Science.gov

Sample records for automated fault detection

  1. Creating an automated chiller fault detection and diagnostics tool using a data fault library.

    PubMed

    Bailey, Margaret B; Kreider, Jan F

    2003-07-01

    Reliable, automated detection and diagnosis of abnormal behavior within vapor compression refrigeration cycle (VCRC) equipment is extremely desirable for equipment owners and operators. The specific type of VCRC equipment studied in this paper is a 70-ton helical rotary, air-cooled chiller. The fault detection and diagnostic (FDD) tool developed as part of this research analyzes chiller operating data and detects faults through recognizing trends or patterns existing within the data. The FDD method incorporates a neural network (NN) classifier to infer the current state given a vector of observables. Therefore the FDD method relies upon the availability of normal and fault empirical data for training purposes and therefore a fault library of empirical data is assembled. This paper presents procedures for conducting sophisticated fault experiments on chillers that simulate air-cooled condenser, refrigerant, and oil related faults. The experimental processes described here are not well documented in literature and therefore will provide the interested reader with a useful guide. In addition, the authors provide evidence, based on both thermodynamics and empirical data analysis, that chiller performance is significantly degraded during fault operation. The chiller's performance degradation is successfully detected and classified by the NN FDD classifier as discussed in the paper's final section. PMID:12858981

  2. An Automated Intelligent Fault Detection System for Inspection of Sewer Pipes

    NASA Astrophysics Data System (ADS)

    Ahrary, Alireza; Kawamura, Yoshinori; Ishikawa, Masumi

    Automation is an important issue in industry, particularly in inspection of underground facilities. This paper describes an intelligent system for automatically detecting faulty areas in a sewer pipe system based on images. The proposed system can detect various types of faults and be implemented in a real time system. The present paper describes system architecture and focuses on two modules of image preprocessing and detection of faulty areas. The proposed approach demonstrates high performance in detection and reduction of time and cost.

  3. Automated Proactive Fault Isolation: A Key to Automated Commissioning

    SciTech Connect

    Katipamula, Srinivas; Brambley, Michael R.

    2007-07-31

    In this paper, we present a generic model for automated continuous commissioing and then delve in detail into one of the processes, proactive testing for fault isolation, which is key to automating commissioning. The automated commissioining process uses passive observation-based fault detction and diagnostic techniques, followed by automated proactive testing for fault isolation, automated fault evaluation, and automated reconfiguration of controls together to continuously keep equipment controlled and running as intended. Only when hard failures occur or a physical replacement is required does the process require human intervention, and then sufficient information is provided by the automated commissioning system to target manual maintenance where it is needed. We then focus on fault isolation by presenting detailed logic that can be used to automatically isolate faults in valves, a common component in HVAC systems, as an example of how automated proactive fault isolation can be accomplished. We conclude the paper with a discussion of how this approach to isolating faults can be applied to other common HVAC components and their automated commmissioning and a summary of key conclusions of the paper.

  4. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  5. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  6. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  7. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  8. Maneuver Classification for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.

    2003-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, identifying all possible faulty and proper operating modes is clearly impossible. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  9. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data is a reasonable match to known examples of proper operation. In our domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. We explain where this subsystem fits into our envisioned fault detection system as well its experiments showing the promise of this classification subsystem.

  10. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Koga, Dennis (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  11. Dynamic Fault Detection Chassis

    SciTech Connect

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

  12. Lithography light source fault detection

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Pantel, Erica; Nelissen, Patrick; Moen, Jeffrey; Tincu, Eduard; Dunstan, Wayne; Brown, Daniel

    2010-04-01

    High productivity is a key requirement for today's advanced lithography exposure tools. Achieving targets for wafers per day output requires consistently high throughput and availability. One of the keys to high availability is minimizing unscheduled downtime of the litho cell, including the scanner, track and light source. From the earliest eximer laser light sources, Cymer has collected extensive performance data during operation of the source, and this data has been used to identify the root causes of downtime and failures on the system. Recently, new techniques have been developed for more extensive analysis of this data to characterize the onset of typical end-of-life behavior of components within the light source and allow greater predictive capability for identifying both the type of upcoming service that will be required and when it will be required. The new techniques described in this paper are based on two core elements of Cymer's light source data management architecture. The first is enhanced performance logging features added to newer-generation light source software that captures detailed performance data; and the second is Cymer OnLine (COL) which facilitates collection and transmission of light source data. Extensive analysis of the performance data collected using this architecture has demonstrated that many light source issues exhibit recognizable patterns in their symptoms. These patterns are amenable to automated identification using a Cymer-developed model-based fault detection system, thereby alleviating the need for detailed manual review of all light source performance information. Automated recognition of these patterns also augments our ability to predict the performance trending of light sources. Such automated analysis provides several efficiency improvements for light source troubleshooting by providing more content-rich standardized summaries of light source performance, along with reduced time-to-identification for previously

  13. Fault detection and fault tolerance in robotics

    NASA Technical Reports Server (NTRS)

    Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.

    1992-01-01

    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.

  14. Automated Diagnosis Of Faults In Antenna-Aiming Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Patrick J.; Mellstrom, Jeffrey A.

    1993-01-01

    Report discusses research directed toward automated diagnosis of faults in complicated electromechanical and hydraulic systems aiming 70-m and 34-m antennas of Deep Space Network communication system.

  15. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  16. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  17. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  18. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  19. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  20. Row fault detection system

    SciTech Connect

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  1. Automated anomaly detection processor

    NASA Astrophysics Data System (ADS)

    Kraiman, James B.; Arouh, Scott L.; Webb, Michael L.

    2002-07-01

    Robust exploitation of tracking and surveillance data will provide an early warning and cueing capability for military and civilian Law Enforcement Agency operations. This will improve dynamic tasking of limited resources and hence operational efficiency. The challenge is to rapidly identify threat activity within a huge background of noncombatant traffic. We discuss development of an Automated Anomaly Detection Processor (AADP) that exploits multi-INT, multi-sensor tracking and surveillance data to rapidly identify and characterize events and/or objects of military interest, without requiring operators to specify threat behaviors or templates. The AADP has successfully detected an anomaly in traffic patterns in Los Angeles, analyzed ship track data collected during a Fleet Battle Experiment to detect simulated mine laying behavior amongst maritime noncombatants, and is currently under development for surface vessel tracking within the Coast Guard's Vessel Traffic Service to support port security, ship inspection, and harbor traffic control missions, and to monitor medical surveillance databases for early alert of a bioterrorist attack. The AADP can also be integrated into combat simulations to enhance model fidelity of multi-sensor fusion effects in military operations.

  2. Fault detection using genetic programming

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; B. Jack, Lindsay; Nandi, Asoke K.

    2005-03-01

    Genetic programming (GP) is a stochastic process for automatically generating computer programs. GP has been applied to a variety of problems which are too wide to reasonably enumerate. As far as the authors are aware, it has rarely been used in condition monitoring (CM). In this paper, GP is used to detect faults in rotating machinery. Featuresets from two different machines are used to examine the performance of two-class normal/fault recognition. The results are compared with a few other methods for fault detection: Artificial neural networks (ANNs) have been used in this field for many years, while support vector machines (SVMs) also offer successful solutions. For ANNs and SVMs, genetic algorithms have been used to do feature selection, which is an inherent function of GP. In all cases, the GP demonstrates performance which equals or betters that of the previous best performing approaches on these data sets. The training times are also found to be considerably shorter than the other approaches, whilst the generated classification rules are easy to understand and independently validate.

  3. Display interface concepts for automated fault diagnosis

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.

    1989-01-01

    An effort which investigated concepts for displaying dynamic system status and fault history (propagation) information to the flight crew is described. This investigation was performed by developing several candidate display formats and then conducting comprehension tests to determine those characteristics that made one format preferable to another for presenting this type of information. Twelve subjects participated. Flash tests, or limited time exposure tests, were used to determine the subjects' comprehension of the information presented in the display formats. It was concluded from the results of the comprehension tests that pictographs were more comprehensible than both block diagrams and text for presenting dynamic system status and fault history information, and that pictographs were preferred over both block diagrams and text. It was also concluded that the addition of this type of information in the cockpit would help the crew remain aware of the status of their aircraft.

  4. NASA ground terminal communication equipment automated fault isolation expert systems

    NASA Technical Reports Server (NTRS)

    Tang, Y. K.; Wetzel, C. R.

    1990-01-01

    The prototype expert systems are described that diagnose the Distribution and Switching System I and II (DSS1 and DSS2), Statistical Multiplexers (SM), and Multiplexer and Demultiplexer systems (MDM) at the NASA Ground Terminal (NGT). A system level fault isolation expert system monitors the activities of a selected data stream, verifies that the fault exists in the NGT and identifies the faulty equipment. Equipment level fault isolation expert systems are invoked to isolate the fault to a Line Replaceable Unit (LRU) level. Input and sometimes output data stream activities for the equipment are available. The system level fault isolation expert system compares the equipment input and output status for a data stream and performs loopback tests (if necessary) to isolate the faulty equipment. The equipment level fault isolation system utilizes the process of elimination and/or the maintenance personnel's fault isolation experience stored in its knowledge base. The DSS1, DSS2 and SM fault isolation systems, using the knowledge of the current equipment configuration and the equipment circuitry issues a set of test connections according to the predefined rules. The faulty component or board can be identified by the expert system by analyzing the test results. The MDM fault isolation system correlates the failure symptoms with the faulty component based on maintenance personnel experience. The faulty component can be determined by knowing the failure symptoms. The DSS1, DSS2, SM, and MDM equipment simulators are implemented in PASCAL. The DSS1 fault isolation expert system was converted to C language from VP-Expert and integrated into the NGT automation software for offline switch diagnoses. Potentially, the NGT fault isolation algorithms can be used for the DSS1, SM, amd MDM located at Goddard Space Flight Center (GSFC).

  5. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  6. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  7. Toward Automated Feature Detection in UAVSAR Images

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Donnellan, A.; Glasscoe, M. T.

    2014-12-01

    Edge detection identifies seismic or aseismic fault motion, as demonstrated in repeat-pass inteferograms obtained by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) program. But this identification is not robust at present: it requires a flattened background image, interpolation into missing data (holes) and outliers, and background noise that is either sufficiently small or roughly white Gaussian. Identification and mitigation of nongaussian background image noise is essential to creating a robust, automated system to search for such features. Clearly a robust method is needed for machine scanning of the thousands of UAVSAR repeat-pass interferograms for evidence of fault slip, landslides, and other local features.Empirical examination of detrended noise based on 20 km east-west profiles through desert terrain with little tectonic deformation for a suite of flight interferograms shows nongaussian characteristics. Statistical measurement of curvature with varying length scale (Allan variance) shows nearly white behavior (Allan variance slope with spatial distance from roughly -1.76 to -2) from 25 to 400 meters, deviations from -2 suggesting short-range differences (such as used in detecting edges) are often freer of noise than longer-range differences. At distances longer than 400 m the Allan variance flattens out without consistency from one interferogram to another. We attribute this additional noise afflicting difference estimates at longer distances to atmospheric water vapor and uncompensated aircraft motion.Paradoxically, California interferograms made with increasing time intervals before and after the El Mayor Cucapah earthquake (2008, M7.2, Mexico) show visually stronger and more interesting edges, but edge detection methods developed for the first year do not produce reliable results over the first two years, because longer time spans suffer reduced coherence in the interferogram. The changes over time are reflecting fault slip and block

  8. A Game Theoretic Fault Detection Filter

    NASA Technical Reports Server (NTRS)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  9. Fault detection with principal component pursuit method

    NASA Astrophysics Data System (ADS)

    Pan, Yijun; Yang, Chunjie; Sun, Youxian; An, Ruqiao; Wang, Lin

    2015-11-01

    Data-driven approaches are widely applied for fault detection in industrial process. Recently, a new method for fault detection called principal component pursuit(PCP) is introduced. PCP is not only robust to outliers, but also can accomplish the objectives of model building, fault detection, fault isolation and process reconstruction simultaneously. PCP divides the data matrix into two parts: a fault-free low rank matrix and a sparse matrix with sensor noise and process fault. The statistics presented in this paper fully utilize the information in data matrix. Since the low rank matrix in PCP is similar to principal components matrix in PCA, a T2 statistic is proposed for fault detection in low rank matrix. And this statistic can illustrate that PCP is more sensitive to small variations in variables than PCA. In addition, in sparse matrix, a new monitored statistic performing the online fault detection with PCP-based method is introduced. This statistic uses the mean and the correlation coefficient of variables. Monte Carlo simulation and Tennessee Eastman (TE) benchmark process are provided to illustrate the effectiveness of monitored statistics.

  10. Fault detection in reciprocating compressor valves under varying load conditions

    NASA Astrophysics Data System (ADS)

    Pichler, Kurt; Lughofer, Edwin; Pichler, Markus; Buchegger, Thomas; Klement, Erich Peter; Huschenbett, Matthias

    2016-03-01

    This paper presents a novel approach for detecting cracked or broken reciprocating compressor valves under varying load conditions. The main idea is that the time frequency representation of vibration measurement data will show typical patterns depending on the fault state. The problem is to detect these patterns reliably. For the detection task, we make a detour via the two dimensional autocorrelation. The autocorrelation emphasizes the patterns and reduces noise effects. This makes it easier to define appropriate features. After feature extraction, classification is done using logistic regression and support vector machines. The method's performance is validated by analyzing real world measurement data. The results will show a very high detection accuracy while keeping the false alarm rates at a very low level for different compressor loads, thus achieving a load-independent method. The proposed approach is, to our best knowledge, the first automated method for reciprocating compressor valve fault detection that can handle varying load conditions.

  11. Negative Selection Algorithm for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.

  12. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  13. An expert systems approach to automated fault diagnostics

    NASA Technical Reports Server (NTRS)

    Lance, N.; Malin, J. T.

    1985-01-01

    The implementation of the life support function on the Space Station will probably have to be based on regenerative life support techniques. It is essential that the regenerative subsystems operate with minimum attendance from the crew. However, the results of extensive testing show that uninterrupted subsystem operation over long periods of time (e.g., months) is not easy to achieve. In order to achieve longer periods of time on line for these subsystems, it is necessary that the Environmental Control and Life Support System (ECLSS) designers focus their attention on technologies which will permit both increasing the mean time between shutdowns and decreasing the time for which a subsystem is down for fault diagnosis and maintenance. With the aim to be able to perform the fault diagnosis on line rather than after the subsystem has shut down, an expert systems approach to automated fault diagnostics is considered. A description is given of a program, designated CS-1 'FIXER' for fault isolation expert to enhance reliability.

  14. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  15. Tunable architecture for aircraft fault detection

    NASA Technical Reports Server (NTRS)

    Ganguli, Subhabrata (Inventor); Papageorgiou, George (Inventor); Glavaski-Radovanovic, Sonja (Inventor)

    2012-01-01

    A method for detecting faults in an aircraft is disclosed. The method involves predicting at least one state of the aircraft and tuning at least one threshold value to tightly upper bound the size of a mismatch between the at least one predicted state and a corresponding actual state of the non-faulted aircraft. If the mismatch between the at least one predicted state and the corresponding actual state is greater than or equal to the at least one threshold value, the method indicates that at least one fault has been detected.

  16. Concurrent detection of transient faults in microprocessors

    SciTech Connect

    Khan, M.Z.

    1989-01-01

    A large number of errors in digital systems are due to the presence of transient faults. This is especially true of microprocessor-based systems working in a radiation environment that experience transient faults due to single event upsets. These upsets cause a temporary change in the state of the system without any permanent damage. Because of their random and non-recurring nature, transient faults are difficult to detect and isolate, hence they become a source of major concern, especially in critical real-time application areas. Concurrent detection of these errors is necessary for real-time operation. Most existing fault tolerance schemes either use redundancy to mask effects of transient faults or monitor the system for abnormal operations and then perform recovery operation. Although very effective, redundancy schemes incur substantial overhead that makes them unsuitable for small systems. Most monitoring schemes, on the other hand, only detect control flow errors. A new approach called Concurrent Processor Monitoring for on-line detection of transient faults is proposed that attempts to achieve higher error coverage with small error detection latency. The concept of the execution profile of an instruction is defined and is used for detecting control flow and execution errors. To implement this scheme, a watchdog processor is designed for monitoring operations of the main processor. The effectiveness of this technique is demonstrated through computer simulations.

  17. Fault Detection in Differential Algebraic Equations

    NASA Astrophysics Data System (ADS)

    Scott, Jason Roderick

    Fault detection and identification (FDI) is important in almost all real systems. Fault detection is the supervision of technical processes aimed at detecting undesired or unpermitted states (faults) and taking appropriate actions to avoid dangerous situations, or to ensure efficiency in a system. This dissertation develops and extends fault detection techniques for systems modeled by differential algebraic equations (DAEs). First, a passive, observer-based approach is developed and linear filters are constructed to identify faults by filtering residual information. The method presented here uses the least squares completion to compute an ordinary differential equation (ODE) that contains the solution of the DAE and applies the observer directly to this ODE. While observers have been applied to ODE models for the purpose of fault detection in the past, the use of observers on completions of DAEs is a new idea. Moreover, the resulting residuals are modified requiring additional analysis. Robustness with respect to disturbances is also addressed by a novel frequency filtering technique. Active detection, as opposed to passive detection where outputs are passively monitored, allows the injection of an auxiliary control signal to test the system. These algorithms compute an auxiliary input signal guaranteeing fault detection, assuming bounded noise. In the second part of this dissertation, a novel active detection approach for DAE models is developed by taking linear transformations of the DAEs and solving a bi-layer optimization problem. An efficient real-time detection algorithm is also provided, as is the extension to model uncertainty. The existence of a class of problems where the algorithm breaks down is revealed and an alternative algorithm that finds a nearly minimal auxiliary signal is presented. Finally, asynchronous signal design, that is, applying the test signal on a different interval than the observation window, is explored and discussed.

  18. Data Fault Detection in Medical Sensor Networks

    PubMed Central

    Yang, Yang; Liu, Qian; Gao, Zhipeng; Qiu, Xuesong; Meng, Luoming

    2015-01-01

    Medical body sensors can be implanted or attached to the human body to monitor the physiological parameters of patients all the time. Inaccurate data due to sensor faults or incorrect placement on the body will seriously influence clinicians’ diagnosis, therefore detecting sensor data faults has been widely researched in recent years. Most of the typical approaches to sensor fault detection in the medical area ignore the fact that the physiological indexes of patients aren’t changing synchronously at the same time, and fault values mixed with abnormal physiological data due to illness make it difficult to determine true faults. Based on these facts, we propose a Data Fault Detection mechanism in Medical sensor networks (DFD-M). Its mechanism includes: (1) use of a dynamic-local outlier factor (D-LOF) algorithm to identify outlying sensed data vectors; (2) use of a linear regression model based on trapezoidal fuzzy numbers to predict which readings in the outlying data vector are suspected to be faulty; (3) the proposal of a novel judgment criterion of fault state according to the prediction values. The simulation results demonstrate the efficiency and superiority of DFD-M. PMID:25774708

  19. Data fault detection in medical sensor networks.

    PubMed

    Yang, Yang; Liu, Qian; Gao, Zhipeng; Qiu, Xuesong; Meng, Luoming

    2015-01-01

    Medical body sensors can be implanted or attached to the human body to monitor the physiological parameters of patients all the time. Inaccurate data due to sensor faults or incorrect placement on the body will seriously influence clinicians' diagnosis, therefore detecting sensor data faults has been widely researched in recent years. Most of the typical approaches to sensor fault detection in the medical area ignore the fact that the physiological indexes of patients aren't changing synchronously at the same time, and fault values mixed with abnormal physiological data due to illness make it difficult to determine true faults. Based on these facts, we propose a Data Fault Detection mechanism in Medical sensor networks (DFD-M). Its mechanism includes: (1) use of a dynamic-local outlier factor (D-LOF) algorithm to identify outlying sensed data vectors; (2) use of a linear regression model based on trapezoidal fuzzy numbers to predict which readings in the outlying data vector are suspected to be faulty; (3) the proposal of a novel judgment criterion of fault state according to the prediction values. The simulation results demonstrate the efficiency and superiority of DFD-M. PMID:25774708

  20. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  1. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  2. Improved Hidden-Markov-Model Method Of Detecting Faults

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J.

    1994-01-01

    Method of automated, continuous monitoring to detect faults in complicated dynamic system based on hidden-Markov-model (HMM) approach. Simpler than another, recently proposed HMM method, but retains advantages of that method, including low susceptibility to false alarms, no need for mathematical model of dynamics of system under normal or faulty conditions, and ability to detect subtle changes in characteristics of monitored signals. Examples of systems monitored by use of this method include motors, turbines, and pumps critical in their applications; chemical-processing plants; powerplants; and biomedical systems.

  3. Reset tree-based optical fault detection.

    PubMed

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  4. Reset Tree-Based Optical Fault Detection

    PubMed Central

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  5. Detecting Glaucoma Using Automated Pupillography

    PubMed Central

    Tatham, Andrew J.; Meira-Freitas, Daniel; Weinreb, Robert N.; Zangwill, Linda M.; Medeiros, Felipe A.

    2014-01-01

    Objective To evaluate the ability of a binocular automated pupillograph to discriminate healthy subjects from those with glaucoma. Design Cross-sectional observational study. Participants Both eyes of 116 subjects, including 66 patients with glaucoma in at least 1 eye and 50 healthy subjects from the Diagnostic Innovations in Glaucoma Study. Eyes were classified as glaucomatous by repeatable abnormal standard automated perimetry (SAP) or progressive glaucomatous changes on stereophotographs. Methods All subjects underwent automated pupillography using the RAPDx pupillograph (Konan Medical USA, Inc., Irvine, CA). Main Outcome Measures Receiver operating characteristic (ROC) curves were constructed to assess the diagnostic ability of pupil response parameters to white, red, green, yellow, and blue full-field and regional stimuli. A ROC regression model was used to investigate the influence of disease severity and asymmetry on diagnostic ability. Results The largest area under the ROC curve (AUC) for any single parameter was 0.75. Disease asymmetry (P < 0.001), but not disease severity (P = 0.058), had a significant effect on diagnostic ability. At the sample mean age (60.9 years), AUCs for arbitrary values of intereye difference in SAP mean deviation (MD) of 0, 5, 10, and 15 dB were 0.58, 0.71, 0.82, and 0.90, respectively. The mean intereye difference in MD was 2.2±3.1 dB. The best combination of parameters had an AUC of 0.85; however, the cross-validated bias-corrected AUC for these parameters was only 0.74. Conclusions Although the pupillograph had a good ability to detect glaucoma in the presence of asymmetric disease, it performed poorly in those with symmetric disease. PMID:24485921

  6. HVAC Fault Detection and Diagnosis Toolkit

    Energy Science and Technology Software Center (ESTSC)

    2004-12-31

    This toolkit supports component-level model-based fault detection methods in commercial building HVAC systems. The toolbox consists of five basic modules: a parameter estimator for model calibration, a preprocessor, an AHU model simulator, a steady-state detector, and a comparator. Each of these modules and the fuzzy logic rules for fault diagnosis are described in detail. The toolbox is written in C++ and also invokes the SPARK simulation program.

  7. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  8. All row, planar fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  9. Robust Fault Detection and Isolation for Stochastic Systems

    NASA Technical Reports Server (NTRS)

    George, Jemin; Gregory, Irene M.

    2010-01-01

    This paper outlines the formulation of a robust fault detection and isolation scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves precise reconstruction of sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the robust fault detection and isolation system.

  10. Automated fault location and diagnosis on electric power distribution feeders

    SciTech Connect

    Zhu, J.; Lubkeman, D.L.; Girgis, A.A.

    1997-04-01

    This paper presents new techniques for locating and diagnosing faults on electric power distribution feeders. The proposed fault location and diagnosis scheme is capable of accurately identifying the location of a fault upon its occurrence, based on the integration of information available from disturbance recording devices with knowledge contained in a distribution feeder database. The developed fault location and diagnosis system can also be applied to the investigation of temporary faults that may not result in a blown fuse. The proposed fault location algorithm is based on the steady-state analysis of the faulted distribution network. To deal with the uncertainties inherent in the system modeling and the phasor estimation, the fault location algorithm has been adapted to estimate fault regions based on probabilistic modeling and analysis. Since the distribution feeder is a radial network, multiple possibilities of fault locations could be computed with measurements available only at the substation. To identify the actual fault location, a fault diagnosis algorithm has been developed to prune down and rank the possible fault locations by integrating the available pieces of evidence. Testing of the developed fault location and diagnosis system using field data has demonstrated its potential for practical use.

  11. Signal Injection as a Fault Detection Technique

    PubMed Central

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801

  12. Signal injection as a fault detection technique.

    PubMed

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801

  13. Fault detection and diagnosis of HVAC systems

    SciTech Connect

    Han, C.Y.; Xiao, Y.; Ruther, C.J.

    1999-07-01

    This paper presents a model-based fault detection and diagnosis (FDD) system for building heating, ventilating, and air conditioning (HVAC). Model-based fault detection is based on the strategy of determining the difference or the residuals between the normal and the existing patterns. Their approach was to attack the problem on many levels of abstraction: from the signal level, controller programming level, and system component, all the way up to the information and knowledge processing level. The various issues of real implementation of the system and the processing of real-time on-line data in actual systems of campus buildings using the proven technology and off-the-shelf commercial tools are discussed. The research was based on input and output points and software control programs found in typical direct digital control systems used for variable-air-volume air handlers and VAV cooling and hot water reheat terminal units.

  14. Output-Only Techniques for Fault Detection

    NASA Astrophysics Data System (ADS)

    Brzezinski, Adam John

    Fault detection is relevant to many applications, including structural health monitoring and machine health monitoring. Furthermore, output measurement data may be the only information known about a system. Hence we develop and demonstrate techniques for output-only fault detection. We also investigate implementation issues, including computational complexity and output noise. First, we consider real-time detection of an abrupt change in a noisy signal. Existing techniques exhibit sensitivity to gradual (incipient) changes in the data, as well as detection delays, false alarms, and missed detections. Hence, we propose an adjacent moving window peak detection (AMWPD) approach that uses an approximate low-pass filter and statistical process control techniques to determine whether an abrupt change has occurred. We compare the AMWPD approach with existing techniques for change detection and show that the AMWPD approach exhibits comparable detection speed and number of missed detections while providing fewer false alarms. Second, we consider feature extraction and clustering for classification. For industrial applications, existing methods provide insufficient classification accuracy and require significant training time. Hence, we propose new features that improve classification accuracy and apply a modified tabu search and probabilistic neural network (mTS + PNN) approach to select and cluster the features and thereby classify the data. We compare the mTS + PNN approach with an existing feature selection and clustering technique that employs principal component analysis and a multi-layer perceptron neural network. Using an application example, we demonstrate that the mTS + PNN approach provides higher classification accuracy while requiring less training and classification time. Finally, we consider identification of output-to-output relationships in linear system dynamics. Existing approaches, including operational modal analysis, assume that the excitation signal is

  15. Automated fault-management in a simulated spaceflight micro-world

    NASA Technical Reports Server (NTRS)

    Lorenz, Bernd; Di Nocera, Francesco; Rottger, Stefan; Parasuraman, Raja

    2002-01-01

    BACKGROUND: As human spaceflight missions extend in duration and distance from Earth, a self-sufficient crew will bear far greater onboard responsibility and authority for mission success. This will increase the need for automated fault management (FM). Human factors issues in the use of such systems include maintenance of cognitive skill, situational awareness (SA), trust in automation, and workload. This study examine the human performance consequences of operator use of intelligent FM support in interaction with an autonomous, space-related, atmospheric control system. METHODS: An expert system representing a model-base reasoning agent supported operators at a low level of automation (LOA) by a computerized fault finding guide, at a medium LOA by an automated diagnosis and recovery advisory, and at a high LOA by automate diagnosis and recovery implementation, subject to operator approval or veto. Ten percent of the experimental trials involved complete failure of FM support. RESULTS: Benefits of automation were reflected in more accurate diagnoses, shorter fault identification time, and reduced subjective operator workload. Unexpectedly, fault identification times deteriorated more at the medium than at the high LOA during automation failure. Analyses of information sampling behavior showed that offloading operators from recovery implementation during reliable automation enabled operators at high LOA to engage in fault assessment activities CONCLUSIONS: The potential threat to SA imposed by high-level automation, in which decision advisories are automatically generated, need not inevitably be counteracted by choosing a lower LOA. Instead, freeing operator cognitive resources by automatic implementation of recover plans at a higher LOA can promote better fault comprehension, so long as the automation interface is designed to support efficient information sampling.

  16. Statistical Fault Detection & Diagnosis Expert System

    SciTech Connect

    Wegerich, Stephan

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component has degraded.

  17. On-line early fault detection and diagnosis of municipal solid waste incinerators

    SciTech Connect

    Zhao Jinsong Huang Jianchao; Sun Wei

    2008-11-15

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.

  18. On-line early fault detection and diagnosis of municipal solid waste incinerators.

    PubMed

    Zhao, Jinsong; Huang, Jianchao; Sun, Wei

    2008-11-01

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI. PMID:18255276

  19. Automated detection of bacteria in urine

    NASA Technical Reports Server (NTRS)

    Fleig, A. J.; Picciolo, G. L.; Chappelle, E. W.; Kelbaugh, B. N.

    1972-01-01

    A method for detecting the presence of bacteria in urine was developed which utilizes the bioluminescent reaction of adenosine triphosphate with luciferin and luciferase derived from the tails of fireflies. The method was derived from work on extraterrestrial life detection. A device was developed which completely automates the assay process.

  20. Statistical Fault Detection & Diagnosis Expert System

    Energy Science and Technology Software Center (ESTSC)

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component hasmore » degraded.« less

  1. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel

    2016-06-01

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  2. Implementation of a model based fault detection and diagnosis technique for actuation faults of the SSME

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1991-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the Space Shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the Space Shuttle Main Engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  3. Robust fault detection and isolation in stochastic systems

    NASA Astrophysics Data System (ADS)

    George, Jemin

    2012-07-01

    This article outlines the formulation of a robust fault detection and isolation (FDI) scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves estimating sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the proposed robust FDI system.

  4. Automated Methods for Multiplexed Pathogen Detection

    SciTech Connect

    Straub, Tim M.; Dockendorff, Brian P.; Quinonez-Diaz, Maria D.; Valdez, Catherine O.; Shutthanandan, Janani I.; Tarasevich, Barbara J.; Grate, Jay W.; Bruckner-Lea, Cindy J.

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides ''live vs. dead'' capabilities. However

  5. POD Model Reconstruction for Gray-Box Fault Detection

    NASA Technical Reports Server (NTRS)

    Park, Han; Zak, Michail

    2007-01-01

    Proper orthogonal decomposition (POD) is the mathematical basis of a method of constructing low-order mathematical models for the "gray-box" fault-detection algorithm that is a component of a diagnostic system known as beacon-based exception analysis for multi-missions (BEAM). POD has been successfully applied in reducing computational complexity by generating simple models that can be used for control and simulation for complex systems such as fluid flows. In the present application to BEAM, POD brings the same benefits to automated diagnosis. BEAM is a method of real-time or offline, automated diagnosis of a complex dynamic system.The gray-box approach makes it possible to utilize incomplete or approximate knowledge of the dynamics of the system that one seeks to diagnose. In the gray-box approach, a deterministic model of the system is used to filter a time series of system sensor data to remove the deterministic components of the time series from further examination. What is left after the filtering operation is a time series of residual quantities that represent the unknown (or at least unmodeled) aspects of the behavior of the system. Stochastic modeling techniques are then applied to the residual time series. The procedure for detecting abnormal behavior of the system then becomes one of looking for statistical differences between the residual time series and the predictions of the stochastic model.

  6. Automated detection of solar eruptions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N.

    2015-12-01

    Observation of the solar atmosphere reveals a wide range of motions, from small scale jets and spicules to global-scale coronal mass ejections (CMEs). Identifying and characterizing these motions are essential to advancing our understanding of the drivers of space weather. Both automated and visual identifications are currently used in identifying Coronal Mass Ejections. To date, eruptions near the solar surface, which may be precursors to CMEs, have been identified primarily by visual inspection. Here we report on Eruption Patrol (EP): a software module that is designed to automatically identify eruptions from data collected by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA). We describe the method underlying the module and compare its results to previous identifications found in the Heliophysics Event Knowledgebase. EP identifies eruptions events that are consistent with those found by human annotations, but in a significantly more consistent and quantitative manner. Eruptions are found to be distributed within 15 Mm of the solar surface. They possess peak speeds ranging from 4 to 100 km/s and display a power-law probability distribution over that range. These characteristics are consistent with previous observations of prominences.

  7. Faults Detection And Level Control In Coupled Tanks

    NASA Astrophysics Data System (ADS)

    Maican, Camelia

    2015-09-01

    This paper presents a mechanism for the detection and localization of faults in a plant, which is equipped with two coupled tanks, using residual methods. The water circuit consists of the upper and lower tanks connected through a system of pipes and valves. The controlled variable is the level in the upper tank. The level control system and the faults detection structure were developed under Matlab Simulink. The faults detection structure allows us to detect two faults that can occur in the plant, separately. The proposed method was theoretically developed and experimentally verified on the plant model.

  8. High Resolution Seismic Reflection Survey for Coal Mine: fault detection

    NASA Astrophysics Data System (ADS)

    Khukhuudei, M.; Khukhuudei, U.

    2014-12-01

    High Resolution Seismic Reflection (HRSR) methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. Modern coal mining requires certainly about geological faults and structural features. This paper focuses on 2D Seismic section mapping results from an "Zeegt" lignite coal mine in the "Mongol Altai" coal basin, which required the establishment of major structure for faults and basement. HRSR method was able to detect subsurface faults associated with the major fault system. We have used numerical modeling in an ideal, noise free environment with homogenous layering to detect of faults. In a coal mining setting where the seismic velocity of the high ranges from 3000m/s to 3600m/s and the dominant seismic frequency is 100Hz, available to locate faults with a throw of 4-5m. Faults with displacements as seam thickness detected down to several hundred meter beneath the surface.

  9. Induction machine faults detection using stator current parametric spectral estimation

    NASA Astrophysics Data System (ADS)

    El Bouchikhi, El Houssin; Choqueuse, Vincent; Benbouzid, Mohamed

    2015-02-01

    Current spectrum analysis is a proven technique for fault diagnosis in electrical machines. Current spectral estimation is usually performed using classical techniques such as periodogram (FFT) or its extensions. However, these techniques have several drawbacks since their frequency resolution is limited and additional post-processing algorithms are required to extract a relevant fault detection criterion. Therefore, this paper proposes a new parametric spectral estimator that fully exploits the faults sensitive frequencies. The proposed technique is based on the maximum likelihood estimator (MLE) and offers high-resolution capabilities. Based on this approach, a fault criterion is derived for detecting several fault types. The proposed technique is assessed using simulation signals, issued from a coupled electromagnetic circuits approach-based simulation tool for mechanical unbalance and electrical asymmetry faults detection. It is afterward validated using experiments on a 0.75-kW induction machine test bed for the particular case of bearing faults.

  10. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  11. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1987-01-01

    Specific topics briefly addressed include: the consistent comparison problem in N-version system; analytic models of comparison testing; fault tolerance through data diversity; and the relationship between failures caused by automatically seeded faults.

  12. Model-based fault detection and isolation for intermittently active faults with application to motion-based thruster fault detection and isolation for spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2008-01-01

    The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.

  13. An architecture for automated fault diagnosis. [Space Station Module/Power Management And Distribution

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry R.

    1989-01-01

    A description is given of the SSM/PMAD power system automation testbed, which was developed using a systems engineering approach. The architecture includes a knowledge-based system and has been successfully used in power system management and fault diagnosis. Architectural issues which effect overall system activities and performance are examined. The knowledge-based system is discussed along with its associated automation implications, and interfaces throughout the system are presented.

  14. On Identifiability of Bias-Type Actuator-Sensor Faults in Multiple-Model-Based Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.

  15. Detecting Hidden Faults and Other Lineations with UAVSAR

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Glasscoe, M. T.; Donnellan, A.

    2013-12-01

    Jay Parker, Margaret Glasscoe, Andrea Donnellan Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA The M7.2 El Mayor Cucapah Earthquake of April 4, 2010 is the main earthquake to date observed by the NASA UAVSAR. By observing with repeat passes (October 2009, April 2010 captures the coseismic strain pattern, and subsequent flights capture the postseismic process) over the adjoining portion of California, the interferometric phase maps of geodetic displacements are exceptionally high definition (pixel size is roughly 7 m) records of the extended deformation field from the earthquake process, including revelation of a rich network of plate parallel and conjugate faulting, apparently slipping sympathetically to the earthquake-induced quasistatic changes in stress. While the most significant of these faults have been documented by cooperative use of UAVSAR maps and field research, a subsequent opportunity arises: to use this data to develop and validate an automated approach to detecting faults and other lineations directly from the UAVSAR unwrapped phase product that corresponds to a single-component deformation map. The Canny edge detection algorithm is employed, after a preparation stage to clean the data. This preprocessing step is tailored to the nature of the radar phase data: data dropouts in single pixels and extended areas (blown sand dunes, farms) are a much larger problem than background white noise. Blocks of typically 3x3 pixels are currently reduced to a single value, the average after bad pixels are discarded. The smoothing methods typically used with the Canny method are minimized (smoothing makes data drop-out problems worse). The aperture size that determines a gradient estimation is chosen large (7 vs. the typical 3), as this is found to produce continuous (rather than dashed) lineations. The main Canny threshold is chosen to correspond to a user selected slip threshold in mm. Reasonable maps of lineations in the Salton

  16. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1986-01-01

    Multiversion or N-version programming was proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. Specific topics addressed are: failure probabilities in N-version systems, consistent comparison in N-version systems, descriptions of the faults found in the Knight and Leveson experiment, analytic models of comparison testing, characteristics of the input regions that trigger faults, fault tolerance through data diversity, and the relationship between failures caused by automatically seeded faults.

  17. Photoelectric detection system. [manufacturing automation

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Schansman, R. R. (Inventor)

    1982-01-01

    A photoelectric beam system for the detection of the arrival of an object at a discrete station wherein artificial light, natural light, or no light may be present is described. A signal generator turns on and off a signal light at a selected frequency. When the object in question arrives on station, ambient light is blocked by the object, and the light from the signal light is reflected onto a photoelectric sensor which has a delayed electrical output but is of the frequency of the signal light. Outputs from both the signal source and the photoelectric sensor are fed to inputs of an exclusively OR detector which provides as an output the difference between them. The difference signal is a small width pulse occurring at the frequency of the signal source. By filter means, this signal is distinguished from those responsive to sunlight, darkness, or 120 Hz artificial light. In this fashion, the presence of an object is positively established.

  18. Tracy-Widom distribution based fault detection approach: application to aircraft sensor/actuator fault detection.

    PubMed

    Hajiyev, Ch

    2012-01-01

    The fault detection approach based on the Tracy-Widom distribution is presented and applied to the aircraft flight control system. An operative method of testing the innovation covariance of the Kalman filter is proposed. The maximal eigenvalue of the random Wishart matrix is used as the monitoring statistic, and the testing problem is reduced to determine the asymptotics for the largest eigenvalue of the Wishart matrix. As a result, an algorithm for testing the innovation covariance based on the Tracy-Widom distribution is proposed. In the simulations, the longitudinal and lateral dynamics of the F-16 aircraft model is considered, and detection of sensor and control surface faults in the flight control system which affect the innovation covariance, are examined. PMID:21855060

  19. High impedance fault detection in low voltage networks

    SciTech Connect

    Christie, R.D. . Dept. of Electrical Engineering); Zadehgol, H.; Habib, M.M. )

    1993-10-01

    High impedance faults are those with fault current magnitude similar to load currents. Experimental results were obtained that conform operating experience that such faults can occur in the low voltage (600V and below) underground distribution networks typically found in urban power systems. These faults produce current waveforms qualitatively similar to those found on overhead feeders, but quantitatively smaller. Loose connectors can produce similar, but cleaner current characteristics. Noisy loads remain a major impediment to reliable detection. Design and installation of an inexpensive prototype fault detector on the Seattle City Light street network is described.

  20. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit. PMID:24184791

  1. Automated macromolecular crystal detection system and method

    DOEpatents

    Christian, Allen T.; Segelke, Brent; Rupp, Bernard; Toppani, Dominique

    2007-06-05

    An automated macromolecular method and system for detecting crystals in two-dimensional images, such as light microscopy images obtained from an array of crystallization screens. Edges are detected from the images by identifying local maxima of a phase congruency-based function associated with each image. The detected edges are segmented into discrete line segments, which are subsequently geometrically evaluated with respect to each other to identify any crystal-like qualities such as, for example, parallel lines, facing each other, similarity in length, and relative proximity. And from the evaluation a determination is made as to whether crystals are present in each image.

  2. Fuzzy logic based on-line fault detection and classification in transmission line.

    PubMed

    Adhikari, Shuma; Sinha, Nidul; Dorendrajit, Thingam

    2016-01-01

    This study presents fuzzy logic based online fault detection and classification of transmission line using Programmable Automation and Control technology based National Instrument Compact Reconfigurable i/o (CRIO) devices. The LabVIEW software combined with CRIO can perform real time data acquisition of transmission line. When fault occurs in the system current waveforms are distorted due to transients and their pattern changes according to the type of fault in the system. The three phase alternating current, zero sequence and positive sequence current data generated by LabVIEW through CRIO-9067 are processed directly for relaying. The result shows that proposed technique is capable of right tripping action and classification of type of fault at high speed therefore can be employed in practical application. PMID:27398278

  3. Automated detection and classification of dice

    NASA Astrophysics Data System (ADS)

    Correia, Bento A. B.; Silva, Jeronimo A.; Carvalho, Fernando D.; Guilherme, Rui; Rodrigues, Fernando C.; de Silva Ferreira, Antonio M.

    1995-03-01

    This paper describes a typical machine vision system in an unusual application, the automated visual inspection of a Casino's playing tables. The SORTE computer vision system was developed at INETI under a contract with the Portuguese Gaming Inspection Authorities IGJ. It aims to automate the tasks of detection and classification of the dice's scores on the playing tables of the game `Banca Francesa' (which means French Banking) in Casinos. The system is based on the on-line analysis of the images captured by a monochrome CCD camera placed over the playing tables, in order to extract relevant information concerning the score indicated by the dice. Image processing algorithms for real time automatic throwing detection and dice classification were developed and implemented.

  4. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    We have tested and deployed Artificial Neural Network (ANN) data mining techniques to analyze remotely sensed multi-channel imaging data from MODIS, GOES, and AVHRR. The goal is to train the ANN to learn the signatures of wildfires in remotely sensed data in order to automate the detection process. We train the ANN using the set of human-detected wildfires in the U.S., which are provided by the Hazard Mapping System (HMS) wildfire detection group at NOAA/NESDIS. The ANN is trained to mimic the behavior of fire detection algorithms and the subjective decision- making by N O M HMS Fire Analysts. We use a local extremum search in order to isolate fire pixels, and then we extract a 7x7 pixel array around that location in 3 spectral channels. The corresponding 147 pixel values are used to populate a 147-dimensional input vector that is fed into the ANN. The ANN accuracy is tested and overfitting is avoided by using a subset of the training data that is set aside as a test data set. We have achieved an automated fire detection accuracy of 80-92%, depending on a variety of ANN parameters and for different instrument channels among the 3 satellites. We believe that this system can be deployed worldwide or for any region to detect wildfires automatically in satellite imagery of those regions. These detections can ultimately be used to provide thermal inputs to climate models.

  5. Automated assistance for detecting malicious code

    SciTech Connect

    Crawford, R.; Kerchen, P.; Levitt, K.; Olsson, R.; Archer, M.; Casillas, M.

    1993-06-18

    This paper gives an update on the continuing work on the Malicious Code Testbed (MCT). The MCT is a semi-automated tool, operating in a simulated, cleanroom environment, that is capable of detecting many types of malicious code, such as viruses, Trojan horses, and time/logic bombs. The MCT allows security analysts to check a program before installation, thereby avoiding any damage a malicious program might inflict.

  6. Fault detection, isolation and reconfiguration in FTMP Methods and experimental results. [fault tolerant multiprocessor

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1983-01-01

    The Fault-Tolerant Multiprocessor (FTMP) is a highly reliable computer designed to meet a goal of 10 to the -10th failures per hour and built with the objective of flying an active-control transport aircraft. Fault detection, identification, and recovery software is described, and experimental results obtained by injecting faults in the pin level in the FTMP are presented. Over 21,000 faults were injected in the CPU, memory, bus interface circuits, and error detection, masking, and error reporting circuits of one LRU of the multiprocessor. Detection, isolation, and reconfiguration times were recorded for each fault, and the results were found to agree well with earlier assumptions made in reliability modeling.

  7. Dynamic faulting on a conjugate fault system detected by near-fault tilt measurements

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi

    2015-03-01

    There have been reports of conjugate faults that have ruptured during earthquakes. However, it is still unclear whether or not these conjugate faults ruptured coseismically during earthquakes. In this paper, we investigated near-fault ground tilt motions observed at the IWTH25 station during the 2008 Iwate-Miyagi Nairiku earthquake ( M w 6.9). Since near-fault tilt motion is very sensitive to the fault geometry on which the slip occurs during an earthquake, these data make it possible to distinguish between the main fault rupture and a rupture on the conjugate fault. We examined several fault models that have already been proposed and confirmed that only the models with a conjugated fault could explain the tilt data observed at IWTH25. The results support the existence of simultaneous conjugate faulting during the main rupture. This will contribute to the understanding of earthquake rupture dynamics because the conjugate rupture releases the same shear strain as that released on the main fault, and thus it has been considered quite difficult for both ruptures to accelerate simultaneously.

  8. Automated target detection from compressive measurements

    NASA Astrophysics Data System (ADS)

    Shilling, Richard Z.; Muise, Robert R.

    2016-04-01

    A novel compressive imaging model is proposed that multiplexes segments of the field of view onto an infrared focal plane array (FPA). Similar to the compound eyes of insects, our imaging model is based on combining pixels from a surface comprising of different parts of the field of view (FOV). We formalize this superposition of pixels in a global multiplexing process reducing the resolution requirements of the FPA. We then apply automated target detection algorithms directed on the measurements of this model in a typical missile seeker scene. Based on quadratic correlation filters, we extend the target training and detection processes directly using these encoded measurements. Preliminary results are promising.

  9. Detection of feed-through faults in CMOS storage elements

    NASA Technical Reports Server (NTRS)

    Al-Assadi, Waleed K.; Malaiya, Yashwant K.; Jayasumana, Anura P.

    1992-01-01

    In testing sequential circuits, internal faults in the storage elements (SE's) are sometimes modeled as stuck-at faults in the combinational circuits surrounding the SE. The detection of some transistor-level faults that cannot be modeled as stuck-at are considered. These feed-through faults cause the cell to become either data-feed-through, which makes the cell combinational, or clock-feed-through, which causes the clock signal or its complement to appear at the output. Under such faults, the cell does not function as a memory element. Here it is shown that such faults may or may not be detected depending on delays involved. Conditions under which race-ahead occurs are identified.

  10. Fault detection and diagnosis of diesel engine valve trains

    NASA Astrophysics Data System (ADS)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  11. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    Wildfires have a profound impact upon the biosphere and our society in general. They cause loss of life, destruction of personal property and natural resources and alter the chemistry of the atmosphere. In response to the concern over the consequences of wildland fire and to support the fire management community, the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS) located in Camp Springs, Maryland gradually developed an operational system to routinely monitor wildland fire by satellite observations. The Hazard Mapping System, as it is known today, allows a team of trained fire analysts to examine and integrate, on a daily basis, remote sensing data from Geostationary Operational Environmental Satellite (GOES), Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors and generate a 24 hour fire product for the conterminous United States. Although assisted by automated fire detection algorithms, N O M has not been able to eliminate the human element from their fire detection procedures. As a consequence, the manually intensive effort has prevented NOAA from transitioning to a global fire product as urged particularly by climate modelers. NASA at Goddard Space Flight Center in Greenbelt, Maryland is helping N O M more fully automate the Hazard Mapping System by training neural networks to mimic the decision-making process of the frre analyst team as well as the automated algorithms.

  12. Fault-Detection Tool Has Companies 'Mining' Own Business

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A successful launching of NASA's Space Shuttle hinges heavily on the three Space Shuttle Main Engines (SSME) that power the orbiter. These critical components must be monitored in real time, with sensors, and compared against expected behaviors that could scrub a launch or, even worse, cause in- flight hazards. Since 1981, SSME faults have caused 23 scrubbed launches and 29 percent of total Space Shuttle downtime, according to a compilation of analysis reports. The most serious cases typically occur in the last few seconds before ignition; a launch scrub that late in the countdown usually means a period of investigation of a month or more. For example, during the launch attempt of STS-41D in 1984, an anomaly was detected in the number three engine, causing the mission to be scrubbed at T-4 seconds. This not only affected STS-41D, but forced the cancellation of another mission and caused a 2-month flight delay. In 2002, NASA s Kennedy Space Center, the Florida Institute of Technology, and Interface & Control Systems, Inc., worked together to attack this problem by creating a system that could automate the detection of mechanical failures in the SSMEs fuel control valves.

  13. Automated DNA electrophoresis, hybridization and detection

    SciTech Connect

    Zapolski, E.J.; Gersten, D.M.; Golab, T.J.; Ledley, R.S.

    1986-05-01

    A fully automated, computer controlled system for nucleic acid hybridization analysis has been devised and constructed. In practice, DNA is digested with restriction endonuclease enzyme(s) and loaded into the system by pipette; /sup 32/P-labelled nucleic acid probe(s) is loaded into the nine hybridization chambers. Instructions for all the steps in the automated process are specified by answering questions that appear on the computer screen at the start of the experiment. Subsequent steps are performed automatically. The system performs horizontal electrophoresis in agarose gel, fixed the fragments to a solid phase matrix, denatures, neutralizes, prehybridizes, hybridizes, washes, dries and detects the radioactivity according to the specifications given by the operator. The results, printed out at the end, give the positions on the matrix to which radioactivity remains hybridized following stringent washing.

  14. Bearing Fault Detection in Induction Motor-Gearbox Drivetrain

    NASA Astrophysics Data System (ADS)

    Cibulka, Jaroslav; Ebbesen, Morten K.; Robbersmyr, Kjell G.

    2012-05-01

    The main contribution in the hereby presented paper is to investigate the fault detection capability of a motor current signature analysis by expanding its scope to include the gearbox, and not only the induction motor. Detecting bearing faults outside the induction motor through the stator current analysis represents an interesting alternative to traditional vibration analysis. Bearing faults cause changes in the stator current spectrum that can be used for fault diagnosis purposes. A time-domain simulation of the drivetrain model is developed. The drivetrain system consists of a loaded single stage gearbox driven by a line-fed induction motor. Three typical bearing faults in the gearbox are addressed, i.e. defects in the outer raceway, the inner raceway, and the rolling element. The interaction with the fault is modelled by means of kinematical and mechanical relations. The fault region is modelled in order to achieve gradual loss and gain of contact. A bearing fault generates an additional torque component that varies at the specific bearing defect frequency. The presented dynamic electromagnetic dq-model of an induction motor is adjusted for diagnostic purpose and considers such torque variations. The bearing fault is detected as a phase modulation of the stator current sine wave at the expected bearing defect frequency.

  15. All-to-all sequenced fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-02

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  16. Research of Gear Fault Detection in Morphological Wavelet Domain

    NASA Astrophysics Data System (ADS)

    Hong, Shi; Fang-jian, Shan; Bo, Cong; Wei, Qiu

    2016-02-01

    For extracting mutation information from gear fault signal and achieving a valid fault diagnosis, a gear fault diagnosis method based on morphological mean wavelet transform was designed. Morphological mean wavelet transform is a linear wavelet in the framework of morphological wavelet. Decomposing gear fault signal by this morphological mean wavelet transform could produce signal synthesis operators and detailed synthesis operators. For signal synthesis operators, it was just close to orginal signal, and for detailed synthesis operators, it contained fault impact signal or interference signal and could be catched. The simulation experiment result indicates that, compared with Fourier transform, the morphological mean wavelet transform method can do time-frequency analysis for original signal, effectively catch impact signal appears position; and compared with traditional linear wavelet transform, it has simple structure, easy realization, signal local extremum sensitivity and high denoising ability, so it is more adapted to gear fault real-time detection.

  17. Automated change detection for synthetic aperture sonar

    NASA Astrophysics Data System (ADS)

    G-Michael, Tesfaye; Marchand, Bradley; Tucker, J. D.; Sternlicht, Daniel D.; Marston, Timothy M.; Azimi-Sadjadi, Mahmood R.

    2014-05-01

    In this paper, an automated change detection technique is presented that compares new and historical seafloor images created with sidescan synthetic aperture sonar (SAS) for changes occurring over time. The method consists of a four stage process: a coarse navigational alignment; fine-scale co-registration using the scale invariant feature transform (SIFT) algorithm to match features between overlapping images; sub-pixel co-registration to improves phase coherence; and finally, change detection utilizing canonical correlation analysis (CCA). The method was tested using data collected with a high-frequency SAS in a sandy shallow-water environment. By using precise co-registration tools and change detection algorithms, it is shown that the coherent nature of the SAS data can be exploited and utilized in this environment over time scales ranging from hours through several days.

  18. Sludge settleability detection using automated SV30 measurement and its application to a field WWTP.

    PubMed

    Kim, Y J; Choi, S J; Bae, H; Kim, C W

    2011-01-01

    The need for automation & measurement technologies to detect the process state has been a driving force in the development of various measurements at wastewater treatment plants. While the number of applications of automation & measurement technologies to the field is increasing, there have only been a few cases where they have been applied to the area of sludge settling. This is because it is not easy to develop an automated operation support system for the detection of sludge settleability due to its site-specific characteristics. To automate the human operator's daily test and diagnosis works on sludge settling, an on-line SV30 measurement was developed and an automated detection algorithm on settleability was developed that imitated heuristics to detect settleability faults. The automated SV30 measurement is based on automatic pumping with a predefined schedule, the image capture of the settling test with a digital camera, and an analysis of the images to detect the settled sludge height. A sludge settleability detection method was developed and its applicability was investigated by field application. PMID:22335120

  19. Health Monitoring System for the SSME-fault detection algorithms

    NASA Technical Reports Server (NTRS)

    Tulpule, S.; Galinaitis, W. S.

    1990-01-01

    A Health Monitoring System (HMS) Framework for the Space Shuttle Main Engine (SSME) has been developed by United Technologies Corporation (UTC) for the NASA Lewis Research Center. As part of this effort, fault detection algorithms have been developed to detect the SSME faults with sufficient time to shutdown the engine. These algorithms have been designed to provide monitoring coverage during the startup, mainstage and shutdown phases of the SSME operation. The algorithms have the capability to detect multiple SSME faults, and are based on time series, regression and clustering techniques. This paper presents a discussion of candidate algorithms suitable for fault detection followed by a description of the algorithms selected for implementation in the HMS and the results of testing these algorithms with the SSME test stand data.

  20. Fault detection in rotary blood pumps using motor speed response.

    PubMed

    Soucy, Kevin G; Koenig, Steven C; Sobieski, Michael A; Slaughter, Mark S; Giridharan, Guruprasad A

    2013-01-01

    Clinical acceptance of ventricular assist devices (VADs) as long-term heart failure therapy requires safe and effective circulatory support for a minimum of 5 years. Yet, VAD failure beyond 2 years of support is still a concern. Currently, device controllers cannot consistently predict VAD failure modes, and undetected VAD faults may lead to catastrophic device failure. To minimize this risk, a model-based algorithm for reliable VAD fault detection that only requires VAD revolutions per minute (rpm) was developed. The algorithm was tested using computer models of the human cardiovascular system simulating heart failure and axial flow (AF) or centrifugal flow (CF) VADs. Ventricular assist device rpm was monitored after a step down of motor current for normal and simulated fault conditions (>750 faults). The ability to detect fault conditions with 1%, 5%, and 10% rpm measurement noise was evaluated. All failure modes affected the VAD rpm responses to the motor current step down. Fault detection rates were >95% for AF and >89% for CF VADs, even with 10% rpm measurement noise. The VAD rpm responses were significantly altered by blood viscosity (3.5-6.2 cP), which should be accounted for in clinical application. The proposed VAD fault detection algorithm may deliver a convenient and nonintrusive way to minimize catastrophic device failures. PMID:23820281

  1. Soft Computing Application in Fault Detection of Induction Motor

    SciTech Connect

    Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.

    2010-10-26

    The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

  2. Automated detection of Antarctic blue whale calls.

    PubMed

    Socheleau, Francois-Xavier; Leroy, Emmanuelle; Pecci, Andres Carvallo; Samaran, Flore; Bonnel, Julien; Royer, Jean-Yves

    2015-11-01

    This paper addresses the problem of automated detection of Z-calls emitted by Antarctic blue whales (B. m. intermedia). The proposed solution is based on a subspace detector of sigmoidal-frequency signals with unknown time-varying amplitude. This detection strategy takes into account frequency variations of blue whale calls as well as the presence of other transient sounds that can interfere with Z-calls (such as airguns or other whale calls). The proposed method has been tested on more than 105 h of acoustic data containing about 2200 Z-calls (as found by an experienced human operator). This method is shown to have a correct-detection rate of up to more than 15% better than the extensible bioacoustic tool package, a spectrogram-based correlation detector commonly used to study blue whales. Because the proposed method relies on subspace detection, it does not suffer from some drawbacks of correlation-based detectors. In particular, it does not require the choice of an a priori fixed and subjective template. The analytic expression of the detection performance is also derived, which provides crucial information for higher level analyses such as animal density estimation from acoustic data. Finally, the detection threshold automatically adapts to the soundscape in order not to violate a user-specified false alarm rate. PMID:26627784

  3. Automated oil spill detection with multispectral imagery

    NASA Astrophysics Data System (ADS)

    Bradford, Brian N.; Sanchez-Reyes, Pedro J.

    2011-06-01

    In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.

  4. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    SciTech Connect

    Zappala, D.; Tavner, P.; Crabtree, C.; Sheng, S.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data represent one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.

  5. Simultaneous fault detection and control for switched systems with actuator faults

    NASA Astrophysics Data System (ADS)

    Li, Jian; Yang, Guang-Hong

    2016-07-01

    This paper is concerned with the fault detection and control problem for discrete-time switched systems. The actuator faults, especially 'outage cases', are considered. The detector/controller is designed simultaneously such that the closed-loop system switches under an average dwell time, and when a fault is detected, an alarm is generated and then the controller is switched to allow the norm of the states of the subsystem to increase within the acceptable limits. Thus, a switching strategy which combines average dwell time switching with event-driven switching is proposed. Under this switching strategy, the attention is focused on designing the detector/controller such that estimation errors between residual signals and faults are minimised for the fulfillment of fault detection objectives; simultaneously, the closed-loop system becomes asymptotically stable for the fulfillment of control objectives. A two-step procedure is adopted to obtain the solutions through satisfying a set of linear matrix inequalities. An example comprising of three cases is considered. Through these cases, it is demonstrated that the fault detection and control for switched systems using a two-stage switching strategy and asynchronous switching are feasible.

  6. Automated Generation of Fault Management Artifacts from a Simple System Model

    NASA Technical Reports Server (NTRS)

    Kennedy, Andrew K.; Day, John C.

    2013-01-01

    Our understanding of off-nominal behavior - failure modes and fault propagation - in complex systems is often based purely on engineering intuition; specific cases are assessed in an ad hoc fashion as a (fallible) fault management engineer sees fit. This work is an attempt to provide a more rigorous approach to this understanding and assessment by automating the creation of a fault management artifact, the Failure Modes and Effects Analysis (FMEA) through querying a representation of the system in a SysML model. This work builds off the previous development of an off-nominal behavior model for the upcoming Soil Moisture Active-Passive (SMAP) mission at the Jet Propulsion Laboratory. We further developed the previous system model to more fully incorporate the ideas of State Analysis, and it was restructured in an organizational hierarchy that models the system as layers of control systems while also incorporating the concept of "design authority". We present software that was developed to traverse the elements and relationships in this model to automatically construct an FMEA spreadsheet. We further discuss extending this model to automatically generate other typical fault management artifacts, such as Fault Trees, to efficiently portray system behavior, and depend less on the intuition of fault management engineers to ensure complete examination of off-nominal behavior.

  7. A fault detection service for wide area distributed computations.

    SciTech Connect

    Stelling, P.

    1998-06-09

    The potential for faults in distributed computing systems is a significant complicating factor for application developers. While a variety of techniques exist for detecting and correcting faults, the implementation of these techniques in a particular context can be difficult. Hence, we propose a fault detection service designed to be incorporated, in a modular fashion, into distributed computing systems, tools, or applications. This service uses well-known techniques based on unreliable fault detectors to detect and report component failure, while allowing the user to tradeoff timeliness of reporting against false positive rates. We describe the architecture of this service, report on experimental results that quantify its cost and accuracy, and describe its use in two applications, monitoring the status of system components of the GUSTO computational grid testbed and as part of the NetSolve network-enabled numerical solver.

  8. Automated Detection of Clouds in Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2010-01-01

    Many different approaches have been used to automatically detect clouds in satellite imagery. Most approaches are deterministic and provide a binary cloud - no cloud product used in a variety of applications. Some of these applications require the identification of cloudy pixels for cloud parameter retrieval, while others require only an ability to mask out clouds for the retrieval of surface or atmospheric parameters in the absence of clouds. A few approaches estimate a probability of the presence of a cloud at each point in an image. These probabilities allow a user to select cloud information based on the tolerance of the application to uncertainty in the estimate. Many automated cloud detection techniques develop sophisticated tests using a combination of visible and infrared channels to determine the presence of clouds in both day and night imagery. Visible channels are quite effective in detecting clouds during the day, as long as test thresholds properly account for variations in surface features and atmospheric scattering. Cloud detection at night is more challenging, since only courser resolution infrared measurements are available. A few schemes use just two infrared channels for day and night cloud detection. The most influential factor in the success of a particular technique is the determination of the thresholds for each cloud test. The techniques which perform the best usually have thresholds that are varied based on the geographic region, time of year, time of day and solar angle.

  9. Automated object detection for astronomical images

    NASA Astrophysics Data System (ADS)

    Orellana, Sonny; Zhao, Lei; Boussalis, Helen; Liu, Charles; Rad, Khosrow; Dong, Jane

    2005-10-01

    Sponsored by the National Aeronautical Space Association (NASA), the Synergetic Education and Research in Enabling NASA-centered Academic Development of Engineers and Space Scientists (SERENADES) Laboratory was established at California State University, Los Angeles (CSULA). An important on-going research activity in this lab is to develop an easy-to-use image analysis software with the capability of automated object detection to facilitate astronomical research. This paper presented a fast object detection algorithm based on the characteristics of astronomical images. This algorithm consists of three steps. First, the foreground and background are separated using histogram-based approach. Second, connectivity analysis is conducted to extract individual object. The final step is post processing which refines the detection results. To improve the detection accuracy when some objects are blocked by clouds, top-hat transform is employed to split the sky into cloudy region and non-cloudy region. A multi-level thresholding algorithm is developed to select the optimal threshold for different regions. Experimental results show that our proposed approach can successfully detect the blocked objects by clouds.

  10. Automated Detection of Events of Scientific Interest

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    A report presents a slightly different perspective of the subject matter of Fusing Symbolic and Numerical Diagnostic Computations (NPO-42512), which appears elsewhere in this issue of NASA Tech Briefs. Briefly, the subject matter is the X-2000 Anomaly Detection Language, which is a developmental computing language for fusing two diagnostic computer programs one implementing a numerical analysis method, the other implementing a symbolic analysis method into a unified event-based decision analysis software system for real-time detection of events. In the case of the cited companion NASA Tech Briefs article, the contemplated events that one seeks to detect would be primarily failures or other changes that could adversely affect the safety or success of a spacecraft mission. In the case of the instant report, the events to be detected could also include natural phenomena that could be of scientific interest. Hence, the use of X- 2000 Anomaly Detection Language could contribute to a capability for automated, coordinated use of multiple sensors and sensor-output-data-processing hardware and software to effect opportunistic collection and analysis of scientific data.

  11. Fault detection in rotor bearing systems using time frequency techniques

    NASA Astrophysics Data System (ADS)

    Chandra, N. Harish; Sekhar, A. S.

    2016-05-01

    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  12. Convolutional Neural Network Based Fault Detection for Rotating Machinery

    NASA Astrophysics Data System (ADS)

    Janssens, Olivier; Slavkovikj, Viktor; Vervisch, Bram; Stockman, Kurt; Loccufier, Mia; Verstockt, Steven; Van de Walle, Rik; Van Hoecke, Sofie

    2016-09-01

    Vibration analysis is a well-established technique for condition monitoring of rotating machines as the vibration patterns differ depending on the fault or machine condition. Currently, mainly manually-engineered features, such as the ball pass frequencies of the raceway, RMS, kurtosis an crest, are used for automatic fault detection. Unfortunately, engineering and interpreting such features requires a significant level of human expertise. To enable non-experts in vibration analysis to perform condition monitoring, the overhead of feature engineering for specific faults needs to be reduced as much as possible. Therefore, in this article we propose a feature learning model for condition monitoring based on convolutional neural networks. The goal of this approach is to autonomously learn useful features for bearing fault detection from the data itself. Several types of bearing faults such as outer-raceway faults and lubrication degradation are considered, but also healthy bearings and rotor imbalance are included. For each condition, several bearings are tested to ensure generalization of the fault-detection system. Furthermore, the feature-learning based approach is compared to a feature-engineering based approach using the same data to objectively quantify their performance. The results indicate that the feature-learning system, based on convolutional neural networks, significantly outperforms the classical feature-engineering based approach which uses manually engineered features and a random forest classifier. The former achieves an accuracy of 93.61 percent and the latter an accuracy of 87.25 percent.

  13. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-23

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  14. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-06-29

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  15. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-03-17

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  16. Optimal Sensor Allocation for Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann

    2004-01-01

    Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.

  17. Automated Microbiological Detection/Identification System

    PubMed Central

    Aldridge, C.; Jones, P. W.; Gibson, S.; Lanham, J.; Meyer, M.; Vannest, R.; Charles, R.

    1977-01-01

    An automated, computerized system, the AutoMicrobic System, has been developed for the detection, enumeration, and identification of bacteria and yeasts in clinical specimens. The biological basis for the system resides in lyophilized, highly selective and specific media enclosed in wells of a disposable plastic cuvette; introduction of a suitable specimen rehydrates and inoculates the media in the wells. An automated optical system monitors, and the computer interprets, changes in the media, with enumeration and identification results automatically obtained in 13 h. Sixteen different selective media were developed and tested with a variety of seeded (simulated) and clinical specimens. The AutoMicrobic System has been extensively tested with urine specimens, using a urine test kit (Identi-Pak) that contains selective media for Escherichia coli, Proteus species, Pseudomonas aeruginosa, Klebsiella-Enterobacter species, Serratia species, Citrobacter freundii, group D enterococci, Staphylococcus aureus, and yeasts (Candida species and Torulopsis glabrata). The system has been tested with 3,370 seeded urine specimens and 1,486 clinical urines. Agreement with simultaneous conventional (manual) cultures, at levels of 70,000 colony-forming units per ml (or more), was 92% or better for seeded specimens; clinical specimens yielded results of 93% or better for all organisms except P. aeruginosa, where agreement was 86%. System expansion in progress includes antibiotic susceptibility testing and compatibility with most types of clinical specimens. Images PMID:334798

  18. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  19. Automated detection of elephants in wildlife video

    PubMed Central

    Zeppelzauer, Matthias

    2015-01-01

    Biologists often have to investigate large amounts of video in behavioral studies of animals. These videos are usually not sufficiently indexed which makes the finding of objects of interest a time-consuming task. We propose a fully automated method for the detection and tracking of elephants in wildlife video which has been collected by biologists in the field. The method dynamically learns a color model of elephants from a few training images. Based on the color model, we localize elephants in video sequences with different backgrounds and lighting conditions. We exploit temporal clues from the video to improve the robustness of the approach and to obtain spatial and temporal consistent detections. The proposed method detects elephants (and groups of elephants) of different sizes and poses performing different activities. The method is robust to occlusions (e.g., by vegetation) and correctly handles camera motion and different lighting conditions. Experiments show that both near- and far-distant elephants can be detected and tracked reliably. The proposed method enables biologists efficient and direct access to their video collections which facilitates further behavioral and ecological studies. The method does not make hard constraints on the species of elephants themselves and is thus easily adaptable to other animal species. PMID:25902006

  20. Detecting Faults In High-Voltage Transformers

    NASA Technical Reports Server (NTRS)

    Blow, Raymond K.

    1988-01-01

    Simple fixture quickly shows whether high-voltage transformer has excessive voids in dielectric materials and whether high-voltage lead wires too close to transformer case. Fixture is "go/no-go" indicator; corona appears if transformer contains such faults. Nests in wire mesh supported by cap of clear epoxy. If transformer has defects, blue glow of corona appears in mesh and is seen through cap.

  1. Detecting surface faults on solar mirrors

    NASA Technical Reports Server (NTRS)

    Argoud, M. J.; Shumate, M. S.; Walker, W. L.; Zanteson, R. A.

    1980-01-01

    Two quality control tests determine reflectivity and curvature faults of concave solar mirrors. Curvature defects in solar mirrors are easily revealed by photographing mirror surface. Calibrated aperture placed in front of camera lens admits rays reflecting only from acceptable areas of mirror, blocking out diverging rays reflected from defective areas. Defects can pinpoint problems that may exist in production. Same photograph can be obtained using calibrated disk instead of aperture, except that, this time, only defective areas would be exposed.

  2. Space shuttle main engine fault detection using neural networks

    NASA Technical Reports Server (NTRS)

    Bishop, Thomas; Greenwood, Dan; Shew, Kenneth; Stevenson, Fareed

    1991-01-01

    A method for on-line Space Shuttle Main Engine (SSME) anomaly detection and fault typing using a feedback neural network is described. The method involves the computation of features representing time-variance of SSME sensor parameters, using historical test case data. The network is trained, using backpropagation, to recognize a set of fault cases. The network is then able to diagnose new fault cases correctly. An essential element of the training technique is the inclusion of randomly generated data along with the real data, in order to span the entire input space of potential non-nominal data.

  3. An Automated Flying-Insect-Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2005-01-01

    An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.

  4. Automated image based prominent nucleoli detection

    PubMed Central

    Yap, Choon K.; Kalaw, Emarene M.; Singh, Malay; Chong, Kian T.; Giron, Danilo M.; Huang, Chao-Hui; Cheng, Li; Law, Yan N.; Lee, Hwee Kuan

    2015-01-01

    Introduction: Nucleolar changes in cancer cells are one of the cytologic features important to the tumor pathologist in cancer assessments of tissue biopsies. However, inter-observer variability and the manual approach to this work hamper the accuracy of the assessment by pathologists. In this paper, we propose a computational method for prominent nucleoli pattern detection. Materials and Methods: Thirty-five hematoxylin and eosin stained images were acquired from prostate cancer, breast cancer, renal clear cell cancer and renal papillary cell cancer tissues. Prostate cancer images were used for the development of a computer-based automated prominent nucleoli pattern detector built on a cascade farm. An ensemble of approximately 1000 cascades was constructed by permuting different combinations of classifiers such as support vector machines, eXclusive component analysis, boosting, and logistic regression. The output of cascades was then combined using the RankBoost algorithm. The output of our prominent nucleoli pattern detector is a ranked set of detected image patches of patterns of prominent nucleoli. Results: The mean number of detected prominent nucleoli patterns in the top 100 ranked detected objects was 58 in the prostate cancer dataset, 68 in the breast cancer dataset, 86 in the renal clear cell cancer dataset, and 76 in the renal papillary cell cancer dataset. The proposed cascade farm performs twice as good as the use of a single cascade proposed in the seminal paper by Viola and Jones. For comparison, a naive algorithm that randomly chooses a pixel as a nucleoli pattern would detect five correct patterns in the first 100 ranked objects. Conclusions: Detection of sparse nucleoli patterns in a large background of highly variable tissue patterns is a difficult challenge our method has overcome. This study developed an accurate prominent nucleoli pattern detector with the potential to be used in the clinical settings. PMID:26167383

  5. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1987-01-01

    Multi-version or N-version programming is proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. These versions are executed in parallel in the application environment; each receives identical inputs and each produces its version of the required outputs. The outputs are collected by a voter and, in principle, they should all be the same. In practice there may be some disagreement. If this occurs, the results of the majority are taken to be the correct output, and that is the output used by the system. A total of 27 programs were produced. Each of these programs was then subjected to one million randomly-generated test cases. The experiment yielded a number of programs containing faults that are useful for general studies of software reliability as well as studies of N-version programming. Fault tolerance through data diversity and analytic models of comparison testing are discussed.

  6. Advanced Information Processing System - Fault detection and error handling

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1985-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.

  7. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  8. Automated detection of Karnal bunt teliospores

    SciTech Connect

    Linder, K.D.; Baumgart, C.; Creager, J.; Heinen, B.; Troupe, T.; Meyer, D.; Carr, J.; Quint, J.

    1998-02-01

    Karnal bunt is a fungal disease which infects wheat and, when present in wheat crops, yields it unsatisfactory for human consumption. Due to the fact that Karnal bunt (KB) is difficult to detect in the field, samples are taken to laboratories where technicians use microscopes and methodically search for KB teliospores. AlliedSignal Federal Manufacturing and Technologies (FM and T), working with the Kansas Department of Agriculture, created a system which utilizes pattern recognition, feature extraction, and neural networks to prototype an automated detection system for identifying KB teliospores. System hardware consists of a biological compound microscope, motorized stage, CCD camera, frame grabber, and a PC. Integration of the system hardware with custom software comprises the machine vision system. Fundamental processing steps involve capturing an image from the slide, while concurrently processing the previous image. Features extracted from the acquired imagery are then processed by a neural network classifier which has been trained to recognize spore-like objects. Images with spore-like objects are reviewed by trained technicians. Benefits of this system include: (1) reduction of the overall cycle-time; (2) utilization of technicians for intelligent decision making (vs. manual searching); (3) a regulatory standard which is quantifiable and repeatable; (4) guaranteed 100% coverage of the cover slip; and (5) significantly enhanced detection accuracy.

  9. Automated Detection of Activity Transitions for Prompting

    PubMed Central

    Feuz, Kyle D.; Cook, Diane J.; Rosasco, Cody; Robertson, Kayela; Schmitter-Edgecombe, Maureen

    2016-01-01

    Individuals with cognitive impairment can benefit from intervention strategies like recording important information in a memory notebook. However, training individuals to use the notebook on a regular basis requires a constant delivery of reminders. In this work, we design and evaluate machine learning-based methods for providing automated reminders using a digital memory notebook interface. Specifically, we identify transition periods between activities as times to issue prompts. We consider the problem of detecting activity transitions using supervised and unsupervised machine learning techniques, and find that both techniques show promising results for detecting transition periods. We test the techniques in a scripted setting with 15 individuals. Motion sensors data is recorded and annotated as participants perform a fixed set of activities. We also test the techniques in an unscripted setting with 8 individuals. Motion sensor data is recorded as participants go about their normal daily routine. In both the scripted and unscripted settings a true positive rate of greater than 80% can be achieved while maintaining a false positive rate of less than 15%. On average, this leads to transitions being detected within 1 minute of a true transition for the scripted data and within 2 minutes of a true transition on the unscripted data. PMID:27019791

  10. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    SciTech Connect

    Cheung, Howard; Braun, James E.

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  11. Sparsity-based algorithm for detecting faults in rotating machines

    NASA Astrophysics Data System (ADS)

    He, Wangpeng; Ding, Yin; Zi, Yanyang; Selesnick, Ivan W.

    2016-05-01

    This paper addresses the detection of periodic transients in vibration signals so as to detect faults in rotating machines. For this purpose, we present a method to estimate periodic-group-sparse signals in noise. The method is based on the formulation of a convex optimization problem. A fast iterative algorithm is given for its solution. A simulated signal is formulated to verify the performance of the proposed approach for periodic feature extraction. The detection performance of comparative methods is compared with that of the proposed approach via RMSE values and receiver operating characteristic (ROC) curves. Finally, the proposed approach is applied to single fault diagnosis of a locomotive bearing and compound faults diagnosis of motor bearings. The processed results show that the proposed approach can effectively detect and extract the useful features of bearing outer race and inner race defect.

  12. MIL-M-38510/470 test vectors: Fault detection efficiency measurement via hardware fault simulation. [rca 1802 microprocessor

    NASA Technical Reports Server (NTRS)

    Timoc, C. C.

    1980-01-01

    The stuck fault detection efficiency of the test vectors developed for the MIL-M-38510/470 NASA was measured using a hardware stuck fault simulator for the 1802 microprocessor. Thirty-nine stuck faults were not detected out of a total of 874 injected into the combinatorial and sequential parts of the microprocessor. Since undetected faults can create catastrophic errors in equipment designed for high reliability applications, it is recommended that the MIL-M-38510/470 NASA be enhanced with additional test vectors so as to achieve 100% stuck fault detection efficiency.

  13. Aircraft Fault Detection and Classification Using Multi-Level Immune Learning Detection

    NASA Technical Reports Server (NTRS)

    Wong, Derek; Poll, Scott; KrishnaKumar, Kalmanje

    2005-01-01

    This work is an extension of a recently developed software tool called MILD (Multi-level Immune Learning Detection), which implements a negative selection algorithm for anomaly and fault detection that is inspired by the human immune system. The immunity-based approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by applying a neural network classifier to identify the pattern of fault detectors that are activated during fault detection. Consequently, MILD now performs fault detection and identification of the system under investigation. This paper describes the application of MILD to detect and classify faults of a generic transport aircraft augmented with an intelligent flight controller. The intelligent control architecture is designed to accommodate faults without the need to explicitly identify them. Adding knowledge about the existence and type of a fault will improve the handling qualities of a degraded aircraft and impact tactical and strategic maneuvering decisions. In addition, providing fault information to the pilot is important for maintaining situational awareness so that he can avoid performing an action that might lead to unexpected behavior - e.g., an action that exceeds the remaining control authority of the damaged aircraft. We discuss the detection and classification results of simulated failures of the aircraft's control system and show that MILD is effective at determining the problem with low false alarm and misclassification rates.

  14. An Automated Flying-Insect Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2007-01-01

    An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has

  15. Detection of Rooftop Cooling Unit Faults Based on Electrical Measurements

    SciTech Connect

    Armstrong, Peter R.; Laughman, C R.; Leeb, S B.; Norford, L K.

    2006-01-31

    Non-intrusive load monitoring (NILM) is accomplished by sampling voltage and current at high rates and reducing the resulting start transients or harmonic contents to concise ''signatures''. Changes in these signatures can be used to detect, and in many cases directly diagnose, equipment and component faults associated with roof-top cooling units. Use of the NILM for fault detection and diagnosis (FDD) is important because (1) it complements other FDD schemes that are based on thermo-fluid sensors and analyses and (2) it is minimally intrusive (one measuring point in the relatively protected confines of the control panel) and therefore inherently reliable. This paper describes changes in the power signatures of fans and compressors that were found, experimentally and theoretically, to be useful for fault detection.

  16. Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems.

    PubMed

    Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed

    2015-07-01

    The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework. PMID:25747198

  17. Online Monitoring System for Performance Fault Detection

    SciTech Connect

    Gioiosa, Roberto; Kestor, Gokcen; Kerbyson, Darren J.

    2014-12-31

    To achieve the exaFLOPS performance within a contained power budget, next generation supercomputers will feature hundreds of millions of components operating at low- and near-threshold voltage. As the probability that at least one of these components fails during the execution of an application approaches certainty, it seems unrealistic to expect that any run of a scientific application will not experience some performance faults. We believe that there is need of a new generation of light-weight performance and debugging tools that can be used online even during production runs of parallel applications and that can identify performance anomalies during the application execution. In this work we propose the design and implementation of such a monitoring system.

  18. Online Monitoring System for Performance Fault Detection

    SciTech Connect

    Gioiosa, Roberto; Kestor, Gokcen; Kerbyson, Darren J.

    2014-05-19

    To achieve the exaFLOPS performance within a contain power budget, next supercomputers will feature hundreds of millions of components operating at low- and near-threshold voltage. As the probability that at least one of these components fails during the execution of an application approaches certainty, it seems unrealistic to expect that any run of a scientific application will not experience some performance faults. We believe that there is need of a new generation of light-weight performance and debugging tools that can be used online even during production runs of parallel applications and that can identify performance anomalies during the application execution. In this work we propose the design and implementation of a monitoring system that continuously inspects the evolution of run

  19. Fault detection and isolation for multisensor navigation systems

    NASA Technical Reports Server (NTRS)

    Kline, Paul A.; Vangraas, Frank

    1991-01-01

    Increasing attention is being given to the problem of erroneous measurement data for multisensor navigation systems. A recursive estimator can be used in conjunction with a 'snapshot' batch estimator to provide fault detection and isolation (FDI) for these systems. A recursive estimator uses past system states to form a new state estimate and compares it to the calculated state based on a new set of measurements. A 'snapshot' batch estimator uses a set of measurements collected simultaneously and compares solutions based on subsets of measurements. The 'snapshot' approach requires redundant measurements in order to detect and isolate faults. FDI is also referred to as Receiver Autonomous Integrity Monitoring (RAIM).

  20. Application of classification functions to chiller fault detection and diagnosis

    SciTech Connect

    Stylianou, M.

    1997-12-31

    This paper describes the application of a statistical pattern recognition algorithm (SPRA) to fault detection and diagnosis of commercial reciprocating chillers. The developed fault detection and diagnosis module has been trained to recognize five distinct conditions, namely, normal operation, refrigerant leak, restriction in the liquid refrigerant line, and restrictions in the water circuits of the evaporator and condenser. The algorithm used in the development is described, and the results of its application to an experimental test bench are discussed. Experimental results show that the SPRA provides an effective way of classifying patterns in multivariable, multiclass problems without having to explicitly use a rule-based system.

  1. An Intelligent Fault Detection and Isolation Architecture for Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Rahnamai, K.; Arabshahi, P.; Yan, T.-Y.; Pham, T.; Finley, S. G.

    1997-10-01

    This article describes a general architecture for fault modeling, diagnosis, and isolation of the DSN antenna array based on computationally intelligent techniques(neural networks and fuzzy logic). It encompasses a suite of intelligent test and diagnosis algorithms in software. By continuously monitoring the health of the highly complex and nonlinear array observables, the automated diagnosis software will be able to identify and isolate the most likely causes of system failure in cases of faulty operation. Furthermore, it will be able to recommend a series of corresponding corrective actions and effectively act as an automated real-time and interactive system supervisor. In so doing, it will enhance the array capability by reducing the operational workload, increasing science information availability, reducing the overall cost of operation by reducing system downtimes, improving risk management, and making mission planning much more reliable. Operation of this architecture is illustrated using examples from observables available from the 34-meter arraying task.

  2. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1992-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  3. Fuzzy model-based observers for fault detection in CSTR.

    PubMed

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan

    2015-11-01

    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. PMID:26521723

  4. Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the model development process used to create a Functional Fault Model (FFM) of a liquid hydrogen (L H2) system that will be used for realtime fault isolation in a Fault Detection, Isolation and Recover (FDIR) system. The paper explains th e steps in the model development process and the data products required at each step, including examples of how the steps were performed fo r the LH2 system. It also shows the relationship between the FDIR req uirements and steps in the model development process. The paper concl udes with a description of a demonstration of the LH2 model developed using the process and future steps for integrating the model in a live operational environment.

  5. Modeling, estimation, fault detection and fault diagnosis of spacecraft air contaminants

    NASA Astrophysics Data System (ADS)

    Narayan, Anand P.

    1998-07-01

    The objective of this dissertation is to develop a framework for the modeling, estimation, fault detection and diagnosis of air contaminants aboard spacecraft. Safe air is a vital resource aboard spacecraft for crewed missions, and especially so in long range missions, where the luxury of returning to earth for a clean-up does not exist. This research uses modern control theory in conjunction with advanced fluid mechanics to achieve the objective of developing an implementable comprehensive monitoring systems, suitable for use on space missions. First, a three-dimensional transport model is developed in order to model the dispersion of air contaminants. The flow field, which is an important input to the transport model, is obtained by solving the Navier Stokes equations for the cabin geometry and the appropriate boundary conditions, using a finite element method. Steady flow fields are computed for various conditions for both laminar and turbulent cases. Contamination dispersion studies are undertaken both for routine substances introduced through the inlet ducts and for emissions of toxics inside the cabin volume. The dispersion studies indicate that lumped models and even a two-dimensional model are sometimes inadequate to assure that the Spacecraft Maximum Allowable Concentrations (SMACs) are not exceeded locally. Since the research was targeted at real-time application aboard Spacecraft, a state estimation routine is implemented using Implicit Kalman Filtering. The routine makes use of the model predictions and measurements from the sensor system in order to arrive at an optimal estimate of the state of the system for each time step. Fault detection is accomplished through the use of analytical redundancy, where error residuals from the Kalman filter are monitored in order to detect any faults in the system, and to distinguish between sensor and process faults. Finally, a fault diagnosis system is developed, which is a combination of sensitivity analysis and an

  6. The IEEE eighteenth international symposium on fault-tolerant computing (Digest of Papers)

    SciTech Connect

    Not Available

    1988-01-01

    These proceedings collect papers on fault detection and computers. Topics include: software failure behavior, fault tolerant distributed programs, parallel simulation of faults, concurrent built-in self-test techniques, fault-tolerant parallel processor architectures, probabilistic fault diagnosis, fault tolerances in hypercube processors and cellular automation modeling.

  7. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    NASA Astrophysics Data System (ADS)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can

  8. Induction motor inter turn fault detection using infrared thermographic analysis

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Anil Kumar, T. Ch.; Naikan, V. N. A.

    2016-07-01

    Induction motors are the most commonly used prime movers in industries. These are subjected to various environmental, thermal and load stresses that ultimately reduces the motor efficiency and later leads to failure. Inter turn fault is the second most commonly observed faults in the motors and is considered the most severe. It can lead to the failure of complete phase and can even cause accidents, if left undetected or untreated. This paper proposes an online and non invasive technique that uses infrared thermography, in order to detect the presence of inter turn fault in induction motor drive. Two methods have been proposed that detect the fault and estimate its severity. One method uses transient thermal monitoring during the start of motor and other applies pseudo coloring technique on infrared image of the motor, after it reaches a thermal steady state. The designed template for pseudo-coloring is in acquiescence with the InterNational Electrical Testing Association (NETA) thermographic standard. An index is proposed to assess the severity of the fault present in the motor.

  9. Method of Fault Detection and Rerouting

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Gibson, Tracy L. (Inventor); Lewis, Mark E. (Inventor)

    2013-01-01

    A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.

  10. Fault-tolerant adaptive FIR filters using variable detection threshold

    NASA Astrophysics Data System (ADS)

    Lin, L. K.; Redinbo, G. R.

    1994-10-01

    Adaptive filters are widely used in many digital signal processing applications, where tap weight of the filters are adjusted by stochastic gradient search methods. Block adaptive filtering techniques, such as block least mean square and block conjugate gradient algorithm, were developed to speed up the convergence as well as improve the tracking capability which are two important factors in designing real-time adaptive filter systems. Even though algorithm-based fault tolerance can be used as a low-cost high level fault-tolerant technique to protect the aforementioned systems from hardware failures with minimal hardware overhead, the issue of choosing a good detection threshold remains a challenging problem. First of all, the systems usually only have limited computational resources, i.e., concurrent error detection and correction is not feasible. Secondly, any prior knowledge of input data is very difficult to get in practical settings. We propose a checksum-based fault detection scheme using two-level variable detection thresholds that is dynamically dependent on the past syndromes. Simulations show that the proposed scheme reduces the possibility of false alarms and has a high degree of fault coverage in adaptive filter systems.

  11. Battery Fault Detection with Saturating Transformers

    NASA Technical Reports Server (NTRS)

    Davies, Francis J. (Inventor); Graika, Jason R. (Inventor)

    2013-01-01

    A battery monitoring system utilizes a plurality of transformers interconnected with a battery having a plurality of battery cells. Windings of the transformers are driven with an excitation waveform whereupon signals are responsively detected, which indicate a health of the battery. In one embodiment, excitation windings and sense windings are separately provided for the plurality of transformers such that the excitation waveform is applied to the excitation windings and the signals are detected on the sense windings. In one embodiment, the number of sense windings and/or excitation windings is varied to permit location of underperforming battery cells utilizing a peak voltage detector.

  12. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  13. Fault detection and bypass in a sequence information signal processor

    NASA Technical Reports Server (NTRS)

    Peterson, John C. (Inventor); Chow, Edward T. (Inventor)

    1992-01-01

    The invention comprises a plurality of scan registers, each such register respectively associated with a processor element; an on-chip comparator, encoder and fault bypass register. Each scan register generates a unitary signal the logic state of which depends on the correctness of the input from the previous processor in the systolic array. These unitary signals are input to a common comparator which generates an output indicating whether or not an error has occurred. These unitary signals are also input to an encoder which identifies the location of any fault detected so that an appropriate multiplexer can be switched to bypass the faulty processor element. Input scan data can be readily programmed to fully exercise all of the processor elements so that no fault can remain undetected.

  14. Fault Detection and Isolation for Hydraulic Control

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Pressure sensors and isolation valves act to shut down defective servochannel. Redundant hydraulic system indirectly senses failure in any of its electrical control channels and mechanically isolates hydraulic channel controlled by faulty electrical channel so flat it cannot participate in operating system. With failure-detection and isolation technique, system can sustains two failed channels and still functions at full performance levels. Scheme useful on aircraft or other systems with hydraulic servovalves where failure cannot be tolerated.

  15. Probabilistic approaches to fault detection in networked discrete event systems.

    PubMed

    Athanasopoulou, Eleftheria; Hadjicostis, Christoforos N

    2005-09-01

    In this paper, we consider distributed systems that can be modeled as finite state machines with known behavior under fault-free conditions, and we study the detection of a general class of faults that manifest themselves as permanent changes in the next-state transition functionality of the system. This scenario could arise in a variety of situations encountered in communication networks, including faults occurred due to design or implementation errors during the execution of communication protocols. In our approach, fault diagnosis is performed by an external observer/diagnoser that functions as a finite state machine and which has access to the input sequence applied to the system but has only limited access to the system state or output. In particular, we assume that the observer/diagnoser is only able to obtain partial information regarding the state of the given system at intermittent time intervals that are determined by certain synchronizing conditions between the system and the observer/diagnoser. By adopting a probabilistic framework, we analyze ways to optimally choose these synchronizing conditions and develop adaptive strategies that achieve a low probability of aliasing, i.e., a low probability that the external observer/diagnoser incorrectly declares the system as fault-free. An application of these ideas in the context of protocol testing/classification is provided as an example. PMID:16252815

  16. Incipient fault detection study for advanced spacecraft systems

    NASA Technical Reports Server (NTRS)

    Milner, G. Martin; Black, Michael C.; Hovenga, J. Mike; Mcclure, Paul F.

    1986-01-01

    A feasibility study to investigate the application of vibration monitoring to the rotating machinery of planned NASA advanced spacecraft components is described. Factors investigated include: (1) special problems associated with small, high RPM machines; (2) application across multiple component types; (3) microgravity; (4) multiple fault types; (5) eight different analysis techniques including signature analysis, high frequency demodulation, cepstrum, clustering, amplitude analysis, and pattern recognition are compared; and (6) small sample statistical analysis is used to compare performance by computation of probability of detection and false alarm for an ensemble of repeated baseline and faulted tests. Both detection and classification performance are quantified. Vibration monitoring is shown to be an effective means of detecting the most important problem types for small, high RPM fans and pumps typical of those planned for the advanced spacecraft. A preliminary monitoring system design and implementation plan is presented.

  17. Automated System for Early Breast Cancer Detection in Mammograms

    NASA Technical Reports Server (NTRS)

    Bankman, Isaac N.; Kim, Dong W.; Christens-Barry, William A.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.

    1993-01-01

    The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed.

  18. A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.

    2010-01-01

    A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.

  19. Fault detection in electromagnetic suspension systems with state estimation methods

    SciTech Connect

    Sinha, P.K.; Zhou, F.B.; Kutiyal, R.S. . Dept. of Engineering)

    1993-11-01

    High-speed maglev vehicles need a high level of safety that depends on the whole vehicle system's reliability. There are many ways of attaining high reliability for the system. Conventional method uses redundant hardware with majority vote logic circuits. Hardware redundancy costs more, weigh more and occupy more space than that of analytically redundant methods. Analytically redundant systems use parameter identification and state estimation methods based on the system models to detect and isolate the fault of instruments (sensors), actuator and components. In this paper the authors use the Luenberger observer to estimate three state variables of the electromagnetic suspension system: position (airgap), vehicle velocity, and vertical acceleration. These estimates are compared with the corresponding sensor outputs for fault detection. In this paper, they consider FDI of the accelerometer, the sensor which provides the ride quality.

  20. An adaptive envelope spectrum technique for bearing fault detection

    NASA Astrophysics Data System (ADS)

    Sui, Wentao; Osman, Shazali; Wang, Wilson

    2014-09-01

    In this work, an adaptive envelope spectrum (AES) technique is proposed for bearing fault detection, especially for analyzing signals with transient events. The proposed AES technique first modulates the signal using the empirical mode decomposition to formulate the representative intrinsic mode functions (IMF), and then a novel IMF reconstruction method is proposed based on a correlation analysis of the envelope spectra. The reconstructed signal is post-processed by using an adaptive filter to enhance impulsive signatures, where the filter length is optimized by the proposed sparsity analysis technique. Bearing health conditions are diagnosed by examining bearing characteristic frequency information on the envelope power spectrum. The effectiveness of the proposed fault detection technique is verified by a series of experimental tests corresponding to different bearing conditions.

  1. Vibrational analysis using neural network classifier for motor fault detection

    NASA Astrophysics Data System (ADS)

    Su, Hua; Kim, Yeong Cheol; Lee, Yidong; Chong, Kil To

    2005-12-01

    Early detection and diagnosis of induction machine incipient faults are desirable for increasing machinery availability, reducing consequential damage, and improving operational efficiency. However, fault detection using analytical method is not always possible because it requires perfect knowledge of a process model. A neural network based expert system was proposed for diagnostic problems of the induction motors using vibration analysis. The short-time Fourier transform (STFT) was used to process the quasi-steady vibration signals, and the neural network was trained and tested using the vibration spectra. The efficiency of the developed neural network expert system was evaluated. The obtained results lead to a conclusion that neural network expert system can be developed based on vibration measurements acquired online from the machine.

  2. Bearings fault detection in helicopters using frequency readjustment and cyclostationary analysis

    NASA Astrophysics Data System (ADS)

    Girondin, Victor; Pekpe, Komi Midzodzi; Morel, Herve; Cassar, Jean-Philippe

    2013-07-01

    The objective of this paper is to propose a vibration-based automated framework dealing with local faults occurring on bearings in the transmission of a helicopter. The knowledge of the shaft speed and kinematic computation provide theoretical frequencies that reveal deteriorations on the inner and outer races, on the rolling elements or on the cage. In practice, the theoretical frequencies of bearing faults may be shifted. They may also be masked by parasitical frequencies because the numerous noisy vibrations and the complexity of the transmission mechanics make the signal spectrum very profuse. Consequently, detection methods based on the monitoring of the theoretical frequencies may lead to wrong decisions. In order to deal with this drawback, we propose to readjust the fault frequencies from the theoretical frequencies using the redundancy introduced by the harmonics. The proposed method provides the confidence index of the readjusted frequency. Minor variations in shaft speed may induce random jitters. The change of the contact surface or of the transmission path brings also a random component in amplitude and phase. These random components in the signal destroy spectral localization of frequencies and thus hide the fault occurrence in the spectrum. Under the hypothesis that these random signals can be modeled as cyclostationary signals, the envelope spectrum can reveal that hidden patterns. In order to provide an indicator estimating fault severity, statistics are proposed. They make the hypothesis that the harmonics at the readjusted frequency are corrupted with an additive normally distributed noise. In this case, the statistics computed from the spectra are chi-square distributed and a signal-to-noise indicator is proposed. The algorithms are then tested with data from two test benches and from flight conditions. The bearing type and the radial load are the main differences between the experiences on the benches. The fault is mainly visible in the

  3. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults

    NASA Astrophysics Data System (ADS)

    Golafshan, Reza; Yuce Sanliturk, Kenan

    2016-03-01

    Ball bearings remain one of the most crucial components in industrial machines and due to their critical role, it is of great importance to monitor their conditions under operation. However, due to the background noise in acquired signals, it is not always possible to identify probable faults. This incapability in identifying the faults makes the de-noising process one of the most essential steps in the field of Condition Monitoring (CM) and fault detection. In the present study, Singular Value Decomposition (SVD) and Hankel matrix based de-noising process is successfully applied to the ball bearing time domain vibration signals as well as to their spectrums for the elimination of the background noise and the improvement the reliability of the fault detection process. The test cases conducted using experimental as well as the simulated vibration signals demonstrate the effectiveness of the proposed de-noising approach for the ball bearing fault detection.

  4. Composite Bending Box Section Modal Vibration Fault Detection

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy

    2002-01-01

    One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.

  5. Performance Analysis of Fault Detection and Identification for Multiple Faults in GNSS and GNSS/INS Integration

    NASA Astrophysics Data System (ADS)

    Alqurashi, Muwaffaq; Wang, Jinling

    2015-03-01

    For positioning, navigation and timing (PNT) purposes, GNSS or GNSS/INS integration is utilised to provide real-time solutions. However, any potential sensor failures or faulty measurements due to malfunctions of sensor components or harsh operating environments may cause unsatisfactory estimation for PNT parameters. The inability for immediate detecting faulty measurements or sensor component failures will reduce the overall performance of the system. So, real time detection and identification of faulty measurements is required to make the system more accurate and reliable for different applications that need real time solutions such as real time mapping for safety or emergency purposes. Consequently, it is necessary to implement an online fault detection and isolation (FDI) algorithm which is a statistic-based approach to detect and identify multiple faults.However, further investigations on the performance of the FDI for multiple fault scenarios is still required. In this paper, the performance of the FDI method under multiple fault scenarios is evaluated, e.g., for two, three and four faults in the GNSS and GNSS/INS measurements under different conditions of visible satellites and satellites geometry. Besides, the reliability (e.g., MDB) and separability (correlation coefficients between faults detection statistics) measures are also investigated to measure the capability of the FDI method. A performance analysis of the FDI method is conducted under the geometric constraints, to show the importance of the FDI method in terms of fault detectability and separability for robust positioning and navigation for real time applications.

  6. Laboratory Detection of Respiratory Viruses by Automated Techniques

    PubMed Central

    Pérez-Ruiz, Mercedes; Pedrosa-Corral, Irene; Sanbonmatsu-Gámez, Sara; Navarro-Marí, José-María

    2012-01-01

    Advances in clinical virology for detecting respiratory viruses have been focused on nucleic acids amplification techniques, which have converted in the reference method for the diagnosis of acute respiratory infections of viral aetiology. Improvements of current commercial molecular assays to reduce hands-on-time rely on two strategies, a stepwise automation (semi-automation) and the complete automation of the whole procedure. Contributions to the former strategy have been the use of automated nucleic acids extractors, multiplex PCR, real-time PCR and/or DNA arrays for detection of amplicons. Commercial fully-automated molecular systems are now available for the detection of respiratory viruses. Some of them could convert in point-of-care methods substituting antigen tests for detection of respiratory syncytial virus and influenza A and B viruses. This article describes laboratory methods for detection of respiratory viruses. A cost-effective and rational diagnostic algorithm is proposed, considering technical aspects of the available assays, infrastructure possibilities of each laboratory and clinic-epidemiologic factors of the infection PMID:23248735

  7. Sliding mode fault detection and fault-tolerant control of smart dampers in semi-active control of building structures

    NASA Astrophysics Data System (ADS)

    Yeganeh Fallah, Arash; Taghikhany, Touraj

    2015-12-01

    Recent decades have witnessed much interest in the application of active and semi-active control strategies for seismic protection of civil infrastructures. However, the reliability of these systems is still in doubt as there remains the possibility of malfunctioning of their critical components (i.e. actuators and sensors) during an earthquake. This paper focuses on the application of the sliding mode method due to the inherent robustness of its fault detection observer and fault-tolerant control. The robust sliding mode observer estimates the state of the system and reconstructs the actuators’ faults which are used for calculating a fault distribution matrix. Then the fault-tolerant sliding mode controller reconfigures itself by the fault distribution matrix and accommodates the fault effect on the system. Numerical simulation of a three-story structure with magneto-rheological dampers demonstrates the effectiveness of the proposed fault-tolerant control system. It was shown that the fault-tolerant control system maintains the performance of the structure at an acceptable level in the post-fault case.

  8. Fault detection and multiclassifier fusion for unmanned aerial vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Yan, Weizhong

    2001-03-01

    UAVs demand more accurate fault accommodation for their mission manager and vehicle control system in order to achieve a reliability level that is comparable to that of a pilot aircraft. This paper attempts to apply multi-classifier fusion techniques to achieve the necessary performance of the fault detection function for the Lockheed Martin Skunk Works (LMSW) UAV Mission Manager. Three different classifiers that meet the design requirements of the fault detection of the UAAV are employed. The binary decision outputs from the classifiers are then aggregated using three different classifier fusion schemes, namely, majority vote, weighted majority vote, and Naieve Bayes combination. All of the three schemes are simple and need no retraining. The three fusion schemes (except the majority vote that gives an average performance of the three classifiers) show the classification performance that is better than or equal to that of the best individual. The unavoidable correlation between the classifiers with binary outputs is observed in this study. We conclude that it is the correlation between the classifiers that limits the fusion schemes to achieve an even better performance.

  9. Scalable and Fault Tolerant Failure Detection and Consensus

    SciTech Connect

    Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J; Engelmann, Christian

    2015-01-01

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.

  10. A distributed fault-detection and diagnosis system using on-line parameter estimation

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  11. Incipient fault detection and isolation of sensors and field devices

    NASA Astrophysics Data System (ADS)

    Ferreira, Paulo Brasko

    The purpose of this research is to develop a robust fault detection and isolation method, for detecting faults in process sensors, actuators, controllers and other field devices. The approach to the solution to this problem is summarized below. A novel approach for the validation of control system components and sensors was developed in this research. The process is composed of detecting a system anomaly, isolating the faulty component (such as sensors, actuators, and controllers), computing its deviation from expected value for a given system's normal condition, and finally reconstructing its output when applicable. A variant of the Group Method of Data Handling (GMDH) was developed in this research for generating analytical redundancy from relationships among different system components. A rational function approximation was used for the data-driven modeling scheme. This analytical redundancy is necessary for detecting system anomalies and isolating faulty components. A rule-base expert system was developed in order to isolate the faulty component. The rule-based was established from model-simulated data. A fuzzy-logic estimator was implemented to compute the magnitude of the loop component fault so that the operator or the controller might take corrective actions. This latter engine allows the system to be operated in a normal condition until the next scheduled shutdown, even if a critical component were detected as degrading. The effectiveness of the method developed in this research was demonstrated through simulation and by implementation to an experimental control loop. The test loop consisted of a level control system, flow, pressure, level and temperature measuring sensors, motor-operated valves, and a pump. Commonly observed device faults were imposed in different system components such as pressure transmitters, pumps, and motor-operated valves. This research has resulted in a framework for system component failure detection and isolation, allowing easy

  12. Modeling and Performance Considerations for Automated Fault Isolation in Complex Systems

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Oostdyk, Rebecca

    2010-01-01

    The purpose of this paper is to document the modeling considerations and performance metrics that were examined in the development of a large-scale Fault Detection, Isolation and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FDIR team members developed a set of operational requirements for the models that would be used for fault isolation and worked closely with the vendor of the software tools selected for fault isolation to ensure that the software was able to meet the requirements. Once the requirements were established, example models of sufficient complexity were used to test the performance of the software. The results of the performance testing demonstrated the need for enhancements to the software in order to meet the demands of the full-scale ground and vehicle FDIR system. The paper highlights the importance of the development of operational requirements and preliminary performance testing as a strategy for identifying deficiencies in highly scalable systems and rectifying those deficiencies before they imperil the success of the project

  13. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  14. Guaranteed robust fault detection and isolation techniques for small satellites

    NASA Astrophysics Data System (ADS)

    Valavani, L.; Tantouris, N.

    2013-12-01

    The paper presents two generic fault detection and isolation (FDI) techniques which have shown remarkable robustness when applied to the SIMULINK model of a small satellite for thruster failures. While fundamentally different in their design approach, they both generate ʽstructured residuals' which accurately capture the failure mode. The diagnosis criterion in both methods relies on residuals direction rather than magnitude, which avoids the delays and expense of setting accurate thresholds for residuals magnitudes. Most importantly, this fact can account for the enhanced robustness to disturbances and sensor noise, as well as to significant parametric variations. Extensive Monte Carlo simulations are presented validating the robust performance of the two algorithms.

  15. Fault detection techniques for complex cable shield topologies

    NASA Astrophysics Data System (ADS)

    Coonrod, Kurt H.; Davis, Stuart L.; McLemore, Donald P.

    1994-09-01

    This document presents the results of a basic principles study which investigated technical approaches for developing fault detection techniques for use on cables with complex shielding topologies. The study was limited to those approaches which could realistically be implemented on a fielded cable, i.e., approaches which would require partial disassembly of a cable were not pursued. The general approach used was to start with present transfer impedance measurement techniques and modify their use to achieve the best possible measurement range. An alternative test approach, similar to a sniffer type test, was also investigated.

  16. Automated RNA Extraction and Purification for Multiplexed Pathogen Detection

    SciTech Connect

    Bruzek, Amy K.; Bruckner-Lea, Cindy J.

    2005-01-01

    Pathogen detection has become an extremely important part of our nation?s defense in this post 9/11 world where the threat of bioterrorist attacks are a grim reality. When a biological attack takes place, response time is critical. The faster the biothreat is assessed, the faster countermeasures can be put in place to protect the health of the general public. Today some of the most widely used methods for detecting pathogens are either time consuming or not reliable [1]. Therefore, a method that can detect multiple pathogens that is inherently reliable, rapid, automated and field portable is needed. To that end, we are developing automated fluidics systems for the recovery, cleanup, and direct labeling of community RNA from suspect environmental samples. The advantage of using RNA for detection is that there are multiple copies of mRNA in a cell, whereas there are normally only one or two copies of DNA [2]. Because there are multiple copies of mRNA in a cell for highly expressed genes, no amplification of the genetic material may be necessary, and thus rapid and direct detection of only a few cells may be possible [3]. This report outlines the development of both manual and automated methods for the extraction and purification of mRNA. The methods were evaluated using cell lysates from Escherichia coli 25922 (nonpathogenic), Salmonella typhimurium (pathogenic), and Shigella spp (pathogenic). Automated RNA purification was achieved using a custom sequential injection fluidics system consisting of a syringe pump, a multi-port valve and a magnetic capture cell. mRNA was captured using silica coated superparamagnetic beads that were trapped in the tubing by a rare earth magnet. RNA was detected by gel electrophoresis and/or by hybridization of the RNA to microarrays. The versatility of the fluidics systems and the ability to automate these systems allows for quick and easy processing of samples and eliminates the need for an experienced operator.

  17. Automated Detection of Solar Loops by the Oriented Connectivity Method

    NASA Technical Reports Server (NTRS)

    Lee, Jong Kwan; Newman, Timothy S.; Gary, G. Allen

    2004-01-01

    An automated technique to segment solar coronal loops from intensity images of the Sun s corona is introduced. It exploits physical characteristics of the solar magnetic field to enable robust extraction from noisy images. The technique is a constructive curve detection approach, constrained by collections of estimates of the magnetic fields orientation. Its effectiveness is evaluated through experiments on synthetic and real coronal images.

  18. Automated ultrasonic arterial vibrometry: detection and measurement

    NASA Astrophysics Data System (ADS)

    Plett, Melani I.; Beach, Kirk W.; Paun, Marla

    2000-04-01

    Since the invention of the stethoscope, the detection of vibrations and sounds from the body has been a touchstone of diagnosis. However, the method is limited to vibrations whose associated sounds transmit to the skin, with no means to determine the anatomic and physiological source of the vibrations save the cunning of the examiner. Using ultrasound quadrature phase demodulation methods similar to those of ultrasonic color flow imaging, we have developed a system to detect and measure tissue vibrations with amplitude excursions as small as 30 nanometers. The system uses wavelet analysis for sensitive and specific detection, as well as measurement, of short duration vibrations amidst clutter and time-varying, colored noise. Vibration detection rates in ROC curves from simulated data predict > 99.5% detections with < 1% false alarms for signal to noise ratios >= 0.5. Vibrations from in vivo arterial stenoses and punctures have been studied. The results show that vibration durations vary from 10 - 150 ms, frequencies from 100 - 1000 Hz, and amplitudes from 30 nanometers to several microns. By marking the location of vibration sources on ultrasound images, and using color to indicate amplitude, frequency or acoustic intensity, new diagnostic information is provided to aid disorder diagnosis and management.

  19. Computational Effective Fault Detection by Means of Signature Functions

    PubMed Central

    Baranski, Przemyslaw; Pietrzak, Piotr

    2016-01-01

    The paper presents a computationally effective method for fault detection. A system’s responses are measured under healthy and ill conditions. These signals are used to calculate so-called signature functions that create a signal space. The current system’s response is projected into this space. The signal location in this space easily allows to determine the fault. No classifier such as a neural network, hidden Markov models, etc. is required. The advantage of this proposed method is its efficiency, as computing projections amount to calculating dot products. Therefore, this method is suitable for real-time embedded systems due to its simplicity and undemanding processing capabilities which permit the use of low-cost hardware and allow rapid implementation. The approach performs well for systems that can be considered linear and stationary. The communication presents an application, whereby an industrial process of moulding is supervised. The machine is composed of forms (dies) whose alignment must be precisely set and maintained during the work. Typically, the process is stopped periodically to manually control the alignment. The applied algorithm allows on-line monitoring of the device by analysing the acceleration signal from a sensor mounted on a die. This enables to detect failures at an early stage thus prolonging the machine’s life. PMID:26949942

  20. Computational Effective Fault Detection by Means of Signature Functions.

    PubMed

    Baranski, Przemyslaw; Pietrzak, Piotr

    2016-01-01

    The paper presents a computationally effective method for fault detection. A system's responses are measured under healthy and ill conditions. These signals are used to calculate so-called signature functions that create a signal space. The current system's response is projected into this space. The signal location in this space easily allows to determine the fault. No classifier such as a neural network, hidden Markov models, etc. is required. The advantage of this proposed method is its efficiency, as computing projections amount to calculating dot products. Therefore, this method is suitable for real-time embedded systems due to its simplicity and undemanding processing capabilities which permit the use of low-cost hardware and allow rapid implementation. The approach performs well for systems that can be considered linear and stationary. The communication presents an application, whereby an industrial process of moulding is supervised. The machine is composed of forms (dies) whose alignment must be precisely set and maintained during the work. Typically, the process is stopped periodically to manually control the alignment. The applied algorithm allows on-line monitoring of the device by analysing the acceleration signal from a sensor mounted on a die. This enables to detect failures at an early stage thus prolonging the machine's life. PMID:26949942

  1. Automated Detection of Stereotypical Motor Movements

    ERIC Educational Resources Information Center

    Goodwin, Matthew S.; Intille, Stephen S.; Albinali, Fahd; Velicer, Wayne F.

    2011-01-01

    To overcome problems with traditional methods for measuring stereotypical motor movements in persons with Autism Spectrum Disorders (ASD), we evaluated the use of wireless three-axis accelerometers and pattern recognition algorithms to automatically detect body rocking and hand flapping in children with ASD. Findings revealed that, on average,…

  2. Automated Human Screening for Detecting Concealed Knowledge

    ERIC Educational Resources Information Center

    Twyman, Nathan W.

    2012-01-01

    Screening individuals for concealed knowledge has traditionally been the purview of professional interrogators investigating a crime. But the ability to detect when a person is hiding important information would be of high value to many other fields and functions. This dissertation proposes design principles for and reports on an implementation…

  3. Fault detection and isolation for an active wheelset control system

    NASA Astrophysics Data System (ADS)

    Mirzapour, Mohammad; Mei, T. X.; Xuesong, Jin

    2014-05-01

    Active control for railway wheelsets in the primary suspension has been shown to offer a number of performance gains, and especially it can be used to stabilise the wheelsets without compromising the vehicle's performance on curves. However, the use of actuators, sensors and data processors to replace the traditional passive suspension raises the issue of system safety in the event of a failure of the active control, which could result in the loss of stability (i.e. wheelset hunting), and in more severe cases, derailment. This paper studies the key issue of condition monitoring for an actively controlled railway system, with a focus on actuator failures to detect and isolate failure modes in such a system. It seeks to establish the necessary basis for fault detection to ensure system reliability in the event of malfunction in one of the two actuators. Computer simulations are used to demonstrate the effectiveness of the method.

  4. FINDS: A fault inferring nonlinear detection system. User's guide

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.; Caglayan, A. K.

    1983-01-01

    The computer program FINDS is written in FORTRAN-77, and is intended for operation on a VAX 11-780 or 11-750 super minicomputer, using the VMS operating system. The program detects, isolates, and compensates for failures in navigation aid instruments and onboard flight control and navigation sensors of a Terminal Configured Vehicle aircraft in a Microwave Landing System environment. In addition, FINDS provides sensor fault tolerant estimates for the aircraft states which are then used by an automatic guidance and control system to land the aircraft along a prescribed path. FINDS monitors for failures by evaluating all sensor outputs simultaneously using the nonlinear analytic relationships between the various sensor outputs arising from the aircraft point mass equations of motion. Hence, FINDS is an integrated sensor failure detection and isolation system.

  5. Detection of Crosstalk Faults in Field Programmable Gate Arrays (FPGA)

    NASA Astrophysics Data System (ADS)

    Das, N.; Roy, P.; Rahaman, H.

    2015-09-01

    In this work, a Built-in-Self-Test (BIST) technique has been proposed to detect crosstalk faults in FPGA and run time congestion and to provide the crosstalk aware router for FPGA. The proposed BIST circuits require less overhead as compared to earlier techniques. The proposed detector can detect any logic hazard or delay due to crosstalk. A technique has also been proposed to avoid the crosstalk by routing the path in such a way that no interference occurs between the interconnects. The proposed router has achieved better utilization of routing resource to determine the net as compared to the earlier works. The proposed scheme is simulated in MATLAB and verified using Xilinx ISE tools and Modelsim 6.0. The router is implemented by using class provided by JBits for Xilinx, Vertex-II FPGA. It has been found that the results are quite encouraging.

  6. Automated baseline change detection phase I. Final report

    SciTech Connect

    1995-12-01

    The Automated Baseline Change Detection (ABCD) project is supported by the DOE Morgantown Energy Technology Center (METC) as part of its ER&WM cross-cutting technology program in robotics. Phase 1 of the Automated Baseline Change Detection project is summarized in this topical report. The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. In support of this primary objective, there are secondary objectives to determine DOE operational inspection requirements and DOE system fielding requirements.

  7. Automated valve condition classification of a reciprocating compressor with seeded faults: experimentation and validation of classification strategy

    NASA Astrophysics Data System (ADS)

    Lin, Yih-Hwang; Liu, Huai-Sheng; Wu, Chung-Yung

    2009-09-01

    This paper deals with automatic valve condition classification of a reciprocating processor with seeded faults. The seeded faults are considered based on observation of valve faults in practice. They include the misplacement of valve and spring plates, incorrect tightness of the bolts for valve cover or valve seat, softening of the spring plate, and cracked or broken spring plate or valve plate. The seeded faults represent various stages of machine health condition and it is crucial to be able to correctly classify the conditions so that preventative maintenance can be performed before catastrophic breakdown of the compressor occurs. Considering the non-stationary characteristics of the system, time-frequency analysis techniques are applied to obtain the vibration spectrum as time develops. A data reduction algorithm is subsequently employed to extract the fault features from the formidable amount of time-frequency data and finally the probabilistic neural network is utilized to automate the classification process without the intervention of human experts. This study shows that the use of modification indices, as opposed to the original indices, greatly reduces the classification error, from about 80% down to about 20% misclassification for the 15 fault cases. Correct condition classification can be further enhanced if the use of similar fault cases is avoided. It is shown that 6.67% classification error is achievable when using the short-time Fourier transform and the mean variation method for the case of seven seeded faults with 10 training samples used. A stunning 100% correct classification can even be realized when the neural network is well trained with 30 training samples being used.

  8. A Novel Arc Fault Detector for Early Detection of Electrical Fires.

    PubMed

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  9. RCS propulsion functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    The operational flight instrumentation required for performance monitoring and fault detection are presented. Measurements by the burn through monitors are presented along with manifold and helium source pressures.

  10. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    PubMed Central

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  11. UIO design for singular delayed LPV systems with application to actuator fault detection and isolation

    NASA Astrophysics Data System (ADS)

    Hassanabadi, Amir Hossein; Shafiee, Masoud; Puig, Vicenc

    2016-01-01

    In this paper, the unknown input observer (UIO) design for singular delayed linear parameter varying (LPV) systems is considered regarding its application to actuator fault detection and isolation. The design procedure assumes that the LPV system is represented in the polytopic framework. Existence and convergence conditions for the UIO are established. The design procedure is formulated by means of linear matrix inequalities (LMIs). Actuator fault detection and isolation is based on using the UIO approach for designing a residual generator that is completely decoupled from unknown inputs and exclusively sensitive to faults. Fault isolation is addressed considering two different strategies: dedicated and generalised bank of observers' schemes. The applicability of these two schemes for the fault isolation is discussed. An open flow canal system is considered as a case study to illustrate the performance and usefulness of the proposed fault detection and isolation method in different fault scenarios.

  12. The Orion GN and C Data-Driven Flight Software Architecture for Automated Sequencing and Fault Recovery

    NASA Technical Reports Server (NTRS)

    King, Ellis; Hart, Jeremy; Odegard, Ryan

    2010-01-01

    The Orion Crew Exploration Vehicle (CET) is being designed to include significantly more automation capability than either the Space Shuttle or the International Space Station (ISS). In particular, the vehicle flight software has requirements to accommodate increasingly automated missions throughout all phases of flight. A data-driven flight software architecture will provide an evolvable automation capability to sequence through Guidance, Navigation & Control (GN&C) flight software modes and configurations while maintaining the required flexibility and human control over the automation. This flexibility is a key aspect needed to address the maturation of operational concepts, to permit ground and crew operators to gain trust in the system and mitigate unpredictability in human spaceflight. To allow for mission flexibility and reconfrgurability, a data driven approach is being taken to load the mission event plan as well cis the flight software artifacts associated with the GN&C subsystem. A database of GN&C level sequencing data is presented which manages and tracks the mission specific and algorithm parameters to provide a capability to schedule GN&C events within mission segments. The flight software data schema for performing automated mission sequencing is presented with a concept of operations for interactions with ground and onboard crew members. A prototype architecture for fault identification, isolation and recovery interactions with the automation software is presented and discussed as a forward work item.

  13. Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Wang, Han; Song, Gangbing

    2011-08-01

    Fault detection and isolation (FDI) in real-time systems can provide early warnings for faulty sensors and actuator signals to prevent events that lead to catastrophic failures. The main objective of this paper is to develop FDI and fault tolerant control techniques for base isolation systems with magneto-rheological (MR) dampers. Thus, this paper presents a fixed-order FDI filter design procedure based on linear matrix inequalities (LMI). The necessary and sufficient conditions for the existence of a solution for detecting and isolating faults using the H_{\\infty } formulation is provided in the proposed filter design. Furthermore, an FDI-filter-based fuzzy fault tolerant controller (FFTC) for a base isolation structure model was designed to preserve the pre-specified performance of the system in the presence of various unknown faults. Simulation and experimental results demonstrated that the designed filter can successfully detect and isolate faults from displacement sensors and accelerometers while maintaining excellent performance of the base isolation technology under faulty conditions.

  14. Fault detection of planetary gearboxes using new diagnostic parameters

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Kong, Detong; Lin, Jing; Zuo, Ming J.

    2012-05-01

    Planetary gearboxes are commonly used in modern industry because of their large transmission ratio and strong load-bearing capacity. They generally work under heavy load and tough working environment and therefore their key components including sun gear, planet gears, ring gear, etc are subject to severe pitting and fatigue crack. Planetary gearboxes significantly differ from fixed-axis gearboxes and exhibit unique behavior, which invalidates the use of the diagnostic parameters developed and suitable for fixed-axis gearboxes. Therefore, there is a need to develop parameters specifically for detecting and diagnosing faults of planetary gearboxes. In this study, two diagnostic parameters are proposed based on the examination of the vibration characteristics of planetary gearboxes in both time and frequency domains. One is the root mean square of the filtered signal (FRMS) and the other is the normalized summation of positive amplitudes of the difference spectrum between the unknown signal and the healthy signal (NSDS). To test the proposed diagnostic parameters, we conducted experiments on a planetary gearbox test rig with sun gear faults including a cracked tooth and a pitted tooth. The vibration signals were measured under different motor speeds. The proposed parameters are compared with the existing parameters reported in the literature. The comparison results show the proposed diagnostic parameters perform better than others.

  15. BacT/Alert: an automated colorimetric microbial detection system.

    PubMed Central

    Thorpe, T C; Wilson, M L; Turner, J E; DiGuiseppi, J L; Willert, M; Mirrett, S; Reller, L B

    1990-01-01

    BacT/Alert (Organon Teknika Corp., Durham, N.C.) is an automated microbial detection system based on the colorimetric detection of CO2 produced by growing microorganisms. Results of an evaluation of the media, sensor, detection system, and detection algorithm indicate that the system reliably grows and detects a wide variety of bacteria and fungi. Results of a limited pilot clinical trial with a prototype research instrument indicate that the system is comparable to the radiometric BACTEC 460 system in its ability to grow and detect microorganisms in blood. On the basis of these initial findings, large-scale clinical trials comparing BacT/Alert with other commercial microbial detection systems appear warranted. PMID:2116451

  16. Tools for Evaluating Fault Detection and Diagnostic Methods for HVAC Secondary Systems

    NASA Astrophysics Data System (ADS)

    Pourarian, Shokouh

    Although modern buildings are using increasingly sophisticated energy management and control systems that have tremendous control and monitoring capabilities, building systems routinely fail to perform as designed. More advanced building control, operation, and automated fault detection and diagnosis (AFDD) technologies are needed to achieve the goal of net-zero energy commercial buildings. Much effort has been devoted to develop such technologies for primary heating ventilating and air conditioning (HVAC) systems, and some secondary systems. However, secondary systems, such as fan coil units and dual duct systems, although widely used in commercial, industrial, and multifamily residential buildings, have received very little attention. This research study aims at developing tools that could provide simulation capabilities to develop and evaluate advanced control, operation, and AFDD technologies for these less studied secondary systems. In this study, HVACSIM+ is selected as the simulation environment. Besides developing dynamic models for the above-mentioned secondary systems, two other issues related to the HVACSIM+ environment are also investigated. One issue is the nonlinear equation solver used in HVACSIM+ (Powell's Hybrid method in subroutine SNSQ). It has been found from several previous research projects (ASRHAE RP 825 and 1312) that SNSQ is especially unstable at the beginning of a simulation and sometimes unable to converge to a solution. Another issue is related to the zone model in the HVACSIM+ library of components. Dynamic simulation of secondary HVAC systems unavoidably requires an interacting zone model which is systematically and dynamically interacting with building surrounding. Therefore, the accuracy and reliability of the building zone model affects operational data generated by the developed dynamic tool to predict HVAC secondary systems function. The available model does not simulate the impact of direct solar radiation that enters a zone

  17. Tools for Evaluating Fault Detection and Diagnostic Methods for HVAC Secondary Systems

    NASA Astrophysics Data System (ADS)

    Pourarian, Shokouh

    Although modern buildings are using increasingly sophisticated energy management and control systems that have tremendous control and monitoring capabilities, building systems routinely fail to perform as designed. More advanced building control, operation, and automated fault detection and diagnosis (AFDD) technologies are needed to achieve the goal of net-zero energy commercial buildings. Much effort has been devoted to develop such technologies for primary heating ventilating and air conditioning (HVAC) systems, and some secondary systems. However, secondary systems, such as fan coil units and dual duct systems, although widely used in commercial, industrial, and multifamily residential buildings, have received very little attention. This research study aims at developing tools that could provide simulation capabilities to develop and evaluate advanced control, operation, and AFDD technologies for these less studied secondary systems. In this study, HVACSIM+ is selected as the simulation environment. Besides developing dynamic models for the above-mentioned secondary systems, two other issues related to the HVACSIM+ environment are also investigated. One issue is the nonlinear equation solver used in HVACSIM+ (Powell's Hybrid method in subroutine SNSQ). It has been found from several previous research projects (ASRHAE RP 825 and 1312) that SNSQ is especially unstable at the beginning of a simulation and sometimes unable to converge to a solution. Another issue is related to the zone model in the HVACSIM+ library of components. Dynamic simulation of secondary HVAC systems unavoidably requires an interacting zone model which is systematically and dynamically interacting with building surrounding. Therefore, the accuracy and reliability of the building zone model affects operational data generated by the developed dynamic tool to predict HVAC secondary systems function. The available model does not simulate the impact of direct solar radiation that enters a zone

  18. Automated detection of geomagnetic storms with heightened risk of GIC

    NASA Astrophysics Data System (ADS)

    Bailey, Rachel L.; Leonhardt, Roman

    2016-06-01

    Automated detection of geomagnetic storms is of growing importance to operators of technical infrastructure (e.g., power grids, satellites), which is susceptible to damage caused by the consequences of geomagnetic storms. In this study, we compare three methods for automated geomagnetic storm detection: a method analyzing the first derivative of the geomagnetic variations, another looking at the Akaike information criterion, and a third using multi-resolution analysis of the maximal overlap discrete wavelet transform of the variations. These detection methods are used in combination with an algorithm for the detection of coronal mass ejection shock fronts in ACE solar wind data prior to the storm arrival on Earth as an additional constraint for possible storm detection. The maximal overlap discrete wavelet transform is found to be the most accurate of the detection methods. The final storm detection software, implementing analysis of both satellite solar wind and geomagnetic ground data, detects 14 of 15 more powerful geomagnetic storms over a period of 2 years.

  19. Method and automated apparatus for detecting coliform organisms

    NASA Technical Reports Server (NTRS)

    Dill, W. P.; Taylor, R. E.; Jeffers, E. L. (Inventor)

    1980-01-01

    Method and automated apparatus are disclosed for determining the time of detection of metabolically produced hydrogen by coliform bacteria cultured in an electroanalytical cell from the time the cell is inoculated with the bacteria. The detection time data provides bacteria concentration values. The apparatus is sequenced and controlled by a digital computer to discharge a spent sample, clean and sterilize the culture cell, provide a bacteria nutrient into the cell, control the temperature of the nutrient, inoculate the nutrient with a bacteria sample, measures the electrical potential difference produced by the cell, and measures the time of detection from inoculation.

  20. Human-guided visualization enhances automated target detection

    NASA Astrophysics Data System (ADS)

    Irvine, John M.

    2010-04-01

    Automated target cueing (ATC) can assist analysts with searching large volumes of imagery. Performance of most automated systems is less than perfect, requiring an analyst to review the results to dismiss false alarms or confirm correct detections. This paper explores methods for improving the presentation and visualization of the ATC output, enabling more efficient and effective review of the detections flagged by the ATC. The techniques presented in this paper are applicable to a wide range of search problems using data from different sensors modalities. The information available to the computer increases as ATC detections are either accepted or rejected by the analyst. It is often easy to confirm obviously correct detections and dismiss obvious false alarms, which provides the starting point for the automated updating of the visualization. In machine learning algorithms, this information can be used to retrain or refine the classifier. However, this retraining process is appropriate only when future sensor data is expected to closely resemble the current set. For many applications, the sensor data characteristics (viewing geometry, resolution, clutter complexity, prevalence and types of confusers) are likely to change from one data collection to the next. For this reason, updating the visualization for the current data set, rather than updating the classifier for future processing, may prove more effective. This paper presents an adaptive visualization technique and illustrates the technique with applications.

  1. Automated Detection of HONcode Website Conformity Compared to Manual Detection: An Evaluation

    PubMed Central

    2015-01-01

    Background To earn HONcode certification, a website must conform to the 8 principles of the HONcode of Conduct In the current manual process of certification, a HONcode expert assesses the candidate website using precise guidelines for each principle. In the scope of the European project KHRESMOI, the Health on the Net (HON) Foundation has developed an automated system to assist in detecting a website’s HONcode conformity. Automated assistance in conducting HONcode reviews can expedite the current time-consuming tasks of HONcode certification and ongoing surveillance. Additionally, an automated tool used as a plugin to a general search engine might help to detect health websites that respect HONcode principles but have not yet been certified. Objective The goal of this study was to determine whether the automated system is capable of performing as good as human experts for the task of identifying HONcode principles on health websites. Methods Using manual evaluation by HONcode senior experts as a baseline, this study compared the capability of the automated HONcode detection system to that of the HONcode senior experts. A set of 27 health-related websites were manually assessed for compliance to each of the 8 HONcode principles by senior HONcode experts. The same set of websites were processed by the automated system for HONcode compliance detection based on supervised machine learning. The results obtained by these two methods were then compared. Results For the privacy criterion, the automated system obtained the same results as the human expert for 17 of 27 sites (14 true positives and 3 true negatives) without noise (0 false positives). The remaining 10 false negative instances for the privacy criterion represented tolerable behavior because it is important that all automatically detected principle conformities are accurate (ie, specificity [100%] is preferred over sensitivity [58%] for the privacy criterion). In addition, the automated system had precision

  2. Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,

  3. FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors

    NASA Astrophysics Data System (ADS)

    Cabal-Yepez, E.; Valtierra-Rodriguez, M.; Romero-Troncoso, R. J.; Garcia-Perez, A.; Osornio-Rios, R. A.; Miranda-Vidales, H.; Alvarez-Salas, R.

    2012-07-01

    For industry, a faulty induction motor signifies production reduction and cost increase. Real-world induction motors can have one or more faults present at the same time that can mislead to a wrong decision about its operational condition. The detection of multiple combined faults is a demanding task, difficult to accomplish even with computing intensive techniques. This work introduces information entropy and artificial neural networks for detecting multiple combined faults by analyzing the 3-axis startup vibration signals of the rotating machine. A field programmable gate array implementation is developed for automatic online detection of single and combined faults in real time.

  4. An underwater ship fault detection method based on Sonar image processing

    NASA Astrophysics Data System (ADS)

    Hong, Shi; Fang-jian, Shan; Bo, Cong; Wei, Qiu

    2016-02-01

    For the research of underwater ship fault detection method in conditions of sailing on the ocean especially in poor visibility muddy sea, a fault detection method under the assist of sonar image processing was proposed. Firstly, did sonar image denoising using the algorithm of pulse coupled neural network (PCNN); secondly, edge feature extraction for the image after denoising was carried out by morphological wavelet transform; Finally, interested regions Using relevant tracking method were taken, namely fault area mapping. The simulation results presented here proved the feasibility and effectiveness of the sonar image processing in underwater fault detection system.

  5. Automated detection, characterization, and tracking of filaments from SDO data

    NASA Astrophysics Data System (ADS)

    Buchlin, Eric; Vial, Jean-Claude; Mercier, Claude

    2016-07-01

    Thanks to the cadence and continuity of AIA and HMI observations, SDO offers unique data for detecting, characterizing, and tracking solar filaments, until their eruptions, which are often associated with coronal mass ejections. Because of the requirement of short latency when aiming at space weather applications, and because of the important data volume, only an automated detection can be worked out. We present the code "FILaments, Eruptions, and Activations detected from Space" (FILEAS) that we have developed for the automated detection and tracking of filaments. Detections are based on the analysis of AIA 30.4 nm He II images and on the magnetic polarity inversion lines derived from HMI. Following the tracking of filaments as they rotate with the Sun, filament characteristics are computed and a database of filaments parameters is built. We present the algorithms and performances of the code, and we compare its results with the filaments detected in Hα and already present in the Heliophysics Events Knowledgebase. We finally discuss the possibility of using such a code to detect eruptions in real time.

  6. Towards an Automated Acoustic Detection System for Free Ranging Elephants

    PubMed Central

    Zeppelzauer, Matthias; Hensman, Sean; Stoeger, Angela S.

    2015-01-01

    The human-elephant conflict is one of the most serious conservation problems in Asia and Africa today. The involuntary confrontation of humans and elephants claims the lives of many animals and humans every year. A promising approach to alleviate this conflict is the development of an acoustic early warning system. Such a system requires the robust automated detection of elephant vocalizations under unconstrained field conditions. Today, no system exists that fulfills these requirements. In this paper, we present a method for the automated detection of elephant vocalizations that is robust to the diverse noise sources present in the field. We evaluate the method on a dataset recorded under natural field conditions to simulate a real-world scenario. The proposed method outperformed existing approaches and robustly and accurately detected elephants. It thus can form the basis for a future automated early warning system for elephants. Furthermore, the method may be a useful tool for scientists in bioacoustics for the study of wildlife recordings. PMID:25983398

  7. Automated Imaging Techniques for Biosignature Detection in Geologic Samples

    NASA Astrophysics Data System (ADS)

    Williford, K. H.

    2015-12-01

    Robust biosignature detection in geologic samples typically requires the integration of morphological/textural data with biogeochemical data across a variety of scales. We present new automated imaging and coordinated biogeochemical analysis techniques developed at the JPL Astrobiogeochemistry Laboratory (abcLab) in support of biosignature detection in terrestrial samples as well as those that may eventually be returned from Mars. Automated gigapixel mosaic imaging of petrographic thin sections in transmitted and incident light (including UV epifluorescence) is supported by a microscopy platform with a digital XYZ stage. Images are acquired, processed, and co-registered using multiple software platforms at JPL and can be displayed and shared using Gigapan, a freely available, web-based toolset (e.g. . Automated large area (cm-scale) elemental mapping at sub-micrometer spatial resolution is enabled by a variable pressure scanning electron microscope (SEM) with a large (150 mm2) silicon drift energy dispersive spectroscopy (EDS) detector system. The abcLab light and electron microscopy techniques are augmented by additional elemental chemistry, mineralogy and organic detection/classification using laboratory Micro-XRF and UV Raman/fluorescence systems, precursors to the PIXL and SHERLOC instrument platforms selected for flight on the NASA Mars 2020 rover mission. A workflow including careful sample preparation followed by iterative gigapixel imaging, SEM/EDS, Micro-XRF and UV fluorescence/Raman in support of organic, mineralogic, and elemental biosignature target identification and follow up analysis with other techniques including secondary ion mass spectrometry (SIMS) will be discussed.

  8. Fault detection and isolation in manufacturing systems with an identified discrete event model

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Schneider, Stefan; Lesage, Jean-Jacques; Litz, Lothar

    2012-10-01

    In this article a generic method for fault detection and isolation (FDI) in manufacturing systems considered as discrete event systems (DES) is presented. The method uses an identified model of the closed-loop of plant and controller built on the basis of observed fault-free system behaviour. An identification algorithm known from literature is used to determine the fault detection model in form of a non-deterministic automaton. New results of how to parameterise this algorithm are reported. To assess the fault detection capability of an identified automaton, probabilistic measures are proposed. For fault isolation, the concept of residuals adapted for DES is used by defining appropriate set operations representing generic fault symptoms. The method is applied to a case study system.

  9. Automated spoof-detection for fingerprints using optical coherence tomography.

    PubMed

    Darlow, Luke Nicholas; Webb, Leandra; Botha, Natasha

    2016-05-01

    Fingerprint recognition systems are prevalent in high-security applications. As a result, the act of spoofing these systems with artificial fingerprints is of increasing concern. This research presents an automatic means for spoof-detection using optical coherence tomography (OCT). This technology is able to capture a 3D representation of the internal structure of the skin and is thus not limited to a 2D surface scan. The additional information afforded by this representation means that accurate spoof-detection can be achieved. Two features were extracted to detect the presence of (1) an additional thin layer on the surface of the skin and (2) a thicker additional layer or a complete artificial finger. An analysis of these features showed that they are highly separable, resulting in 100% accuracy regarding spoof-detection, with no false rejections of real fingers. This is the first attempt at fully automated spoof-detection using OCT. PMID:27140346

  10. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography

    PubMed Central

    Liu, Li; Gao, Simon S.; Bailey, Steven T.; Huang, David; Li, Dengwang; Jia, Yali

    2015-01-01

    Optical coherence tomography angiography has recently been used to visualize choroidal neovascularization (CNV) in participants with age-related macular degeneration. Identification and quantification of CNV area is important clinically for disease assessment. An automated algorithm for CNV area detection is presented in this article. It relies on denoising and a saliency detection model to overcome issues such as projection artifacts and the heterogeneity of CNV. Qualitative and quantitative evaluations were performed on scans of 7 participants. Results from the algorithm agreed well with manual delineation of CNV area. PMID:26417524

  11. Automated detection of asynchrony in patient-ventilator interaction.

    PubMed

    Mulqueeny, Qestra; Redmond, Stephen J; Tassaux, Didier; Vignaux, Laurence; Jolliet, Philippe; Ceriana, Piero; Nava, Stefano; Schindhelm, Klaus; Lovell, Nigel H

    2009-01-01

    An automated classification algorithm for the detection of expiratory ineffective efforts in patient-ventilator interaction is developed and validated. Using this algorithm, 5624 breaths from 23 patients in a pulmonary ward were examined. The participants (N = 23) underwent both conventional and non-invasive ventilation. Tracings of patient flow, pressure at the airway, and transdiaphragmatic pressure were manually labeled by an expert. Overall accuracy of 94.5% was achieved with sensitivity 58.7% and specificity 98.7%. The results demonstrate the viability of using pattern classification techniques to automatically detect the presence of asynchrony between a patient and their ventilator. PMID:19963896

  12. Detection of Creep displacement along the North Anatolian Fault by SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Deguchi, Tomonori; Kutoglu, Hakan

    2012-07-01

    North Anatolian Fault (NAF) has several records of a huge earthquake occurrence in the last one century, which is well-known as a risky active fault. Some signs indicating a creep displacement could be observed on the Ismetpasa segment. It is reported so far that the San Andreas fault in California, the Longitudinal Valley fault in Taiwan and the Valley Fault System in Metro Manila also exhibit fault creep. The fault with creep deformation is aseismic and never generate the large scale earthquakes. But the scale and rate of fault creep are important factors to watch the fault behavior and to understand the cycle of earthquake. The purpose of this study is to investigate the distribution of spatial and temporal change on the ground motion due to fault creep in the surrounding of the Ismetpasa, NAF. DInSAR is capable to catch a subtle land displacement less than a centimeter and observe a wide area at a high spatial resolution. We applied InSAR time series analysis using PALSAR data in order to measure long-term ground deformation from 2007 until 2011. As a result, the land deformation that the northern and southern parts of the fault have slipped to east and west at a rate of 7.5 and 6.5 mm/year in line of sight respectively were obviously detected. In addition, it became clear that the fault creep along the NAF extended 61 km in east to west direction.

  13. Detection of fault creep around NAF by InSAR time series analysis using PALSAR data

    NASA Astrophysics Data System (ADS)

    Deguchi, Tomonori

    2011-11-01

    North Anatolian Fault (NAF) has several records of a huge earthquake occurrence in the last one century, which is well-known as a risky active fault. Some signs indicating a creep displacement could be observed on the Ismetpasa segment. It is reported so far that the San Andreas Fault in California, the Longitudinal Valley fault in Taiwan and the Valley Fault System in Metro Manila also exhibit fault creep. The fault with creep deformation is aseismic and never generates the large-scale earthquakes. But the scale and rate of fault creep are important factors to watch the fault behavior and to understand the cycle of earthquake. The purpose of this study is to investigate the distribution of spatial and temporal change on the ground motion due to fault creep in the surrounding of the Ismetpasa, NAF. DInSAR is capable to catch a subtle land displacement less than a centimeter and observe a wide area at a high spatial resolution. We applied InSAR time series analysis using PALSAR data in order to measure long-term ground deformation from 2007 until 2011. As a result, the land deformation that the northern and southern parts of the fault have slipped to east and west at a rate of 7.5 and 6.5 mm/year in line of sight respectively were obviously detected. In addition, it became clear that the fault creep along the NAF extended 61 km in east to west direction.

  14. Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Oostdyk, Rebecca; Perotti, Jose

    2009-01-01

    When setting out to model and/or simulate a complex mechanical or electrical system, a modeler is faced with a vast array of tools, software, equations, algorithms and techniques that may individually or in concert aid in the development of the model. Mature requirements and a well understood purpose for the model may considerably shrink the field of possible tools and algorithms that will suit the modeling solution. Is the model intended to be used in an offline fashion or in real-time? On what platform does it need to execute? How long will the model be allowed to run before it outputs the desired parameters? What resolution is desired? Do the parameters need to be qualitative or quantitative? Is it more important to capture the physics or the function of the system in the model? Does the model need to produce simulated data? All these questions and more will drive the selection of the appropriate tools and algorithms, but the modeler must be diligent to bear in mind the final application throughout the modeling process to ensure the model meets its requirements without needless iterations of the design. The purpose of this paper is to describe the considerations and techniques used in the process of creating a functional fault model of a liquid hydrogen (LH2) system that will be used in a real-time environment to automatically detect and isolate failures.

  15. Real-time fault detection and isolation in biological wastewater treatment plants.

    PubMed

    Baggiani, F; Marsili-Libelli, S

    2009-01-01

    Automatic fault detection is becoming increasingly important in wastewater treatment plant operation, given the stringent treatment standards and the need to protect the investment costs from the potential damage of an unchecked fault propagating through the plant. This paper describes the development of a real-time Fault Detection and Isolation (FDI) system based on an adaptive Principal Component Analysis (PCA) algorithm, used to compare the current plant operation with a correct performance model based on a reference data set and the output of three ion-specific sensors (Hach-Lange gmbh, Düsseldorf, Germany): two Nitratax NOx UV sensors, in the denitrification tank and downstream of the oxidation tanks, where an Amtax ammonium-N sensor was also installed. The algorithm was initially developed in the Matlab environment and then ported into the LabView 8.20 (National Instruments, Austin, TX, USA) platform for real-time operation using a compact Field Point, a Programmable Automation Controller by National Instruments. The FDI was tested with a large set of operational data with 1 min sampling time from August 2007 through May 2008 from a full-scale plant. After describing the real-time version of the PCA algorithm, this was tested with nine months of operational data which were sequentially processes by the algorithm in order to simulate an on-line operation. The FDI performance was assessed by organizing the sequential data in two differing moving windows: a short-horizon window to test the response to single malfunctions and a longer time-horizon to simulate multiple unrepaired failures. In both cases the algorithm performance was very satisfactory, with a 100% failure detection in the short window case, which decreased to 84% in the long window setting. The short-window performance was very effective in isolating sensor failures and short duration disturbances such as spikes, whereas the long term horizon provided accurate detection of long-term drifts and

  16. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  17. Incipient fault detection and identification in process systems using accelerating neural network learning

    SciTech Connect

    Parlos, A.G.; Muthusami, J.; Atiya, A.F. . Dept. of Nuclear Engineering)

    1994-02-01

    The objective of this paper is to present the development and numerical testing of a robust fault detection and identification (FDI) system using artificial neural networks (ANNs), for incipient (slowly developing) faults occurring in process systems. The challenge in using ANNs in FDI systems arises because of one's desire to detect faults of varying severity, faults from noisy sensors, and multiple simultaneous faults. To address these issues, it becomes essential to have a learning algorithm that ensures quick convergence to a high level of accuracy. A recently developed accelerated learning algorithm, namely a form of an adaptive back propagation (ABP) algorithm, is used for this purpose. The ABP algorithm is used for the development of an FDI system for a process composed of a direct current motor, a centrifugal pump, and the associated piping system. Simulation studies indicate that the FDI system has significantly high sensitivity to incipient fault severity, while exhibiting insensitivity to sensor noise. For multiple simultaneous faults, the FDI system detects the fault with the predominant signature. The major limitation of the developed FDI system is encountered when it is subjected to simultaneous faults with similar signatures. During such faults, the inherent limitation of pattern-recognition-based FDI methods becomes apparent. Thus, alternate, more sophisticated FDI methods become necessary to address such problems. Even though the effectiveness of pattern-recognition-based FDI methods using ANNs has been demonstrated, further testing using real-world data is necessary.

  18. Application of H-Infinity Fault Detection to Model-Scale Autonomous Aircraft

    NASA Astrophysics Data System (ADS)

    Vasconcelos, J. F.; Rosa, P.; Kerr, Murray; Latorre Sierra, Antonio; Recupero, Cristina; Hernandez, Lucia

    2015-09-01

    This paper describes the development of a fault detection system for a model scale autonomous aircraft. The considered fault scenario is defined by malfunctions in the elevator, namely bias and stuck-in-place of the surface. The H∞ design methodology is adopted, with an LFT description of the aircraft longitudinal dynamics, that allows for fault detection explicitly synthesized for a wide range of operating airspeeds. The obtained filter is validated in two stages: in a Functional Engineering Simulator (FES), providing preliminary results of the filter performance; and with experimental data, collected in field tests with actual injection of faults in the elevator surface.

  19. From experiment to design -- Fault characterization and detection in parallel computer systems using computational accelerators

    NASA Astrophysics Data System (ADS)

    Yim, Keun Soo

    This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of

  20. Cholangiocarcinoma--an automated preliminary detection system using MLP.

    PubMed

    Logeswaran, Rajasvaran

    2009-12-01

    Cholangiocarcinoma, cancer of the bile ducts, is often diagnosed via magnetic resonance cholangiopancreatography (MRCP). Due to low resolution, noise and difficulty is actually seeing the tumor in the images, especially by examining only a single image, there has been very little development of automated systems for cholangiocarcinoma diagnosis. This paper presents a computer-aided diagnosis (CAD) system for the automated preliminary detection of the tumor using a single MRCP image. The multi-stage system employs algorithms and techniques that correspond to the radiological diagnosis characteristics employed by doctors. A popular artificial neural network, the multi-layer perceptron (MLP), is used for decision making to differentiate images with cholangiocarcinoma from those without. The test results achieved was 94% when differentiating only healthy and tumor images, and 88% in a robust multi-disease test where the system had to identify the tumor images from a large set of images containing common biliary diseases. PMID:20052894

  1. Detection of carryover in automated milk sampling equipment.

    PubMed

    Løvendahl, P; Bjerring, M A

    2006-09-01

    Equipment for sampling milk in automated milking systems may cause carryover problems if residues from one sample remain and are mixed with the subsequent sample. The degree of carryover can be estimated statistically by linear regression models. This study applied various regression analyses to several real and simulated data sets. The statistical power for detecting carryover milk improved considerably when information about cow identity was included and a mixed model was applied. Carryover may affect variation between animals, including genetic variation, and thereby have an impact on management decisions and diagnostic tools based on the milk content of somatic cells. An extended procedure is needed for approval of sampling equipment for automated milking with acceptable latitudes of carryover, and this could include the regression approach taken in this study. PMID:16899700

  2. Data-driven and adaptive statistical residual evaluation for fault detection with an automotive application

    NASA Astrophysics Data System (ADS)

    Svärd, Carl; Nyberg, Mattias; Frisk, Erik; Krysander, Mattias

    2014-03-01

    An important step in model-based fault detection is residual evaluation, where residuals are evaluated with the aim to detect changes in their behavior caused by faults. To handle residuals subject to time-varying uncertainties and disturbances, which indeed are present in practice, a novel statistical residual evaluation approach is presented. The main contribution is to base the residual evaluation on an explicit comparison of the probability distribution of the residual, estimated online using current data, with a no-fault residual distribution. The no-fault distribution is based on a set of a priori known no-fault residual distributions, and is continuously adapted to the current situation. As a second contribution, a method is proposed for estimating the required set of no-fault residual distributions off-line from no-fault training data. The proposed residual evaluation approach is evaluated with measurement data on a residual for fault detection in the gas-flow system of a Scania truck diesel engine. Results show that small faults can be reliably detected with the proposed approach in cases where regular methods fail.

  3. Fiber Bragg Grating sensor for fault detection in radial and network transmission lines.

    PubMed

    Moghadas, Amin A; Shadaram, Mehdi

    2010-01-01

    In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416

  4. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    PubMed Central

    Moghadas, Amin A.; Shadaram, Mehdi

    2010-01-01

    In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416

  5. Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Moghadas, Amin

    2011-12-01

    A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  6. An Automated Directed Spectral Search Methodology for Small Target Detection

    NASA Astrophysics Data System (ADS)

    Grossman, Stanley I.

    Much of the current efforts in remote sensing tackle macro-level problems such as determining the extent of wheat in a field, the general health of vegetation or the extent of mineral deposits in an area. However, for many of the remaining remote sensing challenges being studied currently, such as border protection, drug smuggling, treaty verification, and the war on terror, most targets are very small in nature - a vehicle or even a person. While in typical macro-level problems the objective vegetation is in the scene, for small target detection problems it is not usually known if the desired small target even exists in the scene, never mind finding it in abundance. The ability to find specific small targets, such as vehicles, typifies this problem. Complicating the analyst's life, the growing number of available sensors is generating mountains of imagery outstripping the analysts' ability to visually peruse them. This work presents the important factors influencing spectral exploitation using multispectral data and suggests a different approach to small target detection. The methodology of directed search is presented, including the use of scene-modeled spectral libraries, various search algorithms, and traditional statistical and ROC curve analysis. The work suggests a new metric to calibrate analysis labeled the analytic sweet spot as well as an estimation method for identifying the sweet spot threshold for an image. It also suggests a new visualization aid for highlighting the target in its entirety called nearest neighbor inflation (NNI). It brings these all together to propose that these additions to the target detection arena allow for the construction of a fully automated target detection scheme. This dissertation next details experiments to support the hypothesis that the optimum detection threshold is the analytic sweet spot and that the estimation method adequately predicts it. Experimental results and analysis are presented for the proposed directed

  7. A novel method for high-performance fault detection of induction machine

    NASA Astrophysics Data System (ADS)

    Su, Hua; Kim, Yeong-Min; Chong, Kil To

    2005-12-01

    Induction machine is probably the most commonly utilized electromechanical device in modern society. However, there are many undesirable problems arising in the machine operation of industrial plants. It is desirable for early detection and diagnosis of incipient faults for online condition monitoring, product quality assurance, and improved operational efficiency of induction motors. In this paper, a high-performance residual-based novel method is developed for induction machine fault detection, using Fourier-based signal processing for steady-state vibration signals. The proposed approach uses only motor vibration measurements without the nameplate information. The reference model in spectra is obtained statistically to represent the healthy condition. The effectiveness of the proposed approach in detecting a wide range of mechanical and electrical faults is demonstrated through staged motor faults, and it is shown that a robust and reliable induction machine fault detection system has been produced.

  8. Eclipsing binaries in the Gaia era: automated detection performance

    NASA Astrophysics Data System (ADS)

    Holl, Berry; Mowlavi, Nami; Lecoeur-Taïbi, Isabelle; Geneva Gaia CU7 Team members

    2014-09-01

    Binary systems can have periods from a fraction of a day to several years and exist in a large range of possible configurations at various evolutionary stages. About 2% of them are oriented such that eclipses can be observed. Such observations provide unique opportunities for the determination of their orbital and stellar parameters. Large-scale multi-epoch photometric surveys produce large sets of eclipsing binaries that allow for statistical studies of binary systems. In this respect the ESA Gaia mission, launched in December 2013, is expected to deliver an unprecedented sample of millions of eclipsing binaries. Their detection from Gaia photometry and estimation of their orbital periods are essential for their subclassification and orbital and stellar parameter determination. For a subset of these eclipsing systems, Gaia radial velocities and astrometric orbital measurements will further complement the Gaia light curves. A key challenge of the detection and period determination of the expected millions of Gaia eclipsing binaries is the automation of the procedure. Such an automated pipeline is being developed within the Gaia Data Processing Analysis Consortium, in the framework of automated detection and identification of various types of photometric variable objects. In this poster we discuss the performance of this pipeline on eclipsing binaries using simulated Gaia data and the existing Hipparcos data. We show that we can detect a wide range of binary systems and very often determine their orbital periods from photometry alone, even though the data sampling is relatively sparse. The results can further be improved for those objects for which spectroscopic and/or astrometric orbital measurements will also be available from Gaia.

  9. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  10. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy.

    PubMed

    Pociask, Elżbieta; Jaworek-Korjakowska, Joanna; Malinowski, Krzysztof Piotr; Roleder, Tomasz; Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  11. Development of fault section detecting system for gas insulated transmission lines

    SciTech Connect

    Nakamura, E.; Uchida, K.; Koshilishi, M.; Mitsui, T.; Miyamoto, S.; Nakamura, K.; Itaka, K.; Hara, T.; Yoda, T.

    1986-01-01

    A fault section detecting system using optical magnetic field sensors developed for gas insulated transmission lines (GIL) is reported. A bismuth silicon oxide (Bi/sub 12/SiO/sub 20/, or BSO) single crystal was adopted for the optical magnetic field sensor. A method of mounting the sensors to GIL which enables the sensors to detect the conductor current from outside the enclosure was developed. With the developed fault detector, faults occurring inside a section of GIL between sensors are detected by discriminating the phases of conductor currents detected by the sensors. The system was confirmed to have sufficient performance for application to commerical GILS.

  12. Early fault detection in automotive ball bearings using the minimum variance cepstrum

    NASA Astrophysics Data System (ADS)

    Park, Choon-Su; Choi, Young-Chul; Kim, Yang-Hann

    2013-07-01

    Ball bearings in automotive wheels play an important role in a vehicle. They enable an automobile to run and simultaneously support the vehicle. Once faults are generated, even if they are small, they often grow fast even under normal driving condition and cause vibration and noise. Therefore, it is critical to detect faults as early as possible to prevent bearings from generating harsh noise and vibration. How early faults can be detected is associated with how well a detecting method finds the information of early faults from measured signal. Incipient faults are so small that the fault signal is inherently buried by noise. Minimum variance cepstrum (MVC) has been introduced for the observation of periodic impulse signal under noisy environments. We are particularly focusing on the definition of MVC that goes back to the original definition by Bogert et al. in comparison with the recently prevalent definition of cepstral analysis. In this work, the MVC is, therefore, obtained by liftering a logarithmic power spectrum, and the lifter bank is designed by the minimum variance algorithm. Furthermore, it is also shown how efficient the method is for detecting periodic fault signal made by early faults by using automotive ball bearings, with which an automobile is equipped under running conditions. We were able to detect incipient faults in 4 out of 12 normal bearings which passed acceptance test as well as in bearings that were recalled due to noise and vibration. In addition, we compared the results of the proposed method with results obtained using other older well-established early fault detection methods that were chosen from 4 groups of methods which were classified by the domain of observation. The results demonstrated that MVC determined bearing fault periods more clearly than other methods under the given condition.

  13. Process fault detection and nonlinear time series analysis for anomaly detection in safeguards

    SciTech Connect

    Burr, T.L.; Mullen, M.F.; Wangen, L.E.

    1994-02-01

    In this paper we discuss two advanced techniques, process fault detection and nonlinear time series analysis, and apply them to the analysis of vector-valued and single-valued time-series data. We investigate model-based process fault detection methods for analyzing simulated, multivariate, time-series data from a three-tank system. The model-predictions are compared with simulated measurements of the same variables to form residual vectors that are tested for the presence of faults (possible diversions in safeguards terminology). We evaluate two methods, testing all individual residuals with a univariate z-score and testing all variables simultaneously with the Mahalanobis distance, for their ability to detect loss of material from two different leak scenarios from the three-tank system: a leak without and with replacement of the lost volume. Nonlinear time-series analysis tools were compared with the linear methods popularized by Box and Jenkins. We compare prediction results using three nonlinear and two linear modeling methods on each of six simulated time series: two nonlinear and four linear. The nonlinear methods performed better at predicting the nonlinear time series and did as well as the linear methods at predicting the linear values.

  14. An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space.

    PubMed

    Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan

    2014-03-01

    Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. PMID:24296116

  15. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    PubMed

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. PMID:24439843

  16. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  17. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  18. An Automated Visual Event Detection System for Cabled Observatory Video

    NASA Astrophysics Data System (ADS)

    Edgington, D. R.; Cline, D. E.; Mariette, J.

    2007-12-01

    The permanent presence of underwater cameras on oceanic cabled observatories, such as the Victoria Experimental Network Under the Sea (VENUS) and Eye-In-The-Sea (EITS) on Monterey Accelerated Research System (MARS), will generate valuable data that can move forward the boundaries of understanding the underwater world. However, sightings of underwater animal activities are rare, resulting in the recording of many hours of video with relatively few events of interest. The burden of video management and analysis often requires reducing the amount of video recorded and later analyzed. Sometimes enough human resources do not exist to analyze the video; the strains on human attention needed to analyze video demand an automated way to assist in video analysis. Towards this end, an Automated Visual Event Detection System (AVED) is in development at the Monterey Bay Aquarium Research Institute (MBARI) to address the problem of analyzing cabled observatory video. Here we describe the overall design of the system to process video data and enable science users to analyze the results. We present our results analyzing video from the VENUS observatory and test data from EITS deployments. This automated system for detecting visual events includes a collection of custom and open source software that can be run three ways: through a Web Service, through a Condor managed pool of AVED enabled compute servers, or locally on a single computer. The collection of software also includes a graphical user interface to preview or edit detected results and to setup processing options. To optimize the compute-intensive AVED algorithms, a parallel program has been implemented for high-data rate applications like the EITS instrument on MARS.

  19. Automated Detection of Malarial Retinopathy-Associated Retinal Hemorrhages

    PubMed Central

    Joshi, Vinayak S.; Maude, Richard J.; Reinhardt, Joseph M.; Tang, Li; Garvin, Mona K.; Sayeed, Abdullah Abu; Ghose, Aniruddha; Hassan, Mahtab Uddin; Abràmoff, Michael D.

    2012-01-01

    Purpose. To develop an automated method for the detection of retinal hemorrhages on color fundus images to characterize malarial retinopathy, which may help in the assessment of patients with cerebral malaria. Methods. A fundus image dataset from 14 patients (200 fundus images, with an average of 14 images per patient) previously diagnosed with malarial retinopathy was examined. We developed a pattern recognition–based algorithm, which extracted features from image watershed regions called splats (tobogganing). A reference standard was obtained by manual segmentation of hemorrhages, which assigned a label to each splat. The splat features with the associated splat label were used to train a linear k-nearest neighbor classifier that learnt the color properties of hemorrhages and identified the splats belonging to hemorrhages in a test dataset. In a crossover design experiment, data from 12 patients were used for training and data from two patients were used for testing, with 14 different permutations; and the derived sensitivity and specificity values were averaged. Results. The experiment resulted in hemorrhage detection sensitivities in terms of splats as 80.83%, and in terms of lesions as 84.84%. The splat-based specificity was 96.67%, whereas for the lesion-based analysis, an average of three false positives was obtained per image. The area under the receiver operating characteristic curve was reported as 0.9148 for splat-based, and as 0.9030 for lesion-based analysis. Conclusions. The method provides an automated means of detecting retinal hemorrhages associated with malarial retinopathy. The results matched well with the reference standard. With further development, this technique may provide automated assistance for screening and quantification of malarial retinopathy. PMID:22915035

  20. Automated sleep scoring and sleep apnea detection in children

    NASA Astrophysics Data System (ADS)

    Baraglia, David P.; Berryman, Matthew J.; Coussens, Scott W.; Pamula, Yvonne; Kennedy, Declan; Martin, A. James; Abbott, Derek

    2005-12-01

    This paper investigates the automated detection of a patient's breathing rate and heart rate from their skin conductivity as well as sleep stage scoring and breathing event detection from their EEG. The software developed for these tasks is tested on data sets obtained from the sleep disorders unit at the Adelaide Women's and Children's Hospital. The sleep scoring and breathing event detection tasks used neural networks to achieve signal classification. The Fourier transform and the Higuchi fractal dimension were used to extract features for input to the neural network. The filtered skin conductivity appeared visually to bear a similarity to the breathing and heart rate signal, but a more detailed evaluation showed the relation was not consistent. Sleep stage classification was achieved with and accuracy of around 65% with some stages being accurately scored and others poorly scored. The two breathing events hypopnea and apnea were scored with varying degrees of accuracy with the highest scores being around 75% and 30%.

  1. Automated Vulnerability Detection for Compiled Smart Grid Software

    SciTech Connect

    Prowell, Stacy J; Pleszkoch, Mark G; Sayre, Kirk D; Linger, Richard C

    2012-01-01

    While testing performed with proper experimental controls can provide scientifically quantifiable evidence that software does not contain unintentional vulnerabilities (bugs), it is insufficient to show that intentional vulnerabilities exist, and impractical to certify devices for the expected long lifetimes of use. For both of these needs, rigorous analysis of the software itself is essential. Automated software behavior computation applies rigorous static software analysis methods based on function extraction (FX) to compiled software to detect vulnerabilities, intentional or unintentional, and to verify critical functionality. This analysis is based on the compiled firmware, takes into account machine precision, and does not rely on heuristics or approximations early in the analysis.

  2. Fault Detection of Reciprocating Compressors using a Model from Principles Component Analysis of Vibrations

    NASA Astrophysics Data System (ADS)

    Ahmed, M.; Gu, F.; Ball, A. D.

    2012-05-01

    Traditional vibration monitoring techniques have found it difficult to determine a set of effective diagnostic features due to the high complexity of the vibration signals originating from the many different impact sources and wide ranges of practical operating conditions. In this paper Principal Component Analysis (PCA) is used for selecting vibration feature and detecting different faults in a reciprocating compressor. Vibration datasets were collected from the compressor under baseline condition and five common faults: valve leakage, inter-cooler leakage, suction valve leakage, loose drive belt combined with intercooler leakage and belt loose drive belt combined with suction valve leakage. A model using five PCs has been developed using the baseline data sets and the presence of faults can be detected by comparing the T2 and Q values from the features of fault vibration signals with corresponding thresholds developed from baseline data. However, the Q -statistic procedure produces a better detection as it can separate the five faults completely.

  3. Automated Detection of Oscillating Regions in the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Ireland, J.; Marsh, M. S.; Kucera, T. A.; Young, C. A.

    2010-01-01

    Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.

  4. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  5. Experimental application of nonlinear minimum variance estimation for fault detection systems

    NASA Astrophysics Data System (ADS)

    Alkaya, Alkan; Grimble, Michael John

    2016-09-01

    The purpose of this paper is to present an experimental design and application of a novel model-based fault detection technique by using a nonlinear minimum variance (NMV) estimator. The NMV estimation technique is used to generate a residual signal which is then used to detect faults in the system. The main advantage of the approach is the simplicity of the nonlinear estimator theory and the straightforward structure of the resulting solution. The proposed method is implemented and validated experimentally on DC servo system. Experimental results demonstrate that the technique can produce acceptable performance in terms of fault detection and false alarm.

  6. Using unknown input observers for robust adaptive fault detection in vector second-order systems

    NASA Astrophysics Data System (ADS)

    Demetriou, Michael A.

    2005-03-01

    The purpose of this manuscript is to construct natural observers for vector second-order systems by utilising unknown input observer (UIO) methods. This observer is subsequently used for a robust fault detection scheme and also as an adaptive detection scheme for a certain class of actuator faults wherein the time instance and characteristics of an incipient actuator fault are detected. Stability of the adaptive scheme is provided by a parameter-dependent Lyapunov function for second-order systems. Numerical example on a mechanical system describing an automobile suspension system is used to illustrate the theoretical results.

  7. Detection of high impedance arcing faults using a multi-layer perceptron

    SciTech Connect

    Sultan, F.F.; Swift, G.W. ); Fedirchuk, D.J. )

    1992-10-01

    A feed-forward three-layer perceptron was trained by high impedance fault, fault-like load, and normal load current patterns, using the back-propagation training algorithm. This paper reports that the neural network parameters were embodied in a high impedance arcing faults detection algorithm, which uses a simple preprocessing technique to prepare the information input to the network. The algorithm was tested by traces of normal load current disturbed by currents of faults on dry and wet soil, an arc welder, computers, and fluorescent lights.

  8. Observer performance in semi-automated microbleed detection

    NASA Astrophysics Data System (ADS)

    Kuijf, Hugo J.; Brundel, Manon; de Bresser, Jeroen; Viergever, Max A.; Biessels, Geert Jan; Geerlings, Mirjam I.; Vincken, Koen L.

    2013-03-01

    Cerebral microbleeds are small bleedings in the human brain, detectable with MRI. Microbleeds are associated with vascular disease and dementia. The number of studies involving microbleed detection is increasing rapidly. Visual rating is the current standard for detection, but is a time-consuming process, especially at high-resolution 7.0 T MR images, has limited reproducibility and is highly observer dependent. Recently, multiple techniques have been published for the semi-automated detection of microbleeds, attempting to overcome these problems. In the present study, a 7.0 T dual-echo gradient echo MR image was acquired in 18 participants with microbleeds from the SMART study. Two experienced observers identified 54 microbleeds in these participants, using a validated visual rating scale. The radial symmetry transform (RST) can be used for semi-automated detection of microbleeds in 7.0 T MR images. In the present study, the results of the RST were assessed by two observers and 47 microbleeds were identified: 35 true positives and 12 extra positives (microbleeds that were missed during visual rating). Hence, after scoring a total number of 66 microbleeds could be identified in the 18 participants. The use of the RST increased the average sensitivity of observers from 59% to 69%. More importantly, inter-observer agreement (ICC and Dice's coefficient) increased from 0.85 and 0.64 to 0.98 and 0.96, respectively. Furthermore, the required rating time was reduced from 30 to 2 minutes per participant. By fine-tuning the RST, sensitivities up to 90% can be achieved, at the cost of extra false positives.

  9. Residual generation for fault detection and isolation in a class of uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Jun; Yang, Guang-Hong

    2013-02-01

    This article studies the problem of fault detection and isolation (FDI) for a class of uncertain nonlinear systems via a residual signal generated by a novel nonlinear adaptive observer. The considered faults are modelled by a set of time-varying vectors, in which a prescribed subset of faults are specially monitored and thus separable from the other faults. In the presence of Lipschitz-like nonlinearities and modelling uncertainties, the sensitivity of the residual signal to the monitored faults and its insensitivity to the other faults are rigorously analysed. Under a persistent excitation condition, the performances of the proposed fault diagnosis scheme, including the robustness to uncertainties, the quickness of estimation, the accuracy of estimation, the sensitivity to the monitored faults and the insensitivity to the complement faults, are quantified by a series of explicit design functions relevant to the observer parameters. It turns out that the number of faults which can be completely diagnosed is independent of the number of output sensors. A simulation example is given to illustrate the effectiveness of the proposed FDI method.

  10. Method and apparatus for in-situ detection and isolation of aircraft engine faults

    NASA Technical Reports Server (NTRS)

    Bonanni, Pierino Gianni (Inventor); Brunell, Brent Jerome (Inventor)

    2007-01-01

    A method for performing a fault estimation based on residuals of detected signals includes determining an operating regime based on a plurality of parameters, extracting predetermined noise standard deviations of the residuals corresponding to the operating regime and scaling the residuals, calculating a magnitude of a measurement vector of the scaled residuals and comparing the magnitude to a decision threshold value, extracting an average, or mean direction and a fault level mapping for each of a plurality of fault types, based on the operating regime, calculating a projection of the measurement vector onto the average direction of each of the plurality of fault types, determining a fault type based on which projection is maximum, and mapping the projection to a continuous-valued fault level using a lookup table.

  11. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  12. Construction and selection of lifting-based multiwavelets for mechanical fault detection

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; He, Zhengjia; Zi, Yanyang; Wei, Ying

    2013-11-01

    The essence of wavelet transforms is a similar measurement between the signal and the wavelet basis functions. Thus, the construction and selection of the proper wavelet basis functions similar to the fault feature and possessing good properties such as vanishing moments have vital importance to the effective fault diagnosis. In this paper, the construction of lifting-based adaptive multiwavelets with various vanishing moments and the selection rules for different mechanical fault detection are proposed. On the basis of the fixed cubic Hermite multiwavelets, lifting schemes are adopted to construct new changeable multiwavelets with diverse vanishing moments. Then, the defined local spectral entropy minimization rules are proposed to determine the optimum multiwavelets providing the proper vanishing moments, classified into the typical shaft faults, gear faults and rolling bearing faults. The proposed method is applied to incipient fault diagnosis of rolling bearing and gearbox fault diagnosis of rolling mill to verify its effectiveness and feasibility in comparison with different wavelet transforms and spectral kurtosis. The results show that the proposed method can act as a promising tool for mechanical fault detection.

  13. Software-implemented fault insertion: An FTMP example

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1987-01-01

    This report presents a model for fault insertion through software; describes its implementation on a fault-tolerant computer, FTMP; presents a summary of fault detection, identification, and reconfiguration data collected with software-implemented fault insertion; and compares the results to hardware fault insertion data. Experimental results show detection time to be a function of time of insertion and system workload. For the fault detection time, there is no correlation between software-inserted faults and hardware-inserted faults; this is because hardware-inserted faults must manifest as errors before detection, whereas software-inserted faults immediately exercise the error detection mechanisms. In summary, the software-implemented fault insertion is able to be used as an evaluation technique for the fault-handling capabilities of a system in fault detection, identification and recovery. Although the software-inserted faults do not map directly to hardware-inserted faults, experiments show software-implemented fault insertion is capable of emulating hardware fault insertion, with greater ease and automation.

  14. Automated microaneurysm detection in diabetic retinopathy using curvelet transform.

    PubMed

    Ali Shah, Syed Ayaz; Laude, Augustinus; Faye, Ibrahima; Tang, Tong Boon

    2016-10-01

    Microaneurysms (MAs) are known to be the early signs of diabetic retinopathy (DR). An automated MA detection system based on curvelet transform is proposed for color fundus image analysis. Candidates of MA were extracted in two parallel steps. In step one, blood vessels were removed from preprocessed green band image and preliminary MA candidates were selected by local thresholding technique. In step two, based on statistical features, the image background was estimated. The results from the two steps allowed us to identify preliminary MA candidates which were also present in the image foreground. A collection set of features was fed to a rule-based classifier to divide the candidates into MAs and non-MAs. The proposed system was tested with Retinopathy Online Challenge database. The automated system detected 162 MAs out of 336, thus achieved a sensitivity of 48.21% with 65 false positives per image. Counting MA is a means to measure the progression of DR. Hence, the proposed system may be deployed to monitor the progression of DR at early stage in population studies. PMID:26868326

  15. Development of automated detection of radiology reports citing adrenal findings

    NASA Astrophysics Data System (ADS)

    Zopf, Jason; Langer, Jessica; Boonn, William; Kim, Woojin; Zafar, Hanna

    2011-03-01

    Indeterminate incidental findings pose a challenge to both the radiologist and the ordering physician as their imaging appearance is potentially harmful but their clinical significance and optimal management is unknown. We seek to determine if it is possible to automate detection of adrenal nodules, an indeterminate incidental finding, on imaging examinations at our institution. Using PRESTO (Pathology-Radiology Enterprise Search tool), a newly developed search engine at our institution that mines dictated radiology reports, we searched for phrases used by attendings to describe incidental adrenal findings. Using these phrases as a guide, we designed a query that can be used with the PRESTO index. The results were refined using a modified version of NegEx to eliminate query terms that have been negated within the report text. In order to validate these findings we used an online random date generator to select two random weeks. We queried our RIS database for all reports created on those dates and manually reviewed each report to check for adrenal incidental findings. This survey produced a ground- truth dataset of reports citing adrenal incidental findings against which to compare query performance. We further reviewed the false positives and negatives identified by our validation study, in an attempt to improve the performance query. This algorithm is an important step towards automating the detection of incidental adrenal nodules on cross sectional imaging at our institution. Subsequently, this query can be combined with electronic medical record data searches to determine the clinical significance of these findings through resultant follow-up.

  16. Automated Detection of Opaque Volcanic Plumes in Polar Satellite Data

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Webley, P.

    2013-12-01

    Response to an explosive volcanic eruption is time sensitive, so automated eruption detection techniques are essential to minimize alert times after an event. Automated detection of volcanic ash plumes in satellite imagery is usually done using a variant of the split-window or reverse-absorption method. This method is often effective but requires among other things that an ash plume be translucent to allow thermal radiation to pass through it. In the critical first hour or two of an eruption, plumes are most often opaque, and therefore cannot be detected by this method. It has been shown that an emergent plume appears as a sudden cold cloud over a volcano where a weather system should not appear, and this has been applied to geostationary data that is acquired every 15 to 30 minutes and will be an integral part of the upcoming geostationary mission, GOES-R. In this study this concept is used on time sequential polar orbiting satellite data to detect emergent plumes. This augments geostationary data, and may detect smaller plumes at higher latitudes where geostationary data suffers from poorer spatial resolution. A series of weighted credits and demerits are used to determine the presence of an anomalously cold cloud over a volcano in time sequential advanced very high resolution radiometer (AVHRR) data. Parameters such as coldest thermal infrared temperature, time between images, ratio of cold to background temperature, and temperature trend are assigned a weighted value and a threshold used to determine the presence of an anomalous cloud. The weighting and threshold is unique for each volcano due to weather conditions and satellite coverage. Using the 20 year archive of eruptions in the North Pacific at the Geophysical Institute of the University of Alaska Fairbanks, explosive eruptions were evaluated at Karmsky Volcano (1996), Pavlof volcano (1996, 2007, 2013), Cleveland Volcano (1994, 2001, 2008), Shishaldin Volcano (1999), Augustine Volcano (2006), Fourpeaked

  17. Automated detection of jet contrails using the AVHRR split window

    NASA Technical Reports Server (NTRS)

    Engelstad, M.; Sengupta, S. K.; Lee, T.; Welch, R. M.

    1992-01-01

    This paper investigates the automated detection of jet contrails using data from the Advanced Very High Resolution Radiometer. A preliminary algorithm subtracts the 11.8-micron image from the 10.8-micron image, creating a difference image on which contrails are enhanced. Then a three-stage algorithm searches the difference image for the nearly-straight line segments which characterize contrails. First, the algorithm searches for elevated, linear patterns called 'ridges'. Second, it applies a Hough transform to the detected ridges to locate nearly-straight lines. Third, the algorithm determines which of the nearly-straight lines are likely to be contrails. The paper applies this technique to several test scenes.

  18. Automated detection of optical counterparts to GRBs with RAPTOR

    SciTech Connect

    Wozniak, P. R.; Vestrand, W. T.; Evans, S.; White, R.; Wren, J.

    2006-05-19

    The RAPTOR system (RAPid Telescopes for Optical Response) is an array of several distributed robotic telescopes that automatically respond to GCN localization alerts. Raptor-S is a 0.4-m telescope with 24 arc min. field of view employing a 1k x 1k Marconi CCD detector, and has already detected prompt optical emission from several GRBs within the first minute of the explosion. We present a real-time data analysis and alert system for automated identification of optical transients in Raptor-S GRB response data down to the sensitivity limit of {approx} 19 mag. Our custom data processing pipeline is designed to minimize the time required to reliably identify transients and extract actionable information. The system utilizes a networked PostgreSQL database server for catalog access and distributes email alerts with successful detections.

  19. Automated detection of objects in Sidescan sonar data

    NASA Astrophysics Data System (ADS)

    Irvine, John M.; Israel, Steven A.; Bergeron, Stuart

    2007-04-01

    Detection and mapping of subsurface obstacles is critical for safe navigation of littoral regions. Sidescan sonar data offers a rich source of information for developing such maps. Typically, data are collected at two frequencies using a sensor mounted on a towfish. The major features of interest depend on the specific mission, but often include: objects on the bottom that could pose hazards for navigation, linear features such as cables or pipelines, and the bottom type, e.g., clay, sand, rock, etc. A number of phenomena can complicate the analysis of the sonar data: Surface return, vessel wakes, fluctuations in the position and orientation of the towfish. Developing accurate maps of navigation hazards based on sidescan sonar data is generally labor intensive. We propose an automated approach, which employs commercial software tools, to detect of these objects. This method offers the prospect of substantially reducing production time for maritime geospatial data products.

  20. Development, Implementation, and Testing of Fault Detection Strategies on the National Wind Technology Center's Controls Advanced Research Turbines

    SciTech Connect

    Johnson, K. E.; Fleming, P. A.

    2011-06-01

    The National Renewable Energy Laboratory's National Wind Technology Center dedicates two 600 kW turbines for advanced control systems research. A fault detection system for both turbines has been developed, analyzed, and improved across years of experiments to protect the turbines as each new controller is tested. Analysis of field data and ongoing fault detection strategy improvements have resulted in a system of sensors, fault definitions, and detection strategies that have thus far been effective at protecting the turbines. In this paper, we document this fault detection system and provide field data illustrating its operation while detecting a range of failures. In some cases, we discuss the refinement process over time as fault detection strategies were improved. The purpose of this article is to share field experience obtained during the development and field testing of the existing fault detection system, and to offer a possible baseline for comparison with more advanced turbine fault detection controllers.

  1. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Boutros, Tony; Liang, Ming

    2011-08-01

    Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.

  2. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  3. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  4. System and method for bearing fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  5. Diagnostic techniques and apparatus for detecting faults in perfluorocarbon liquid immersed transformers

    SciTech Connect

    Mizuno, K.; Ogawa, A.; Ooe, E.; Mori, E.

    1996-04-01

    This paper deals with techniques and an apparatus designed to diagnosis transformer faults by detecting C{sub 2}F{sub 4}, C{sub 2}F{sub 6} and C{sub 3}F{sub 6} gases contained in perfluorocarbon (PFC) liquid. The authors first established fault diagnostic techniques that employ gas patterns, gas composition ratios and fault diagnostic diagram and flow chart, based on the C{sub 2}F{sub 4}, C{sub 2}F{sub 6} and C{sub 3}F{sub 6} gases generated by overheating, partial discharges and arc discharges. Then, the authors verified the possibility of diagnosing internal faults in PFC liquid-immersed transformers when internal fault simulation tests on transformer model are conducted. The C{sub 2}F{sub 4} and C{sub 3}F{sub 6} gases generated there are detected with the gas diagnostic apparatus equipped with a gas sensor.

  6. a New Online Distributed Process Fault Detection and Isolation Approach Using Potential Clustering Technique

    NASA Astrophysics Data System (ADS)

    Bahrampour, Soheil; Moshiri, Behzad; Salahshoor, Karim

    2009-08-01

    Most of process fault monitoring systems suffer from offline computations and confronting with novel faults that limit their applicabilities. This paper presents a new online fault detection and isolation (FDI) algorithm based on distributed online clustering approach. In the proposed approach, clustering algorithm is used for online detection of a new trend of time series data which indicates faulty condition. On the other hand, distributed technique is used to decompose the overall monitoring task into a series of local monitoring sub-tasks so as to locally track and capture the process faults. This algorithm not only solves the problem of online FDI, but also can handle novel faults. The diagnostic performances of the proposed FDI approach is evaluated on the Tennessee Eastman process plant as a large-scale benchmark problem.

  7. Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems

    SciTech Connect

    Xu, Peng; Haves, Philip

    2002-05-16

    An automated fault detection and diagnosis tool for HVAC systems is being developed, based on an integrated, life-cycle, approach to commissioning and performance monitoring. The tool uses component-level HVAC equipment models implemented in the SPARK equation-based simulation environment. The models are configured using design information and component manufacturers' data and then fine-tuned to match the actual performance of the equipment by using data measured during functional tests of the sort using in commissioning. This paper presents the results of field tests of mixing box and VAV fan system models in an experimental facility and a commercial office building. The models were found to be capable of representing the performance of correctly operating mixing box and VAV fan systems and detecting several types of incorrect operation.

  8. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).

  9. Automated calibration methods for robotic multisensor landmine detection

    NASA Astrophysics Data System (ADS)

    Keranen, Joe G.; Miller, Jonathan; Schultz, Gregory; Topolosky, Zeke

    2007-04-01

    Both force protection and humanitarian demining missions require efficient and reliable detection and discrimination of buried anti-tank and anti-personnel landmines. Widely varying surface and subsurface conditions, mine types and placement, as well as environmental regimes challenge the robustness of the automatic target recognition process. In this paper we present applications created for the U.S. Army Nemesis detection platform. Nemesis is an unmanned rubber-tracked vehicle-based system designed to eradicate a wide variety of anti-tank and anti-personnel landmines for humanitarian demining missions. The detection system integrates advanced ground penetrating synthetic aperture radar (GPSAR) and electromagnetic induction (EMI) arrays, highly accurate global and local positioning, and on-board target detection/classification software on the front loader of a semi-autonomous UGV. An automated procedure is developed to estimate the soil's dielectric constant using surface reflections from the ground penetrating radar. The results have implications not only for calibration of system data acquisition parameters, but also for user awareness and tuning of automatic target recognition detection and discrimination algorithms.

  10. Fast-time Simulation of an Automated Conflict Detection and Resolution Concept

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Erzberger, Heinz

    2006-01-01

    This paper investigates the effect on the National Airspace System of reducing air traffc controller workload by automating conflict detection and resolution. The Airspace Concept Evaluation System is used to perform simulations of the Cleveland Center with conventional and with automated conflict detection and resolution concepts. Results show that the automated conflict detection and resolution concept significantly decreases growth of delay as traffic demand is increased in en-route airspace.

  11. Electrical Structure of the Shallow Part of the Atotsugawa Fault, Central Japan: Detecting en Echelon Structure in the Fault Zone

    NASA Astrophysics Data System (ADS)

    Yamashita, F.; Kubo, A.; Yamada, R.; Omura, K.

    2005-12-01

    Dense VLF-MT and TDEM surveys were carried out to image the electrical structure of a region interpreted as a creeping segment of the Atotsugawa Fault, central Japan. The Atotsugawa Fault is an active fault with a length of 60-70 km and a strike of approximately N60°E. The fault type is a right-lateral strike-slip. The most significant characteristic of this fault is a possible existence of creeping segment. In the central region, the stable slip with a rate of 1.5 mm/year was found by the observation of baseline change (Geographical Survey Institute, 1997). However, such slip has not been found at the southwestern region. Therefore, the central region is considered to be a creeping segment. In the creeping segment, many fault outcrops were found on the right bank of the Atotsu-gawa River that runs along the fault. Strikes of shear planes in outcrops were observed to be N30°-47°E, which is apparently different from that of the Atotsugawa fault. This observation suggested the existence of en echelon structure, which is the cluster of small shear zones oblique to main fault. Investigation of the nature of the en echelon structure will help us to understand the growth history of the Atotsugawa fault and the mechanisms of creeping phenomenon. Because a fracture zone usually includes much water, we can detect it as a low resistivity zone. In order to image the detailed structure of echelon, we carried out the electromagnetic surveys; VLF-MT and TDEM survey as a preliminary and main investigation, respectively. The results of VLF-MT survey has been reported by Yamashita et al. (2005), and therefore we don_ft refer to the results here. We acquired data at 10000 points with airborne TDEM survey, and over 4000 data were selectively used for modeling the subsurface structure. Apparent resistivity at each point was modeled assuming 1-D structure that consists of 30 and 70 m thick layers on a semi-infinite basement (three layers in total). Because over 4000 survey points

  12. Time-series methods for fault detection and identification in vibrating structures.

    PubMed

    Fassois, Spilios D; Sakellariou, John S

    2007-02-15

    An overview of the principles and techniques of time-series methods for fault detection, identification and estimation in vibrating structures is presented, and certain new methods are introduced. The methods are classified, and their features and operation are discussed. Their practicality and effectiveness are demonstrated through brief presentations of three case studies pertaining to fault detection, identification and estimation in an aircraft panel, a scale aircraft skeleton structure and a simple nonlinear simulated structure. PMID:17255046

  13. Methods and apparatus using commutative error detection values for fault isolation in multiple node computers

    DOEpatents

    Almasi, Gheorghe [Ardsley, NY; Blumrich, Matthias Augustin [Ridgefield, CT; Chen, Dong [Croton-On-Hudson, NY; Coteus, Paul [Yorktown, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk I [Ossining, NY; Singh, Sarabjeet [Mississauga, CA; Steinmacher-Burow, Burkhard D [Wernau, DE; Takken, Todd [Brewster, NY; Vranas, Pavlos [Bedford Hills, NY

    2008-06-03

    Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored in memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.

  14. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G.

    2000-01-01

    The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

  15. Detection of stator winding faults in induction machines using flux and vibration analysis

    NASA Astrophysics Data System (ADS)

    Lamim Filho, P. C. M.; Pederiva, R.; Brito, J. N.

    2014-01-01

    This work aims at presenting the detection and diagnosis of electrical faults in the stator winding of three-phase induction motors using magnetic flux and vibration analysis techniques. A relationship was established between the main electrical faults (inter-turn short circuits and unbalanced voltage supplies) and the signals of magnetic flux and vibration, in order to identify the characteristic frequencies of those faults. The experimental results showed the efficiency of the conjugation of these techniques for detection, diagnosis and monitoring tasks. The results were undoubtedly impressive and can be adapted and used in real predictive maintenance programs in industries.

  16. Infrared Thermal Imaging for Automated Detection of Diabetic Foot Complications

    PubMed Central

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2013-01-01

    Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). Results No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. Conclusions With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. PMID:24124937

  17. Observer and data-driven-model-based fault detection in power plant coal mills

    SciTech Connect

    Odgaard, P.F.; Lin, B.; Jorgensen, S.B.

    2008-06-15

    This paper presents and compares model-based and data-driven fault detection approaches for coal mill systems. The first approach detects faults with an optimal unknown input observer developed from a simplified energy balance model. Due to the time-consuming effort in developing a first principles model with motor power as the controlled variable, data-driven methods for fault detection are also investigated. Regression models that represent normal operating conditions (NOCs) are developed with both static and dynamic principal component analysis and partial least squares methods. The residual between process measurement and the NOC model prediction is used for fault detection. A hybrid approach, where a data-driven model is employed to derive an optimal unknown input observer, is also implemented. The three methods are evaluated with case studies on coal mill data, which includes a fault caused by a blocked inlet pipe. All three approaches detect the fault as it emerges. The optimal unknown input observer approach is most robust, in that, it has no false positives. On the other hand, the data-driven approaches are more straightforward to implement, since they just require the selection of appropriate confidence limit to avoid false detection. The proposed hybrid approach is promising for systems where a first principles model is cumbersome to obtain.

  18. Automated transient detection in the STEREO Heliospheric Imagers.

    NASA Astrophysics Data System (ADS)

    Barnard, Luke; Scott, Chris; Owens, Mat; Lockwood, Mike; Tucker-Hood, Kim; Davies, Jackie

    2014-05-01

    Since the launch of the twin STEREO satellites, the heliospheric imagers (HI) have been used, with good results, in tracking transients of solar origin, such as Coronal Mass Ejections (CMEs), out far into the heliosphere. A frequently used approach is to build a "J-map", in which multiple elongation profiles along a constant position angle are stacked in time, building an image in which radially propagating transients form curved tracks in the J-map. From this the time-elongation profile of a solar transient can be manually identified. This is a time consuming and laborious process, and the results are subjective, depending on the skill and expertise of the investigator. Therefore, it is desirable to develop an automated algorithm for the detection and tracking of the transient features observed in HI data. This is to some extent previously covered ground, as similar problems have been encountered in the analysis of coronagraph data and have led to the development of products such as CACtus etc. We present the results of our investigation into the automated detection of solar transients observed in J-maps formed from HI data. We use edge and line detection methods to identify transients in the J-maps, and then use kinematic models of the solar transient propagation (such as the fixed-phi and harmonic mean geometric models) to estimate the solar transients properties, such as transient speed and propagation direction, from the time-elongation profile. The effectiveness of this process is assessed by comparison of our results with a set of manually identified CMEs, extracted and analysed by the Solar Storm Watch Project. Solar Storm Watch is a citizen science project in which solar transients are identified in J-maps formed from HI data and tracked multiple times by different users. This allows the calculation of a consensus time-elongation profile for each event, and therefore does not suffer from the potential subjectivity of an individual researcher tracking an

  19. Current-based sensorless detection of stator winding turn faults in induction machines

    NASA Astrophysics Data System (ADS)

    Tallam, Rangarajan M.

    To improve the reliability of motor-driven processes, condition monitoring of electric machines has received considerable attention from industry. For small- and medium-sized machines, the focus is on low-cost sensorless schemes that use only measured voltages and currents for fault diagnostics. Turn faults arising from stator winding insulation deterioration account for a large percentage of motor failures. The objective of a turn-fault detection scheme is to provide a warning before the fault propagates further and results in ground current, causing irreversible damage to the magnetic material. In this work, a neural-network-based robust scheme for early detection of turn faults in induction machines is developed. The negative-sequence component of line currents is used as the fault signature, and a neural network is trained to compensate for the effects of unbalanced supply voltages and nonidealities in the machine or instrumentation. Novel training algorithms for self-commissioning and on-line training of the neural network have also been developed. Experimental results, obtained on a specially-rewound machine, are provided to demonstrate that the method is capable of early fault detection. Data memory and computational requirements are also minimal, making the scheme viable for commercial implementation. The method is also extended to turn-fault detection in open-loop inverter-fed induction machines. Data obtained from a thermally accelerated insulation failure experiment is also used to test the performance and sensitivity of the method, and to show that a turn fault can be detected before failure of insulation to ground.

  20. Automated focusing in bright-field microscopy for tuberculosis detection

    PubMed Central

    OSIBOTE, O.A.; DENDERE, R.; KRISHNAN, S.; DOUGLAS, T.S.

    2010-01-01

    Summary Automated microscopy to detect Mycobacterium tuberculosis in sputum smear slides would enable laboratories in countries with a high tuberculosis burden to cope efficiently with large numbers of smears. Focusing is a core component of automated microscopy, and successful autofocusing depends on selection of an appropriate focus algorithm for a specific task. We examined autofocusing algorithms for bright-field microscopy of Ziehl–Neelsen stained sputum smears. Six focus measures, defined in the spatial domain, were examined with respect to accuracy, execution time, range, full width at half maximum of the peak and the presence of local maxima. Curve fitting around an estimate of the focal plane was found to produce good results and is therefore an acceptable strategy to reduce the number of images captured for focusing and the processing time. Vollath's F4 measure performed best for full z-stacks, with a mean difference of 0.27 μm between manually and automatically determined focal positions, whereas it is jointly ranked best with the Brenner gradient for curve fitting. PMID:20946382

  1. Automated rapid finite fault inversion for megathrust earthquakes: Application to the Maule (2010), Iquique (2014) and Illapel (2015) great earthquakes

    NASA Astrophysics Data System (ADS)

    Benavente, Roberto; Cummins, Phil; Dettmer, Jan

    2016-04-01

    Rapid estimation of the spatial and temporal rupture characteristics of large megathrust earthquakes by finite fault inversion is important for disaster mitigation. For example, estimates of the spatio-temporal evolution of rupture can be used to evaluate population exposure to tsunami waves and ground shaking soon after the event by providing more accurate predictions than possible with point source approximations. In addition, rapid inversion results can reveal seismic source complexity to guide additional, more detailed subsequent studies. This work develops a method to rapidly estimate the slip distribution of megathrust events while reducing subjective parameter choices by automation. The method is simple yet robust and we show that it provides excellent preliminary rupture models as soon as 30 minutes for three great earthquakes in the South-American subduction zone. This may slightly change for other regions depending on seismic station coverage but method can be applied to any subduction region. The inversion is based on W-phase data since it is rapidly and widely available and of low amplitude which avoids clipping at close stations for large events. In addition, prior knowledge of the slab geometry (e.g. SLAB 1.0) is applied and rapid W-phase point source information (time delay and centroid location) is used to constrain the fault geometry and extent. Since the linearization by multiple time window (MTW) parametrization requires regularization, objective smoothing is achieved by the discrepancy principle in two fully automated steps. First, the residuals are estimated assuming unknown noise levels, and second, seeking a subsequent solution which fits the data to noise level. The MTW scheme is applied with positivity constraints and a solution is obtained by an efficient non-negative least squares solver. Systematic application of the algorithm to the Maule (2010), Iquique (2014) and Illapel (2015) events illustrates that rapid finite fault inversion with

  2. Teager energy operator for multi-modulation extraction and its application for gearbox fault detection

    NASA Astrophysics Data System (ADS)

    Soltani Bozchalooi, I.; Liang, Ming

    2010-07-01

    This paper presents a parameter-free and broadband approach to detecting gear faults based on vibration signals. The technique is implemented using the Teager energy operator (TEO). It is shown that this operator can extract amplitude, phase and frequency modulations that are associated with various gear faults. Spectral analysis of the TEO-transformed signal provides the necessary information for fault detection. To improve the effectiveness of the proposed technique, we also devised a wavelet de-noising step based on online threshold estimation. In the de-noising step, the threshold estimation is performed through a frequency domain median absolute deviation (FMAD) scheme. The proposed fault detection technique is tested on simulated as well as experimental data acquired from a single-stage bevel gearbox and a two-stage parallel gearbox. US patent pending (serial number: 12/631,528).

  3. Automated rice leaf disease detection using color image analysis

    NASA Astrophysics Data System (ADS)

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  4. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.

    PubMed

    Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors. PMID:27370486

  5. Detection of fault structures with airborne LiDAR point-cloud data

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Du, Lei

    2015-08-01

    The airborne LiDAR (Light Detection And Ranging) technology is a new type of aerial earth observation method which can be used to produce high-precision DEM (Digital Elevation Model) quickly and reflect ground surface information directly. Fault structure is one of the key forms of crustal movement, and its quantitative description is the key to the research of crustal movement. The airborne LiDAR point-cloud data is used to detect and extract fault structures automatically based on linear extension, elevation mutation and slope abnormal characteristics. Firstly, the LiDAR point-cloud data is processed to filter out buildings, vegetation and other non-surface information with the TIN (Triangulated Irregular Network) filtering method and Burman model calibration method. TIN and DEM are made from the processed data sequentially. Secondly, linear fault structures are extracted based on dual-threshold method. Finally, high-precision DOM (Digital Orthophoto Map) and other geological knowledge are used to check the accuracy of fault structure extraction. An experiment is carried out in Beiya Village of Yunnan Province, China. With LiDAR technology, results reveal that: the airborne LiDAR point-cloud data can be utilized to extract linear fault structures accurately and automatically, measure information such as height, width and slope of fault structures with high precision, and detect faults in areas with vegetation coverage effectively.

  6. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors

    NASA Astrophysics Data System (ADS)

    Yang, Jing-li; Chen, Yin-sheng; Zhang, Li-li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  7. Hideen Markov Models and Neural Networks for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    None given. (From conclusion): Neural networks plus Hidden Markov Models(HMM)can provide excellene detection and false alarm rate performance in fault detection applications. Modified models allow for novelty detection. Also covers some key contributions of neural network model, and application status.

  8. Detectability of slow slip beneath the seismogenic zone of strike-slip faults using borehole tiltmeters

    NASA Astrophysics Data System (ADS)

    Chery, J.

    2015-12-01

    During the last decades, geodetic tools like C-GPS allowed the detection of slow slip events associated with transient motion below the seismogenic zone. This new class of fault motion lead us to revise the standard version of the seismic cycle simply including coseismic, postseismic and interseismic phases. Most of these discoveries occurred on subduction margins in various places like Japan, Cascadia, Chile and Indonesia. By contrast, GPS and strainmeters have provided little evidence of slow slip beneath the seismogenic zone of large continental faults like the San Andreas fault or the North Anatolian fault. Because the detectability of such motions is mostly tributary from instrumental precision, we examine the theoretical capability of tiltmeter arrays for detecting horizontal motion of a buried vertical fault. We define the slipping part of the strike-slip fault like a buried rectangular patch submitted to horizontal motion. This motion provides horizontal and vertical surface deformation as a function of both patch geometry (length, width, depth) and motion amplitude. Using a dislocation buried at 15km depth, we compute the maximum motion and tilt as a function of seismic moment. Assuming yields of detectability of 1mm for GPS horizontal motion and 10 nrad for a tiltmeter, we show that small slip events could be better detected using high resolution and stability tiltmeters. We then examine how tiltmeters arrays could be used for such a purpose. In particular, we discuss how to deal with usual problems often plaguing tiltmeters data like instrumental drift, borehole coupling and hydrological strain.

  9. ARX model-based gearbox fault detection and localization under varying load conditions

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Makis, Viliam

    2010-11-01

    The development of the fault detection schemes for gearbox systems has received considerable attention in recent years. Both time series modeling and feature extraction based on wavelet methods have been considered, mostly under constant load. Constant load assumption implies that changes in vibration data are caused only by deterioration of the gearbox. However, most real gearbox systems operate under varying load and speed which affect the vibration signature of the system and in general make it difficult to recognize the occurrence of an impending fault. This paper presents a novel approach to detect and localize the gear failure occurrence for a gearbox operating under varying load conditions. First, residual signal is calculated using an autoregressive model with exogenous variables (ARX) fitted to the time-synchronously averaged (TSA) vibration data and filtered TSA envelopes when the gearbox operated under various load conditions in the healthy state. The gear of interest is divided into several sections so that each section includes the same number of adjacent teeth. Then, the fault detection and localization indicator is calculated by applying F-test to the residual signal of the ARX model. The proposed fault detection scheme indicates not only when the gear fault occurs, but also in which section of the gear. Finally, the performance of the fault detection scheme is checked using full lifetime vibration data obtained from the gearbox operating from a new condition to a breakdown under varying load.

  10. Automated detection of open magnetic field regions in EUV images

    NASA Astrophysics Data System (ADS)

    Krista, Larisza Diana; Reinard, Alysha

    2016-05-01

    Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature, but both appear as dark regions in EUV images. For this reason their detection can be done in a similar way. As coronal holes are often large and long-lived in comparison to dimmings, their detection is more straightforward. The Coronal Hole Automated Recognition and Monitoring (CHARM) algorithm detects coronal holes using EUV images and a magnetogram. The EUV images are used to identify dark regions, and the magnetogam allows us to determine if the dark region is unipolar – a characteristic of coronal holes. There is no temporal sensitivity in this process, since coronal hole lifetimes span days to months. Dimming regions, however, emerge and disappear within hours. Hence, the time and location of a dimming emergence need to be known to successfully identify them and distinguish them from regular coronal holes. Currently, the Coronal Dimming Tracker (CoDiT) algorithm is semi-automated – it requires the dimming emergence time and location as an input. With those inputs we can identify the dimming and track it through its lifetime. CoDIT has also been developed to allow the tracking of dimmings that split or merge – a typical feature of dimmings.The advantage of these particular algorithms is their ability to adapt to detecting different types of open field regions. For coronal hole detection, each full-disk solar image is processed individually to determine a threshold for the image, hence, we are not limited to a single pre-determined threshold. For dimming regions we also allow individual thresholds for each dimming, as they can differ substantially. This flexibility is necessary for a subjective analysis of the studied regions. These algorithms were developed with the goal to allow us better understand the processes that give rise to eruptive and non-eruptive open field regions. We aim to study how these regions evolve over time and what environmental

  11. Enhanced detection of rolling element bearing fault based on stochastic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Hu, Niaoqing; Cheng, Zhe; Hu, Lei

    2012-11-01

    Early bearing faults can generate a series of weak impacts. All the influence factors in measurement may degrade the vibration signal. Currently, bearing fault enhanced detection method based on stochastic resonance(SR) is implemented by expensive computation and demands high sampling rate, which requires high quality software and hardware for fault diagnosis. In order to extract bearing characteristic frequencies component, SR normalized scale transform procedures are presented and a circuit module is designed based on parameter-tuning bistable SR. In the simulation test, discrete and analog sinusoidal signals under heavy noise are enhanced by SR normalized scale transform and circuit module respectively. Two bearing fault enhanced detection strategies are proposed. One is realized by pure computation with normalized scale transform for sampled vibration signal, and the other is carried out by designed SR hardware with circuit module for analog vibration signal directly. The first strategy is flexible for discrete signal processing, and the second strategy demands much lower sampling frequency and less computational cost. The application results of the two strategies on bearing inner race fault detection of a test rig show that the local signal to noise ratio of the characteristic components obtained by the proposed methods are enhanced by about 50% compared with the band pass envelope analysis for the bearing with weaker fault. In addition, helicopter transmission bearing fault detection validates the effectiveness of the enhanced detection strategy with hardware. The combination of SR normalized scale transform and circuit module can meet the need of different application fields or conditions, thus providing a practical scheme for enhanced detection of bearing fault.

  12. Automated detection of microaneurysms using robust blob descriptors

    NASA Astrophysics Data System (ADS)

    Adal, K.; Ali, S.; Sidibé, D.; Karnowski, T.; Chaum, E.; Mériaudeau, F.

    2013-03-01

    Microaneurysms (MAs) are among the first signs of diabetic retinopathy (DR) that can be seen as round dark-red structures in digital color fundus photographs of retina. In recent years, automated computer-aided detection and diagnosis (CAD) of MAs has attracted many researchers due to its low-cost and versatile nature. In this paper, the MA detection problem is modeled as finding interest points from a given image and several interest point descriptors are introduced and integrated with machine learning techniques to detect MAs. The proposed approach starts by applying a novel fundus image contrast enhancement technique using Singular Value Decomposition (SVD) of fundus images. Then, Hessian-based candidate selection algorithm is applied to extract image regions which are more likely to be MAs. For each candidate region, robust low-level blob descriptors such as Speeded Up Robust Features (SURF) and Intensity Normalized Radon Transform are extracted to characterize candidate MA regions. The combined features are then classified using SVM which has been trained using ten manually annotated training images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. Preliminary results show the competitiveness of the proposed candidate selection techniques against state-of-the art methods as well as the promising future for the proposed descriptors to be used in the localization of MAs from fundus images.

  13. Automated anomaly detection for Orbiter High Temperature Reusable Surface Insulation

    NASA Astrophysics Data System (ADS)

    Cooper, Eric G.; Jones, Sharon M.; Goode, Plesent W.; Vazquez, Sixto L.

    1992-11-01

    The description, analysis, and experimental results of a method for identifying possible defects on High Temperature Reusable Surface Insulation (HRSI) of the Orbiter Thermal Protection System (TPS) is presented. Currently, a visual postflight inspection of Orbiter TPS is conducted to detect and classify defects as part of the Orbiter maintenance flow. The objective of the method is to automate the detection of defects by identifying anomalies between preflight and postflight images of TPS components. The initial version is intended to detect and label gross (greater than 0.1 inches in the smallest dimension) anomalies on HRSI components for subsequent classification by a human inspector. The approach is a modified Golden Template technique where the preflight image of a tile serves as the template against which the postflight image of the tile is compared. Candidate anomalies are selected as a result of the comparison and processed to identify true anomalies. The processing methods are developed and discussed, and the results of testing on actual and simulated tile images are presented. Solutions to the problems of brightness and spatial normalization, timely execution, and minimization of false positives are also discussed.

  14. Geostationary Fire Detection with the Wildfire Automated Biomass Burning Algorithm

    NASA Astrophysics Data System (ADS)

    Hoffman, J.; Schmidt, C. C.; Brunner, J. C.; Prins, E. M.

    2010-12-01

    The Wild Fire Automated Biomass Burning Algorithm (WF_ABBA), developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), has a long legacy of operational wildfire detection and characterization. In recent years, applications of geostationary fire detection and characterization data have been expanding. Fires are detected with a contextual algorithm and when the fires meet certain conditions the instantaneous fire size, temperature, and radiative power are calculated and provided in user products. The WF_ABBA has been applied to data from Geostationary Operational Environmental Satellite (GOES)-8 through 15, Meteosat-8/-9, and Multifunction Transport Satellite (MTSAT)-1R/-2. WF_ABBA is also being developed for the upcoming platforms like GOES-R Advanced Baseline Imager (ABI) and other geostationary satellites. Development of the WF_ABBA for GOES-R ABI has focused on adapting the legacy algorithm to the new satellite system, enhancing its capabilities to take advantage of the improvements available from ABI, and addressing user needs. By its nature as a subpixel feature, observation of fire is extraordinarily sensitive to the characteristics of the sensor and this has been a fundamental part of the GOES-R WF_ABBA development work.

  15. Automated Detection of Firearms and Knives in a CCTV Image

    PubMed Central

    Grega, Michał; Matiolański, Andrzej; Guzik, Piotr; Leszczuk, Mikołaj

    2016-01-01

    Closed circuit television systems (CCTV) are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims. PMID:26729128

  16. Automated analysis for detecting beams in laser wakefield simulations

    SciTech Connect

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-07-03

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets.

  17. Automated Detection of Firearms and Knives in a CCTV Image.

    PubMed

    Grega, Michał; Matiolański, Andrzej; Guzik, Piotr; Leszczuk, Mikołaj

    2016-01-01

    Closed circuit television systems (CCTV) are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims. PMID:26729128

  18. Hardware fault insertion and instrumentation system: Mechanization and validation

    NASA Technical Reports Server (NTRS)

    Benson, J. W.

    1987-01-01

    Automated test capability for extensive low-level hardware fault insertion testing is developed. The test capability is used to calibrate fault detection coverage and associated latency times as relevant to projecting overall system reliability. Described are modifications made to the NASA Ames Reconfigurable Flight Control System (RDFCS) Facility to fully automate the total test loop involving the Draper Laboratories' Fault Injector Unit. The automated capability provided included the application of sequences of simulated low-level hardware faults, the precise measurement of fault latency times, the identification of fault symptoms, and bulk storage of test case results. A PDP-11/60 served as a test coordinator, and a PDP-11/04 as an instrumentation device. The fault injector was controlled by applications test software in the PDP-11/60, rather than by manual commands from a terminal keyboard. The time base was especially developed for this application to use a variety of signal sources in the system simulator.

  19. Automated Detection and Recognition of Wildlife Using Thermal Cameras

    PubMed Central

    Christiansen, Peter; Steen, Kim Arild; Jørgensen, Rasmus Nyholm; Karstoft, Henrik

    2014-01-01

    In agricultural mowing operations, thousands of animals are injured or killed each year, due to the increased working widths and speeds of agricultural machinery. Detection and recognition of wildlife within the agricultural fields is important to reduce wildlife mortality and, thereby, promote wildlife-friendly farming. The work presented in this paper contributes to the automated detection and classification of animals in thermal imaging. The methods and results are based on top-view images taken manually from a lift to motivate work towards unmanned aerial vehicle-based detection and recognition. Hot objects are detected based on a threshold dynamically adjusted to each frame. For the classification of animals, we propose a novel thermal feature extraction algorithm. For each detected object, a thermal signature is calculated using morphological operations. The thermal signature describes heat characteristics of objects and is partly invariant to translation, rotation, scale and posture. The discrete cosine transform (DCT) is used to parameterize the thermal signature and, thereby, calculate a feature vector, which is used for subsequent classification. Using a k-nearest-neighbor (kNN) classifier, animals are discriminated from non-animals with a balanced classification accuracy of 84.7% in an altitude range of 3–10 m and an accuracy of 75.2% for an altitude range of 10–20 m. To incorporate temporal information in the classification, a tracking algorithm is proposed. Using temporal information improves the balanced classification accuracy to 93.3% in an altitude range 3–10 of meters and 77.7% in an altitude range of 10–20 m PMID:25196105

  20. Automated detection and recognition of wildlife using thermal cameras.

    PubMed

    Christiansen, Peter; Steen, Kim Arild; Jørgensen, Rasmus Nyholm; Karstoft, Henrik

    2014-01-01

    In agricultural mowing operations, thousands of animals are injured or killed each year, due to the increased working widths and speeds of agricultural machinery. Detection and recognition of wildlife within the agricultural fields is important to reduce wildlife mortality and, thereby, promote wildlife-friendly farming. The work presented in this paper contributes to the automated detection and classification of animals in thermal imaging. The methods and results are based on top-view images taken manually from a lift to motivate work towards unmanned aerial vehicle-based detection and recognition. Hot objects are detected based on a threshold dynamically adjusted to each frame. For the classification of animals, we propose a novel thermal feature extraction algorithm. For each detected object, a thermal signature is calculated using morphological operations. The thermal signature describes heat characteristics of objects and is partly invariant to translation, rotation, scale and posture. The discrete cosine transform (DCT) is used to parameterize the thermal signature and, thereby, calculate a feature vector, which is used for subsequent classification. Using a k-nearest-neighbor (kNN) classifier, animals are discriminated from non-animals with a balanced classification accuracy of 84.7% in an altitude range of 3-10 m and an accuracy of 75.2% for an altitude range of 10-20 m. To incorporate temporal information in the classification, a tracking algorithm is proposed. Using temporal information improves the balanced classification accuracy to 93.3% in an altitude range 3-10 of meters and 77.7% in an altitude range of 10-20 m. PMID:25196105

  1. Detection of Creep displacement along the North Anatolian Fault by ScanSAR-ScanSAR Interferometry

    NASA Astrophysics Data System (ADS)

    Deguchi, Tomonori

    North Anatolian Fault (NAF) has several records of a huge earthquake occurrence in the last one century, which is well-known as a risky active fault. Some signs indicating a creep displacement could be observed on the Ismetpasa segment. The fault with creep deformation is aseismic and never generates the large scale earthquakes. But the scale and rate of fault creep are important factors to watch the fault behavior and to understand the cycle of earthquake. The author had investigated the distribution of spatial and temporal change on the ground motion due to fault creep in the surrounding of the Ismetpasa by InSAR time series analysis using PALSAR datasets from 2007 until 2011. As a result, the land deformation that the northern and southern parts of the fault have slipped to east and west at a rate of 7.5 and 6.5 mm/year in line of sight respectively were obviously detected. These results had good agreement with GPS data. In addition, it became clear that the fault creep along the NAF extended 61 km in east to west direction. In this study, the author applied ScanSAR-ScanSAR Interferometry using PALSAR data to the Ismetpasa segment of NAF.

  2. Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

    PubMed Central

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  3. Effects of time-varying loads on rotor fault detection in induction machines

    SciTech Connect

    Schoen, R.R.; Habetler, T.G.

    1995-07-01

    This paper addresses the problem of motor current spectral analysis for the detection of nonidealities in the air gap flux density when in the presence of an oscillating or position-varying load torque. Several schemes have been proposed for the detection of air gap eccentricities and broken rotor bars. The analysis of these effects, however, generally assumes that the load torque is constant. If the load torque varies with the rotational speed, then the motor current spectral harmonics produced by the load will overlap the harmonics caused by the fault conditions. The motor current spectral components in the presence of various fault and load conditions are reviewed. The interaction of the effects on the actual stator current spectrum caused by the fault condition and the torque oscillations are shown to be separable only if the angular position of the fault with respect to the load torque characteristic is known. This is an important result in the formulation of an on-line fault detection scheme that measures only a single phase of the stator current. Since the spatial location of the fault is not known, its influence on a specific current harmonic component cannot be separated from the load effects. Therefore, on-line detection schemes must rely on monitoring a multiple frequency signature and identifying those components not obscured by the load effect. Experimental results which show the current spectra of an induction machine under eccentric air gap and broken rotor bar conditions are given for both fixed and oscillating loads.

  4. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    PubMed

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  5. Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)

    2001-01-01

    This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.

  6. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1993-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  7. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1995-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  8. Experience of automation failures in training: effects on trust, automation bias, complacency and performance.

    PubMed

    Sauer, Juergen; Chavaillaz, Alain; Wastell, David

    2016-06-01

    This work examined the effects of operators' exposure to various types of automation failures in training. Forty-five participants were trained for 3.5 h on a simulated process control environment. During training, participants either experienced a fully reliable, automatic fault repair facility (i.e. faults detected and correctly diagnosed), a misdiagnosis-prone one (i.e. faults detected but not correctly diagnosed) or a miss-prone one (i.e. faults not detected). One week after training, participants were tested for 3 h, experiencing two types of automation failures (misdiagnosis, miss). The results showed that automation bias was very high when operators trained on miss-prone automation encountered a failure of the diagnostic system. Operator errors resulting from automation bias were much higher when automation misdiagnosed a fault than when it missed one. Differences in trust levels that were instilled by the different training experiences disappeared during the testing session. Practitioner Summary: The experience of automation failures during training has some consequences. A greater potential for operator errors may be expected when an automatic system failed to diagnose a fault than when it failed to detect one. PMID:26374396

  9. Fault detection and accommodation testing on an F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.

  10. Fault detection of helicopter gearboxes using the multi-valued influence matrix method

    NASA Technical Reports Server (NTRS)

    Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.

    1993-01-01

    In this paper we investigate the effectiveness of a pattern classifying fault detection system that is designed to cope with the variability of fault signatures inherent in helicopter gearboxes. For detection, the measurements are monitored on-line and flagged upon the detection of abnormalities, so that they can be attributed to a faulty or normal case. As such, the detection system is composed of two components, a quantization matrix to flag the measurements, and a multi-valued influence matrix (MVIM) that represents the behavior of measurements during normal operation and at fault instances. Both the quantization matrix and influence matrix are tuned during a training session so as to minimize the error in detection. To demonstrate the effectiveness of this detection system, it was applied to vibration measurements collected from a helicopter gearbox during normal operation and at various fault instances. The results indicate that the MVIM method provides excellent results when the full range of faults effects on the measurements are included in the training set.

  11. Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don

    1989-01-01

    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  12. Automated baseline change detection -- Phases 1 and 2. Final report

    SciTech Connect

    Byler, E.

    1997-10-31

    The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. The ABCD image processing software was installed on a robotic vehicle developed under a related DOE/FETC contract DE-AC21-92MC29112 Intelligent Mobile Sensor System (IMSS) and integrated with the electronics and software. This vehicle was designed especially to navigate in DOE Waste Storage Facilities. Initial system testing was performed at Fernald in June 1996. After some further development and more extensive integration the prototype integrated system was installed and tested at the Radioactive Waste Management Facility (RWMC) at INEEL beginning in April 1997 through the present (November 1997). The integrated system, composed of ABCD imaging software and IMSS mobility base, is called MISS EVE (Mobile Intelligent Sensor System--Environmental Validation Expert). Evaluation of the integrated system in RWMC Building 628, containing approximately 10,000 drums, demonstrated an easy to use system with the ability to properly navigate through the facility, image all the defined drums, and process the results into a report delivered to the operator on a GUI interface and on hard copy. Further work is needed to make the brassboard system more operationally robust.

  13. Automated Detection of Changes on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Cook, A.; Gibbens, M.

    2005-08-01

    Although the Moon is considered to be geologically dormant, surface altering events visible to orbiting spacecraft must still occur, albeit infrequently e.g. fresh impact craters detected from Apollo imagery. Given a surface area of 3.8E7 km2 and the 40 year time frame spanning Lunar Orbiter to SMART-1 missions, it is likely that 10's-100's of surface changes measurable in the > 50m scale range may be detected by automatically comparing temporal images of the same areas under similar (< 5 deg difference) incidence and emission angles. Automated tie-pointing and image footprint overlap detection developed from Clementine stereo research can be used to select suitable overlapping temporal image pairs of a given area. These can then be automatically registered/warped together, photometrically calibrated to each other and subtracted to leave a difference image. Differences that exceed 3 standard deviations across the image can then be compared to the most recent mosaics of optical maturity in order to confirm whether a suspected area of change is aligned with fresh non-spaceweathered parts of the surface. Knowledge that could be gained from such a study could include: 1) confirmation of cratering rate assumptions that were made from the Apollo ALSEP seismometers, 2) identification of surface disturbances by ejecta from impacts detected by Apollo seismometer, or Earth based telescopic impact flash observations; these can then be used to help relate estimated impact energy to crater size, 3) the areal extent of dust transport from impact ejecta, landslides, or other suspected mechanisms such as residual outgassing or electrostaic levitation of dust. All three of these have important implications for future surface based exploration in identifying sites of interest that can be either monitored over time to study the progression of space weathering, or for studying freshly excavated underlying geology.

  14. A practical automated polyp detection scheme for CT colonography

    NASA Astrophysics Data System (ADS)

    Li, Hong; Santago, Pete

    2004-05-01

    A fully automated computerized polyp detection (CPD) system is presented that takes DICOM images from CT scanners and provides a list of detected polyps. The system comprises three stages, segmentation, polyp candidate generation (PCG), and false positive reduction (FPR). Employing computer tomographic colonography (CTC), both supine and prone scans are used for improving detection sensitivity. We developed a novel and efficient segmentation scheme. Major shape features, e.g., the mean curvature and Gaussian curvature, together with a connectivity test efficiently produce polyp candidates. We select six shape features and introduce a multi-plane linear discriminant function (MLDF) classifier in our system for FPR. The classifier parameters are empirically assigned with respect to the geometric meanings of a specific feature. We have tested the system on 68 real subjects, 20 positive and 48 negative for 6 mm and larger polyps from colonoscopy results. Using a patient-based criterion, 95% accuracy and 31% specificity were achieved when 6 mm was used as the cutoff size, implying that 15 out of 48 healthy subjects could avoid OC. One 11 mm polyp was missed by CPD but was also not reported by the radiologist. With a complete polyp database, we anticipate that a maximum a posteriori probability (MAP) classifier tuned by supervised training will improve the detection performance. The execution time for both scans is about 10-15 minutes using a 1 GHz PC running Linux. The system may be used standalone, but is envisioned more as a part of a computer-aided CTC screening that can address the problems with a fully automatic approach and a fully physician approach.

  15. Automated Point Cloud Correspondence Detection for Underwater Mapping Using AUVs

    NASA Technical Reports Server (NTRS)

    Hammond, Marcus; Clark, Ashley; Mahajan, Aditya; Sharma, Sumant; Rock, Stephen

    2015-01-01

    An algorithm for automating correspondence detection between point clouds composed of multibeam sonar data is presented. This allows accurate initialization for point cloud alignment techniques even in cases where accurate inertial navigation is not available, such as iceberg profiling or vehicles with low-grade inertial navigation systems. Techniques from computer vision literature are used to extract, label, and match keypoints between "pseudo-images" generated from these point clouds. Image matches are refined using RANSAC and information about the vehicle trajectory. The resulting correspondences can be used to initialize an iterative closest point (ICP) registration algorithm to estimate accumulated navigation error and aid in the creation of accurate, self-consistent maps. The results presented use multibeam sonar data obtained from multiple overlapping passes of an underwater canyon in Monterey Bay, California. Using strict matching criteria, the method detects 23 between-swath correspondence events in a set of 155 pseudo-images with zero false positives. Using less conservative matching criteria doubles the number of matches but introduces several false positive matches as well. Heuristics based on known vehicle trajectory information are used to eliminate these.

  16. Comparison of automated haematology analysers for detection of apoptotic lymphocytes.

    PubMed

    Taga, K; Sawaya, M; Yoshida, M; Kaneko, M; Okada, M; Taniho, M

    2002-06-01

    Automated haematology analysers can rapidly provide accurate blood cell counts and white blood cell differentials. In this study, we evaluated four different haematology analysers for the detection of apoptotic lymphocytes in peripheral blood: MAXM A/L Retic, H*2, Cell-Dyn 3500 and NE-8000. With the MAXM A/L Retic haematology analyser, the apoptotic lymphocyte cluster appeared below the original lymphocyte cluster on the volume/DF1, and to the right under the original lymphocyte cluster on the volume/DF2 scattergrams. With the H*2 haematology analyser, the apoptotic polymorphonuclear lymphocytes produced a higher lobularity index on the BASO channel. With the Cell-Dyn 3500 haematology analyser, the apoptotic lymphocyte cluster appeared to the right side of the original lymphocyte cluster on the 0D/10D scattergram and to the left side of the polymorphonuclear cluster on the 90D/10D scattergram. With the NE-8000 haematology analyser, the apoptotic lymphocyte cluster was not distinguishable. Thus, apoptotic lymphocytes are readily detected on scattergrams generated by selected haematology analysers. PMID:12067276

  17. Defect Prevention and Detection in Software for Automated Test Equipment

    SciTech Connect

    E. Bean

    2006-11-30

    Software for automated test equipment can be tedious and monotonous making it just as error-prone as other software. Active defect prevention and detection are also important for test applications. Incomplete or unclear requirements, a cryptic syntax used for some test applications—especially script-based test sets, variability in syntax or structure, and changing requirements are among the problems encountered in one tester. Such problems are common to all software but can be particularly problematic in test equipment software intended to test another product. Each of these issues increases the probability of error injection during test application development. This report describes a test application development tool designed to address these issues and others for a particular piece of test equipment. By addressing these problems in the development environment, the tool has powerful built-in defect prevention and detection capabilities. Regular expressions are widely used in the development tool as a means of formally defining test equipment requirements for the test application and verifying conformance to those requirements. A novel means of using regular expressions to perform range checking was developed. A reduction in rework and increased productivity are the results. These capabilities are described along with lessons learned and their applicability to other test equipment software. The test application development tool, or “application builder”, is known as the PT3800 AM Creation, Revision and Archiving Tool (PACRAT).

  18. Evaluation of automated target detection using image fusion

    NASA Astrophysics Data System (ADS)

    Irvine, John M.; Abramson, Susan; Mossing, John

    2003-09-01

    Reliance on Automated Target Recognition (ATR) technology is essential to the future success of Intelligence, Surveillance, and Reconnaissance (ISR) missions. Although benefits may be realized through ATR processing of a single data source, fusion of information across multiple images and multiple sensors promises significant performance gains. A major challenge, as ATR fusion technologies mature, is the establishment of sound methods for evaluating ATR performance in the context of data fusion. The Deputy Under Secretary of Defense for Science and Technology (DUSD/S&T), as part of their ongoing ATR Program, has sponsored an effort to develop and demonstrate methods for evaluating ATR algorithms that utilize multiple data source, i.e., fusion-based ATR. This paper presents results from this program, focusing on the target detection and cueing aspect of the problem. The first step in assessing target detection performance is to relate the ground truth to the ATR decisions. Once the ATR decisions have been mapped to ground truth, the second step in the evaluation is to characterize ATR performance. A common approach is to vary the confidence threshold of the ATR and compute the Probability of Detection (PD) and the False Alarm Rate (FAR) associated with each threshold. Varying the threshold, therefore, produces an empirical performance curve relating detection performance to false alarms. Various statistical methods have been developed, largely in the medical imaging literature, to model this curve so that statistical inferences are possible. One approach, based on signal detection theory, generalizes the Receiver Operator Characteristic (ROC) curve. Under this approach, the Free Response Operating Characteristic (FROC) curve models performance for search problems. The FROC model is appropriate when multiple detections are possible and the number of false alarms is unconstrained. The parameterization of the FROC model provides a natural method for characterizing both

  19. Detection of Operator Performance Breakdown as an Automation Triggering Mechanism

    NASA Technical Reports Server (NTRS)

    Yoo, Hyo-Sang; Lee, Paul U.; Landry, Steven J.

    2015-01-01

    Performance breakdown (PB) has been anecdotally described as a state where the human operator "loses control of context" and "cannot maintain required task performance." Preventing such a decline in performance is critical to assure the safety and reliability of human-integrated systems, and therefore PB could be useful as a point at which automation can be applied to support human performance. However, PB has never been scientifically defined or empirically demonstrated. Moreover, there is no validated objective way of detecting such a state or the transition to that state. The purpose of this work is: 1) to empirically demonstrate a PB state, and 2) to develop an objective way of detecting such a state. This paper defines PB and proposes an objective method for its detection. A human-in-the-loop study was conducted: 1) to demonstrate PB by increasing workload until the subject reported being in a state of PB, and 2) to identify possible parameters of a detection method for objectively identifying the subjectively-reported PB point, and 3) to determine if the parameters are idiosyncratic to an individual/context or are more generally applicable. In the experiment, fifteen participants were asked to manage three concurrent tasks (one primary and two secondary) for 18 minutes. The difficulty of the primary task was manipulated over time to induce PB while the difficulty of the secondary tasks remained static. The participants' task performance data was collected. Three hypotheses were constructed: 1) increasing workload will induce subjectively-identified PB, 2) there exists criteria that identifies the threshold parameters that best matches the subjectively-identified PB point, and 3) the criteria for choosing the threshold parameters is consistent across individuals. The results show that increasing workload can induce subjectively-identified PB, although it might not be generalizable-only 12 out of 15 participants declared PB. The PB detection method based on

  20. Fault detection using a two-model test for changes in the parameters of an autoregressive time series

    NASA Technical Reports Server (NTRS)

    Scholtz, P.; Smyth, P.

    1992-01-01

    This article describes an investigation of a statistical hypothesis testing method for detecting changes in the characteristics of an observed time series. The work is motivated by the need for practical automated methods for on-line monitoring of Deep Space Network (DSN) equipment to detect failures and changes in behavior. In particular, on-line monitoring of the motor current in a DSN 34-m beam waveguide (BWG) antenna is used as an example. The algorithm is based on a measure of the information theoretic distance between two autoregressive models: one estimated with data from a dynamic reference window and one estimated with data from a sliding reference window. The Hinkley cumulative sum stopping rule is utilized to detect a change in the mean of this distance measure, corresponding to the detection of a change in the underlying process. The basic theory behind this two-model test is presented, and the problem of practical implementation is addressed, examining windowing methods, model estimation, and detection parameter assignment. Results from the five fault-transition simulations are presented to show the possible limitations of the detection method, and suggestions for future implementation are given.

  1. Set-theoretic methods in robust detection and isolation of sensor faults

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Puig, Vicenç; Ocampo-Martinez, Carlos; Olaru, Sorin; Stoican, Florin

    2015-10-01

    This paper proposes a sensorfault detection and isolation (FDI) approach based on interval observers and invariant sets. In fault detection (FD), both interval observer-based and invariant set-based mechanisms are used to provide real-time fault alarms. In fault isolation (FI), the proposed approach also uses these two different mechanisms. The former, based on interval observers, aims to isolate faults during the transient-state operation induced by faults. If the former does not succeed, the latter, based on both interval observers and invariant sets, is started to guarantee FI after the system enters into steady state. Besides, a collection of invariant set-based FDI conditions are established by using all available system-operating information provided by all interval observers. In order to reduce computational complexity, a method to remove all available but redundant/unnecessary system-operating information is incorporated into this approach. If the considered faults satisfy the proposed FDI conditions, it can be guaranteed that they are detectable and isolable after their occurrences. This paper concludes with a case study based on a subsystem of a wind turbine benchmark, which can illustrate the effectiveness of this FDI technique.

  2. Detecting arcing downed-wires using fault current flicker and half-cycle asymmetry

    SciTech Connect

    Sultan, A.F.; Swift, G.W. . Dept. of Electrical and Computer Engineering); Fedirchuk, D.J. . System Operating Dept.)

    1994-01-01

    The downed-wires problem, known as high impedance faults, is described. A high voltage laboratory setup was devised to investigate the phenomenon. The laboratory model results agreed with field test results, and previous research efforts. The arcing fault model was justified. The setup was used as a source of fault current signal. A simple approach was taken to design an arcing fault detector. The algorithm utilizes the random behavior of the fault current. It compares the positive and negative current peaks in one cycle to those in the next cycle to measure the flicker in the current signal. The asymmetry of the current is calculated by comparing the positive peak to the negative peak, for each cycle; the moving window length is half a cycle. Both values are used as a signature of arcing. The result is filtered and compared with a suitable detection threshold. The algorithm was tested by traces of normal load, and no-load current disturbed by currents of faults on dry and wet soil, arc welders, computers, and fluorescent light loads, as well as short circuit currents. The algorithm performed well under the test conditions, except for the arc welder load. This load is also a source of insecurity for other algorithms. The detection criterion will be integrated with another detection method to improve the security during arcing load events. On-line testing is required to demonstrate algorithm dependability.

  3. A hybrid fault detection and isolation strategy for a team of cooperating unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Tousi, M. M.; Khorasani, K.

    2015-01-01

    In this paper, a hybrid fault detection and isolation (FDI) methodology is developed for a team of cooperating unmanned vehicles. The proposed approach takes advantage of the cooperative nature of the team to detect and isolate relatively low-severity actuator faults that are otherwise not detectable and isolable by the vehicles themselves individually. The approach is hybrid and consists of both low-level (agent/team level) and high-level [discrete-event systems (DES) level] FDI modules. The high-level FDI module is formulated in the DES supervisory control framework, whereas the low-level FDI module invokes classical FDI techniques. By properly integrating the two FDI modules, a larger class of faults can be detected and isolated as compared to the existing techniques in the literature that rely on each level separately. Simulation results for a team of five unmanned aerial vehicles are also presented to demonstrate the effectiveness and capabilities of our proposed methodology.

  4. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  5. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    PubMed

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. PMID:27038887

  6. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals

    PubMed Central

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-01-01

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments. PMID:26473858

  7. Pumping system fault detection and diagnosis utilizing pattern recognition and fuzzy inference techniques

    SciTech Connect

    Singer, R.M.; Gross, K.C. ); Humenik, K.E. . Dept. of Computer Science)

    1991-01-01

    An integrated fault detection and diagnostic system with a capability of providing extremely early detection of disturbances in a process through the analysis of the stochastic content of dynamic signals is described. The sequential statistical analysis of the signal noise (a pattern-recognition technique) that is employed has been shown to provide the theoretically shortest sampling time to detect disturbances and thus has the potential of providing incipient fault detection information to operators sufficiently early to avoid forced process shutdowns. This system also provides a diagnosis of the cause of the initiating fault(s) by a physical-model-derived rule-based expert system in which system and subsystem state uncertainties are handled using fuzzy inference techniques. This system has been initially applied to the monitoring of the operational state of the primary coolant pumping system on the EBR-II nuclear reactor. Early validation studies have shown that a rapidly developing incipient fault on centrifugal pumps can be detected well in advance of any changes in the nominal process signals. 17 refs., 6 figs.

  8. Automated motion detection from space in sea surveilliance

    NASA Astrophysics Data System (ADS)

    Charalambous, Elisavet; Takaku, Junichi; Michalis, Pantelis; Dowman, Ian; Charalampopoulou, Vasiliki

    2015-06-01

    The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) carried by the Advanced Land-Observing Satellite (ALOS) was designed to generate worldwide topographic data with its high-resolution and stereoscopic observation. PRISM performs along-track (AT) triplet stereo observations using independent forward (FWD), nadir (NDR), and backward (BWD) panchromatic optical line sensors of 2.5m ground resolution in swaths 35 km wide. The FWD and BWD sensors are arranged at an inclination of ±23.8° from NDR. In this paper, PRISM images are used under a new perspective, in security domain for sea surveillance, based on the sequence of the triplet which is acquired in a time interval of 90 sec (45 sec between images). An automated motion detection algorithm is developed allowing the combination of encompassed information at each instant and therefore the identification of patterns and trajectories of moving objects on sea; including the extraction of geometric characteristics along with the speed of movement and direction. The developed methodology combines well established image segmentation and morphological operation techniques for the detection of objects. Each object in the scene is represented by dimensionless measure properties and maintained in a database to allow the generation of trajectories as these arise over time, while the location of moving objects is updated based on the result of neighbourhood calculations. Most importantly, the developed methodology can be deployed in any air borne (optionally piloted) sensor system with along the track stereo capability enabling the provision of near real time automatic detection of targets; a task that cannot be achieved with satellite imagery due to the very intermittent coverage.

  9. Stationary wavelet transform for fault detection in rotating machinery

    NASA Astrophysics Data System (ADS)

    Seker, Serhat; Karatoprak, Erinc; Kayran, A. H.; Senguler, Tayfun

    2007-09-01

    This research presents a different fault diagnostic approach using the Stationary Wavelet Transform (SWT) as an alternative method to Discrete Wavelet Transform (DWT). In this sense, it is aimed to find potential defects, which exist in healthy motor bearings as manufacturing defects as compared to the faulty case. This approach extracts the origin of the bearing damage that develops during the aging process. In this manner, the advantage of the SWT over the DWT is emphasized. Hence, it can be introduced as a new approach for condition monitoring studies in rotating machineries like the induction motors.

  10. Statistical Fault Detection for Parallel Applications with AutomaDeD

    SciTech Connect

    Bronevetsky, G; Laguna, I; Bagchi, S; de Supinski, B R; Ahn, D; Schulz, M

    2010-03-23

    Today's largest systems have over 100,000 cores, with million-core systems expected over the next few years. The large component count means that these systems fail frequently and often in very complex ways, making them difficult to use and maintain. While prior work on fault detection and diagnosis has focused on faults that significantly reduce system functionality, the wide variety of failure modes in modern systems makes them likely to fail in complex ways that impair system performance but are difficult to detect and diagnose. This paper presents AutomaDeD, a statistical tool that models the timing behavior of each application task and tracks its behavior to identify any abnormalities. If any are observed, AutomaDeD can immediately detect them and report to the system administrator the task where the problem began. This identification of the fault's initial manifestation can provide administrators with valuable insight into the fault's root causes, making it significantly easier and cheaper for them to understand and repair it. Our experimental evaluation shows that AutomaDeD detects a wide range of faults immediately after they occur 80% of the time, with a low false-positive rate. Further, it identifies weaknesses of the current approach that motivate future research.

  11. Adaptive redundant multiwavelet denoising with improved neighboring coefficients for gearbox fault detection

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zi, Yanyang; He, Zhengjia; Wang, Xiaodong

    2013-07-01

    Gearbox fault detection under strong background noise is a challenging task. It is feasible to make the fault feature distinct through multiwavelet denoising. In addition to the advantage of multi-resolution analysis, multiwavelet with several scaling functions and wavelet functions can detect the different fault features effectively. However, the fixed basis functions not related to the given signal may lower the accuracy of fault detection. Moreover, the multiwavelet transform may result in Gibbs phenomena in the step of reconstruction. Furthermore, both traditional term-by-term threshold and neighboring coefficients do not consider the direct spatial dependency of wavelet coefficients at adjacent scale. To overcome these deficiencies, adaptive redundant multiwavelet (ARM) denoising with improved neighboring coefficients (NeighCoeff) is proposed. Based on symmetric multiwavelet lifting scheme (SMLS), taking kurtosis—partial envelope spectrum entropy as the evaluation objective and genetic algorithms as the optimization method, ARM is proposed. Considering the intra-scale and inter-scale dependency of wavelet coefficients, the improved NeighCoeff method is developed and incorporated into ARM. The proposed method is applied to both the simulated signal and the practical gearbox vibration signal under different conditions. The results show its effectiveness and reliance for gearbox fault detection.

  12. Fault detection for linear distributed-parameter systems using finite-dimensional functional observers

    NASA Astrophysics Data System (ADS)

    Deutscher, Joachim

    2016-03-01

    In this article, finite-dimensional residual generators are directly designed for Riesz-spectral systems with bounded input and output operators to detect faults. This is achieved by using finite-dimensional observers, that can estimate linear functionals of the state without spillover. These observers allow for a decoupling of the unknown disturbances from the estimation error dynamics under mild assumptions. Then, a finite-dimensional residual generator is obtained by approximately decoupling the state from the residual, that is generated by the observer states and the outputs. It is shown that the resulting approximation error can be made small by increasing the observer order. Then, fault detection with the finite-dimensional residual generator can be assured by introducing a time-varying threshold. A faulty Euler-Bernoulli beam with structural damping illustrates the proposed finite-dimensional fault detection approach.

  13. Fault detection in the distillation column process using Kullback Leibler divergence.

    PubMed

    Aggoune, Lakhdar; Chetouani, Yahya; Raïssi, Tarek

    2016-07-01

    Chemical plants are complex large-scale systems which need designing robust fault detection schemes to ensure high product quality, reliability and safety under different operating conditions. The present paper is concerned with a feasibility study of the application of the black-box modeling method and Kullback Leibler divergence (KLD) to the fault detection in a distillation column process. A Nonlinear Auto-Regressive Moving Average with eXogenous input (NARMAX) polynomial model is firstly developed to estimate the nonlinear behavior of the plant. Furthermore, the KLD is applied to detect abnormal modes. The proposed FD method is implemented and validated experimentally using realistic faults of a distillation plant of laboratory scale. The experimental results clearly demonstrate the fact that proposed method is effective and gives early alarm to operators. PMID:27020311

  14. Effective confidence interval estimation of fault-detection process of software reliability growth models

    NASA Astrophysics Data System (ADS)

    Fang, Chih-Chiang; Yeh, Chun-Wu

    2016-09-01

    The quantitative evaluation of software reliability growth model is frequently accompanied by its confidence interval of fault detection. It provides helpful information to software developers and testers when undertaking software development and software quality control. However, the explanation of the variance estimation of software fault detection is not transparent in previous studies, and it influences the deduction of confidence interval about the mean value function that the current study addresses. Software engineers in such a case cannot evaluate the potential hazard based on the stochasticity of mean value function, and this might reduce the practicability of the estimation. Hence, stochastic differential equations are utilised for confidence interval estimation of the software fault-detection process. The proposed model is estimated and validated using real data-sets to show its flexibility.

  15. Online motor fault detection and diagnosis using a hybrid FMM-CART model.

    PubMed

    Seera, Manjeevan; Lim, Chee Peng

    2014-04-01

    In this brief, a hybrid model combining the fuzzy min-max (FMM) neural network and the classification and regression tree (CART) for online motor detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. To evaluate the applicability of the proposed FMM-CART model, an evaluation with a benchmark data set pertaining to electrical motor bearing faults is first conducted. The results obtained are equivalent to those reported in the literature. Then, a laboratory experiment for detecting and diagnosing eccentricity faults in an induction motor is performed. In addition to producing accurate results, useful rules in the form of a decision tree are extracted to provide explanation and justification for the predictions from FMM-CART. The experimental outcome positively shows the potential of FMM-CART in undertaking online motor fault detection and diagnosis tasks. PMID:24807956

  16. Optimization-based tuning of LPV fault detection filters for civil transport aircraft

    NASA Astrophysics Data System (ADS)

    Ossmann, D.; Varga, A.

    2013-12-01

    In this paper, a two-step optimal synthesis approach of robust fault detection (FD) filters for the model based diagnosis of sensor faults for an augmented civil aircraft is suggested. In the first step, a direct analytic synthesis of a linear parameter varying (LPV) FD filter is performed for the open-loop aircraft using an extension of the nullspace based synthesis method to LPV systems. In the second step, a multiobjective optimization problem is solved for the optimal tuning of the LPV detector parameters to ensure satisfactory FD performance for the augmented nonlinear closed-loop aircraft. Worst-case global search has been employed to assess the robustness of the fault detection system in the presence of aerodynamics uncertainties and estimation errors in the aircraft parameters. An application of the proposed method is presented for the detection of failures in the angle-of-attack sensor.

  17. CMOS open-fault detection in the presence of glitches and timing skews

    NASA Astrophysics Data System (ADS)

    Rajsuman, Rochit; Jayasumana, Anura P.; Malaiya, Yashwant K.

    1989-08-01

    A testable CMOS design technique in which some extra transistors are used in such a way that the CMOS gate is converted to a pseudo-nMOS/pMOS gate during testing is discussed. With the proposed design technique, CMOS open faults can be detected regardless of timing skews/delays, glitches, or charge sharing among the internal nodes. The major advantage of the proposed testable design technique is that it allows the use of a single test vector to detect a stuck-open fault. This significantly reduces the complexity of test generation and the time consumed for testing. The design procedure is simple and all the classical algorithms and automatic test-pattern-generating programs can be used to generate tests for circuits designed according to this technique. Even random testing techniques can be used efficiently to detect the open faults in these CMOS circuits.

  18. Automated optic disk boundary detection by modified active contour model.

    PubMed

    Xu, Juan; Chutatape, Opas; Chew, Paul

    2007-03-01

    This paper presents a novel deformable-model-based algorithm for fully automated detection of optic disk boundary in fundus images. The proposed method improves and extends the original snake (deforming-only technique) in two aspects: clustering and smoothing update. The contour points are first self-separated into edge-point group or uncertain-point group by clustering after each deformation, and these contour points are then updated by different criteria based on different groups. The updating process combines both the local and global information of the contour to achieve the balance of contour stability and accuracy. The modifications make the proposed algorithm more accurate and robust to blood vessel occlusions, noises, ill-defined edges and fuzzy contour shapes. The comparative results show that the proposed method can estimate the disk boundaries of 100 test images closer to the groundtruth, as measured by mean distance to closest point (MDCP) <3 pixels, with the better success rate when compared to those obtained by gradient vector flow snake (GVF-snake) and modified active shape models (ASM). PMID:17355059

  19. Automated single particle detection and tracking for large microscopy datasets

    PubMed Central

    Wilson, Rhodri S.; Yang, Lei; Dun, Alison; Smyth, Annya M.; Duncan, Rory R.; Rickman, Colin

    2016-01-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates. PMID:27293801

  20. Method and system for early detection of incipient faults in electric motors

    DOEpatents

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  1. Fault and dyke detectability in high resolution seismic surveys for coal: a view from numerical modelling*

    NASA Astrophysics Data System (ADS)

    Zhou, Binzhong 13Hatherly, Peter

    2014-10-01

    Modern underground coal mining requires certainty about geological faults, dykes and other structural features. Faults with throws of even just a few metres can create safety issues and lead to costly delays in mine production. In this paper, we use numerical modelling in an ideal, noise-free environment with homogeneous layering to investigate the detectability of small faults by seismic reflection surveying. If the layering is horizontal, faults with throws of 1/8 of the wavelength should be detectable in a 2D survey. In a coal mining setting where the seismic velocity of the overburden ranges from 3000 m/s to 4000 m/s and the dominant seismic frequency is ~100 Hz, this corresponds to a fault with a throw of 4-5 m. However, if the layers are dipping or folded, the faults may be more difficult to detect, especially when their throws oppose the trend of the background structure. In the case of 3D seismic surveying we suggest that faults with throws as small as 1/16 of wavelength (2-2.5 m) can be detectable because of the benefits offered by computer-aided horizon identification and the improved spatial coherence in 3D seismic surveys. With dykes, we find that Berkhout's definition of the Fresnel zone is more consistent with actual experience. At a depth of 500 m, which is typically encountered in coal mining, and a 100 Hz dominant seismic frequency, dykes less than 8 m in width are undetectable, even after migration.

  2. Hidden Markov Models for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    Continuous monitoring of complex dynamic systems is an increasingly important issue in diverse areas such as nuclear plant safety, production line reliability, and medical health monitoring systems. Recent advances in both sensor technology and computational capabilities have made on-line permanent monitoring much more feasible than it was in the past. In this paper it is shown that a pattern recognition system combined with a finite-state hidden Markov model provides a particularly useful method for modelling temporal context in continuous monitoring. The parameters of the Markov model are derived from gross failure statistics such as the mean time between failures. The model is validated on a real-world fault diagnosis problem and it is shown that Markov modelling in this context offers significant practical benefits.

  3. Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms

    PubMed Central

    Yang, Fan; Xiao, Deyun; Shah, Sirish L.

    2009-01-01

    To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524

  4. The Marshall Space Flight Center Fault Detection Diagnosis and Recovery Laboratory

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.; Gamble, Jonathan; Rabban, Michael

    2008-01-01

    The Fault Detection Diagnosis and Recovery Lab (FDDR) has been developed to support development of,fault detection algorithms for the flight computer aboard the Ares I and follow-on vehicles. It consists of several workstations using Ethernet and TCP/IP to simulate communications between vehicle sensors, flight computers, and ground based support computers. Isolation of tasks between workstations was set up intentionally to limit information flow and provide a realistic simulation of communication channels within the vehicle and between the vehicle and ground station.

  5. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault

  6. Automated Ground Penetrating Radar hyperbola detection in complex environment

    NASA Astrophysics Data System (ADS)

    Mertens, Laurence; Lambot, Sébastien

    2015-04-01

    Ground Penetrating Radar (GPR) systems are commonly used in many applications to detect, amongst others, buried targets (various types of pipes, landmines, tree roots ...), which, in a cross-section, present theoretically a particular hyperbolic-shaped signature resulting from the antenna radiation pattern. Considering the large quantity of information we can acquire during a field campaign, a manual detection of these hyperbolas is barely possible, therefore we have a real need to have at our disposal a quick and automated detection of these hyperbolas. However, this task may reveal itself laborious in real field data because these hyperbolas are often ill-shaped due to the heterogeneity of the medium and to instrumentation clutter. We propose a new detection algorithm for well- and ill-shaped GPR reflection hyperbolas especially developed for complex field data. This algorithm is based on human recognition pattern to emulate human expertise to identify the hyperbolas apexes. The main principle relies in a fitting process of the GPR image edge dots detected with Canny filter to analytical hyperbolas, considering the object as a punctual disturbance with a physical constraint of the parameters. A long phase of observation of a large number of ill-shaped hyperbolas in various complex media led to the definition of smart criteria characterizing the hyperbolic shape and to the choice of accepted value ranges acceptable for an edge dot to correspond to the apex of a specific hyperbola. These values were defined to fit the ambiguity zone for the human brain and present the particularity of being functional in most heterogeneous media. Furthermore, the irregularity is particularly taken into account by defining a buffer zone around the theoretical hyperbola in which the edge dots need to be encountered to belong to this specific hyperbola. First, the method was tested in laboratory conditions over tree roots and over PVC pipes with both time- and frequency-domain radars

  7. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection

    NASA Astrophysics Data System (ADS)

    Schlechtingen, Meik; Ferreira Santos, Ilmar

    2011-07-01

    This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal behavior model is compared to two artificial neural network based approaches, which are a full signal reconstruction and an autoregressive normal behavior model. Based on a real time series containing two generator bearing damages the capabilities of identifying the incipient fault prior to the actual failure are investigated. The period after the first bearing damage is used to develop the three normal behavior models. The developed or trained models are used to investigate how the second damage manifests in the prediction error. Furthermore the full signal reconstruction and the autoregressive approach are applied to further real time series containing gearbox bearing damages and stator temperature anomalies. The comparison revealed all three models being capable of detecting incipient faults. However, they differ in the effort required for model development and the remaining operational time after first indication of damage. The general nonlinear neural network approaches outperform the regression model. The remaining seasonality in the regression model prediction error makes it difficult to detect abnormality and leads to increased alarm levels and thus a shorter remaining operational period. For the bearing damages and the stator anomalies under investigation the full signal reconstruction neural network gave the best fault visibility and thus led to the highest confidence level.

  8. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  9. Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks

    PubMed Central

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789

  10. Rapid toxicity detection in water quality control utilizing automated multispecies biomonitoring for permanent space stations

    NASA Technical Reports Server (NTRS)

    Morgan, E. L.; Young, R. C.; Smith, M. D.; Eagleson, K. W.

    1986-01-01

    The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring devices for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations.

  11. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device.

    PubMed

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2016-07-01

    This paper considers incipient sensor fault detection issue for a class of nonlinear systems with "observer unmatched" uncertainties. A particular fault detection sliding mode observer is designed for the augmented system formed by the original system and incipient sensor faults. The designed parameters are obtained using LMI and line filter techniques to guarantee that the generated residuals are robust to uncertainties and that sliding motion is not destroyed by faults. Then, three levels of novel adaptive thresholds are proposed based on the reduced order sliding mode dynamics, which effectively improve incipient sensor faults detectability. Case study of on the traction system in China Railway High-speed is presented to demonstrate the effectiveness of the proposed incipient senor faults detection schemes. PMID:27156675

  12. Detection and Modeling of High-Dimensional Thresholds for Fault Detection and Diagnosis

    NASA Technical Reports Server (NTRS)

    He, Yuning

    2015-01-01

    Many Fault Detection and Diagnosis (FDD) systems use discrete models for detection and reasoning. To obtain categorical values like oil pressure too high, analog sensor values need to be discretized using a suitablethreshold. Time series of analog and discrete sensor readings are processed and discretized as they come in. This task isusually performed by the wrapper code'' of the FDD system, together with signal preprocessing and filtering. In practice,selecting the right threshold is very difficult, because it heavily influences the quality of diagnosis. If a threshold causesthe alarm trigger even in nominal situations, false alarms will be the consequence. On the other hand, if threshold settingdoes not trigger in case of an off-nominal condition, important alarms might be missed, potentially causing hazardoussituations. In this paper, we will in detail describe the underlying statistical modeling techniques and algorithm as well as the Bayesian method for selecting the most likely shape and its parameters. Our approach will be illustrated by several examples from the Aerospace domain.

  13. A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo

    2009-01-01

    An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.

  14. To err is robotic, to tolerate immunological: fault detection in multirobot systems.

    PubMed

    Tarapore, Danesh; Lima, Pedro U; Carneiro, Jorge; Christensen, Anders Lyhne

    2015-01-01

    Fault detection and fault tolerance represent two of the most important and largely unsolved issues in the field of multirobot systems (MRS). Efficient, long-term operation requires an accurate, timely detection, and accommodation of abnormally behaving robots. Most existing approaches to fault-tolerance prescribe a characterization of normal robot behaviours, and train a model to recognize these behaviours. Behaviours unrecognized by the model are consequently labelled abnormal or faulty. MRS employing these models do not transition well to scenarios involving temporal variations in behaviour (e.g., online learning of new behaviours, or in response to environment perturbations). The vertebrate immune system is a complex distributed system capable of learning to tolerate the organism's tissues even when they change during puberty or metamorphosis, and to mount specific responses to invading pathogens, all without the need of a genetically hardwired characterization of normality. We present a generic abnormality detection approach based on a model of the adaptive immune system, and evaluate the approach in a swarm of robots. Our results reveal the robust detection of abnormal robots simulating common electro-mechanical and software faults, irrespective of temporal changes in swarm behaviour. Abnormality detection is shown to be scalable in terms of the number of robots in the swarm, and in terms of the size of the behaviour classification space. PMID:25642825

  15. Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Dwyer, Matthew B.; Purandare, Rahul; Person, Suzette

    2010-01-01

    Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis.

  16. Voltage Based Detection Method for High Impedance Fault in a Distribution System

    NASA Astrophysics Data System (ADS)

    Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama

    2015-06-01

    High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.

  17. Fault Detection of Gearbox from Inverter Signals Using Advanced Signal Processing Techniques

    NASA Astrophysics Data System (ADS)

    Pislaru, C.; Lane, M.; Ball, A. D.; Gu, F.

    2012-05-01

    The gear faults are time-localized transient events so time-frequency analysis techniques (such as the Short-Time Fourier Transform, Wavelet Transform, motor current signature analysis) are widely used to deal with non-stationary and nonlinear signals. Newly developed signal processing techniques (such as empirical mode decomposition and Teager Kaiser Energy Operator) enabled the recognition of the vibration modes that coexist in the system, and to have a better understanding of the nature of the fault information contained in the vibration signal. However these methods require a lot of computational power so this paper presents a novel approach of gearbox fault detection using the inverter signals to monitor the load, rather than the motor current. The proposed technique could be used for continuous monitoring as well as on-line damage detection systems for gearbox maintenance.

  18. A hybrid approach for detecting and isolating faults in nuclear power plant interacting systems

    SciTech Connect

    Hines, J.W.; Miller, D.W.; Hajek, B.K.

    1996-09-01

    A fault detection and isolation (FDI) system is presented that can detect and isolate nuclear power plant (NPP) faults occurring in interacting systems. The proposed methodology combines two tools, observer-based residual generation and neural network pattern matching, into a powerful, hybrid diagnostic system. A computer-based model of a commercial boiling water reactor (BWR) is used as the reference plant. Two FDI methods are implemented on each of two BWR systems, and their performance characteristics are compared. One method uses conventional neural network techniques that use parameter values for input, and a second, hybrid methodology uses system models to create residuals for input to a neural network. Both FDI systems show good generalization abilities, but only the hybrid system decouples system interactions. Although implementation is impractical for all NPP systems, this hybrid technique is most useful in specific applications where operators have difficulty diagnosing faults in strongly interacting systems.

  19. Predeployment validation of fault-tolerant systems through software-implemented fault insertion

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1989-01-01

    Fault injection-based automated testing (FIAT) environment, which can be used to experimentally characterize and evaluate distributed realtime systems under fault-free and faulted conditions is described. A survey is presented of validation methodologies. The need for fault insertion based on validation methodologies is demonstrated. The origins and models of faults, and motivation for the FIAT concept are reviewed. FIAT employs a validation methodology which builds confidence in the system through first providing a baseline of fault-free performance data and then characterizing the behavior of the system with faults present. Fault insertion is accomplished through software and allows faults or the manifestation of faults to be inserted by either seeding faults into memory or triggering error detection mechanisms. FIAT is capable of emulating a variety of fault-tolerant strategies and architectures, can monitor system activity, and can automatically orchestrate experiments involving insertion of faults. There is a common system interface which allows ease of use to decrease experiment development and run time. Fault models chosen for experiments on FIAT have generated system responses which parallel those observed in real systems under faulty conditions. These capabilities are shown by two example experiments each using a different fault-tolerance strategy.

  20. Quantitative Automated Image Analysis System with Automated Debris Filtering for the Detection of Breast Carcinoma Cells

    PubMed Central

    Martin, David T.; Sandoval, Sergio; Ta, Casey N.; Ruidiaz, Manuel E.; Cortes-Mateos, Maria Jose; Messmer, Davorka; Kummel, Andrew C.; Blair, Sarah L.; Wang-Rodriguez, Jessica

    2011-01-01

    Objective To develop an intraoperative method for margin status evaluation during breast conservation therapy (BCT) using an automated analysis of imprint cytology specimens. Study Design Imprint cytology samples were prospectively taken from 47 patients undergoing either BCT or breast reduction surgery. Touch preparations from BCT patients were taken on cut sections through the tumor to generate positive margin controls. For breast reduction patients, slide imprints were taken at cuts through the center of excised tissue. Analysis results from the presented technique were compared against standard pathologic diagnosis. Slides were stained with cytokeratin and Hoechst, imaged with an automated fluorescent microscope, and analyzed with a fast algorithm to automate discrimination between epithelial cells and noncellular debris. Results The accuracy of the automated analysis was 95% for identifying invasive cancers compared against final pathologic diagnosis. The overall sensitivity was 87% while specificity was 100% (no false positives). This is comparable to the best reported results from manual examination of intraoperative imprint cytology slides while reducing the need for direct input from a cytopathologist. Conclusion This work demonstrates a proof of concept for developing a highly accurate and automated system for the intraoperative evaluation of margin status to guide surgical decisions and lower positive margin rates. PMID:21525740

  1. Automated shock detection and analysis algorithm for space weather application

    NASA Astrophysics Data System (ADS)

    Vorotnikov, Vasiliy S.; Smith, Charles W.; Hu, Qiang; Szabo, Adam; Skoug, Ruth M.; Cohen, Christina M. S.

    2008-03-01

    Space weather applications have grown steadily as real-time data have become increasingly available. Numerous industrial applications have arisen with safeguarding of the power distribution grids being a particular interest. NASA uses short-term and long-term space weather predictions in its launch facilities. Researchers studying ionospheric, auroral, and magnetospheric disturbances use real-time space weather services to determine launch times. Commercial airlines, communication companies, and the military use space weather measurements to manage their resources and activities. As the effects of solar transients upon the Earth's environment and society grow with the increasing complexity of technology, better tools are needed to monitor and evaluate the characteristics of the incoming disturbances. A need is for automated shock detection and analysis methods that are applicable to in situ measurements upstream of the Earth. Such tools can provide advance warning of approaching disturbances that have significant space weather impacts. Knowledge of the shock strength and speed can also provide insight into the nature of the approaching solar transient prior to arrival at the magnetopause. We report on efforts to develop a tool that can find and analyze shocks in interplanetary plasma data without operator intervention. This method will run with sufficient speed to be a practical space weather tool providing useful shock information within 1 min of having the necessary data to ground. The ability to run without human intervention frees space weather operators to perform other vital services. We describe ways of handling upstream data that minimize the frequency of false positive alerts while providing the most complete description of approaching disturbances that is reasonably possible.

  2. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2009-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear tooth pitting fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4) were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters performed average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant amount of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  3. An automated continuous system for seismo-geochemical research in an active fault zone in SW Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, T. F.; Hilton, D. R.; Fu, C. C.; Lai, C. W.; Liu, T. K.; Walia, V.; Lai, T. H.

    2014-12-01

    Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan where many hot springs and mud volcanoes are distributed along tectonic sutures show significant variation prior to and after some disaster seismic events [1]. Such variations, including radon activity, CH4/CO2, CO2/3He and 3He/4He ratios of gas compositions, are considered to be precursors of earthquakes in this area. To validate the relationship between fluid compositions and local earthquakes, a continuous monitoring station has been established at Yun-Shuei, which is an artesian well located at an active fault zone in SW Taiwan. It is equipped with a radon detector and a quadrupole mass spectrometer (QMS) for in-situ measurement of the dissolved gas composition. Data is telemetered to Taipei so we are able to monitor variations of gas composition in real time. Furthermore, we also installed a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) at this station [2]. From the SPARTAH samples, we can obtain detailed time series records of He and anion concentration of the water samples at this station. After continuous measurement for a few months, this automated system has been demonstrated to be feasible for long-term continuous seismo-geochemical research in this area. [1] Yang et al. (2006) PAGEOPH, 163(4), 693-709. [2] Barry et al. (2009) G3, 10(5), DOI: 10.1029/2009GC002422.

  4. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  5. An online tacholess order tracking technique based on generalized demodulation for rolling bearing fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Xu, Guanghua; Luo, Ailing; Liang, Lin; Jiang, Kuosheng

    2016-04-01

    Vibration analysis has been proved to be an effective and powerful tool for the condition monitoring and fault diagnosis of rolling bearings. During the past decades, the conventional envelope analysis has been one of the main approaches in vibration signal processing. However, the envelope analysis is based on stationary assumption, thus it is not applicable to the fault diagnosis of bearings under rotating speed variation conditions. This constraint limits the bearing diagnosis in industrial applications. In recent years, order tracking methods based on time-frequency representation have been proposed for bearing fault detection under speed variation operating conditions. However, the methods are only applicable for offline bearing fault detection. Aiming at the shortcomings of the current tacholess order tracking techniques, an online tacholess order tracking method is proposed in this paper. The proposed method is on the basis of extracting the instantaneous tachometer information from the collected vibration signal itself continuously, and resampling the original signal with equal angle increment. The envelope order spectrum is used for bearing fault identification. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals.

  6. Remote sensing analysis for fault-zones detection in the Central Andean Plateau (Catamarca, Argentina)

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Massironi, Matteo; Zampieri, Dario; Carli, Cristian

    2015-04-01

    Remote sensing techniques have been extensively used to detect the structural framework of investigated areas, which includes lineaments, fault zones and fracture patterns. The identification of these features is fundamental in exploration geology, as it allows the definition of suitable sites for the exploitation of different resources (e.g. ore mineral, hydrocarbon, geothermal energy and groundwater). Remote sensing techniques, typically adopted in fault identification, have been applied to assess the geological and structural framework of the Laguna Blanca area (26°35'S-66°49'W). This area represents a sector of the south-central Andes localized in the Argentina region of Catamarca, along the south-eastern margin of the Puna plateau. The study area is characterized by a Precambrian low-grade metamorphic basement intruded by Ordovician granitoids. These rocks are unconformably covered by a volcano-sedimentary sequence of Miocene age, followed by volcanic and volcaniclastic rocks of Upper Miocene to Plio-Pleistocene age. All these units are cut by two systems of major faults, locally characterized by 15-20 m wide damage zones. The detection of main tectonic lineaments in the study area was firstly carried out by classical procedures: image sharpening of Landsat 7 ETM+ images, directional filters applied to ASTER images, medium resolution Digital Elevation Models analysis (SRTM and ASTER GDEM) and hill shades interpretation. In addition, a new approach in fault zone identification, based on multispectral satellite images classification, has been tested in the Laguna Blanca area and in other sectors of south-central Andes. In this perspective, several prominent fault zones affecting basement and granitoid rocks have been sampled. The collected fault gouge samples have been analyzed with a Field-Pro spectrophotometer mounted on a goniometer. We acquired bidirectional reflectance spectra, from 0.35μm to 2.5μm with 1nm spectral sampling, of the sampled fault rocks

  7. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  8. Construction of customized redundant multiwavelet via increasing multiplicity for fault detection of rotating machinery

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zuo, Ming J.; Zi, Yanyang; He, Zhengjia

    2014-01-01

    Fault detection from the vibration measurement data of rotating machinery is significant for avoiding serious accidents. However, non-stationary vibration signal with a large amount of noise makes this task challenging. Multiwavelet not only owns the advantage on multi-resolution analysis but also can offer multiple wavelet basis functions. So it has the possibility of detecting various fault features preferably. However, the fixed basis functions which are not related to the given signal may lower the accuracy of fault detection. Moreover, another major intrinsic deficiency of multiwavelet lies in its critically sampled filter-bank, which causes shift-variance and is harmful to extract the feature of periodical impulses. To overcome these deficiencies, a new method called customized redundant multiwavelet (CRM) is constructed via increasing multiplicity (IM). IM is a simple method to design a series of changeable multiwavelet which are available for the subsequent optimization process. By the rule of the envelope spectrum entropy minimum principle, optimal multiwavelet is searched for. Based on the customized multiwavelet filters, the filters of CRM can be calculated by inserting zeros. The proposed method is applied to analyze the simulation, gearbox and rolling element bearing vibration signals. Compared with some other conventional methods, the results demonstrate that the proposed method possesses robust performance in detecting fault features of rotating machinery.

  9. Detection of Fault Zones at Depth Using Low Frequency Induced Sources

    NASA Astrophysics Data System (ADS)

    Mazzoni, C.; Pytharouli, S.; Lunn, R. J.

    2013-12-01

    linear relationship (R2 > 0.99) between wave propagation velocity in the rock, frequency threshold value and the distance from the seismic source at which this frequency threshold is achieved. Our results suggest that we are able to detect the presence of materials with very different properties, e.g. a fault zone within a rock mass. For example, a 1 m wide fault zone is detectable if there is at least a 30% contrast between the Vp values of the fault zone and the host rock. This requirement is not constant i.e. the minimum difference in Vp reduces as the thickness of the fault zone increases. Our results have direct implications for the novel application of seismic monitoring systems for field detection of sub-seismic scale fracture and fault zones.

  10. Application of fault detection techniques to spiral bevel gear fatigue data

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Handschuh, Robert F.; Decker, Harry J.

    1994-01-01

    Results of applying a variety of gear fault detection techniques to experimental data is presented. A spiral bevel gear fatigue rig was used to initiate a naturally occurring fault and propagate the fault to a near catastrophic condition of the test gear pair. The spiral bevel gear fatigue test lasted a total of eighteen hours. At approximately five and a half hours into the test, the rig was stopped to inspect the gears for damage, at which time a small pit was identified on a tooth of the pinion. The test was then stopped an additional seven times throughout the rest of the test in order to observe and document the growth and propagation of the fault. The test was ended when a major portion of a pinion tooth broke off. A personal computer based diagnostic system was developed to obtain vibration data from the test rig, and to perform the on-line gear condition monitoring. A number of gear fault detection techniques, which use the signal average in both the time and frequency domain, were applied to the experimental data. Among the techniques investigated, two of the recently developed methods appeared to be the first to react to the start of tooth damage. These methods continued to react to the damage as the pitted area grew in size to cover approximately 75% of the face width of the pinion tooth. In addition, information gathered from one of the newer methods was found to be a good accumulative damage indicator. An unexpected result of the test showed that although the speed of the rig was held to within a band of six percent of the nominal speed, and the load within eighteen percent of nominal, the resulting speed and load variations substantially affected the performance of all of the gear fault detection techniques investigated.

  11. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis.

    PubMed

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-01-01

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods. PMID:27092509

  12. Gear-box fault detection using time-frequency based methods

    SciTech Connect

    Odgaard, Peter F.; Stoustrup, Jakob

    2015-12-31

    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected. Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.

  13. Fault Detection of Railway Vehicle Suspension Systems Using Multiple-Model Approach

    NASA Astrophysics Data System (ADS)

    Hayashi, Yusuke; Tsunashima, Hitoshi; Marumo, Yoshitaka

    This paper demonstrates the possibility to detect suspension failures of railway vehicles using a multiple-model approach from on-board measurement data. The railway vehicle model used includes the lateral and yaw motions of the wheelsets and bogie, and the lateral motion of the vehicle body, with sensors measuring the lateral acceleration and yaw rate of the bogie, and lateral acceleration of the body. The detection algorithm is formulated based on the Interacting Multiple-Model (IMM) algorithm. The IMM method has been applied for detecting faults in vehicle suspension systems in a simulation study. The mode probabilities and states of vehicle suspension systems are estimated based on a Kalman Filter (KF). This algorithm is evaluated in simulation examples. Simulation results indicate that the algorithm effectively detects on-board faults of railway vehicle suspension systems.

  14. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis

    PubMed Central

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-01-01

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods. PMID:27092509

  15. Sensorless Detection of Induction Motor Rotor Faults Using the Clarke Vector Approach

    NASA Astrophysics Data System (ADS)

    Vaimann, Toomas; Kallaste, Ants; Kilk, Aleksander

    2011-01-01

    Due to their rugged build, simplicity and cost effective performance, induction motors are used in a vast number of industries, where they play a significant role in responsible operations, where faults and downtimes are either not desirable or even unthinkable. As different faults can affect the performance of the induction motors, among them broken rotor bars, it is important to have a certain condition monitoring or diagnostic system that is guarding the state of the motor. This paper deals with induction motor broken rotor bars detection, using Clarke vector approach.

  16. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  17. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Thomason, Cindy; Anderson, Paul M.; Martin, James A.

    1990-01-01

    Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.

  18. Automated Detection and Annotation of Disturbance in Eastern Forests

    NASA Astrophysics Data System (ADS)

    Hughes, M. J.; Chen, G.; Hayes, D. J.

    2013-12-01

    Forest disturbances represent an important component of the terrestrial carbon budget. To generate spatially-explicit estimates of disturbance and regrowth, we developed an automated system to detect and characterize forest change in the eastern United States at 30 m resolution from a 28-year Landsat Thematic Mapper time-series (1984-2011). Forest changes are labeled as 'disturbances' or 'regrowth', assigned to a severity class, and attributed to a disturbance type: either fire, insects, harvest, or 'unknown'. The system generates cloud-free summertime composite images for each year from multiple summer scenes and calculates vegetation indices from these composites. Patches of similar terrain on the landscape are identified by segmenting the Normalized Burn Ratio image. The spatial variance within each patch, which has been found to be a good indicator of diffuse disturbances such as forest insect damage, is then calculated for each index, creating an additional set of indexes. To identify vegetation change and quantify its degree, the derivative through time is calculated for each index using total variance regularization to account for noise and create a piecewise-linear trend. These indexes and their derivatives detect areas of disturbance and regrowth and are also used as inputs into a neural network that classifies the disturbance type/agent. Disturbance and disease information from the US Forest Service Aerial Detection Surveys (ADS) geodatabase and disturbed plots from the US Forest Service Forest Inventory and Analysis (FIA) database provided training data for the neural network. Although there have been recent advances in discriminating between disturbance types in boreal forests, due to the larger number of forest species and cosmopolitan nature of overstory communities in eastern forests, separation remains difficult. The ADS database, derived from sketch maps and later digitized, commonly designates a single large area encompassing many smaller effected

  19. A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes

    PubMed Central

    Lei, Yaguo; Lin, Jing; He, Zhengjia; Kong, Detong

    2012-01-01

    Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults. PMID:22438750

  20. A method based on multi-sensor data fusion for fault detection of planetary gearboxes.

    PubMed

    Lei, Yaguo; Lin, Jing; He, Zhengjia; Kong, Detong

    2012-01-01

    Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults. PMID:22438750

  1. An adaptive confidence limit for periodic non-steady conditions fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Tianzhen; Wu, Hao; Ni, Mengqi; Zhang, Milu; Dong, Jingjing; Benbouzid, Mohamed El Hachemi; Hu, Xiong

    2016-05-01

    System monitoring has become a major concern in batch process due to the fact that failure rate in non-steady conditions is much higher than in steady ones. A series of approaches based on PCA have already solved problems such as data dimensionality reduction, multivariable decorrelation, and processing non-changing signal. However, if the data follows non-Gaussian distribution or the variables contain some signal changes, the above approaches are not applicable. To deal with these concerns and to enhance performance in multiperiod data processing, this paper proposes a fault detection method using adaptive confidence limit (ACL) in periodic non-steady conditions. The proposed ACL method achieves four main enhancements: Longitudinal-Standardization could convert non-Gaussian sampling data to Gaussian ones; the multiperiod PCA algorithm could reduce dimensionality, remove correlation, and improve the monitoring accuracy; the adaptive confidence limit could detect faults under non-steady conditions; the fault sections determination procedure could select the appropriate parameter of the adaptive confidence limit. The achieved result analysis clearly shows that the proposed ACL method is superior to other fault detection approaches under periodic non-steady conditions.

  2. Classification techniques for fault detection and diagnosis of an air-handling unit

    SciTech Connect

    House, J.M.; Lee, W.Y.; Shin, D.R.

    1999-07-01

    The objective of this study is to demonstrate the application of several classification techniques to the problem of detecting and diagnosing faults in data generated by a variable-air-volume air-handling unit simulation model and to describe the strengths and weaknesses of the techniques considered. Artificial neural network classifiers, nearest neighbor classifiers, nearest prototype classifiers, a rule-based classifier, and a Bayes classifier are considered for both fault detection and diagnostics. Based on the performance of the classification techniques, the Bayes classifier appears to be a good choice for fault detection. It is a straightforward method that requires limited memory and computational effort, and it consistently yielded the lowest percentage of incorrect diagnosis. For fault diagnosis, the rule-based method is favored for classification problems such as the one considered here, where the various classes of faulty operation are well separated and can be distinguished by a single dominant symptom or feature. Results also indicate that the success or failure of classification techniques hinges to a large degree on an ability to separate different classes of operation in some feature (temperature, pressure, etc.) space. Hence, preprocessing of data to extract dominant features is as important as the selection of the classifier.

  3. Fault detection and identification in missile system guidance and control: a filtering approach

    NASA Astrophysics Data System (ADS)

    Padgett, Mary Lou; Evers, Johnny; Karplus, Walter J.

    1996-03-01

    Real-world applications of computational intelligence can enhance the fault detection and identification capabilities of a missile guidance and control system. A simulation of a bank-to- turn missile demonstrates that actuator failure may cause the missile to roll and miss the target. Failure of one fin actuator can be detected using a filter and depicting the filter output as fuzzy numbers. The properties and limitations of artificial neural networks fed by these fuzzy numbers are explored. A suite of networks is constructed to (1) detect a fault and (2) determine which fin (if any) failed. Both the zero order moment term and the fin rate term show changes during actuator failure. Simulations address the following questions: (1) How bad does the actuator failure have to be for detection to occur, (2) How bad does the actuator failure have to be for fault detection and isolation to occur, (3) are both zero order moment and fine rate terms needed. A suite of target trajectories are simulated, and properties and limitations of the approach reported. In some cases, detection of the failed actuator occurs within 0.1 second, and isolation of the failure occurs 0.1 after that. Suggestions for further research are offered.

  4. A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2010-01-01

    Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.

  5. A fault detection observer design for LPV systems in finite frequency domain

    NASA Astrophysics Data System (ADS)

    Chen, Jianliang; Cao, Yong-Yan; Zhang, Weidong

    2015-03-01

    This paper addresses the fault detection observer design problem for linear parameter-varying systems. Two finite frequency performance indexes are introduced to measure the fault sensitivity and the disturbance robustness. First, the H- index fault sensitivity condition in finite frequency domain is obtained by generalised Kalman-Yakubovich-Popov lemma and new linearisation techniques. Then, with the aid of Kalman-Yakubovich-Popov lemma and projection lemma, the stability and robustness conditions are derived. It turns out that the non-convexity problem which is caused by dealing with the above three conditions can be translated into a bilinear matrix inequality optimisation problem by increasing the dimensions of slack variable matrix. An iterative linear matrix inequality algorithm is proposed to get the solution. The effectiveness of the filter is shown via three numerical examples.

  6. Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Lu, Na; Xiao, Zhihuai; Malik, O. P.

    2015-02-01

    State identification to diagnose the condition of rotating machinery is often converted to a classification problem of values of non-dimensional symptom parameters (NSPs). To improve the sensitivity of the NSPs to the changes in machine condition, a novel feature extraction method based on adaptive multiwavelets and the synthetic detection index (SDI) is proposed in this paper. Based on the SDI maximization principle, optimal multiwavelets are searched by genetic algorithms (GAs) from an adaptive multiwavelets library and used for extracting fault features from vibration signals. By the optimal multiwavelets, more sensitive NSPs can be extracted. To examine the effectiveness of the optimal multiwavelets, conventional methods are used for comparison study. The obtained NSPs are fed into K-means classifier to diagnose rotor faults. The results show that the proposed method can effectively improve the sensitivity of the NSPs and achieve a higher discrimination rate for rotor fault diagnosis than the conventional methods.

  7. Applications of pattern recognition techniques to online fault detection

    SciTech Connect

    Singer, R.M.; Gross, K.C.; King, R.W.

    1993-11-01

    A common problem to operators of complex industrial systems is the early detection of incipient degradation of sensors and components in order to avoid unplanned outages, to orderly plan for anticipated maintenance activities and to assure continued safe operation. In such systems, there usually are a large number of sensors (upwards of several thousand is not uncommon) serving many functions, ranging from input to control systems, monitoring of safety parameters and component performance limits, system environmental conditions, etc. Although sensors deemed to measure important process conditions are generally alarmed, the alarm set points usually are just high-low limits and the operator`s response to such alarms is based on written procedures and his or her experience and training. In many systems this approach has been successful, but in situations where the cost of a forced outage is high an improved method is needed. In such cases it is desirable, if not necessary, to detect disturbances in either sensors or the process prior to any actual failure that could either shut down the process or challenge any safety system that is present. Recent advances in various artificial intelligence techniques have provided the opportunity to perform such functions of early detection and diagnosis. In this paper, the experience gained through the application of several pattern-recognition techniques to the on-line monitoring and incipient disturbance detection of several coolant pumps and numerous sensors at the Experimental Breeder Reactor-II (EBR-II) which is located at the Idaho National Engineering Laboratory is presented.

  8. Fault detection, diagnosis, and data-driven modeling in HVAC chillers

    NASA Astrophysics Data System (ADS)

    Namburu, Setu M.; Luo, Jianhui; Azam, Mohammad; Choi, Kihoon; Pattipati, Krishna R.

    2005-05-01

    Heating, Ventilation and Air Conditioning (HVAC) systems constitute the largest portion of energy consumption equipment in residential and commercial facilities. Real-time health monitoring and fault diagnosis is essential for reliable and uninterrupted operation of these systems. Existing fault detection and diagnosis (FDD) schemes for HVAC systems are only suitable for a single operating mode with small numbers of faults, and most of the schemes are systemspecific. A generic real-time FDD scheme, applicable to all possible operating conditions, can significantly reduce HVAC equipment downtime, thus improving the efficiency of building energy management systems. This paper presents a FDD methodology for faults in centrifugal chillers. The FDD scheme compares the diagnostic performance of three data-driven techniques, namely support vector machines (SVM), principal component analysis (PCA), and partial least squares (PLS). In addition, a nominal model of a chiller that can predict system response under new operating conditions is developed using PLS. We used the benchmark data on a 90-ton real centrifugal chiller test equipment, provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), to demonstrate and validate our proposed diagnostic procedure. The database consists of data from sixty four monitored variables under nominal and eight fault conditions of different severities at twenty seven operating modes.

  9. An Automated Motion Detection and Reward System for Animal Training

    PubMed Central

    Miller, Brad; Lim, Audrey N; Heidbreder, Arnold F

    2015-01-01

    A variety of approaches has been used to minimize head movement during functional brain imaging studies in awake laboratory animals. Many laboratories expend substantial effort and time training animals to remain essentially motionless during such studies. We could not locate an “off-the-shelf” automated training system that suited our needs.  We developed a time- and labor-saving automated system to train animals to hold still for extended periods of time. The system uses a personal computer and modest external hardware to provide stimulus cues, monitor movement using commercial video surveillance components, and dispense rewards. A custom computer program automatically increases the motionless duration required for rewards based on performance during the training session but allows changes during sessions. This system was used to train cynomolgus monkeys (Macaca fascicularis) for awake neuroimaging studies using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The automated system saved the trainer substantial time, presented stimuli and rewards in a highly consistent manner, and automatically documented training sessions. We have limited data to prove the training system's success, drawn from the automated records during training sessions, but we believe others may find it useful. The system can be adapted to a range of behavioral training/recording activities for research or commercial applications, and the software is freely available for non-commercial use. PMID:26798573

  10. An Automated Motion Detection and Reward System for Animal Training.

    PubMed

    Miller, Brad; Lim, Audrey N; Heidbreder, Arnold F; Black, Kevin J

    2015-01-01

    A variety of approaches has been used to minimize head movement during functional brain imaging studies in awake laboratory animals. Many laboratories expend substantial effort and time training animals to remain essentially motionless during such studies. We could not locate an "off-the-shelf" automated training system that suited our needs.  We developed a time- and labor-saving automated system to train animals to hold still for extended periods of time. The system uses a personal computer and modest external hardware to provide stimulus cues, monitor movement using commercial video surveillance components, and dispense rewards. A custom computer program automatically increases the motionless duration required for rewards based on performance during the training session but allows changes during sessions. This system was used to train cynomolgus monkeys (Macaca fascicularis) for awake neuroimaging studies using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The automated system saved the trainer substantial time, presented stimuli and rewards in a highly consistent manner, and automatically documented training sessions. We have limited data to prove the training system's success, drawn from the automated records during training sessions, but we believe others may find it useful. The system can be adapted to a range of behavioral training/recording activities for research or commercial applications, and the software is freely available for non-commercial use. PMID:26798573

  11. Fault Management Techniques in Human Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    O'Hagan, Brian; Crocker, Alan

    2006-01-01

    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be

  12. Assessment of Automated Disease Detection in Diabetic Retinopathy Screening Using Two-Field Photography

    PubMed Central

    Goatman, Keith; Charnley, Amanda; Webster, Laura; Nussey, Stephen

    2011-01-01

    Aim To assess the performance of automated disease detection in diabetic retinopathy screening using two field mydriatic photography. Methods Images from 8,271 sequential patient screening episodes from a South London diabetic retinopathy screening service were processed by the Medalytix iGrading™ automated grading system. For each screening episode macular-centred and disc-centred images of both eyes were acquired and independently graded according to the English national grading scheme. Where discrepancies were found between the automated result and original manual grade, internal and external arbitration was used to determine the final study grades. Two versions of the software were used: one that detected microaneurysms alone, and one that detected blot haemorrhages and exudates in addition to microaneurysms. Results for each version were calculated once using both fields and once using the macula-centred field alone. Results Of the 8,271 episodes, 346 (4.2%) were considered unassessable. Referable disease was detected in 587 episodes (7.1%). The sensitivity of the automated system for detecting unassessable images ranged from 97.4% to 99.1% depending on configuration. The sensitivity of the automated system for referable episodes ranged from 98.3% to 99.3%. All the episodes that included proliferative or pre-proliferative retinopathy were detected by the automated system regardless of configuration (192/192, 95% confidence interval 98.0% to 100%). If implemented as the first step in grading, the automated system would have reduced the manual grading effort by between 2,183 and 3,147 patient episodes (26.4% to 38.1%). Conclusion Automated grading can safely reduce the workload of manual grading using two field, mydriatic photography in a routine screening service. PMID:22174741

  13. Detection of Structural Faults by Modal Data, Lower Bounds and Shadow Sites

    NASA Astrophysics Data System (ADS)

    Contursi, T.; Mangialardi, L. M.; Messina, A.

    1998-02-01

    Different algorithms have recently been developed for the diagnosis of many types of civil and mechanical structures using modal data, such as natural frequencies and mode shapes. Although many solutions have been proposed, some important questions seem to be absent in the technical literature. If changes in a structure's modal parameters are able to reflect structural faults, it is important to know what is the smallest detectable physical change in that structure.It is suggested that damage detection by means of modal data can be useful for macro-damage rather than for micro-damage. This resulted from numerical and experimental tests using a simple correlation between measurement noise and sensitivity of modal data, with respect to structural changes in different parts of a system. An automatic sensitivity approach is presented to obtain the lower bound of structural faults for the particular structure under study. The same automatic procedure is able to detect possible shadow sites within the frequency range analyzed.

  14. Innovation sequence application to aircraft sensor fault detection: comparison of checking covariance matrix algorithms

    PubMed

    Caliskan; Hajiyev

    2000-01-01

    In this paper, the algorithms verifying the covariance matrix of the Kalman filter innovation sequence are compared with respect to detected minimum fault rate and detection time. Four algorithms are dealt with; the algorithm verifying the trace of the covariance matrix of the innovation sequence, the algorithm verifying the sum of all elements of the inverse covariance matrix of the innovation sequence, the optimal algorithm verifying the ratio of two quadratic forms of which matrices are theoretic and selected covariance matrices of Kalman filter innovation sequence, and the algorithm verifying the generalized variance of the covariance matrix of the innovation sequence. The algorithms are implemented for longitudinal dynamics of an aircraft to detect sensor faults, and some suggestions are given on the use of the algorithms in flight control systems. PMID:10826285

  15. Real time automatic detection of bearing fault in induction machine using kurtogram analysis.

    PubMed

    Tafinine, Farid; Mokrani, Karim

    2012-11-01

    A proposed signal processing technique for incipient real time bearing fault detection based on kurtogram analysis is presented in this paper. The kurtogram is a fourth-order spectral analysis tool introduced for detecting and characterizing non-stationarities in a signal. This technique starts from investigating the resonance signatures over selected frequency bands to extract the representative features. The traditional spectral analysis is not appropriate for non-stationary vibration signal and for real time diagnosis. The performance of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions. Test results show that this signal processing technique is an effective bearing fault automatic detection method and gives a good basis for an integrated induction machine condition monitor. PMID:23145702

  16. Laser ultrasound technology for fault detection on carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Seyrkammer, Robert; Reitinger, Bernhard; Grün, Hubert; Sekelja, Jakov; Burgholzer, Peter

    2014-05-01

    The marching in of carbon fiber reinforced polymers (CFRPs) to mass production in the aeronautic and automotive industry requires reliable quality assurance methods. Laser ultrasound (LUS) is a promising nondestructive testing technique for sample inspection. The benefits compared to conventional ultrasound (US) testing are couplant free measurements and an easy access to complex shapes due to remote optical excitation and detection. Here the potential of LUS is present on composite test panels with relevant testing scenarios for industry. The results are evaluated in comparison to conventional ultrasound used in the aeronautic industry.

  17. Fault detection and isolation for a full-scale railway vehicle suspension with multiple Kalman filters

    NASA Astrophysics Data System (ADS)

    Jesussek, Mathias; Ellermann, Katrin

    2014-12-01

    Reliability and dependability in complex mechanical systems can be improved by fault detection and isolation (FDI) methods. These techniques are key elements for maintenance on demand, which could decrease service cost and time significantly. This paper addresses FDI for a railway vehicle: the mechanical model is described as a multibody system, which is excited randomly due to track irregularities. Various parameters, like masses, spring- and damper-characteristics, influence the dynamics of the vehicle. Often, the exact values of the parameters are unknown and might even change over time. Some of these changes are considered critical with respect to the operation of the system and they require immediate maintenance. The aim of this work is to detect faults in the suspension system of the vehicle. A Kalman filter is used in order to estimate the states. To detect and isolate faults the detection error is minimised with multiple Kalman filters. A full-scale train model with nonlinear wheel/rail contact serves as an example for the described techniques. Numerical results for different test cases are presented. The analysis shows that for the given system it is possible not only to detect a failure of the suspension system from the system's dynamic response, but also to distinguish clearly between different possible causes for the changes in the dynamical behaviour.

  18. Disk Crack Detection for Seeded Fault Engine Test

    NASA Technical Reports Server (NTRS)

    Luo, Huageng; Rodriguez, Hector; Hallman, Darren; Corbly, Dennis; Lewicki, David G. (Technical Monitor)

    2004-01-01

    Work was performed to develop and demonstrate vibration diagnostic techniques for the on-line detection of engine rotor disk cracks and other anomalies through a real engine test. An existing single-degree-of-freedom non-resonance-based vibration algorithm was extended to a multi-degree-of-freedom model. In addition, a resonance-based algorithm was also proposed for the case of one or more resonances. The algorithms were integrated into a diagnostic system using state-of-the- art commercial analysis equipment. The system required only non-rotating vibration signals, such as accelerometers and proximity probes, and the rotor shaft 1/rev signal to conduct the health monitoring. Before the engine test, the integrated system was tested in the laboratory by using a small rotor with controlled mass unbalances. The laboratory tests verified the system integration and both the non-resonance and the resonance-based algorithm implementations. In the engine test, the system concluded that after two weeks of cycling, the seeded fan disk flaw did not propagate to a large enough size to be detected by changes in the synchronous vibration. The unbalance induced by mass shifting during the start up and coast down was still the dominant response in the synchronous vibration.

  19. Fault analysis and detection in large active optical systems

    NASA Astrophysics Data System (ADS)

    Cox, Charles D.; Furber, Mark E.; Jordan, David C.; Blaszak, David D.

    1995-05-01

    Active optical systems are complex systems that may be expected to operate in hostile environments such as space. The ability of such a system either to tolerate failures of components or to reconfigure to accommodate failed components could significantly increase the useful lifetime of the system. Active optical systems often contain hundreds of actuators and sensor channels but have an inherent redundancy, i.e., more actuators or sensor channels than the minimum needed to achieve the required performance. A failure detection and isolation system can be used to find and accommodate failures. One type of failure is the failure of an actuator. The effect of actuator failure on the ability of a deformable mirror to correct aberrations is analyzed using a finite-element model of the deformable mirror, and a general analytical procedure for determining the effect of actuator failures on system performance is given. The application of model-based failure detection, isolation and identification algorithms to active optical systems is outlined.

  20. An automated analysis of wide area motion imagery for moving subject detection

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave

    2015-05-01

    Automated analysis of wide area motion imagery (WAMI) can significantly reduce the effort required for converting data into reliable decisions. We register consecutive WAMI frames and use false-color frame comparisons to enhance the visual detection of possible subjects in the imagery. The large number of WAMI detections produces the need for a prioritization of detections for further inspection. We create a priority queue of detections for automated revisit with smaller field-ofview assets based on the locations of the movers as well as the probability of the detection. This automated queue works within an operator's preset prioritizations but also allows the flexibility to dynamically respond to new events as well as incorporating additional information into the surveillance tasking.

  1. A Simple Method for Automated Equilibration Detection in Molecular Simulations.

    PubMed

    Chodera, John D

    2016-04-12

    Molecular simulations intended to compute equilibrium properties are often initiated from configurations that are highly atypical of equilibrium samples, a practice which can generate a distinct initial transient in mechanical observables computed from the simulation trajectory. Traditional practice in simulation data analysis recommends this initial portion be discarded to equilibration, but no simple, general, and automated procedure for this process exists. Here, we suggest a conceptually simple automated procedure that does not make strict assumptions about the distribution of the observable of interest in which the equilibration time is chosen to maximize the number of effectively uncorrelated samples in the production timespan used to compute equilibrium averages. We present a simple Python reference implementation of this procedure and demonstrate its utility on typical molecular simulation data. PMID:26771390

  2. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  3. FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.

    1985-01-01

    Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.

  4. Including Faults Detected By Near-Surface Seismic Methods in the USGS National Seismic Hazard Maps - Some Restrictions Apply

    NASA Astrophysics Data System (ADS)

    Williams, R. A.; Haller, K. M.

    2014-12-01

    Every 6 years, the USGS updates the National Seismic Hazard Maps (new version released July 2014) that are intended to help society reduce risk from earthquakes. These maps affect hundreds of billions of dollars in construction costs each year as they are used to develop seismic-design criteria of buildings, bridges, highways, railroads, and provide data for risk assessment that help determine insurance rates. Seismic source characterization, an essential component of hazard model development, ranges from detailed trench excavations across faults at the ground surface to less detailed analysis of broad regions defined mainly on the basis of historical seismicity. Though it is a priority for the USGS to discover new Quaternary fault sources, the discovered faults only become a part of the hazard model if there are corresponding constraints on their geometry (length and depth extent) and slip-rate (or recurrence interval). When combined with fault geometry and slip-rate constraints, near-surface seismic studies that detect young (Quaternary) faults have become important parts of the hazard source model. Examples of seismic imaging studies with significant hazard impact include the Southern Whidbey Island fault, Washington; Santa Monica fault, San Andreas fault, and Palos Verdes fault zone, California; and Commerce fault, Missouri. There are many more faults in the hazard model in the western U.S. than in the expansive region east of the Rocky Mountains due to the higher rate of tectonic deformation, frequent surface-rupturing earthquakes and, in some cases, lower erosion rates. However, the recent increase in earthquakes in the central U.S. has revealed previously unknown faults for which we need additional constraints before we can include them in the seismic hazard maps. Some of these new faults may be opportunities for seismic imaging studies to provide basic data on location, dip, style of faulting, and recurrence.

  5. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    SciTech Connect

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    2009-03-05

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  6. Fault detection of aircraft system with random forest algorithm and similarity measure.

    PubMed

    Lee, Sanghyuk; Park, Wookje; Jung, Sikhang

    2014-01-01

    Research on fault detection algorithm was developed with the similarity measure and random forest algorithm. The organized algorithm was applied to unmanned aircraft vehicle (UAV) that was readied by us. Similarity measure was designed by the help of distance information, and its usefulness was also verified by proof. Fault decision was carried out by calculation of weighted similarity measure. Twelve available coefficients among healthy and faulty status data group were used to determine the decision. Similarity measure weighting was done and obtained through random forest algorithm (RFA); RF provides data priority. In order to get a fast response of decision, a limited number of coefficients was also considered. Relation of detection rate and amount of feature data were analyzed and illustrated. By repeated trial of similarity calculation, useful data amount was obtained. PMID:25057508

  7. A microprocessor-based digital feeder monitor with high-impedance fault detection

    SciTech Connect

    Patterson, R.; Tyska, W.; Russell, B.D.

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  8. Set-membership identification and fault detection using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Fernández-Cantí, Rosa M.; Blesa, Joaquim; Puig, Vicenç; Tornil-Sin, Sebastian

    2016-05-01

    This paper deals with the problem of set-membership identification and fault detection using a Bayesian framework. The paper presents how the set-membership model estimation problem can be reformulated from the Bayesian viewpoint in order to, first, determine the feasible parameter set in the identification stage and, second, check the consistency between the measurement data and the model in the fault-detection stage. The paper shows that, assuming uniform distributed measurement noise and uniform model prior probability distributions, the Bayesian approach leads to the same feasible parameter set than the well-known set-membership technique based on approximating the feasible parameter set using sets. Additionally, it can deal with models that are nonlinear in the parameters. The single-output and multiple-output cases are addressed as well. The procedure and results are illustrated by means of the application to a quadruple-tank process.

  9. Fault detection in digital and analog circuits using an i(DD) temporal analysis technique

    NASA Technical Reports Server (NTRS)

    Beasley, J.; Magallanes, D.; Vridhagiri, A.; Ramamurthy, Hema; Deyong, Mark

    1993-01-01

    An i(sub DD) temporal analysis technique which is used to detect defects (faults) and fabrication variations in both digital and analog IC's by pulsing the power supply rails and analyzing the temporal data obtained from the resulting transient rail currents is presented. A simple bias voltage is required for all the inputs, to excite the defects. Data from hardware tests supporting this technique are presented.

  10. Automated detection of a prostate Ni-Ti stent in electronic portal images

    SciTech Connect

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-12-15

    Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection algorithm. The automated method uses enhancement of lines combined with a grayscale morphology operation that looks for enhanced pixels separated with a distance similar to the diameter of the stent. The images in this study are all from prostate cancer patients treated with radiotherapy in a previous study. Images of a stent inserted in a humanoid phantom demonstrated a localization accuracy of 0.4-0.7 mm which equals the pixel size in the image. The automated detection of the stent was compared to manual detection in 71 pairs of orthogonal images taken in nine patients. The algorithm was successful in 67 of 71 pairs of images. The method is fast, has a high success rate, good accuracy, and has a potential for unsupervised localization of the prostate before radiotherapy, which would enable automated repositioning before treatment and allow for the use of very tight PTV margins.

  11. On the Automated and Objective Detection of Emission Lines in Faint-Object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Dey, Arjun; Prescott, Moire K. M.

    2014-11-01

    Modern spectroscopic surveys produce large spectroscopic databases, generally with sizes well beyond the scope of manual investigation. The need arises, therefore, for an automated line detection method with objective indicators for detection significance. In this paper, we present an automated and objective method for emission line detection in spectroscopic surveys and apply this technique to observed spectra from a Lyα emitter survey at z ~ 2.7, obtained with the Hectospec spectrograph on the MMT Observatory (MMTO). The basic idea is to generate on-source (signal plus noise) and off-source (noise only) mock observations using Monte Carlo simulations, and calculate completeness and reliability values, (C,R), for each simulated signal. By comparing the detections from real data with the Monte Carlo results, we assign the completeness and reliability values to each real detection. From 1574 spectra, we obtain 881 raw detections and, by removing low reliability detections, we finalize 652 detections from an automated pipeline. Most of high completeness and reliability detections, (C,R) ≈ (1.0,1.0), are robust detections when visually inspected; the low C and R detections are also marginal on visual inspection. This method of detecting faint sources is dependent on the accuracy of the sky subtraction.

  12. Chaotic Extension Neural Network Theory-Based XXY Stage Collision Fault Detection Using a Single Accelerometer Sensor

    PubMed Central

    Hsieh, Chin-Tsung; Yau, Her-Terng; Wu, Shang-Yi; Lin, Huo-Cheng

    2014-01-01

    The collision fault detection of a XXY stage is proposed for the first time in this paper. The stage characteristic signals are extracted and imported into the master and slave chaos error systems by signal filtering from the vibratory magnitude of the stage. The trajectory diagram is made from the chaos synchronization dynamic error signals E1 and E2. The distance between characteristic positive and negative centers of gravity, as well as the maximum and minimum distances of trajectory diagram, are captured as the characteristics of fault recognition by observing the variation in various signal trajectory diagrams. The matter-element model of normal status and collision status is built by an extension neural network. The correlation grade of various fault statuses of the XXY stage was calculated for diagnosis. The dSPACE is used for real-time analysis of stage fault status with an accelerometer sensor. Three stage fault statuses are detected in this study, including normal status, Y collision fault and X collision fault. It is shown that the scheme can have at least 75% diagnosis rate for collision faults of the XXY stage. As a result, the fault diagnosis system can be implemented using just one sensor, and consequently the hardware cost is significantly reduced. PMID:25405512

  13. A neural network approach to fault detection in spacecraft attitude determination and control systems

    NASA Astrophysics Data System (ADS)

    Schreiner, John N.

    This thesis proposes a method of performing fault detection and isolation in spacecraft attitude determination and control systems. The proposed method works by deploying a trained neural network to analyze a set of residuals that are defined such that they encompass the attitude control, guidance, and attitude determination subsystems. Eight neural networks were trained using either the resilient backpropagation, Levenberg-Marquardt, or Levenberg-Marquardt with Bayesian regularization training algorithms. The results of each of the neural networks were analyzed to determine the accuracy of the networks with respect to isolating the faulty component or faulty subsystem within the ADCS. The performance of the proposed neural network-based fault detection and isolation method was compared and contrasted with other ADCS FDI methods. The results obtained via simulation showed that the best neural networks employing this method successfully detected the presence of a fault 79% of the time. The faulty subsystem was successfully isolated 75% of the time and the faulty components within the faulty subsystem were isolated 37% of the time.

  14. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection.

    PubMed

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes' status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors' detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  15. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  16. Customized Multiwavelets for Planetary Gearbox Fault Detection Based on Vibration Sensor Signals

    PubMed Central

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-01

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox. PMID:23334609

  17. Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals.

    PubMed

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-01

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox. PMID:23334609

  18. An active ring fault detected at Tendürek volcano by using InSAR

    NASA Astrophysics Data System (ADS)

    Bathke, H.; Sudhaus, H.; Holohan, E. P.; Walter, T. R.; Shirzaei, M.

    2013-08-01

    ring faults are present at many ancient, deeply eroded volcanoes, they have been detected at only very few modern volcanic centers. At the so far little studied Tendürek volcano in eastern Turkey, we generated an ascending and a descending InSAR time series of its surface displacement field for the period from 2003 to 2010. We detected a large (~105 km2) region that underwent subsidence at the rate of ~1 cm/yr during this period. Source modeling results show that the observed signal fits best to simulations of a near-horizontal contracting sill located at around 4.5 km below the volcano summit. Intriguingly, the residual displacement velocity field contains a steep gradient that systematically follows a system of arcuate fractures visible on the volcano's midflanks. RapidEye satellite optical images show that this fracture system has deflected Holocene lava flows, thus indicating its presence for at least several millennia. We interpret the arcuate fracture system as the surface expression of an inherited ring fault that has been slowly reactivated during the detected recent subsidence. These results show that volcano ring faults may not only slip rapidly during eruptive or intrusive phases, but also slowly during dormant phases.

  19. Cell-Detection Technique for Automated Patch Clamping

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image

  20. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction

  1. Semi-automated fault system extraction and displacement analysis of an excavated oyster reef using high-resolution laser scanned data

    NASA Astrophysics Data System (ADS)

    Molnár, Gábor; Székely, Balázs; Harzhauser, Mathias; Djuricic, Ana; Mandic, Oleg; Dorninger, Peter; Nothegger, Clemens; Exner, Ulrike; Pfeifer, Norbert

    2015-04-01

    In this contribution we present a semi-automated method for reconstructing the brittle deformation field of an excavated Miocene oyster reef, in Stetten, Korneuburg Basin, Lower Austria. Oyster shells up to 80 cm in size were scattered in a shallow estuarine bay forming a continuous and almost isochronous layer as a consequence of a catastrophic event in the Miocene. This shell bed was preserved by burial of several hundred meters of sandy to silty sediments. Later the layers were tilted westward, uplifted and erosion almost exhumed them. An excavation revealed a 27 by 17 meters area of the oyster covered layer. During the tectonic processes the sediment volume suffered brittle deformation. Faults mostly with some centimeter normal component and NW-SE striking affected the oyster covered volume, dissecting many shells and the surrounding matrix as well. Faults and displacements due to them can be traced along the site typically at several meters long, and as fossil oysters are broken and parts are displaced due to the faulting, along some faults it is possible to follow these displacements in 3D. In order to quantify these varying displacements and to map the undulating fault traces high-resolution scanning of the excavated and cleaned surface of the oyster bed has been carried out using a terrestrial laser scanner. The resulting point clouds have been co-georeferenced at mm accuracy and a 1mm resolution 3D point cloud of the surface has been created. As the faults are well-represented in the point cloud, this enables us to measure the dislocations of the dissected shell parts along the fault lines. We used a semi-automatic method to quantify these dislocations. First we manually digitized the fault lines in 2D as an initial model. In the next step we estimated the vertical (i.e. perpendicular to the layer) component of the dislocation along these fault lines comparing the elevations on two sides of the faults with moving averaging windows. To estimate the strike

  2. An Optimal Cell Detection Technique for Automated Patch Clamping

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2004-01-01

    While there are several hardware techniques for the automated patch clamping of cells that describe the equipment apparatus used for patch clamping, very few explain the science behind the actual technique of locating the ideal cell for a patch clamping procedure. We present a machine vision approach to patch clamping cell selection by developing an intelligent algorithm technique that gives the user the ability to determine the good cell to patch clamp in an image within one second. This technique will aid the user in determining the best candidates for patch clamping and will ultimately save time, increase efficiency and reduce cost. The ultimate goal is to combine intelligent processing with instrumentation and controls in order to produce a complete turnkey automated patch clamping system capable of accurately and reliably patch clamping cells with a minimum amount of human intervention. We present a unique technique that identifies good patch clamping cell candidates based on feature metrics of a cell's (x, y) position, major axis length, minor axis length, area, elongation, roundness, smoothness, angle of orientation, thinness and whether or not the cell is only particularly in the field of view. A patent is pending for this research.

  3. Accurate, Automated Detection of Atrial Fibrillation in Ambulatory Recordings.

    PubMed

    Linker, David T

    2016-06-01

    A highly accurate, automated algorithm would facilitate cost-effective screening for asymptomatic atrial fibrillation. This study analyzed a new algorithm and compared it to existing techniques. The incremental benefit of each step in refinement of the algorithm was measured, and the algorithm was compared to other methods using the Physionet atrial fibrillation and normal sinus rhythm databases. When analyzing segments of 21 RR intervals or less, the algorithm had a significantly higher area under the receiver operating characteristic curve (AUC) than the other algorithms tested. At analysis segment sizes of up to 101 RR intervals, the algorithm continued to have a higher AUC than any of the other methods tested, although the difference from the second best other algorithm was no longer significant, with an AUC of 0.9992 with a 95% confidence interval (CI) of 0.9986-0.9998, vs. 0.9986 (CI 0.9978-0.9994). With identical per-subject sensitivity, per-subject specificity of the current algorithm was superior to the other tested algorithms even at 101 RR intervals, with no false positives (CI 0.0-0.8%) vs. 5.3% false positives for the second best algorithm (CI 3.4-7.9%). The described algorithm shows great promise for automated screening for atrial fibrillation by reducing false positives requiring manual review, while maintaining high sensitivity. PMID:26850411

  4. Computer automated movement detection for the analysis of behavior

    PubMed Central

    Ramazani, Roseanna B.; Krishnan, Harish R.; Bergeson, Susan E.; Atkinson, Nigel S.

    2007-01-01

    Currently, measuring ethanol behaviors in flies depends on expensive image analysis software or time intensive experimenter observation. We have designed an automated system for the collection and analysis of locomotor behavior data, using the IEEE 1394 acquisition program dvgrab, the image toolkit ImageMagick and the programming language Perl. In the proposed method, flies are placed in a clear container and a computer-controlled camera takes pictures at regular intervals. Digital subtraction removes the background and non-moving flies, leaving white pixels where movement has occurred. These pixels are tallied, giving a value that corresponds to the number of animals that have moved between images. Perl scripts automate these processes, allowing compatibility with high-throughput genetic screens. Four experiments demonstrate the utility of this method, the first showing heat-induced locomotor changes, the second showing tolerance to ethanol in a climbing assay, the third showing tolerance to ethanol by scoring the recovery of individual flies, and the fourth showing a mouse’s preference for a novel object. Our lab will use this method to conduct a genetic screen for ethanol induced hyperactivity and sedation, however, it could also be used to analyze locomotor behavior of any organism. PMID:17335906

  5. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  6. Feature Extraction using Wavelet Transform for Multi-class Fault Detection of Induction Motor

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Konar, P.

    2014-01-01

    In this paper the theoretical aspects and feature extraction capabilities of continuous wavelet transform (CWT) and discrete wavelet transform (DWT) are experimentally verified from the point of view of fault diagnosis of induction motors. Vertical frame vibration signal is analyzed to develop a wavelet based multi-class fault detection scheme. The redundant and high dimensionality information of CWT makes it computationally in-efficient. Using greedy-search feature selection technique (Greedy-CWT) the redundancy is eliminated to a great extent and found much superior to the widely used DWT technique, even in presence of high level of noise. The results are verified using MLP, SVM, RBF classifiers. The feature selection technique has enabled determination of the most relevant CWT scales and corresponding coefficients. Thus, the inherent limitations of CWT like proper selection of scales and redundant information are eliminated. In the present investigation `db8' is found as the best mother wavelet, due to its long period and higher number of vanishing moments, for detection of motor faults.

  7. PEM fuel cell fault detection and identification using differential method: simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Frappé, E.; de Bernardinis, A.; Bethoux, O.; Candusso, D.; Harel, F.; Marchand, C.; Coquery, G.

    2011-05-01

    PEM fuel cell performance and lifetime strongly depend on the polymer membrane and MEA hydration. As the internal moisture is very sensitive to the operating conditions (temperature, stoichiometry, load current, water management…), keeping the optimal working point is complex and requires real-time monitoring. This article focuses on PEM fuel cell stack health diagnosis and more precisely on stack fault detection monitoring. This paper intends to define new, simple and effective methods to get relevant information on usual faults or malfunctions occurring in the fuel cell stack. For this purpose, the authors present a fault detection method using simple and non-intrusive on-line technique based on the space signature of the cell voltages. The authors have the objective to minimize the number of embedded sensors and instrumentation in order to get a precise, reliable and economic solution in a mass market application. A very low number of sensors are indeed needed for this monitoring and the associated algorithm can be implemented on-line. This technique is validated on a 20-cell PEMFC stack. It demonstrates that the developed method is particularly efficient in flooding case. As a matter of fact, it uses directly the stack as a sensor which enables to get a quick feedback on its state of health.

  8. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  9. Fault Scarp Detection Beneath Dense Vegetation Cover: Airborne Lidar Mapping of the Seattle Fault Zone, Bainbridge Island, Washington State

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Berghoff, Gregory S.

    2000-01-01

    The emergence of a commercial airborne laser mapping industry is paying major dividends in an assessment of earthquake hazards in the Puget Lowland of Washington State. Geophysical observations and historical seismicity indicate the presence of active upper-crustal faults in the Puget Lowland, placing the major population centers of Seattle and Tacoma at significant risk. However, until recently the surface trace of these faults had never been identified, neither on the ground nor from remote sensing, due to cover by the dense vegetation of the Pacific Northwest temperate rainforests and extremely thick Pleistocene glacial deposits. A pilot lidar mapping project of Bainbridge Island in the Puget Sound, contracted by the Kitsap Public Utility District (KPUD) and conducted by Airborne Laser Mapping in late 1996, spectacularly revealed geomorphic features associated with fault strands within the Seattle fault zone. The features include a previously unrecognized fault scarp, an uplifted marine wave-cut platform, and tilted sedimentary strata. The United States Geologic Survey (USGS) is now conducting trenching studies across the fault scarp to establish ages, displacements, and recurrence intervals of recent earthquakes on this active fault. The success of this pilot study has inspired the formation of a consortium of federal and local organizations to extend this work to a 2350 square kilometer (580,000 acre) region of the Puget Lowland, covering nearly the entire extent (approx. 85 km) of the Seattle fault. The consortium includes NASA, the USGS, and four local groups consisting of KPUD, Kitsap County, the City of Seattle, and the Puget Sound Regional Council (PSRC). The consortium has selected Terrapoint, a commercial lidar mapping vendor, to acquire the data.

  10. An Automated Classification Technique for Detecting Defects in Battery Cells

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2006-01-01

    Battery cell defect classification is primarily done manually by a human conducting a visual inspection to determine if the battery cell is acceptable for a particular use or device. Human visual inspection is a time consuming task when compared to an inspection process conducted by a machine vision system. Human inspection is also subject to human error and fatigue over time. We present a machine vision technique that can be used to automatically identify defective sections of battery cells via a morphological feature-based classifier using an adaptive two-dimensional fast Fourier transformation technique. The initial area of interest is automatically classified as either an anode or cathode cell view as well as classified as an acceptable or a defective battery cell. Each battery cell is labeled and cataloged for comparison and analysis. The result is the implementation of an automated machine vision technique that provides a highly repeatable and reproducible method of identifying and quantifying defects in battery cells.

  11. A novel end-to-end fault detection and localization protocol for wavelength-routed WDM networks

    NASA Astrophysics Data System (ADS)

    Zeng, Hongqing; Vukovic, Alex; Huang, Changcheng

    2005-09-01

    Recently the wavelength division multiplexing (WDM) networks are becoming prevalent for telecommunication networks. However, even a very short disruption of service caused by network faults may lead to high data loss in such networks due to the high date rates, increased wavelength numbers and density. Therefore, the network survivability is critical and has been intensively studied, where fault detection and localization is the vital part but has received disproportional attentions. In this paper we describe and analyze an end-to-end lightpath fault detection scheme in data plane with the fault notification in control plane. The endeavor is focused on reducing the fault detection time. In this protocol, the source node of each lightpath keeps sending hello packets to the destination node exactly following the path for data traffic. The destination node generates an alarm once a certain number of consecutive hello packets are missed within a given time period. Then the network management unit collects all alarms and locates the faulty source based on the network topology, as well as sends fault notification messages via control plane to either the source node or all upstream nodes along the lightpath. The performance evaluation shows such a protocol can achieve fast fault detection, and at the same time, the overhead brought to the user data by hello packets is negligible.

  12. Fault detection and isolation of PEM fuel cell system based on nonlinear analytical redundancy. An application via parity space approach

    NASA Astrophysics Data System (ADS)

    Aitouche, A.; Yang, Q.; Ould Bouamama, B.

    2011-05-01

    This paper presents a procedure dealing with the issue of fault detection and isolation (FDI) using nonlinear analytical redundancy (NLAR) technique applied in a proton exchange membrane (PEM) fuel cell system based on its mathematic model. The model is proposed and simplified into a five orders state space representation. The transient phenomena captured in the model include the compressor dynamics, the flow characteristics, mass and energy conservation and manifold fluidic mechanics. Nonlinear analytical residuals are generated based on the elimination of the unknown variables of the system by an extended parity space approach to detect and isolate actuator and sensor faults. Finally, numerical simulation results are given corresponding to a faults signature matrix.

  13. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2010-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  14. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  15. Online Sensor Fault Detection Based on an Improved Strong Tracking Filter

    PubMed Central

    Wang, Lijuan; Wu, Lifeng; Guan, Yong; Wang, Guohui

    2015-01-01

    We propose a method for online sensor fault detection that is based on the evolving Strong Tracking Filter (STCKF). The cubature rule is used to estimate states to improve the accuracy of making estimates in a nonlinear case. A residual is the difference in value between an estimated value and the true value. A residual will be regarded as a signal that includes fault information. The threshold is set at a reasonable level, and will be compared with residuals to determine whether or not the sensor is faulty. The proposed method requires only a nominal plant model and uses STCKF to estimate the original state vector. The effectiveness of the algorithm is verified by simulation on a drum-boiler model. PMID:25690553

  16. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications

    NASA Astrophysics Data System (ADS)

    Wang, Yanxue; Xiang, Jiawei; Markert, Richard; Liang, Ming

    2016-01-01

    Condition-based maintenance via vibration signal processing plays an important role to reduce unscheduled machine downtime and avoid catastrophic accidents in industrial enterprises. Many machine faults, such as local defects in rotating machines, manifest themselves in the acquired vibration signals as a series of impulsive events. The spectral kurtosis (SK) technique extends the concept of kurtosis to that of a function of frequency that indicates how the impulsiveness of a signal. This work intends to review and summarize the recent research developments on the SK theories, for instance, short-time Fourier transform-based SK, kurtogram, adaptive SK and protrugram, as well as the corresponding applications in fault detection and diagnosis of the rotating machines. The potential prospects of prognostics using SK technique are also designated. Some examples have been presented to illustrate their performances. The expectation is that further research and applications of the SK technique will flourish in the future, especially in the fields of the prognostics.

  17. Online sensor fault detection based on an improved strong tracking filter.

    PubMed

    Wang, Lijuan; Wu, Lifeng; Guan, Yong; Wang, Guohui

    2015-01-01

    We propose a method for online sensor fault detection that is based on the evolving Strong Tracking Filter (STCKF). The cubature rule is used to estimate states to improve the accuracy of making estimates in a nonlinear case. A residual is the difference in value between an estimated value and the true value. A residual will be regarded as a signal that includes fault information. The threshold is set at a reasonable level, and will be compared with residuals to determine whether or not the sensor is faulty. The proposed method requires only a nominal plant model and uses STCKF to estimate the original state vector. The effectiveness of the algorithm is verified by simulation on a drum-boiler model. PMID:25690553

  18. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  19. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yin-sheng; Xu, Yong-hui; Yang, Jing-li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  20. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays.

    PubMed

    Chen, Yin-Sheng; Xu, Yong-Hui; Yang, Jing-Li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays. PMID:27131696

  1. Automated Network Anomaly Detection with Learning, Control and Mitigation

    ERIC Educational Resources Information Center

    Ippoliti, Dennis

    2014-01-01

    Anomaly detection is a challenging problem that has been researched within a variety of application domains. In network intrusion detection, anomaly based techniques are particularly attractive because of their ability to identify previously unknown attacks without the need to be programmed with the specific signatures of every possible attack.…

  2. Object level HSI-LIDAR data fusion for automated detection of difficult targets.

    PubMed

    Kanaev, A V; Daniel, B J; Neumann, J G; Kim, A M; Lee, K R

    2011-10-10

    Data fusion from disparate sensors significantly improves automated man-made target detection performance compared to that of just an individual sensor. In particular, it can solve hyperspectral imagery (HSI) detection problems pertaining to low-radiance man-made objects and objects in shadows. We present an algorithm that fuses HSI and LIDAR data for automated detection of man-made objects. LIDAR is used to define a set of potential targets based on physical dimensions, and HSI is then used to discriminate between man-made and natural objects. The discrimination technique is a novel HSI detection concept that uses an HSI detection score localization metric capable of distinguishing between wide-area score distributions inherent to natural objects and highly localized score distributions indicative of man-made targets. A typical man-made localization score was found to be around 0.5 compared to natural background typical localization scores being less than 0.1. PMID:21997101

  3. Implementation and testing of a fault detection software tool for improving control system performance in a large commercial building

    SciTech Connect

    Salsbury, T.I.; Diamond, R.C.

    2000-05-01

    This paper describes a model-based, feedforward control scheme that can detect faults in the controlled process and improve control performance over traditional PID control. The tool uses static simulation models of the system under control to generate feed-forward control action, which acts as a reference of correct operation. Faults that occur in the system cause discrepancies between the feedforward models and the controlled process. The scheme facilitates detection of faults by monitoring the level of these discrepancies. We present results from the first phase of tests on a dual-duct air-handling unit installed in a large office building in San Francisco. We demonstrate the ability of the tool to detect a number of preexisting faults in the system and discuss practical issues related to implementation.

  4. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2016-05-01

    A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.

  5. Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi

    2013-03-01

    Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.

  6. Fault detection and diagnosis of a gearbox in marine propulsion systems using bispectrum analysis and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Yan, Xinping; Yuan, Chengqing; Zhao, Jiangbin; Peng, Zhongxiao

    2011-03-01

    A marine propulsion system is a very complicated system composed of many mechanical components. As a result, the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft. It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis. For this reason, a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems. To monitor the gear conditions, the bispectrum analysis was first employed to detect gear faults. The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique, which could be regarded as an index actualizing forepart gear faults diagnosis. Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox. The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum, and the ANN classification method has achieved high detection accuracy. Hence, the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases, and thus have application importance.

  7. An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.

  8. Automated Detection of Eruptive Structures for Solar Eruption Prediction

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.

    2012-07-01

    The problem of data processing and assimilation for solar eruption prediction is, for contemporary solar physics, more pressing than the problem of data acquisition. Although critical solar data, such as the coronal magnetic field, are still not routinely available, space-based observatories deliver diverse, high-quality information at such a high rate that a manual or semi-manual processing becomes meaningless. We discuss automated data analysis methods and explain, using basic physics, why some of them are unlikely to advance eruption prediction. From this finding we also understand why solar eruption prediction is likely to remain inherently probabilistic. We discuss some promising eruption prediction measures and report on efforts to adapt them for use with high-resolution, high-cadence photospheric and coronal data delivered by the Solar Dynamics Observatory. Concluding, we touch on the problem of physical understanding and synthesis of different results: combining different measures inferred by different data sets is a yet-to-be-done exercise that, however, presents our best opportunity of realizing benefits in solar eruption prediction via a meaningful, targeted assimilation of solar data.

  9. Weld line detection and process control for welding automation

    NASA Astrophysics Data System (ADS)

    Yang, Sang-Min; Cho, Man-Ho; Lee, Ho-Young; Cho, Taik-Dong

    2007-03-01

    Welding has been widely used as a process to join metallic parts. But because of hazardous working conditions, workers tend to avoid this task. Techniques to achieve the automation are the recognition of joint line and process control. A CCD (charge coupled device) camera with a laser stripe was applied to enhance the automatic weld seam tracking in GMAW (gas metal arc welding). The adaptive Hough transformation having an on-line processing ability was used to extract laser stripes and to obtain specific weld points. The three-dimensional information obtained from the vision system made it possible to generate the weld torch path and to obtain information such as the width and depth of the weld line. In this study, a neural network based on the generalized delta rule algorithm was adapted to control the process of GMAW, such as welding speed, arc voltage and wire feeding speed. The width and depth of the weld joint have been selected as neurons in the input layer of the neural-network algorithm. The input variables, the width and depth of the weld joint, are determined by image information. The voltage, weld speed and wire feed rate are represented as the neurons in the output layer. The results of the neural-network learning applied to the welding are as follows: learning ratio 0.5, momentum ratio 0.7, the number of hidden layers 2 and the number of hidden units 8. They have significant influence on the weld quality.

  10. Automated detection and location of indications in eddy current signals

    DOEpatents

    Brudnoy, David M.; Oppenlander, Jane E.; Levy, Arthur J.

    2000-01-01

    A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.

  11. Automated Detection and Location of Indications in Eddy Current Signals

    SciTech Connect

    Brudnoy, David M.; Oppenlander, Jane E.; Levy, Arthur J.

    1998-06-30

    A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, said signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.

  12. ASTRiDE: Automated Streak Detection for Astronomical Images

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Won

    2016-05-01

    ASTRiDE detects streaks in astronomical images using a "border" of each object (i.e. "boundary-tracing" or "contour-tracing") and their morphological parameters. Fast moving objects such as meteors, satellites, near-Earth objects (NEOs), or even cosmic rays can leave streak-like traces in the images; ASTRiDE can detect not only long streaks but also relatively short or curved streaks.

  13. Fault detection and isolation for discrete-time switched linear systems based on average dwell-time method

    NASA Astrophysics Data System (ADS)

    Li, Jian; Yang, Guang-Hong

    2013-12-01

    This article is concerned with the problem of fault detection and isolation (FDI) for discrete-time switched linear systems based on the average dwell-time method. The proposed FDI framework consists of a bank of FDI filters, which are divided into N groups for N subsystems. The FDI filters belonging to one group correspond to the faults for a subsystem, and generate a residual signal to guarantee the fault sensitivity performance for the subsystem, the fault attenuation performance for other subsystems and the disturbance attenuation performance for all subsystems. Different form employing the weighting matrices to restrict the frequency ranges of faults for each subsystem, the finite-frequency H - performance for switched systems is first defined. Sufficient conditions are established by linear matrix inequalities (LMIs), and the filter gains are characterised in terms of the solution of a convex optimisation problem. Two examples are used to demonstrate the effectiveness of the proposed design method.

  14. Automated Detection of Heuristics and Biases among Pathologists in a Computer-Based System

    ERIC Educational Resources Information Center

    Crowley, Rebecca S.; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia

    2013-01-01

    The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to…

  15. Detection of anti-salmonella flgk antibodies in chickens by automated capillary immunoassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western blot is a very useful tool to identify specific protein, but is tedious, labor-intensive and time-consuming. An automated "Simple Western" assay has recently been developed that enables the protein separation, blotting and detection in an automatic manner. However, this technology has not ...

  16. An automated screening technique for the detection of sickle-cell haemoglobin

    PubMed Central

    Canning, D. M.; Crane, R. S.; Huntsman, R. G.; Yawson, G. I.

    1972-01-01

    An automated technique is described which is capable of detecting sickle-cell haemoglobin and differentiating the sickle-cell trait from sickle-cell anaemia. The method is based upon the Itano solubility test and utilizes Technicon equipment. Images PMID:5028640

  17. Automated Detection of Lupus White Matter Lesions in MRI.

    PubMed

    Roura, Eloy; Sarbu, Nicolae; Oliver, Arnau; Valverde, Sergi; González-Villà, Sandra; Cervera, Ricard; Bargalló, Núria; Lladó, Xavier

    2016-01-01

    Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative, and quantitative results in terms of precision and sensitivity of lesion detection [True Positive Rate (62%) and Positive Prediction Value (80%), respectively] as well as segmentation accuracy [Dice Similarity Coefficient (72%)]. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration. PMID:27570507

  18. Context-driven automated target detection in 3D data

    NASA Astrophysics Data System (ADS)

    West, Karen F.; Webb, Brian N.; Lersch, James R.; Pothier, Steven; Triscari, Joseph M.; Iverson, A. E.

    2004-09-01

    This paper summarizes a system, and its component algorithms, for context-driven target vehicle detection in 3-D data that was developed under the Defense Advanced Research Projects Agency (DARPA) Exploitation of 3-D Data (E3D) Program. In order to determine the power of shape and geometry for the extraction of context objects and the detection of targets, our algorithm research and development concentrated on the geometric aspects of the problem and did not utilize intensity information. Processing begins with extraction of context information and initial target detection at reduced resolution, followed by a detailed, full-resolution analysis of candidate targets. Our reduced-resolution processing includes a probabilistic procedure for finding the ground that is effective even in rough terrain; a hierarchical, graph-based approach for the extraction of context objects and potential vehicle hide sites; and a target detection process that is driven by context-object and hide-site locations. Full-resolution processing includes statistical false alarm reduction and decoy mitigation. When results are available from previously collected data, we also perform object-level change detection, which affects the probabilities that objects are context objects or targets. Results are presented for both synthetic and collected LADAR data.

  19. Automated detection of periventricular veins on 7 T brain MRI

    NASA Astrophysics Data System (ADS)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J. M.; Viergever, Max A.; Biessels, Geert Jan; Vincken, Koen L.

    2015-03-01

    Cerebral small vessel disease is common in elderly persons and a leading cause of cognitive decline, dementia, and acute stroke. With the introduction of ultra-high field strength 7.0T MRI, it is possible to visualize small vessels in the brain. In this work, a proof-of-principle study is conducted to assess the feasibility of automatically detecting periventricular veins. Periventricular veins are organized in a fan-pattern and drain venous blood from the brain towards the caudate vein of Schlesinger, which is situated along the lateral ventricles. Just outside this vein, a region-of- interest (ROI) through which all periventricular veins must cross is defined. Within this ROI, a combination of the vesselness filter, tubular tracking, and hysteresis thresholding is applied to locate periventricular veins. All detected locations were evaluated by an expert human observer. The results showed a positive predictive value of 88% and a sensitivity of 95% for detecting periventricular veins. The proposed method shows good results in detecting periventricular veins in the brain on 7.0T MR images. Compared to previous works, that only use a 1D or 2D ROI and limited image processing, our work presents a more comprehensive definition of the ROI, advanced image processing techniques to detect periventricular veins, and a quantitative analysis of the performance. The results of this proof-of-principle study are promising and will be used to assess periventricular veins on 7.0T brain MRI.

  20. Automated Detection of Lupus White Matter Lesions in MRI

    PubMed Central

    Roura, Eloy; Sarbu, Nicolae; Oliver, Arnau; Valverde, Sergi; González-Villà, Sandra; Cervera, Ricard; Bargalló, Núria; Lladó, Xavier

    2016-01-01

    Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative, and quantitative results in terms of precision and sensitivity of lesion detection [True Positive Rate (62%) and Positive Prediction Value (80%), respectively] as well as segmentation accuracy [Dice Similarity Coefficient (72%)]. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration. PMID:27570507

  1. Characterizing interplanetary shocks for development and optimization of an automated solar wind shock detection algorithm

    NASA Astrophysics Data System (ADS)

    Cash, M. D.; Wrobel, J. S.; Cosentino, K. C.; Reinard, A. A.

    2014-06-01

    Human evaluation of solar wind data for interplanetary (IP) shock identification relies on both heuristics and pattern recognition, with the former lending itself to algorithmic representation and automation. Such detection algorithms can potentially alert forecasters of approaching shocks, providing increased warning of subsequent geomagnetic storms. However, capturing shocks with an algorithmic treatment alone is challenging, as past and present work demonstrates. We present a statistical analysis of 209 IP shocks observed at L1, and we use this information to optimize a set of shock identification criteria for use with an automated solar wind shock detection algorithm. In order to specify ranges for the threshold values used in our algorithm, we quantify discontinuities in the solar wind density, velocity, temperature, and magnetic field magnitude by analyzing 8 years of IP shocks detected by the SWEPAM and MAG instruments aboard the ACE spacecraft. Although automatic shock detection algorithms have previously been developed, in this paper we conduct a methodical optimization to refine shock identification criteria and present the optimal performance of this and similar approaches. We compute forecast skill scores for over 10,000 permutations of our shock detection criteria in order to identify the set of threshold values that yield optimal forecast skill scores. We then compare our results to previous automatic shock detection algorithms using a standard data set, and our optimized algorithm shows improvements in the reliability of automated shock detection.

  2. Multiple tests for wind turbine fault detection and score fusion using two- level multidimensional scaling (MDS)

    NASA Astrophysics Data System (ADS)

    Ye, Xiang; Gao, Weihua; Yan, Yanjun; Osadciw, Lisa A.

    2010-04-01

    Wind is an important renewable energy source. The energy and economic return from building wind farms justify the expensive investments in doing so. However, without an effective monitoring system, underperforming or faulty turbines will cause a huge loss in revenue. Early detection of such failures help prevent these undesired working conditions. We develop three tests on power curve, rotor speed curve, pitch angle curve of individual turbine. In each test, multiple states are defined to distinguish different working conditions, including complete shut-downs, under-performing states, abnormally frequent default states, as well as normal working states. These three tests are combined to reach a final conclusion, which is more effective than any single test. Through extensive data mining of historical data and verification from farm operators, some state combinations are discovered to be strong indicators of spindle failures, lightning strikes, anemometer faults, etc, for fault detection. In each individual test, and in the score fusion of these tests, we apply multidimensional scaling (MDS) to reduce the high dimensional feature space into a 3-dimensional visualization, from which it is easier to discover turbine working information. This approach gains a qualitative understanding of turbine performance status to detect faults, and also provides explanations on what has happened for detailed diagnostics. The state-of-the-art SCADA (Supervisory Control And Data Acquisition) system in industry can only answer the question whether there are abnormal working states, and our evaluation of multiple states in multiple tests is also promising for diagnostics. In the future, these tests can be readily incorporated in a Bayesian network for intelligent analysis and decision support.

  3. A microcomputer program for automated neuronal spike detection and analysis.

    PubMed

    Soto, E; Manjarrez, E; Vega, R

    1997-05-01

    A system for on-line spike detection and analysis based on an IBM PC/AT compatible computer, written in TURBO PASCAL 6.0 and using commercially available analog-to-digital hardware is described here. Spikes are detected by an adaptive threshold which varies as a function of signal mean and its variability. Since the threshold value is determined automatically by the signal-to-noise ratio analysis, the user is not actively involved in controlling its level. This program has been reliably used for the detection and analysis of the spike discharge of vestibular system afferent neurons. It generates the interval-joint distribution graph, the interval histogram, the autocorrelation function, the autocorrelation histogram, and phase-space graphs, thus, providing a complete set of graphical and statistical data for the characterization of the dynamics of neuronal spike activity. Data can be exported to other software such as Excel, Sigmaplot and MatLab, for example. PMID:9291011

  4. PCA method for automated detection of mispronounced words

    NASA Astrophysics Data System (ADS)

    Ge, Zhenhao; Sharma, Sudhendu R.; Smith, Mark J. T.

    2011-06-01

    This paper presents a method for detecting mispronunciations with the aim of improving Computer Assisted Language Learning (CALL) tools used by foreign language learners. The algorithm is based on Principle Component Analysis (PCA). It is hierarchical with each successive step refining the estimate to classify the test word as being either mispronounced or correct. Preprocessing before detection, like normalization and time-scale modification, is implemented to guarantee uniformity of the feature vectors input to the detection system. The performance using various features including spectrograms and Mel-Frequency Cepstral Coefficients (MFCCs) are compared and evaluated. Best results were obtained using MFCCs, achieving up to 99% accuracy in word verification and 93% in native/non-native classification. Compared with Hidden Markov Models (HMMs) which are used pervasively in recognition application, this particular approach is computational efficient and effective when training data is limited.

  5. An automated computer misuse detection system for UNICOS

    SciTech Connect

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1994-09-27

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. This activity is reflected in the system audit record, in the system vulnerability posture, and in other evidence found through active testing of the system. During the last several years we have implemented an automatic misuse detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter (NADIR). We are currently expanding NADIR to include processing of the Cray UNICOS operating system. This new component is called the UNICOS Realtime NADIR, or UNICORN. UNICORN summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. The first phase of UNICORN development is nearing completion, and will be operational in late 1994.

  6. Automated Detection of Anomalous Shipping Manifests to Identify Illicit Trade

    SciTech Connect

    Sanfilippo, Antonio P.; Chikkagoudar, Satish

    2013-11-12

    We describe an approach to analyzing trade data which uses clustering to detect similarities across shipping manifest records, classification to evaluate clustering results and categorize new unseen shipping data records, and visual analytics to provide to support situation awareness in dynamic decision making to monitor and warn against the movement of radiological threat materials through search, analysis and forecasting capabilities. The evaluation of clustering results through classification and systematic inspection of the clusters show the clusters have strong semantic cohesion and offer novel ways to detect transactions related to nuclear smuggling.

  7. Automated Detection of Ocular Alignment with Binocular Retinal Birefringence Scanning

    NASA Astrophysics Data System (ADS)

    Hunter, David G.; Shah, Ankoor S.; Sau, Soma; Nassif, Deborah; Guyton, David L.

    2003-06-01

    We previously developed a retinal birefringence scanning (RBS) device to detect eye fixation. The purpose of this study was to determine whether a new binocular RBS (BRBS) instrument can detect simultaneous fixation of both eyes. Control (nonmyopic and myopic) and strabismic subjects were studied by use of BRBS at a fixation distance of 45 cm. Binocularity (the percentage of measurements with bilateral fixation) was determined from the BRBS output. All nonstrabismic subjects with good quality signals had binocularity >75%. Binocularity averaged 5% in four subjects with strabismus (range of 0 -20%). BRBS may potentially be used to screen individuals for abnormal eye alignment.

  8. System and method for automated object detection in an image

    DOEpatents

    Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.

    2015-10-06

    A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.

  9. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    PubMed

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  10. Towards Certification of a Space System Application of Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Markosian, Lawrence Z.

    2008-01-01

    Advanced fault detection, isolation and recovery (FDIR) software is being investigated at NASA as a means to the improve reliability and availability of its space systems. Certification is a critical step in the acceptance of such software. Its attainment hinges on performing the necessary verification and validation to show that the software will fulfill its requirements in the intended setting. Presented herein is our ongoing work to plan for the certification of a pilot application of advanced FDIR software in a NASA setting. We describe the application, and the key challenges and opportunities it offers for certification.

  11. Fault detection in non-linear systems based on type-2 fuzzy logic

    NASA Astrophysics Data System (ADS)

    Safarinejadian, Behrooz; Ghane, Parisa; Monirvaghefi, Hossein

    2015-02-01

    This paper presents a new method for fault detection (FD) based on interval type-2 fuzzy sets. The main idea is based on a confident span using interval type-2 fuzzy systems. An estimate for upper and lower bounds of output has been taken using the designing of an optimal fuzzy system through clustering. Finally the method has been tested in two non-linear systems, a two-tank with a fluid flow and pH neutralisation process, and it is compared with a well-known method named ANFIS. Furthermore, the mathematical model and the results of simulations prove the effectiveness, usefulness and applications of our new method.

  12. Model-based fault detection and identification with online aerodynamic model structure selection

    NASA Astrophysics Data System (ADS)

    Lombaerts, T.

    2013-12-01

    This publication describes a recursive algorithm for the approximation of time-varying nonlinear aerodynamic models by means of a joint adaptive selection of the model structure and parameter estimation. This procedure is called adaptive recursive orthogonal least squares (AROLS) and is an extension and modification of the previously developed ROLS procedure. This algorithm is particularly useful for model-based fault detection and identification (FDI) of aerospace systems. After the failure, a completely new aerodynamic model can be elaborated recursively with respect to structure as well as parameter values. The performance of the identification algorithm is demonstrated on a simulation data set.

  13. Implementation of a Fractional Model-Based Fault Detection Algorithm into a PLC Controller

    NASA Astrophysics Data System (ADS)

    Kopka, Ryszard

    2014-12-01

    This paper presents results related to the implementation of model-based fault detection and diagnosis procedures into a typical PLC controller. To construct the mathematical model and to implement the PID regulator, a non-integer order differential/integral calculation was used. Such an approach allows for more exact control of the process and more precise modelling. This is very crucial in model-based diagnostic methods. The theoretical results were verified on a real object in the form of a supercapacitor connected to a PLC controller by a dedicated electronic circuit controlled directly from the PLC outputs.

  14. Evaluation of a dual processor implementation for a fault inferring nonlinear detection system

    NASA Technical Reports Server (NTRS)

    Godiwala, P. M.; Caglayan, A. K.; Morrell, F. R.

    1987-01-01

    The design of a modified fault inferring nonlinear detection system (FINDS) algorithm for a dual-processor configured flight computer is described. The algorithm was changed in order to divide it into its translational dynamics and rotational kinematics and to use it for parallel execution on the flight computer. The FINDS consists of: (1) a no-fail filter (NFF), (2) a set of test-of-mean detection tests, (3) a bank of first order filters to estimate failure levels in individual sensors, and (4) a decision function. NFF filter performance using flight recorded sensor data is analyzed using a filter autoinitialization routine. The failure detection and isolation capability of the partitioned algorithm is evaluated. A multirate implementation for the bias-free and bias filter gain and covariance matrices is discussed.

  15. Hidden Markov models and neural networks for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    Neural networks plus hidden Markov models (HMM) can provide excellent detection and false alarm rate performance in fault detection applications, as shown in this viewgraph presentation. Modified models allow for novelty detection. Key contributions of neural network models are: (1) excellent nonparametric discrimination capability; (2) a good estimator of posterior state probabilities, even in high dimensions, and thus can be embedded within overall probabilistic model (HMM); and (3) simple to implement compared to other nonparametric models. Neural network/HMM monitoring model is currently being integrated with the new Deep Space Network (DSN) antenna controller software and will be on-line monitoring a new DSN 34-m antenna (DSS-24) by July, 1994.

  16. Automated design of image operators that detect interest points.

    PubMed

    Trujillo, Leonardo; Olague, Gustavo

    2008-01-01

    This work describes how evolutionary computation can be used to synthesize low-level image operators that detect interesting points on digital images. Interest point detection is an essential part of many modern computer vision systems that solve tasks such as object recognition, stereo correspondence, and image indexing, to name but a few. The design of the specialized operators is posed as an optimization/search problem that is solved with genetic programming (GP), a strategy still mostly unexplored by the computer vision community. The proposed approach automatically synthesizes operators that are competitive with state-of-the-art designs, taking into account an operator's geometric stability and the global separability of detected points during fitness evaluation. The GP search space is defined using simple primitive operations that are commonly found in point detectors proposed by the vision community. The experiments described in this paper extend previous results (Trujillo and Olague, 2006a,b) by presenting 15 new operators that were synthesized through the GP-based search. Some of the synthesized operators can be regarded as improved manmade designs because they employ well-known image processing techniques and achieve highly competitive performance. On the other hand, since the GP search also generates what can be considered as unconventional operators for point detection, these results provide a new perspective to feature extraction research. PMID:19053496

  17. Assessing bat detectability and occupancy with multiple automated echolocation detectors

    USGS Publications Warehouse

    Gorresen, P.M.; Miles, A.C.; Todd, C.M.; Bonaccorso, F.J.; Weller, T.J.

    2008-01-01

    Occupancy analysis and its ability to account for differential detection probabilities is important for studies in which detecting echolocation calls is used as a measure of bat occurrence and activity. We examined the feasibility of remotely acquiring bat encounter histories to estimate detection probability and occupancy. We used echolocation detectors coupled to digital recorders operating at a series of proximate sites on consecutive nights in 2 trial surveys for the Hawaiian hoary bat (Lasiurus cinereus semotus). Our results confirmed that the technique is readily amenable for use in occupancy analysis. We also conducted a simulation exercise to assess the effects of sampling effort on parameter estimation. The results indicated that the precision and bias of parameter estimation were often more influenced by the number of sites sampled than number of visits. Acceptable accuracy often was not attained until at least 15 sites or 15 visits were used to estimate detection probability and occupancy. The method has significant potential for use in monitoring trends in bat activity and in comparative studies of habitat use. ?? 2008 American Society of Mammalogists.

  18. Automated detection of gait initiation and termination using wearable sensors.

    PubMed

    Novak, Domen; Reberšek, Peter; De Rossi, Stefano Marco Maria; Donati, Marco; Podobnik, Janez; Beravs, Tadej; Lenzi, Tommaso; Vitiello, Nicola; Carrozza, Maria Chiara; Munih, Marko

    2013-12-01

    This paper presents algorithms for detection of gait initiation and termination using wearable inertial measurement units and pressure-sensitive insoles. Body joint angles, joint angular velocities, ground reaction force and center of plantar pressure of each foot are obtained from these sensors and input into supervised machine learning algorithms. The proposed initiation detection method recognizes two events: gait onset (an anticipatory movement preceding foot lifting) and toe-off. The termination detection algorithm segments gait into steps, measures the signals over a buffer at the beginning of each step, and determines whether this measurement belongs to the final step. The approach is validated with 10 subjects at two gait speeds, using within-subject and subject-independent cross-validation. Results show that gait initiation can be detected timely and accurately, with few errors in the case of within-subject cross-validation and overall good performance in subject-independent cross-validation. Gait termination can be predicted in over 80% of trials well before the subject comes to a complete stop. Results also show that the two sensor types are equivalent in predicting gait initiation while inertial measurement units are generally superior in predicting gait termination. Potential use of the algorithms is foreseen primarily with assistive devices such as prostheses and exoskeletons. PMID:23938085

  19. Challenges in automated detection of cervical intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Srinivasan, Yeshwanth; Yang, Shuyu; Nutter, Brian; Mitra, Sunanda; Phillips, Benny; Long, Rodney

    2007-03-01

    Cervical Intraepithelial Neoplasia (CIN) is a precursor to invasive cervical cancer, which annually accounts for about 3700 deaths in the United States and about 274,000 worldwide. Early detection of CIN is important to reduce the fatalities due to cervical cancer. While the Pap smear is the most common screening procedure for CIN, it has been proven to have a low sensitivity, requiring multiple tests to confirm an abnormality and making its implementation impractical in resource-poor regions. Colposcopy and cervicography are two diagnostic procedures available to trained physicians for non-invasive detection of CIN. However, many regions suffer from lack of skilled personnel who can precisely diagnose the bio-markers due to CIN. Automatic detection of CIN deals with the precise, objective and non-invasive identification and isolation of these bio-markers, such as the Acetowhite (AW) region, mosaicism and punctations, due to CIN. In this paper, we study and compare three different approaches, based on Mathematical Morphology (MM), Deterministic Annealing (DA) and Gaussian Mixture Models (GMM), respectively, to segment the AW region of the cervix. The techniques are compared with respect to their complexity and execution times. The paper also presents an adaptive approach to detect and remove Specular Reflections (SR). Finally, algorithms based on MM and matched filtering are presented for the precise segmentation of mosaicism and punctations from AW regions containing the respective abnormalities.

  20. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology.

    PubMed

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  1. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    PubMed Central

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  2. An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.

    2003-01-01

    An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.

  3. Left-ventricular cavity automated-border detection using an autocovariance technique in echocardiography

    NASA Astrophysics Data System (ADS)

    Morda, Louis S.; Konofagou, Elisa E.

    2005-04-01

    Left-ventricular (LV) segmentation is essential in the early detection of heart disease, where left-ventricular wall motion is being tracked in order to detect ischemia. In this paper, a new method for automated segmentation of the left-ventricular chamber is described. An autocorrelation-based technique isolates the LV cavity from the myocardial wall on 2-D slices of 3D short-axis echocardiograms. A morphological closing function and median filtering are used to generate a uniform border. The proposed segmentation technique is designed to be used in identifying the endocardial border and estimating the motion of the endocardial wall over a cardiac cycle. To this purpose, the proposed technique is particularly successful in border delineation by tracing around structures like papillary muscles and the mitral valve, which constitute the typical obstacle in LV segmentation techniques. The results using this new technique are compared to the manual detection results in short-axis views obtained at the papillary muscle level from 3D datasets in human and canine experiments in vivo. Qualitatively, the automatically-detected borders are highly comparable to the manually-detected borders enclosing regions in the left-ventricular cavity with a relative error within the range of 4.2% - 6%. The new technique constitutes, thus, a robust segmentation method for automated segmentation of endocardial borders and suitable for wall motion tracking for automated detection of ischemia.

  4. Automated Detection of Objects Based on Sérsic Profiles

    NASA Astrophysics Data System (ADS)

    Cabrera, Guillermo; Miller, C.; Harrison, C.; Vera, E.; Asahi, T.

    2011-01-01

    We present the results of a new astronomical object detection and deblending algorithm when applied to Sloan Digital Sky Survey data. Our algorithm fits PSF-convolved Sérsic profiles to elliptical isophotes of source candidates. The main advantage of our method is that it minimizes the amount and complexity of real-time user input relative to many commonly used source detection algorithms. Our results are compared with 1D radial profile Sérsic fits. Our long-term goal is to use these techniques in a mixture-model environment to leverage the speed and advantages of machine learning. This approach will have a great impact when re-processing large data-sets and data-streams from next generation telescopes, such as the LSST and the E-ELT.

  5. Toward automated detection and segmentation of aortic calcifications from radiographs

    NASA Astrophysics Data System (ADS)

    Lauze, François; de Bruijne, Marleen

    2007-03-01

    This paper aims at automatically measuring the extent of calcified plaques in the lumbar aorta from standard radiographs. Calcifications in the abdominal aorta are an important predictor for future cardiovascular morbidity and mortality. Accurate and reproducible measurement of the amount of calcified deposit in the aorta is therefore of great value in disease diagnosis and prognosis, treatment planning, and the study of drug effects. We propose a two-step approach in which first the calcifications are detected by an iterative statistical pixel classification scheme combined with aorta shape model optimization. Subsequently, the detected calcified pixels are used as the initialization for an inpainting based segmentation. We present results on synthetic images from the inpainting based segmentation as well as results on several X-ray images based on the two-steps approach.

  6. Automated vehicle detection in forward-looking infrared imagery.

    PubMed

    Der, Sandor; Chan, Alex; Nasrabadi, Nasser; Kwon, Heesung

    2004-01-10

    We describe an algorithm for the detection and clutter rejection of military vehicles in forward-looking infrared (FLIR) imagery. The detection algorithm is designed to be a prescreener that selects regions for further analysis and uses a spatial anomaly approach that looks for target-sized regions of the image that differ in texture, brightness, edge strength, or other spatial characteristics. The features are linearly combined to form a confidence image that is thresholded to find likely target locations. The clutter rejection portion uses target-specific information extracted from training samples to reduce the false alarms of the detector. The outputs of the clutter rejecter and detector are combined by a higher-level evidence integrator to improve performance over simple concatenation of the detector and clutter rejecter. The algorithm has been applied to a large number of FLIR imagery sets, and some of these results are presented here. PMID:14735953

  7. Algorithm for Automated Detection of Edges of Clouds

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2006-01-01

    An algorithm processes cloud-physics data gathered in situ by an aircraft, along with reflectivity data gathered by ground-based radar, to determine whether the aircraft is inside or outside a cloud at a given time. A cloud edge is deemed to be detected when the in/out state changes, subject to a hysteresis constraint. Such determinations are important in continuing research on relationships among lightning, electric charges in clouds, and decay of electric fields with distance from cloud edges.

  8. Automated detection of point mutations using fluorescent sequence trace subtraction.

    PubMed Central

    Bonfield, J K; Rada, C; Staden, R

    1998-01-01

    The final step in the detection of mutations is to determine the sequence of the suspected mutant and to compare it with that of the wild-type, and for this fluorescence-based sequencing instruments are widely used. We describe some simple algorithms forcomparing sequence traces which, as part of our sequence assembly and analysis package, are proving useful for the discovery of mutations and which may also help to identify misplaced readings in sequence assembly projects. The mutations can be detected automatically by a new program called TRACE_DIFF and new types of trace display in our program GAP4 greatly simplify visual checking of the assigned changes. To assess the accuracy of the automatic mutation detection algorithm we analysed 214 sequence readings from hypermutating DNA comprising a total of 108 497 bases. After the readings were assembled there were 1232 base differences, including 392 Ns and 166 alignment characters. Visual inspection of the traces established that of the 1232 differences, 353 were real mutations while the rest were due to base calling errors. The TRACE_DIFF algorithm automatically identified all but 36, with 28 false positives. Further information about the software can be obtained from http://www.mrc-lmb.cam.ac.uk/pubseq/ PMID:9649626

  9. [Partially automated antigen determination and antibody detection with microtiter plates].

    PubMed

    Rapp, C; Weisshaar, C

    1993-01-01

    In addition to several conventional methods for the detection of red cell antigens, the use of microplates has various advantages either as a solid-phase assay (enzyme immunoassay) or as native microplate. Microplates may also be used for the detection of red cell antibodies in 'pooled-cell solid-phase assays' of the second generation and for antibody screening. Blood donors and patients are the two main fields which are to be examined in immunohematology. There are various advantages in using the microplate in blood group serology: (i) if there is hardware already available, like sample processors and microplate readers, the use of microplates in blood group serology reduces the costs even if the equipment has to be purchased for this purpose only; (ii) low quantities of reagents are used in microplate assays; (iii) the application of bar codes on tubes and microplates guarantees the most security in sample identification; (iv) it is possible to investigate blood samples selectively depending on the available software if antibody detection is done as the sixth test beside anti-HIV, anti-HCV, HBsAG, lues antibodies and ALT, and (v) recording of data will be easy if electronic data processing is used. PMID:7693246

  10. Automated detection of diabetic retinopathy in retinal images

    PubMed Central

    Valverde, Carmen; García, María; Hornero, Roberto; López-Gálvez, María I

    2016-01-01

    Diabetic retinopathy (DR) is a disease with an increasing prevalence and the main cause of blindness among working-age population. The risk of severe vision loss can be significantly reduced by timely diagnosis and treatment. Systematic screening for DR has been identified as a cost-effective way to save health services resources. Automatic retinal image analysis is emerging as an important screening tool for early DR detection, which can reduce the workload associated to manual grading as well as save diagnosis costs and time. Many research efforts in the last years have been devoted to developing automatic tools to help in the detection and evaluation of DR lesions. However, there is a large variability in the databases and evaluation criteria used in the literature, which hampers a direct comparison of the different studies. This work is aimed at summarizing the results of the available algorithms for the detection and classification of DR pathology. A detailed literature search was conducted using PubMed. Selected relevant studies in the last 10 years were scrutinized and included in the review. Furthermore, we will try to give an overview of the available commercial software for automatic retinal image analysis. PMID:26953020

  11. Automated video quality measurement based on manmade object characterization and motion detection

    NASA Astrophysics Data System (ADS)

    Kalukin, Andrew; Harguess, Josh; Maltenfort, A. J.; Irvine, John; Algire, C.

    2016-05-01

    Automated video quality assessment methods have generally been based on measurements of engineering parameters such as ground sampling distance, level of blur, and noise. However, humans rate video quality using specific criteria that measure the interpretability of the video by determining the kinds of objects and activities that might be detected in the video. Given the improvements in tracking, automatic target detection, and activity characterization that have occurred in video science, it is worth considering whether new automated video assessment methods might be developed by imitating the logical steps taken by humans in evaluating scene content. This article will outline a new procedure for automatically evaluating video quality based on automated object and activity recognition, and demonstrate the method for several ground-based and maritime examples. The detection and measurement of in-scene targets makes it possible to assess video quality without relying on source metadata. A methodology is given for comparing automated assessment with human assessment. For the human assessment, objective video quality ratings can be obtained through a menu-driven, crowd-sourced scheme of video tagging, in which human participants tag objects such as vehicles and people on film clips. The size, clarity, and level of detail of features present on the tagged targets are compared directly with the Video National Image Interpretability Rating Scale (VNIIRS).

  12. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed

    NASA Astrophysics Data System (ADS)

    Zhao, Dezun; Li, Jianyong; Cheng, Weidong; Wen, Weigang

    2016-09-01

    Multi-fault detection of the rolling element bearing under time-varying rotational speed presents a challenging issue due to its complexity, disproportion and interaction. Computed order analysis (COA) is one of the most effective approaches to remove the influences of speed fluctuation, and detect all the features of multi-fault. However, many interference components in the envelope order spectrum may lead to false diagnosis results, in addition, the deficiencies of computational accuracy and efficiency also cannot be neglected. To address these issues, a novel method for compound faults detection of rolling element bearing based on the generalized demodulation (GD) algorithm is proposed in this paper. The main idea of the proposed method is to exploit the unique property of the generalized demodulation algorithm in transforming an interested instantaneous frequency trajectory of compound faults bearing signal into a line paralleling to the time axis, and then the FFT algorithm can be directly applied to the transformed signal. This novel method does not need angular resampling algorithm which is the key step of the computed order analysis, and is hence free from the deficiencies of computational error and efficiency. On the other hand, it only acts on the instantaneous fault characteristic frequency trends in envelope signal of multi-fault bearing which include rich fault information, and is hence free from irrelevant items interferences. Both simulated and experimental faulty bearing signal analysis validate that the proposed method is effective and reliable on the compound faults detection of rolling element bearing under variable rotational speed conditions. The comprehensive comparison with the computed order analysis further shows that the proposed method produces higher accurate results in less computation time.

  13. Automated detection of meteors in observed image sequence

    NASA Astrophysics Data System (ADS)

    Šimberová, Stanislava; Suk, Tomáš

    2015-12-01

    We propose a new detection technique based on statistical characteristics of images in the video sequence. These characteristics displayed in time enable to catch any bright track during the whole sequence. We applied our method to the image datacubes that are created from camera pictures of the night sky. Meteor flying through the Earth's atmosphere leaves a light trail lasting a few seconds on the sky background. We developed a special technique to recognize this event automatically in the complete observed video sequence. For further analysis leading to the precise recognition of object we suggest to apply Fourier and Hough transformations.

  14. High-Speed Observer: Automated Streak Detection in SSME Plumes

    NASA Technical Reports Server (NTRS)

    Rieckoff, T. J.; Covan, M.; OFarrell, J. M.

    2001-01-01

    A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.

  15. Interseismic Crustal Deformation in and around the Atotsugawa Fault System, Central Japan, Detected by InSAR and GNSS

    NASA Astrophysics Data System (ADS)

    Takada, Y.; Sagiya, T.; Nishimura, T.

    2015-12-01

    Interseismic crustal deformation of active faults provides crucial information to understand the stress accumulation process on the fault planes. Recently, the interseismic surface movements are detected with very high spatial resolution using combination of InSAR and GNSS survey. Most of the successful reports, however, addressed the fault creep in less vegetated area which enables C-band SAR interferometry. In this study, we report the interseismic crustal deformation in and around the Atotsugawa fault system, a strike-slip active fault in central Japan. This area is covered with dense vegetation in summer and with heavy snow in winter. We created a series of InSAR images acquired by ALOS/PALSAR and applied SBAS based time-series analysis (Berardino et al., 2002) to extract small deformation. Next, we corrected the long wave-length phase trend by GNSS network maintained by Japanese University Group (e.g, Ohzono et al., 2011) and GSI, Japan. The mean velocity field thus obtained shows a strain concentration zone along the Ushikubi fault, a major strand of the Atotsugawa fault system. The Ushikubi fault is seismically less active than the Atotsugawa fault, but it shows good correlation with a zone of large spatial gradient of Bouguer gravity anomaly. We further discuss on the deformation style at the junction between the Atotsugawa fault and the Hida mountain range (Tateyama volcano). Acknowledgement: The PALSAR level 1.0 data were provided by JAXA via the PALSAR Interferometry Consortium to Study our Evolving Land surface (PIXEL) based on a cooperative research contract between JAXA and the ERI, the University of Tokyo. The PALSAR product is owned by JAXA and METI.

  16. Fast reversible single-step method for enhanced band contrast of polyacrylamide gels for automated detection.

    PubMed

    Ling, Wei-Li; Lua, Wai-Heng; Gan, Samuel Ken-En

    2015-05-01

    Staining SDS-PAGE is commonly used in protein analysis for many downstream characterization processes. Although staining and destaining protocols can be adjusted, they can be laborious, and faint bands often become false negatives. Similarly, these faint bands hinder automated software band detections that are necessary for quantitative analyses. To overcome these problems, we describe a single-step rapid and reversible method to increase (up to 500%) band contrast in stained gels. Through the use of alcohols, we improved band detection and facilitated gel storage by drying the gels into compact white sheets. This method is suitable for all stained SDS-PAGE gels, including gradient gels and is shown to improve automated band detection by enhanced band contrast. PMID:25782090

  17. Fast reversible single-step method for enhanced band contrast of polyacrylamide gels for automated detection

    PubMed Central

    Ling, Wei-Li; Lua, Wai-Heng; Gan, Samuel Ken-En

    2015-01-01

    Staining SDS-PAGE is commonly used in protein analysis for many downstream characterization processes. Although staining and destaining protocols can be adjusted, they can be laborious, and faint bands often become false negatives. Similarly, these faint bands hinder automated software band detections that are necessary for quantitative analyses. To overcome these problems, we describe a single-step rapid and reversible method to increase (up to 500%) band contrast in stained gels. Through the use of alcohols, we improved band detection and facilitated gel storage by drying the gels into compact white sheets. This method is suitable for all stained SDS-PAGE gels, including gradient gels and is shown to improve automated band detection by enhanced band contrast. PMID:25782090

  18. Automated detection of cardiac phase from intracoronary ultrasound image sequences.

    PubMed

    Sun, Zheng; Dong, Yi; Li, Mengchan

    2015-01-01

    Intracoronary ultrasound (ICUS) is a widely used interventional imaging modality in clinical diagnosis and treatment of cardiac vessel diseases. Due to cyclic cardiac motion and pulsatile blood flow within the lumen, there exist changes of coronary arterial dimensions and relative motion between the imaging catheter and the lumen during continuous pullback of the catheter. The action subsequently causes cyclic changes to the image intensity of the acquired image sequence. Information on cardiac phases is implied in a non-gated ICUS image sequence. A 1-D phase signal reflecting cardiac cycles was extracted according to cyclical changes in local gray-levels in ICUS images. The local extrema of the signal were then detected to retrieve cardiac phases and to retrospectively gate the image sequence. Results of clinically acquired in vivo image data showed that the average inter-frame dissimilarity of lower than 0.1 was achievable with our technique. In terms of computational efficiency and complexity, the proposed method was shown to be competitive when compared with the current methods. The average frame processing time was lower than 30 ms. We effectively reduced the effect of image noises, useless textures, and non-vessel region on the phase signal detection by discarding signal components caused by non-cardiac factors. PMID:26406038

  19. A virtual sensor for online fault detection of multitooth-tools.

    PubMed

    Bustillo, Andres; Correa, Maritza; Reñones, Anibal

    2011-01-01

    The installation of suitable sensors close to the tool tip on milling centres is not possible in industrial environments. It is therefore necessary to design virtual sensors for these machines to perform online fault detection in many industrial tasks. This paper presents a virtual sensor for online fault detection of multitooth tools based on a bayesian classifier. The device that performs this task applies mathematical models that function in conjunction with physical sensors. Only two experimental variables are collected from the milling centre that performs the machining operations: the electrical power consumption of the feed drive and the time required for machining each workpiece. The task of achieving reliable signals from a milling process is especially complex when multitooth tools are used, because each kind of cutting insert in the milling centre only works on each workpiece during a certain time window. Great effort has gone into designing a robust virtual sensor that can avoid re-calibration due to, e.g., maintenance operations. The virtual sensor developed as a result of this research is successfully validated under real conditions on a milling centre used for the mass production of automobile engine crankshafts. Recognition accuracy, calculated with a k-fold cross validation, had on average 0.957 of true positives and 0.986 of true negatives. Moreover, measured accuracy was 98%, which suggests that the virtual sensor correctly identifies new cases. PMID:22163766

  20. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.