Automata of Land Use/cover Change Models Using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Mas, J. F.; Soares-Filho, B.; Rodrigues, H.

    2015-08-01

    Spatially explicit land use / land cover (LUCC) models aim at simulating the patterns of change on the landscape. In order to simulate landscape structure, the simulation procedures of most computational LUCC models use a cellular automata to replicate the land use / cover patches. Generally, model evaluation is based on assessing the location of the simulated changes in comparison to the true locations but landscapes metrics can also be used to assess landscape structure. As model complexity increases, the need to improve calibration and assessment techniques also increases. In this study, we applied a genetic algorithm tool to optimize cellular automata's parameters to simulate deforestation in a region of the Brazilian Amazon. We found that the genetic algorithm was able to calibrate the model to simulate more realistic landscape in term of connectivity. Results show also that more realistic simulated landscapes are often obtained at the expense of the location coincidence. However, when considering processes such as the fragmentation impacts on biodiversity, the simulation of more realistic landscape structure should be preferred to spatial coincidence performance.

  20. Simple and Flexible Self-Reproducing Structures in Asynchronous Cellular Automata and Their Dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Lee, Jia; Yang, Rui-Long; Zhu, Qing-Sheng

    2013-03-01

    Self-reproduction on asynchronous cellular automata (ACAs) has attracted wide attention due to the evident artifacts induced by synchronous updating. Asynchronous updating, which allows cells to undergo transitions independently at random times, might be more compatible with the natural processes occurring at micro-scale, but the dark side of the coin is the increment in the complexity of an ACA in order to accomplish stable self-reproduction. This paper proposes a novel model of self-timed cellular automata (STCAs), a special type of ACAs, where unsheathed loops are able to duplicate themselves reliably in parallel. The removal of sheath cannot only allow various loops with more flexible and compact structures to replicate themselves, but also reduce the number of cell states of the STCA as compared to the previous model adopting sheathed loops [Y. Takada, T. Isokawa, F. Peper and N. Matsui, Physica D227, 26 (2007)]. The lack of sheath, on the other hand, often tends to cause much more complicated interactions among loops, when all of them struggle independently to stretch out their constructing arms at the same time. In particular, such intense collisions may even cause the emergence of a mess of twisted constructing arms in the cellular space. By using a simple and natural method, our self-reproducing loops (SRLs) are able to retract their arms successively, thereby disentangling from the mess successfully.

  1. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  2. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    PubMed

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle. PMID:27087101

  3. Knot invariants and the thermodynamics of lattice gas automata. Final technical report, April 15, 1991--July 14, 1995

    SciTech Connect

    Meyer, D.A.

    1995-12-01

    The goal of this project has been to build on the understanding of the connections between knot invariants, exactly solvable statistical mechanics models and discrete dynamical systems gained in earlier work, toward an answer to the question of how early and robust thermodynamic behavior appears in lattice gas automata. These investigations have recently become relevant, unanticipatedly, to crucial issues in quantum computation.

  4. Knot invariants and the thermodynamics of lattice gas automata. Technical progress report, 15 May 1991--14 April 1992

    SciTech Connect

    Meyer, D.A.

    1992-05-01

    The goal of this project is to build on the understanding of the connections between knot invariants, exactly solvable statistical mechanics models and discrete dynamical systems that we have gained in earlier work, toward an answer to the question of how early and robust thermodynamic behavior appears in lattice gas automata.

  5. FeynRules - Feynman rules made easy

    NASA Astrophysics Data System (ADS)

    Christensen, Neil D.; Duhr, Claude

    2009-09-01

    In this paper we present FeynRules, a new Mathematica package that facilitates the implementation of new particle physics models. After the user implements the basic model information ( e.g., particle content, parameters and Lagrangian), FeynRules derives the Feynman rules and stores them in a generic form suitable for translation to any Feynman diagram calculation program. The model can then be translated to the format specific to a particular Feynman diagram calculator via FeynRules translation interfaces. Such interfaces have been written for CalcHEP/CompHEP, FeynArts/FormCalc, MadGraph/MadEvent and Sherpa, making it possible to write a new model once and have it work in all of these programs. In this paper, we describe how to implement a new model, generate the Feynman rules, use a generic translation interface, and write a new translation interface. We also discuss the details of the FeynRules code.

  6. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations.

    PubMed

    Branke, Jürgen; Hildebrandt, Torsten; Scholz-Reiter, Bernd

    2015-01-01

    Dispatching rules are frequently used for real-time, online scheduling in complex manufacturing systems. Design of such rules is usually done by experts in a time consuming trial-and-error process. Recently, evolutionary algorithms have been proposed to automate the design process. There are several possibilities to represent rules for this hyper-heuristic search. Because the representation determines the search neighborhood and the complexity of the rules that can be evolved, a suitable choice of representation is key for a successful evolutionary algorithm. In this paper we empirically compare three different representations, both numeric and symbolic, for automated rule design: A linear combination of attributes, a representation based on artificial neural networks, and a tree representation. Using appropriate evolutionary algorithms (CMA-ES for the neural network and linear representations, genetic programming for the tree representation), we empirically investigate the suitability of each representation in a dynamic stochastic job shop scenario. We also examine the robustness of the evolved dispatching rules against variations in the underlying job shop scenario, and visualize what the rules do, in order to get an intuitive understanding of their inner workings. Results indicate that the tree representation using an improved version of genetic programming gives the best results if many candidate rules can be evaluated, closely followed by the neural network representation that already leads to good results for small to moderate computational budgets. The linear representation is found to be competitive only for extremely small computational budgets. PMID:24885679

  7. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response

    NASA Astrophysics Data System (ADS)

    Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-01

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between the

  8. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response

    SciTech Connect

    Tsukerblat, Boris E-mail: andrew.palii@uv.es; Palii, Andrew E-mail: andrew.palii@uv.es; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(II) + 2Ru(III)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between

  9. Simulation of changes in heavy metal contamination in farmland soils of a typical manufacturing center through logistic-based cellular automata modeling.

    PubMed

    Qiu, Menglong; Wang, Qi; Li, Fangbai; Chen, Junjian; Yang, Guoyi; Liu, Liming

    2016-01-01

    A customized logistic-based cellular automata (CA) model was developed to simulate changes in heavy metal contamination (HMC) in farmland soils of Dongguan, a manufacturing center in Southern China, and to discover the relationship between HMC and related explanatory variables (continuous and categorical). The model was calibrated through the simulation and validation of HMC in 2012. Thereafter, the model was implemented for the scenario simulation of development alternatives for HMC in 2022. The HMC in 2002 and 2012 was determined through soil tests and cokriging. Continuous variables were divided into two groups by odds ratios. Positive variables (odds ratios >1) included the Nemerow synthetic pollution index in 2002, linear drainage density, distance from the city center, distance from the railway, slope, and secondary industrial output per unit of land. Negative variables (odds ratios <1) included elevation, distance from the road, distance from the key polluting enterprises, distance from the town center, soil pH, and distance from bodies of water. Categorical variables, including soil type, parent material type, organic content grade, and land use type, also significantly influenced HMC according to Wald statistics. The relative operating characteristic and kappa coefficients were 0.91 and 0.64, respectively, which proved the validity and accuracy of the model. The scenario simulation shows that the government should not only implement stricter environmental regulation but also strengthen the remediation of the current polluted area to effectively mitigate HMC. PMID:26341341

  10. Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices

    NASA Astrophysics Data System (ADS)

    Anduwan, G. A.; Padgett, B. D.; Kuntzman, M.; Hendrichsen, M. K.; Sturzu, I.; Khatun, M.; Tougaw, P. D.

    2010-06-01

    We present fault tolerant properties of various quantum-dot cellular automata (QCA) devices. Effects of temperatures and dot displacements on the operation of the fundamental devices such as a binary wire, logical gates, a crossover, and an exclusive OR (XOR) have been investigated. A Hubbard-type Hamiltonian and intercellular Hartree approximation have been used for modeling, and a uniform random distribution has been implemented for the defect simulations. The breakdown characteristics of all the devices are almost the same except the crossover. Results show that the success of any device is significantly dependent on both the fabrication defects and temperatures. We have observed unique characteristic features of the crossover. It is highly sensitive to defects of any magnitude. Results show that the presence of a crossover in a XOR design is a major factor for its failure. The effects of temperature and defects in the crossover device are pronounced and have significant impact on larger and complicated QCA devices.

  11. Design of Efficient Full Adder in Quantum-Dot Cellular Automata

    PubMed Central

    Sen, Bibhash; Sikdar, Biplab K.

    2013-01-01

    Further downscaling of CMOS technology becomes challenging as it faces limitation of feature size reduction. Quantum-dot cellular automata (QCA), a potential alternative to CMOS, promises efficient digital design at nanoscale. Investigations on the reduction of QCA primitives (majority gates and inverters) for various adders are limited, and very few designs exist for reference. As a result, design of adders under QCA framework is gaining its importance in recent research. This work targets developing multi-layered full adder architecture in QCA framework based on five-input majority gate proposed here. A minimum clock zone (2 clock) with high compaction (0.01 μm2) for a full adder around QCA is achieved. Further, the usefulness of such design is established with the synthesis of high-level logic. Experimental results illustrate the significant improvements in design level in terms of circuit area, cell count, and clock compared to that of conventional design approaches. PMID:23844385

  12. A lattice gas automata model for heterogeneous chemical reactions at mineral surfaces and in pore networks

    SciTech Connect

    Wells, J.T. . Dept. of Geological Sciences); Janecky, D.R.; Travis, B.J. )

    1990-01-15

    A lattice gas automata (LGA) model is described, which couples solute transport with chemical reactions at mineral surfaces and in pore networks. Chemical reactions and transport are integrated into a FHP-I LGA code as a module so that the approach is readily transportable to other codes. Diffusion in a box calculations are compared to finite element Fickian diffusion results and provide an approach to quantifying space-time ratios of the models. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the LGA approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible. 20 refs., 8 figs.

  13. Learning to construct pushdown automata for accepting deterministic context-free languages

    NASA Astrophysics Data System (ADS)

    Sen, Sandip; Janakiraman, Janani

    1992-03-01

    Genetic algorithms (GAs) are a class of probabilistic optimization algorithms which utilize ideas from natural genetics. In this paper, we apply the genetic algorithm to a difficult machine learning problem, viz., to learn the description of pushdown automata (PDA) to accept a context-free language (CFL), given legal and illegal sentences of the language. Previous work has involved the use of GAs in learning descriptions for finite state machines for accepting regular languages. CFLs are known to properly include regular languages, and hence, the learning problem addressed here is of a greater complexity. The ability to accept context free languages can be applied to a number of practical problems like text processing, speech recognition, etc.

  14. Behavioral Modeling Based on Probabilistic Finite Automata: An Empirical Study †

    PubMed Central

    Tîrnăucă, Cristina; Montaña, José L.; Ontañón, Santiago; González, Avelino J.; Pardo, Luis M.

    2016-01-01

    Imagine an agent that performs tasks according to different strategies. The goal of Behavioral Recognition (BR) is to identify which of the available strategies is the one being used by the agent, by simply observing the agent’s actions and the environmental conditions during a certain period of time. The goal of Behavioral Cloning (BC) is more ambitious. In this last case, the learner must be able to build a model of the behavior of the agent. In both settings, the only assumption is that the learner has access to a training set that contains instances of observed behavioral traces for each available strategy. This paper studies a machine learning approach based on Probabilistic Finite Automata (PFAs), capable of achieving both the recognition and cloning tasks. We evaluate the performance of PFAs in the context of a simulated learning environment (in this case, a virtual Roomba vacuum cleaner robot), and compare it with a collection of other machine learning approaches. PMID:27347956

  15. Modelling the role of nucleation on recrystallization kinetics: A cellular automata approach

    NASA Astrophysics Data System (ADS)

    Tripathy, Haraprasanna; Rai, Arun Kumar; Hajra, Raj Narayan; Raju, Subramanian; Saibaba, Saroja

    2016-05-01

    In present study, a two dimensional cellular automata (CA) simulation has been carried out to study the effect of nucleation mode on the kinetics of recrystallization and microstructure evolution in an austenitic stainless steel. Two different nucleation modes i.e. site saturation and continuous nucleation with interface control growth mechanism has been considered in this modified CA algorithm. The observed Avrami exponent for both nucleation modes shows a better agreement with the theoretical predicted values. The site saturated nucleation mode shows a nearly consistent value of Avrami exponent, whereas in the case of continuous nucleation the exponent shows a little variation during transformation. The simulations in the present work can be applied for the optimization of microstructure and properties in austenitic steels.

  16. Real-time extended interface automata for software testing cases generation.

    PubMed

    Yang, Shunkun; Xu, Jiaqi; Man, Tianlong; Liu, Bin

    2014-01-01

    Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA) which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system. PMID:24892080

  17. Temperature Effects on Olive Fruit Fly Infestation in the FlySim Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Bruno, Vincenzo; Baldacchini, Valerio; di Gregorio, Salvatore

    FlySim is a Cellular Automata model developed for simulating infestation of olive fruit flies (Bactrocera Oleae) on olive (Olea europaea) groves. The flies move into the groves looking for mature olives where eggs are spawn. This serious agricultural problem is mainly tackled by using chemical agents at the first signs of the infestation, but organic productions with no or few chemicals are strongly requested by the market. Oil made with infested olives is poor in quality, nor olives are suitable for selling in stores. The FlySim model simulates the diffusion of flies looking for mature olives and the growing of flies due to atmospheric conditions. Foreseeing an infestation is the best way to prevent it and to reduce the need of chemicals in agriculture. In this work we investigated the effects of temperature on olive fruit flies and resulting infestation during late spring and summer.

  18. Ca-Pri a Cellular Automata Phenomenological Research Investigation: Simulation Results

    NASA Astrophysics Data System (ADS)

    Iannone, G.; Troisi, A.

    2013-05-01

    Following the introduction of a phenomenological cellular automata (CA) model capable to reproduce city growth and urban sprawl, we develop a toy model simulation considering a realistic framework. The main characteristic of our approach is an evolution algorithm based on inhabitants preferences. The control of grown cells is obtained by means of suitable functions which depend on the initial condition of the simulation. New born urban settlements are achieved by means of a logistic evolution of the urban pattern while urban sprawl is controlled by means of the population evolution function. In order to compare model results with a realistic urban framework we have considered, as the area of study, the island of Capri (Italy) in the Mediterranean Sea. Two different phases of the urban evolution on the island have been taken into account: a new born initial growth as induced by geographic suitability and the simulation of urban spread after 1943 induced by the population evolution after this date.

  19. Hologram authentication based on a secure watermarking algorithm using cellular automata.

    PubMed

    Hwang, Wen-Jyi; Chan, Hao-Tang; Cheng, Chau-Jern

    2014-09-20

    A secure watermarking algorithm for hologram authentication is presented in this paper. The algorithm exploits the noise-like feature of holograms to randomly embed a watermark in the domain of the discrete cosine transform with marginal degradation in transparency. The pseudo random number (PRN) generators based on a cellular automata algorithm with asymmetrical and nonlocal connections are used for the random hiding. Each client has its own unique PRN generators for enhancing the watermark security. In the proposed algorithm, watermarks are also randomly generated to eliminate the requirements of prestoring watermarks in the clients and servers. An authentication scheme is then proposed for the algorithm with random watermark generation and hiding. PMID:25322138

  20. Real-Time Extended Interface Automata for Software Testing Cases Generation

    PubMed Central

    Yang, Shunkun; Xu, Jiaqi; Man, Tianlong; Liu, Bin

    2014-01-01

    Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA) which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system. PMID:24892080

  1. A Multi-Teacher Learning Automata Computing Model for Graph Partitioning Problems

    NASA Astrophysics Data System (ADS)

    Ikebo, Shigeya; Qian, Fei; Hirata, Hironori

    Graph partitioning is an important problem that has extensive applications in many areas, including VLSI design, scientific computing, data mining, geographical information systems and job scheduling. The graph partitioning problem (GPP) is NP-complete. There are several heuristic algorithms developed finding a reasonably good resolution. The most famous partitioning methods are simulated annealing (SA) and mean field algorithm (MFA) known to produce good partition for a wide class of problems, and they are used quite extensively. However these methods are very expensive in time and very sensitive in parameters tuning methods. In this paper, a new parameter-free algorithm for GPP has been proposed. The algorithm has been constructed using the S-model learning automata with multi-teacher random environments. As shown in our experiments, the proposed algorithm has some advantages superior to SA, MFA and ParMeTiS.

  2. Evaluating a Novel Cellular Automata-Based Distributed Power Management Approach for Mobile Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali

    According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.

  3. Parallelism on the Intel 860 Hypercube:. Ising Magnets, Hydrodynamical Cellular Automata and Neural Networks

    NASA Astrophysics Data System (ADS)

    Kohring, G. A.; Stauffer, D.

    Geometric parallelization was tested on the Intel Hypercube with 32 MIMD processors of 1860 type, each with 16 Mbytes of distributed memory. We applied it to Ising models in two and three dimensions as well as to neural networks and two-dimensional hydrodynamic cellular automata. For system sizes suited to this machine, up to 60960*60960 and 1410*1410*1408 Ising spins, we found nearly hundred percent parallel efficiency in spite of the needed inter-processor communications. For small systems, the observed deviations from full efficiency were compared with the scaling concepts of Heermann and Burkitt and of Jakobs and Gerling. For Ising models, we determined the Glauber kinetic exponent z≃2.18 in two dimensions and confirmed the stretched exponential relaxation of the magnetization towards the spontaneous magnetization below Tc. For three dimensions we found z≃2.09 and simple exponential relaxation.

  4. Heterogeneous cellular automata model for straight-through bicycle traffic at signalized intersection

    NASA Astrophysics Data System (ADS)

    Ren, Gang; Jiang, Hang; Chen, Jingxu; Huang, Zhengfeng; Lu, Lili

    2016-06-01

    This paper presents a cellular automata (CA) model to elucidate the straight-through movements of the heterogeneous bicycle traffic at signalized intersection. The CA model, via simulation, particularly exposits the dispersion phenomenon existing in the straight-through bicycle traffic. The nonlane-based cycling behavior and diverse bicycle properties are also incorporated in the CA model. A series of simulations are conducted to reveal the travel process, bicycles interaction and influence of the dispersion phenomenon. The simulation results show that the dispersion phenomenon significantly results in more bicycles interactions in terms of spilling maneuvers and overtaking maneuvers during the straight-through movements. Meanwhile, the dispersion phenomenon could contribute to the efficiency of the bicycle traffic, and straight-through bicycles need less time to depart the intersection under the circumstance of dispersion phenomenon. The simulation results are able to provide specific guideline for reasonably utilizing the dispersion phenomenon to improve the operational efficiency of straight-through bicycle traffic.

  5. Emergence of density dynamics by surface interpolation in elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Seck-Tuoh-Mora, Juan Carlos; Medina-Marin, Joselito; Martínez, Genaro J.; Hernández-Romero, Norberto

    2014-04-01

    A classic problem in elementary cellular automata (ECAs) is the specification of numerical tools to represent and study their dynamical behaviour. Mean field theory and basins of attraction have been commonly used; however, although the first case gives the long term estimation of density, frequently it does not show an adequate approximation for the step-by-step temporal behaviour; mainly for non-trivial behaviour. In the second case, basins of attraction display a complete representation of the evolution of an ECA, but they are limited up to configurations of 32 cells; and for the same ECA, one can obtain tens of basins to analyse. This paper is devoted to represent the dynamics of density in ECAs for hundreds of cells using only two surfaces calculated by the nearest-neighbour interpolation. A diversity of surfaces emerges in this analysis. Consequently, we propose a surface and histogram based classification for periodic, chaotic and complex ECA.

  6. Conflict game in evacuation process: A study combining Cellular Automata model

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoping; Cheng, Yuan

    2011-03-01

    The game-theoretic approach is an essential tool in the research of conflicts of human behaviors. The aim of this study is to research crowd dynamic conflicts during evacuation processes. By combining a conflict game with a Cellular Automata model, the following factors such as rationality, herding effect and conflict cost are taken into the research on frequency of each strategy of evacuees, and evacuation time. Results from Monte Carlo simulations show that (i) in an emergency condition, rationality leads to “vying” behaviors and inhibited “polite” behavior; (ii) high herding causes a crowd of high rationality (especially in normal circumstances) to become more “vying” in behavior; (iii) the high-rationality crowd is shown to spend more evacuation time than a low-rationality crowd in emergency situations. This study provides a new perspective to understand conflicts in evacuation processes as well as the rationality of evacuees.

  7. Occupants’ behavior of going with the crowd based on cellular automata occupant evacuation model

    NASA Astrophysics Data System (ADS)

    Zhao, Daoliang; Yang, Lizhong; Li, Jian

    2008-06-01

    Occupant behavior which is very complex affects evacuation efficiency and route choice a lot. The psychology and behavior of going with the crowd is very common in daily life and also in occupant evacuation. In this paper, a two-dimensional Cellular Automata model is applied to simulate the process of evacuation considering the psychology of going with the crowd with different room structure or occupant density. The psychology of going with the crowd (the abbreviation is GWC) is classified into directional GWC ( DGWC) and spatial GWC ( SGWC). The influence of two such kinds of psychology on occupant evacuation is discussed in order to provide some useful guidance on the emergency management of evacuation.

  8. Scale-invariant cellular automata and self-similar Petri nets

    NASA Astrophysics Data System (ADS)

    Schaller, M.; Svozil, K.

    2009-05-01

    Two novel computing models based on an infinite tessellation of space-time are introduced. They consist of recursively coupled primitive building blocks. The first model is a scale-invariant generalization of cellular automata, whereas the second one utilizes self-similar Petri nets. Both models are capable of hypercomputations and can, for instance, “solve” the halting problem for Turing machines. These two models are closely related, as they exhibit a step-by-step equivalence for finite computations. On the other hand, they differ greatly for computations that involve an infinite number of building blocks: the first one shows indeterministic behavior, whereas the second one halts. Both models are capable of challenging our understanding of computability, causality, and space-time.

  9. Modeling of the competition life cycle using the software complex of cellular automata PyCAlab

    NASA Astrophysics Data System (ADS)

    Berg, D. B.; Beklemishev, K. A.; Medvedev, A. N.; Medvedeva, M. A.

    2015-11-01

    The aim of the work is to develop a numerical model of the life cycle of competition on the basis of software complex cellular automata PyCAlab. The model is based on the general patterns of growth of various systems in resource-limited settings. At examples it is shown that the period of transition from an unlimited growth of the market agents to the stage of competitive growth takes quite a long time and may be characterized as monotonic. During this period two main strategies of competitive selection coexist: 1) capture of maximum market space with any reasonable costs; 2) saving by reducing costs. The obtained results allow concluding that the competitive strategies of companies must combine two mentioned types of behavior, and this issue needs to be given adequate attention in the academic literature on management. The created numerical model may be used for market research when developing of the strategies for promotion of new goods and services.

  10. Time reverse automata patterns generated by Spencer-Brown's modulator: invertibility based on autopoiesis.

    PubMed

    Gunji, Y; Nakamura, T

    1991-01-01

    In the present paper the self-consistency or operational closure of autopoiesis is described by introducing time explicitly. It is an extension of Spencer-Brown's idea of time, however. The definition of time is segregated into two parts, corresponding to the syntax and semantics of language, respectively. In this context, time reversibility is defined by the formalization of the relationship between time and self-consistency. This idea has also been discussed in the context of designation and/or naming. Here we will discuss it in the context of cellular automata and explain the structure of one-to-many type mappings. Our approach is the first attempt to extend autopoietic systems in terms of dynamics. It illustrates how to introduce an autopoietic time which looks irreversible, but without the concept of entropy. PMID:1912385

  11. Monadic structures over an ordered universal random graph and finite automata

    NASA Astrophysics Data System (ADS)

    Dudakov, Sergey M.

    2011-10-01

    We continue the investigation of the expressive power of the language of predicate logic for finite algebraic systems embedded in infinite systems. This investigation stems from papers of M. A. Taitslin, M. Benedikt and L. Libkin, among others. We study the properties of a finite monadic system which can be expressed by formulae if such a system is embedded in a random graph that is totally ordered in an arbitrary way. The Büchi representation is used to connect monadic structures and formal languages. It is shown that, if one restricts attention to formulae that are -invariant in totally ordered random graphs, then these formulae correspond to finite automata. We show that =-invariant formulae expressing the properties of the embedded system itself can express only Boolean combinations of properties of the form `the cardinality of an intersection of one-place predicates belongs to one of finitely many fixed finite or infinite arithmetic progressions'.

  12. Non-probabilistic cellular automata-enhanced stereo vision simultaneous localization and mapping

    NASA Astrophysics Data System (ADS)

    Nalpantidis, Lazaros; Sirakoulis, Georgios Ch; Gasteratos, Antonios

    2011-11-01

    In this paper, a visual non-probabilistic simultaneous localization and mapping (SLAM) algorithm suitable for area measurement applications is proposed. The algorithm uses stereo vision images as its only input and processes them calculating the depth of the scenery, detecting occupied areas and progressively building a map of the environment. The stereo vision-based SLAM algorithm embodies a stereo correspondence algorithm that is tolerant to illumination differentiations, the robust scale- and rotation-invariant feature detection and matching speeded-up robust features method, a computationally effective v-disparity image calculation scheme, a novel map-merging module, as well as a sophisticated cellular automata-based enhancement stage. A moving robot equipped with a stereo camera has been used to gather image sequences and the system has autonomously mapped and measured two different indoor areas.

  13. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  14. Phonological reduplication in sign language: Rules rule

    PubMed Central

    Berent, Iris; Dupuis, Amanda; Brentari, Diane

    2014-01-01

    Productivity—the hallmark of linguistic competence—is typically attributed to algebraic rules that support broad generalizations. Past research on spoken language has documented such generalizations in both adults and infants. But whether algebraic rules form part of the linguistic competence of signers remains unknown. To address this question, here we gauge the generalization afforded by American Sign Language (ASL). As a case study, we examine reduplication (X→XX)—a rule that, inter alia, generates ASL nouns from verbs. If signers encode this rule, then they should freely extend it to novel syllables, including ones with features that are unattested in ASL. And since reduplicated disyllables are preferred in ASL, such a rule should favor novel reduplicated signs. Novel reduplicated signs should thus be preferred to nonreduplicative controls (in rating), and consequently, such stimuli should also be harder to classify as nonsigns (in the lexical decision task). The results of four experiments support this prediction. These findings suggest that the phonological knowledge of signers includes powerful algebraic rules. The convergence between these conclusions and previous evidence for phonological rules in spoken language suggests that the architecture of the phonological mind is partly amodal. PMID:24959158

  15. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  16. Cellular automata approach for the dynamics of HIV infection under antiretroviral therapies: The role of the virus diffusion

    NASA Astrophysics Data System (ADS)

    González, Ramón E. R.; de Figueirêdo, Pedro Hugo; Coutinho, Sérgio

    2013-10-01

    We study a cellular automata model to test the timing of antiretroviral therapy strategies for the dynamics of infection with human immunodeficiency virus (HIV). We focus on the role of virus diffusion when its population is included in previous cellular automata model that describes the dynamics of the lymphocytes cells population during infection. This inclusion allows us to consider the spread of infection by the virus-cell interaction, beyond that which occurs by cell-cell contagion. The results show an acceleration of the infectious process in the absence of treatment, but show better efficiency in reducing the risk of the onset of AIDS when combined antiretroviral therapies are used even with drugs of low effectiveness. Comparison of results with clinical data supports the conclusions of this study.

  17. Modifying Intramural Rules.

    ERIC Educational Resources Information Center

    Rokosz, Francis M.

    1981-01-01

    Standard sports rules can be altered to improve the game for intramural participants. These changes may improve players' attitudes, simplify rules for officials, and add safety features to a game. Specific rule modifications are given for volleyball, football, softball, floor hockey, basketball, and soccer. (JN)

  18. Two Rules for Communication

    ERIC Educational Resources Information Center

    Hamilton, Mark R.

    2005-01-01

    One of the most important and most difficult skills of academic leadership is communication. In this column, the author defines what he considers to be the two most important rules for communication. The first rule, which he terms the "Great American Rule," involves trusting that the person on the other end of the line or the fax or the e-mail is…

  19. A Better Budget Rule

    ERIC Educational Resources Information Center

    Dothan, Michael; Thompson, Fred

    2009-01-01

    Debt limits, interest coverage ratios, one-off balanced budget requirements, pay-as-you-go rules, and tax and expenditure limits are among the most important fiscal rules for constraining intertemporal transfers. There is considerable evidence that the least costly and most effective of such rules are those that focus directly on the rate of…

  20. A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits

    PubMed Central

    Moustafa, Ahmed; Younes, Ahmed; Hassan, Yasser F.

    2015-01-01

    Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs. PMID:26345412

  1. Using the automata processor for fast pattern recognition in high energy physics experiments—A proof of concept

    DOE PAGESBeta

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher; Guo, Deyuan; Wang, Ke; Zmuda, Ted

    2016-06-25

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  2. Using the automata processor for fast pattern recognition in high energy physics experiments. A proof of concept

    DOE PAGESBeta

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher; Guo, Deyuan; Wang, Ke; Zmuda, Ted

    2016-06-25

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  3. A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits.

    PubMed

    Moustafa, Ahmed; Younes, Ahmed; Hassan, Yasser F

    2015-01-01

    Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs. PMID:26345412

  4. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Early object rule acquisition.

    PubMed

    Pierce, D E

    1991-05-01

    The purpose of this study was to generate a grounded theory of early object rule acquisition. The grounded theory approach and computer coding were used to analyze videotaped samples of an infant's and a toddler's independent object play, which produced the categories descriptive of three primary types of object rules; rules of object properties, rules of object action, and rules of object affect. This occupational science theory offers potential for understanding the role of objects in human occupations, for development of instruments, and for applications in occupational therapy early intervention. PMID:2048625

  6. The forms of azeotropic rule for multidimensional diagrams of equilibrium distillation

    NASA Astrophysics Data System (ADS)

    Pisarenko, Yu. A.; Usol'tseva, O. O.; Cardona, C. A.; Gerard, O. T.

    2013-09-01

    Linear independent forms of the azeotropy rule applicable to diagrams of distillation (reaction distillation) and their fragments are established and presented as simple polyhedra of arbitrary dimensions.

  7. Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach

    NASA Astrophysics Data System (ADS)

    González, Ramón E. R.; Coutinho, Sérgio; Zorzenon dos Santos, Rita Maria; de Figueirêdo, Pedro Hugo

    2013-10-01

    The dynamics of human immunodeficiency virus infection under antiretroviral therapy is investigated using a cellular automata model where the effectiveness of each drug is self-adjusted by the concentration of CD4+ T infected cells present at each time step. The effectiveness of the drugs and the infected cell concentration at the beginning of treatment are the control parameters of the cell population’s dynamics during therapy. The model allows describing processes of mono and combined therapies. The dynamics that emerges from this model when considering combined antiretroviral therapies reproduces with fair qualitative agreement the phases and different time scales of the process. As observed in clinical data, the results reproduce the significant decrease in the population of infected cells and a concomitant increase of the population of healthy cells in a short timescale (weeks) after the initiation of treatment. Over long time scales, early treatment with potent drugs may lead to undetectable levels of infection. For late treatment or treatments starting with a low density of CD4+ T healthy cells it was observed that the treatment may lead to a steady state in which the T cell counts are above the threshold associated with the onset of AIDS. The results obtained are validated through comparison to available clinical trial data.

  8. Modelling approaches for coastal simulation based on cellular automata: the need and potential.

    PubMed

    Dearing, J A; Richmond, N; Plater, A J; Wolf, J; Prandle, D; Coulthard, T J

    2006-04-15

    The paper summarizes the theoretical and practical needs for cellular automata (CA)-type models in coastal simulation, and describes early steps in the development of a CA-based model for estuarine sedimentation. It describes the key approaches and formulae used for tidal, wave and sediment processes in a prototype integrated cellular model for coastal simulation designed to simulate estuary sedimentary responses during the tidal cycle in the short-term and climate driven changes in sea-level in the long-term. Results of simple model testing for both one-dimensional and two-dimensional models, and a preliminary parameterization for the Blackwater Estuary, UK, are shown. These reveal a good degree of success in using a CA-type model for water and sediment transport as a function of water level and wave height, but tidal current vectors are not effectively simulated in the approach used. The research confirms that a CA-type model for the estuarine sediment system is feasible, with a real prospect for coupling to existing catchment and nearshore beach/cliff models to produce integrated coastal simulators of sediment response to climate, sea-level change and human actions. PMID:16537155

  9. Automata and the susceptibility of the square lattice Ising model modulo powers of primes

    NASA Astrophysics Data System (ADS)

    Guttmann, A. J.; Maillard, J.-M.

    2015-11-01

    We study the full susceptibility of the Ising model modulo powers of primes. We find exact functional equations for the full susceptibility modulo these primes. Revisiting some lesser-known results on discrete finite automata, we show that these results can be seen as a consequence of the fact that, modulo 2 r , one cannot distinguish the full susceptibility from some simple diagonals of rational functions which reduce to algebraic functions modulo 2 r , and, consequently, satisfy exact functional equations modulo 2 r . We sketch a possible physical interpretation of these functional equations modulo 2 r as reductions of a master functional equation corresponding to infinite order symmetries such as the isogenies of elliptic curves. One relevant example is the Landen transformation which can be seen as an exact generator of the Ising model renormalization group. We underline the importance of studying a new class of functions corresponding to ratios of diagonals of rational functions: they reduce to algebraic functions modulo powers of primes and they may have solutions with natural boundaries. Dedicated to R J Baxter, for his 75th birthday.

  10. Cellular Automata Modeling of Decarburization of Metal Droplets in Basic Oxygen Steelmaking

    NASA Astrophysics Data System (ADS)

    Ankit; Kundu, T. K.

    2016-02-01

    In steelmaking, a supersonic jet is blown over the bath to refine the hot metal to produce steel. The refining process primarily consists of removal of impurities from the hot metal to a permissible level. The impact of oxygen jet on the surface of the hot metal bath results in ejection of droplets, which mix with slag and form emulsion. The formed emulsion plays an important role in refining reactions kinetics and understanding of this process is required todevelopimproved process control model for the steel industry. In this paper, cellular automata technique has been explored to simulate decarburization in emulsion caused by interfacial reactions between the metal droplets and slag. In the course of the work, a framework has also been developed to quantify the contribution of carbon monoxide, generated by decarburization, in bloating of metal droplets and formation of halo around the droplets. The model has incorporated diffusion and decarburization reaction based on probabilities to study the evolution of the system. Simulations with varying parameters have been performed and decarburization trends obtained are comparable with the experimentally determined data reported in literatures.

  11. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  12. Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates

    PubMed Central

    2012-01-01

    Molecular quantum-dot cellular automata (mQCA) has received considerable attention in nanoscience. Unlike the current-based molecular switches, where the digital data is represented by the on/off states of the switches, in mQCA devices, binary information is encoded in charge configuration within molecular redox centers. The mQCA paradigm allows high device density and ultra-low power consumption. Digital mQCA gates are the building blocks of circuits in this paradigm. Design and analysis of these gates require quantum chemical calculations, which are demanding in computer time and memory. Therefore, developing simple models to probe mQCA gates is of paramount importance. We derive a semi-classical model to study the steady-state output polarization of mQCA multidriver gates, directly from the two-state approximation in electron transfer theory. The accuracy and validity of this model are analyzed using full quantum chemistry calculations. A complete set of logic gates, including inverters and minority voters, are implemented to provide an appropriate test bench in the two-dot mQCA regime. We also briefly discuss how the QCADesigner tool could find its application in simulation of mQCA devices. PMID:22647345

  13. Cellular automata simulation of grain growth in three dimensions based on the lowest-energy principle

    NASA Astrophysics Data System (ADS)

    Ding, H. L.; He, Y. Z.; Liu, L. F.; Ding, W. J.

    2006-08-01

    The microstructure and morphology evolution of grain growth were studied by 3D simulation using the cellular automata (CA) model based on the lowest-energy principle. In the present CA model, the transition of cells during the grain growth has a typical physical meaning due to the application of the lowest-energy principle. The results show that the kinetics of grain growth follows Burke equation with the growth exponent as 2. The average number of grain faces is 13.6 and the highest frequency of grain faces is 10 faces. The grain size distribution follows Weibull function. The relationship between the number of faces of a grain and the average number of faces of its adjacent grains follows the Aboav-Weaire law. There is a correlation between the topologies of the simulated 2D and 3D grain growth. The average number of sides per face for all grains is 5.65 and the average number of sides per face is about equal to 6 when the grain aces is larger than 35.

  14. Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians.

    PubMed

    Baetens, Jan M; De Baets, Bernard

    2010-09-01

    Originally, cellular automata (CA) have been defined upon regular tessellations of the n-dimensional Euclidean space, while CA on irregular tessellations have received only little attention from the scientific community, notwithstanding serious shortcomings are associated with the former manner of subdividing Rn. In this paper we present a profound phenomenological study of two-state, two-dimensional irregular CA from a dynamical systems viewpoint. We opted to exploit properly defined quantitative measures instead of resorting to qualitative methods for discriminating between behavioral classes. As such, we employ Lyapunov exponents, measuring the divergence rate of close trajectories in phase space, and Jacobians, formulated using Boolean derivatives and expressing the sensitivity of a cellular automaton to its inputs. Both are stated for two-state CA on irregular tessellations, enabling us to characterize these discrete dynamical systems, and advancing us to propose a classification scheme for this CA family. In addition, a relationship between these quantitative measures is established in extension of the insights already developed for the classical CA paradigm. Finally, we discuss the repercussions on the CA dynamics that arise when the geometric variability of the spatial entities is taken into account during the CA simulation. PMID:20887052

  15. A cellular automata model for avascular solid tumor growth under the effect of therapy

    NASA Astrophysics Data System (ADS)

    Reis, E. A.; Santos, L. B. L.; Pinho, S. T. R.

    2009-04-01

    Tumor growth has long been a target of investigation within the context of mathematical and computer modeling. The objective of this study is to propose and analyze a two-dimensional stochastic cellular automata model to describe avascular solid tumor growth, taking into account both the competition between cancer cells and normal cells for nutrients and/or space and a time-dependent proliferation of cancer cells. Gompertzian growth, characteristic of some tumors, is described and some of the features of the time-spatial pattern of solid tumors, such as compact morphology with irregular borders, are captured. The parameter space is studied in order to analyze the occurrence of necrosis and the response to therapy. Our findings suggest that transitions exist between necrotic and non-necrotic phases (no-therapy cases), and between the states of cure and non-cure (therapy cases). To analyze cure, the control and order parameters are, respectively, the highest probability of cancer cell proliferation and the probability of the therapeutic effect on cancer cells. With respect to patterns, it is possible to observe the inner necrotic core and the effect of the therapy destroying the tumor from its outer borders inwards.

  16. Hydration in discrete water. A mean field, cellular automata based approach to calculating hydration free energies.

    PubMed

    Setny, Piotr; Zacharias, Martin

    2010-07-01

    A simple, semiheuristic solvation model based on a discrete, BCC grid of solvent cells has been presented. The model utilizes a mean field approach for the calculation of solute-solvent and solvent-solvent interaction energies and a cellular automata based algorithm for the prediction of solvent distribution in the presence of solute. The construction of the effective Hamiltonian for a solvent cell provides an explicit coupling between orientation-dependent water-solute electrostatic interactions and water-water hydrogen bonding. The water-solute dispersion interaction is also explicitly taken into account. The model does not depend on any arbitrary definition of the solute-solvent interface nor does it use a microscopic surface tension for the calculation of nonpolar contributions to the hydration free energies. It is demonstrated that the model provides satisfactory predictions of hydration free energies for drug-like molecules and is able to reproduce the distribution of buried water molecules within protein structures. The model is computationally efficient and is applicable to arbitrary molecules described by atomistic force field. PMID:20552986

  17. Enabling model checking for collaborative process analysis: from BPMN to `Network of Timed Automata'

    NASA Astrophysics Data System (ADS)

    Mallek, Sihem; Daclin, Nicolas; Chapurlat, Vincent; Vallespir, Bruno

    2015-04-01

    Interoperability is a prerequisite for partners involved in performing collaboration. As a consequence, the lack of interoperability is now considered a major obstacle. The research work presented in this paper aims to develop an approach that allows specifying and verifying a set of interoperability requirements to be satisfied by each partner in the collaborative process prior to process implementation. To enable the verification of these interoperability requirements, it is necessary first and foremost to generate a model of the targeted collaborative process; for this research effort, the standardised language BPMN 2.0 is used. Afterwards, a verification technique must be introduced, and model checking is the preferred option herein. This paper focuses on application of the model checker UPPAAL in order to verify interoperability requirements for the given collaborative process model. At first, this step entails translating the collaborative process model from BPMN into a UPPAAL modelling language called 'Network of Timed Automata'. Second, it becomes necessary to formalise interoperability requirements into properties with the dedicated UPPAAL language, i.e. the temporal logic TCTL.

  18. Resolution of Infinite-Loop in Hyperincursive and Nonlocal Cellular Automata: Introduction to Slime Mold Computing

    NASA Astrophysics Data System (ADS)

    Aono, Masashi; Gunji, Yukio-Pegio

    2004-08-01

    How can non-algorithmic/non-deterministic computational syntax be computed? "The hyperincursive system" introduced by Dubois is an anticipatory system embracing the contradiction/uncertainty. Although it may provide a novel viewpoint for the understanding of complex systems, conventional digital computers cannot run faithfully as the hyperincursive computational syntax specifies, in a strict sense. Then is it an imaginary story? In this paper we try to argue that it is not. We show that a model of complex systems "Elementary Conflictable Cellular Automata (ECCA)" proposed by Aono and Gunji is embracing the hyperincursivity and the nonlocality. ECCA is based on locality-only type settings basically as well as other CA models, and/but at the same time, each cell is required to refer to globality-dominant regularity. Due to this contradictory locality-globality loop, the time evolution equation specifies that the system reaches the deadlock/infinite-loop. However, we show that there is a possibility of the resolution of these problems if the computing system has parallel and/but non-distributed property like an amoeboid organism. This paper is an introduction to "the slime mold computing" that is an attempt to cultivate an unconventional notion of computation.

  19. Cellular automata segmentation of the boundary between the compacta of vertebral bodies and surrounding structures

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Nimsky, Christopher

    2016-03-01

    Due to the aging population, spinal diseases get more and more common nowadays; e.g., lifetime risk of osteoporotic fracture is 40% for white women and 13% for white men in the United States. Thus the numbers of surgical spinal procedures are also increasing with the aging population and precise diagnosis plays a vital role in reducing complication and recurrence of symptoms. Spinal imaging of vertebral column is a tedious process subjected to interpretation errors. In this contribution, we aim to reduce time and error for vertebral interpretation by applying and studying the GrowCut - algorithm for boundary segmentation between vertebral body compacta and surrounding structures. GrowCut is a competitive region growing algorithm using cellular automata. For our study, vertebral T2-weighted Magnetic Resonance Imaging (MRI) scans were first manually outlined by neurosurgeons. Then, the vertebral bodies were segmented in the medical images by a GrowCut-trained physician using the semi-automated GrowCut-algorithm. Afterwards, results of both segmentation processes were compared using the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD) which yielded to a DSC of 82.99+/-5.03% and a HD of 18.91+/-7.2 voxel, respectively. In addition, the times have been measured during the manual and the GrowCut segmentations, showing that a GrowCutsegmentation - with an average time of less than six minutes (5.77+/-0.73) - is significantly shorter than a pure manual outlining.

  20. Modelling the shrub encroachment in a grassland with a Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Caracciolo, D.; Noto, L. V.; Istanbulluoglu, E.

    2014-09-01

    Arid and semi-arid grasslands of southwestern North America have changed dramatically over the last 150 years as a result of shrub encroachment, i.e. the increase in density, cover and biomass of indigenous shrubby plants in grasslands. Numerous studies have documented the expansion of shrublands in the southwestern American grasslands; in particular shrub encroachment has occurred strongly in part of the northern Chihuahuan desert since 1860. This encroachment has been simulated using an ecohydrological Cellular Automata model, CATGraSS. It is a spatially distributed model driven by spatially explicit irradiance and runs on a fine-resolution gridded domain. Plant competition is modelled by keeping track of mortality and establishment of plants; both are calculated probabilistically based on soil moisture stress. For this study CATGraSS has been improved with a stochastic fire module and a grazing function. The model has been implemented in a small area in Sevilleta National Wildlife Refuge (SNWR), characterized by two vegetation types (grass savanna and creosote bush shrub), considering as encroachment causes the fire return period increase, the grazing increase, the seed dispersal caused by animals, the role of wind direction and plant type competition. The model is able to reproduce the encroachment that has occurred in SNWR, simulating an increase of the shrub from 2% in 1860 to the current shrub percentage, 42%, and highlighting among the most influential factors the reduced fire frequency and the increased grazing intensity.

  1. Nanopatterned graphene quantum dots as building blocks for quantum cellular automata

    NASA Astrophysics Data System (ADS)

    Wang, Z. F.; Liu, Feng

    2011-10-01

    Quantum cellular automata (QCA) is an innovative approach that incorporates quantum entities in classical computation processes. Binary information is encoded in different charge states of the QCA cells and transmitted by the inter-cell Coulomb interaction. Despite the promise of QCA, however, it remains a challenge to identify suitable building blocks for the construction of QCA. Graphene has recently attracted considerable attention owing to its remarkable electronic properties. The planar structure makes it feasible to pattern the whole device architecture in one sheet, compatible with the existing electronics technology. Here, we demonstrate theoretically a new QCA architecture built upon nanopatterned graphene quantum dots (GQDs). Using the tight-binding model, we determine the phenomenological cell parameters and cell-cell response functions of the GQD-QCA to characterize its performance. Furthermore, a GQD-QCA architecture is designed to demonstrate the functionalities of a fundamental majority gate. Our results show great potential in manufacturing high-density ultrafast QCA devices from a single nanopatterned graphene sheet.

  2. A scale-invariant cellular-automata model for distributed seismicity

    NASA Technical Reports Server (NTRS)

    Barriere, Benoit; Turcotte, Donald L.

    1991-01-01

    In the standard cellular-automata model for a fault an element of stress is randomly added to a grid of boxes until a box has four elements, these are then redistributed to the adjacent boxes on the grid. The redistribution can result in one or more of these boxes having four or more elements in which case further redistributions are required. On the average added elements are lost from the edges of the grid. The model is modified so that the boxes have a scale-invariant distribution of sizes. The objective is to model a scale-invariant distribution of fault sizes. When a redistribution from a box occurs it is equivalent to a characteristic earthquake on the fault. A redistribution from a small box (a foreshock) can trigger an instability in a large box (the main shock). A redistribution from a large box always triggers many instabilities in the smaller boxes (aftershocks). The frequency-size statistics for both main shocks and aftershocks satisfy the Gutenberg-Richter relation with b = 0.835 for main shocks and b = 0.635 for aftershocks. Model foreshocks occur 28 percent of the time.

  3. Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates.

    PubMed

    Rahimi, Ehsan; Nejad, Shahram Mohammad

    2012-01-01

    Molecular quantum-dot cellular automata (mQCA) has received considerable attention in nanoscience. Unlike the current-based molecular switches, where the digital data is represented by the on/off states of the switches, in mQCA devices, binary information is encoded in charge configuration within molecular redox centers. The mQCA paradigm allows high device density and ultra-low power consumption. Digital mQCA gates are the building blocks of circuits in this paradigm. Design and analysis of these gates require quantum chemical calculations, which are demanding in computer time and memory. Therefore, developing simple models to probe mQCA gates is of paramount importance. We derive a semi-classical model to study the steady-state output polarization of mQCA multidriver gates, directly from the two-state approximation in electron transfer theory. The accuracy and validity of this model are analyzed using full quantum chemistry calculations. A complete set of logic gates, including inverters and minority voters, are implemented to provide an appropriate test bench in the two-dot mQCA regime. We also briefly discuss how the QCADesigner tool could find its application in simulation of mQCA devices. PMID:22647345

  4. Testing cellular automata interpretation of quantum mechanics in carbon nanotubes and superconductivity

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello; Perali, Andrea

    2015-07-01

    Cellular Automata (CA) are represented at an effective level as intrinsic periodic phenomena, classical in the essence, reproducing the complete coherence (perfect recurrences) associated to pure quantum behaviours in condensed matter systems. By means of this approach it is possible to obtain a consistent, novel derivation of SuperConductivity (SC) essential phenomenology and of the peculiar quantum behaviour of electrons in graphene physics and Carbon Nanotubes (CNs), in which electrons cyclic dynamics simulate CA. In this way we will derive, from classical arguments, the essential electronic properties of these — or similar — graphene systems, such as energy bands and density of states. Similarly, in the second part of the paper, we will derive the fundamental phenomenology of SC by means of fundamental quantum dynamics and geometrical considerations, directly derived from the CA evolution law, rather than on empirical microscopical characteristics of the materials as in the standard approaches. This allows for a novel heuristic interpretation of the related gauge symmetry breaking and of the occurrence of high temperature superconductivity by means of simple considerations on the competition of quantum recurrence and thermal noise.

  5. Cellular automata-based modelling and simulation of biofilm structure on multi-core computers.

    PubMed

    Skoneczny, Szymon

    2015-01-01

    The article presents a mathematical model of biofilm growth for aerobic biodegradation of a toxic carbonaceous substrate. Modelling of biofilm growth has fundamental significance in numerous processes of biotechnology and mathematical modelling of bioreactors. The process following double-substrate kinetics with substrate inhibition proceeding in a biofilm has not been modelled so far by means of cellular automata. Each process in the model proposed, i.e. diffusion of substrates, uptake of substrates, growth and decay of microorganisms and biofilm detachment, is simulated in a discrete manner. It was shown that for flat biofilm of constant thickness, the results of the presented model agree with those of a continuous model. The primary outcome of the study was to propose a mathematical model of biofilm growth; however a considerable amount of focus was also placed on the development of efficient algorithms for its solution. Two parallel algorithms were created, differing in the way computations are distributed. Computer programs were created using OpenMP Application Programming Interface for C++ programming language. Simulations of biofilm growth were performed on three high-performance computers. Speed-up coefficients of computer programs were compared. Both algorithms enabled a significant reduction of computation time. It is important, inter alia, in modelling and simulation of bioreactor dynamics. PMID:26606102

  6. A solution to the biodiversity paradox by logical deterministic cellular automata.

    PubMed

    Kalmykov, Lev V; Kalmykov, Vyacheslav L

    2015-06-01

    The paradox of biological diversity is the key problem of theoretical ecology. The paradox consists in the contradiction between the competitive exclusion principle and the observed biodiversity. The principle is important as the basis for ecological theory. On a relatively simple model we show a mechanism of indefinite coexistence of complete competitors which violates the known formulations of the competitive exclusion principle. This mechanism is based on timely recovery of limiting resources and their spatio-temporal allocation between competitors. Because of limitations of the black-box modeling there was a problem to formulate the exclusion principle correctly. Our white-box multiscale model of two-species competition is based on logical deterministic individual-based cellular automata. This approach provides an automatic deductive inference on the basis of a system of axioms, and gives a direct insight into mechanisms of the studied system. It is one of the most promising methods of artificial intelligence. We reformulate and generalize the competitive exclusion principle and explain why this formulation provides a solution of the biodiversity paradox. In addition, we propose a principle of competitive coexistence. PMID:25980478

  7. A cellular automata-based model of Earth's magnetosphere in relation with Dst index

    NASA Astrophysics Data System (ADS)

    Banerjee, Adrija; Bej, Amaresh; Chatterjee, T. N.

    2015-05-01

    The disturbance storm time (Dst) index, a measure of the strength of a geomagnetic storm, is difficult to predict by some conventional methods due to its abstract structural complexity and stochastic nature though a timely geomagnetic storm warning could save society from huge economic losses and hours of related hazards. Self-organized criticality and the concept of many-body interactive nonlinear system can be considered an explanation for the fundamental mechanism of the nonstationary geomagnetic disturbances controlled by the perturbed interplanetary conditions. The present paper approaches this natural phenomena by a sandpile-like cellular automata-based model of magnetosphere, taking the real-time solar wind and both the direction and magnitude of the B-Z component of the real-time interplanetary magnetic field as the system-controlling input parameters. Moreover, three new parameters had been introduced in the model which modify the functional relationships between the variables and regulate the dynamical behavior of the model to closely approximate the actual geomagnetic fluctuations. The statistical similarities between the dynamics of the model and that of the actual Dst index series during the entire 22nd solar cycle signifies the acceptability of the model.

  8. The Cellular Automata for modelling of spreading of lava flow on the earth surface

    NASA Astrophysics Data System (ADS)

    Jarna, A.

    2012-12-01

    Volcanic risk assessment is a very important scientific, political and economic issue in densely populated areas close to active volcanoes. Development of effective tools for early prediction of a potential volcanic hazard and management of crises are paramount. However, to this date volcanic hazard maps represent the most appropriate way to illustrate the geographical area that can potentially be affected by a volcanic event. Volcanic hazard maps are usually produced by mapping out old volcanic deposits, however dynamic lava flow simulation gaining popularity and can give crucial information to corroborate other methodologies. The methodology which is used here for the generation of volcanic hazard maps is based on numerical simulation of eruptive processes by the principle of Cellular Automata (CA). The python script is integrated into ArcToolbox in ArcMap (ESRI) and the user can select several input and output parameters which influence surface morphology, size and shape of the flow, flow thickness, flow velocity and length of lava flows. Once the input parameters are selected, the software computes and generates hazard maps on the fly. The results can be exported to Google Maps (.klm format) to visualize the results of the computation. For validation of the simulation code are used data from a real lava flow. Comparison of the simulation results with real lava flows mapped out from satellite images will be presented.

  9. The cellular automata for modelling of spreading of lava flow on the earth surface

    NASA Astrophysics Data System (ADS)

    Jarna, Alexandra; Cirbus, Juraj

    2013-04-01

    Volcanic risk assessment is a very important scientific, political and economic issue in densely populated areas close to active volcanoes. Development of effective tools for early prediction of a potential volcanic hazard and management of crises are paramount. However, to this date volcanic hazard maps represent the most appropriate way to illustrate the geographical area that can potentially be affected by a volcanic event. Volcanic hazard maps are usually produced by mapping out old volcanic deposits, however dynamic lava flow simulation gaining popularity and can give crucial information to corroborate other methodologies. The methodology which is used here for the generation of volcanic hazard maps is based on numerical simulation of eruptive processes by the principle of Cellular Automata (CA). The python script is integrated into ArcToolbox in ArcMap (ESRI) and the user can select several input and output parameters which influence surface morphology, size and shape of the flow, flow thickness, flow velocity and length of lava flows. Once the input parameters are selected, the software computes and generates hazard maps on the fly. The results can be exported to Google Maps (.klm format) to visualize the results of the computation. For validation of the simulation code are used data from a real lava flow.

  10. Firing patterns in a random network cellular automata model of the brain

    NASA Astrophysics Data System (ADS)

    Acedo, L.; Lamprianidou, E.; Moraño, J.-A.; Villanueva-Oller, J.; Villanueva, R.-J.

    2015-10-01

    One of the main challenges in the simulation of even reduced areas of the brain is the presence of a large number of neurons and a large number of connections among them. Even from a theoretical point of view, the behaviour of dynamical models of complex networks with high connectivity is unknown, precisely because the cost of computation is still unaffordable and it will likely be in the near future. In this paper we discuss the simulation of a cellular automata network model of the brain including up to one million sites with a maximum average of three hundred connections per neuron. This level of connectivity was achieved thanks to a distributed computing environment based on the BOINC (Berkeley Open Infrastructure for Network Computing) platform. Moreover, in this work we consider the interplay among excitatory neurons (which induce the excitation of their neighbours) and inhibitory neurons (which prevent resting neurons from firing and induce firing neurons to pass to the refractory state). Our objective is to classify the normal (noisy but asymptotically constant patterns) and the abnormal (high oscillations with spindle-like behaviour) patterns of activity in the model brain and their stability and parameter ranges in order to determine the role of excitatory and inhibitory compensatory effects in healthy and diseased individuals.

  11. Periodic forcing in a three-level cellular automata model for a vector-transmitted disease

    NASA Astrophysics Data System (ADS)

    Santos, L. B. L.; Costa, M. C.; Pinho, S. T. R.; Andrade, R. F. S.; Barreto, F. R.; Teixeira, M. G.; Barreto, M. L.

    2009-07-01

    A periodically forced two-dimensional cellular automata model is used to reproduce and analyze the complex spatiotemporal patterns observed in the transmission of vector infectious diseases. The system, which comprises three population levels, is introduced to describe complex features of the dynamics of the vector-transmitted dengue epidemics, known to be very sensitive to seasonal variables. The three coupled levels represent the human, the adult, and immature vector populations. The dynamics includes external seasonality forcing, human and mosquito mobility, and vector control effects. The model parameters, even if bounded to well-defined intervals obtained from reported data, can be selected to reproduce specific epidemic outbursts. In the current study, explicit results are obtained by comparison with actual data retrieved from the time series of dengue epidemics in two cities in Brazil. The results show fluctuations that are not captured by mean-field models. It also reveals the qualitative behavior of the spatiotemporal patterns of the epidemics. In the extreme situation of the absence of external periodic drive, the model predicts a completely distinct long-time evolution. The model is robust in the sense that it is able to reproduce the time series of dengue epidemics of different cities, provided that the forcing term takes into account the local rainfall modulation. Finally, an analysis is provided of the effect of the dependence between epidemics threshold and vector control actions, both in the presence and absence of human mobility factor.

  12. Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling

    NASA Astrophysics Data System (ADS)

    Lent, Craig S.; Liu, Mo; Lu, Yuhui

    2006-08-01

    We examine power dissipation in different clocking schemes for molecular quantum-dot cellular automata (QCA) circuits. 'Landauer clocking' involves the adiabatic transition of a molecular cell from the null state to an active state carrying data. Cell layout creates devices which allow data in cells to interact and thereby perform useful computation. We perform direct solutions of the equation of motion for the system in contact with the thermal environment and see that Landauer's Principle applies: one must dissipate an energy of at least kBT per bit only when the information is erased. The ideas of Bennett can be applied to keep copies of the bit information by echoing inputs to outputs, thus embedding any logically irreversible circuit in a logically reversible circuit, at the cost of added circuit complexity. A promising alternative which we term 'Bennett clocking' requires only altering the timing of the clocking signals so that bit information is simply held in place by the clock until a computational block is complete, then erased in the reverse order of computation. This approach results in ultralow power dissipation without additional circuit complexity. These results offer a concrete example in which to consider recent claims regarding the fundamental limits of binary logic scaling.

  13. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion

    NASA Astrophysics Data System (ADS)

    Jokar Arsanjani, Jamal; Helbich, Marco; Kainz, Wolfgang; Darvishi Boloorani, Ali

    2013-04-01

    This research analyses the suburban expansion in the metropolitan area of Tehran, Iran. A hybrid model consisting of logistic regression model, Markov chain (MC), and cellular automata (CA) was designed to improve the performance of the standard logistic regression model. Environmental and socio-economic variables dealing with urban sprawl were operationalised to create a probability surface of spatiotemporal states of built-up land use for the years 2006, 2016, and 2026. For validation, the model was evaluated by means of relative operating characteristic values for different sets of variables. The approach was calibrated for 2006 by cross comparing of actual and simulated land use maps. The achieved outcomes represent a match of 89% between simulated and actual maps of 2006, which was satisfactory to approve the calibration process. Thereafter, the calibrated hybrid approach was implemented for forthcoming years. Finally, future land use maps for 2016 and 2026 were predicted by means of this hybrid approach. The simulated maps illustrate a new wave of suburban development in the vicinity of Tehran at the western border of the metropolis during the next decades.

  14. Cellular automata modelling of the cementation process of the Turin (Italy) subsoil conglomerate (``ceppo''),based on a three-dimensional geological model of the city subsoil.

    NASA Astrophysics Data System (ADS)

    Bello, S.; de Rienzo, F.; Nardi, G.

    2003-04-01

    The Turin (Italy) subsoil is mainly made up by alluvial gravels and sands (Pleistocene), characterised by high cementation degree variability, covered by a thin thickness of loess. These alluvial sediments, of about 40 m deep, overlay lacustrine clays (Villafranchiano), locally heteropic with marine sandstones (Pliocene). The reconstruction of the areal distribution of cementation phenomena of the Turin urban subsoil is of fundamental importance within the context of planning and carrying out works in the city subsoil, as well as for preliminary evaluating the stability of such underground works. Moreover, analyses of spatial distribution of soil cementation could be usefully applied for estimating the propagation of waste-polluted fluids, and for reducing either the natural or human-induced risk, related to the overworking of urban area subsoils. The development of mathematical models commonly needs to deal with several interacting physical and chemical phenomena. A deterministic Cellular Automata (CA) model for the evaluation of cementation processes in the conglomerates of the Turin urban subsoil has recently been developed, by using a three-dimensional geological model of the city subsoil based on boreholes data. The model is able to simulate the spatial distribution of the cementation process in the studied area: it has been derived from two pre-existing CA models, i.e. SCAVATU and CABOTO. Geological, mineralogical-petrographic and sedimentological studies of the soil cementation, and a chemical-physical study of the carbonatic equilibria, have first been carried out. These studies pointed out the presence of meniscus cements (which suggest a meteoric diagenesis) and gave fundamental cues for the development of base hypothesis on the genesis of cementation in the considered area. A macroscopic Cellular Automata model has accordingly been developed, in order to simulate the principal phenomena which take place during the cementation process. The model has a

  15. Rules, culture, and fitness.

    PubMed

    Baum, W M

    1995-01-01

    Behavior analysis risks intellectual isolation unless it integrates its explanations with evolutionary theory. Rule-governed behavior is an example of a topic that requires an evolutionary perspective for a full understanding. A rule may be defined as a verbal discriminative stimulus produced by the behavior of a speaker under the stimulus control of a long-term contingency between the behavior and fitness. As a discriminative stimulus, the rule strengthens listener behavior that is reinforced in the short run by socially mediated contingencies, but which also enters into the long-term contingency that enhances the listener's fitness. The long-term contingency constitutes the global context for the speaker's giving the rule. When a rule is said to be "internalized," the listener's behavior has switched from short- to long-term control. The fitness-enhancing consequences of long-term contingencies are health, resources, relationships, or reproduction. This view ties rules both to evolutionary theory and to culture. Stating a rule is a cultural practice. The practice strengthens, with short-term reinforcement, behavior that usually enhances fitness in the long run. The practice evolves because of its effect on fitness. The standard definition of a rule as a verbal statement that points to a contingency fails to distinguish between a rule and a bargain ("If you'll do X, then I'll do Y"), which signifies only a single short-term contingency that provides mutual reinforcement for speaker and listener. In contrast, the giving and following of a rule ("Dress warmly; it's cold outside") can be understood only by reference also to a contingency providing long-term enhancement of the listener's fitness or the fitness of the listener's genes. Such a perspective may change the way both behavior analysts and evolutionary biologists think about rule-governed behavior. PMID:22478201

  16. Strategy as simple rules.

    PubMed

    Eisenhardt, K M; Sull, D N

    2001-01-01

    The success of Yahoo!, eBay, Enron, and other companies that have become adept at morphing to meet the demands of changing markets can't be explained using traditional thinking about competitive strategy. These companies have succeeded by pursuing constantly evolving strategies in market spaces that were considered unattractive according to traditional measures. In this article--the third in an HBR series by Kathleen Eisenhardt and Donald Sull on strategy in the new economy--the authors ask, what are the sources of competitive advantage in high-velocity markets? The secret, they say, is strategy as simple rules. The companies know that the greatest opportunities for competitive advantage lie in market confusion, but they recognize the need for a few crucial strategic processes and a few simple rules. In traditional strategy, advantage comes from exploiting resources or stable market positions. In strategy as simple rules, advantage comes from successfully seizing fleeting opportunities. Key strategic processes, such as product innovation, partnering, or spinout creation, place the company where the flow of opportunities is greatest. Simple rules then provide the guidelines within which managers can pursue such opportunities. Simple rules, which grow out of experience, fall into five broad categories: how- to rules, boundary conditions, priority rules, timing rules, and exit rules. Companies with simple-rules strategies must follow the rules religiously and avoid the temptation to change them too frequently. A consistent strategy helps managers sort through opportunities and gain short-term advantage by exploiting the attractive ones. In stable markets, managers rely on complicated strategies built on detailed predictions of the future. But when business is complicated, strategy should be simple. PMID:11189455

  17. Extending Linear Models to Non-Linear Contexts: An In-Depth Study about Two University Students' Mathematical Productions

    ERIC Educational Resources Information Center

    Esteley, Cristina; Villarreal, Monica; Alagia, Humberto

    2004-01-01

    This research report presents a study of the work of agronomy majors in which an extension of linear models to non-linear contexts can be observed. By linear models we mean the model y=a.x+b, some particular representations of direct proportionality and the diagram for the rule of three. Its presence and persistence in different types of problems…

  18. The 5-Second Rule

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes The 5-Second Rule KidsHealth > For Kids > The 5-Second Rule Print A A A Text Size en español La regla de los 5 segundos Almost everyone has dropped some food on ...

  19. Are Intuitive Rules Universal?

    ERIC Educational Resources Information Center

    Stavy, Ruth; Babai, Reuven; Tsamir, Pessia; Tirosh, Dina; Lin, Fou-Lai; McRobbie, Campbell

    2006-01-01

    This paper presents a cross-cultural study on the intuitive rules theory. The study was conducted in Australia (with aboriginal children) in Taiwan and in Israel. Our findings indicate that Taiwanese and Australian Aboriginal students, much like Israeli ones, provided incorrect responses, most of which were in line with the intuitive rules. Also,…

  20. Beyond Rules to Guidelines

    ERIC Educational Resources Information Center

    Gartrell, Dan

    2010-01-01

    Rules are not helpful in the adult-child community. They are usually stated in the negative: "No," "Don't," etc. The way they are worded, adults seem to expect children to break them. Even when they are not totally negative, like "Be nice to your friends," rules have an "or else" moral implication that adults carry around in their heads. When…

  1. UNDERSTANDING THE SLIDE RULE.

    ERIC Educational Resources Information Center

    JOHNSON, RONALD E.; AND OTHERS

    A BOOKLET DESIGNED FOR ELEMENTARY SCHOOL STUDENTS TO BE USED INDEPENDENTLY FROM AND IN ADDITION TO THE REGULAR CLASSROOM CURRICULUM IN MATHEMATICS IS GIVEN. THE FIFTH- OR SIXTH-GRADE STUDENT IS PRESENTED WITH A DISCUSSION OF THE APPLICATIONS OF THE SLIDE RULE AND WITH A BACKGROUND REVIEW OF NECESSARY CONCEPTS. THE CONCEPTS OF THE SLIDE RULE ARE…

  2. Understanding of Jeans Rule

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.

    2002-11-01

    Jeans empirical rule has always been used in planetary physics. From the static equation of atmosphere, the equation of state for ideal gases, the law of gravitation and the law of Maxwell distribution, Jeans empirical rule can be derived. Therefore, it seems that Jeans empirical rule should be called Jeans rule. It can be formulated in three forms: in terms of velocity, height, or energy. These three formulations are completely equivalent. According to concrete situation, any one of these forms can be taken freely and used as a criterion, which define whether the atmospheric composition of a given species of particles at the planet surface will exist "forever" or not. The factor in the energy formulation will be neither too large nor too small. According to statistical theory, taking the viewpoint of energy, Jeans rule can be explained more easily. The condition satisfying Jeans rule is only the necessary condition for a given species of partials to be major atmospheric composition of the planets which have dense atmosphere. Jeans rule is not only applicable for the planets and satellites in the solar system, but also suitable for the asteroids, meteoroids and outer solar system objects, such as Centaurs and Kuiper belt objects. The application scope of Jeans rule can be expressed with nomogram as well as defined by equation or by figures. Having been widely used for a long time, it still has a general practical significance in detecting age of planets in the solar system nowadays, especially for the research of outer solar system objects.

  3. Delayed rule following

    PubMed Central

    Schmitt, David R.

    2001-01-01

    Although the elements of a fully stated rule (discriminative stimulus [SD], some behavior, and a consequence) can occur nearly contemporaneously with the statement of the rule, there is often a delay between the rule statement and the SD. The effects of this delay on rule following have not been studied in behavior analysis, but they have been investigated in rule-like settings in the areas of prospective memory (remembering to do something in the future) and goal pursuit. Discriminative events for some behavior can be event based (a specific setting stimulus) or time based. The latter are more demanding with respect to intention following and show age-related deficits. Studies suggest that the specificity with which the components of a rule (termed intention) are stated has a substantial effect on intention following, with more detailed specifications increasing following. Reminders of an intention, too, are most effective when they refer specifically to both the behavior and its occasion. Covert review and written notes are two effective strategies for remembering everyday intentions, but people who use notes appear not to be able to switch quickly to covert review. By focusing on aspects of the setting and rule structure, research on prospective memory and goal pursuit expands the agenda for a more complete explanation of rule effects. PMID:22478363

  4. Core Rules of Netiquette.

    ERIC Educational Resources Information Center

    Shea, Virginia

    1994-01-01

    Discusses rules of etiquette for communicating via computer networks, including conversing as politely as you would face-to-face; ethical behavior; becoming familiar with the domain that you are in; rules for discussion groups; quality of writing; sharing appropriate knowledge; and respecting individuals' privacy. (LRW)

  5. 5-Second Rule

    MedlinePlus

    ... 5-second rule" — that random saying about how food won't become contaminated with bacteria if you pick it up off the floor in 5 seconds or less. The 5-second rule has become such a part of our culture that scientists actually tested it. As you can ...

  6. "Chaos Rules" Revisited

    ERIC Educational Resources Information Center

    Murphy, David

    2011-01-01

    About 20 years ago, while lost in the midst of his PhD research, the author mused over proposed titles for his thesis. He was pretty pleased with himself when he came up with "Chaos Rules" (the implied double meaning was deliberate), or more completely, "Chaos Rules: An Exploration of the Work of Instructional Designers in Distance Education." He…

  7. A relative reward-strength algorithm for the hierarchical structure learning automata operating in the general nonstationary multiteacher environment.

    PubMed

    Baba, Norio; Mogami, Yoshio

    2006-08-01

    A new learning algorithm for the hierarchical structure learning automata (HSLA) operating in the nonstationary multiteacher environment (NME) is proposed. The proposed algorithm is derived by extending the original relative reward-strength algorithm to be utilized in the HSLA operating in the general NME. It is shown that the proposed algorithm ensures convergence with probability 1 to the optimal path under a certain type of the NME. Several computer-simulation results, which have been carried out in order to compare the relative performance of the proposed algorithm in some NMEs against those of the two of the fastest algorithms today, confirm the effectiveness of the proposed algorithm. PMID:16903364

  8. Following the Rules.

    PubMed

    Katz, Anne

    2016-05-01

    I am getting better at following the rules as I grow older, although I still bristle at many of them. I was a typical rebellious teenager; no one understood me, David Bowie was my idol, and, one day, my generation was going to change the world. Now I really want people to understand me: David Bowie remains one of my favorite singers and, yes, my generation has changed the world, and not necessarily for the better. Growing up means that you have to make the rules, not just follow those set by others, and, at times, having rules makes a lot of sense.
. PMID:27105186

  9. A cellular automata model for population expansion of Spartina alterniflora at Jiuduansha Shoals, Shanghai, China

    NASA Astrophysics Data System (ADS)

    Huang, Hua-mei; Zhang, Li-quan; Guan, Yu-juan; Wang, Dong-hui

    2008-03-01

    Biological invasion has received considerable attention recently because of increasing impacts on local ecosystems. Expansion of Spartina alterniflora, a non-native species, on the intertidal mudflats of Jiuduansha Shoals at the Yangtze River Estuary is a prime example of a spatially-structured invasion in a relatively simple habitat, for which strategic control efforts can be modeled and applied. Here, we developed a Cellular Automata (CA) model, in conjunction with Remote Sensing and Geographical Information Systems, to simulate the expanding process of S. alterniflora for a period of 8 years after being introduced to the new shoals, and to study the interactions between spatial pattern and ecosystem processes for the saltmarsh vegetation. The results showed that the CA model could simulate the population dynamics of S. alterniflora and Phragmites australis on the Jiuduansha Shoals successfully. The results strongly support the hypothesis of space pre-emption as well as range expansion with simple advancing wave fronts for these two species. In the Yangtze River Estuary, the native species P. australis shares the same niche with the exotic species S. alterniflora. However, the range expansion rate of P. australis was much slower than that of S. alterniflora. With the accretion of the Jiuduansha Shoals due to the large quantity of sediments deposited by the Yangtze River, a rapid range expansion of S. alterniflora is predicted to last for a long period into future. This study indicated the potential for this approach to provide valuable insights into population and community ecology of invasive species, which could be very important for wetland biodiversity conservation and resource management in the Yangtze River Estuary and other such impacted areas.

  10. Design Pattern Mining Using Distributed Learning Automata and DNA Sequence Alignment

    PubMed Central

    Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina

    2014-01-01

    Context Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. Objective This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. Method The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. Results The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. Conclusion The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns. PMID:25243670

  11. Simulation of estrogen transport and behavior in laboratory soil columns using a cellular automata model

    NASA Astrophysics Data System (ADS)

    Chen, Qingcai; Shi, Jianghong; Liu, Xiaowei; Wu, Wei; Liu, Bo; Zhang, Hui

    2013-03-01

    A cellular automata model (CA model) was used to simulate the soil column leaching process of estrogens during the processes of migration and transformation. The results of the simulated leaching experiment showed that the first-order degradation rates of 17α-ethynylestradiol (EE2), 17β-estradiol (E2) and estrone (E1) were 0.131 h- 1 for E2, 0.099 h- 1 for E1 and 0.064 h- 1 for EE2 in the EE2 and E2 leaching process, and the first-order sorption rates were 5.94 h- 1 for E2, 5.63 h- 1 for EE2, 3.125 h- 1 for E1. Their sorption rates were positively correlated with the n-octanol/water partition coefficients. When the diffusion rate was low, its impact on the simulation results was insignificant. The increase in sorption and degradation rates caused the decrease in the total estrogens that leached. In addition, increasing the sorption rate could delay the emerging time of the maximum concentration of estrogen that leached, whereas increasing the degradation rate could shorten the emerging time of the maximum concentration of estrogen that leached. The comparison made between the experimental data and the simulation results of the CA model and the HYDRUS-1D software showed that the establishment of one-component and multi-component CA models could simulate EE2 and E2 soil column leaching processes, and the CA models achieve an intuitive, dynamic, and visual simulation.

  12. GENERAL: Phase transitions in cellular automata models of spatial susceptible-infected-resistant-susceptible epidemics

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-Zhen; Wang, Ai-Ling

    2009-02-01

    Spatially explicit models have become widely used in today's mathematical ecology and epidemiology to study the persistence of populations. For simplicity, population dynamics is often analysed by using ordinary differential equations (ODEs) or partial differential equations (PDEs) in the one-dimensional (1D) space. An important question is to predict species extinction or persistence rate by mean of computer simulation based on the spatial model. Recently, it has been reported that stable turbulent and regular waves are persistent based on the spatial susceptible-infected-resistant-susceptible (SIRS) model by using the cellular automata (CA) method in the two-dimensional (2D) space [Proc. Natl. Acad. Sci. USA 101, 18246 (2004)]. In this paper, we address other important issues relevant to phase transitions of epidemic persistence. We are interested in assessing the significance of the risk of extinction in 1D space. Our results show that the 2D space can considerably increase the possibility of persistence of spread of epidemics when the degree distribution of the individuals is uniform, i.e. the pattern of 2D spatial persistence corresponding to extinction in a 1D system with the same parameters. The trade-offs of extinction and persistence between the infection period and infection rate are observed in the 1D case. Moreover, near the trade-off (phase transition) line, an independent estimation of the dynamic exponent can be performed, and it is in excellent agreement with the result obtained by using the conjectured relationship of directed percolation. We find that the introduction of a short-range diffusion and a long-range diffusion among the neighbourhoods can enhance the persistence and global disease spread in the space.

  13. Modeling the shrub encroachment in the Northern Chihuahuan desert Grasslands using a Cellular Automata model

    NASA Astrophysics Data System (ADS)

    Caracciolo, Domenico; Istanbulluoglu, Erkan; Noto, Leonardo V.

    2014-05-01

    Arid grasslands of southwestern North America have changed dramatically over the last 150 years as a result of the shrub encroachment, i.e. the increase in density and biomass of indigenous shrubby plants in grasslands. Numerous studies have documented the expansion of shrublands in the southwestern America Grasslands; in particular the encroachment of shrubs in american deserts has strongly occurred in the Chihuahuan deserts from 1860. The Sevilleta National Wildlife Refuge (SNWR), located in the northern Chihuahuan desert shows a dramatic encroachment front of creosote bush (i.e., shrub) into native desert grassland. This encroachment has been here simulated using an Ecohydrological Cellular Automata Model, CATGraSS. CATGraSS is a spatially distributed model driven by spatially explicit irradiance and runs on a fine-resolution gridded domain. In the model, each cell can hold a single plant type or can represent bare soil. Plant competition is modeled by keeping track of mortality and establishment of plants, both calculated probabilistically based on soil moisture stress. For this study, the model is improved with a stochastic fire and a grazing function, and its plant establishment algorithm is modified. CATGraSS is implemented in a small area (7.3 km2) in SNWR, characterized by two vegetation types: grass savanna and creosote bush. The causes that have been considered for the encroachment in this case study are: the fire return period increase, the grazing increase, the seed dispersal caused by animals, the role of wind direction and the shrub-grass inhibition effect. The model is able to reproduce the encroachment occurred in the SNWR basin, simulating an increasing of the shrub from 2% in 1860 to 42% (i.e., current shrub percentage) in 2010 highlighting as more influent factors the reduced fire frequency and the increased grazing intensity. For the future management and encroachment control, the reduction of the fire return period and the grazing removal

  14. Simulation of estrogen transport and behavior in laboratory soil columns using a cellular automata model.

    PubMed

    Chen, Qingcai; Shi, Jianghong; Liu, Xiaowei; Wu, Wei; Liu, Bo; Zhang, Hui

    2013-03-01

    A cellular automata model (CA model) was used to simulate the soil column leaching process of estrogens during the processes of migration and transformation. The results of the simulated leaching experiment showed that the first-order degradation rates of 17α-ethynylestradiol (EE2), 17β-estradiol (E2) and estrone (E1) were 0.131 h(-1) for E2, 0.099 h(-1) for E1 and 0.064 h(-1) for EE2 in the EE2 and E2 leaching process, and the first-order sorption rates were 5.94 h(-1) for E2, 5.63 h(-1) for EE2, 3.125 h(-1) for E1. Their sorption rates were positively correlated with the n-octanol/water partition coefficients. When the diffusion rate was low, its impact on the simulation results was insignificant. The increase in sorption and degradation rates caused the decrease in the total estrogens that leached. In addition, increasing the sorption rate could delay the emerging time of the maximum concentration of estrogen that leached, whereas increasing the degradation rate could shorten the emerging time of the maximum concentration of estrogen that leached. The comparison made between the experimental data and the simulation results of the CA model and the HYDRUS-1D software showed that the establishment of one-component and multi-component CA models could simulate EE2 and E2 soil column leaching processes, and the CA models achieve an intuitive, dynamic, and visual simulation. PMID:23376816

  15. Drug Plan Coverage Rules

    MedlinePlus

    ... works with other insurance Find health & drug plans Drug plan coverage rules Note Call your Medicare drug ... shingles vaccine) when medically necessary to prevent illness. Drugs you get in hospital outpatient settings In most ...

  16. The vector ruling protractor

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    The theory, structure and working of a vector slide rule is presented in this report. This instrument is used for determining a vector in magnitude and position when given its components and its moment about a point in their plane.

  17. (FIELD) SYMMETRIZATION SELECTION RULES

    SciTech Connect

    P. PAGE

    2000-08-01

    QCD and QED exhibit an infinite set of three-point Green's functions that contain only OZI rule violating contributions, and (for QCD) are subleading in the large N{sub c} expansion. We prove that the QCD amplitude for a neutral hybrid {l_brace}1,3,5. . .{r_brace}{+-} exotic current to create {eta}{pi}{sup 0} only comes from OZI rule violating contributions under certain conditions, and is subleading in N{sub c}.

  18. Pushing the rules: effects and aftereffects of deliberate rule violations.

    PubMed

    Wirth, Robert; Pfister, Roland; Foerster, Anna; Huestegge, Lynn; Kunde, Wilfried

    2016-09-01

    Most of our daily life is organized around rules and social norms. But what makes rules so special? And what if one were to break a rule intentionally? Can we simply free us from the present set of rules or do we automatically adhere to them? How do rule violations influence subsequent behavior? To investigate the effects and aftereffects of violating simple S-R rule, we conducted three experiments that investigated continuous finger-tracking responses on an iPad. Our experiments show that rule violations are distinct from rule-based actions in both response times and movement trajectories, they take longer to initiate and execute, and their movement trajectory is heavily contorted. Data not only show differences between the two types of response (rule-based vs. violation), but also yielded a characteristic pattern of aftereffects in case of rule violations: rule violations do not trigger adaptation effects that render further rule violations less difficult, but every rule violation poses repeated effort on the agent. The study represents a first step towards understanding the signature and underlying mechanisms of deliberate rule violations, they cannot be acted out by themselves, but require the activation of the original rule first. Consequently, they are best understood as reformulations of existing rules that are not accessible on their own, but need to be constantly derived from the original rule, with an add-on that might entail an active tendency to steer away from mental representations that reflect (socially) unwanted behavior. PMID:26245822

  19. 33 CFR 403.2 - Scope of rules. [Rule 2

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Scope of rules. 403.2 Section 403.2 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION RULES OF PROCEDURE OF THE JOINT TOLLS REVIEW BOARD § 403.2 Scope of rules. These rules...

  20. 33 CFR 403.2 - Scope of rules. [Rule 2

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Scope of rules. 403.2 Section 403.2 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION RULES OF PROCEDURE OF THE JOINT TOLLS REVIEW BOARD § 403.2 Scope of rules. These rules...

  1. 33 CFR 403.2 - Scope of rules. [Rule 2

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Scope of rules. 403.2 Section 403.2 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION RULES OF PROCEDURE OF THE JOINT TOLLS REVIEW BOARD § 403.2 Scope of rules. These rules...

  2. 33 CFR 403.2 - Scope of rules. [Rule 2

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Scope of rules. 403.2 Section 403.2 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION RULES OF PROCEDURE OF THE JOINT TOLLS REVIEW BOARD § 403.2 Scope of rules. These rules...

  3. 33 CFR 403.2 - Scope of rules. [Rule 2

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Scope of rules. 403.2 Section 403.2 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION RULES OF PROCEDURE OF THE JOINT TOLLS REVIEW BOARD § 403.2 Scope of rules. These rules...

  4. A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders.

    PubMed

    Hayashi, Y; Setiono, R; Yoshida, K

    2000-11-01

    Neural networks have been widely used as tools for prediction in medicine. We expect to see even more applications of neural networks for medical diagnosis as recently developed neural network rule extraction algorithms make it possible for the decision process of a trained network to be expressed as classification rules. These rules are more comprehensible to a human user than the classification process of the networks which involves complex nonlinear mapping of the input data. This paper reports the results from two neural network rule extraction techniques, NeuroLinear and NeuroRule applied to the diagnosis of hepatobiliary disorders. The dataset consists of nine measurements collected from patients in a Japanese hospital and these measurements have continuous values. NeuroLinear generates piece-wise linear discriminant functions for this dataset. The continuous measurements have previously been discretized by domain experts. NeuroRule is applied to the discretized dataset to generate symbolic classification rules. We compare the rules generated by the two techniques and find that the rules generated by NeuroLinear from the original continuously valued dataset to be slightly more accurate and more concise than the rules generated by NeuroRule from the discretized dataset. PMID:10998587

  5. Visualization of Patterns and Self-organization of Cellular Automata in Urban Traffic Situations

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Brian, Schwartz

    2001-06-01

    The use of cellular automaton (CA) techniques is very good at modeling complex or nonlinear systems. In dynamic system within the context of discrete mathematical steps for CA simulations, simple local rules produce complex global rules. The simplicity of CA rules enables us to model and investigate more realistic models for the behavior traffic in two-dimensional flow systems. Our numerical solution presents self-organization behavior, which is called grid-lock for urban city street traffic and a phase transitions in the fundamental flow rate vs. density diagrams. We present calculations, which demonstrate the effects of micro CA rules and traffic parameters on the macro properties of traffic flow and behavior. We modified the stochastic parameter p, which is constant in the original CA rules, to a variable depending on the state of the vehicles. This structure of path dependence on history for traffic properties is in many cases analogous to solutions obtained for interactive magnetic systems. Using 3D ray tracer software, we are able to render the visualization of patterns of grid-lock into a 3D virtual urban environment.

  6. Sum rules for leptons

    NASA Astrophysics Data System (ADS)

    Spinrath, Martin

    2016-06-01

    There is a wide class of models which give a dynamical description of the origin of flavor in terms of spontaneous symmetry breaking of an underlying symmetry. Many of these models exhibit sum rules which relate on the one hand mixing angles and the Dirac CP phase with each other and/or on the other hand neutrino masses and Majorana phases with each other. We will briefly sketch how this happens and discuss briefly the impact of renormalization group corrections to the mass sum rules.

  7. Alternate Rules of Association

    NASA Astrophysics Data System (ADS)

    Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.

    2014-11-01

    The Weyl correspondence rule (107) is not unique: there are a host of alternate equivalent association rules which specify corresponding representations. All these representations with equivalent formalisms are typified by characteristic quasi-distribution functions and ⋆-products, all systematically inter-convertible among themselves. They have been surveyed comparatively and organized in [Lee95, BJ84], on the basis of seminal classification work by Cohen [Coh66, Coh76]. Like different coordinate transformations, they may be favored by virtue of their different characteristic properties in varying applications...

  8. Vet Centers. Final rule.

    PubMed

    2016-03-01

    The Department of Veterans Affairs (VA) adopts as final an interim final rule that amends its medical regulation that governs Vet Center services. The National Defense Authorization Act for Fiscal Year 2013 (the 2013 Act) requires Vet Centers to provide readjustment counseling services to broader groups of veterans, members of the Armed Forces, including a member of a reserve component of the Armed Forces, and family members of such veterans and members. This final rule adopts as final the regulatory criteria to conform to the 2013 Act, to include new and revised definitions. PMID:26934755

  9. An Airship Slide Rule

    NASA Technical Reports Server (NTRS)

    Weaver, E R; Pickering, S F

    1924-01-01

    This report prepared for the National Advisory Committee for Aeronautics, describes an airship slide rule developed by the Gas-Chemistry Section of the Bureau of Standards, at the request of the Bureau of Engineering of the Navy Department. It is intended primarily to give rapid solutions of a few problems of frequent occurrence in airship navigation, but it can be used to advantage in solving a great variety of problems, involving volumes, lifting powers, temperatures, pressures, altitudes and the purity of the balloon gas. The rule is graduated to read directly in the units actually used in making observations, constants and conversion factors being taken care of by the length and location of the scales. It is thought that with this rule practically any problem likely to arise in this class of work can be readily solved after the user has become familiar with the operation of the rule; and that the solution will, in most cases, be as accurate as the data warrant.

  10. Elimination of Social Rules.

    ERIC Educational Resources Information Center

    O'Toole, Teddy

    The thesis of this document is that arbitrary social rules must be eliminated. Chapters cover: (1) what it is like to be a student whose personal activities are controlled; (2) the necessity of environmental freedom as a prerequisite to successful educational reform; (3) the question of environmental control; (4) the legal history of environmental…

  11. Crispen's Five Antivirus Rules.

    ERIC Educational Resources Information Center

    Crispen, Patrick Douglas

    2000-01-01

    Explains five rules to protect computers from viruses. Highlights include commercial antivirus software programs and the need to upgrade them periodically (every year to 18 months); updating virus definitions at least weekly; scanning attached files from email with antivirus software before opening them; Microsoft Word macro protection; and the…

  12. Crispen's Five Antivirus Rules.

    ERIC Educational Resources Information Center

    Crispen, Patrick Douglas

    2000-01-01

    Provides rules for protecting computers from viruses, Trojan horses, or worms. Topics include purchasing commercial antivirus programs and keeping them updated; updating virus definitions weekly; precautions before opening attached files; macro virus protection in Microsoft Word; and precautions with executable files. (LRW)

  13. Willpower and Personal Rules.

    ERIC Educational Resources Information Center

    Benabou, Roland; Tirole, Jean

    2004-01-01

    We develop a theory of internal commitments or "personal rules" based on self-reputation over one's willpower, which transforms lapses into precedents that undermine future self-restraint. The foundation for this mechanism is the imperfect recall of past motives and feelings, leading people to draw inferences from their past actions. The degree of…

  14. Generating Rules and Examples.

    ERIC Educational Resources Information Center

    Grabinger, R. Scott; Jonassen, David H.

    1989-01-01

    This seventh in a series of articles discussing expert system construction focuses on two ways to create a structure that determines a decision: (1) rule-based, or deductive, implementation; and (2) example-based, or inductive, implementation. Probability factors and confidence levels are discussed, and an example is given for selecting an…

  15. Tree-grass competition in space and time: Insights from a simple cellular automata model based on ecohydrological dynamics

    NASA Astrophysics Data System (ADS)

    van Wijk, Mark T.; Rodriguez-Iturbe, Ignacio

    2002-09-01

    Water is a key resource in determining the composition and structure of savanna ecosystems. In this study we present a simple cellular automata model in which death and reproduction chances of trees and grasses are based on the dynamical description of plant water stress by a probabilistic ecohydrological point model, using the parameterization for a Texas savanna. The results show that the model behavior, despite its simplicity, can be linked to ecological reality: the model yields a dynamic tree-grass coexistence driven by the annual rainfall, and the space-time behavior shows that both random and clustered tree distributions for periods up to 100 years can be observed. Both temporal and spatial model output display fractal characteristics suggesting the possibility of a self-organized critical dynamics. Thus power law behavior is observed in both the spectral density function and the cluster size distribution. The presence of spatial fractal characteristic opens avenues for more thorough model testing.

  16. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks

    PubMed Central

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-01-01

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162

  17. Application of stochastic automata networks for creation of continuous time Markov chain models of voltage gating of gap junction channels.

    PubMed

    Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times. PMID:25705700

  18. Synthesis of a Neutral Mixed-Valence Diferrocenyl Carborane for Molecular Quantum-Dot Cellular Automata Applications.

    PubMed

    Christie, John A; Forrest, Ryan P; Corcelli, Steven A; Wasio, Natalie A; Quardokus, Rebecca C; Brown, Ryan; Kandel, S Alex; Lu, Yuhui; Lent, Craig S; Henderson, Kenneth W

    2015-12-14

    The preparation of 7-Fc(+) -8-Fc-7,8-nido-[C2 B9 H10 ](-) (Fc(+) FcC2 B9 (-) ) demonstrates the successful incorporation of a carborane cage as an internal counteranion bridging between ferrocene and ferrocenium units. This neutral mixed-valence Fe(II) /Fe(III) complex overcomes the proximal electronic bias imposed by external counterions, a practical limitation in the use of molecular switches. A combination of UV/Vis-NIR spectroscopic and TD-DFT computational studies indicate that electron transfer within Fc(+) FcC2 B9 (-) is achieved through a bridge-mediated mechanism. This electronic framework therefore provides the possibility of an all-neutral null state, a key requirement for the implementation of quantum-dot cellular automata (QCA) molecular computing. The adhesion, ordering, and characterization of Fc(+) FcC2 B9 (-) on Au(111) has been observed by scanning tunneling microscopy. PMID:26516063

  19. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization.

    PubMed

    Vafaee Sharbaf, Fatemeh; Mosafer, Sara; Moattar, Mohammad Hossein

    2016-06-01

    This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. PMID:27154739

  20. Simulation of debris flow events in Sicily by cellular automata model SCIDDICA_SS3

    NASA Astrophysics Data System (ADS)

    Cancelliere, A.; Lupiano, V.; Peres, D. J.; Stancanelli, L.; Avolio, M.; Foti, E.; Di Gregorio, S.

    2013-12-01

    Debris flow models are widely used for hazard mapping or for evaluating the effectiveness of risk mitigation measures. Several models analyze the dynamics of debris flow runout solving Partial Differential Equations. In use of such models, difficulties arise in estimating kinematic geotechnical soil parameters for real phenomena. In order to overcome such difficulties, alternative semi-empirical approaches can be employed, such as macroscopic Cellular Automata (CA). In particular, for CA simulation purposes, the runout of debris flows emerges from local interactions in a dynamical system, subdivided into elementary parts, whose state evolves within a spatial and temporal discretum. The attributes of each cell (substates) describe physical characteristics. For computational reasons, the natural phenomenon is splitted into a number of elementary processes, whose proper composition makes up the CA transition function. By simultaneously applying this function to all the cells, the evolution of the phenomenon can be simulated in terms of modifications of the substates. In this study, we present an application of the macroscopic CA semi-empirical model SCIDDICA_SS3 to the Peloritani Mountains area in Sicily island, Italy. The model was applied using detailed data from the 1 October 2009 debris flow event, which was triggered by a rainfall event of about 250 mm falling in 9 hours, that caused the death of 37 persons. This region is characterized by river valleys with large hillslope angles (30°-60°), catchment basins of small extensions (0.5-12 km2) and soil composed by metamorphic material, which is easy to be eroded. CA usage implies a calibration phase, that identifies an optimal set of parameters capable of adequately play back the considered case, and a validation phase, that tests the model on a sufficient (and different) number of cases similar in terms of physical and geomorphological properties. The performance of the model can be measured in terms of a fitness

  1. Caregivers program. Final rule.

    PubMed

    2015-01-01

    The Department of Veterans Affairs (VA) adopts, with changes, the interim final rule concerning VA's Program of Comprehensive Assistance for Family Caregivers. VA administers this program to provide certain medical, travel, training, and financial benefits to caregivers of certain veterans and servicemembers who were seriously injured during service on or after September 11, 2001. Also addressed in this rulemaking is the Program of General Caregiver Support Services that provides support services to caregivers of veterans from all eras who are enrolled in the VA health care system. Specifically, changes in this final rule include a requirement that Veterans be notified in writing should a Family Caregiver request revocation (to no longer be a Family Caregiver), an extension of the application timeframe from 30 days to 45 days for a Family Caregiver, and a change in the stipend calculation to ensure that Primary Family Caregivers do not experience unexpected decreases in stipend amounts from year to year. PMID:25581943

  2. Postmarket surveillance. Final rule.

    PubMed

    2002-06-01

    The Food and Drug Administration (FDA) is implementing the postmarket surveillance (PS) provisions of the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Food and Drug Administration Modernization Act of 1997 (FDAMA). The purpose of this rule is to provide for the collection of useful data about devices that can reveal unforeseen adverse events or other information necessary to protect the public health. PMID:12053947

  3. Parental Rule Socialization for Preventive Health and Adolescent Rule Compliance

    ERIC Educational Resources Information Center

    Bylund, Carma L.; Baxter, Leslie A.; Imes, Rebecca S.; Wolf, Bianca

    2010-01-01

    This study examined family rules about nutrition, exercise, and sun protection in 164 parent-young adult children dyads. Both parents and their young adult children independently reported on health rules that they perceived throughout their child's adolescent years and the extent to which the rules were articulated, violations sanctioned, and…

  4. A Categorisation of School Rules

    ERIC Educational Resources Information Center

    Thornberg, Robert

    2008-01-01

    The aim of this paper is to investigate and describe the content in school rules by developing a category system of school rules, and thus making the logic behind different types of rules in school explicit. Data were derived from an ethnographic study conducted in two primary schools in Sweden. In order to analyse the data, grounded theory…

  5. Morphological Rules in Russian Conjugation.

    ERIC Educational Resources Information Center

    Thomas, Linda Kopp

    Recent analyses of Russian (Halle 1963, Lightner 1972) have been forced by the criteria of rule "naturalness" and rule "generality" to posit highly abstract underlying forms. These underlying forms and rules are claimed to represent the speaker's competence. Such analyses are now being criticized (Derwing 1973, Hooper 1974) on the following…

  6. Modifications of Team Sports Rules.

    ERIC Educational Resources Information Center

    Rokosz, Francis M.

    In general, there are two reasons for modifying the rules in sport activities: (1) to meet a specific objective or (2) to solve a perceived problem. The sense of the original game is usually not altered significantly because the number of rule changes is kept to a minimum. Changes in rules may be made for administrative or financial reasons, or to…

  7. Linear elastic fracture mechanics primer

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher D.

    1992-07-01

    This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.

  8. Linear elastic fracture mechanics primer

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.

    1992-01-01

    This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.

  9. Highly scalable and robust rule learner: performance evaluation and comparison.

    PubMed

    Kurgan, Lukasz A; Cios, Krzysztof J; Dick, Scott

    2006-02-01

    Business intelligence and bioinformatics applications increasingly require the mining of datasets consisting of millions of data points, or crafting real-time enterprise-level decision support systems for large corporations and drug companies. In all cases, there needs to be an underlying data mining system, and this mining system must be highly scalable. To this end, we describe a new rule learner called DataSqueezer. The learner belongs to the family of inductive supervised rule extraction algorithms. DataSqueezer is a simple, greedy, rule builder that generates a set of production rules from labeled input data. In spite of its relative simplicity, DataSqueezer is a very effective learner. The rules generated by the algorithm are compact, comprehensible, and have accuracy comparable to rules generated by other state-of-the-art rule extraction algorithms. The main advantages of DataSqueezer are very high efficiency, and missing data resistance. DataSqueezer exhibits log-linear asymptotic complexity with the number of training examples, and it is faster than other state-of-the-art rule learners. The learner is also robust to large quantities of missing data, as verified by extensive experimental comparison with the other learners. DataSqueezer is thus well suited to modern data mining and business intelligence tasks, which commonly involve huge datasets with a large fraction of missing data. PMID:16468565

  10. A linear programming manual

    NASA Technical Reports Server (NTRS)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  11. Linear integrated circuits

    NASA Astrophysics Data System (ADS)

    Young, T.

    This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.

  12. Optimal Hedging Rule for Reservoir Refill Operation

    NASA Astrophysics Data System (ADS)

    Wan, W.; Zhao, J.; Lund, J. R.; Zhao, T.; Lei, X.; Wang, H.

    2015-12-01

    This paper develops an optimal reservoir Refill Hedging Rule (RHR) for combined water supply and flood operation using mathematical analysis. A two-stage model is developed to formulate the trade-off between operations for conservation benefit and flood damage in the reservoir refill season. Based on the probability distribution of the maximum refill water availability at the end of the second stage, three zones are characterized according to the relationship among storage capacity, expected storage buffer (ESB), and maximum safety excess discharge (MSED). The Karush-Kuhn-Tucker conditions of the model show that the optimality of the refill operation involves making the expected marginal loss of conservation benefit from unfilling (i.e., ending storage of refill period less than storage capacity) as nearly equal to the expected marginal flood damage from levee overtopping downstream as possible while maintaining all constraints. This principle follows and combines the hedging rules for water supply and flood management. A RHR curve is drawn analogously to water supply hedging and flood hedging rules, showing the trade-off between the two objectives. The release decision result has a linear relationship with the current water availability, implying the linearity of RHR for a wide range of water conservation functions (linear, concave, or convex). A demonstration case shows the impacts of factors. Larger downstream flood conveyance capacity and empty reservoir capacity allow a smaller current release and more water can be conserved. Economic indicators of conservation benefit and flood damage compete with each other on release, the greater economic importance of flood damage is, the more water should be released in the current stage, and vice versa. Below a critical value, improving forecasts yields less water release, but an opposing effect occurs beyond this critical value. Finally, the Danjiangkou Reservoir case study shows that the RHR together with a rolling

  13. Developing Novel Reservoir Rule Curves Using Seasonal Inflow Projections

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-yi; Tung, Ching-pin

    2015-04-01

    Due to significant seasonal rainfall variations, reservoirs and their flexible operational rules are indispensable to Taiwan. Furthermore, with the intensifying impacts of climate change on extreme climate, the frequency of droughts in Taiwan has been increasing in recent years. Drought is a creeping phenomenon, the slow onset character of drought makes it difficult to detect at an early stage, and causes delays on making the best decision of allocating water. For these reasons, novel reservoir rule curves using projected seasonal streamflow are proposed in this study, which can potentially reduce the adverse effects of drought. This study dedicated establishing new rule curves which consider both current available storage and anticipated monthly inflows with leading time of two months to reduce the risk of water shortage. The monthly inflows are projected based on the seasonal climate forecasts from Central Weather Bureau (CWB), which a weather generation model is used to produce daily weather data for the hydrological component of the GWLF. To incorporate future monthly inflow projections into rule curves, this study designs a decision flow index which is a linear combination of current available storage and inflow projections with leading time of 2 months. By optimizing linear relationship coefficients of decision flow index, the shape of rule curves and the percent of water supply in each zone, the best rule curves to decrease water shortage risk and impacts can be developed. The Shimen Reservoir in the northern Taiwan is used as a case study to demonstrate the proposed method. Existing rule curves (M5 curves) of Shimen Reservoir are compared with two cases of new rule curves, including hindcast simulations and historic seasonal forecasts. The results show new rule curves can decrease the total water shortage ratio, and in addition, it can also allocate shortage amount to preceding months to avoid extreme shortage events. Even though some uncertainties in

  14. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  15. Physics of the Lindemann melting rule

    SciTech Connect

    Lawson, Andrew C

    2008-01-01

    We investigate the thermodynamics of melting for 74 distinct chemical elements including several actinides and rare earths. We find that the observed melting points are consistent with a linear relationship between the correlation entropy of the liquid and the Grueneisen constant of the solid, and that the Lindemann rule is well obeyed for the elements with simple structures and less well obeyed for the less symmetric more open structures. No special assumptions are required to explain the melting points of the rare earths or light actinides.

  16. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1. Fully Understand the Task 2. Develop an Error Budget 3. Continuous Metrology Coverage 4. Know where you are 5. 'Test like you fly' 6. Independent Cross-Checks 7. Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  17. Rules for Optical Testing

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task: Fully Understand the Task, Develop an Error Budget, Continuous Metrology Coverage, Know where you are, Test like you fly, Independent Cross-Checks, Understand All Anomalies. These rules have been applied with great success to the inprocess optical testing and final specification compliance testing of the JWST mirrors.

  18. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1.Fully Understand the Task 2.Develop an Error Budget 3.Continuous Metrology Coverage 4.Know where you are 5. 'Test like you fly' 6.Independent Cross-Checks 7.Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  19. Service dogs. Final rule.

    PubMed

    2012-09-01

    The Department of Veterans Affairs (VA) amends its regulations concerning veterans in need of service dogs. Under this final rule, VA will provide to veterans with visual, hearing, or mobility impairments benefits to support the use of a service dog as part of the management of such impairments. The benefits include assistance with veterinary care, travel benefits associated with obtaining and training a dog, and the provision, maintenance, and replacement of hardware required for the dog to perform the tasks necessary to assist such veterans. PMID:22950145

  20. Linear relationships in systems with non linear kinetics.

    PubMed

    Fagiolino, P; Savio, E; Stareczek, S

    1991-01-01

    The elimination rate of drug from a capacity-limited one-compartment model can be expressed by equation (1): [formula: see text] Traditionally equation (1) was linearized according to equation (2): [formula: see text] Here, an alternative linear relationships between concentration and the area under the curve of C/(Km + c]) is proposed: [formula: see text] By iteration of Km into equation (3) until the statistic of analysis of variance for the regression is maximized, both Km and Vmax can be obtained. Several cases were considered: a) Intravenous bolus (single dose): Km (mg/L), Vmax (mg/L h), Vd (L) and V (mg/h) can be estimated. b) Extravascular administration (single dose): by the method of residuals it is possible to make additional estimations of FD/Vd (mg/L) and Ka (1/h). c) Bioequivalence studies: with parameters obtained at single dose, the simulated levels at steady-state are considered for the bioequivalence assessments. d) Km, Vmax estimation with two (C,t) points (single dose): double iteration (Km values and interpolated fictitious third points) are needed. e) Multiple dose: [formula: see text] If t2-t1 = T (interval of administration) it is possible to calculate operatives Km, Vmax, FD/Vd and to estimate Css (steady-state concentration). C1 and C2 correspond to different intervals. All the areas were calculated by the trapezoidal rule. PMID:1820928

  1. Rules to acquire by.

    PubMed

    Nolop, Bruce

    2007-09-01

    When Bruce Nolop was an investment banker, he saw only the glamorous side of acquisitions. Since becoming executive vice president and chief financial officer of Pitney Bowes, however, he's learned how hard it is to pull them off. In this article, he shares the lessons his organization has learned throughout its successful six-year acquisition campaign, which comprised more than 70 deals: Stick to adjacent spaces, take a portfolio approach, have a business sponsor, know how to judge an acquisition, and don't shop when you're hungry. Pitney Bowes's management and board of directors now use these five basic rules to chart the company's growth course. For example, when evaluating a potential acquisition, Pitney Bowes distinguishes between "platform" and "bolt-on" acquisitions to set expectations and guide integration efforts; the company applies different criteria, depending on the type. According to Nolop, any company can improve its acquisition track record if it is able to learn from experience, and he suspects that Pitney Bowes's rules apply just as well to other organizations. Buying a company should be treated like any other business process, he maintains. It should be approached deliberately and reviewed and improved constantly. That means mapping a complex chain of actions; paying attention to what can go right or wrong at different stages; and using standard, constantly honed, approaches and tools. PMID:17886488

  2. Impact of a Stochastic Parameterization of Cumulus Convection Using Cellular Automata in a Meso-Scale Ensemble Prediction System.

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.

    2014-12-01

    A common way of addressing forecast uncertainty in Numerical Weather Prediction (NWP) models is to use ensemble prediction. The idea behind ensemble predictionis to simulate the sensitivity of the forecast to the initial and boundary conditions, as well as model construction error, such as sub-grid physical parameterizations. Existing methods used in order to account for such model consturction uncertainty include; multi-model ensembles, adding random perturbations to the tendencies produced by the parameterizations, or perturbing parameters within the parameterizations. Although such methods are successful in a probabilistic sense, individual ensemble members can be degraded in a deterministic sense by adding random non-physical perturbations. Furthermore, different ensemble members can have different bias (and skill) since they are based on separate models and/or parameters. Another way of accounting for model uncertainty (due to sub-grid variability) is to introduce random variability in the convection parameterization itself. Here we will present the impact of the stochastic deep convection parameterization using cellular automata described in Bengtsson et. al. 2013, as implemented in the high resolution meso-scale ensemble prediction system HarmonEPS. The questions we would like to answer are; can we improve the forecast skill both in a deterministic and probabilistic sense using the stochastic convection scheme? Can the stochastic parameterization in terms of the spread/skill relationship compete with the multi-model approach? Furthermore, the stochastic parameterization proposed in Bengtsson et. al. 2013 addresses lateral communication between model grid-boxes by using a cellular automaton. It was demonstrated that the scheme in a deterministic model is capable of contributing to the organization of convective squall-lines and meso-scale convective systems. We study if and how uncertainties with origin on the sub-grid scale transfer to the larger atmospheric

  3. The Product and Quotient Rules Revisited

    ERIC Educational Resources Information Center

    Eggleton, Roger; Kustov, Vladimir

    2011-01-01

    Mathematical elegance is illustrated by strikingly parallel versions of the product and quotient rules of basic calculus, with some applications. Corresponding rules for second derivatives are given: the product rule is familiar, but the quotient rule is less so.

  4. 9 CFR 11.3 - Scar rule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... WELFARE HORSE PROTECTION REGULATIONS § 11.3 Scar rule. The scar rule applies to all horses born on or after October 1, 1975. Horses subject to this rule that do not meet the following scar rule...

  5. 9 CFR 11.3 - Scar rule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WELFARE HORSE PROTECTION REGULATIONS § 11.3 Scar rule. The scar rule applies to all horses born on or after October 1, 1975. Horses subject to this rule that do not meet the following scar rule...

  6. 9 CFR 11.3 - Scar rule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... WELFARE HORSE PROTECTION REGULATIONS § 11.3 Scar rule. The scar rule applies to all horses born on or after October 1, 1975. Horses subject to this rule that do not meet the following scar rule...

  7. 9 CFR 11.3 - Scar rule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... WELFARE HORSE PROTECTION REGULATIONS § 11.3 Scar rule. The scar rule applies to all horses born on or after October 1, 1975. Horses subject to this rule that do not meet the following scar rule...

  8. 9 CFR 11.3 - Scar rule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... WELFARE HORSE PROTECTION REGULATIONS § 11.3 Scar rule. The scar rule applies to all horses born on or after October 1, 1975. Horses subject to this rule that do not meet the following scar rule...

  9. Abortion ruling in Quebec.

    PubMed

    Brahams, D

    1989-08-01

    Brahams summarizes a 1989 Quebec Court of Appeal decision in an abortion case and places the ruling in the context of worldwide trends in abortion regulation. In Tremblay v. Daigle (1989 Jul 26), the Quebec court upheld a lower court injunction banning a woman from having an abortion. The injunction had been obtained by the woman's former boyfriend, the putative father. Brahams discusses the current legal status of abortion in Canada, the Daigle court's reasoning, and how the British approach to the legal status of fathers and fetuses in abortion disputes differs from the Canadian. She also briefly summarizes recent abortion-related judicial and regulatory developments in the United States, Ireland, and France. PMID:2569146

  10. The biosphere rules.

    PubMed

    Unruh, Gregory C

    2008-02-01

    Sustainability, defined by natural scientists as the capacity of healthy ecosystems to function indefinitely, has become a clarion call for business. Leading companies have taken high-profile steps toward achieving it: Wal-Mart, for example, with its efforts to reduce packaging waste, and Nike, which has removed toxic chemicals from its shoes. But, says Unruh, the director of Thunderbird's Lincoln Center for Ethics in Global Management, sustainability is more than an endless journey of incremental steps. It is a destination, for which the biosphere of planet Earth--refined through billions of years of trial and error--is a perfect model. Unruh distills some lessons from the biosphere into three rules: Use a parsimonious palette. Managers can rethink their sourcing strategies and dramatically simplify the number and types of materials their companies use in production, making recycling cost-effective. After the furniture manufacturer Herman Miller discovered that its leading desk chair had 200 components made from more than 800 chemical compounds, it designed an award-winning successor whose far more limited materials palette is 96% recyclable. Cycle up, virtuously. Manufacturers should design recovery value into their products at the outset. Shaw Industries, for example, recycles the nylon fiber from its worn-out carpet into brand-new carpet tile. Exploit the power of platforms. Platform design in industry tends to occur at the component level--but the materials in those components constitute a more fundamental platform. Patagonia, by recycling Capilene brand performance underwear, has achieved energy costs 76% below those for virgin sourcing. Biosphere rules can teach companies how to build ecologically friendly products that both reduce manufacturing costs and prove highly attractive to consumers. And managers need not wait for a green technological revolution to implement them. PMID:18314639

  11. Linear collider: a preview

    SciTech Connect

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  12. Study on rule-based adaptive fuzzy excitation control technology

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wang, Hong-jun; Liu, Lu-yuan; Yue, You-jun

    2008-10-01

    Power system is a kind of typical non-linear system, it is hard to achieve excellent control performance with conventional PID controller under different operating conditions. Fuzzy parameter adaptive PID exciting controller is very efficient to overcome the influence of tiny disturbances, but the performance of the control system will be worsened when operating conditions of the system change greatly or larger disturbances occur. To solve this problem, this article presents a rule adaptive fuzzy control scheme for synchronous generator exciting system. In this scheme the control rule adaptation is implemented by regulating the value of parameter di under the given proportional divisors K1, K2 and K3 of fuzzy sets Ai and Bi. This rule adaptive mechanism is constituted by two groups of original rules about the self-generation and self-correction of the control rule. Using two groups of rules, the control rule activated by status 1 and 2 in figure 2 system can be regulated automatically and simultaneously at the time instant k. The results from both theoretical analysis and simulation show that the presented scheme is effective and feasible and possesses good performance.

  13. The similarity rules for second-order subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1958-01-01

    The similarity rules for linearized compressible flow theory (Gothert's rule and its supersonic counterpart) are extended to second order. It is shown that any second-order subsonic flow can be related to "nearly incompressible" flow past the same body, which can be calculated by the Janzen-Rayleigh method.

  14. A note on probabilistic models over strings: the linear algebra approach.

    PubMed

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems. PMID:24135792

  15. 19 CFR 102.11 - General rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false General rules. 102.11 Section 102.11 Customs... RULES OF ORIGIN Rules of Origin § 102.11 General rules. The following rules shall apply for purposes of... rules are satisfied. (b) Except for a good that is specifically described in the Harmonized System as...

  16. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  17. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  18. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  19. The Clean Air Interstate Rule

    SciTech Connect

    Debra Jezouit; Frank Rambo

    2005-07-01

    On May 12, 2005, EPA promulgated the Clean Air Interstate Rule, which overhauls and expands the scope of air emissions trading programs in the eastern United States. The rule imposes statewide caps on emissions of nitrogen oxides and sulfur dioxide to be introduced in two phases, beginning in 2009. This article briefly explains the background leading up to the rule and summarizes its key findings and requirements. 2 refs., 1 fig., 1 tab.

  20. Aurora Borealis: stochastic cellular automata simulations of the excited-state dynamics of oxygen atoms.

    NASA Astrophysics Data System (ADS)

    Seybold, P. G.; Kier, L. B.; Cheng, C.-K.

    1999-12-01

    Emissions from the 1S and 1D excited states of atomic oxygen play a prominent role in creating the dramatic light displays (aurora borealis) seen in the skies over polar regions of the Northern Hemisphere. A probabilistic asynchronous cellular automaton model described previously has been applied to the excited-state dynamics of atomic oxygen. The model simulates the time-dependent variations in ground (3P) and excited-state populations that occur under user-defined probabilistic transition rules for both pulse and steady-state conditions. Although each trial simulation is itself an independent "experiment", deterministic values for the excited-state emission lifetimes and quantum yields emerge as limiting cases for large numbers of cells or large numbers of trials. Stochastic variations in the lifetimes and emission yields can be estimated from repeated trials.

  1. Empirically derived injury prevention rules.

    PubMed Central

    Peterson, L; Schick, B

    1993-01-01

    This study describes a set of empirically derived safety rules that if followed, would have prevented the occurrence of minor injuries. Epidemiologists have criticized behavioral interventions as increasing "safe" behavior but failing to demonstrate a decrease in injury. The present study documents retrospectively the link between safe behavior and injury. It demonstrates that these empirically derived rules are very similar to rules for the prevention of serious injury. The study also shows that these rules are not widely accepted and implemented by parents. Suggestions for future research in this area are advanced. PMID:8307829

  2. Exact modeling of finite temperature and quantum delocalization effects on reliability of quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Tiihonen, Juha; Schramm, Andreas; Kylänpää, Ilkka; Rantala, Tapio T.

    2016-02-01

    A thorough simulation study is carried out on thermal and quantum delocalization effects on the feasibility of a quantum-dot cellular automata (QCA) cell. The occupation correlation of two electrons is modeled with a simple four-site array of harmonic quantum dots (QD). QD sizes range from 20 nm to 40 nm with site separations from 20 nm to 100 nm, relevant for state-of-the-art GaAs/InAs semiconductor technology. The choice of parameters introduces QD overlap, which is only simulated properly with exact treatment of strong Coulombic correlation and thermal equilibrium quantum statistics. These are taken into account with path integral Monte Carlo approach. Thus, we demonstrate novel joint effects of quantum delocalization and decoherence in QCA, but also highly sophisticated quantitative evidence supporting the traditional relations in pragmatic QCA design. Moreover, we show the effects of dimensionality and spin state, and point out the parameter space conditions, where the ‘classical’ treatment becomes invalid.

  3. An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data

    NASA Astrophysics Data System (ADS)

    Feliciani, Claudio; Nishinari, Katsuhiro

    2016-06-01

    In this article we present an improved version of the Cellular Automata floor field model making use of a sub-mesh system to increase the maximum density allowed during simulation and reproduce phenomena observed in dense crowds. In order to calibrate the model's parameters and to validate it we used data obtained from an empirical observation of bidirectional pedestrian flow. A good agreement was found between numerical simulation and experimental data and, in particular, the double outflow peak observed during the formation of deadlocks could be reproduced in numerical simulations, thus allowing the analysis of deadlock formation and dissolution. Finally, we used the developed high density model to compute the flow-ratio dependent fundamental diagram of bidirectional flow, demonstrating the instability of balanced flow and predicting the bidirectional flow behavior at very high densities. The model we presented here can be used to prevent dense crowd accidents in the future and to investigate the dynamics of the accidents which already occurred in the past. Additionally, fields such as granular and active matter physics may benefit from the developed framework to study different collective phenomena.

  4. Micro-simulation of vehicle conflicts involving right-turn vehicles at signalized intersections based on cellular automata.

    PubMed

    Chai, C; Wong, Y D

    2014-02-01

    At intersection, vehicles coming from different directions conflict with each other. Improper geometric design and signal settings at signalized intersection will increase occurrence of conflicts between road users and results in a reduction of the safety level. This study established a cellular automata (CA) model to simulate vehicular interactions involving right-turn vehicles (as similar to left-turn vehicles in US). Through various simulation scenarios for four case cross-intersections, the relationships between conflict occurrences involving right-turn vehicles with traffic volume and right-turn movement control strategies are analyzed. Impacts of traffic volume, permissive right-turn compared to red-amber-green (RAG) arrow, shared straight-through and right-turn lane as well as signal setting are estimated from simulation results. The simulation model is found to be able to provide reasonable assessment of conflicts through comparison of existed simulation approach and observed accidents. Through the proposed approach, prediction models for occurrences and severity of vehicle conflicts can be developed for various geometric layouts and traffic control strategies. PMID:24275720

  5. Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata-Markov modelling

    NASA Astrophysics Data System (ADS)

    Gong, Wenfeng; Yuan, Li; Fan, Wenyi; Stott, Philip

    2015-02-01

    There have been rapid population and accelerating urban growth with associated changes in land use and soil degradation in northeast China, an important grain-producing region. The development of integrated use of remote sensing, geographic information systems, and combined cellular automata- Markov models has provided new means of assessing changes in land use and land cover, and has enabled projection of trajectories into the future. We applied such techniques to the prefecture-level city of Harbin, the tenth largest city in China. We found that there had been significant losses of the land uses termed "cropland", "grassland", "wetland", and "floodplain" in favour of "built-up land" and lesser transformations from "floodplain" to "forestland" and "water body" over the 18-year period. However, the transition was not a simple process but a complex network of changes, interchanges, and multiple transitions. In the absence of effective land use policies, projection of past trajectories into a balance state in the future would result in the decline of cropland from 65.6% to 46.9% and the increase of built-up area from 7.7% to 23.0% relative to the total area of the prefecture in 1989. It also led to the virtual elimination of land use types such as unused wetland and floodplain.

  6. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    NASA Astrophysics Data System (ADS)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  7. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction.

    PubMed

    Pokkuluri, Kiran Sree; Inampudi, Ramesh Babu; Nedunuri, S S S N Usha Devi

    2014-01-01

    Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata) and MCC (modified clonal classifier) to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992) datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006) dataset and nonpromoters from EID (Saxonov et al., 2000) and UTRdb (Pesole et al., 2002) datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively. PMID:25132849

  8. 4 CFR 22.1 - Applicability of Rules [Rule 1].

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Applicability of Rules . 22.1 Section 22.1 Accounts... OFFICE CONTRACT APPEALS BOARD § 22.1 Applicability of Rules . The Government Accountability Office... with the Board on or after October 1, 2007....

  9. Challenges for Rule Systems on the Web

    NASA Astrophysics Data System (ADS)

    Hu, Yuh-Jong; Yeh, Ching-Long; Laun, Wolfgang

    The RuleML Challenge started in 2007 with the objective of inspiring the issues of implementation for management, integration, interoperation and interchange of rules in an open distributed environment, such as the Web. Rules are usually classified as three types: deductive rules, normative rules, and reactive rules. The reactive rules are further classified as ECA rules and production rules. The study of combination rule and ontology is traced back to an earlier active rule system for relational and object-oriented (OO) databases. Recently, this issue has become one of the most important research problems in the Semantic Web. Once we consider a computer executable policy as a declarative set of rules and ontologies that guides the behavior of entities within a system, we have a flexible way to implement real world policies without rewriting the computer code, as we did before. Fortunately, we have de facto rule markup languages, such as RuleML or RIF to achieve the portability and interchange of rules for different rule systems. Otherwise, executing real-life rule-based applications on the Web is almost impossible. Several commercial or open source rule engines are available for the rule-based applications. However, we still need a standard rule language and benchmark for not only to compare the rule systems but also to measure the progress in the field. Finally, a number of real-life rule-based use cases will be investigated to demonstrate the applicability of current rule systems on the Web.

  10. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  11. SLAC Linear Collider

    SciTech Connect

    Richter, B.

    1985-12-01

    A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.

  12. Linear Equations: Equivalence = Success

    ERIC Educational Resources Information Center

    Baratta, Wendy

    2011-01-01

    The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…

  13. Linearly polarized fiber amplifier

    DOEpatents

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  14. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  15. Linear force device

    NASA Technical Reports Server (NTRS)

    Clancy, John P.

    1988-01-01

    The object of the invention is to provide a mechanical force actuator which is lightweight and manipulatable and utilizes linear motion for push or pull forces while maintaining a constant overall length. The mechanical force producing mechanism comprises a linear actuator mechanism and a linear motion shaft mounted parallel to one another. The linear motion shaft is connected to a stationary or fixed housing and to a movable housing where the movable housing is mechanically actuated through actuator mechanism by either manual means or motor means. The housings are adapted to releasably receive a variety of jaw or pulling elements adapted for clamping or prying action. The stationary housing is adapted to be pivotally mounted to permit an angular position of the housing to allow the tool to adapt to skewed interfaces. The actuator mechanisms is operated by a gear train to obtain linear motion of the actuator mechanism.

  16. Miner's rule revisited

    NASA Astrophysics Data System (ADS)

    Schuetz, W.; Heuler, P.

    1994-03-01

    In the first sections, the requirements to be met by hypotheses for fatigue life prediction (including those for the crack initiation and crack propagation phases) are discussed in detail. These requirements are shown to be different for 'scientific' and for 'industrial' fatigue life prediction. Aspects with regard to an assessment of fatigue life prediction hypotheses are discussed. The last section presents the results of a large cooperative program between IABG and several automobile manufacturers, in which Miner's Rule in several versions was assessed against spectrum tests with five different actual automobile components: forged steel stub axle; forged steel stub axle, induction hardened; sheet steel welded rear axle (front wheel drive car); cast aluminum wheel; and welded sheet steel wheel. Since up to 80 components each were available, and two different, but typical, automotive stress-time histories were employed, the assessment was very thorough, avoiding many of the drawbacks of previous assessments. It is shown that damage sums to failure were usually far below 1.0; they also depended on the component in question, the aluminum wheel resulting in the lowest damage sums to failure; the damage sums to failure where always lower for a mild spectrum than for a severe one; and the influence of spectrum variation was predicted best - among the hypotheses tested - by use of a recent proposal of Zenner and Liu.

  17. TRICARE; diabetic education. Final rule.

    PubMed

    2010-08-01

    The Department of Defense is publishing this final rule to clarify TRICARE coverage for diabetic education. This rule introduces new definitions and addresses revisions or omissions in policy or procedure inadvertently missed in previous regulatory changes pertaining to diabetic education. PMID:20695037

  18. Developmental Disabilities Program. Final rule.

    PubMed

    2015-07-27

    This rule implements the Developmental Disabilities Assistance and Bill of Rights Act of 2000. The previous regulations were completed in 1997 before the current law was passed. The rule will align the regulations and current statute and will provide guidance to AIDD grantees. PMID:26214859

  19. Art as a Singular Rule

    ERIC Educational Resources Information Center

    Avital, Doron

    2007-01-01

    This paper will examine an unresolved tension inherent in the question of art and argue for the idea of a singular rule as a natural resolution. In so doing, the structure of a singular rule will be fully outlined and its paradoxical constitution will be resolved. The tension I mention above unfolds both as a matter of history and as a product of…

  20. Exemplar Similarity and Rule Application

    ERIC Educational Resources Information Center

    Hahn, Ulrike; Prat-Sala, Merce; Pothos, Emmanuel M.; Brumby, Duncan P.

    2010-01-01

    We report four experiments examining effects of instance similarity on the application of simple explicit rules. We found effects of similarity to illustrative exemplars in error patterns and reaction times. These effects arose even though participants were given perfectly predictive rules, the similarity manipulation depended entirely on…

  1. The Clean Air Mercury Rule

    SciTech Connect

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  2. Solar-Cell Slide Rule

    NASA Technical Reports Server (NTRS)

    Yamakawa, K. A.

    1983-01-01

    Slide rule relates efficiency, impurity types, impurity concentrations, and process types. Solar cell slide rule calculations are determination of allowable impurity concentration for nonredistributive process, determination of impurity buildup factor for redistributive process and determination of allowable impurity concentration for redistributive process.

  3. Rule Learning with Probabilistic Smoothing

    NASA Astrophysics Data System (ADS)

    Costa, Gianni; Guarascio, Massimo; Manco, Giuseppe; Ortale, Riccardo; Ritacco, Ettore

    A hierarchical classification framework is proposed for discriminating rare classes in imprecise domains, characterized by rarity (of both classes and cases), noise and low class separability. The devised framework couples the rules of a rule-based classifier with as many local probabilistic generative models. These are trained over the coverage of the corresponding rules to better catch those globally rare cases/classes that become less rare in the coverage. Two novel schemes for tightly integrating rule-based and probabilistic classification are introduced, that classify unlabeled cases by considering multiple classifier rules as well as their local probabilistic counterparts. An intensive evaluation shows that the proposed framework is competitive and often superior in accuracy w.r.t. established competitors, while overcoming them in dealing with rare classes.

  4. Examining Tennessee's collateral source rule.

    PubMed

    Regan, Judith; Hadley, Edward; Regan, William M

    2008-11-01

    The common law collateral source rule was established to prevent the defendant from benefiting from their wrongful actions. Despite a trend in the United States to limit the effects of the collateral source rule, the rule remains in force in courts of the State of Tennessee. However, to assist with the malpractice crisis, the legislature prohibited this rule by statute in regards to the Medical Malpractice Act. Although this statutory prohibition of the collateral source rule worked to lessen verdicts in malpractice cases after passage, the availability of consortium damages resulting from Jordan v. Baptist Three Rivers Hospital in 1999 has worked to drive verdicts substantially higher. Regardless the Medical Malpractice Act has been held as constitutional and has been clarified through several recent Tennessee court decisions. PMID:19024250

  5. Automata learning algorithms and processes for providing more complete systems requirements specification by scenario generation, CSP-based syntax-oriented model construction, and R2D2C system requirements transformation

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Margaria, Tiziana (Inventor); Rash, James L. (Inventor); Rouff, Christopher A. (Inventor); Steffen, Bernard (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments, automata learning algorithms and techniques are implemented to generate a more complete set of scenarios for requirements based programming. More specifically, a CSP-based, syntax-oriented model construction, which requires the support of a theorem prover, is complemented by model extrapolation, via automata learning. This may support the systematic completion of the requirements, the nature of the requirement being partial, which provides focus on the most prominent scenarios. This may generalize requirement skeletons by extrapolation and may indicate by way of automatically generated traces where the requirement specification is too loose and additional information is required.

  6. A Derivative of the Gerasimov-Drell-Hearn Sum Rule

    SciTech Connect

    Vladimir Pascalutsa; Barry Holstein; Marc Vanderhaeghen

    2004-08-01

    We derive a sum rule which establishes a linear relation between a particle's anomalous magnetic moment and a quantity connected to the photoabsorption cross-section. This quantity cannot be measured directly. However, it can be computed within a given theory. As an example, we demonstrate validity of the sum rule in QED at tree level---the renowned Schwinger's correction to the anomalous magnetic moment is readily reproduced. In the case of the strong interactions, we also consider the calculation of the nucleon magnetic moment within chiral theories.

  7. Modeling water infiltration in unsaturated porous media by interacting lattice gas-cellular automata

    NASA Astrophysics Data System (ADS)

    di Pietro, L. B.; Melayah, A.; Zaleski, S.

    1994-10-01

    A two-dimensional lattice gas-cellular automaton fluid model with long-range interactions (Appert and Zaleski, 1990) is used to simulate saturated and unsaturated water infiltration in porous media. Water and gas within the porous medium are simulated by applying the dense and the light phase, respectively, of the cellular automaton fluid. Various wetting properties can be modeled when adjusting the corresponding solid-liquid interactions. The lattice gas rules include a gravity force step to allow buoyancy-driven flow. The model handles with ease complex geometries of the solid, and an algorithm for generating random porous media is presented. The results of four types of simulation experiments are presented: (1) We verified Poiseuille's law for steady and saturated flow between two parallel plates. (2) We analyzed transient water infiltration between two parallel plates of varying degrees of saturation and various apertures. (3) Philip's infiltration equation was adequately simulated in an unsaturated porous medium. (4) Infiltration into an aggregated medium containing one vertical parallel crack was simulated. Further applications of this lattice gas method for studying unsaturated flow in porous media are discussed.

  8. Linear magnetic bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A linear magnetic bearing system having electromagnetic vernier flux paths in shunt relation with permanent magnets, so that the vernier flux does not traverse the permanent magnet, is described. Novelty is believed to reside in providing a linear magnetic bearing having electromagnetic flux paths that bypass high reluctance permanent magnets. Particular novelty is believed to reside in providing a linear magnetic bearing with a pair of axially spaced elements having electromagnets for establishing vernier x and y axis control. The magnetic bearing system has possible use in connection with a long life reciprocating cryogenic refrigerator that may be used on the space shuttle.

  9. Long-range correlations of density fluctuations in the Kerner-Klenov-Wolf cellular automata three-phase traffic flow model

    NASA Astrophysics Data System (ADS)

    Wu, J. J.; Sun, H. J.; Gao, Z. Y.

    2008-09-01

    Detrended fluctuation analysis (DFA) is a useful tool to measure the long-range power-law correlations in 1/f noise. In this paper, we investigate the power-law dynamics behavior of the density fluctuation time series generated by the famous Kerner-Klenov-Wolf cellular automata model in road traffic. Then the complexities of spatiotemporal, average speed, and the average density have been analyzed in detail. By introducing the DFA method, our main observation is that the free flow and wide moving jam phases correspond to the long-range anticorrelations. On the contrary, at the synchronized flow phase, the long-range correlated property is observed.

  10. A New Binning Method for Metagenomics by One-Dimensional Cellular Automata

    PubMed Central

    Lin, Ying-Chih

    2015-01-01

    More and more developed and inexpensive next-generation sequencing (NGS) technologies allow us to extract vast sequence data from a sample containing multiple species. Characterizing the taxonomic diversity for the planet-size data plays an important role in the metagenomic studies, while a crucial step for doing the study is the binning process to group sequence reads from similar species or taxonomic classes. The metagenomic binning remains a challenge work because of not only the various read noises but also the tremendous data volume. In this work, we propose an unsupervised binning method for NGS reads based on the one-dimensional cellular automaton (1D-CA). Our binning method facilities to reduce the memory usage because 1D-CA costs only linear space. Experiments on synthetic dataset exhibit that our method is helpful to identify species of lower abundance compared to the proposed tool. PMID:26557648

  11. Linear Accelerator (LINAC)

    MedlinePlus

    ... is the device most commonly used for external beam radiation treatments for patients with cancer. The linear ... shape of the patient's tumor and the customized beam is directed to the patient's tumor. The beam ...

  12. Superselection rules and quantum protocols

    SciTech Connect

    Kitaev, Alexei; Preskill, John; Mayers, Dominic

    2004-05-01

    We show that superselection rules do not enhance the information-theoretic security of quantum cryptographic protocols. Our analysis employs two quite different methods. The first method uses the concept of a reference system--in a world subject to a superselection rule, unrestricted operations can be simulated by parties who share access to a reference system with suitable properties. By this method, we prove that if an n-party protocol is secure in a world subject to a superselection rule, then the security is maintained even if the superselection rule is relaxed. However, the proof applies only to a limited class of superselection rules, those in which the superselection sectors are labeled by unitary irreducible representations of a compact symmetry group. The second method uses the concept of the format of a message sent between parties--by verifying the format, the recipient of a message can check whether the message could have been sent by a party who performed charge-conserving operations. By this method, we prove that protocols subject to general superselection rules (including those pertaining to non-Abelian anyons in two dimensions) are no more secure than protocols in the unrestricted world. However, the proof applies only to two-party protocols. Our results show in particular that, if no assumptions are made about the computational power of the cheater, then secure quantum bit commitment and strong quantum coin flipping with arbitrarily small bias are impossible in a world subject to superselection rules.

  13. Linear system theory

    NASA Technical Reports Server (NTRS)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  14. Linear Alopecia Areata

    PubMed Central

    Shetty, Shricharith; Rao, Raghavendra; Kudva, R Ranjini; Subramanian, Kumudhini

    2016-01-01

    Alopecia areata (AA) over scalp is known to present in various shapes and extents of hair loss. Typically it presents as circumscribed patches of alopecia with underlying skin remaining normal. We describe a rare variant of AA presenting in linear band-like form. Only four cases of linear alopecia have been reported in medical literature till today, all four being diagnosed as lupus erythematosus profundus. PMID:27625568

  15. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  16. 78 FR 20371 - Small Business Size Standards; Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Aerospace Ball and Roller Bearings, North American Industry Classification System (NAICS) code 332991... Nonmanufacturer Rule for Aerospace Ball and Roller Bearings, consisting of, but not limited to, Annular Ball Bearings, Cylindrical Ball Bearings, Linear Ball Bearings, Linear Roller Bearings, Needle Roller...

  17. A Response from Golden Rule to "ETS on 'Golden Rule'".

    ERIC Educational Resources Information Center

    Rooney, J. Patrick

    1987-01-01

    This article rebuts comments by G. R. Anrig (1987) on the Settlement Agreement that resolved the racial discrimination suit brought by the Golden Rule Insurance Company against the Educational Testing Service (ETS) and the Illinois Department of Insurance. (TJH)

  18. Universal waste rule: Final rule issued. Environmental Guidance Regulatory Bulletin

    SciTech Connect

    1995-08-14

    On February 11, 1993, EPA proposed to streamline the management requirements for certain hazardous wastes that were generated in large quantities by a variety of generators (i.e., residential, small businesses, industries, etc.). EPA`s intention was to facilitate the environmentally sound collection and disposal of these types of wastes. In this proposed rule, EPA termed these types of hazardous wastes ``universal wastes`` and developed a management system which was less stringent than the existing Subtitle C regulations. EPA proposed that the following three types of hazardous wastes be managed as universal wastes: batteries, certain pesticides, and thermostats. Because EPA believed that the authority to propose the promulgation of the universal waste rule was not significantly linked to HSWA provisions, the Agency proposed the promulgation of the universal waste rule under pre-HSWA authority. On May 11, 1995, at FR 25492, EPA promulgated a pre-HSWA rule that streamlined hazardous waste management regulations for universal wastes.

  19. 76 FR 17569 - Amateur Service Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... COMMISSION 47 CFR Part 97 Amateur Service Rules AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: This document revises the Amateur Radio Service rules to amend and clarify the rules with respect to amateur stations transmitting spread spectrum emissions. The rule amendments are necessary...

  20. 75 FR 27272 - Amateur Service Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... COMMISSION 47 CFR Part 97 Amateur Service Rules AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY: This document proposes to amend the amateur radio service rules to facilitate the use of... the amateur service rules by making them conform with other Commission rules, thereby...