Sample records for automated anion-exchange purification

  1. Anion exchange purification of plasmid DNA using expanded bed adsorption.


    Ferreira, G N; Cabral, J M; Prazeres, D M


    Recent developments in gene therapy with non-viral vectors and DNA vaccination have increased the demand for large amounts of pharmaceutical-grade plasmid DNA. The high viscosity of process streams is of major concern in the purification of plasmids, since it can cause high back pressures in column operations, thus limiting the throughput. In order to avoid these high back pressures, expanded bed anion exchange chromatography was evaluated as an alternative to fixed bed chromatography. A Streamline 25 column filled with 100 ml of Streamline QXL media, was equilibrated with 0.5 M NaCl in TE (10 mM Tris, 1 mM EDTA, pH = 8.0) buffer at an upward flow of 300 cmh-1, E. coli lysates (obtained from up to 3 liters of fermentation broth) were injected in the column. After washing out the unbound material, the media was allowed to sediment and the plasmid was eluted with 1 M NaCl in TE buffer at a downward flow of 120 cmh-1. Purification factors of 36 +/- 1 fold, 26 +/- 0.4 plasmid purity, and close to 100% yields were obtained when less than one settled column volume of plasmid feed was injected. However, both recovery yield and purity abruptly decreased when larger amounts were processed-values of 35 +/- 2 and 5 +/- 0.7 were obtained for the recovery yield and purity, respectively, when 250 ml of feedstock were processed. In these cases, gel clogging and expansion collapse were observed. The processing of larger volumes, thus larger plasmid quantities, was only possible by performing an isopropanol precipitation step prior to the chromatographic step. This step led to an enhancement of the purification step. PMID:10840595

  2. Purification Or Organic Acids Using Anion Exchange Chromatography.


    Ponnampalam; Elankovan


    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  3. Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin

    SciTech Connect

    Marsh, S.F.; Mann, M.J.


    For almost 30 years, Los Alamos National Laboratory has used anion exchange in nitric acid as the major aqueous process or the recovery and purification of plutonium. One of the few disadvantages of this system is the particularly slow rate at which the anionic nitrato complex of Pu(IV) equilibrates with the resin. The Nuclear Materials Process Technology Group at Los Alamos recently completed an ion exchange development program that focused on improving the slow sorption kinetics that limits this process. A comprehensive investigation of modern anion exchange resins identified porosity and bead size as the properties that most influence plutonium sorption kinetics. Our study found that small beads of macroporous resin produced a dramatic increase in plutonium process efficiency. The Rocky Flats Plant has already adopted this improved ion exchange technology, and it currently is being evaluated for use in other DOE plutonium-processing facilities.

  4. Americium purification by a combined anion exchange and bidentate organophosphorus solvent extraction process. [Patent application

    SciTech Connect

    Navratil, J.D.; Martella, L.L.


    Americium is separated from mixtures containing plutonium, other actinides, and other non-lanthamide impurities, by a combined process of anion exchange resin sorption to remove plutonium, and a bidentate organophosphorus solvent extraction of americium of the anion exchange resin effluent. Dihexyl-N,N-diethylcarbamylmethylenephosphonate is a preferred solvent. The initial mixture may be subjected to a cation exchange operation to remove monovalent impurities. The process is especially effective when aluminum, zinc, lead, and copper are present in significant quantities in the original mixture.

  5. Automated flow-based anion-exchange method for high-throughput isolation and real-time monitoring of RuBisCO in plant extracts.


    Suárez, Ruth; Miró, Manuel; Cerdà, Víctor; Perdomo, Juan Alejandro; Galmés, Jeroni


    In this work, a miniaturized, completely enclosed multisyringe-flow system is proposed for high-throughput purification of RuBisCO from Triticum aestivum extracts. The automated method capitalizes on the uptake of the target protein at 4°C onto Q-Sepharose Fast Flow strong anion-exchanger packed in a cylindrical microcolumn (105 × 4 mm) followed by a stepwise ionic-strength gradient elution (0-0.8 mol/L NaCl) to eliminate concomitant extract components and retrieve highly purified RuBisCO. The manifold is furnished downstream with a flow-through diode-array UV/vis spectrophotometer for real-time monitoring of the column effluent at the protein-specific wavelength of 280 nm to detect the elution of RuBisCO. Quantitation of RuBisCO and total soluble proteins in the eluate fractions were undertaken using polyacrylamide gel electrophoresis (PAGE) and the spectrophotometric Bradford assay, respectively. A comprehensive investigation of the effect of distinct concentration gradients on the isolation of RuBisCO and experimental conditions (namely, type of resin, column dimensions and mobile-phase flow rate) upon column capacity and analyte breakthrough was effected. The assembled set-up was aimed to critically ascertain the efficiency of preliminary batchwise pre-treatments of crude plant extracts (viz., polyethylenglycol (PEG) precipitation, ammonium sulphate precipitation and sucrose gradient centrifugation) in terms of RuBisCO purification and absolute recovery prior to automated anion-exchange column separation. Under the optimum physical and chemical conditions, the flow-through column system is able to admit crude plant extracts and gives rise to RuBisCO purification yields better than 75%, which might be increased up to 96 ± 9% with a prior PEG fractionation followed by sucrose gradient step. PMID:21641435

  6. Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles.


    Ladd Effio, Christopher; Hahn, Tobias; Seiler, Julia; Oelmeier, Stefan A; Asen, Iris; Silberer, Christine; Villain, Louis; Hubbuch, Jürgen


    Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%. PMID:26718185


    SciTech Connect

    Kyser, E.; King, W.


    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.


    SciTech Connect

    Kyser, E. A.; King, W. D.


    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

  9. Purification and neutron emission reduction of 238Plutonium oxide by nitrate anion exchange processing

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Brock, J.; Nixon, J. Z.; Moniz, P.; Silver, G.; Ramsey, K. B.


    The use of ion exchange during the aqueous purification of 238Pu oxide results in low levels of uranium, thorium, and americium in the product oxide. Neutron emission rates are also reduced in the product oxide. Fluorine introduced during the dissolution of impure fuel increases the neutron emission rate of the product oxide due to the 238Pu-19F alpha/n reaction. Treating the 238Pu solution with aluminum nitrate prior to ion exchange reduces the neutron emission rate in the product oxide. Data are presented to show that neutron emission rates and concentrations of uranium, thorium, and americium are reduced by ion exchange processing. .

  10. Strong anion-exchange fast performance liquid chromatography as a versatile tool for preparation and purification of RNA produced by in vitro transcription.


    Koubek, Jiri; Lin, Ku Feng; Chen, Yet Ran; Cheng, Richard Ping; Huang, Joseph Jen Tse


    Here we demonstrate the use of strong anion-exchange fast performance liquid chromatography (FPLC) as a simple, fast, and robust method for RNA production by in vitro transcription. With this technique, we have purified different transcription templates from unreacted reagents in large quantities. The same buffer system could be used to readily remove nuclease contamination from the overexpressed pyrophosphatase, the important reagent for in vitro transcription. In addition, the method can be used to monitor in vitro transcription reactions to enable facile optimization of reaction conditions, and we have compared the separation performance between strong and weak anion-exchange FPLC for various transcribed RNAs, including the Diels-Alder ribozyme, the hammerhead ribozyme tRNA, and 4.5S RNA. The functionality of the purified tRNA(Cys) has been confirmed by the aminoacylation assay. Only the purification by strong anion-exchange FPLC has led to the enrichment of the functional tRNA from run-off transcripts as revealed by both enzymatic and electrophoretic analysis. PMID:23929938

  11. Automated analysis of alditols by anion-exchange chromatography with photometric and fluorimetric postcolumn derivatization.


    Honda, S; Takahashi, M; Shimada, S; Kakehi, K; Ganno, S


    Eight alditols were separated in ca. 80 min as their borate complexes by stepwise elution with three borate buffers on a column packed with Hitachi 2633 resin. The alditols in the eluate were derivatized automatically to colored, fluorescent products by applying sequential reactions of periodate oxidation and Hantzsch condensation, and the products were detected either photometrically or fluorimetrically. This automated method allowed simultaneous determination of 20-500 and 20-200 nmol amounts of alditols by photometric and fluorimetric monitorings, respectively. The lower limits of detection were ca. 2 and 0.5 nmol, respectively. The interference by aldoses was slight. Aldoses may be also determined as alditols by direct injection of aqueous solutions to which excess amounts of sodium borohydride have been added. This method was applied with success to urinary alditol assay and to molecular weight determination by end group analysis. PMID:6846817

  12. Anion exchange membrane


    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus


    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.


    SciTech Connect

    Crowder, M.; Pierce, R.


    H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed test conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored the

  14. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik


    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  15. Anion exchange polymer electrolytes


    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo


    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  16. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.


    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  17. Removal of Uranium from Plutonium Solutions by Anion Exchange

    SciTech Connect

    Rudisill, T.S.


    The anion exchange capacity in the HB-Line Phase II Facility will be used to purify plutonium solutions potentially containing significant quantities of depleted uranium. Following purification, the plutonium will be precipitated as an oxalate and calcined to plutonium oxide (PuO2) for storage until final disposition.

  18. Quantification of 1,5-anhydro-D-glucitol in urine by automated borate complex anion-exchange chromatography with an immobilized enzyme reactor.


    Tanabe, T; Tajima, S; Suzuki, T; Okawa, E; Machida, R; Ichimura, S; Yabuuchi, M


    HPLC using a borate form of a strongly anion-exchange resin column and an immobilized enzyme reactor for colorimetric detection was used to quantify urinary 1,5-anhydro-D-glucitol. Urine samples were introduced into the system every 7 min without any pretreatment, and after separation of interfering substances in the column, 1,5-anhydro-D-glucitol was successively detected. Quantitative determination of urinary 1,5-anhydro-D-glucitol was possible within the 1.2-300 micromol/l range. The coefficient of variance was less than 3% and the correlation between results obtained with our system (y) and those obtained by gas chromatography-mass spectrometry (x) was y=0.983x-1.287 micromol/l (n=42, r=0.998). PMID:9187379

  19. Nitrate anion exchange in 238Pu aqueous scrap recovery operations

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Silver, G. L.; Reimus, M. A. H.; Ramsey, K. B.


    Strong base, nitrate anion exchange (IX) is crucial to the purification of 238Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to a) demonstrate that high levels of impurities can be separated from 238Pu solutions via nitrate anion exchange and, b) work out chemical pretreatment methodology to adjust and maintain 238Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed.

  20. Anion exchange resins: Structure, formulation, and applications. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available


    The bibliography contains citations concerning the formulation and synthesis of anion exchange resins based on such resins as amides, polyethylenes, and styrenes. Osmotic, sorption, and electrical properties; exchange kinetics behavior; structure studies; and temperature related performance effects on anion exchange resins are considered. Anion exchange chromatography of liquids, and applications in water purification, pollution control, and protein and metallic ion separation are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  1. [Chromatographic separation of plasmid DNA by anion-exchange cryogel].


    Guo, Yantao; Shen, Shaochuan; Yun, Junxian; Yao, Kejian


    Plasmid DNA (pDNA) is used as an important vector for gene therapy, and its wide application is restricted by the purity and yield. To obtain high-purity pDNA, a chromatographic method based on anion-exchange supermacroporous cryogel was explored. The anion-exchange cryogel was prepared by grafting diethylaminoethyl-dextran to the epoxide groups of polyacrylamide-based matrix and pUC19 plasmid was used as a target to test the method. The plasmid was transferred into Escherichia coli DH5alpha, cultivated, harvested and lysed. The obtained culture was centrifuged and the supernatant was used as the plasmid feedstock, which was loaded into the anion-exchange cryogel bed for chromatographic separation. By optimizing the pH of running buffer and the elution conditions, high-purity pDNA was obtained by elution with 0.5 mol/L sodium chloride solution at pH 6.6. Compared to the traditional methods for purification of pDNA, animal source enzymes and toxic reagents were not involved in the present separation process, ensuring the safety of both the purification operations and the obtained pDNA. PMID:23185899

  2. Automated multi-step purification protocol for Angiotensin-I-Converting-Enzyme (ACE).


    Eisele, Thomas; Stressler, Timo; Kranz, Bertolt; Fischer, Lutz


    Highly purified proteins are essential for the investigation of the functional and biochemical properties of proteins. The purification of a protein requires several steps, which are often time-consuming. In our study, the Angiotensin-I-Converting-Enzyme (ACE; EC was solubilised from pig lung without additional detergents, which are commonly used, under mild alkaline conditions in a Tris-HCl buffer (50mM, pH 9.0) for 48h. An automation of the ACE purification was performed using a multi-step protocol in less than 8h, resulting in a purified protein with a specific activity of 37Umg(-1) (purification factor 308) and a yield of 23.6%. The automated ACE purification used an ordinary fast-protein-liquid-chromatography (FPLC) system equipped with two additional switching valves. These switching valves were needed for the buffer stream inversion and for the connection of the Superloop™ used for the protein parking. Automated ACE purification was performed using four combined chromatography steps, including two desalting procedures. The purification methods contained two hydrophobic interaction chromatography steps, a Cibacron 3FG-A chromatography step and a strong anion exchange chromatography step. The purified ACE was characterised by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and native-PAGE. The estimated monomer size of the purified glycosylated ACE was determined to be ∼175kDa by SDS-PAGE, with the dimeric form at ∼330kDa as characterised by a native PAGE using a novel activity staining protocol. For the activity staining, the tripeptide l-Phe-Gly-Gly was used as the substrate. The ACE cleaved the dipeptide Gly-Gly, releasing the l-Phe to be oxidised with l-amino acid oxidase. Combined with peroxidase and o-dianisidine, the generated H(2)O(2) stained a brown coloured band. This automated purification protocol can be easily adapted to be used with other protein purification tasks. PMID:23217308

  3. Separation of bivalent anti-T cell immunotoxin from Pichia pastoris glycoproteins by borate anion exchange.


    Woo, Jung Hee; Neville, David M


    A major problem encountered in the large-scale purification of the bivalent anti-T cell immunotoxin, A-dmDT390-bisFv(G4S), from Pichia pastoris supernatants was the presence of host glycoproteins exhibiting similar charge, size, and hydrophobicity characteristics. We overcame this problem by employing borate anion exchange chromatography. The borate anion has an affinity for carbohydrates and imparts negative charges to these structures. We found that at a concentration of sodium borate between 50 and 100 mM, the nonglycosylated immunotoxin did not bind to Poros 50 HQ anion exchanger resin, but glycoproteins, including aggregates related to the immunotoxin, did. By using this property of the immunotoxin in the presence of sodium borate, we successfully developed a 3-step purification procedure: (i) Butyl-650M hydrophobic interaction chromatography, (ii) Poros 50 HQ anion exchange chromatography in the presence of borate, and (iii) HiTrap Q anion exchange chromatography. The final preparation exhibited a purity of greater than 98% and a yield of greater than 50% from the supernatant. Previously, boronic acid resins have been used to separate glycoproteins from proteins. However, combining borate anion with conventional anion exchange resins accomplishes the separation of the immunotoxin from glycoproteins and eliminates the need to evaluate nonstandard resins with respect to good manufacturing practice guidelines. PMID:12951782

  4. Advancements in Anion Exchange Membrane Cations

    SciTech Connect

    Sturgeon, Matthew R.; Long, Hai; Park, Andrew M.; Pivovar, Bryan S.


    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  5. Poly(phenylene)-based anion exchange membrane


    Hibbs, Michael; Cornelius, Christopher J.; Fujimoto, Cy H.


    A poly(phenylene) compound of copolymers that can be prepared with either random or multiblock structures where a first polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 2 pendant phenyl groups and 4 pendant tolyl groups and the second polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 6 pendant phenyl groups. The second polymer has chemical groups attached to some of the pendant phenyl groups selected from CH.sub.3, CH.sub.2Br, and CH.sub.2N(CH.sub.3).sub.3Br groups. When at least one group is CH.sub.2N(CH.sub.3).sub.3Br, the material functions as an anion exchange membrane.


    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey


  7. Ionic Block Copolymers for Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Herbst, Dan; Giffin, Guinevere A.; di Noto, Vito; Witten, Tom; Coughlin, E. Bryan


    Anion exchange membrane (AEM) fuel cells have regained interest because it allows the use of non-noble metal catalysts. Until now, most of the studies on AEM were based on random polyelectrolytes. In this work, Poly(vinylbenzyltrimethylammonium bromide)-b- (methylbutylene) ([PVBTMA][Br]-b-PMB) was studied by SAXS, TEM and dielectric spectroscopy to understand the fundamental structure-conductivity relationship of ion transport mechanisms within well-ordered block copolymers. The ionic conductivity and the formation of order structure were dependent on the casting solvent. Higher ion exchange capacity (IEC) of the membranes showed higher conductivity at as IEC values below 1.8mmol/g, as above this, the ionic conductivity decreases due to more water uptake leading to dilution of charge density. The humidity dependence of morphology exhibited the shifting of d-spacing to higher value and the alteration in higher characteristic peak of SAXS plot as the humidity increase from the dry to wet state. This phenomenon can be further explained by a newly developed polymer brush theory. Three ionic conduction pathways with different conduction mechanism within the membranes can be confirmed by broadband electric spectroscopy. US Army MURI (W911NF1010520)

  8. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.


    Under the current grant (FG22-90PC90309), the University of Tennessee Space Institute (UTSI) will carry out the necessary bench scale experiments to further develop it anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. In particular, it is planned to screen commercially available resins and then carry out process optimization work with three selected resins. Further optimization of the resin regeneration step as well as evaluation of the effect of various performance enhancers will then be carried out with one selected resin. A process schematic, to be developed based on the bench scale results, will be used to estimate the related economics. Some limited scope testing will also be carried out using the spent-seed and sorbent materials obtained from both the coal-fired magnetohydrodynamics (MHD) and the in-duct sorbent injection pilot scale facilities. During this reporting period, 90% of the planned batch mode screening experiments for the eleven samples of candidate resins were completed. Preliminary evaluation of the resulting data is continuing in order to select a smaller number (3--4) of samples for screening in the fixed-bed setup. The installation of the semi-automated fixed-bed setup is about 70% complete and shakedown experiments will be started in 3--4 weeks. Progress made in relation to these activities is presented below. 2 figs., 3 tabs.

  9. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.


    Popov, L


    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. PMID:27451111

  10. New anion-exchange polymers for improved separations

    SciTech Connect

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.


    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials.

  11. Automated RNA Extraction and Purification for Multiplexed Pathogen Detection

    SciTech Connect

    Bruzek, Amy K.; Bruckner-Lea, Cindy J.


    Pathogen detection has become an extremely important part of our nation?s defense in this post 9/11 world where the threat of bioterrorist attacks are a grim reality. When a biological attack takes place, response time is critical. The faster the biothreat is assessed, the faster countermeasures can be put in place to protect the health of the general public. Today some of the most widely used methods for detecting pathogens are either time consuming or not reliable [1]. Therefore, a method that can detect multiple pathogens that is inherently reliable, rapid, automated and field portable is needed. To that end, we are developing automated fluidics systems for the recovery, cleanup, and direct labeling of community RNA from suspect environmental samples. The advantage of using RNA for detection is that there are multiple copies of mRNA in a cell, whereas there are normally only one or two copies of DNA [2]. Because there are multiple copies of mRNA in a cell for highly expressed genes, no amplification of the genetic material may be necessary, and thus rapid and direct detection of only a few cells may be possible [3]. This report outlines the development of both manual and automated methods for the extraction and purification of mRNA. The methods were evaluated using cell lysates from Escherichia coli 25922 (nonpathogenic), Salmonella typhimurium (pathogenic), and Shigella spp (pathogenic). Automated RNA purification was achieved using a custom sequential injection fluidics system consisting of a syringe pump, a multi-port valve and a magnetic capture cell. mRNA was captured using silica coated superparamagnetic beads that were trapped in the tubing by a rare earth magnet. RNA was detected by gel electrophoresis and/or by hybridization of the RNA to microarrays. The versatility of the fluidics systems and the ability to automate these systems allows for quick and easy processing of samples and eliminates the need for an experienced operator.

  12. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.


    Yang, Zhengjin; Hou, Jianqiu; Wang, Xinyu; Wu, Liang; Xu, Tongwen


    For anion exchange membranes (AEMs), achieving efficient hydroxide conductivity without excessive hydrophilicity presents a challenge. Hence, new strategies for constructing mechanically strengthened and hydroxide conductive (especially at controlled humidity) membranes are critical for developing better AEMs. Macromolecular modification involving ylide chemistry (Wittig reaction) for the fabrication of novel AEMs with an interpenetrating polymer network structure is reported. The macromolecular modification is cost effective, facile, and based on a one-pot synthesis. AEM water uptake is reduced to 3.6 wt% and a high hydroxide conductivity (69.7 mS cm(-1) , 90 °C) is achieved simultaneously. More importantly, the membrane exhibits similar tensile strength (>35 MPa) and comparable flexibility in both dry and wet states. These AEMs could find further applications within anion exchange membrane fuel cells with low humidity or photoelectric assemblies. PMID:25962480

  13. The sorption of quercetin by high-basicity anion exchangers

    NASA Astrophysics Data System (ADS)

    Udalova, N. A.; Karpov, S. I.; Selemenev, V. F.; Sharmar, I. A.


    The sorption of quercetin on anionites with various porosities in the OH- and Cl- forms was studied under static conditions. The equilibrium (distribution coefficients K p) and kinetic (effective diffusion coefficients D eff) parameters of quercetin sorption on AV-17-2P and AV-17-6M anionites in the Cl- and OH- forms were calculated. The mechanism of quercetin interactions with the anion exchangers was studied by electron microscopy and IR spectroscopy.

  14. Alkaline Anion-Exchange Membranes Containing Mobile Ion Shuttles.


    Ge, Xiaolin; He, Yubin; Guiver, Michael D; Wu, Liang; Ran, Jin; Yang, Zhengjin; Xu, Tongwen


    A new class of alkaline anion-exchange membranes containing mobile ion shuttles is developed. It is achieved by threading ionic linear guests into poly(crown ether) hosts via host-guest molecular interaction. The thermal- and pH-triggered shuttling of ionic linear guests remarkably increases the solvation-shell fluctuations in inactive hydrated hydroxide ion complexes (OH(-) (H2 O)4 ) and accelerates the OH(-) transport. PMID:26972938

  15. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange

    NASA Astrophysics Data System (ADS)

    Anderson, Bryan D.; Tracy, Joseph B.


    Conversion chemistry is a rapidly maturing field, where chemical conversion of template nanoparticles (NPs) into new compositions is often accompanied by morphological changes, such as void formation. The principles and examples of three major classes of conversion chemical reactions are reviewed: the Kirkendall effect for metal NPs, galvanic exchange, and anion exchange, each of which can result in void formation in NPs. These reactions can be used to obtain complex structures that may not be attainable by other methods. During each kind of conversion chemical reaction, NPs undergo distinct chemical and morphological changes, and insights into the mechanisms of these reactions will allow for improved fine control and prediction of the structures of intermediates and products. Conversion of metal NPs into oxides, phosphides, sulphides, and selenides often occurs through the Kirkendall effect, where outward diffusion of metal atoms from the core is faster than inward diffusion of reactive species, resulting in void formation. In galvanic exchange reactions, metal NPs react with noble metal salts, where a redox reaction favours reduction and deposition of the noble metal (alloying) and oxidation and dissolution of the template metal (dealloying). In anion exchange reactions, addition of certain kinds of anions to solutions containing metal compound NPs drives anion exchange, which often results in significant morphological changes due to the large size of anions compared to cations. Conversion chemistry thus allows for the formation of NPs with complex compositions and structures, for which numerous applications are anticipated arising from their novel catalytic, electronic, optical, magnetic, and electrochemical properties.

  16. Thermodynamic study of the interaction between linear plasmid DNA and an anion exchange support under linear and overloaded conditions.


    Aguilar, P A; Twarda, A; Sousa, F; Dias-Cabral, A C


    Anion-exchange chromatography has been successfully used in plasmid DNA (pDNA) purification. However, pDNA adsorption mechanism using this method is still not completely understood, and the prediction of the separation behavior is generally unreliable. Flow microcalorimetry (FMC) has proven its ability to provide an improved understanding of the driving forces and mechanisms involved in the adsorption process of biomolecules onto several chromatographic systems. Thus, using FMC, this study aims to understand the adsorption mechanism of linear pDNA (pVAX1-LacZ) onto the anion-exchange support Fast Flow (FF) Q-Sepharose. Static binding capacity studies have shown that the mechanism of pDNA adsorption onto Q-Sepharose follows a Langmuir isotherm. FMC experiments resulted in thermograms that comprised endothermic and exothermic heats. Endothermic heat major contributor was suggested to be the desolvation process. Exothermic heats were related to the interaction between pDNA and Q-Sepharose primary and secondary adsorption. Furthermore, FMC revealed that the overall adsorption process is exothermic, as expected for an anion-exchange interaction. Nevertheless, there are evidences of the presence of nonspecific effects, such as reorientation and electrostatic repulsive forces. PMID:25465014

  17. Preparation of pure, high titer, pseudoinfectious Flavivirus particles by hollow fiber tangential flow filtration and anion exchange chromatography.


    Mundle, Sophia T; Giel-Moloney, Maryann; Kleanthous, Harry; Pugachev, Konstantin V; Anderson, Stephen F


    Purification of enveloped viruses such as live flavivirus vaccine candidates poses a challenge as one must retain viral infectivity to preserve immunogenicity. Here we describe a laboratory-scale purification procedure for two replication defective (single-cycle) flavivirus variants for use in a pre-clinical setting. The two step purification scheme based on hollow fiber tangential flow filtration (TFF) followed by anion exchange chromatography using convective interaction media (CIM(®)) monoliths results in a ∼60% recovery of infectious virus titer and can be used to prepare nearly homogenous, highly purified vaccine viruses with titers as high as 1×10(9) focus forming units per mL. Flavivirus virions prepared by this method are 2 and 3 orders of magnitude more pure with respect to dsDNA and BHK host cell proteins, respectively, as compared to the raw feed stream. PMID:25498209

  18. Anion Exchange Membranes: Current Status and Moving Forward

    SciTech Connect

    Hickner, MA; Herring, AM; Coughlin, EB


    This short review is meant to provide the reader with highlights in anion exchange membrane research, describe current needs in the field, and point out promising directions for future work. Anion exchange membranes (AEMs) provide one possible route to low platinum or platinum-free fuel cells with the potential for facile oxidation of complex fuels beyond hydrogen and methanol. AEMs and related stable cationic polymers also have applications in energy storage and other electrochemical technologies such as water electrolyzers and redox flow batteries. While anion exchange membranes have been known for a long time in water treatment applications, materials for electrochemical technology with robust mechanical properties in thin film format have only recently become more widely available. High hydroxide and bicarbonate anion conductivity have been demonstrated in a range of AEM formats, but intrinsic stability of the polymers and demonstration of long device lifetime remain major roadblocks. Novel approaches to stable materials have focused on new types of cations that employ delocalization and steric shielding of the positive center to mitigate nucleophilic attack by hydroxide. A number of promising polymer backbones and membrane architectures have been identified, but limited device testing and a lack of understanding of the degradation mechanisms in operating devices is slowing progress on engineered systems with alkaline fuel cell technology. Our objective is to spur more research in this area to develop fuel cell systems that approach the costs of inexpensive batteries for large-scale applications. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1727-1735, 2013

  19. Determining gold in water by anion-exchange batch extraction

    USGS Publications Warehouse

    McHugh, J.B.


    This paper describes a batch procedure for determining gold in natural waters. It is completely adaptable to field operations. The water samples are filtered and acidified before they are equilibrated with an anion-exchange resin by shaking. The gold is then eluted with acetone-nitric acid solution, and the eluate evaporated to dryness. The residue is taken up in hydrobromic acid-bromine solution and the gold is extracted with methyl isobutyl ketone. The extract is electrothermally atomized in an atomic-absorption spectrophotometer. The limit of determination is 1 ng 1. ?? 1986.

  20. Regeneration of anion exchange resins by catalyzed electrochemical reduction


    Gu, Baohua; Brown, Gilbert M.


    Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.

  1. Quaternized agricultural by-products as anion exchange resins.


    Wartelle, Lynda H; Marshall, Wayne E


    The objectives of this study were the chemical modification of readily available, low-cost agricultural by-products to anion exchange resins and the selection of the best modified by-product for further use in anion removal. Resins were prepared through the quaternization of a series of 12 agricultural by-products with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC). Phosphate ion adsorption assays were conducted at pH 7 in order to compare adsorption properties among the by-products. Quaternized corn stover showed the highest phosphorus adsorption at 0.66 mmole/g. Since corn stover exhibited the best uptake of phosphate ion, it was compared to a commercially available, cellulose-based anion exchange resin. Additionally, adsorption capacities of quaternized corn stover for arsenate, chromate, and selenate were evaluated and adsorption efficiencies were determined in simulated wastewater samples. Our results indicate that modified corn stover demonstrates good adsorption uptake for arsenate and selenate and especially for chromate. PMID:16144735

  2. Molecular biology of the anion exchanger gene family.


    Kopito, R R


    The gene family of anion exchangers consists of at least four or five members, of which three have been characterized at the cDNA level. AE1-3 encode polypeptides that share significant homology with the erythrocyte anion exchanger, band 3 (AE1). Expression of cDNAs encoding these genes in heterologous systems confirms that this sequence similarity is reflected in the capacity to mediate reversible Cl/HCO3 exchange. While the NH2-terminal domain of band 3 is known to interact with several cytoplasmic proteins in erythrocytes, the function of the analogous domains of AE2 and AE3 remains unknown. The AE1 gene is expressed coordinately with other erythroid genes during erythropoiesis in both avian and mammalian erythroid progenitor cells. In addition, AE1 is expressed at the basolateral plasma membrane of the acid-secreting intercalated cells of the kidney. AE2 is expressed in a number of epithelial and nonepithelial cells; it may be expressed in the Golgi apparatus of some of these cells. AE3 is expressed in excitable tissues, including neurons and muscle. It is likely that these proteins play a role in regulation of intracellular pH and chloride in their respective tissue. Understanding of the physiological roles of these proteins, both for ion transport and for plasma membrane organization, remains a central issue. PMID:2289848



    Hyde, E.K.; Raby, B.A.


    A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.

  4. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.


    Under DOE Grant No. DE-FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI's anion-exchange resin-based desulfurization concept is believed to satisfy these requirements. During the reporting period, October 1, 1992--December 31, 1992, UTSI has completed the batch mode experiments to evaluate the performance enhancement effect caused by organic acids on the resin's exhaustion efficiency. At present, batch mode experiments are being conducted to locate the position of the CO[sub 3]= and SO[sub 4]= ions in the affinity chart, and also reviewing/assessing the ASPEN Code's capabilities for use in the development of the Best Process Schematic and related economics.

  5. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen


    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  6. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    PubMed Central

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, ZhengJin; Xu, Tongwen


    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH− conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH− conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology. PMID:26311616

  7. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.


    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  8. Using solvent extraction to process nitrate anion exchange column effluents

    SciTech Connect

    Yarbro, S.L.


    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

  9. The sorption capacity of boron on anionic-exchange resin

    SciTech Connect

    Lou, J.; Foutch, G.L.; Na, J.W.


    Boron sorption capacities on anionic-exchange resins vary with temperature, concentration, and resin crosslinkage. A semiempirical correlation, developed from boron solution chemistry, is presented to account for these variations. The relationship, based on boron chemistry and changes in Gibb's energy, can be stated approximately as Q = a{sub 1}C{sub B}{sup a{sub 2}}Z{sup a{sub 3}} exp[{minus}(a{sub 4}T + a{sub 5}T{sup 2} + a{sub 6}Z{sup 0.5})]. Correlation parameters, which vary with resin type, are evaluated experimentally. Parameter values for macroporous resin Diaion PA 300 and for gel-type resins Diaion SA10 and Amberlite IRN 78LC are presented. The resulting expression is used to determine boron sorption and desorption limitations on ion exchangers at various temperatures and concentrations, and to determine the interfacial boron concentration in equilibrium and rate models.

  10. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  11. Optimized anion exchange membranes for vanadium redox flow batteries.


    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan


    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance. PMID:23799776

  12. Hetero-Epitaxial Anion Exchange Yields Single-Crystalline Hollow Nanoparticles

    SciTech Connect

    Park, Jungwon; Zheng, Haimei; Jun, Young-wook; Alivisatos, A. Paul


    Anion exchange with S was performed on ZnO colloidal nanoparticles. The resulting hollow ZnS nanoparticles are crystal whose shape is dictated by the initial ZnO. Crystallographic and elemental analyses provide insight into the mechanism of the anion exchange.

  13. Human anion exchanger1 mutations and distal renal tubular acidosis.


    Yenchitsomanus, Pa-thai


    The human anion exchanger 1 (AE1 or SLC4A1) gene encodes anion exchanger 1 (or band 3) protein in erythrocytes and in alpha-intercalated cells of the kidney. Thus, AE1 mutations show pleiotrophic effects resulting in two distinct and seemingly unrelated defects, an erythrocyte abnormality and distal renal tubular acidosis (dRTA). Southeast Asian ovalocytosis (SAO), a well-known red blood cell (RBC) defect, which is widespread in Southeast Asian regions, is caused by AE1 mutation due to a deletion of 27 base pairs in codons 400-408 (delta400-408) leading to an in-frame 9 amino-acid loss in the protein. Co-existence of SAO and dRTA is usually not seen in the same individual. However, the two conditions can co-exist as the result of compound heterozygosities between delta400-408 and other mutations. The reported genotypes include delta400-408/G701D, delta400-408/R602H, delta400-408/deltaV850, and delta400-408/A858D. The presence of dRTA, with or without RBC abnormalities, may occur from homozygous or compound heterozygous conditions of recessive AE1 mutations (eg G701D/G701D, V488M/V488M, deltaV850/deltaV850, deltaV850/A858D, G701D/S773P) or heterozygous dominant AE1 mutations (eg R598H, R589C, R589S, S613F, R901X). Codon 589 of this gene seems to be a 'mutational hot-spot' since repeated mutations at this codon occurring in different ethnic groups and at least two de novo (R589H and R589C) mutations have been observed. Therefore, AE1 mutations can result in both recessive and dominant dRTA, possibly depending on the position of the amino acid change in the protein. As several mutant AE1 proteins still maintain a significant anion transport function but are defective in targeting to the cell surface, impaired intracellular trafficking of the mutant AE1 is an important molecular mechanism involved in the pathogenesis of dRTA associated with AE1 mutations. PMID:15115146

  14. Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode.


    Iskra, Timothy; Sacramo, Ashley; Gallo, Chris; Godavarti, Ranga; Chen, Shuang; Lute, Scott; Brorson, Kurt


    Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow-rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach. PMID:25826186

  15. Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry.


    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel


    This paper reports an automated analytical method for rapid determination of plutonium isotopes ((239)Pu and (240)Pu) in environmental solid extracts. Anion exchange chromatographic columns were incorporated in a sequential injection (SI) system to undertake the automated separation of plutonium from matrix and interfering elements. The analytical results most distinctly demonstrated that the crosslinkage of the anion exchanger is a key parameter controlling the separation efficiency. AG 1-×4 type resin was selected as the most suitable sorbent material for analyte separation. Investigation of column size effect upon the separation efficiency revealed that small-sized (2 mL) columns sufficed to handle up to 50 g of environmental soil samples. Under the optimum conditions, chemical yields of plutonium exceeded 90% and the decontamination factors for uranium, thorium and lead ranged from 10(3) to 10(4). The determination of plutonium isotopes in three standard/certified reference materials (IAEA-375 soil, IAEA-135 sediment and NIST-4359 seaweed) and two reference samples (Irish Sea sediment and Danish soil) revealed a good agreement with reference/certified values. The SI column-separation method is straightforward and less labor intensive as compared with batch-wise anion exchange chromatographic procedures. Besides, the automated method features low consumption of ion-exchanger and reagents for column washing and elution, with the consequent decrease in the generation of acidic waste, thus bearing green chemical credentials. PMID:21168558

  16. Highly conductive side chain block copolymer anion exchange membranes.


    Wang, Lizhu; Hickner, Michael A


    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days. PMID:27216558

  17. Hydroxide Solvation and Transport in Anion Exchange Membranes.


    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A


    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures. PMID:26716727

  18. Fouling mitigation of anion exchange membrane by zeta potential control.


    Park, Jin-Soo; Lee, Hong-Joo; Choi, Seok-Ju; Geckeler, Kurt E; Cho, Jaeweon; Moon, Seung-Hyeon


    The feasibility of fouling mitigation of anion exchange membranes (AEMs) in the presence of humate was studied by adding three different types of water-soluble polymers, i.e., poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(ethylene imine) (PEI), during electrodialysis (ED) desalination. Measurement of zeta potential of the humate used in this study showed highly negative potential (about -30 mV), implying that the humate had a strong fouling potential on the AEMs in ED. Of the three water-soluble polymers, PEI showed a positive zeta potential (about +14 mV) and is able to form an interpolymer complex with the humate. PAA and PVA hardly formed interpolymer complexes with humate due to electrostatic repulsion. The PEI-humate mixture with a volume ratio of 1:20 (PEI:humate) showed zero zeta potential, and a complexed humate with zero surface charge was formed, resulting in no fouling effects on the AEMs. Accordingly, the desalting ED experiments with PEI showed improved ED performance. Further, black colloids formed in the mixture did not cause the cell resistance to increase. PMID:16256509

  19. Effects of arginine on multimodal anion exchange chromatography.


    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi


    The effects of arginine on binding and elution properties of a multimodal anion exchanger, Capto adhere, were examined using bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8). Negatively charged BSA was bound to the positively charged Capto adhere and was readily eluted from the column with a stepwise or gradient elution using 1M NaCl at pH 7.0. For heat-treated BSA, small oligomers and remaining monomers were also eluted using a NaCl gradient, whereas larger oligomers required arginine for effective elution. The positively charged mAb-IL8 was bound to Capto adhere at pH 7.0. Arginine was also more effective for elution of the bound mAb-IL8 than was NaCl. The results imply that arginine interacts with the positively charged Capto adhere. The mechanism underlying the interactions of arginine with Capto adhere was examined by calculating the binding free energy between an arginine molecule and a Capto adhere ligand in water through molecular dynamics simulations. The overall affinity of arginine for Capto adhere is attributed to the hydrophobic and π-π interactions between an arginine side chain and the aromatic moiety of the ligand as well as hydrogen bonding between arginine and the ligand hydroxyl group, which may account for the characteristics of protein elution using arginine. PMID:26225914

  20. Removal of bromide and natural organic matter by anion exchange.


    Hsu, Susan; Singer, Philip C


    Bromide removal by anion exchange was explored for various water qualities, process configurations, and resin characteristics. Simulated natural waters containing different amounts of natural organic matter (NOM), bicarbonate, chloride, and bromide were treated with a polyacrylate-based magnetic ion exchange (MIEX) resin on a batch basis to evaluate the effectiveness of the resin for removal of bromide. While bromide removal was achieved to some degree, alkalinity (bicarbonate), dissolved organic carbon (DOC), and chloride were shown to inhibit bromide removal in waters with bromide concentrations of 100 and 300 microg/L. Water was also treated using a two-stage batch MIEX process. Two-stage treatment resulted in only a slight improvement in bromide removal compared to single-stage treatment, presumably due to competition with the high concentration of chloride which is present along with bromide in natural waters. In view of the relatively poor bromide removal results for the MIEX resin, a limited set of experiments was performed using polystyrene resins. DOC and bromide removal were compared by treating model waters with MIEX and two polystyrene resins, Ionac A-641 and Amberlite IRA910. The two polystyrene resins were seen to be more effective for bromide removal, while the MIEX resin was more effective at removing DOC. PMID:20045170

  1. Gamma radiation effect on gas production in anion exchange resins

    NASA Astrophysics Data System (ADS)

    Traboulsi, A.; Labed, V.; Dauvois, V.; Dupuy, N.; Rebufa, C.


    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H2g) and carbon dioxide (CO2g). TMA and H2g are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMAaq was associated with aqueous dimethylamine (DMAaq), monomethylamine (MMAaq) and ammonia (NH). CO2g is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMAg.

  2. Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies

    PubMed Central

    Close, Edward J; Salm, Jeffrey R; Iskra, Timothy; Sørensen, Eva; Bracewell, Daniel G


    Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. Scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column experiments were applied to characterize a

  3. High-capacity anion exchangers based on poly (glycidylmethacrylate-divinylbenzene) microspheres for ion chromatography.


    Liu, Junwei; Wang, Yong; Cheng, Heli; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan


    Poly (glycidylmethacrylate-divinylbenzene) microspheres were prepared by the two-staged swelling and polymerization method and applied to prepare anion exchange stationary phases. Methylamine, dimethylamine, trimethylamine, diethylamine and triethylamine were selected to prepare the quaternary ammonium groups of anion exchangers, respectively. The diameters and surface characteristics of microspheres were measured by scanning electron microscope and nitrogen adsorption-desorption measurements. The anion exchangers were characterized by Fourier transform infrared spectrum, elemental analysis and breakthrough curve methods. The chromatographic performances of anion exchangers were illustrated by separating conventional anions, organic weak acids and carbohydrates. The results indicated that the anion exchange capacities were controllable by changing either the content of glycidylmethacrylate in microspheres or the number of bonded quaternary ammonium layer. Meanwhile, the substituents of quaternary ammonium groups greatly influenced the separation properties of anion exchangers. Finally, the three-layer methylamine-quaternized anion exchanger was successfully applied for the determination of fluoride in tea sample. The content of fluoride was detected to be 0.13mgg(-1) without the interference of acetate and formate. PMID:27474308

  4. Anion exchange in Zn-Al layered double hydroxides: In situ X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Salak, Andrei N.; Tedim, João; Kuznetsova, Alena I.; Zheludkevich, Mikhail L.; Ferreira, Mário G. S.


    Anion exchange capacity is a key factor for the application of Zn-Al layered double hydroxides (LDHs) as nano-containers in active corrosion protection. In this work, the nitrate-pyrovanadate anion exchange/re-exchange processes in these LDHs were investigated in situ. We demonstrate that the exchange reactions lead to a decrease of the average crystallite size of LDHs as a result of mechanical fragmentation of the crystallites rather than dissolution/recrystallization. The fragmentation occurs due to fast anion exchange in the initial stage, and can be controlled by changing the ratio of the available substituent anions to the replacement anions and application of a mechanical activation.

  5. 3D Printing of Micropatterned Anion Exchange Membranes.


    Seo, Jiho; Kushner, Douglas I; Hickner, Michael A


    Micropatterned anion exchange membranes (AEMs) have been 3D printed via a photoinitiated free radical polymerization and quaternization process. The photocurable formulation, consisting of diurethane dimethacrylate (DUDA), poly(ethylene glycol) diacrylate (PEGDA), dipentaerythritol penta-/hexa- acrylate, and 4-vinylbenzyl chloride (VBC), was directly cured into patterned films using a custom 3D photolithographic printing process similar to stereolithography. Measurements of water uptake, permselectivity, and ionic resistance were conducted on the quaternized poly(DUDA-co-PEGDA-co-VBC) sample series to determine their suitability as ion exchange membranes. The water uptake of the polymers increased as the ion exchange capacity (IEC) increased due to greater quaternized VBC content. Samples with IEC values between 0.98 to 1.63 mequiv/g were synthesized by varying the VBC content from 15 to 25 wt %. The water uptake was sensitive to the PEGDA content in the network resulting in water uptake values ranging from 85 to 410 wt % by varying the PEGDA fractions from 0 to 60 wt %. The permselectivity of the AEM samples decreased from 0.91 (168 wt %, 1.63 mequiv/g) to 0.85 (410 wt %, 1.63 mequiv/g) with increasing water uptake and to 0.88 (162 wt %, 0.98 mequiv/g) with decreasing IEC. Permselectivity results were relatively consistent with the general understanding of the correlation between permselectivity, water uptake, and ion content of the membrane. Lastly, it was revealed that the ionic resistance of patterned membranes was lower than that of flat membranes with the same material volume or equivalent thickness. A parallel resistance model was used to explain the influence of patterning on the overall measured ionic resistance. This model may provide a way to maximize ion exchange membrane performance by optimizing surface patterns without chemical modification to the membrane. PMID:27218137

  6. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry.


    Bruggink, Cees; Maurer, Rolf; Herrmann, Heiko; Cavalli, Silvano; Hoefler, Frank


    A versatile liquid chromatographic platform has been developed for analysing underivatized carbohydrates using high performance anion exchange chromatography (HPAEC) followed by an inert PEEK splitter that splits the effluent to the integrated pulsed amperometric detector (IPAD) and to an on-line single quadrupole mass spectrometer (MS). Common eluents for HPAEC such as sodium hydroxide and sodium acetate are beneficial for the amperometric detection but not compatible with electrospray ionisation (ESI). Therefore a membrane-desalting device was installed after the splitter and prior to the ESI interface converting sodium hydroxide into water and sodium acetate into acetic acid. To enhance the sensitivity for the MS detection, 0.5 mmol/l lithium chloride was added after the membrane desalter to form lithium adducts of the carbohydrates. To compare sensitivity of IPAD and MS detection glucose, fructose, and sucrose were used as analytes. A calibration with external standards from 2.5 to 1000 pmole was performed showing a linear range over three orders of magnitude. Minimum detection limits (MDL) with IPAD were determined at 5 pmole levels for glucose to be 0.12 pmole, fructose 0.22 pmole and sucrose 0.11 pmole. With MS detection in the selected ion mode (SIM) the lithium adducts of the carbohydrates were detected obtaining MDL's for glucose of 1.49 pmole, fructose 1.19 pmole, and sucrose 0.36 pmole showing that under these conditions IPAD is 3-10 times more sensitive for those carbohydrates. The applicability of the method was demonstrated analysing carbohydrates in real world samples such as chicory inulin where polyfructans up to a molecular mass of 7000 g/mol were detected as quadrupoly charged lithium adducts. Furthermore mono-, di-, tri-, and oligosaccharides were detected in chicory coffee, honey and beer samples. PMID:16106855

  7. Ionic resistance and permselectivity tradeoffs in anion exchange membranes.


    Geise, Geoffrey M; Hickner, Michael A; Logan, Bruce E


    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data. PMID:24040962

  8. Removal of Pu238 from Neptunium Solution by Anion Exchange

    SciTech Connect



    A new anion flowsheet for use in HB-Line was tested in the lab with Reillex{trademark} HPQ for removal of Pu{sup 238} contamination from Np. Significant rejection of Pu{sup 238} was observed by washing with 6 to 12 bed volumes (BV) of reductive wash containing reduced nitric acid concentration along with both ferrous sulfamate (FS) and hydrazine. A shortened-height column was utilized in these tests to match changes in the plant equipment. Lab experiments scaled to plant batch sizes of 1500 to 2200 g Np were observed with modest losses for up-flow washing. Down-flow washing was observed to have high losses. The following are recommended conditions for removing Pu{sup 238} from Np solutions by anion exchange in HB-Line: (1) Feed conditions: Up-flow 6.4-8 M HNO{sub 3}, 0.02 M hydrazine, 0.05 M excess FS, less than 5 days storage of solution after FS addition. (2) Reductive Wash conditions: Up-flow 6-12 BV of 6.4 M HNO{sub 3}, 0.05 M FS, 0.05 M hydrazine. 1.8 mL/min/cm{sup 2} flowrate. (3) Decontamination Wash conditions: Up-flow 1-2 BV of 6.4-8 M HNO{sub 3}, no FS, no hydrazine. (4) Elution conditions: Down-flow 0.17 M HNO{sub 3}, 0.05 M hydrazine, no FS.

  9. Controlled optical properties of water-soluble CdTe nanocrystals via anion exchange.


    Li, Jing; Jia, Jianguang; Lin, Yuan; Zhou, Xiaowen


    We report a study on anion exchange reaction of CdTe nanocrystals with S(2-) in aqueous solution under ambient condition. We found that the optical properties of CdTe nanocrystals can be well tuned by controlling the reaction conditions, in which the reaction temperature is crucially important. At low reaction temperature, the product nanocrystals showed blue-shifts in both absorption and PL spectra, while the photoluminescence quantum yield (PLQY) was significantly enhanced. When anion exchanges were carried out at higher reaction temperature, on the other hand, obvious red shifts in absorption and PL spectra accompanied by a fast increase followed by gradual decrease in PLQY were observed. On variation of S(2-) concentration, it was found that the overall kinetics of Te(2-) for S(2-) exchanges depends also on [S(2-)] when anion exchanges were performed at higher temperature. A possible mechanism for anion exchanges in CdTe NCs was proposed. PMID:26520812

  10. A semi-automated method for purification of milligram quantities of proteins on the QIAcube

    PubMed Central

    McGraw, J; Tatipelli, VK; Traore, MC; Feyijinmi, O; Eangoor, P; Lane, S; Stollar, EJ


    A growing number of studies require the purification of multiple proteins simultaneously and the development of simple economical high-throughput purification methods is essential. We have tested the purification of two related proteins in a variety of conditions to benchmark the semi-automated affinity chromatography method for the QIAcube that we have developed. We find that this new QIAcube method can successfully purify milligram quantities of proteins with minimal user involvement and performs as well as methods based on gravity. The method could easily be adapted to other chromatography resins and should prove to be a versatile method for optimizing protein expression or purification conditions for multiple proteins while obtaining sufficient amounts for subsequent biochemical analyses. PMID:24508590



    Bailes, R.H.; Ellis, D.A.


    An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.

  12. High throughput determination of cleaning solutions to prevent the fouling of an anion exchange resin.


    Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J


    Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. PMID:26552005

  13. Automated genomic DNA purification options in agricultural applications using MagneSil paramagnetic particles

    NASA Astrophysics Data System (ADS)

    Bitner, Rex M.; Koller, Susan C.


    The automated high throughput purification of genomic DNA form plant materials can be performed using MagneSil paramagnetic particles on the Beckman-Coulter FX, BioMek 2000, and the Tecan Genesis robot. Similar automated methods are available for DNA purifications from animal blood. These methods eliminate organic extractions, lengthy incubations and cumbersome filter plates. The DNA is suitable for applications such as PCR and RAPD analysis. Methods are described for processing traditionally difficult samples such as those containing large amounts of polyphenolics or oils, while still maintaining a high level of DNA purity. The robotic protocols have ben optimized for agricultural applications such as marker assisted breeding, seed-quality testing, and SNP discovery and scoring. In addition to high yield purification of DNA from plant samples or animal blood, the use of Promega's DNA-IQ purification system is also described. This method allows for the purification of a narrow range of DNA regardless of the amount of additional DNA that is present in the initial sample. This simultaneous Isolation and Quantification of DNA allows the DNA to be used directly in applications such as PCR, SNP analysis, and RAPD, without the need for separate quantitation of the DNA.

  14. Semi-automated protocol for purification of Mycobacterium leprae from tissues using the gentleMACS™ Octo Dissociator.


    Williams, Diana L; Adams, Linda B; Lahiri, Ramanuj


    Mycobacterium leprae, etiologic agent of leprosy, is propagated in athymic nude mouse footpads (FPs). The current purification protocol is tedious and physically demanding. A simpler, semi-automated protocol was developed using gentleMACS™ Octo Dissociator. The gentleMACS protocol provided a very effective means for purification of highly viable M. leprae from tissue. PMID:25019518

  15. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.


    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  16. Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes

    NASA Astrophysics Data System (ADS)

    Liao, Xiaofeng; Ren, Li; Chen, Dongzhi; Liu, Xiaohong; Zhang, Hongwei


    In this paper, functionalized montmorillonite is intercalated with cetyl trimethyl ammonium chloride and (3-aminopropyl)triethoxysilane. Quaternized polysulfone/functionalized montmorillonite nanocomposite membranes are fabricated to evaluate their potential in anion-exchange membrane fuel cells. Fourier transform infrared spectroscopy, thermogravimetric analyzer and X-ray diffractometer are used to confirm the success of intercalation. The performances of the composite membranes for the anion-exchange membrane fuel cells in terms of their water uptake, mechanical property and ionic conductivity are investigated. Compared with other anion-exchange membranes, the nanocomposite membrane containing 5% montmorillonite modified by cetyl trimethyl ammonium chloride exhibits lower water uptake, higher ultimate stress and larger ionic conductivity. It exhibits an ionic conductivity of 4.73 × 10-2 S cm-1 at 95 °C.

  17. Quaternized poly (styrene-co-vinylbenzyl chloride) anion exchange membranes for alkaline water electrolysers

    NASA Astrophysics Data System (ADS)

    Vengatesan, S.; Santhi, S.; Jeevanantham, S.; Sozhan, G.


    In this study, poly (ST-co-VBC) based anion exchange membranes with different styrene to VBC ratios (1: 0.16, 1: 0.33 and 1: 1) have been prepared via chloromethylation-free synthetic route using aromatic vinyl monomers. The synthesized co-polymers are identified by FTIR and 1H-NMR analysis. Hydroxide (OH-) ion conductivity of the anion exchange membrane with styrene to VBC ratio of 1: 0.33 is as high as 6.8 × 10-3 S cm-1 in de-ionised water at 25 °C. The membrane also acquires the ion-exchange capacity of 2.14 meq. g-1, and the water uptake of 127%. Membrane-electrode-assembly (MEA) using the anion exchange membrane and Ni - foam catalyst demonstrate the current density of 40 mA cm-2 at 2.3 V in a water electrolyser cell.

  18. Sorption of tellurium ion from aqueous solutions by anion-exchangers and amphoteric ion-exchangers

    SciTech Connect

    Dreipa, E.F.; Pakholkov, V.S.; Luk'yanov, S.A.


    Sorption of tellurium from solutions of telluric acid under dynamic and static conditions by anion-exchangers and amphoteric ion-exchangers containing various ionic groups was studied and the influence of the ion form, pH of the medium, presence of electrolytes, and the H/sub 6/TeO/sub 6/ concentration in the original solutions was determined. The mechanism of sorption of tellurium (VI) by anion-exchangers was deduced from sorption and IR-spectroscopic data. Differences in the behavior of tellurium and selenium were used for separating these elements in 0.05 N H/sub 2/SeO/sub 4/ + 0.05 N H/sub 6/TeO/sub 6/ solution of pH = 1.0 with the aid of EDE-10P anion-exchange resin.

  19. Anion-exchange extraction of cephapirin, cefotaxime, and cefoxitin from serum for liquid chromatography.

    PubMed Central

    Fasching, C E; Peterson, L R


    An anion-exchange column technique for extraction of antibiotics from serum proteins has been developed for use in the assay of cephapirin, cefotaxime, and cefoxitin by high-pressure liquid chromatography. Anion-exchange extraction of cephapirin from serum samples by this technique was compared with protein precipitation methods, using 6% trichloroacetic acid or absolute ethanol. Column extraction gave improved quantitative drug recovery and reduced background serum interferences in the resultant chromatograms when evaluated against protein precipitation. Comparisons of this method with microbiological assay gave statistically equivalent results. Twelve patient samples were assayed for cephapirin, and no interferences were encountered from the 22 systemic agents these subjects were receiving. The anion-exchange technique for antibiotic extraction provides a rapid, precise, and quantitative antibiotic assay when used with liquid chromatography. PMID:6282213

  20. Measurement of the distribution of anion exchange function in normal human red cells.

    PubMed Central

    Raftos, J E; Bookchin, R M; Lew, V L


    1. The aim of the present work was to investigate cell-to-cell variation in anion exchange turnover in normal human red cells. Red cells permeabilized to protons and K+ dehydrate extremely rapidly by processes that are rate-limited by the induced K+ permeability or by anion exchange turnover. Conditions were designed to render dehydration rate-limited by anion exchange turnover. Cell-to-cell variation in anion exchange function could then be measured from the distribution of delay times required for dehydrating cells to attain resistance to haemolysis in a selected hypotonic medium. 2. Red cells were suspended at 10% haematocrit in a low-K+ solution and, after a brief preincubation with 20 microM SITS at 4 degrees C, were warmed to 24 degrees C, and the protonophore CCCP was added (20 microM) followed 2 min later by valinomycin (60 microM). Delay times for cells to become resistant to lysis were measured from the instant of valinomycin addition by sampling suspension aliquots into thirty volumes of 35 mM NaCl. After centrifugation the per cent lysis was estimated by measuring the haemoglobin concentration in the supernatant. Typical median delay times with this standardized method were 4-5 min. 3. The statistical parameters of the delay time distributions report the population spread in the transport function that was limiting to dehydration. In the absence of SITS and CCCP, dehydration was limited by the diffusional Cl- permeability (PCl). Delay time distributions for PCl- and anion exchange-limited dehydration were measured in red cells from three normal donors. For both distributions, the coefficients of variation ranged between 13.0 and 15.2%, indicating a high degree of uniformity in PCl and anion exchange function among individual red cells. PMID:9061637

  1. Ion exhange and molecular sorption of oxalic acid with a highly basic anion exchanger

    NASA Astrophysics Data System (ADS)

    Krisilova, E. V.; Oros, G. Yu.; Krisilov, A. V.; Selemenev, V. F.


    Ab initio modeling of a matrix fragment of resin and geometry optimization of the molecular structure of oxalic acid were performed. The isotherm of oxalic acid sorption with AV-17-8 anion exchange resin was obtained by the variable concentrations technique. The ion-exchange and molecular components of sorbate fixation with the ion exchanger were determined. The hydration of the highly basic anion exchanger that absorbed different quantities of dicarboxylic acid was evaluated by the centrifuging method. The dependence of the amount of water and sorbate concentration in the resin was linear antibatic.

  2. Comparison of automated and manual purification of total RNA for mRNA-based identification of body fluids.


    Akutsu, Tomoko; Kitayama, Tetsushi; Watanabe, Ken; Sakurada, Koichi


    Silica column-based RNA purification procedures have widespread use in mRNA profiling for body fluid identification in forensic samples. Also, automated RNA purification systems employing magnetic bead technology have recently become available. In this preliminary study, to ascertain which RNA purification technology is more suitable for the identification of body fluids by real-time reverse transcription polymerase chain reaction (RT-PCR), comparative analyses of the yield and quality of total RNA were performed between automated purification using an EZ1 Advanced Instrument and manual purification using an RNeasy Mini Kit. The yield and size distribution of total RNA were compared by gene expression analysis of two different sized fragments of the β-actin gene. In addition, the relative amounts of several target genes were compared between the purification methods, and the integrity of total RNA was determined by chip-based electrophoresis. The results of this study suggest that RNeasy can purify higher-quality RNA as compared with automated purification using EZ1. The sensitivity of the RT-PCR analysis, however, was higher in the EZ1-purified samples, likely due to the relative efficiency of EZ1 in extracting short-length RNA from degraded samples. We also show that the quantification of relative levels of body fluid-specific genes could be influenced by the purification procedure. Our results indicate that although use of high-quality RNA is generally required for reproducible results in gene expression analysis, the forensic relevance of short RNA fragments in highly degraded samples cannot be ruled out. Furthermore, our results suggest that automated purification procedures as well as silica column-based manual purification procedures can be used for mRNA-based body fluid identification in forensic samples. PMID:25270217

  3. Development of an automated system for isolation and purification of humic substances.


    van Zomeren, André; van der Weij-Zuiver, Esther; Comans, Rob N J


    Characterization of humic substances (HS) in environmental samples generally involves labor-intensive and time-consuming isolation and purification procedures. In this paper, the development of an automated system for HS isolation and purification is described. The novelty of the developed system lies in the way the multiple liquids and columns used in the isolation/purification procedure are handled in both forward and back-elution mode by solenoid valves. The automated procedure significantly reduces the total throughput time needed, from 6-7 days to 48 h, and the amount of labor to obtain purified HS for further characterization. Chemical characterization of purified HS showed that results were in good agreement with previously published values for HS from a variety of sources, including the IHSS standard HS collection. It was also shown that the general properties of HS were consistent among the different source materials (soil, waste, aquatic) used in this study. The developed system greatly facilitates isolation and characterization of HS and reduces the risk of potential (time-dependent) alteration of HS properties in the manual procedure. PMID:18488204

  4. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism

    SciTech Connect

    Knauf, P.A.; Law, F.Y.; Marchant, P.J.


    The parallel effects of the anion transport inhibitor DIDS (4,4'-diisothiocyanostilbene-2,2'disulfonate) on net chloride flow and on chloride exchange suggest that a major portion of net chloride flow takes place through the anion exchange system. The ''slippage'' model postulates that the rate of net anion flow is determined by the movement of the unloaded anion transport site across the membrane. Both the halide selectivity of net anion flow and the dependence of net chloride flux on chloride concentration over the range of 75 to 300 mM are inconsistent with the slippage model. Models in which the divalent form of the anion exchange carrier or water pores mediate net anion flow are also inconsistent with the data. The observations that net chloride flux increases with chloride concentration and that the DIDS-sensitive component tends to saturate suggest a model in which net anion flow involves ''transit'' of anions through the diffusion barriers in series with the transport site, without any change in transport site conformation such as normally occurs during the anion exchange process. This model is successful in predicting that the anion exchange inhibitor NAP-taurine, which binds to the modifier site and inhibits the conformational change, has less effect on net chloride flow than on chloride exchange.


    EPA Science Inventory

    Anion exchange protein 2 (AE2) is a membrane-bound protein that mediates chloride-bicarbonate exchange. In addition to regulating intracellular pH and cell volume, AE2 exports superoxide (O.) to the extracellular matrix in an HCO-dependent process. Given this ability to export O....

  6. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review.


    Zatirakha, A V; Smolenkov, A D; Shpigun, O A


    In the last decade the developments in the field of ion chromatography (IC) were aimed at increasing the efficiency, sensitivity and rapidity of analysis, as well as on improving separation selectivity. Since selectivity and efficiency to the large extent depend on the surface chemistry of the stationary phase, the development of novel anion exchangers remains one of the priority tasks in modern IC. The exact chemistry of commercially available resins is not known and not many literature data devoted to the procedures of preparing anion exchangers for IC have become available in the last 10-15 years. However, the knowledge about the surface chemistry of anion exchangers can provide understanding of the trends in selectivity and efficiency changes, as well as help with the choice of the stationary phase type suitable for solving a particular analytical task. The current review is devoted to the methods of preparing anion exchangers based on polystyrene-divinylbenzene (PS-DVB) and ethylvinylbenzene-divinylbenzene (EVB-DVB) for IC of inorganic and small organic anions and is aimed at demonstrating the improvement of their performance over the years, which was brought by the development of the new types of stationary phase architecture. PMID:26724761

  7. Investigation of an anion exchange resin for cleanup of a coolant used to machine nuclear materials

    SciTech Connect

    Hinton, E.R. Jr.; Tucker, H.L.; Asbury, W.L.


    This article describes the interaction of Dowex SBR-P, which is a strongly basic anion exchange resin, with ions found in a used machining coolant. The coolant is used in machining enriched uranium and contains uranium, chloride, nitrite, borate ions, water, and propylene glycol.

  8. New Anion-Exchange Resins for Improved Separations of Nuclear Material

    SciTech Connect

    Barr, Mary E.; Bartsch, Richard A.; Jarvinen, Gordon D.


    We are developing bifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional site interactions in order to determine optimal binding site characteristics. Resin materials that actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. Our implementation of the 'bifunctionality concept' involves N-derivatization of pyridinium units from a base poly(4- vinylpyridine) resin (PVP) with a second cationic site, such that the two anion-exchange sites are linked by 'spacer' arms of varying length and flexibility. The overall objective of our research is to develop a predictive capability that allows the facile design and implementation of multi-functionalized anion-exchange materials to selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials:Tanks, Plutonium; Subsurface Contaminants; Mixed Waste; and Efficient Separations. Sites within the DOE complex which would benefit from the improved anion exchange technology include Hanford, Idaho, Los Alamos, Oak Ridge, and Savannah River.

  9. Separation of the rare earths by anion-exchange in the presence of lactic acid

    NASA Technical Reports Server (NTRS)

    Faris, J. P.


    Investigation of adsorption of rare earths and a few other elements to an anion-exchange resin from mixed solvents containing lactic acid shows that the lanthanides are absorbed more strongly than from the alpha-hydroxyisobutryric acid system, but with less separation between adjacent members of the series.


    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DEMINERALIZER BUILDING, TRA-608. CATION AND ANION EXCHANGERS LINE UP ALONG NORTH WALL ON CONCRETE PLATFORMS. INL NEGATIVE NO. 2527. Unknown Photographer, 6/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Hyper-branched anion exchange membranes with high conductivity and chemical stability.


    Ge, Qianqian; Liu, Yazhi; Yang, Zhengjin; Wu, Bin; Hu, Min; Liu, Xiaohe; Hou, Jianqiu; Xu, Tongwen


    In the manuscript, we report the design and preparation of hyper-branched polymer electrolytes intended for alkaline anion exchange membrane fuel cells. The resulting membrane exhibits high conductivity, lower water swelling and shows prolonged chemical stability under alkaline conditions. PMID:27456659


    EPA Science Inventory

    The overall objective of this project was to develop a predictive capability that would enable us to design and implement new anion-exchange materials that selectively sorb metal complexes. Our approach was to extend the principles applied to optimization of chelating ligands (i....

  13. Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect.


    Choi, Min-Seong; Yoo, Jae-Chern


    We report a fully automated DNA purification platform with a micropored membrane in the channel utilizing centrifugal microfluidics on a lab-on-a-disc (LOD). The microfluidic flow in the LOD, into which the reagents are injected for DNA purification, is controlled by a single motor and laser burst valve. The sample and reagents pass successively through the micropored membrane in the channel when each laser burst valve is opened. The Coriolis effect is used by rotating the LOD bi-directionally to increase the purity of the DNA, thereby preventing the mixing of the waste and elution solutions. The total process from the lysed sample injection into the LOD to obtaining the purified DNA was finished within 7 min with only one manual step. The experimental result for Salmonella shows that the proposed microfluidic platform is comparable to the existing devices in terms of the purity and yield of DNA. PMID:25737025

  14. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils.


    Hyun, Seunghun; Lee, Linda S; Rao, P Suresh C


    Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides. PMID:12809297

  15. Void exclusion of antibodies by grafted-ligand porous particle anion exchangers.


    Nian, Rui; Chuah, Cindy; Lee, Jeremy; Gan, Hui Theng; Latiff, Sarah Maria Abdul; Lee, Wan Yee; Vagenende, Vincent; Yang, Yuan-Sheng; Gagnon, Pete


    We describe a new variant of anion exchange chromatography in columns packed with porous particles that embody charged low-density polymer zones supported by a higher density polymer skeleton. IgG defies the norms of anion exchange and is excluded to the void volume at pH 3-10 and 0-4M NaCl. Void exclusion also occurs with Fab, F(ab')2, and IgM. Host cell protein contaminants mostly follow the usual norms of anion exchange and bind more strongly with increasing pH and decreasing conductivity. Sample buffer composition has no impact on partitioning so long as applied sample volume does not exceed the interparticle void volume of the column. Void-excluded antibody elutes in equilibration buffer. This seemingly conflicted collection of behaviors is reconciled by a variable size exclusion function mediated through the low-density polymer zones, the charge properties of the antibody species, and the pH and conductivity of the equilibration buffer. Current-generation porous particle anion exchangers that employ grafting techniques to achieve high charge density mediate void exclusion to varying degrees, with the best-suited achieving complete exclusion, and others as little as 65%. Perfusive and non-grafted particle-based exchangers mediate as little as 50% exclusion. Monoliths mediate no exclusion, due to their lack of an interparticle void volume. On qualified exchangers, the technique supports greater than 99% reduction of host proteins, DNA, and endotoxin. Virus is reduced more than 99.9%, and aggregates are reduced to less than 0.05%. The method supports better process control than other anion exchange formats because pH excursions in conjunction with changes in salt concentration do not occur until after the antibody has eluted from the column. PMID:23422893

  16. Transmembrane protein 139 (TMEM139) interacts with human kidney isoform of anion exchanger 1 (kAE1).


    Nuiplot, Nalin-On; Junking, Mutita; Duangtum, Natapol; Khunchai, Sasiprapa; Sawasdee, Nunghathai; Yenchitsomanus, Pa-Thai; Akkarapatumwong, Varaporn


    Human kidney anion exchanger 1 (kAE1) mediates Cl(-)/HCO3(-) exchanges at the basolateral membrane of the acid-secreting α-intercalated cells. Mutations in SLC4A1 gene encoding kAE1 are associated with distal renal tubular acidosis (dRTA). Several studies have shown that impaired trafficking of the mutant kAE1 is an important molecular mechanism underlying the pathogenesis of dRTA. Proteins involved in kAE1 trafficking were identified but the mechanism resulting in dRTA remained unclear. Thus, this study attempted to search for additional proteins interacting with C-terminal of kAE1 (Ct-kAE1) and involved in kAE1 trafficking to cell membrane. Transmembrane protein 139 (TMEM139) was identified as a protein interacting with Ct-kAE1 by yeast two-hybrid screening. The interaction between kAE1 and TMEM139 was confirmed by affinity co-purification, co-immunoprecipitation (co-IP) and yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA). In addition, flow cytometry results showed that suppression of endogenous TMEM139 by small interfering RNA (siRNA) and over-expression of TMEM139 in HEK293T cells could reduce and increase membrane localization of kAE1, respectively. The presented data demonstrate that TMEM139 interacts with kAE1 and promotes its intracellular trafficking. PMID:26049106

  17. An Automated Microwave-Assisted Synthesis Purification System for Rapid Generation of Compound Libraries.


    Tu, Noah P; Searle, Philip A; Sarris, Kathy


    A novel methodology for the synthesis and purification of drug-like compound libraries has been developed through the use of a microwave reactor with an integrated high-performance liquid chromatography-mass spectrometry (HPLC-MS) system. The strategy uses a fully automated synthesizer with a microwave as energy source and robotic components for weighing and dispensing of solid reagents, handling liquid reagents, capper/crimper of microwave reaction tube assemblies, and transportation. Crude reaction products were filtered through solid-phase extraction cartridges and injected directly onto a reverse-phase chromatography column via an injection valve. For multistep synthesis, crude products were passed through scavenger resins and reintroduced for subsequent reactions. All synthetic and purification steps were conducted under full automation with no handling or isolation of intermediates, to afford the desired purified products. This approach opens the way to highly efficient generation of drug-like compounds as part of a lead discovery strategy or within a lead optimization program. PMID:26085482

  18. Renewable Microcolumns for Automated DNA Purification and Flow-through Amplification: From Sediment Samples through Polymerase Chain Reaction

    SciTech Connect

    Bruckner-Lea, Cindy J. ); Tsukuda, Toyoko ); Dockendorff, Brian P. ); Follansbee, James C. ); Kingsley, Mark T. ); Ocampo, Catherine O.; Stults, Jennie R.; Chandler, Darrell P.


    There is an increasing need for field-portable systems for the detection and characterization of microorganisms in the environment. Nucleic acids analysis is frequently the method of choice for discriminating between bacteria in complex systems, but standard protocols are difficult to automate and current microfluidic devices are not configured specifically for environmental sample analysis. In this report, we describe the development of an integrated DNA purification and PCR amplification system and demonstrate its use for the automated purification and amplification of Geobacter chapelli DNA (genomic DNA or plasmid targets) from sediments. The system includes renewable separation columns for the automated capture and release of microparticle purification matrices, and can be easily reprogrammed for new separation chemistries and sample types. The DNA extraction efficiency for the automated system ranged from 3 to 25 percent, depending on the length and concentration of the DNA target . The system was more efficient than batch capture methods for the recovery of dilute genomic DNA even though the reagen volumes were smaller than required for the batch procedure. The automated DNA concentration and purification module was coupled to a flow-through, Peltier-controlled DNA amplification chamber, and used to successfully purify and amplify genomic and plasmid DNA from sediment extracts. Cleaning protocols were also developed to allow reuse of the integrated sample preparation system, including the flow-through PCR tube.

  19. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions.


    Wu, Hsin-Lun; Sato, Ryota; Yamaguchi, Atsushi; Kimura, Masato; Haruta, Mitsutaka; Kurata, Hiroki; Teranishi, Toshiharu


    The crystal structure of ionic nanocrystals (NCs) is usually controlled through reaction temperature, according to their phase diagram. We show that when ionic NCs with different shapes, but identical crystal structures, were subjected to anion exchange reactions under ambient conditions, pseudomorphic products with different crystal systems were obtained. The shape-dependent anionic framework (surface anion sublattice and stacking pattern) of Cu2O NCs determined the crystal system of anion-exchanged products of CuxS nanocages. This method enabled us to convert a body-centered cubic lattice into either a face-centered cubic or a hexagonally close-packed lattice to form crystallographically unusual, multiply twinned structures. Subsequent cation exchange reactions produced CdS nanocages while preserving the multiply-twinned structures. A high-temperature stable phase such as wurtzite ZnS was also obtained with this method at ambient conditions. PMID:26989249

  20. Selective chromatographic fractionation of catechol estrogens on anion exchangers in borate form.


    Fotsis, T; Heikkinen, R


    The borate form of anion exchangers has been investigated for its utility in the field of estrogen analysis. The borate form of a weak (DEAE-Sephadex A-25) and a strong (QAE-Sephadex A-25) anion exchanger was easily prepared by appropriate washing of the gels, without the need of time consuming immobilization techniques. Estrogens with vicinal cis-hydroxyls were strongly retained in both gels through formation of borate complexes and readily separated from estrogens not possessing such groups. Moreover, borate complex formation with the labile o-dihydroxyphenyl moiety of catechol estrogens fully protected them from decomposition during chromatography. Quantitative recovery of catechol estrogens was thereby obtained without use of antioxidants. The borate form of QAE-Sephadex A-25 was capable, in addition, of separating estrogens not possessing vicinal cis-hydroxyls from the corresponding neutral steroids. PMID:6298506

  1. Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery.


    Yuan, Zhizhang; Li, Xianfeng; Zhao, Yuyue; Zhang, Huamin


    The stability of hydrocarbon ion exchange membranes is one of the critical issues for a flow battery. However, the degradation mechanism of ion exchange membranes has been rarely investigated especially for anion exchange membranes. Here, the degradation mechanism of polysulfone based anion exchange membranes, carrying pyridine ion exchange groups, under vanadium flow battery (VFB) medium was investigated in detail. We find that sp(2) hybrid orbital interactions between pyridinic-nitrogen in 4,4'-bipyridine and benzylic carbon disrupt the charge state balance of pristine chloromethylated polysulfone. This difference in electronegativity inversely induces an electrophilic carbon center in the benzene ring, which can be attacked by the lone pair electron on the vanadium(V) oxygen species, further leading to the degradation of polymer backbone, while leaving the 4,4'-bipyridine ion exchange groups stable. This work represents a step toward design and construction of alternative type of chemically stable hydrocarbon ion exchange membranes for VFB. PMID:26284752

  2. Anion-Exchange Properties of Trifluoroacetate and Triflate Salts of N-Alkylammonium Resorcinarenes.


    Pan, Fangfang; Beyeh, Ngong Kodiah; Bertella, Stefania; Rissanen, Kari


    The synthesis of N-benzyl- and N-cyclohexylammonium resorcinarene trifluoroacetate (TFA) and triflate (OTf) salt receptors was investigated. Solid-state analysis by single-crystal X-ray diffraction revealed that the N-alkylammonium resorcinarene salts (NARSs) with different upper substituents had different cavity sizes and different affinities for anions. Anion-exchange experiments by mixing equimolar amounts of N-benzylammonium resorcinarene trifluoroacetate and N-cyclohexylammonium resorcinarene triflate, as well as N-benzylammonium resorcinarene triflate and N-cyclohexylammonium resorcinarene trifluoroacetate showed that the NARS with flexible benzyl groups preferred the larger OTf anion, whereas the rigid cyclohexyl groups preferred the smaller TFA anions. The anion-exchange processes were confirmed in the solid state by single-crystal and powder X-ray diffraction experiments and in the gas phase by electrospray ionization mass spectrometry. PMID:26749383

  3. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions

    PubMed Central


    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl– or I– ions and reinsertion of Br– ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles. PMID:26214734

  4. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.


    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato


    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles. PMID:26214734

  5. Preparation of anion-exchangeable polymer vesicles through the self-assembly of hyperbranched polymeric ionic liquids.


    Fan, Yujiao; Zhang, Dapeng; Wang, Jie; Jin, Haibao; Zhou, Yongfeng; Yan, Deyue


    This work reports the self-assembly of anion-exchangeable vesicles from an amphiphilic hyperbranched polymeric ionic liquid (HBPIL). By a simple one-step anion exchange with methyl orange, the obtained HBPILs could self-assemble into pH-indicative and colorful vesicles in water with color changes directly visible to the naked eye in response to solution pH. In addition, by another step of anion exchange with bovine serum albumin (BSA), the BSA-coated vesicles could also be readily prepared. PMID:25813408

  6. The dynamics of sorption of sulfuric acid by weakly basic polyacrylic anion exchangers

    NASA Astrophysics Data System (ADS)

    Mamchenko, A. V.; Kushnir, T. V.


    The nonequilibrium dynamics of sorption of sulfuric acid by free base forms of Amberlite IRA-67 and Lewatite VP.OC.1072 weakly basic anion exchangers is studied. It is established that, in hydrodynamic regimes of filtration, which are typical of OH filters of the first stage of water-desalting plants, the limiting stage of sorption kinetics is inside diffusion. It is concluded that the process is correctly described by an asymptotic solution to the inside-diffusion model of sorption dynamics.

  7. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.


    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A


    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  8. Test procedure for anion exchange testing with Argonne 10-L solutions

    SciTech Connect

    Compton, J.A.


    Four anion exchange resins will be tested to confirm that they will sorb and release plutonium from/to the appropriate solutions in the presence of other cations. Certain cations need to be removed from the test solutions to minimize adverse behavior in other processing equipment. The ion exchange resins will be tested using old laboratory solutions from Argonne National Laboratory; results will be compared to results from other similar processes for application to all plutonium solutions stored in the Plutonium Finishing Plant.

  9. Preparation, Characterization and Anion Exchange Properties of Polypyrrole/Carbon Nanotube Nanocomposite

    SciTech Connect

    Cui, Xiaoli; Engelhard, Mark H.; Lin, Yuehe


    In this study, polypyrrole (PPy) thin film was electrodeposited on carbon nanotube (CNT) backbones by applying a constant deposition potential in solution with 0.1 M pyrrole with different electrolytes such as NaCl, NaNO3, or NaClO4. The hybrid films were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. SEM images revealed the nanostructrure of PPy film generated on CNTs surface. The electrochemical and anion exchange properties of PPy-CNT composite film have been investigated. Nanostructured composite thin films of polypyrrole/CNTs were studied by cyclic voltammetry between 0.4 and -0.8 V in aqueous solution to evaluate their cycling stability and capacity for electrically switched anion exchange. It is found that the PPy/CNTs nanocomposites can improve the anion exchange capacity and stability of the PPy-CNTs composite film, which may be attributed to the nanostructure of the polypyrrole film, which offer the high aspect ratio of the film and ease of diffusion of anions in the nanostructured film, and the interaction between CNTs and PPy.

  10. Integrating tunable anion exchange with reverse osmosis for enhanced recovery during inland brackish water desalination.


    Smith, Ryan C; SenGupta, Arup K


    For inland brackish water desalination by reverse osmosis or RO, concentrate or reject disposal poses a major challenge. However, enhanced recovery and consequent reduction in the reject volume using RO processes is limited by the solubility of ions present in the feedwater. One of the most common and stubborn precipitate formed during desalination is calcium sulfate. Reducing or eliminating the presence of sulfate would allow the process to operate at higher recoveries without threat to membrane scaling. In this research, this goal is accomplished by using an appropriate mixture of self-regenerating anion exchange resins that selectively remove and replace sulfate by chloride prior to the RO unit. Most importantly, the mixed bed of anion exchange resins is self-regenerated with the reject brine from the RO process, thus requiring no addition of external chemicals. The current work demonstrates the reversibility of the hybrid ion exchange and RO (HIX-RO) process with 80% recovery for a brackish water composition representative of groundwater in San Joaquin Valley in California containing approximately 5200 mg/L of total dissolved solids or TDS. Consequently, the reject volume can be reduced by 50% without the threat of sulfate scaling and use of antiscaling chemicals can be eliminated altogether. By appropriately designing or tuning the mixed bed of anion exchange resins, the process can be extended to nearly any composition of brackish water for enhanced recovery and consequent reduction in the reject volume. PMID:25839209

  11. Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity.


    Orlando, U S; Baes, A U; Nishijima, W; Okada, M


    Anion exchangers were prepared from different agricultural residues (AR) after reaction with epichlorohydrin and dimethylamine in the presence of pyridine and N,N-dimethylformamide (EDM method). Agricultural residues anion exchangers (AR-AE) produced by the EDM method were inexpensive and showed almost the same NO3- removal capacities as Amberlite IRA-900. AR-AE produced from AR with higher hemicelluloses, lignin, ash and extractive contents resulted in the lower yields. Sugarcane bagasse with the highest alpha-cellulose contents of 51.2% had the highest yield (225%) and lowest preparation cost. The highest maximum adsorption capacity (Qmax) for nitrate was obtained from rice hull (1.21 mmol g(-1)) and pine bark natural exchangers (1.06 mmol g(-1)). No correlation was found between Qmax and alpha-cellulose content in the original AR. AR-AE produced from different AR demonstrated comparable Qmax due to the removal of non-active compounds such as extractives, lignin and hemicelluloses from AR during the preparation process. Similar preparation from pure cellulose and pure alkaline lignin demonstrated that the EDM method could not produce anion exchangers from pure lignin due to its solubilization after the reaction with epichlorohydrin. PMID:12227509

  12. Hydrophilic Strong Anion Exchange (hSAX) Chromatography for Highly Orthogonal Peptide Separation of Complex Proteomes

    PubMed Central


    Due to its compatibility and orthogonality to reversed phase (RP) liquid chromatography (LC) separation, ion exchange chromatography, and mainly strong cation exchange (SCX), has often been the first choice in multidimensional LC experiments in proteomics. Here, we have tested the ability of three strong anion exchanger (SAX) columns differing in their hydrophobicity to fractionate RAW264.7 macrophage cell lysate. IonPac AS24, a strong anion exchange material with ultralow hydrophobicity, demonstrated to be superior to other materials by fractionation and separation of tryptic peptides from both a mixture of 6 proteins as well as mouse cell lysate. The chromatography displayed very high orthogonality and high robustness depending on the hydrophilicity of column chemistry, which we termed hydrophilic strong anion exchange (hSAX). Mass spectrometry analysis of 34 SAX fractions from RAW264.7 macrophage cell lysate digest resulted in an identification of 9469 unique proteins and 126318 distinct peptides in one week of instrument time. Moreover, when compared to an optimized high pH/low pH RP separation approach, the method presented here raised the identification of proteins and peptides by 10 and 28%, respectively. This novel hSAX approach provides robust, reproducible, and highly orthogonal separation of complex protein digest samples for deep coverage proteome analysis. PMID:23294059

  13. New selective anion-exchange resins for nitrate removal from contaminated drinking water and studies on analytical anion-exchange chromatography

    SciTech Connect

    Lockridge, J.E.


    Phosphonium resins and ammonium resins of composition resin-R{sub 3}P{sup +}A{sup {minus}} where R is varied from methyl to pentyl were evaluated for nitrate/sulfate selectivity, capacity and nitrate decontamination of drinking water. Phosphonium resins were found to be more nitrate selective and have higher capacities than ammonium resins. A mixed bed process, where nitrate removal and water softening is accomplished in a single column, was also evaluated. A small piece of silver wire, coated with an insoluble silver salt, works well as a selective potentiometric detector for halide ions in ion chromatography. A silver-silver chloride electrode was found to be a selective and reproducible detector for chloride, bromide, iodide, thiocyanate and thiosulfate anions separated by ion chromatography. Calibration curves were non-linear and had slopes ranging from 40 to 60 mV/log concentrations. A working range of 0.05 to 2 mM was used. Two methods for the determination of aluminum by anion chromatography are presented. In the first method, a standard excess of fluoride ion is added to the sample. Evidence is given for the formation of a strong complex of neutral aluminum trifluoride which elutes very quickly from an anion exchange column. The excess fluoride is retained and can be determined. The aluminum concentration can then be related to the difference in fluoride peak height between the sample and standard. In a second method, Al(III) is determined directly by anion chromatography when sodium phthalate is used as an eluent. It was found that Al(III)-phthalate complexes thus formed would show some retention on an anion exchange column. The method is uniquely insensitive to the presence of many foreign cations. Al(III) was successfully determined, by this method, in a 40-fold molar excess of iron(III).

  14. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    NASA Astrophysics Data System (ADS)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.


    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  15. High-throughput sequential injection method for simultaneous determination of plutonium and neptunium in environmental solids using macroporous anion-exchange chromatography, followed by inductively coupled plasma mass spectrometric detection.


    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel


    This paper reports an automated analytical method for rapid and simultaneous determination of plutonium and neptunium in soil, sediment, and seaweed, with detection via inductively coupled plasma mass spectrometry (ICP-MS). A chromatographic column packed with a macroporous anion exchanger (AG MP-1 M) was incorporated in a sequential injection (SI) system for the efficient retrieval of plutonium, along with neptunium, from matrix elements and potential interfering nuclides. The sorption and elution behavior of plutonium and neptunium onto AG MP-1 M resin was compared with a commonly utilized AG 1-gel-type anion exchanger. Experimental results reveal that the pore structure of the anion exchanger plays a pivotal role in ensuring similar separation behavior of plutonium and neptunium along the separation protocol. It is proven that plutonium-242 ((242)Pu) performs well as a tracer for monitoring the chemical yield of neptunium when using AG MP-1 M resin, whereby the difficulties in obtaining a reliable and practicable isotopic neptunium tracer are overcome. An important asset of the SI setup is the feasibility of processing up to 100 g of solid substrates using a small-sized (ca. 2 mL) column with chemical yields of neptunium and plutonium being ≥79%. Analytical results of three certified/standard reference materials and two solid samples from intercomparison exercises are in good agreement with the reference values at the 0.05 significance level. The overall on-column separation can be completed within 3.5 h for 10 g of soil samples. Most importantly, the anion-exchange mini-column suffices to be reused up to 10-fold with satisfactory chemical yields (>70%), as demanded in environmental monitoring and emergency scenarios, making the proposed automated assembly well-suited for unattended and high-throughput analysis. PMID:21121695

  16. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.


    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min


    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents. PMID:26578375

  17. Retention behavior of C1-C6 aliphatic monoamines on anion-exchange and polymethacrylate resins with heptylamine as eluent.


    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae Jeong; Lee, Kwang-Pill


    Retention behavior of C1-C6, aliphatic monoamines (methylamine, ethylamine, propylamine, butylamine, amylamine and hexylamine) on columns (150 mm x 6 mm i.d.) packed with various anion-exchange resins (styrene-divinylbenzene (PS-DVB) copolymer-based strongly basic anion-exchange resin: TSKgel SAX, polymethacrylate-based strongly basic anion-exchange resin: TSKgel SuperQ-5PW and polymethacrylate-based weakly basic anion-exchange resin: TSKgel DEAE-5PW) and unfunctionized polymethacrylate resins (TSKgel G5000PW and TSKgel G3000PWXL) was investigated with basic solutions (sodium hydroxide and heptylamine) as the eluents. Due to strongly electrostatic repulsion (ion-exclusion effect) between these anion-exchange resins and these amines, peak resolution between these amines on these anion-exchange resin columns was unsatisfactory with both sodium hydroxide and heptylamine as the eluents. In contrast, these polymethacrylate resins were successfully applied as the stationary phases for the separation of these C1-C6 amines with heptylamine as eluent, because of both small hydrophobicity and small cation-exchange ability of these resins. Excellent simultaneous separation, highly sensitive conductimetric detection and symmetrical peaks for these C1-C6 amines were achieved on the TSKgel G3000PWXL column in 35 min with 5 mM heptylamine at pH 11.1 as the eluent. PMID:15250421

  18. Investigation of platinum(IV) ions sorption on some anion exchangers by using photoacoustic and DRS methods

    NASA Astrophysics Data System (ADS)

    Wójcik, G.; Pasieczna, S.; Hubicki, Z.; Ryczkowski, J.


    The high cost and increasing demand have prompted the recovery of platinum from low-grade ores and spent catalysts. Platinum exist in chloride solutions in the anionic form, therefore anion-exchanging is a better method than cation exchanging for sorption of platinum(IV) ions. Therefore applicability of four anion exchangers Duolite A 30 B, Lewatit MP 62, Lewatit MP 64 and Purolite A 520E were studied. The FT-IR/PAS spectra were recorded by means of a Bio-Rad Excalibur 3000MX spectrometer equipped with photoacoustic detector MTEC300. The DRS (diffuse reflectance spectrometry) spectra of three anion exchangers Lewatit MP 62, Lewatit MP 64 and Purolite A 520E are similar but spectra of anion exchangers Duolite A 30B is different. The differences in spectra can be result from skeletons of anion exchangers. Recorded FT-IR/PAS spectra allow to distinguish the differences between applied anion exchangers before and after sorption of platinum(IV) ions. In all spectra the biggest differences could be noticed in the OH and CH{2} stretching region.

  19. Automated harvesting and 2-step purification of unclarified mammalian cell-culture broths containing antibodies.


    Holenstein, Fabian; Eriksson, Christer; Erlandsson, Ioana; Norrman, Nils; Simon, Jill; Danielsson, Åke; Milicov, Adriana; Schindler, Patrick; Schlaeppi, Jean-Marc


    Therapeutic monoclonal antibodies represent one of the fastest growing segments in the pharmaceutical market. The growth of the segment has necessitated development of new efficient and cost saving platforms for the preparation and analysis of early candidates for faster and better antibody selection and characterization. We report on a new integrated platform for automated harvesting of whole unclarified cell-culture broths, followed by in-line tandem affinity-capture, pH neutralization and size-exclusion chromatography of recombinant antibodies expressed transiently in mammalian human embryonic kidney 293T-cells at the 1-L scale. The system consists of two bench-top chromatography instruments connected to a central unit with eight disposable filtration devices used for loading and filtering the cell cultures. The staggered parallel multi-step configuration of the system allows unattended processing of eight samples in less than 24h. The system was validated with a random panel of 45 whole-cell culture broths containing recombinant antibodies in the early profiling phase. The results showed that the overall performances of the preparative automated system were higher compared to the conventional downstream process including manual harvesting and purification. The mean recovery of purified material from the culture-broth was 66.7%, representing a 20% increase compared to that of the manual process. Moreover, the automated process reduced by 3-fold the amount of residual aggregates in the purified antibody fractions, indicating that the automated system allows the cost-efficient and timely preparation of antibodies in the 20-200mg range, and covers the requirements for early in vitro and in vivo profiling and formulation of these drug candidates. PMID:26431859

  20. Mono- and polyprotic buffer systems in anion exchange chromatography of influenza virus particles.


    Vajda, Judith; Weber, Dennis; Stefaniak, Sabine; Hundt, Boris; Rathfelder, Tanja; Müller, Egbert


    Different ions typically used in downstream processing of biologicals are evaluated for their potential in anion exchange chromatography of an industrially produced, pandemic influenza H1N1 virus. Capacity, selectivity and recovery are investigated based on single step elution parallel chromatography experiments. The inactivated H1N1 feedstream is produced in Madin-Darby Bovine Kidney cells. Interesting effects are found for sodium phosphate and sodium citrate. Both anions are triprotic kosmotropes. Anion exchange chromatography generally offers high scalability to satisfy sudden demands for vaccines, which may occur in case of an emerging influenza outbreak. Appropriate pH conditions for H1N1 adsorption are determined by Zeta potential measurements. The dynamic binding capacity of a salt tolerant polyamine-type resin is up to 6.4 times greater than the capacity of a grafted Q-type resin. Pseudo-affinity interactions of polyamines with the M2 protein of influenza may contribute to the obtained capacity increase. Both resins achieve greater capacity in sodium phosphate buffer compared to Tris/HCl. A recovery of 67% and DNA clearance close to 100% without DNAse treatment are achieved for the Q-type resin. Recovery of the virus from the salt tolerant resin requires the use of polyprotic acids in the elution buffer. 85% of the DNA and 60% of the proteins can be removed by the salt tolerant resin. The presence of sodium phosphate during anion exchange chromatography seems to support stability of the H1N1 particles in presence of hydrophobic cations. PMID:27130581

  1. New anion-exchange resins for improved separations of nuclear materials. Mid-year progress report

    SciTech Connect

    Barr, M.E.


    'The authors are developing multi-functional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion exchange technology. The overall objective of the research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional site interactions in order to determine optimal binding-site characteristics. Their approach uses a thorough determination of the chemical species both in solution and as bound to the resin to determine the characteristics of resin active sites which can actively facilitate specific metal-complex sorption to the resin. The first year milestones were designed to allow us to build off of their extensive expertise with plutonium in nitrate solutions prior to investigating other, less familiar systems. While the principle investigators have successfully developed actinide chelators and ion-exchange materials in the past, the authors were fully aware that integration of this two fields would be challenging, rewarding and, at times, highly frustrating. Relatively small differences in the substrate (cross-linkage, impurities), the active sites (percent substitution, physical accessibility), the actinide solution (oxidation state changes, purity) and the analytical procedures (low detection limits) can produce inconsistent sorption behavior which is difficult to interpret. The potential paybacks for success, however, are enormous. They feel that they have learned a great deal about how to control these numerous variables to produce consistent, reliable analysis of

  2. New anion-exchange resins for improved separations of nuclear materials

    SciTech Connect

    Barr, M.E.; Bartsch, R.A.


    'The overall objective of this research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion-exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional-site interactions in order to determine optimal binding-site characteristics. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials: Efficient Separations and Processing; Plutonium; Plumes; Mixed Waste; High-Level Tank Waste. Sites within the DOE complex which would benefit from the improved anion-exchange technology include Hanford, INEL, Los Alamos, Oak Ridge, and Savannah River. As of April 1998, this report summarizes work after 1.6 years of a 3-year project. The authors technical approach combines empirical testing with theoretical modeling (applied in an iterative mode) in order to determine optimal binding-site characteristics. They determine actinide-complex speciation in specific media, then develop models for the metal complex/functional-site interactions Synthesis and evaluation of multi-functionalized extractants and ion-exchange materials that implement key features of the optimized binding site provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The implementation of the bifunctionality concept involves N-derivatization of pyridinium units from a base poly(4-vinylpyridine) resin with a second cationic site such that the two anion-exchange sites are linked by spacer arms of varying

  3. Automated hydrophobic interaction chromatography column selection for use in protein purification.


    Murphy, Patrick J M; Stone, Orrin J; Anderson, Michelle E


    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein (1). The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH(4;))(2;)SO(4;)). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) (2). As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter (3). Automated column scouting allows for an efficient approach for determining

  4. Abscisic acid influx into human nucleated cells occurs through the anion exchanger AE2.


    Vigliarolo, Tiziana; Zocchi, Elena; Fresia, Chiara; Booz, Valeria; Guida, Lucrezia


    Abscisic acid (ABA) is a hormone conserved from cyanobacteria to higher plants, where it regulates responses to environmental stimuli. ABA also plays a role in mammalian physiology, pointedly in inflammatory responses and in glycemic control. As the animal ABA receptor is on the intracellular side of the plasma membrane, a transporter is required for the hormone's action. Here we demonstrate that ABA transport in human nucleated cells occurs via the anion exchanger AE2. Together with the recent demonstration that ABA influx into human erythrocytes occurs via Band 3, this result identifies the AE family members as the mammalian ABA transporters. PMID:27015766

  5. Solvent Processable Tetraalkylammonium-Functionalized Polyethylene for Use as an Alkaline Anion Exchange Membrane

    SciTech Connect

    Kostalik, IV, Henry A.; Clark, Timothy J.; Robertson, Nicholas J.; Mutolo, Paul F.; Longo, Julie M.; Abruña, Héctor D.; Coates, Geoffrey W.


    We report the synthesis of a solvent processable, tetraalkylammonium-functionalized polyethylene for use as an alkaline anion exchange membrane (AAEM). The membranes are insoluble in both pure water and aqueous methanol (50 vol % water) at 50 °C but exhibit excellent solubility in a variety of other aqueous alcohols (e.g., 5 wt % AAEM in aqueous n-propanol, 50 vol % water). These solubility characteristics extend the potential utility of this system for use as both an AAEM and ionomer electrode material from a single polymer composition. The AAEMs generated are mechanically strong and exhibit high hydroxide and carbonate conductivities.

  6. Relationships of anion-exchange sorption of boron from natural thermal-spring water

    SciTech Connect

    Meichik, N.R.; Leikin, Yu.A.; Antipov, M.A.; Goryacheva, N.V.; Klimenko, I.S.; Medvedev, S.A.; Galitskaya, N.B.


    Boric acid is one of the characteristic components of Kamchatka waters. Extraction of boron from thermal waters for production of potable water is closely linked with current problems of multiproduct utilization of resources and protection of the environment. The authors have investigated the possibilities of using ion exchange for extraction of boron from natural waters, and studied the sorption relationships by a dynamic method. They synthesized a macroporous anion-exchanger based on a copolymer of styrene with divinylbenzene, containing N-methylglucamine groups (ANB-11 resin). ANB-11 resin had high sorption capacity for boron anions during sorption from thermal-spring water. The experimental data were described by Elkins equation.

  7. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments.


    Parrondo, Javier; Wang, Zhongyang; Jung, Min-Suk J; Ramani, Vijay


    Anion exchange membranes (AEM) based on polyphenylene oxide (PPO) suffered quaternary-ammonium-cation-site degradation in alkaline environments. Surprisingly, the degradation rate was considerably faster in the presence of molecular oxygen. We postulated that the AEM cation-site catalyzes the reduction of dioxygen by hydroxide ions to yield the superoxide anion radical and the highly reactive hydroxyl free radical. We substantiated our hypothesis by using a phosphorous-containing spin trap (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) to detect the adducts for both free radicals in situ using (31)P-NMR spectroscopy. PMID:27381009



    Stevenson, P.C.


    A process is offered for improving quaternary ammonium type strongly basic anion exchange resins so that centain zinc and cadmium residues, which normally stick to and "poison" this type of resin, can be removed by elution. Specifically, the resin as obtained commercially is treated with an aqueous solution of sodium hydroxide of about 1 to 4 M concentration by heating therein and periodically adding small amounts of oxidizing agent selected from hydrogen peroxide, sodium peroxide and hypochlorite. Zinc and cadmium values may then be adsorbed onto the resin from a 0.1 to 3 M HCl and thereafter eluted therefrom with very dilute HCl solutions.

  9. Simple model can explain self-inhibition of red cell anion exchange.

    PubMed Central

    Tanford, C


    Ion translocation in red cell anion exchange is assumed to occur by means of an alternating access mechanism, in which a critical binding site for the transported ion alternates between two conformational states, each accessible from only one side of the membrane. If this alternating site is located within the transport protein at some distance from one or both surfaces of the membrane, an access channel is required to connect the alternating site to the adjacent bulk solution. This automatically leads to inhibition of transport at high concentrations of the transported ion because release of the ion from the alternating site can occur only via unoccupied channel sites. PMID:2579684

  10. New Gel-Like Polymers as Selective Weak-Base Anion Exchangers

    PubMed Central

    Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej


    A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220

  11. Bifunctional anion-exchange resins with improved selectivity and exchange kinetics


    Alexandratos, Spiro D.; Brown, Gilbert M.; Bonnesen, Peter V.; Moyer, Bruce A.


    Disclosed herein are a class of anion exchange resins containing two different exchange sites with improved selectivity and sorptive capability for chemical species in solution, such as heptavalent technetium (as pertechnetate anion, TcO.sub.4.sup.-). The resins are prepared by first reacting haloalkylated crosslinked copolymer beads with a large tertiary amine in a solvent in which the resin beads can swell, followed by reaction with a second, smaller, tertiary amine to more fully complete the functionalization of the resin. The resins have enhanced selectivity, capacity, and exchange kinetics.

  12. Donnan dialysis of transition metal ions using anion exchange membrane modified with Xylenol Orange

    SciTech Connect

    Sawicka, B.; Brajter, K.; Trojanowicz, M.; Kado, B. )


    A chelating ion-exchange membrane was obtained by modification of a PTFE-based anion-exchange membrane with Xylenol Orange. Its utility for dialysis of Cu(II), Ni(II), Mn(II), and Zn(II) was investigated by using receiver solutions without and with iminodiacetate. 1,2-diaminocyclohexanetetraacetic acid, and tetraethylenepentamine. In comparison to commercial PTFE cation-exchange membranes, modified chelating membranes exhibit for the metal ions investigated a larger differentiation of retention in the membrane phase and transport-to-receiver solution depending on the modifier used and the composition of the receiver solution.

  13. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Fishman, M. J.; Ball, J.W.


    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  14. Dialysate purification after introduction of automated hot water disinfection system to central dialysis fluid delivery system.


    Ogawa, Tomonari; Matsuda, Akihiko; Yamaguchi, Yumiko; Sasaki, Yusuke; Kanayama, Yuki; Maeda, Tadaaki; Noiri, Chie; Hasegawa, Hajime; Matsumura, Osamu; Mitarai, Tetsuya


    Most dialysis clinics in Japan have mainly adopted the central dialysis fluid delivery system (CDDS) to provide constant treatment to many patients. Chemical disinfection is the major maintenance method of the CDDS. Our clinic introduced an automated hot water disinfection system that used the heat conduction effect to disinfect a reverse osmosis (RO) device and dialysis fluid supply equipment. Endotoxin level and the amount of viable bacteria often showed abnormal values before introduction of this system. After its introduction, weekly disinfection resulted in endotoxin levels and the amount of viable bacteria lower than measurement sensitivity. In hot water disinfection, water heated to 90°C in the RO tank flows into the dialysis fluid supply equipment. The maximum temperature inside the tank of the supply equipment is 86.3°C. (We confirmed that the temperature was maintained at 80°C or more for 10 minutes or more during the monitoring.) Dialysate purification was maintained even after introduction of the automated hot water disinfection system and the dialysate could be supplied stably by the CDDS. Therefore, this disinfection system might be very useful in terms of both cost and safety, and can be used for dialysis treatment of multiple patients. PMID:22370682

  15. A novel self-adaptive microalgae photobioreactor using anion exchange membranes for continuous supply of nutrients.


    Fu, Qian; Chang, Hai-Xing; Huang, Yun; Liao, Qiang; Zhu, Xun; Xia, Ao; Sun, Ya-Hui


    A novel self-adaptive microalgae photobioreactor using anion exchange membranes (AEM-PBR) for continuous supply of nutrients was proposed to improve microalgae biomass production. The introduction of anion exchange membranes to the PBR can realize continuous supply of nutrients at desired rates, which is beneficial to the growth of microalgae. The results showed that the maximum biomass concentration obtained in the AEM-PBR under continuous supply of nitrogen at an average rate of 19.0mgN/L/d was 2.98g/L, which was 129.2% higher than that (1.30g/L) in a PBR with all the nitrogen supplied in batch at initial. In addition, the feeding rates of nitrogen and phosphorus were optimized in the AEM-PBR to maximize biomass production. The maximum biomass concentration of 4.38g/L was obtained under synergistic regulation of nitrogen and phosphorus feeding rates at 19.0mgN/L/d and 4.2mgP/L/d. The AEM-PBR demonstrates a promising approach for high-density cultivation of microalgae. PMID:27187567

  16. Russian studies of the safety of anion exchange in nitric acid

    SciTech Connect

    Hyder, M.L.; Bartenev, S.A.; Lazarev, L.N.


    Synthetic ion exchange resins came into use in the Soviet Union in the 1950`s, and domestic anion exchange resins based on quaternary amine groups have long been used in the Russian nuclear industry. These resins are similar to resins used in the West, and include pyridine-based resins, as well as the more conventional aryl polymers with substituted methyl amines. (Slide 1) The sensitivity of these amines to reaction with nitric acid and other oxidants has been a concern in Russia as in the West, and numerous laboratory studies have been conducted on the reactions involved. Several incidents involving pressure or temperature excursions have provided incentives for such studies. (Slide 2) This report briefly summarizes this work. A report by the Russian authors of this paper providing greater detail is to be issued as a U.S. Dept. of Energy document. Additionally, a second report by these authors, describing new studies on anion exchange resin safety, will also be issued as a DOE report. The separation of plutonium, neptunium, etc. from other materials by ion exchange requires rather strong nitric acid (6-8 M). In some systems, such as the processing of {sup 238}Pu, intense ionizing radiation may also be present during ion exchange separation. As a result, it is necessary to consider not only thermal hydrolysis and oxidation and their effects on the resin, but also radiolysis. All of these were investigated in the Russian studies.

  17. Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange.


    Gifford, McKay; Liu, Jianyong; Rittmann, Bruce E; Vannela, Raveender; Westerhoff, Paul


    Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that Synechocystis contained 1.4% P dry weight. After crude lipids were extracted (e.g., for biofuel processing), 92% of the intracellular P remained in the residual biomass, indicating phospholipids comprised only a small percentage of cellular P. We estimate a majority of the P is primarily associated with nucleic acids. Advanced oxidation using hydrogen peroxide and microwave heating released 92% of the cellular P into orthophosphate. We then recovered the orthophosphate from the digestion matrix using two different types of anion exchange resins. One resin impregnated with iron nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 23% during regeneration. A strong-base anion exchange resin adsorbed 87% of the influent P through 20 bed volumes and released 50% of it upon regeneration. This recovered P subsequently supported growth of Synechocystis. This proof-of-concept recovery process reduced P demand of biofuel microalgae by 54%. PMID:25528543

  18. Enhanced performance of CdTe quantum dot sensitized solar cell via anion exchanges

    NASA Astrophysics Data System (ADS)

    Shen, Xuehua; Jia, Jianguang; Lin, Yuan; Zhou, Xiaowen


    We report on an eco-friendly way to prepare CdTe/CdS quantum dots for quantum dot sensitized solar cell (QDSSC). CdTe/CdS quantum dots are synthesized through an anion exchange between CdTe quantum dots (QDs) and S2- in aqueous solution at low temperature under ambient condition. The resultant QDs are bonded onto TiO2 with the help of thioglycolic acid bifunctional molecule. The uniform distribution of QDs throughout the TiO2 mesoporous film depth is confirmed by the energy dispersive X-ray (EDX) elemental mapping. Absorption, dark current, impedance spectroscopy, and intensity-modulated photocurrent analyses prove that anion exchange can efficiently extend the absorption range, suppress the charge recombination, increase the electron injection as well as accelerate the electron transportation in the cell. In combination with CdS post-treatment, a solar-to-energy conversion efficiency of 2.44% is achieved for CdTe/CdS QDSSC, which is more than 15 times that of the CdTe based cell.

  19. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles.


    Pan, Bingcai; Xu, Jingsheng; Wu, Bing; Li, Zhigang; Liu, Xitong


    Here we fabricated a novel nanocomposite HZO-201, an encapsulated nanosized hydrous zirconium oxide (HZO) within a commercial porous polystyrene anion exchanger D201, for highly efficient defluoridation of water. HZO-201 exhibited much higher preference than activated alumina and D201 toward fluoride removal when competing anions (chloride, sulfate, nitrate, and bicarbonate) coexisted at relatively high levels. Fixed column adsorption indicated that the effective treatable volume of water with HZO-201 was about 7-14 times as much as with D201 irrespective of whether synthetic solution or groundwater was the feeding solution. In addition, HZO-201 could treat >3000 BV of the acidic effluent (around 3.5 mg F(-)/L) per run at pH 3.5, compared to only ∼4 BV with D201. The exhausted HZO-201 could be regenerated by NaOH solution for repeated use without any significant capacity loss. Such attractive performance of HZO-201 resulted from its specific hybrid structure, that is, the host anion exchanger D201 favors the preconcentration of fluoride ions inside the polymer based on the Donnan principle, and the encapsulated nanosized HZO exhibits preferable sequestration of fluoride through specific interaction, as further demonstrated by XPS spectra. The influence of solution pH, competitive anions, and contact time was also examined. The results suggested that HZO-201 has a great potential in efficient defluoridation of groundwater and acidic mine drainage. PMID:23909842

  20. Qualification of Reillex{trademark} HPQ anion exchange resin for use in SRS processes

    SciTech Connect

    Crooks, W.J. III


    The Phase 2 portion of the HB-Line facility was built in the early 1980's to process plutonium and neptunium from nitric acid solutions into oxide suitable for storage in a vault. Although the other portions of HB-Line were started up in the mid 1980's and have operated since that time, the anion exchange and precipitation processes in Phase 2 were never started up. As part of the material stabilization efforts, Phase 2 is currently being started up. A new anion exchange resin is needed because the resins that were proposed for use 10 years ago are limited by performance characteristics, disposal requirements, or are no longer commercially available. SRTC is responsible for qualifying all resins prior to their use in Nuclear Materials Stabilization and Storage (NMSS) processes. Qualification consists of both process suitability and thermal stability with nitric acid. This report describes the thermal stability qualification of Reillex{trademark} HPQ, the new resin proposed for processing plutonium and neptunium in the HB Line facility.

  1. Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs)

    NASA Astrophysics Data System (ADS)

    Sajjad, Syed D.; Liu, Dong; Wei, Zi; Sakri, Shambhavi; Shen, Yi; Hong, Yi; Liu, Fuqiang


    Guanidinium based blend anion exchange membranes (AEMs) for direct methanol alkaline fuel cells have been fabricated and studied. The guanidinium prepolymer is first synthesized through a simple polycondensation process with the ion exchange moieties incorporated directly into the polymer backbone, and then is used to make guanidinium - chitosan (Gu-Chi) blend membranes. Besides, a lipophilic guanidinium prepolymer, synthesized by means of a precipitation reaction between sodium stearate and guanidinium salt, is adopted to tune solubility and mechanical properties of the blend AEMs. Results show that both ionic conductivity and methanol permeability of the AEMs can be tuned by blend composition and chemistry of the guanidinium based prepolymer. The selectivity (ratio of ionic conductivity to methanol permeability) of the fabricated membranes is superior to that of commercial membranes. Under fuel cell tests using 3 M methanol, the open circuit voltage (OCV) value for the blend AEM with 72 wt% of the guanidinium polymer (0.69 V) is much higher than that of the commercial Tokuyama A201 (0.47 V) at room temperature, while the blend AEMs with 50 wt% guanidinium content still show comparable values. Overall, the developed membranes demonstrate superior performance and therefore pose great promise for direct methanol anion exchange fuel cell (DMAFC) applications.

  2. Crosslinked poly(vinylbenzyl chloride) with a macromolecular crosslinker for anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Wangting; Shao, Zhi-Gang; Zhang, Geng; Zhao, Yun; Yi, Baolian


    A new material based on crosslinked poly(vinylbenzyl chloride) (PVBC) with a macromolecular crosslinker is synthesized and employed as the membrane for anion exchange membrane fuel cells (AEMFCs). PVBC is used as the hydroxide conducting polymers, while poly(vinyl acetal) (PVAc) containing dimethylamino groups plays the role as macromolecular crosslinker and the supporting matrix simultaneously. Fourier transform infrared (FT-IR) absorption spectra and X-ray photoelectron (XPS) spectra prove successful crosslinking between PVBC and PVAc. The crosslinked membrane shows hydroxide conductivity larger than 0.01 S cm-1 at room temperature, and the swelling by water at elevated temperature is suppressed. The H2/O2 AEMFC using the crosslinked membrane shows a peak power density (Pmax) of 124.7 mW cm-2 at 40 °C, and the decrease of the open circuit voltage (OCV) of the fuel cell is negligible under continuous OCV conditions for 120 h. All the results indicate that the crosslinking with a macromolecular crosslinker may be a promising strategy to fabricate anion exchange membrane for the application in the AEMFCs.

  3. Anion exchange pathways for Cl sup minus transport in rabbit renal microvillus membranes

    SciTech Connect

    Karniski, L.P.; Aronson, P.S. Yale School of Medicine, New Haven, CT )


    The authors evaluated the mechanisms of chloride transport in microvillus membrane vesicles isolated from the rabbit renal cortex. The presence of Cl-formate exchange was confirmed. Outward gradients of oxaloacetate, HCO{sub 3}, acetate, lactate, succinate, sulfate, and p-aminohippurate (PAH) stimulated the rate of Cl uptake minimally or not at all. However, an outward gradient of oxalate stimulated Cl uptake by 70%, and an outward Cl gradient induced uphill oxalate uptake, indicting Cl-oxalate exchange. Moreover, an outward formate gradient induced uphill oxalate uptake, indicating formate-oxalate exchange. Studies of inhibitor and substrate specificity indicated the probably operation of at least two separate anion exchangers in mediating Cl transport. The Cl-formate exchanger accepted Cl and formate as substrates, had little or no affinity for oxalate, was sensitive to inhibition by furosemide, and was less sensitive to inhibition by 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS). The Cl (formate)-oxalate exchanger also accepted Cl and formate as substrates but had high affinity for oxalate, was highly sensitive to inhibition by DIDS, and was less sensitive to inhibition by furosemide. The Cl-formate exchanger was electroneutral, whereas the Cl (formate)-oxalate exchanger was electrogenic. They conclude that at least separate anion exchangers mediating Cl transport are present on the luminal membrane of the rabbit proximal tubule cell. These exchangers may play important roles in mediating transtubular Cl and oxalate transport in this nephron segment.

  4. Isotope Fractionation of chlorine in Aqueous System: One Study on Anion-Exchange Chromatography.

    NASA Astrophysics Data System (ADS)

    Musashi, M.; Oi, T.; Eggenkamp, H.; Van Cappellen, P.


    Stable chlorine isotopes such as 37Cl and 35Cl have been paid attention as useful tool identifying the source, and monitoring the transport process and natural fate of chlorinated organic pollutants in air and groundwater. However, it is not established yet whether any isotope effects accompany biodegradation or reductive dehalogenation of the pollutants (Clark and Fritz, 1997). Here we first present an experimental determination of isotope fractionation factor of chlorine in aqueous system by using anion-exchange chromatographic technique. Into the Cl-free anion exchange resin (Muromac, OH- form) packed in a 30 cm long pyrex glass column and controlled temperature at 25 oC, hydrochloric solution was fed with controlling the flow rate constant. Effluent from the column was recovered by an automatic fraction collector and prepared for Cl isotope analysis. The Cl isotope ratio (δ 37Cl vs. SMOC) was measured by IR-MS at the Utrecht University with precision of 0.06 per-mil. Magnitude of the factor obtained was 1.00035 at 25 oC. The result indicates that the lighter isotope (35Cl) was preferably fractionated into the resin phase, while the heavier one (37Cl) was enriched into the aqueous phase. This trend suggests that molecular structure of hydrolysis with Cl in aqueous phase may be more stable than that of Cl ionically bonding with the resin. This result may offer physico-chemical insights into behavior and fate of the pollutants.

  5. A green approach for preparing anion exchange membrane based on cardo polyetherketone powders

    NASA Astrophysics Data System (ADS)

    Hu, Jue; Zhang, Chengxu; Zhang, Xiaodong; Chen, Longwei; Jiang, Lin; Meng, Yuedong; Wang, Xiangke


    Anion exchange membranes (AEMs) have attracted great attention due to their irreplaceable role in platinum-free fuel cell applications. The majority of AEM preparations have been performed in two steps: the grafting of functional groups and quaternization. Here, we adopted a simpler, more eco-friendly approach for the first time to prepare AEMs by atmospheric-pressure plasma-grafting. This approach enables the direct introduction of anion exchange groups (benzyltrimethylammonium groups) into the polymer matrix, overcoming the need for toxic chloromethyl ether and quaternization reagents. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and 1H NMR spectroscopy results demonstrate that benzyltrimethylammonium groups have been successfully grafted into the cardo polyetherketone (PEK-C) matrix. Thermogravimetric analysis reveals that the plasma-grafting technique is a facile and non-destructive method able to improve the thermal stability of the polymer matrix due to the strong preservation of the PEK-C backbone structure and the cross-linking of the grafted side chains. The plasma-grafted PG-NOH membrane, which shows satisfactory alcohol resistance (ethanol permeability of 6.3 × 10-7 cm2 s-1), selectivity (1.2 × 104 S s cm-3), thermal stability (safely used below 130 °C), chemical stability, anion conductivity (7.7 mS cm-1 at 20 °C in deionized water) and mechanical properties is promising for the construction of high-performance fuel cells.

  6. Quantitative H-1 NMR Analysis of Chemical Stabilities in Anion-Exchange Membranes

    SciTech Connect

    Nunez, SA; Hickner, MA


    We compared the alkaline stability of three classes of anion exchange membranes that are leading candidates for applications in platinum-free fuel cells. A methodology is presented for the study of chemical stability of anion-exchange polymers in alkaline media that provides clear and quantitative H-1 NMR spectroscopic data of dissolved polymers containing benzyltrimethylammonium functionalities. Recent studies have investigated the stabilities of benzimidazolium- and alkylimidazolium-bearing polymers using periodic H-1 NMR sampling. These studies included varying alkaline concentrations, external heating sources, and excessive processing and contained no internal standard for absolute measurements. Key aspects of our time-resolved H-1 NMR method include in situ heating and sampling within the spectrometer, fixed Stoichiometric relationships between the benzyltrimethylammonium functionalities of each polymer and potassium deuteroxide (KOD), and the incorporation of an internal standard for the absolute measurement of the polymer degradation. In addition, our method permits the identification of the degradation products to find the underlying cause of chemical lability. Our results demonstrate that a styrene-based polymer containing benzyltrimethylammonium functional groups is remarkably stable when exposed to 20 equivalents per cation of KOD at 80 degrees C with a half-life (t(1/2)) of 231 h. Under these standard conditions, functionalized poly(phenylene oxide) and poly(arylene ether sulfone) copolymers, both bearing benzyltrimethylammonium functionalities were found to degrade with a half-lives of 57.8 and 2.7 h, respectively.

  7. Incorporation of multi-walled carbon nanotubes in microspheres used as anion exchange resin via suspension polymerization

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Abdel Moghny, Th.; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.


    Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers is an effective method for preparation of anion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to copolymerize vinylbenzyl chloride with divinylbenzene to generate the necessary VBC-DVB. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. These resulting anion-exchange polymers were characterized by a variety of techniques such as analytical titrations, transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads. Resins containing MWCNTs achieved anion exchange capacity value of 323.6 meq/100 g over than that of copolymer resins and that useful in water desalination or treatment.

  8. Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids.


    Bi, Wentao; Tian, Minglei; Row, Kyung Ho


    Polymer-confined ionic liquids were used for the separation of phenolic acids from natural plant extract by utilizing an anion-exchange mechanism. They were synthesized using molecular imprinting technique to reduce non-directional ion-ion interactions during anion-exchange and other interactions with interference substances that could decrease selectivity. A suitable sorbent for phenolic acid separation could be identified based on the adsorption behaviors of phenolic acids on different polymer-confined ionic liquids. Thus, the developed ionic liquid-based molecularly imprinted anion-exchange polymer (IMAP) achieved high recovery rates by solid-phase extraction of phenolic acids from Salicornia herbacea L. extract: 90.1% for protocatechuic acid, 95.5% for ferulic acid and 96.6% for caffeic acid. Moreover, the phenolic acids were separable from each other by repeated solid phase extraction cycles. The proposed method could be used to separate other phenolic acids or organic acids from complex samples. PMID:21903215

  9. Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation.


    de Gennaro, Bruno; Catalanotti, Lilia; Bowman, Robert S; Mercurio, Mariano


    Lately, the functionalization of industrial minerals with high technological properties, such as natural zeolites, is shaping as a promising approach in environmental sphere. In fact, under the specific conditions, the surface functionalization via adsorption of cationic surfactants reverses the surface charge of the mineral, enabling zeolites to simultaneously interact either with organic contaminants or inorganic anions. This aspect allows zeolites to be used in the remediation of contaminated fluids. The present research shed new light on some still not fully understood aspects concerning exchange kinetics such as anion-exchange mechanisms and selectivity of surface modified minerals. For this purpose the mineralogical characterization and the surface properties evaluation (X Ray Powder Diffraction, chemical analysis, thermal analysis, ECEC and AEC) of a clinoptilolite-rich tuff were performed, and the anion exchange isotherms of the sample, modified with hexadecyltrimethylammonium chloride or bromide (HDTMA-Cl/-Br), were determined. Ion-exchange equilibrium data of uni-uni valent reaction were obtained by solutions containing Br(-), Cl(-), NO3(-) or ClO4(-). Liquid phase was analysed via high performance liquid chromatography. Thermodynamic quantities (Ka and ΔG(0)) were determined and compared with the Hofmeister series. The value of the ECEC, calculated in batch conditions, was about 137 mmol/kg, in good agreement with that evaluated in dynamic conditions, while the AEC data were different for the SMNZ-Br and -Cl samples, amounting to 137 and 106 mmol/kg, respectively, thus indicating a different compactness of the bilayer formed in the two cases. Moreover, the anion isotherm results and the mathematical evaluation of the thermodynamic parameters, demonstrated the good affinity of SMNZ-Br towards chloride, nitrate and perchlorate, and of SMNZ-Cl for nitrate and perchlorate, also endorsing the possibility of using the same thermodynamic approach developed to

  10. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    NASA Astrophysics Data System (ADS)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  11. The direct formate fuel cell with an alkaline anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Bartrom, Amy M.; Haan, John L.


    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  12. Fouling of anion exchange resin by fluorescence analysis in advanced treatment of municipal wastewaters.


    Li, Haibo; Li, Aimin; Shuang, Chendong; Zhou, Qing; Li, Wentao


    The application of anion exchange resins (AERs) has been limited by the critical problem of resin fouling, which increases the volume of the desorption concentrate and decreases treatment efficiency. To date, resin fouling has not been well studied and is poorly understood compared to membrane fouling. To reflect the resin fouling level, a resin fouling index (RFI) was established in this work according to the decrease of DOC removal after regeneration of the resin for the advanced treatment of municipal wastewater. Comparing the linear fitting results between the RFI and the fluorescence intensity indicated that the resin fouling was related to the protein-like substances with fluorescence peak T in the region of excitation wavelength <250 nm and emission wavelength <380 nm. Using their fluorescent characteristics as a label, the protein-like substances causing the fouling were further identified as hydrophilic components with molecular weights greater than 6500 Da. PMID:25218660

  13. Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design

    PubMed Central

    Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen


    Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability. PMID:25255843

  14. Enhanced Anion Exchange for Selective Sulfate Extraction: Overcoming the Hofmeister Bias

    SciTech Connect

    Fowler, Christopher J; Haverlock, Tamara; Moyer, Bruce A; Shriver, James A.; Gross, Mr. Dustin E.; Marquez, Manuel; Sessler, Jonathan L.; Hossain, Alamgir; Bowman-James, Kristin


    Synergism in liquid-liquid extraction, typified by the combination of a neutral extractant with a cation-exchanger to enhance selectively cation extraction strength, has been used and understood for over five decades.1 Surprisingly, analogous synergism in anion extraction has not yet been developed. In this Communication we present a simple way to achieve non-Hofmeister selectivity in liquid-liquid anion exchange by combining a synthetic hydrogen-bond-donating (HBD) anion receptor with a standard quaternary ammonium type extractant. Specifically, we show that the fluorinated calixpyrroles 1 and 22 and the tetraamide macrocycles 3 5,3 may be used to enhance the solvent extraction of sulfate from nitrate by Aliquat 336-nitrate (A336-nitrate).

  15. Radiolysis of the AV-17×8 ČS anion-exchange resin

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Habersbergerová, A.; Janovský, I.; Kysela, J.; Pejša, R.

    The mixture of the anion exchange resin AV-17×8 čs in borate form and of a deaerated aqueous solution containing H 3BO 3 and NH 3 ( pH = 7) was irradiated with gamma rays in both static and dynamic conditions. A loss of strong-base exchange capacity and an increase of weak-base capacity was observed. In the solution, (CH 3) 3N, (CH 3) 2NH and CH 3NH 2 were found as the radiolytic products, their relative ratio being 15.7 : 3.7 : 1. Further, NH 3 is formed with the concentration of the same order as that of CH 3NH 2. Beside hydrogen, which is the prevailing gaseous product of the radiolysis of the mixture, methane and ethane arise, their ratio in the dynamic irradiation being 2.8 to 6.0. The main features of the radiolysis are outlined.

  16. Highly Conductive Anion-Exchange Membranes from Microporous Tröger's Base Polymers.


    Yang, Zhengjin; Guo, Rui; Malpass-Evans, Richard; Carta, Mariolino; McKeown, Neil B; Guiver, Michael D; Wu, Liang; Xu, Tongwen


    The development of polymeric anion-exchange membranes (AEMs) combining high ion conductivity and long-term stability is a major challenge for materials chemistry. AEMs with regularly distributed fixed cationic groups, based on the formation of microporous polymers containing the V-shape rigid Tröger's base units, are reported for the first time. Despite their simple preparation, which involves only two synthetic steps using commercially available precursors, the polymers provide AEMs with exceptional hydroxide conductivity at relatively low ion-exchange capacity, as well as a high swelling resistance and chemical stability. An unprecedented hydroxide conductivity of 164.4 mS cm(-1) is obtained at a relatively a low ion-exchange capacity of 0.82 mmol g(-1) under optimal operating conditions. The exceptional anion conductivity appears related to the intrinsic microporosity of the charged polymer matrix, which facilitates rapid anion transport. PMID:27505421

  17. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    SciTech Connect

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.; Seifert, Soenke; Herring, Andrew M; Coughlin, E. Bryan


    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scattering experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.

  18. Transient ion exchange of anion exchange membranes exposed to carbon dioxide

    NASA Astrophysics Data System (ADS)

    Myles, Timothy D.; Grew, Kyle N.; Peracchio, Aldo A.; Chiu, Wilson K. S.


    A common issue with anion exchange membranes (AEMs) is carbon dioxide contamination which causes a conversion from the hydroxide form to a mixed carbonate/bicarbonate form. In the mixed ionic form the membrane suffers from lower conductivity due to the larger and heavier ions having a lower mobility. The purpose of this study is to develop a theoretical model of the transient ion exchange process and elucidate the nature of the conversion of the AEM from a hydroxide form to a carbonate/bicarbonate form. Experimental data available from the literature providing the anion concentrations versus time are used for comparison. The prevalent mechanisms are discussed and the governing equations are cast in a dimensionless form. Extensions are then made to conductivity predictions.

  19. Multigram group separation of actinide and lanthanide elements by LiCl-based anion exchange

    SciTech Connect

    Collins, E.D.; Benker, D.E.; Chattin, F.R.; Orr, P.B.; Ross, R.G.


    The laboratory-scale LiCl AIX process has been successfully adapted to the multigram scale and has been used effectively in transuranium element production campaigns to separate the lanthanide fission products from the transplutonium actinides and to partition americium and curium from the heavier elements. Corrosion of the tantalum and glass equipment has been negligible. Although radiolytic gas generation has not caused a problem, radiation exposure of the Dowex 1-X10 anion exchange resin does occur significantly. However, the 1.3-L resin bed can be used successfully to process up to 3 batches, each containing 19 g of /sup 244/Cm (54 W of decay heat). The chromatographic elution process is controlled by use of an alpha detector in the column effluent line and by periodic measurement of the neutron profile of the column. The development and use of feed pretreatment and operating methods has enabled effective and dependable operation.

  20. Regeneration of strong-base anion-exchange resins by sequential chemical displacement

    SciTech Connect

    Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.


    A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.

  1. Development of direct methanol alkaline fuel cells using anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Yu, Eileen Hao; Scott, Keith

    Research into the development of direct methanol alkaline fuel cell (DMAFC) using an anion exchange polymer electrolyte membrane is described. The commercial membrane used had a higher electric resistance, but a lower methanol diffusion coefficient than Nafion ® membranes. Fuel cell tests were performed using carbon supported Pt catalyst, and the effect of temperature, methanol concentration, methanol flow rate, air pressure and Pt loading were investigated. It was found that the cell performance improved drastically with a membrane assembly electrode (MEA) which did not include the gas diffusion layer on the anode, because of lower reactant mass transfer resistance. To give suitable cathode performance, humidification of the air and a subtle balance between the air pressure and water transport is required.

  2. Structure and Properties of a Semi-crystalline Cationic Polymer for Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Beyer, Frederick; Price, Samuel; Savage, Alice; Ren, Xiaoming; Insane Membranes Collaboration

    Nafion has long been studied in order to understand its combination of good mechanical properties, chemical resistance, and excellent charge transport characteristics. In the past decade, uncertainty regarding the morphological behavior of Nafion has largely been resolved, allowing researchers to mimic and improve on the structure of this material. In this presentation, work to incorporate key characteristics of Nafion into a model cation-containing polymer will be described. In these new materials, semi-crystalline atactic poly(norbornene) is used to introduce good mechanical properties to anion-exchange membranes, analogous to the PTFE crystallites in Nafion. The ether linkages between the charged species and backbone are also utilized to place the cationic species (trimethylamine) in our materials into a mechanically soft environment. The resulting polymer shows some characteristics that are similar to those of Nafion. In this presentation, the synthesis, alkaline stability, mechanical properties, morphological behavior and charge transport properties will all be described.

  3. NASA Li/CF(x) cell problem analysis: Anion exchange chromatography analysis

    NASA Technical Reports Server (NTRS)

    Bytella, Joseph


    An analysis was made of wiper samples used to wipe down lithium/chlorine fluorine battery components and production equipment. These components and equipment were potentially exposed to thionyl chloride vapors. In the presence of moisture, thionyl chloride decomposes to sulfur dioxide and hydrogen chloride. The wiper samples were analyzed for soluble chlorides and fluorides by anion exchange chromatography. During the examination of the test chromatographs, fluoride contamination was discovered in wiper samples from the test equipment. An analytical method to determine fluoride was developed. The first 3 extracts from the potentially exposed and clean wiper samples were tested, and the total fluoride from both groups determined. A comparison of the results from both groups was made to determine the extent of fluoride contamination.

  4. Anion-exchange separation of Pt and Pd using perchloric and hydrochloric acid solutions

    USGS Publications Warehouse

    Petrie, R.K.; Morgan, J.W.


    On Biorad Ag-1X8 anion-exchange resin (200-400 mesh), Pd and Pt may be separated from one another by elution with 0.2M HClO4, and 5M HClO4, respectively. If present, Au may be retained by making the elutriants 0.003M in HCl. Alternatively, reduction by H2SO3 enables elution of Pt2+ with 6M HCl before recovery of Pd2+ with 0.2M HClO4??Ir4+ is reduced to Ir3+ by H2SO3 and may be eluted ahead of Pt2+ by 2M HCl. ?? 1982 Akade??miai Kiado??.

  5. Enhancement of anion-exchange chromatography of DNA using compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, Jason C.; Fox, George E.; Willson, Richard C.


    The use of adsorptive chromatography for preparative nucleic acid separations is often limited by low capacity. The possibility that the adsorbent surface area sterically accessible to nucleic acid molecules could be increased by reducing their radius of gyration with compaction agents has been investigated. The equilibrium adsorption capacity of Q Sepharose anion-exchange matrix for plasmid DNA at 600 mM NaCl was enhanced by up to ca. 40% in the presence of 2.5 mM spermine. In addition, compaction agent selectivity has been demonstrated. Spermine, for example, enhances the adsorption of both plasmid and genomic DNA, spermidine enhances binding only of plasmid, and hexamine cobalt enhances only the binding of genomic DNA. Compaction may be generally useful for enhancing adsorptive separations of nucleic acids.

  6. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha


    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  7. Anion Exchange Capacity As a Mechanism for Deep Soil Carbon Storage in Variable Charge Soils

    NASA Astrophysics Data System (ADS)

    Dietzen, C.; James, J. N.; Ciol, M.; Harrison, R. B.


    Soil is the most important long-term sink for carbon (C) in terrestrial ecosystems, containing more C than plant biomass and the atmosphere combined. However, soil has historically been under-represented in C cycling literature, especially in regards to information about subsurface (>1.0 m) layers and processes. Previous research has indicated that Andisols with large quantities of noncrystalline, variable-charge minerals, including allophane, imogolite, and ferrihydrite, contain more C both in total and at depth than other soil types in the Pacific Northwest. The electrostatic charge of variable-charge soils depends on pH and is sometimes net positive, particularly in acid conditions, such as those commonly developed under the coniferous forests of the Pacific Northwest. However, even soils with a net negative charge may contain a mixture of negative and positive exchange sites and can hold some nutrient anions through the anion exchange capacity. To increase our understanding of the effects of variable-charge on soil organic matter stabilization, deep sampling is under way at the Fall River Long-Term Soil Productivity Site in western Washington. This site has a deep, well-drained soil with few rocks, which developed from weathered basalt and is classified as an Andisol of the Boistfort Series. Samples have been taken to a depth of 3 m at eight depth intervals. In addition to analyzing total soil C, these soils will be analyzed to determine functional groups present, cation exchange capacity, anion exchange capacity, and non-crystalline mineral content. These data will be analyzed to determine any correlations that may exist between these mineralogical characteristics, total soil C, and types of functional groups stored at depth. The most abundant organic functional groups, including carboxylic and phenolic groups, are anionic in nature, and soil positive charge may play an important role in binding and stabilizing soil organic matter and sequestering C.

  8. Topological and segmental phylogenetic analyses of the anion exchanger (band 3) family of transporters.


    Espanol, M J; Saier, M H


    Eleven sequenced anion exchanger (AE; band 3) proteins, including five AE1, four AE2 and two AE3 proteins, comprise the anion exchanger family (AEF) of homologous proteins. Eliminating the rat and rabbit proteins that are nearly identical to the corresponding mouse proteins, seven dissimilar members of this family were selected for study, divided into N-terminal, central and C-terminal segments (designated segments 0, 1 and 2, respectively) and analysed separately for sequence similarity and phylogenetic relatedness. Segments 0 are variable in length and sequence, are essentially lacking in some of the members of the AEF, and are not demonstrably homologous in other members of the family. All segments 1 and 2 are homologous, but they exhibit widely differing degrees of sequence divergence. Segments 2 are highly conserved in all AEF proteins. Segments 1 of the AE2 and AE3 proteins are as conserved as are segments 2, but segments 1 of the AE1 proteins have diverged from each other and from the AE2 and AE3 segments 1 much more than have segments 2 of these same proteins. The distributions of various types of amino acid residues in the putative transmembrane helical spanners of the seven dissimilar members of the AEF, based on a modification of the 14-spanner model of Wang et al. (1994) was determined, and this distribution was compared with those of other transmembrane transport proteins of known structure (bacterial rhodopsins, outer membrane porins of Gram-negative bacteria and bacterial photosynthetic reaction centres.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7795710

  9. Oxyanion sorption and surface anion exchange by surfactant-modified clay minerals

    SciTech Connect

    Li, Z.


    In this study the sorption of nitrate (NO{sub 2}{sup {minus}}) and chromate (CrO{sub 4}{sup 2{minus}}) from aqueous solution by surfactant-modified clay minerals was investigated. Both the sorption and desorption of oxyanions were found to follow a Langmuir sorption isotherm. In general, the sorption affinity is higher for chromate than for nitrate, reflecting that the interaction between the divalent anions and the surfactant bilayer is stronger than that between the monovalent anions and the surfactant bilayer. Surfactant-modified kaolinite has a higher sorption capacity for chromate. The sorption capacities for chromate and nitrate are equal for surfactant-modified illite while the sorption capacity for nitrate is higher for surfactant-modified smectite. Desorption by water revealed that chromate sorption was irreversible, while nitrate sorption was slightly reversible. In a mixed solution system, nitrate and chromate compete for the same sorption sites, resulting in a decrease in sorption capacity for each anion. Stoichiometric counterion desorption due to chromate and/or nitrate sorption further confirms that sorption of oxyanions by surfactant-modified clay minerals was due to surface anion exchange. The selectivity coefficients were higher for chromate to replace bromide than for nitrate to replace bromide for surfactant-modified kaolinite, but lower when surfactant-modified illite and smectite were the anion exchangers. The results indicate that surfactant-modified clay minerals are effective sorbents to remove anionic contaminants from water. However, the types of clay minerals should be correctly selected to maximize the contaminant removal efficiency.

  10. Primary structure of a sperm cell anion exchanger and its messenger ribonucleic acid expression during spermatogenesis.


    Holappa, K; Mustonen, M; Parvinen, M; Vihko, P; Rajaniemi, H; Kellokumpu, S


    Chloride/bicarbonate (Cl-/HCO(3)-) exchangers are a family of proteins (anion exchanger [AE] gene family) that regulate many vital cellular processes such as intracellular pH, cell volume, and Cl- concentration. They may also be involved in the regulation of sperm cell motility and acrosome reaction during fertilization, as these two phenomena are bicarbonate dependent, and we have previously shown that a polypeptide immunologically related to erythrocyte band 3 is expressed in mammalian sperm cells. We have now identified this putative sperm cell anion exchanger as the AE2 isoform of this gene family. First, we determined its complete primary structure from the human testis lambda gt 11 cDNA library. The cloned sequence was found to consist of 3896 base pairs (bp) with an open reading frame of 3726 bp, and to be almost identical to the previously published human genomic AE2 sequence. Only four amino acid disparities were found between these two sequences. Second, our in situ hybridization analyses showed that AE2 mRNA is expressed in developing sperm cells, indicating that the cloned sequence corresponds to the sperm cell AE. Our reverse transcription-polymerase chain reaction analyses suggested further that the expression of AE2 mRNA was variable to some extent during the epithelial cell cycle. Strongest expression was observed at stages VII-XIV except for stage X, i.e., when major structural and morphological changes take place. These results suggest that the full-length AE2 isoform regulates HCO(3)- transport in mature sperm cells and thus their motility in vivo. PMID:10491633

  11. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger.


    Cai, Jianguo; Zhang, Yanyang; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing


    Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application. PMID:27337346

  12. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers

    PubMed Central

    Alper, Seth L.


    Summary Plasmalemmal Cl–/HCO3– exchangers are encoded by the SLC4 and SLC26 gene superfamilies, and function to regulate intracellular pH, [Cl–] and cell volume. The Cl–/HCO3– exchangers of polarized epithelial cells also contribute to transepithelial secretion and reabsorption of acid–base equivalents and Cl–. This review focuses on Na+-independent electroneutral Cl–/HCO3– exchangers of the SLC4 family. Human SLC4A1/AE1 mutations cause the familial erythroid disorders of spherocytic anemia, stomatocytic anemia and ovalocytosis. A largely discrete set of AE1 mutations causes familial distal renal tubular acidosis. The Slc4a2/Ae2–/– mouse dies before weaning with achlorhydria and osteopetrosis. A hypomorphic Ae2–/– mouse survives to exhibit male infertility with defective spermatogenesis and a syndrome resembling primary biliary cirrhosis. A human SLC4A3/AE3 polymorphism is associated with seizure disorder, and the Ae3–/– mouse has increased seizure susceptibility. The transport mechanism of mammalian SLC4/AE polypeptides is that of electroneutral Cl–/anion exchange, but trout erythroid Ae1 also mediates Cl– conductance. Erythroid Ae1 may mediate the DIDS-sensitive Cl– conductance of mammalian erythrocytes, and, with a single missense mutation, can mediate electrogenic SO42–/Cl– exchange. AE1 trafficking in polarized cells is regulated by phosphorylation and by interaction with other proteins. AE2 exhibits isoform-specific patterns of acute inhibition by acidic intracellular pH and independently by acidic extracellular pH. In contrast, AE2 is activated by hypertonicity and, in a pH-independent manner, by ammonium and by hypertonicity. A growing body of structure–function and interaction data, together with emerging information about physiological function and structure, is advancing our understanding of SLC4 anion exchangers. PMID:19448077

  13. Separation of Oxidized Variants of a Monoclonal Antibody by Anion-Exchange

    PubMed Central

    Teshima, Glen; Li, Ming-Xiang; Danishmand, Rahima; Obi, Chidi; To, Robert; Huang, Carol; Lahidji, Vafa; Freeberg, Joel; Thorner, Lauren; Tomic, Milan


    Monoclonal antibodies are subject to a variety of degradation mechanisms, therefore orthogonal techniques are required to demonstrate product quality. In this study, the three individual antibodies comprising a multi-antibody drug product, XOMA 3AB were evaluated by both cation-exchange (CEX) and anion-exchange chromatography (AEX). In contrast to CEX analysis which showed only a single, broad peak for the force-oxidized antibodies, AEX analysis of Ab-A (pI=7.6) revealed two more basic peaks. Ab-B (pI=6.7) bound but exhibited only a single major peak while Ab-C (pI=8.6) flowed through. Peptide mapping LC/MS analysis of the isolated Ab-A fractions demonstrated that the basic peaks resulted from oxidation in a complementary determining region (CDR). Differential scanning calorimetry (DSC) analysis of the oxidized Ab-A species showed a decrease in the Fab melting point for the oxidized species consistent with unfolding of the molecule. Greater/lesser surface exposure of ionic residues resulting from a conformational change provides a likely explanation for the dramatic shift in retention behavior for the Ab-A oxidized variants. Peptide mapping analysis of the Ab-B antibody showed, in contrast to Ab-A, no detectable CDR oxidation. Hence, the lack of separation of oxidized variants in Ab-B can be explained by the absence of CDR oxidation and the associated changes in secondary/tertiary structure which were observed for oxidized AbA. In summary, anion-exchange HPLC shows potential as an orthogonal analytical technique for assessing product quality of monoclonal antibody therapeutics. In the case of the XOMA 3AB drug product, two of the antibodies bound and one, Ab-A, exhibited separation of CDR oxidized variants. PMID:21145555

  14. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor.


    Cui, Hao; Li, Qin; Qian, Yan; Tang, Rong; An, Hao; Zhai, Jianping


    A polyaniline (PANI) modified electrode reactor was designed for fluoride removal from aqueous solutions. The innovative concept behind the reactor design is that the uptake and elute of fluoride could be well controlled by modulating the potential of the PANI film. The maximum fluoride removal capacity of PANI is more than 20 mg/g at a positive voltage based on the electrically controlled anion-exchange mechanism. The results of batch tests showed that terminal potential values had a major impact on fluoride removal by this PANI, with optimal removal occurring at 1.5 V. The fluoride removal capacity (q(e)) increased rapidly within 5 min and reached equilibrium within 10 min, which indicated a rapid removal velocity of fluoride by PANI under this condition. The applicability of defluoridation using the PANI reactor to treat fluoride-contaminated tap water was also tested through flow cell breakthrough studies. At initial fluoride concentrations of 5 mg/L and 10 mg/L, the breakthrough capacities were 20.08 mg/g and 19.24 mg/g, respectively. Moreover, during the first half of the period before the breakthrough point, the fluoride concentration of the treated solution was below the WHO's recommended levels (1.5 mg/L). The results of the five consecutive treatment-regeneration studies also showed that the PANI films could be reused. Taken together, these results implied that the electrically controlled anion exchange by the PANI-modified electrode reactor may be an effective technique for the removal of fluoride from water. PMID:21907382

  15. A novel erythroid anion exchange variant (Gly796Arg) of hereditary stomatocytosis associated with dyserythropoiesis

    PubMed Central

    Iolascon, Achille; De Falco, Luigia; Borgese, Franck; Esposito, Maria Rosaria; Avvisati, Rosa Anna; Izzo, Pietro; Piscopo, Carmelo; Guizouarn, Helene; Biondani, Andrea; Pantaleo, Antonella; De Franceschi, Lucia


    Background Stomatocytoses are a group of inherited autosomal dominant hemolytic anemias and include overhydrated hereditary stomatocytosis, dehydrated hereditary stomatocytosis, hereditary cryohydrocytosis and familial pseudohyperkalemia. Design and Methods We report a novel variant of hereditary stomatocytosis due to a de novo band 3 mutation (p. G796R-band3 CEINGE) associated with a dyserythropoietic phenotype. Band 3 genomic analysis, measurement at of hematologic parameters and red cell indices and morphological analysis of bone marrow were carried out. We then evaluated the red cell membrane permeability and ion transport systems by functional studies of the patient’s erythrocytes and Xenopus oocytes transfected with mutated band 3. We analyzed the red cell membrane tyrosine phosphorylation profile and the membrane association of the tyrosine kinases Syk and Lyn from the Src-family-kinase group, since the activity of the membrane cation transport pathways is related to cyclic phosphorylation-dephosphorylation events. Results The patient showed mild hemolytic anemia with circulating stomatocytes together with signs of dyserythropoiesis. Her red cells displayed increased Na+ content with decreased K+content and abnormal membrane cation transport activities. Functional characterization of band 3 CEINGE in Xenopus oocytes showed that the mutated band 3 is converted from being an anion exchanger (Cl−, HCO3−) to being a cation pathway for Na+ and K+. Increased tyrosine phosphorylation of some red cell membrane proteins was observed in diseased erythrocytes. Syk and Lyn membrane association was increased in the patient’s red cells compared to in normal controls, indicating perturbation of phospho-signaling pathways involved in cell volume regulation events. Conclusions Band 3 CEINGE alters function from that of anion exchange to cation transport, affects the membrane tyrosine phosphorylation profile, in particular of band 3 and stomatin, and its presence

  16. The effects of anion exchange functional-group variations on the sorption of Pu(IV) from nitric acid

    SciTech Connect

    Marsh, S.F.


    A macroporous, polyvinylpyridine anion exchange resin has been used for more than five years at the Los Alamos Plutonium Facility to recover plutonium from nitrate media. This strong-base anion exchanger, Reillex{trademark} HPQ, offers higher capacity, faster kinetics, and significantly higher resistance to chemical and radiation damage than conventional polystyrene-based resins. In this study, we measured the sorption of Pu(IV) on Reillex{trademark} HPQ and on three macroporous, strong-base anion exchange resins that differ from Reillex{trademark} HPQ only in the alkyl group used to quaternize the pyridinium. nitrogen. These four resins, prepared by Reilly Industries, Inc., are copolymers of 1-alkyl-4-vinylpyridine, where the alkyl groups are methyl, butyl, hexyl, and octyl. We compare the trends in Pu(IV) sorption on these four resins to those obtained in our previous study of four polystyrene anion exchange resins having trimethyl, triethyl, tripropyl, and tributyl ammonium functionality. The Pu(IV) sorption was measured from 1 M to 9 M nitric acid in both studies.


    EPA Science Inventory

    This report gives the results of a single-laboratory evaluation and an interlaboratory collaborative study of a method for determining plutonium in water. The method was written for the analysis of 1-liter samples and involved coprecipitation, acid dissolution, anion exchange, el...

  18. Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues.


    Oikari, Sanna; Venäläinen, Tuula; Tammi, Markku


    In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates. PMID:24309714

  19. Mechanism of sorption sulpho-derivative organic chelating agents on strong base anion exchanger Amberlite IRA-402 by FT-IR/PAS and DRS methods

    NASA Astrophysics Data System (ADS)

    Wronski, G.; Pasieczna-Patkowska, S.; Hubicki, Z.


    In the paper, strong base anion exchanger Amberlite IRA-402 was modified by using sulpho-derivative organic chelating agents as: Brilliant Yellow, Xylenol Orange, Bromophenyl Blue. The investigations exhibited, that anion exchanger Amberlite IRA-402 is modified very simply by organic chelating agents (working capacity 0.25 0.5 g/cm3).

  20. Effect of Oxalate on the Recycle of Neptunium Filtrate Solution by Anion Exchange

    SciTech Connect

    Kyser, E


    A series of laboratory column runs has been performed that demonstrates the recovery of neptunium (Np) containing up to 0.05 M oxalate. Np losses were generally less than one percent to the raffinate for feed solutions that contained 2 to 10 g Np/L. Up to 16 percent Np losses were observed with lower Np feed concentrations, but those losses were attributed to the shortened residence times rather than the higher oxalate to Np ratios. Losses in the plant are expected to be significantly less due to the lower cross-section flowrate possible with existing plant pumps. Elimination of the permanganate treatment of filtrates appears to be reasonable since the amount of Np in those filtrates does not appear to be practical to recover. Combination of untreated filtrates with other actinide rich solutions is not advisable as precipitation problems are likely. If untreated filtrates are kept segregated from other actinide rich streams, the recovery of the remaining Np is probably still possible, but could be limited due to the excessively high oxalate to Np ratio. The persistence of hydrazine/hydrazoic acid in filtrate solutions dictates that the nitrite treatment be retained to eliminate those species from the filtrates prior to transfer to the canyon. Elimination of the permanganate treatment of precipitator flushes and recovery by anion exchange does not appear to be limited by the oxalate effect on anion exchange. Np from solutions with higher oxalate to Np molar ratios than expected in precipitator flushes was recovered with low to modest losses. Solubility problems appear to be unlikely when the moles of oxalate involved are less than the total number of moles of Np due to complexation effects. The presence of significant concentrations of iron (Fe) in the solutions will further decrease the probability of Np oxalate precipitation due the formation of Fe oxalate complexes. Np oxalate solubility data in 8 M HNO{sub 3} with from one to six times as much oxalate as Np have

  1. Grafting glycidyl methacrylate to Sepharose gel for fabricating high-capacity protein anion exchangers.


    Wang, Qianqian; Yu, Linling; Sun, Yan


    To develop ion exchangers of high protein adsorption capacity, we have herein introduced atom transfer radical polymerization (ATRP) method to graft glycidyl methacrylate (GMA) onto Sepharose FF gel. GMA-grafted Sepharose FF resins of four grafting densities and different grafting chain lengths were obtained by adjusting reaction conditions. The epoxy groups on the grafted chains were functionalized by modification with diethylamine (DEA), leading to the fabrication of Sepharose-based anion exchangers of 14 different grafting densities and/or grafting chain lengths. The resins were first characterized for the effects of grafting density, chain length and ionic strength on pore sizes by inverse size exclusion chromatography. Then, the resins were evaluated by adsorption equilibria of bovine serum albumin (BSA) as a function of ionic capacity (IC) (chain length) at individual grafting densities. It was observed that at each grafting density there was a specific IC value (chain length) that offered the maximum equilibrium capacity. Of the resins with maximum values at individual grafting densities, the resin of the second grafting density with an IC value of 330 mmol/L (denoted as FF-Br2-pG-D330) showed the highest capacity, 264 mg/mL, about two times higher than that of the traditional ungrafted resin Q Sepharose FF (137 mg/mL). This resin also showed the most favorable uptake kinetics among the resins of similar IC values but different grafting densities, or of the same grafting density but different IC values. Effects of ionic strength showed that the capacities of FF-Br2-pG-D330 were much higher than Q Sepharose FF at a wide range of NaCl concentrations (0-200 mmol/L), and the uptake rates of the two resins were similar in the ionic strength range. Therefore, the dynamic binding capacity values of BSA on FF-Br2-pG-D330 were much higher than Q Sepharose FF as demonstrated at different residence times and ionic strengths. Taken together, the research has proved the



    Bailes, R.H.; Ellis, D.A.; Long, R.S.


    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  3. Large Scale Solid Phase Synthesis of Peptide Drugs: Use of Commercial Anion Exchange Resin as Quenching Agent for Removal of Iodine during Disulphide Bond Formation

    PubMed Central

    Reddy, K. M. Bhaskara; Kumari, Y. Bharathi; Mallikharjunasarma, Dokka; Bulliraju, Kamana; Sreelatha, Vanjivaka; Ananda, Kuppanna


    The S-acetamidomethyl (Acm) or trityl (Trt) protecting groups are widely used in the chemical synthesis of peptides that contain one or more disulfide bonds. Treatment of peptides containing S-Acm protecting group with iodine results in simultaneous removal of the sulfhydryl protecting group and disulfide formation. However, the excess iodine needs to be quenched or adsorbed as quickly as possible after completion of the disulfide bond formation in order to minimize side reactions that are often associated with the iodination step. We report here a simple method for simultaneous quenching and removal of iodine and isolation of disulphide bridge peptides. The use of excess inexpensive anion exchange resin to the oxidized peptide from the aqueous acetic acid/methanol solution affords quantitative removal of iodine and other color impurities. This improves the resin life time of expensive chromatography media that is used in preparative HPLC column during the purification of peptide using preparative HPLC. Further, it is very useful for the conversion of TFA salt to acetate in situ. It was successfully applied commercially, to the large scale synthesis of various peptides including Desmopressin, Oxytocin, and Octreotide. This new approach offers significant advantages such as more simple utility, minimal side reactions, large scale synthesis of peptide drugs, and greater cost effectiveness. PMID:23118772

  4. Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions.


    Zhang, Dandan; Yang, Yiming; Bekenstein, Yehonadav; Yu, Yi; Gibson, Natalie A; Wong, Andrew B; Eaton, Samuel W; Kornienko, Nikolay; Kong, Qiao; Lai, Minliang; Alivisatos, A Paul; Leone, Stephen R; Yang, Peidong


    Here, we demonstrate the successful synthesis of brightly emitting colloidal cesium lead halide (CsPbX3, X = Cl, Br, I) nanowires (NWs) with uniform diameters and tunable compositions. By using highly monodisperse CsPbBr3 NWs as templates, the NW composition can be independently controlled through anion-exchange reactions. CsPbX3 alloy NWs with a wide range of alloy compositions can be achieved with well-preserved morphology and crystal structure. The NWs are highly luminescent with photoluminescence quantum yields (PLQY) ranging from 20% to 80%. The bright photoluminescence can be tuned over nearly the entire visible spectrum. The high PLQYs together with charge transport measurements exemplify the efficient alloying of the anionic sublattice in a one-dimensional CsPbX3 system. The wires increased functionality in the form of fast photoresponse rates and the low defect density suggest CsPbX3 NWs as prospective materials for optoelectronic applications. PMID:27213511

  5. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.


    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K


    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV). PMID:24884171

  6. Poly(phenyl sulfone) anion exchange membranes with pyridinium groups for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Zhang, Bengui; Zhang, Enlei; Wang, Guosheng; Yu, Ping; Zhao, Qiuxia; Yao, Fangbo


    To develop high performance and cost-effective membranes with low permeability of vanadium ions for vanadium redox flow battery (VRFB) application, poly(phenyl sulfone) anion exchange membranes with pyridinium groups (PyPPSU) are prepared and first investigated for VRFB application. PyPPSU membranes show much lower vanadium ions permeability (0.07 × 10-7-0.15 × 10-7 cm2 min-1) than that of Nafion 117 membrane (31.3 × 10-7 cm2 min-1). As a result, the self-discharge duration of the VRFB cell with PyPPSU membrane (418 h) is about four times longer than that of VRFB cell with Nafion 117 membrane (110 h). Furthermore, the VRFB cell with PyPPSU membrane exhibits higher battery efficiency (coulombic efficiency of 97.8% and energy efficiency of 80.2%) compare with that of VRFB cell with Nafion 117 membrane (coulombic efficiency of 96.1% and energy efficiency of 77.2%) at a high current density of 100 mA cm-2. In addition, PyPPSU membrane exhibits stable performance in 100-cycle test. The results indicate that PyPPSU membrane is high performance and low-cost alternative membrane for VRFB application.

  7. Performance testing of grout-based waste forms for the solidification of anion exchange resins

    SciTech Connect

    Morgan, I.L.; Bostick, W.D.


    The solidification of spent ion exchanges resins in a grout matrix as a means of disposing of spent organic resins produced in the nuclear fuel cycle has many advantages in terms of process simplicity and economy, but associated with the process is the potential for water/cement/resins to interact and degrade the integrity of the waste form solidified. Described in this paper is one possible solution to preserving the integrity of these solidified waste forms: the encapsulation of beaded anion exchange resins in grout formulations containing ground granulated blast furnace slag, Type I-II (mixed) portland cement, and additives (clays, amorphous silica, silica fume, and fly ash). The results of the study reported herein show the cured waste form tested has a low leach rate for nitrate ion from the resin (and a low leach rate is inferred for Tc-99) and acceptable durability as assessed by the water immersion and freezing/thawing test protocols. The results also suggest a tested surrogate waste form prepared in vinyl ester styrene binder performs satisfactorily against the wetting/drying criterion, and it should offer additional insight into future work on the solidification of spent organic resins. 26 refs., 4 figs., 5 tabs.

  8. The structure and organization of the human erythroid anion exchanger (AE1) gene

    SciTech Connect

    Sahr, K.E.; Taylor, W.M.; Daniels, B.P.


    The AE1 (anion exchanger, band 3) protein is expressed in erythrocytes and in the A-type intercalated cells of the kidney distal collecting tubule. In both cell types it mediates the electroneutral transport of chloride and bicarbonate ions across the lipid bilayer, and, in erythrocytes, it also serves as the critical attachment site of the peripheral membrane skeleton. We have characterized the human AE1 gene using overlapping clones isolated from a phage library of human genomic DNA. The gene spans {approximately}20 kb and consists of 20 exons separated by 19 introns. The structure of the human AE1 gene corresponds closely with that of the previously characterized mouse AE1 gene, with a high degree of conservation of exon/intron junctions, as well as exon and intron nucleotide sequences. The putative upstream and internal promoter sequences of the human AE1 gene used in erythroid and kidney cells, respectively, are described. We also report the nucleotide sequence of the entire 3{prime} noncoding region of exon 20, which was lacking in the published cDNA sequences. In addition, we have characterized 9 Alu repeat elements found within the body of the human AE1 gene that are members of 4 related subfamilies that appear to have entered the genome at different times during primate evolution. 59 refs., 5 figs., 2 tabs.

  9. Phosphate recovery using hybrid anion exchange: applications to source-separated urine and combined wastewater streams.


    O'Neal, Jeremy A; Boyer, Treavor H


    There is increasing interest in recovering phosphorus (P) from various wastewater streams for beneficial use as fertilizer and to minimize environmental impacts of excess P on receiving waters. One such example is P recovery from human urine, which has a high concentration of phosphate (200-800 mg P/L) and accounts for a small volume (≈ 1%) of total wastewater flow. Accordingly, the goal of this study was to evaluate the potential to recover P from source-separated and combined wastewater streams that included undiluted human urine, urine diluted with tap water, greywater, mixture of urine and greywater, anaerobic digester supernatant, and secondary wastewater effluent. A hybrid anion exchange (HAIX) resin containing hydrous ferric oxide was used to recover P because of its selectivity for phosphate and the option to precipitate P minerals in the waste regeneration solution. The P recovery potential was fresh urine > hydrolyzed urine > greywater > biological wastewater effluent > anaerobic digester supernatant. The maximum loading of P on HAIX resin was fresh urine > hydrolyzed urine > anaerobic digester supernatant ≈ greywater > biological wastewater effluent. Results indicated that the sorption capacity of HAIX resin for phosphate and the total P recovery potential were greater for source-separated urine than the combined wastewater streams of secondary wastewater effluent and anaerobic digester supernatant. Dilution of urine with tap water decreased the phosphate loading on HAIX resin. The results of this work advance the current understanding of nutrient recovery from complex wastewater streams by sorption processes. PMID:23866131

  10. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.


    Robertson, Nicholas J; Kostalik, Henry A; Clark, Timothy J; Mutolo, Paul F; Abruña, Héctor D; Coates, Geoffrey W


    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells. PMID:20178312

  11. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan


    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  12. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications

    SciTech Connect

    Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.


    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  13. Hydroxy double salt anion exchange kinetics: effects of precursor structure and anion size.


    Kandare, Everson; Hossenlopp, Jeanne M


    (1)H NMR spectroscopy and powder X-ray diffraction have been used to explore the details of anion exchange reactions of two layered hydroxy double salts (HDSs), zinc copper hydroxy acetate (ZCA), nickel zinc hydroxy acetate (NZA), and a related layered material, zinc hydroxy acetate (ZHA), at room temperature (21-22 degrees C). Reactions that followed Avrami-Erofe'ev kinetics with respect to temporal profiles for acetate release, ZCA with butyrate (k = 1.7 x 10(-3) s(-1)), and octanoate (k = 0.79 x 10(-3) s(-1)) anions, as well as ZHA with octanoate (k = 2.6 x 10(-3) s(-1)), demonstrate that rate constants for acetate release are influenced by the exchange anion relative size as well as by the solid precursor structure/composition. The reaction of NZA with octanoate deviated from expected Avrami-Erofe'ev behavior, with evidence for an intermediate species in the solid phase that may influence the rate of acetate release into solution. The reaction of ZCA with formate anions exhibited a unique zeroth-order kinetics release of acetate, providing the possibility of developing tunable nanostructured anion release sources by use of variations in the size of the exchange species. PMID:16851994

  14. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    SciTech Connect

    Duan, QJ; Ge, SH; Wang, CY


    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34. (C) 2013 Elsevier B.V. All rights reserved.

  15. Polyphenylene sulfide based anion exchange fiber: synthesis, characterization and adsorption of Cr(VI).


    Huang, Jiajia; Zhang, Xin; Bai, Lingling; Yuan, Siguo


    A fibrous strong base anion exchanger (QAPPS) was prepared for the first time via chloromethylation and quaternary amination reaction of polyphenylene sulfide fiber (PPS), and its physical-chemical structure and adsorption behavior for Cr(VI) were characterized by FTIR, Energy Dispersive Spectrometry, TG-DTG, elemental analysis and batch adsorptive technique, respectively. The novel fibrous adsorbent could effectively adsorb Cr(VI) over the pH range 1-12, the maximum adsorption capacity was 166.39 mg/g at pH 3.5, and the adsorption behavior could be described well by Langmuir isotherm equation model. The adsorption kinetics was studied using pseudo first-order and pseudo second-order models, and the t1/2 and equilibrium adsorption time were 5 and 20 min respectively when initial Cr(VI) concentration was 100 mg/L. The saturated fibers could be regenerated rapidly by a mixed solution of 0.5 mol/L NaOH and 0.5 mol/L NaCl, and the adsorption capacity was well maintained after six adsorption-desorption cycles. PMID:23513685

  16. Functional rescue of a kidney anion exchanger 1 trafficking mutant in renal epithelial cells.


    Chu, Carmen Y S; King, Jennifer C; Berrini, Mattia; Alexander, R Todd; Cordat, Emmanuelle


    Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1) can cause distal renal tubular acidosis (dRTA), a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma membrane of Madin-Darby Canine Kidney (MDCK) cells. Treatments with DMSO, glycerol, the corrector VX-809, or low temperature incubations restored the basolateral trafficking of G701D kAE1 mutant. These treatments had no significant rescuing effect on trafficking of the mis-folded C479W or R589H kAE1 mutants. DMSO was the only treatment that partially restored G701D kAE1 function in the plasma membrane of MDCK cells. Our experiments show that trafficking of intracellularly retained dRTA kAE1 mutants can be partially restored, and that one chemical treatment rescued both trafficking and function of a dRTA mutant. These studies provide an opportunity to develop alternative therapeutic solutions for dRTA patients. PMID:23460825

  17. Functional Rescue of a Kidney Anion Exchanger 1 Trafficking Mutant in Renal Epithelial Cells

    PubMed Central

    Chu, Carmen Y. S.; King, Jennifer C.; Berrini, Mattia; Alexander, R. Todd; Cordat, Emmanuelle


    Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1) can cause distal renal tubular acidosis (dRTA), a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma membrane of Madin-Darby Canine Kidney (MDCK) cells. Treatments with DMSO, glycerol, the corrector VX-809, or low temperature incubations restored the basolateral trafficking of G701D kAE1 mutant. These treatments had no significant rescuing effect on trafficking of the mis-folded C479W or R589H kAE1 mutants. DMSO was the only treatment that partially restored G701D kAE1 function in the plasma membrane of MDCK cells. Our experiments show that trafficking of intracellularly retained dRTA kAE1 mutants can be partially restored, and that one chemical treatment rescued both trafficking and function of a dRTA mutant. These studies provide an opportunity to develop alternative therapeutic solutions for dRTA patients. PMID:23460825

  18. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin


    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  19. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries


    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.


    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less

  20. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    SciTech Connect

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.


    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.


    SciTech Connect

    Kyser, E.; King, W.; O'Rourke, P.


    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  2. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B).


    Duangtum, Natapol; Junking, Mutita; Sawasdee, Nunghathai; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai


    Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl(-)/HCO(3)(-) exchange and the failure of proton (H(+)) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells. PMID:21871436

  3. Synthesis and Structure-Property Relationships of Poly(sulfone)s for Anion Exchange Membranes

    SciTech Connect

    Yan, JL; Moore, HD; Hibbs, MR; Hickner, MA


    Membranes based on cationic polymers that conduct anions are important for enabling alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH. Anion exchange membranes with poly(arylene ether sulfone) backbones are demonstrated by two routes: chloromethylation of commercially available poly(sulfone)s or radical bromination of benzylmethyl moieties in poly(sulfone)s containing tetramethylbisphenol A monomer residues. Polymers with tethered trimethylbenzyl ammonium moieties resulted from conversion of the halomethyl groups by quaternization with trimethyl amine. The water uptake of the chloromethylated polymers was dependent on the type of poly(sulfone) backbone for a given IEC. Bisphenol A-based Udel (R) poly(sulfone) membranes swelled in water to a large extent while membranes from biphenol-based Radel (R) poly(sulfone), a stiffer backbone than Udel, only showed moderate water uptake. The water uptake of cationic poly(sulfone)s was further reduced by synthesizing tetramethylbisphenol A and 4,4-biphenol-containing poly(sulfone) copolymers where the ionic groups were clustered on the tetramethylbisphenol A residues. The conductivity of all samples scaled with the bulk water uptake. The hydration number of the membranes could be increased by casting membranes from the ionic form polymers versus converting the halomethyl form cast polymers to ionic form in the solid state. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1790-1798, 2013

  4. Synthesis and Characterization of Imidazolium Linear Bisphenol Polycarbonate Hydroxides for Anion Exchange Membrane.


    Jang, Hohyoun; Hossain, Md Awlad; Lee, Soonho; Ha, Jaesung; Yoo, Jihoo; Kim, Kyungchul; Kim, Whangi


    A novel anion exchange membrane of imidazolium functionalized bisphenol polycarbonate was prepared for application in alkaline fuel cell. Di-imidazolium polycarbonate anionic membrane was synthesized by sequential interfacial polymerization, chloromethylation, substitution with 1-methylimidazole and ion exchange with 1.0 M KOH. Chloromethylation reaction was quantitative to achieve a high content of hydroxide ions. Introduction of conjugated imidazole ring in polymer plays an important role to improve both thermal and chemical stability. Bisphenol polycarbonate is a flexible polymer and shows a good solubility in polar organic solvent. The alkaline imidazolium bisphenol polycarbonate rendered an elevated molecular weight with excellent solubility in polar aprotic solvent. Different levels of substitution and ion exchange were investigated; the resulting membranes showed high ion exchange capacities (IECs) of up to 2.15 mmol g(-1). The imidazolium-functionalized copolymer membranes showed lower water affinity (14.2-42.8% at 30 degrees C) that satisfied an essential criterion for fuel cell application. The chemical structure of the imidazolium functionalized polycarbonate membrane was confirmed by 1H NMR spectroscopy, and also the membrane properties were evaluated by thermogravimetric analysis (TGA) and water uptake (WU), IEC and conductivity assessment. They exhibited hydroxide conductivity above 10(-2) S cm(-1) at room temperature and good chemical stability for up to five days without significant losses of ion conductivity. PMID:26726604

  5. A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials.


    Orlando, U S; Baes, A U; Nishijima, W; Okada, M


    Two lignocellulosic agricultural waste materials (LCM), sugarcane bagasse (BG) and rice hull (RH), were converted into weak-base anion exchanger and evaluated for their exchanger capacity for nitrate. Pure cellulose (PC) and pure alkaline lignin (PL) were also used as reference materials to elucidate possible reactivity in LCM. Epoxy and amino groups were introduced into BG, RH, PC and PL substrates after the reaction with epichlorohydrin and dimethylamine in the presence of pyridine and an organic solvent N,N-dimethylformamide (DMF). Amino group incorporation into cellulose decreased with the presence of water in the reaction mixture and increased with the reaction time and presence of a catalyst (pyridine). The highest maximum nitrate exchange capacity (Qmax) and yields of the prepared exchangers was obtained from PL (1.8 mmol g(-1) and 412.5%), followed by BG (1.41 mmol g(-1) and 300%), PC (1.34 mmol g(-1) and 166%) and RH (1.32 mmol g(-1) and 180%). The proposed synthetic procedure was effective in modifying PL, PC and LCM chemically resulting in a higher yield and nitrate removal capacity. PMID:12094793

  6. Phosphate removal from wastewaters using a weak anion exchanger prepared from a lignocellulosic residue.


    Anirudhan, T S; Noeline, B F; Manohar, D M


    Surface modifications of lignocellulosic residues has become increasingly important for improving their applications as adsorbents. In this study a new adsorbent system (BS-DMAHP) containing dimethylaminohydroxypropyl (DMAHP) weak base groups was prepared by the reaction of banana stem (BS), a lignocellulosic residue with epichlorohydrin and dimethylamine followed by treatment of hydrochloric acid. The original BS and BS-DMAHP were characterized with the help of surface area analyzer, infrared spectroscopy (IR) and scanning electron microscopy (SEM). Surface charge density of the samples as a function of pH was investigated using potentiometric titrations. Adsorbent exhibits very high adsorption potential for phosphate and more than 99.0% removal was achieved in the pH range of 5.0-7.0. Adsorption has been found to be concentration dependent and endothermic and follows a reversible second-order kinetics. The Langmuir and Freundlich isotherm models were applied to describe the equilibrium data. Equilibrium data agreed very well with the Langmuir model. Adsorption experiments were conducted using a commercial chloride form Duolite A-7, a weak base anion exchanger. The removal efficiency was tested using fertilizer industry wastewater. Adsorbed phosphate on BS-DMAHP can be recovered by treating with 0.1 M NaOH solution. A stability test operated for four cycles indicate a capacity loss of < 12.0%. PMID:16683617

  7. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.


    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S


    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH. PMID:24877792

  8. Automated high-throughput purification of genomic DNA from whole blood using Promega's MagneSilTM paramagnetic particles with either the Max Yield or MagneSilTM ONE normalized purification methods

    NASA Astrophysics Data System (ADS)

    Bitner, Rex M.; Koller, Susan C.; Sankbeil, Jacqui


    Two different methods of automated high throughput purification of genomic DNA from human whole blood in 96 well plates are described. One method uses MagneSilTM paramagnetic particles to purify a maximal amount of the DNA present in the sample. Another method, the MagnesilTM ONE system, allows for the purification of a predetermined amount of DNA from human whole blood. Protocols for the purification of 100 ng or, alternatively 1 ug, of human genomic DNA from whole blood using MagneSilTM paramagnetic particles and a Beckman BioMekTM FX robot are described. With the maximal yield purification system, typical DNA yields fall in the range of 4-9 ug of DNA from 200ul of human whole blood, depending upon the white cell content of donor sample. For situations where DNA achiving is desired, or when the number of downstream sample applications is not clearly defined (e.g. multiple SNP analyses) the maximal yield method is usually preferred. However, in situations with a defined downstream application (e.g. criminal databasing or use of a defined set of amplifications) where purifying DNA in a narrow concentrate range streamlines the high throughput purification and analysis process, the automated MagneSilTM ONE purification system is the method of choice. DNA from either method is suitable for applications such as PCR, STR, READITTM SNP analysis, and multiplexed PCR systems such as Promega's Y-chromosome deletion detection system.

  9. A Robust and Fully-Automated Chromatographic Method for the Quantitative Purification of Ca and Sr for Isotopic Analysis

    NASA Astrophysics Data System (ADS)

    Smith, H. B.; Kim, H.; Romaniello, S. J.; Field, P.; Anbar, A. D.


    High throughput methods for sample purification are required to effectively exploit new opportunities in the study of non-traditional stable isotopes. Many geochemical isotopic studies would benefit from larger data sets, but these are often impractical with manual drip chromatography techniques, which can be time-consuming and demand the attention of skilled laboratory staff. Here we present a new, fully-automated single-column method suitable for the purification of both Ca and Sr for stable and radiogenic isotopic analysis. The method can accommodate a wide variety of sample types, including carbonates, bones, and teeth; silicate rocks and sediments; fresh and marine waters; and biological samples such as blood and urine. Protocols for these isotopic analyses are being developed for use on the new prepFAST-MCTM system from Elemental Scientific (ESI). The system is highly adaptable and processes up to 24-60 samples per day by reusing a single chromatographic column. Efficient column cleaning between samples and an all Teflon flow path ensures that sample carryover is maintained at the level of background laboratory blanks typical for manual drip chromatography. This method is part of a family of new fully-automated chromatographic methods being developed to address many different isotopic systems including B, Ca, Fe, Cu, Zn, Sr, Cd, Pb, and U. These methods are designed to be rugged and transferrable, and to allow the preparation of large, diverse sample sets via a highly repeatable process with minimal effort.

  10. Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction

    NASA Astrophysics Data System (ADS)

    Wandschneider, F. T.; Finke, D.; Grosjean, S.; Fischer, P.; Pinkwart, K.; Tübke, J.; Nirschl, H.


    Membranes are an important part of vanadium redox flow battery cells. Most cell designs use Nafion®-type membranes which are cation exchange membranes. Anion exchange membranes are reported to improve cell performance. A model for a vanadium redox flow battery with an anion exchange membrane is developed. The model is then used to calculate terminal voltages for open circuit and charge-discharge conditions. The results are compared to measured data from a laboratory test cell with 40 cm2 active membrane area. For higher charge and discharge currents, an empirical correction for the terminal voltage is proposed. The model geometry comprises the porous electrodes and the connected pipes, allowing a study of the flow in the entrance region for different state-of-charges.

  11. Formation of periodic interfacial misfit dislocation array at the InSb/GaAs interface via surface anion exchange

    NASA Astrophysics Data System (ADS)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt


    The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on sample grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.

  12. Wheat gluten amino acid analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection.


    Rombouts, Ine; Lagrain, Bert; Lamberts, Lieve; Celus, Inge; Brijs, Kristof; Delcour, Jan A


    This chapter describes an accurate and user-friendly method for determining amino acid composition of wheat gluten proteins and their gliadin and glutenin fractions. The method consists of hydrolysis of the peptide bonds in 6.0 M hydrochloric acid solution at 110°C for 24 h, followed by evaporation of the acid and separation of the free amino acids by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. In contrast to conventional methods, the analysis requires neither pre- or postcolumn derivatization, nor a time-consuming oxidation or derivatization step prior to hydrolysis. Correction factors account for incomplete release of Val and Ile even after hydrolysis for 24 h, and for losses of Ser during evaporation. Gradient conditions including an extra eluent allow multiple sequential sample analyses without risk of Glu accumulation on the anion-exchange column which otherwise would result from high Gln levels in gluten proteins. PMID:22125156

  13. A dication cross-linked composite anion-exchange membrane for all-vanadium flow battery applications.


    Zhang, Fengxiang; Zhang, Huamin; Qu, Chao


    We report the fabrication and properties of a high-performance, inexpensive, composite, anion-exchange membrane (AEM) for an all-vanadium flow battery (VFB) application. The AEM was fabricated by dication cross-linking without the involvement of trimethylamine, and shows well-balanced anion conductivity and robustness due to imidazolium and imidazolium-ammonium functionalities, as well as a concomitantly achieved semi-interpenetrating network structure. The VFB single cell yielded a Coulombic efficiency of 99 % and an energy efficiency of 84 % at 80 mA cm(-2) , and operated for over 900 charge/discharge cycles. This work demonstrates the combined use of several favorable AEM design rationales, such as incorporating abundant and efficient anion-exchange groups, constructing a swelling- and oxidation-resistant structure, and facile fabrication; it provides an effective way of developing high-performance, low-cost AEMs for VFB applications. PMID:24124071

  14. Automation of Column-based Radiochemical Separations: A Comparison of Fluidic, Robotic, and Hybrid Architectures

    SciTech Connect

    Grate, Jay W.; O'Hara, Matthew J.; Farawila, Anne F.; Ozanich, Richard M.; Owsley, Stanley L.


    Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on setting up samples and columns in parallel, and using disposable components so that no sample contacts any surface that any other sample has contacted. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL column bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions four rows of six vials below the columns. The samples are delivered to the columns via a manual 3-port valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is simpler and faster in performing anion exchange procedures for the recovery and purification of plutonium from samples.

  15. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane.


    Godjevargova, Tzonka; Dayal, Rajeshwar; Turmanova, Sevdalina


    Gluconic acid was obtained in the permeate side of the bioreactor with glucose oxidase (GOD) immobilized onto anion-exchange membrane (AEM) of low-density polyethylene grafted with 4-vinylpiridine. The electric resistance of the anion-exchange membranes was increased after the enzyme immobilization on the membrane. The gluconic acid productions were relatively low with the GOD immobilized by any method on the AEM. To increase the enzyme reaction efficiency, GOD was immobilized on membrane of AN copolymer (PAN) adjacent to an anion-exchange membrane in bioreactor. Uses of anion-exchange membrane led to selective removal of the gluconic acid from the glucose solution and reduce the gluconic acid inhibition. The amount of gluconic acid obtained in the permeate side of the bioreactor with the GOD immobilized on the PAN membrane adjacent to the AEM under electrodialysis was about 30 times higher than that obtained with enzyme directly bound to the AEM. The optimal substrate concentration in the feed side was found to be about 1 g/l. Further experiments were carried out with the co-immobilized GOD plus Catalase (CAT) on the PAN membrane adjacent to the AEM to improve the efficiency of the immobilize system. The yield of this process was at least 95%. The storage stability of the co-immobilized GOD and CAT was studied (lost 20% of initial activity for 90 d). The results obtained clearly showed the higher potential of the dual membrane bioreactor with GOD plus CAT bound to ultrafiltration polymer membrane adjacent to the AEM. Storage stability of GOD activity in GOD plus CAT immobilized on PAN//AEM membranes and on AEM. PMID:15497133

  16. Overlapping expression of anion exchangers in the cochlea of a non-human primate suggests functional compensation.


    Hosoya, Makoto; Fujioka, Masato; Kobayashi, Reona; Okano, Hideyuki; Ogawa, Kaoru


    Ion homeostasis in the inner ear is essential for proper hearing. Anion exchangers are one of the transporters responsible for the maintenance of homeostasis, but their expression profile in the primate cochlea has not been fully characterized. However, species-specific overlapping expression patterns and functional compensation in other organs, such as the kidney, pancreas and small intestine, have been reported. Here, we determined the expression patterns of the anion exchangers SLC26A4, SLC26A5, SLC26A6, SLC26A7, SLC26A11, SLC4A2 and SLC4A3 in the cochlea of a non-human primate, the common marmoset (Callithrix jacchus). Although the pattern of expression of SLC26A4 and SLC26A5 was similar to that in rodents, SLC26A7, SLC4A2, SLC4A3 exhibited different distributions. Notably, five transporters, SLC26A4, SLC26A6, SLC26A11 SLC4A2 and SLC4A3, were expressed in the cells of the outer sulcus. Our results reveal a species-specific distribution pattern of anion exchangers in the cochlea, particularly in the outer sulcus cells, suggesting functional compensation among these exchangers. This "primate-specific" pattern may be related to the human-specific hearing loss phenotypes of channelopathy disorders, including the SLC26A4-related diseases Pendred syndrome/DFNB4. PMID:27091614

  17. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry.


    Deng, Shubo; Yu, Qiang; Huang, Jun; Yu, Gang


    Perfluorooctane sulfonate (PFOS) is a new persistent organic pollutant of substantial environmental concern, and its removal from industrial wastewater is critical to eliminate its release into water environment. In this paper, six anion exchange resins with different polymer matrix, porosity, and functional group were evaluated for PFOS removal from simulated wastewater. Resin matrix displayed significant effect on the sorption kinetics and capacity of PFOS, and the polyacrylic resins including IRA67 and IRA958 exhibited faster sorption and higher sorption capacity for PFOS than the polystyrene resins due to the hydrophilic matrix. Sorption isotherms illustrated that the sorption capacity of PFOS on IRA67 and IRA958 was up to 4-5 mmol/g, and the amount of PFOS sorbed on the resins was more than chloride released from resins, indicating that other interactions besides anion exchange were involved in the sorption. Solution pH had little impact on the sorption of PFOS on IRA958, but displayed significant effect on IRA67 at pH above 10 due to the deprotonation of amine groups. The coexisting sulfate and hexavalent chromium in wastewater interfered with the sorption of PFOS because of their competitive sorption on the exchange sites. The spent resins were successfully regenerated using the mixture of NaCl and methanol solution. This work provided an understanding of sorption behavior and mechanism of PFOS on different anion exchange resins, and should result in more effective applications of ion exchange for PFOS removal from industrial wastewater. PMID:20605036

  18. Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9.


    Lohi, Hannes; Kujala, Minna; Makela, Siru; Lehtonen, Eero; Kestila, Marjo; Saarialho-Kere, Ulpu; Markovich, Daniel; Kere, Juha


    A second distinct family of anion exchangers, SLC26, in addition to the classical SLC4 (or anion exchanger) family, has recently been delineated. Particular interest in this gene family is stimulated by the fact that the SLC26A2, SLC26A3, and SLC26A4 genes have been recognized as the disease genes mutated in diastrophic dysplasia, congenital chloride diarrhea, and Pendred syndrome, respectively. We report the expansion of the SLC26 gene family by characterizing three novel tissue-specific members, named SLC26A7, SLC26A8, and SLC26A9, on chromosomes 8, 6, and 1, respectively. The SLC26A7-A9 proteins are structurally very similar at the amino acid level to the previous family members and show tissue-specific expression in kidney, testis, and lung, respectively. More detailed characterization by immunohistochemistry and/or in situ hybridization localized SLC26A7 to distal segments of nephrons, SLC26A8 to developing spermatocytes, and SLC26A9 to the lumenal side of the bronchiolar and alveolar epithelium of lung. Expression of SLC26A7-A9 proteins in Xenopus oocytes demonstrated chloride, sulfate, and oxalate transport activity, suggesting that they encode functional anion exchangers. The functional characterization of the novel tissue-specific members may provide new insights to anion transport physiology in different parts of body. PMID:11834742

  19. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans.


    Urso, Katia; Charles, Julia F; Shull, Gary E; Aliprantis, Antonios O; Balestrieri, Barbara


    Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated. PMID:27391897

  20. Cardiac hypertrophy in anion exchanger 1-null mutant mice with severe hemolytic anemia.


    Alvarez, Bernardo V; Kieller, Dawn M; Quon, Anita L; Robertson, Murray; Casey, Joseph R


    Anion exchanger 1 (AE1; SLC4A1), the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes, is also expressed in heart. The aim of this study was to assess the role of AE1 in heart function through study of AE1-null (AE1(-/-)) mice, which manifest severe hemolytic anemia resulting from erythrocyte fragility. Heart weight-to-body weight ratios were significantly higher in the AE1(-/-) mice than in wild-type (AE1(+/+)) littermates at both 1-3 days postnatal (3.01 +/- 0.38 vs. 1.45 +/- 0.04) and at 7 days postnatal (9.45 +/- 0.53 vs. 4.13 +/- 0.41), indicating that loss of AE1 led to cardiac hypertrophy. Heterozygous (AE1(+/-)) mice had no signs of cardiac hypertrophy. Morphology of the adult AE1(-/-) mutant heart revealed an increased left ventricular mass, accompanied by increased collagen deposition and fibrosis. M-mode echocardiography revealed dysfunction of the AE1(-/-) hearts, including dilated left ventricle end diastole and systole and expanded left ventricular mass compared with AE1(+/+) hearts. Expression of intracellular pH-regulatory mechanisms in the hypertrophic myocardium of neonate AE1(-/-) mutant mice was indistinguishable from AE1(+/-) and AE1(+/+) mice, as assessed by quantitative real-time RT-PCR. Confocal immunofluorescence revealed that, in normal mouse myocardium, AE1 is sarcolemmal, whereas AE3 and slc26a6 are found both at the sarcolemma and in internal membranes (T tubules and sarcoplasmic reticulum). These results indicate that AE1(-/-) mice, which suffer from severe hemolytic anemia and spherocytosis, display cardiac hypertrophy and impaired cardiac function, reminiscent of findings in patients with hereditary abnormalities of red blood cells. No essential role for AE1 in heart function was found. PMID:17056673

  1. Transport activity of chimaeric AE2-AE3 chloride/bicarbonate anion exchange proteins.

    PubMed Central

    Fujinaga, Jocelyne; Loiselle, Frederick B; Casey, Joseph R


    Chloride/bicarbonate anion exchangers (AEs), found in the plasma membrane of most mammalian cells, are involved in pH regulation and bicarbonate metabolism. Although AE2 and AE3 are highly similar in sequence, AE2-transport activity was 10-fold higher than AE3 (41 versus 4 mM x min(-1) respectively), when expressed by transient transfection of HEK-293 cells. AE2-AE3 chimaeras were constructed to define the region responsible for differences in transport activity. The level of AE2 expression was approx. 30% higher than that of AE3. Processing to the cell surface, studied by chemical labelling and confocal microscopy, showed that AE2 is processed to the cell surface approx. 8-fold more efficiently than AE3. The efficiency of cell-surface processing was dependent on the cytoplasmic domain, since the AE2 domain conferred efficient processing upon the AE3 membrane domain, with a predominant role for amino acids 322-677 of AE2. AE2 that was expressed in HEK-293 cells was glycosylated, but little of AE3 was. However, AE2 expressed in the presence of the glycosylation inhibitor, tunicamycin, was not glycosylated, yet retained 85 +/- 8% of anion-transport activity. Therefore glycosylation has little, if any, role in the cell-surface processing or activity of AE2 or AE3. We conclude that the low anion-transport activity of AE3 in HEK-293 cells is due to low level processing to the plasma membrane, possibly owing to protein interactions with the AE3 cytoplasmic domain. PMID:12578559

  2. Removing hexavalent chromium from subsurface waters with anion-exchange resin

    SciTech Connect

    Torres, R.A.


    Some subsurface waters at Lawrence Livermore National Laboratory (LLNL) are contaminated with volatile organic compounds (VOCs). Hexavalent chromium, Cr(VI), is also present in the ground water; however, the source of the Cr(VI) may be natural. The Cr(VI) still must be treated if brought to the surface because its concentration exceeds discharge standards. We are planning facilities for removing the VOCs and Cr(VI) to a level below the discharge standards. The planned treatment includes the following steps: (1) Pumping the water to the surface facility. (2) Purging the VOCs with air and absorbing them on activated carbon. The VOCs in LLNL`s subsurface waters are primarily chlorinated organic solvents, such as dichloroethylene (DCE), trichloroethylene (TCE), perchloroethylene (PCE), and chloroform (CHCl{sub 3}). Contamination levels range from tens to thousands of parts per billion. (3) Filtering the water. (4) Passing the water through anion-exchange resin to remove the Cr. The Cr in LLNL subsurface waters occurs almost entirely as Cr(VI), which exists as the chromate anion, CrO{sub 4}{sup 2-}, at environmental pH. Cr levels range from tens to hundreds of parts per billion. (5) Discharging the treated water into the local arroyos. The relevant discharge criteria are 5 ppb total VOCs, 11 ppb Cr(VI), and pH between 6.5 and 8.5, inclusive. This report describes laboratory experiments undertaken to learn how the proposed treatment facility can be expected to operate. The laboratory results are expected to supply vendors with the detailed performance specifications needed to prepare bids on the Cr removal portion of the treatment facility. The treatment facility is expected to process 60 gallons per minute (gpm) of water by stripping VOCs with 720 standard cubic feet per minute (scfm) of air and removing Cr(VI) with 60 ft{sup 3} of resin.

  3. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    SciTech Connect

    Duangtum, Natapol; Junking, Mutita; Sawasdee, Nunghathai; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai


    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.

  4. Performance of selected anion exchange resins for the treatment of a high DOC content surface water.


    Humbert, Hugues; Gallard, Hervé; Suty, Hervé; Croué, Jean-Philippe


    The objective of this study was first to compare the performance of four strong anion exchange resins (AERs) (MIEX from Orica Pty Ltd, DOWEX-11 and DOWEX-MSA from DOW chemical and IRA-938 from Rohm and Haas) for their application in drinking water treatment (natural organic matter (NOM), mineral anions (nitrate, sulfate and bromide) and pesticide removal) using bench-scale experimental procedures on a high DOC content surface water. The efficiency of MIEX for NOM and mineral anions removal was furthermore evaluated using bench-scale dose-response experiments on raw, clarified and post-ozonated waters. NOM removal was assessed using the measurement of dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254) and the use of high-performance size exclusion chromatography with UV (HPSEC/UV) and fluorescence detection (HPSEC/FLUO). The MIEX and IRA938 anionic resins exhibit a faster removal of NOM and mineral anions compared to the DOWEX11 and MSA AERs. All the resins were found to be very effective with similar performances after 30 to 45 min of contact time. As expected, only limited sorption of atrazine and isoproturon (C0=1 microg/L) occurred with MIEX, DOWEX11 and MSA AERs. MIEX resin proved to be very efficient in eliminating NOM of high-molecular weight but also a large part of the smallest UV absorbing organic compounds which were refractory to coagulation/flocculation treatment. Remaining DOC levels after 30 min of contact with MIEX were found similar in raw water, clarified water and even post-ozonated water implying no DOC benefit can be gained by employing conventional treatment prior to MIEX treatment. Removal of bromide (initial concentration 110 microg/L) was also observed and ranged from 30% to 65% for resin dose increasing from 2 to 8 mL/L. T PMID:15899268

  5. Anion exchange SPE and liquid chromatography-tandem mass spectrometry in GHB analysis.


    Elian, Albert A; Hackett, Jeffery


    In this study, the extraction of γ-hydroxybutyrate (GHB) from urine using solid-phase extraction (SPE) is described. SPE was performed on anion exchange columns after samples of urine had been diluted with de-ionized water. After application of the diluted samples containing GHB-d(6) as an internal standard, the sorbent was washed with deionized water and methanol and dried. The GHB was eluted from the SPE column with a solvent consisting of methanol containing 6% glacial acetic acid. The eluent was collected, evaporated to dryness, and dissolved in mobile phase (100 μL) for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in negative multiple reaction monitoring (MRM) mode. Liquid chromatography was performed in gradient mode employing a biphenyl column and a mobile phase consisting of acetontitrile (containing 0.1% formic acid) and 0.1% aqueous formic acid. The total run time for each analysis was less than 5 min. The limits of detection/quantification for this method were determined to be 50 and 100 ng/mL, respectively. The method was found to be linear from 500 ng/mL to 10,000 ng/mL (r(2)>0.995). The recovery of GHB was found to be greater than 75%. In this report, results of authentic urine samples analyzed for GHB by this method are presented. GHB concentrations in these samples were found to be range from less than 500 ng/mL to 5110 ng/mL. PMID:22055831

  6. Physical and functional links between anion exchanger-1 and sodium pump.


    Su, Ya; Al-Lamki, Rafia S; Blake-Palmer, Katherine G; Best, Alison; Golder, Zoe J; Zhou, Aiwu; Karet Frankl, Fiona E


    Anion exchanger-1 (AE1) mediates chloride-bicarbonate exchange across the plasma membranes of erythrocytes and, via a slightly shorter transcript, kidney epithelial cells. On an omnivorous human diet, kidney AE1 is mainly active basolaterally in α-intercalated cells of the collecting duct, where it is functionally coupled with apical proton pumps to maintain normal acid-base homeostasis. The C-terminal tail of AE1 has an important role in its polarized membrane residency. We have identified the β1 subunit of Na(+),K(+)-ATPase (sodium pump) as a binding partner for AE1 in the human kidney. Kidney AE1 and β1 colocalized in renal α-intercalated cells and coimmunoprecipitated (together with the catalytic α1 subunit of the sodium pump) from human kidney membrane fractions. ELISA and fluorescence titration assays confirmed that AE1 and β1 interact directly, with a Kd value of 0.81 μM. GST-AE1 pull-down assays using human kidney membrane proteins showed that the last 11 residues of AE1 are important for β1 binding. siRNA-induced knockdown of β1 in cell culture resulted in a significant reduction in kidney AE1 levels at the cell membrane, whereas overexpression of kidney AE1 increased cell surface sodium pump levels. Notably, membrane staining of β1 was reduced throughout collecting ducts of AE1-null mouse kidney, where increased fractional excretion of sodium has been reported. These data suggest a requirement of β1 for proper kidney AE1 membrane residency, and that activities of AE1 and the sodium pump are coregulated in kidney. PMID:25012180

  7. Separation of boric acid in liquid waste with anion exchange membrane contactor

    SciTech Connect

    Park, J.K.; Lee, K.J.


    In order to separate boric acid in liquid waste, some possible technologies were investigated and the membrane contactor without dispersion and density differences was selected. The separation experiments on a Celgard 3401{reg_sign} hydrophilic microporous membrane contactor were first performed to obtain the basic data and to determine the properties of the contactor. The experimental conditions were as follows: boric acid concentrations up to 2.0 M, pH 7.0, temperatures of 25 and 55 C, and flow rates of 100, 300, 500, and 800 cm{sup 3}/min. Secondly, an AFN{reg_sign} anion exchange membrane contactor was tested at temperatures of 40 and 55 C and flow rate 400 cm{sup 3}/min. Boric acid solutions were prepared by the same method as that for Celgard 3401{reg_sign} but contained 5.0{times}10{sup {minus}4} M cobalt chloride (CoCl{sub 2}). To simulate membrane contractors, parameters such as the differential diffusion coefficients of boric acid and the mass transfer coefficients in the AFN membrane were measured, and regression models estimating the diffusion coefficient at several conditions were developed. The Celgard 3401{reg_sign} membrane contactor was simulated and compared with experimental data. Simulation results agreed with the experimental data well when a proper correction factor was utilized. The correction factor was independent of the solution temperature and was 8.75 at the flow rates of 300--800 cm{sup 3}/min. This correction factor was also applied to simulate the AFN{reg_sign} resulted in a good agreement with experiment at 40 C, but not 55 C. The retention on cobalt was also better at 40 c than 55 C. The simulating computer program was also applied to a life size contactor designed conceptually.

  8. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis.


    Guler, Enver; Zhang, Yali; Saakes, Michel; Nijmeijer, Kitty


    Reverse electrodialysis (RED) or blue energy is a non-polluting, sustainable technology for generating power from the mixing of solutions with different salinity, that is, seawater and river water. A concentrated salt solution (e.g., seawater) and a diluted salt solution (e.g., river water) are brought into contact through an alternating series of polymeric anion-exchange membranes (AEMs) and cation-exchange membranes (CEMs), which are either selective for anions or cations. Currently available ion-exchange membranes are not optimized for RED, whereas successful RED operation notably depends on the used ion-exchange membranes. We designed such ion-exchange membranes and for the first time we show the performance of tailor-made membranes in RED. More specifically, we focus on the development of AEMs because these are much more complex to prepare. Herein we propose a safe and more environmentally friendly method and use halogenated polyethers, such as polyepichlorohydrin (PECH) as the starting material. A tertiary diamine (1,4-diazabicyclo[2.2.2]octane, DABCO) was used to introduce the ion-exchange groups by amination and for simultaneous cross-linking of the polymer membrane. Area resistances of the series of membranes ranged from 0.82 to 2.05 Ω cm² and permselectivities from 87 to 90 %. For the first time we showed that tailor-made ion-exchange membranes can be applied in RED. Depending on the properties and especially membrane thickness, application of these membranes in RED resulted in a high power density of 1.27 W m⁻², which exceeds the power output obtained with the commercially available AMX membranes. This shows the potential of the design of ion-exchange membranes for a viable blue energy process. PMID:23109486

  9. High-Capacity and Rapid Removal of Refractory NOM Using Nanoscale Anion Exchange Resin.


    Johnson, Billy R; Eldred, Tim B; Nguyen, Andy T; Payne, William M; Schmidt, Emily E; Alansari, Amir Y; Amburgey, James E; Poler, Jordan C


    As human health concerns over disinfection byproducts (DBP) in drinking water increase, so does the need to develop new materials that remove them rapidly and at high capacity. Ion exchange (IEX) is an effective method for the removal of natural organic matter (NOM), especially anion exchange resins (AERs) with quaternary ammonium functional groups. However, capacity is limited in existing commercial resin materials because adsorbates can only interact with the outermost surface area, which makes these products inefficient on a mass basis. We have synthesized a novel "NanoResin" exploiting the enhanced NOM removal of the quaternary ammonium resin while utilizing the vast surface area of SWCNTs, which act as scaffolding for the resin. Our nanomaterials show increased adsorption capacity compared to commercially available adsorbents, in a fraction of the time. This NanoResin requires only about 10 s to reach ion-exchange equilibrium. Comparatively, commercial AERs only achieved partial removal after more than 30 min. High capacity adsorption of a low molecular weight (MW) surrogate has been measured. NOM removal was demonstrated in solutions of both low and high specific UV absorbance (SUVA) composition with these nanomaterials. Additionally, the NanoResin showed enhanced removal of a NOM concentrate sample taken from Myrtle Beach, SC, demonstrating NanoResin is an effective method of removal for refractory NOM in a natural aqueous environment. Synthesis and characterization of the polymers and nanomaterials are presented below. Adsorption capacity, adsorption kinetics, and the regeneration and reusability of these new materials for NOM removal are described. The open matrix microstructure precludes any intraparticle diffusion of adsorbates; thus, these nanomaterials act as a "contact resin". PMID:27348616

  10. Chemical separation of Mo and W from terrestrial and extraterrestrial samples via anion exchange chromatography.


    Nagai, Yuichiro; Yokoyama, Tetsuya


    A new two-stage chemical separation method was established using an anion exchange resin, Eichrom 1 × 8, to separate Mo and W from four natural rock samples. First, the distribution coefficients of nine elements (Ti, Fe, Zn, Zr, Nb, Mo, Hf, Ta, and W) under various chemical conditions were determined using HCl, HNO3, and HF. On the basis of the obtained distribution coefficients, a new technique for the two-stage chemical separation of Mo and W, along with the group separation of Ti-Zr-Hf, was developed as follows: 0.4 M HCl-0.5 M HF (major elements), 9 M HCl-0.05 M HF (Ti-Zr-Hf), 9 M HCl-1 M HF (W), and 6 M HNO3-3 M HF (Mo). After the chemical procedure, Nb remaining in the W fraction was separated using 9 M HCl-3 M HF. On the other hand, Nb and Zn remaining in the Mo fraction were removed using 2 M HF and 6 M HCl-0.1 M HF. The performance of this technique was evaluated by separating these elements from two terrestrial and two extraterrestrial samples. The recovery yields for Mo, W, Zr, and Hf were nearly 100% for all of the examined samples. The total contents of the Zr, Hf, W, and Mo in the blanks used for the chemical separation procedure were 582, 9, 29, and 396 pg, respectively. Therefore, our new separation technique can be widely used in various fields of geochemistry, cosmochemistry, and environmental sciences and particularly for multi-isotope analysis of these elements from a single sample with significant internal isotope heterogeneities. PMID:24801276

  11. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    SciTech Connect

    Bartsch, Richard A.; Barr, Mary E.


    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  12. Click Chemistry Finds Its Way in Constructing an Ionic Highway in Anion-Exchange Membrane.


    Ge, Qianqian; Ran, Jin; Miao, Jibin; Yang, Zhengjin; Xu, Tongwen


    To find the way to construct an ionic highway in anion-exchange membranes (AEMs), a series of side-chain-type alkaline polymer electrolytes (APEs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) polymer backbones were synthesized via Cu(I)-catalyzed click chemistry. The resulting triazole groups and quaternary ammonium (QA) groups facilitate the formation of a continuous hydrogen bond network, which will lead to high hydroxide conductivity according to Grotthuss-type mechanism. Microphase separation induced by long alkyl side chains contributes at the same time to further improving the hydroxide conductivity of the resultant AEMs. Hydroxide conductivity as high as 52.8 mS/cm is obtained for membrane TA-14C-1.21 (IEC = 1.21 mmol/g) with the longest pendant chain at 30 °C, and the conductivity can be increased to 140 mS/cm when the temperature was increased to 80 °C. Moreover, the corresponding water uptake is only 8.6 wt % at 30 °C. In the meantime, the membrane properties can be tuned by precisely regulating the hydrophilic/hydrophobic ratio in the cationic head groups. Compared with AEMs containing triazole and quaternized trimethylammonium head groups, enhanced dimensional stability and mechanical properties are obtained by tuning side-chain chemistry. However, the alkaline stability of the membrane is not as stable as anticipated, probably because of the existence of the triazole ring. Further study will be focused on increasing the alkali stability of the membrane. We envisage that the side-chain-type APEs meditated by click chemistry bearing long hydrophobic side chains pendant to the cationic head groups hold promise as a novel AEMs material. PMID:26645427

  13. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans

    PubMed Central

    Urso, Katia; Charles, Julia F.; Shull, Gary E.; Aliprantis, Antonios O.; Balestrieri, Barbara


    Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated. PMID:27391897

  14. Detection and purification of two antibody-antigen complexes via selective adsorption on lowly activated anion exchangers.


    Fuentes, Manuel; Pessela, Benevides C C; Mateo, Cesar; Munilla, Roberto; Guisán, Jose M; Fernandez-Lafuente, Roberto


    Taken advantage of the mechanism of adsorption of macro-molecules on ionic exchangers, (a multipoint interaction between the protein and the support), it is possible to selectively adsorb large proteins leaving small ones in the supernatant. Associated proteins should present a significant difference in its size as compared to the non-associated forms. Thus, the protein complexes may have much larger surfaces to interact with the support. Here, by selecting the support with the highest activation degree that was unable to adsorb the non-associated proteins, we have shown the simple and selective adsorption of immuno complexes (as a model), while antibodies and antigens remained in the supernatant. Therefore, it was possible to selectively adsorb on lowly activated supports (e.g., agarose 4BCL having only 1 micromol of amino groups per g of support) rabbit IgG/anti-rabbit immunoglobulins (immuno complex), while these supports were unable to adsorb the individual immunoglobulines. Similarly, horseradish peroxidase (HRP)/anti-HRP were selectively adsorbed on lowly activated supports, while the individual proteins were not adsorbed at all. Afterwards, the adsorbed associated proteins (purified at least from the non-associated counterparts and concentrated by the adsorption on the support) may be cross-linked with aldehyde-dextran and be desorbed from the matrix for their analysis. This strategy may permit very simple experiments to detect the presence of protein-protein complexes. Finally, we have shown the advantages of this technique compared to the use of one of the proteins previous immobilized on a support. PMID:15628128

  15. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    NASA Astrophysics Data System (ADS)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  16. Selective Anion Exchange Resins for the Removal of Perchlorate [(CIO{sub 4}{sup -})] from Groundwater

    SciTech Connect

    Gu, B.


    The primary objective of this project was to evaluate a novel bifunctional anion exchange resin for the cost-effective, in situ treatment of groundwater contaminated with perchlorate (ClO{sub 4}{sup -}). Both laboratory and field studies were performed to determine the selectivity and capacity of the bifunctional synthetic resins to sorb ClO{sub 4}{sup -} from simulated or actual contaminated groundwater. A number of synthetic bifunctional resins, including two commercial versions made by Purolite International and three commercially available, mono-functional resins, were tested. Initial laboratory batch and column breakthrough studies determined the best synthetic resins and the optimal conditions for the field experiment. Laboratory results indicated that the bifunctional synthetic resins, D-3696 and RO-02-119 were highly selective toward ClO{sub 4}{sup -} and performed {approx}5 times better than the best commercial nitrate resin (Purolite{reg_sign} A-520E) and more than an order of magnitude better than some nonselective commercial resins (e.g. Amberlite{reg_sign} IRA-900). The bifunctional resins were particularly effective in removing trace quantities of ClO{sub 4}{sup -} in groundwater to below the detection limit ({approx} 3 {micro}g/L). A field trial demonstrated that the bifunctional resin (D-3696) was able to treat {approx} 110,000 bed volumes of groundwater before a 10% breakthrough of ClO{sub 4}{sup -} occurred under the column flow-through conditions (running at {approx} 2 bed volumes per minute). On the other hand, the Purolite{reg_sign} A-520E resin was able to treat {approx} 23,000 bed volumes of groundwater under the same experimental conditions. No pretreatment was needed to remove either dissolved organic matter or other competing anions (such as SO{sub 4}{sup 2-} or NO{sub 3}{sup -}) in the groundwater, and the treatment process did not alter the water quality by removing or adding secondary by-products because of the high selectivity of the

  17. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A).


    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai


    Kidney anion exchanger 1 (kAE1) mediates chloride (Cl⁻) and bicarbonate (HCO₃⁻) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl⁻/HCO₃⁻ exchange at the basolateral membrane and failure of proton (H+) secretion at the apical membrane, causing a kidney disease--distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXØ motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells. PMID:20833140

  18. Disposable and removable nucleic acid extraction and purification cartridges for automated flow-through systems


    Regan, John Frederick


    Removable cartridges are used on automated flow-through systems for the purpose of extracting and purifying genetic material from complex matrices. Different types of cartridges are paired with specific automated protocols to concentrate, extract, and purifying pathogenic or human genetic material. Their flow-through nature allows large quantities sample to be processed. Matrices may be filtered using size exclusion and/or affinity filters to concentrate the pathogen of interest. Lysed material is ultimately passed through a filter to remove the insoluble material before the soluble genetic material is delivered past a silica-like membrane that binds the genetic material, where it is washed, dried, and eluted. Cartridges are inserted into the housing areas of flow-through automated instruments, which are equipped with sensors to ensure proper placement and usage of the cartridges. Properly inserted cartridges create fluid- and air-tight seals with the flow lines of an automated instrument.

  19. Influence of preadsorption of organic vapors on the sorption capacity of macroporous anion exchanges for carbon dioxide

    SciTech Connect

    Kats, B.M.; Artyushin, G.A.; Malinovskii, E.K.


    This paper examines the influence of preadsorption of vapors of organic compounds (acetic acid, methanol, ethanol, butanol, hexanol, acetone, xylene, benzene, dioxane, toluene, dibutyl phthalate, cyclohexane, butyl acetate, ethylene chlorohydrin) on the equilibrium capacity for carbon dioxide of the weakly basic macroporous anion exchanger AN-511, made by amination, using diethylenetriamine, of the chloromethylated macroporous copolymer of styrene with divinylbenzene (with n-decane as the blowing agent). It is shown that preadsorption of the vapors lowers the sorption capacity of halohydrocarbons for CO/sub 2/.

  20. Subtle anion effects on anion exchange and thermolysis: Square supra-channels via array of sinusoidal coordination polymers

    NASA Astrophysics Data System (ADS)

    Moon, So Yun; Park, Min Woo; Noh, Tae Hwan; Jung, Ok-Sang


    Self-assembly of AgX (X=ClO4-,BF4-) with a new diethylbis(4-pyridyl)silane (L) ligand basically gives rise to a one-dimensional (1D) sinusoidal structure. Weak C-H⋯π interactions between ethyl and pyridyl groups result in the formation of infinite square supra-channel structures via a molecular array of four sinusoidal chains. The supra-channel size is 10.1-10.7 Å with a void cross-section of 2.1-3.1 Å for [Ag(L)](ClO4) and 9.9-10.5 Å with a void cross-section of 2.0-3.0 Å for [Ag(L)](BF4). The supra-channels are occupied by each counteranion. Anion exchange of [Ag(L)](BF4) with NaClO4 occurs smoothly, whereas the reverse anion exchange of [Ag(L)](ClO4) with NaBF4 does not. Calcination of [Ag(L)](ClO4) crystals at 400 °C produces a circle morphology with evolving burned organics, and, at 600 °C, forms network circles consisting of a silver(0)/silver chloride (chlorargyrite)/silicon(IV) oxide composite with a micro-sized convexo-concave surface. In contrast, calcination of [Ag(L)](BF4) crystals at 600 °C produces silver(0) materials without silicon(IV) oxide.

  1. Investigation of the preparation and use of low-capacity anion exchangers in single-column ion chromatography

    SciTech Connect

    Barron, R.E.


    The preparation and uses of strong-base anion exchangers of low capacity are reviewed. A new adaptation of known reactions is presented for the reproducible preparation of Type I anion exchangers of low capacity and it is explored in some detail. The resins are based on the macroreticular copolymer known as XAD-1. It is shown that the same reaction scheme may be used on any porous styrene-divinylbenzene copolymer. Procedures are described for the preparation of twelve other strong-base resins with various structural differences in the quaternary ammonium functional group. These resins are then evaluated to determine the effect of chemical structure on selectivity for a number of common monovalent and divalent anions. It is shown that the structure of the quaternary ammonium ion has a definite effect on selectivity. It is also shown that surface modification can affect selectivity. The implications for single-column ion chromatography are discussed and some examples are given where a change in the chemical structure of the functional group is of practical value in the separation of anions. The factors influencing the choice of an eluent acid are outlined and it is shown that some acids are better than others on the basis on their lack of interaction with the copolymer matrix.

  2. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.


    Akbas, F; Aydin, Z


    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels. PMID:22576912

  3. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes

    SciTech Connect

    Chen, DY; Hickner, MA


    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by H-1 NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 degrees C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 degrees C but much lower stability at 80 degrees C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  4. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.


    Under DOE Grant No. DE-FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI`s anion-exchange resin-based desulfurization concept is believed to satisfy these requirements. During the reporting period, October 1, 1992--December 31, 1992, UTSI has completed the batch mode experiments to evaluate the performance enhancement effect caused by organic acids on the resin`s exhaustion efficiency. At present, batch mode experiments are being conducted to locate the position of the CO{sub 3}= and SO{sub 4}= ions in the affinity chart, and also reviewing/assessing the ASPEN Code`s capabilities for use in the development of the Best Process Schematic and related economics.

  5. Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes.


    Chen, Dongyang; Hickner, Michael A


    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by ¹H NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 °C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 °C but much lower stability at 80 °C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed. PMID:23067022

  6. Direct determination of seleno-amino acids in biological tissues by anion-exchange separation and electrochemical detection.


    Cavalli, S; Cardellicchio, N


    Several studies have described the determination of selenium in protein extracts from tissues of marine or terrestrial animals, but have not identified the different chemical forms of selenium that are present. Selenium may be present as seleno-amino acids. Selenocysteine, for example, is a normal component of glutathione peroxidase, an antioxidant enzyme which may behave like other antioxidants, such as vitamin E, protecting tissues against methylmercury toxicity. The present study illustrates a method for the characterization of seleno-amino acids, such as selenocysteine and selenomethionine, in proteins extracted from the liver of marine mammals. The mechanism of detoxification of methylmercury, which involves seleno-compounds, is identified. The analytical determination was carried out using high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection (HPAEC-IPAD). This method allows the direct determination of underivatized amino acids, eliminating the procedure of pre- or postcolumn derivatization. The chromatographic separation was carried out on an anion-exchange column using a quaternary gradient elution. In order to optimize this method, interferences of amino acids and the influence of pH and ionic strength on the separation and electrochemical detection were studied. The IPAD response for the direct detection of amino acids is optimum at pH > 11. The detection limit (S/N = 3) for selenocysteine was found to be 450 micrograms/l. The application of this method for the identification of seleno-amino acids in protein hydrolysates is also shown. PMID:7640774

  7. Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection.


    Rombouts, Ine; Lamberts, Lieve; Celus, Inge; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A


    A simple accurate method for determining amino acid composition of wheat gluten proteins and their gliadin and glutenin fractions using high-performance anion-exchange chromatography with integrated pulsed amperometric detection is described. In contrast to most conventional methods, the analysis requires neither pre- or post-column derivatization, nor oxidation of the sample. It consists of hydrolysis (6.0M hydrochloric acid solution at 110 degrees C for 24h), evaporation of hydrolyzates (110 degrees C), and chromatographic separation of the liberated amino acids. Correction factors (f) accounted for incomplete cleavage of peptide bonds involving Val (f=1.07) and Ile (f=1.13) after hydrolysis for 24h and for Ser (f=1.32) losses during evaporation. Gradient conditions including an extra eluent (0.1M acetic acid solution) allowed multiple sequential sample analyses without risk of Glu contamination on the anion-exchange column. While gluten amino acid compositions by the present method were mostly comparable to those obtained by a conventional method involving oxidation, acid hydrolysis and post-column ninhydrin derivatization, the latter method underestimated Tyr, Val and Ile levels. Results for the other amino acids obtained by the different methods were linearly correlated (r>0.99, slope=1.03). PMID:19523641

  8. Investigation of Anion-Exchange and Immunoaffinity Particle-Loaded Membranes for the Isolation of Charged Organic Analytes from Water

    USGS Publications Warehouse

    Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.


    Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.

  9. Chromatographic evaluation of reversed-phase/anion-exchange/cation-exchange trimodal stationary phases prepared by electrostatically driven self-assembly process.


    Liu, Xiaodong; Pohl, Christopher; Woodruff, Andrew; Chen, Jinhua


    This work describes chromatographic properties of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases. These stationary phases were based on high-purity porous spherical silica particles coated with nano-polymer beads using an electrostatically driven self-assembly process. The inner-pore area of the material was modified covalently with an organic layer that provided both reversed-phase and anion-exchange properties while the outer surface was coated with nano-sized polymer beads with strong cation-exchange characteristics. This design ensured spatial separation of the anion-exchange and the cation-exchange regions, and allowed reversed-phase, anion-exchange and cation-exchange retention mechanisms to function simultaneously. Chromatographic evaluation of ions and small molecules suggested that retention of ionic analytes was influenced by the ionic strength, pH, and mobile phase organic solvent content, and governed by both ion-exchange and hydrophobic interactions. Meanwhile, neutral analytes were retained by hydrophobic interaction and was mainly affected by mobile phase organic solvent content. Depending on the specific application, selectivity could be optimized by adjusting the anion-exchange/cation-exchange capacity ratio (selectivity), which was achieved experimentally by using porous silica particles with different surface areas. PMID:21530974

  10. Automated two-column purification of iminobiotin and BrdU-labeled PCR products for rapid cloning: application to genes synthesized by polymerase chain assembly.


    TerMaat, Joel R; Mamedov, Tarlan G; Pienaar, Elsje; Whitney, Scott E; Subramanian, Anuradha


    Polymerase chain assembly (PCA) is a powerful tool for basic biological research and biotechnology applications. During the last several years, major advances have been made in de novo gene synthesis. However, there is still a need for fast and reproducible methods to automatically purify the synthesized genes. Upon completion of PCA, the subsequent PCR-amplified product mixture still contains undesired shorter DNA fragments that hinder cloning efforts. To avoid tedious gel purification, an automated two-column purification has been developed and used in conjunction with rapid PCA. The system enables fast synthesis and isolation of the full-length DNA of interest, important for facile cloning of desired DNA fragments. During the PCR amplification step, forward and reverse primers tagged with iminobiotin and bromodeoxyuridine labels, respectively, were used. The automated purification was then performed on the PCR mixture using two affinity/immunocapture columns in series to isolate only the desired full-length product. The procedure has been applied to the pUC19 beta-lactamase gene (929 bp). Follow-up PCR of the purified product, cloning, and sequencing demonstrated the technique's effectiveness in obtaining the pure full-length gene. The purification has also been performed on other synthesized genes, indicating its utility as a general approach. PMID:20109289