Science.gov

Sample records for automated modelling interface

  1. Automating the DEVS Modeling and Simulation Interface to Web Services Chungman Seo

    E-print Network

    Automating the DEVS Modeling and Simulation Interface to Web Services Chungman Seo Bernard P, zeigler@ece.arizona.edu Keywords: DEVS, Web Services, WSDL, Dynamic Web Service Invocation, Web Service Execution Language Abstract Web service technology is used to augment software reusability and composability

  2. Automated Fluid Interface System (AFIS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Automated remote fluid servicing will be necessary for future space missions, as future satellites will be designed for on-orbit consumable replenishment. In order to develop an on-orbit remote servicing capability, a standard interface between a tanker and the receiving satellite is needed. The objective of the Automated Fluid Interface System (AFIS) program is to design, fabricate, and functionally demonstrate compliance with all design requirements for an automated fluid interface system. A description and documentation of the Fairchild AFIS design is provided.

  3. Human-Machine Interface in Building Automation Systems 

    E-print Network

    Sobczak, N. L.

    1981-01-01

    problem between the non-computer knowledgeable operator and the computer based Building Automation System. One of the solutions to this problem is the design and implementation of a human machine interface which educates the operator to utilize the system...

  4. Automation Interfaces of the Orion GNC Executive Architecture

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy

    2009-01-01

    This viewgraph presentation describes Orion mission's automation Guidance, Navigation and Control (GNC) architecture and interfaces. The contents include: 1) Orion Background; 2) Shuttle/Orion Automation Comparison; 3) Orion Mission Sequencing; 4) Orion Mission Sequencing Display Concept; and 5) Status and Forward Plans.

  5. Automated Student Model Improvement

    ERIC Educational Resources Information Center

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  6. Towards automation of user interface design

    NASA Technical Reports Server (NTRS)

    Gastner, Rainer; Kraetzschmar, Gerhard K.; Lutz, Ernst

    1992-01-01

    This paper suggests an approach to automatic software design in the domain of graphical user interfaces. There are still some drawbacks in existing user interface management systems (UIMS's) which basically offer only quantitative layout specifications via direct manipulation. Our approach suggests a convenient way to get a default graphical user interface which may be customized and redesigned easily in further prototyping cycles.

  7. Control Interface and Tracking Control System for Automated Poultry Inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new visible/near-infrared inspection system interface was developed in order to conduct research to test and implement an automated chicken inspection system for online operation on commercial chicken processing lines. The spectroscopic system demonstrated effective spectral acquisition and data ...

  8. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  9. SWISS-MODEL: An automated protein homology-modeling server.

    PubMed

    Schwede, Torsten; Kopp, Jürgen; Guex, Nicolas; Peitsch, Manuel C

    2003-07-01

    SWISS-MODEL (http://swissmodel.expasy.org) is a server for automated comparative modeling of three-dimensional (3D) protein structures. It pioneered the field of automated modeling starting in 1993 and is the most widely-used free web-based automated modeling facility today. In 2002 the server computed 120 000 user requests for 3D protein models. SWISS-MODEL provides several levels of user interaction through its World Wide Web interface: in the 'first approach mode' only an amino acid sequence of a protein is submitted to build a 3D model. Template selection, alignment and model building are done completely automated by the server. In the 'alignment mode', the modeling process is based on a user-defined target-template alignment. Complex modeling tasks can be handled with the 'project mode' using DeepView (Swiss-PdbViewer), an integrated sequence-to-structure workbench. All models are sent back via email with a detailed modeling report. WhatCheck analyses and ANOLEA evaluations are provided optionally. The reliability of SWISS-MODEL is continuously evaluated in the EVA-CM project. The SWISS-MODEL server is under constant development to improve the successful implementation of expert knowledge into an easy-to-use server. PMID:12824332

  10. Spherical model of growing interfaces

    E-print Network

    Malte Henkel; Xavier Durang

    2015-04-30

    Building on an analogy between the ageing behaviour of magnetic systems and growing interfaces, the Arcetri model, a new exactly solvable model for growing interfaces is introduced, which shares many properties with the kinetic spherical model. The long-time behaviour of the interface width and of the two-time correlators and responses is analysed. For all dimensions $d\

  11. Geographic information system/watershed model interface

    USGS Publications Warehouse

    Fisher, Gary T.

    1989-01-01

    Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.

  12. A Tangible Mixed Reality Interface for the AMI Automated Meeting Assistant 

    E-print Network

    Ehnes, Jochen

    2009-01-01

    In this paper we describe our approach to support ongoing meetings with an automated meeting assistant. We propose an alternative user interface for the AMIDA Content Linking Device. In order for the system to be less ...

  13. An Automated System for Converting App Inventor Apps to Java Interface For Creating and Managing Projects

    E-print Network

    Gray, Jeffrey G.

    An Automated System for Converting App Inventor Apps to Java Interface For Creating and Managing Projects Drag And Drop Components App Is Fully Laid Out Christopher Hodapp (Student) The Univeristy of Computer Science Graphical Environment For Creating Layouts MIT App Inventor An Automated System

  14. On Abstractions and Simplifications in the Design of Human-Automation Interfaces

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Degani, Asaf; Shafto, Michael; Meyer, George; Clancy, Daniel (Technical Monitor)

    2001-01-01

    This report addresses the design of human-automation interaction from a formal perspective that focuses on the information content of the interface, rather than the design of the graphical user interface. It also addresses the, issue of the information provided to the user (e.g., user-manuals, training material, and all other resources). In this report, we propose a formal procedure for generating interfaces and user-manuals. The procedure is guided by two criteria: First, the interface must be correct, i.e., that with the given interface the user will be able to perform the specified tasks correctly. Second, the interface should be as succinct as possible. The report discusses the underlying concepts and the formal methods for this approach. Several examples are used to illustrate the procedure. The algorithm for constructing interfaces can be automated, and a preliminary software system for its implementation has been developed.

  15. On Abstractions and Simplifications in the Design of Human-Automation Interfaces

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Degani, Asaf; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This report addresses the design of human-automation interaction from a formal perspective that focuses on the information content of the interface, rather than the design of the graphical user interface. It also addresses the issue of the information provided to the user (e.g., user-manuals, training material, and all other resources). In this report, we propose a formal procedure for generating interfaces and user-manuals. The procedure is guided by two criteria: First, the interface must be correct, that is, with the given interface the user will be able to perform the specified tasks correctly. Second, the interface should be succinct. The report discusses the underlying concepts and the formal methods for this approach. Two examples are used to illustrate the procedure. The algorithm for constructing interfaces can be automated, and a preliminary software system for its implementation has been developed.

  16. AUTOMATION OF IP CORE INTERFACE GENERATION FOR RECONFIGURABLE Zhi Guo Abhishek Mitra Walid Najjar

    E-print Network

    Najjar, Walid A.

    AUTOMATION OF IP CORE INTERFACE GENERATION FOR RECONFIGURABLE COMPUTING Zhi Guo Abhishek Mitra University of California, Riverside {zguo, amitra, najjar}@cs.ucr.edu ABSTRACT Pre-designed IP cores of IP core interfaces allowing these to be used as C functions transparently from within C source codes

  17. Designing effective human-automation-plant interfaces: a control-theoretic perspective.

    PubMed

    Jamieson, Greg A; Vicente, Kim J

    2005-01-01

    In this article, we propose the application of a control-theoretic framework to human-automation interaction. The framework consists of a set of conceptual distinctions that should be respected in automation research and design. We demonstrate how existing automation interface designs in some nuclear plants fail to recognize these distinctions. We further show the value of the approach by applying it to modes of automation. The design guidelines that have been proposed in the automation literature are evaluated from the perspective of the framework. This comparison shows that the framework reveals insights that are frequently overlooked in this literature. A new set of design guidelines is introduced that builds upon the contributions of previous research and draws complementary insights from the control-theoretic framework. The result is a coherent and systematic approach to the design of human-automation-plant interfaces that will yield more concrete design criteria and a broader set of design tools. Applications of this research include improving the effectiveness of human-automation interaction design and the relevance of human-automation interaction research. PMID:15960084

  18. Development of a fully automated fluid resupply interface system

    NASA Technical Reports Server (NTRS)

    Cardin, J. M.; Boyd, William C.; Falls, Mark S.

    1989-01-01

    The results of a cooperative effort to develop fluid components and systems that facilitate on-orbit servicing are discussed. The evolution from manual couplings to semi-automatic dual line interfaces to fully automatic multi-line resupply interfaces is traced. Hardware designs are presented in the context of solutions to requirements. Test data and user evaluations are reviewed.

  19. Model-Based Design of Air Traffic Controller-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.

  20. Alloy Interface Interdiffusion Modeled

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Garces, Jorge E.; Abel, Phillip B.

    2003-01-01

    With renewed interest in developing nuclear-powered deep space probes, attention will return to improving the metallurgical processing of potential nuclear fuels so that they remain dimensionally stable over the years required for a successful mission. Previous work on fuel alloys at the NASA Glenn Research Center was primarily empirical, with virtually no continuing research. Even when empirical studies are exacting, they often fail to provide enough insight to guide future research efforts. In addition, from a fundamental theoretical standpoint, the actinide metals (which include materials used for nuclear fuels) pose a severe challenge to modern electronic-structure theory. Recent advances in quantum approximate atomistic modeling, coupled with first-principles derivation of needed input parameters, can help researchers develop new alloys for nuclear propulsion.

  1. Automated, Parametric Geometry Modeling and Grid Generation for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Harrand, Vincent J.; Uchitel, Vadim G.; Whitmire, John B.

    2000-01-01

    The objective of this Phase I project is to develop a highly automated software system for rapid geometry modeling and grid generation for turbomachinery applications. The proposed system features a graphical user interface for interactive control, a direct interface to commercial CAD/PDM systems, support for IGES geometry output, and a scripting capability for obtaining a high level of automation and end-user customization of the tool. The developed system is fully parametric and highly automated, and, therefore, significantly reduces the turnaround time for 3D geometry modeling, grid generation and model setup. This facilitates design environments in which a large number of cases need to be generated, such as for parametric analysis and design optimization of turbomachinery equipment. In Phase I we have successfully demonstrated the feasibility of the approach. The system has been tested on a wide variety of turbomachinery geometries, including several impellers and a multi stage rotor-stator combination. In Phase II, we plan to integrate the developed system with turbomachinery design software and with commercial CAD/PDM software.

  2. The State of the Art in Automating Usability Evaluation of User Interfaces

    E-print Network

    Hearst, Marti

    The State of the Art in Automating Usability Evaluation of User Interfaces MELODY Y. IVORY fellowship, and Kaiser Permanente. Authors' addresses: M. Y. Ivory, Computer Science Division, University of California, Berkeley, Berkeley, CA 94720-1776; email: ivory@CS.Berkeley.edu; M. A. Hearst, School

  3. Task-focused modeling in automated agriculture

    NASA Astrophysics Data System (ADS)

    Vriesenga, Mark R.; Peleg, K.; Sklansky, Jack

    1993-01-01

    Machine vision systems analyze image data to carry out automation tasks. Our interest is in machine vision systems that rely on models to achieve their designed task. When the model is interrogated from an a priori menu of questions, the model need not be complete. Instead, the machine vision system can use a partial model that contains a large amount of information in regions of interest and less information elsewhere. We propose an adaptive modeling scheme for machine vision, called task-focused modeling, which constructs a model having just sufficient detail to carry out the specified task. The model is detailed in regions of interest to the task and is less detailed elsewhere. This focusing effect saves time and reduces the computational effort expended by the machine vision system. We illustrate task-focused modeling by an example involving real-time micropropagation of plants in automated agriculture.

  4. Automated two-dimensional interface for capillary gas chromatography

    DOEpatents

    Strunk, M.R.; Bechtold, W.E.

    1996-02-20

    A multidimensional gas chromatograph (GC) system is disclosed which has wide bore capillary and narrow bore capillary GC columns in series and has a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration. 3 figs.

  5. Automated two-dimensional interface for capillary gas chromatography

    DOEpatents

    Strunk, Michael R. (Albuquerque, NM); Bechtold, William E. (Albuquerque, NM)

    1996-02-20

    A multidimensional gas chromatograph (GC) system having wide bore capillary and narrow bore capillary GC columns in series and having a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration.

  6. Atomistic modeling of dislocation-interface interactions

    SciTech Connect

    Wang, Jian; Valone, Steven M; Beyerlein, Irene J; Misra, Amit; Germann, T. C.

    2011-01-31

    Using atomic scale models and interface defect theory, we first classify interface structures into a few types with respect to geometrical factors, then study the interfacial shear response and further simulate the dislocation-interface interactions using molecular dynamics. The results show that the atomic scale structural characteristics of both heterophases and homophases interfaces play a crucial role in (i) their mechanical responses and (ii) the ability of incoming lattice dislocations to transmit across them.

  7. Modeling Increased Complexity and the Reliance on Automation: FLightdeck Automation Problems (FLAP) Model

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Shih, Ann T.

    2014-01-01

    This paper highlights the development of a model that is focused on the safety issue of increasing complexity and reliance on automation systems in transport category aircraft. Recent statistics show an increase in mishaps related to manual handling and automation errors due to pilot complacency and over-reliance on automation, loss of situational awareness, automation system failures and/or pilot deficiencies. Consequently, the aircraft can enter a state outside the flight envelope and/or air traffic safety margins which potentially can lead to loss-of-control (LOC), controlled-flight-into-terrain (CFIT), or runway excursion/confusion accidents, etc. The goal of this modeling effort is to provide NASA's Aviation Safety Program (AvSP) with a platform capable of assessing the impacts of AvSP technologies and products towards reducing the relative risk of automation related accidents and incidents. In order to do so, a generic framework, capable of mapping both latent and active causal factors leading to automation errors, is developed. Next, the framework is converted into a Bayesian Belief Network model and populated with data gathered from Subject Matter Experts (SMEs). With the insertion of technologies and products, the model provides individual and collective risk reduction acquired by technologies and methodologies developed within AvSP.

  8. Trust Model for Security Automation Data 1.0 (TMSAD)

    E-print Network

    Trust Model for Security Automation Data 1.0 (TMSAD) HaroldBooth AdamHalbardier NIST Interagency Report 7802 #12;NIST Interagency Report 7802 Trust Model for Security Automation Data 1.0 (TMSAD) Harold FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) iii Reports on Computer Systems Technology The Information Technology

  9. Automating Risk Analysis of Software Design Models

    PubMed Central

    Ruiz, Guifré; Heymann, Elisa; César, Eduardo; Miller, Barton P.

    2014-01-01

    The growth of the internet and networked systems has exposed software to an increased amount of security threats. One of the responses from software developers to these threats is the introduction of security activities in the software development lifecycle. This paper describes an approach to reduce the need for costly human expertise to perform risk analysis in software, which is common in secure development methodologies, by automating threat modeling. Reducing the dependency on security experts aims at reducing the cost of secure development by allowing non-security-aware developers to apply secure development with little to no additional cost, making secure development more accessible. To automate threat modeling two data structures are introduced, identification trees and mitigation trees, to identify threats in software designs and advise mitigation techniques, while taking into account specification requirements and cost concerns. These are the components of our model for automated threat modeling, AutSEC. We validated AutSEC by implementing it in a tool based on data flow diagrams, from the Microsoft security development methodology, and applying it to VOMS, a grid middleware component, to evaluate our model's performance. PMID:25136688

  10. Automating the Modeling of the SEE Cross Section's Angular Dependence

    NASA Technical Reports Server (NTRS)

    Patterson, J. D.; Edmonds, L. D.

    2003-01-01

    An algorithm that automates the application of the alpha law in any SEE analysis is presented. This automation is essential for the widespread acceptance of the sophisticated cross section angular dependence model.

  11. A Generalized Timeline Representation, Services, and Interface for Automating Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Johnston, Mark; Frank, Jeremy; Giuliano, Mark; Kavelaars, Alicia; Lenzen, Christoph; Policella, Nicola

    2012-01-01

    Most use a timeline based representation for operations modeling. Most model a core set of state, resource types. Most provide similar capabilities on this modeling to enable (semi) automated schedule generation. In this paper we explore the commonality of : representation and services for these timelines. These commonalities offer potential to be harmonized to enable interoperability, re-use.

  12. Automation model of sewerage rehabilitation planning.

    PubMed

    Yang, M D; Su, T C

    2006-01-01

    The major steps of sewerage rehabilitation include inspection of sewerage, assessment of structural conditions, computation of structural condition grades, and determination of rehabilitation methods and materials. Conventionally, sewerage rehabilitation planning relies on experts with professional background that is tedious and time-consuming. This paper proposes an automation model of planning optimal sewerage rehabilitation strategies for the sewer system by integrating image process, clustering technology, optimization, and visualization display. Firstly, image processing techniques, such as wavelet transformation and co-occurrence features extraction, were employed to extract various characteristics of structural failures from CCTV inspection images. Secondly, a classification neural network was established to automatically interpret the structural conditions by comparing the extracted features with the typical failures in a databank. Then, to achieve optimal rehabilitation efficiency, a genetic algorithm was used to determine appropriate rehabilitation methods and substitution materials for the pipe sections with a risk of mal-function and even collapse. Finally, the result from the automation model can be visualized in a geographic information system in which essential information of the sewer system and sewerage rehabilitation plans are graphically displayed. For demonstration, the automation model of optimal sewerage rehabilitation planning was applied to a sewer system in east Taichung, Chinese Taiwan. PMID:17302324

  13. Interfacing materials models with fire field models

    SciTech Connect

    Nicolette, V.F.; Tieszen, S.R.; Moya, J.L.

    1995-12-01

    For flame spread over solid materials, there has traditionally been a large technology gap between fundamental combustion research and the somewhat simplistic approaches used for practical, real-world applications. Recent advances in computational hardware and computational fluid dynamics (CFD)-based software have led to the development of fire field models. These models, when used in conjunction with material burning models, have the potential to bridge the gap between research and application by implementing physics-based engineering models in a transient, multi-dimensional tool. This paper discusses the coupling that is necessary between fire field models and burning material models for the simulation of solid material fires. Fire field models are capable of providing detailed information about the local fire environment. This information serves as an input to the solid material combustion submodel, which subsequently calculates the impact of the fire environment on the material. The response of the solid material (in terms of thermal response, decomposition, charring, and off-gassing) is then fed back into the field model as a source of mass, momentum and energy. The critical parameters which must be passed between the field model and the material burning model have been identified. Many computational issues must be addressed when developing such an interface. Some examples include the ability to track multiple fuels and species, local ignition criteria, and the need to use local grid refinement over the burning material of interest.

  14. Models for MetaVCeramic Interface Fracture

    E-print Network

    Suo, Zhigang

    ChaDter 12 Models for MetaVCeramic Interface Fracture ZHIGANG SUO C. FONG SHIH Metal shortcomingthat haslimited their wide- spread use-their tendency to fracture easily. In many systems, the low on interface fracture are reviewed in this chapter. With few exceptions, attention is limited to continuum

  15. Micromechanical modeling of rough interface behavior

    E-print Network

    Huang, Shiping

    2011-07-28

    In this dissertation, the interface behavior of contacting rough surfaces was studied systematically based upon micromechanical modeling. Firstly, asperity contact mechanics was further developed. It was found that tangential ...

  16. A Diffuse Interface Model with Immiscibility Preservation

    PubMed Central

    Tiwari, Arpit; Freund, Jonathan B.; Pantano, Carlos

    2013-01-01

    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results. PMID:24058207

  17. A Generalized Timeline Representation, Services, and Interface for Automating Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Johnston, Mark; Frank, Jeremy; Giuliano, Mark; Kavelaars, Alicia; Lenzen, Christoph; Policella, Nicola

    2012-01-01

    Numerous automated and semi-automated planning & scheduling systems have been developed for space applications. Most of these systems are model-based in that they encode domain knowledge necessary to predict spacecraft state and resources based on initial conditions and a proposed activity plan. The spacecraft state and resources as often modeled as a series of timelines, with a timeline or set of timelines to represent a state or resource key in the operations of the spacecraft. In this paper, we first describe a basic timeline representation that can represent a set of state, resource, timing, and transition constraints. We describe a number of planning and scheduling systems designed for space applications (and in many cases deployed for use of ongoing missions) and describe how they do and do not map onto this timeline model.

  18. Systems Engineering Interfaces: A Model Based Approach

    NASA Technical Reports Server (NTRS)

    Fosse, Elyse; Delp, Christopher

    2013-01-01

    Currently: Ops Rev developed and maintains a framework that includes interface-specific language, patterns, and Viewpoints. Ops Rev implements the framework to design MOS 2.0 and its 5 Mission Services. Implementation de-couples interfaces and instances of interaction Future: A Mission MOSE implements the approach and uses the model based artifacts for reviews. The framework extends further into the ground data layers and provides a unified methodology.

  19. Automation life-cycle cost model

    NASA Technical Reports Server (NTRS)

    Gathmann, Thomas P.; Reeves, Arlinda J.; Cline, Rick; Henrion, Max; Ruokangas, Corinne

    1992-01-01

    The problem domain being addressed by this contractual effort can be summarized by the following list: Automation and Robotics (A&R) technologies appear to be viable alternatives to current, manual operations; Life-cycle cost models are typically judged with suspicion due to implicit assumptions and little associated documentation; and Uncertainty is a reality for increasingly complex problems and few models explicitly account for its affect on the solution space. The objectives for this effort range from the near-term (1-2 years) to far-term (3-5 years). In the near-term, the envisioned capabilities of the modeling tool are annotated. In addition, a framework is defined and developed in the Decision Modelling System (DEMOS) environment. Our approach is summarized as follows: Assess desirable capabilities (structure into near- and far-term); Identify useful existing models/data; Identify parameters for utility analysis; Define tool framework; Encode scenario thread for model validation; and Provide transition path for tool development. This report contains all relevant, technical progress made on this contractual effort.

  20. Bayesian Safety Risk Modeling of Human-Flightdeck Automation Interaction

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Shih, Ann T.

    2015-01-01

    Usage of automatic systems in airliners has increased fuel efficiency, added extra capabilities, enhanced safety and reliability, as well as provide improved passenger comfort since its introduction in the late 80's. However, original automation benefits, including reduced flight crew workload, human errors or training requirements, were not achieved as originally expected. Instead, automation introduced new failure modes, redistributed, and sometimes increased workload, brought in new cognitive and attention demands, and increased training requirements. Modern airliners have numerous flight modes, providing more flexibility (and inherently more complexity) to the flight crew. However, the price to pay for the increased flexibility is the need for increased mode awareness, as well as the need to supervise, understand, and predict automated system behavior. Also, over-reliance on automation is linked to manual flight skill degradation and complacency in commercial pilots. As a result, recent accidents involving human errors are often caused by the interactions between humans and the automated systems (e.g., the breakdown in man-machine coordination), deteriorated manual flying skills, and/or loss of situational awareness due to heavy dependence on automated systems. This paper describes the development of the increased complexity and reliance on automation baseline model, named FLAP for FLightdeck Automation Problems. The model development process starts with a comprehensive literature review followed by the construction of a framework comprised of high-level causal factors leading to an automation-related flight anomaly. The framework was then converted into a Bayesian Belief Network (BBN) using the Hugin Software v7.8. The effects of automation on flight crew are incorporated into the model, including flight skill degradation, increased cognitive demand and training requirements along with their interactions. Besides flight crew deficiencies, automation system failures and anomalies of avionic systems are also incorporated. The resultant model helps simulate the emergence of automation-related issues in today's modern airliners from a top-down, generalized approach, which serves as a platform to evaluate NASA developed technologies

  1. Modeling Europa's Ice-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient ?h to the interface salt exchange coefficient ?s. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  2. An interface tracking model for droplet electrocoalescence.

    SciTech Connect

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  3. A Web Interface for Eco System Modeling

    NASA Astrophysics Data System (ADS)

    McHenry, K.; Kooper, R.; Serbin, S. P.; LeBauer, D. S.; Desai, A. R.; Dietze, M. C.

    2012-12-01

    We have developed the Predictive Ecosystem Analyzer (PEcAn) as an open-source scientific workflow system and ecoinformatics toolbox that manages the flow of information in and out of regional-scale terrestrial biosphere models, facilitates heterogeneous data assimilation, tracks data provenance, and enables more effective feedback between models and field research. The over-arching goal of PEcAn is to make otherwise complex analyses transparent, repeatable, and accessible to a diverse array of researchers, allowing both novice and expert users to focus on using the models to examine complex ecosystems rather than having to deal with complex computer system setup and configuration questions in order to run the models. Through the developed web interface we hide much of the data and model details and allow the user to simply select locations, ecosystem models, and desired data sources as inputs to the model. Novice users are guided by the web interface through setting up a model execution and plotting the results. At the same time expert users are given enough freedom to modify specific parameters before the model gets executed. This will become more important as more and more models are added to the PEcAn workflow as well as more and more data that will become available as NEON comes online. On the backend we support the execution of potentially computationally expensive models on different High Performance Computers (HPC) and/or clusters. The system can be configured with a single XML file that gives it the flexibility needed for configuring and running the different models on different systems using a combination of information stored in a database as well as pointers to files on the hard disk. While the web interface usually creates this configuration file, expert users can still directly edit it to fine tune the configuration.. Once a workflow is finished the web interface will allow for the easy creation of plots over result data while also allowing the user to download the results for further processing. The current workflow in the web interface is a simple linear workflow, but will be expanded to allow for more complex workflows. We are working with Kepler and Cyberintegrator to allow for these more complex workflows as well as collecting provenance of the workflow being executed. This provenance regarding model executions is stored in a database along with the derived results. All of this information is then accessible using the BETY database web frontend. The PEcAn interface.

  4. Interfacing a robotic station with a gas chromatograph for the full automation of the determination of organochlorine pesticides in vegetables

    SciTech Connect

    Torres, P.; Luque de Castro, M.D.

    1996-12-31

    A fully automated method for the determination of organochlorine pesticides in vegetables is proposed. The overall system acts as an {open_quotes}analytical black box{close_quotes} because a robotic station performs the prelimninary operations, from weighing to capping the leached analytes and location in an autosampler of an automated gas chromatograph with electron capture detection. The method has been applied to the determination of lindane, heptachlor, captan, chlordane and metoxcychlor in tea, marjoram, cinnamon, pennyroyal, and mint with good results in most cases. A gas chromatograph has been interfaced to a robotic station for the determination of pesticides in vegetables. 15 refs., 4 figs., 2 tabs.

  5. Automated model integration at source code level: An approach for implementing models into the NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Wang, S.; Peters-Lidard, C. D.; Mocko, D. M.; Kumar, S.; Nearing, G. S.; Arsenault, K. R.; Geiger, J. V.

    2014-12-01

    Model integration bridges the data flow between modeling frameworks and models. However, models usually do not fit directly into a particular modeling environment, if not designed for it. An example includes implementing different types of models into the NASA Land Information System (LIS), a software framework for land-surface modeling and data assimilation. Model implementation requires scientific knowledge and software expertise and may take a developer months to learn LIS and model software structure. Debugging and testing of the model implementation is also time-consuming due to not fully understanding LIS or the model. This time spent is costly for research and operational projects. To address this issue, an approach has been developed to automate model integration into LIS. With this in mind, a general model interface was designed to retrieve forcing inputs, parameters, and state variables needed by the model and to provide as state variables and outputs to LIS. Every model can be wrapped to comply with the interface, usually with a FORTRAN 90 subroutine. Development efforts need only knowledge of the model and basic programming skills. With such wrappers, the logic is the same for implementing all models. Code templates defined for this general model interface could be re-used with any specific model. Therefore, the model implementation can be done automatically. An automated model implementation toolkit was developed with Microsoft Excel and its built-in VBA language. It allows model specifications in three worksheets and contains FORTRAN 90 code templates in VBA programs. According to the model specification, the toolkit generates data structures and procedures within FORTRAN modules and subroutines, which transfer data between LIS and the model wrapper. Model implementation is standardized, and about 80 - 90% of the development load is reduced. In this presentation, the automated model implementation approach is described along with LIS programming interfaces, the general model interface and five case studies, including a regression model, Noah-MP, FASST, SAC-HTET/SNOW-17, and FLake. These different models vary in complexity with software structure. Also, we will describe how these complexities were overcome through using this approach and results of model benchmarks within LIS.

  6. Visual Interfaces for Solids Modeling Cindy Grimmy

    E-print Network

    Hughes, John

    Visual Interfaces for Solids Modeling Cindy Grimmy (cmg@cs.brown.edu) David Pugmirez (dpugmire-89-20219) yDepartment of Computer Science, Box 1910, Brown University, Prov- idence, RI 02912, NCR, Autodesk, Taco Inc., NASA Apple Computer, ARPA Microsoft zDepartment of Computer Science

  7. Modeling strategic behavior in human-automation interaction: why an "aid" can (and should) go unused.

    PubMed

    Kirlik, A

    1993-06-01

    Task-offload aids (e.g., an autopilot, an "intelligent" assistant) can be selectively engaged by the human operator to dynamically delegate tasks to automation. Introducing such aids eliminates some task demands but creates new ones associated with programming, engaging, and disengaging the aiding device via an interface. The burdens associated with managing automation can sometimes outweigh the potential benefits of automation to improved system performance. Aid design parameters and features of the overall multitask context combine to determine whether or not a task-offload aid will effectively support the operator. A modeling and sensitivity analysis approach is presented that identifies effective strategies for human-automation interaction as a function of three task-context parameters and three aid design parameters. The analysis and modeling approaches provide resources for predicting how a well-adapted operator will use a given task-offload aid, and for specifying aid design features that ensure that automation will provide effective operator support in a multitask environment. PMID:8349287

  8. Modeling strategic behavior in human-automation interaction - Why an 'aid' can (and should) go unused

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex

    1993-01-01

    Task-offload aids (e.g., an autopilot, an 'intelligent' assistant) can be selectively engaged by the human operator to dynamically delegate tasks to automation. Introducing such aids eliminates some task demands but creates new ones associated with programming, engaging, and disengaging the aiding device via an interface. The burdens associated with managing automation can sometimes outweigh the potential benefits of automation to improved system performance. Aid design parameters and features of the overall multitask context combine to determine whether or not a task-offload aid will effectively support the operator. A modeling and sensitivity analysis approach is presented that identifies effective strategies for human-automation interaction as a function of three task-context parameters and three aid design parameters. The analysis and modeling approaches provide resources for predicting how a well-adapted operator will use a given task-offload aid, and for specifying aid design features that ensure that automation will provide effective operator support in a multitask environment.

  9. Multiscale modelling of bionano interface

    E-print Network

    Hender Lopez; Erik Brandt; Alexander Mirzoev; Dmitry Zhurkin; Alexander Lyubartsev; Vladimir Lobaskin

    2015-11-20

    In this work we describe a set of Coarse-grained (CG) tools that allow to simulate the uptake of the nanoparticles (NPs) coated with proteins by a lipid bilayer. We describe a CG model to calculate the adsorption energies and the most favorable adsorption orientations of proteins onto a hydrophobic NP. The proposed method is then used to calculate the adsorption energies of two common proteins in human blood onto neutral and negative charged NPs. We also report the effect of the NP radius on the adsorption energies and validate the proposed methodology against full atomistic simulations. We also describe a methodology in which full atomistic simulations of a lipid bilayer and various lipid-cholesterol mixtures are used for the extraction of CG pair potentials. We also compare and validate the predictions of simulations at molecular and CG level. Finally, we present a CG simulation of the interaction a bare NP and of a NP-protein complex with a lipid bilayer.

  10. Interface dynamics in planar neural field models

    PubMed Central

    2012-01-01

    Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves. PMID:22655970

  11. Development and Design of a User Interface for a Computer Automated Heating, Ventilation, and Air Conditioning System

    SciTech Connect

    Anderson, B.; /Fermilab

    1999-10-08

    A user interface is created to monitor and operate the heating, ventilation, and air conditioning system. The interface is networked to the system's programmable logic controller. The controller maintains automated control of the system. The user through the interface is able to see the status of the system and override or adjust the automatic control features. The interface is programmed to show digital readouts of system equipment as well as visual queues of system operational statuses. It also provides information for system design and component interaction. The interface is made easier to read by simple designs, color coordination, and graphics. Fermi National Accelerator Laboratory (Fermi lab) conducts high energy particle physics research. Part of this research involves collision experiments with protons, and anti-protons. These interactions are contained within one of two massive detectors along Fermilab's largest particle accelerator the Tevatron. The D-Zero Assembly Building houses one of these detectors. At this time detector systems are being upgraded for a second experiment run, titled Run II. Unlike the previous run, systems at D-Zero must be computer automated so operators do not have to continually monitor and adjust these systems during the run. Human intervention should only be necessary for system start up and shut down, and equipment failure. Part of this upgrade includes the heating, ventilation, and air conditioning system (HVAC system). The HVAC system is responsible for controlling two subsystems, the air temperatures of the D-Zero Assembly Building and associated collision hall, as well as six separate water systems used in the heating and cooling of the air and detector components. The BYAC system is automated by a programmable logic controller. In order to provide system monitoring and operator control a user interface is required. This paper will address methods and strategies used to design and implement an effective user interface. Background material pertinent to the BYAC system will cover the separate water and air subsystems and their purposes. In addition programming and system automation will also be covered.

  12. Automation Marketplace 2010: New Models, Core Systems

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2010-01-01

    In a year when a difficult economy presented fewer opportunities for immediate gains, the major industry players have defined their business strategies with fundamentally different concepts of library automation. This is no longer an industry where companies compete on the basis of the best or the most features in similar products but one where…

  13. An automated hydride generation interface to ICPMS for measuring total arsenic in environmental samples.

    PubMed

    Sengupta, Mrinal K; Dasgupta, Purnendu K

    2009-12-01

    An automated hydride generation (AHG) interface to inductive coupled plasma mass spectroscopy (ICPMS) was developed for measuring arsenic in environmental samples. This technique provides statistically indistinguishable response slopes (within about 3%) for hydride generation-ICPMS (HG-ICPMS) analysis of all major As species, inorganic As(III), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic As(V); this has not previously been achieved. Previously, sample pretreatment to convert all forms of As into As(V) has been a prerequisite for measuring total arsenic in complex matrices. Under our operating conditions, arsenobetaine (AsB), until now regarded to be inert, also generates a hydride (albeit the response is only approximately 7% of others). The limit of detection (LOD) based on three times the standard deviation of the blank with this technique for AsB, DMA, As(III), MMA, and As(V) is 90, 66, 63, 63, and 63 pg As, respectively. This AHG-ICPMS technique was compared with a flow injection-UV photolysis-HG-ICPMS (FI-UV-ICPMS) and liquid chromatography-UV-HG-ICPMS analysis of arsenic content in National Institute of Standards & Technology (NIST) standard rice flour (standard reference material: SRM 1568a) and rice samples collected from West Bengal, India. Both oxidative acid digestion and methanol:water (1:1) extraction were used. The analytical results for total As in the SRM 1568a digest were 99.2 +/- 0.6 and 100.2 +/- 0.8% of the certified value (290 +/- 3 microg As/kg) by the AHG-ICPMS and the FI-UV-HG-ICPMS techniques, respectively. For rice extracts and the digests, the two techniques provided results that were correlated with linear r2 values of 0.9988 and 0.9987 with intercepts statistically indistinguishable from zero. Chromatographic analysis indicated that As in these rice samples were 75-90% inorganic. PMID:19891455

  14. Design and implementation of a user-friendly interface for DIII-D neutral beam automated operation

    SciTech Connect

    Phillips, J.; Colleraine, A.P.; Hong, R.; Kim, J.; Lee, R.L.; Wight, J.J.

    1989-12-01

    The operational interface to the DIII-D neutral beam system, in use for the past 10 years, consisted of several interactive devices that the operator used to sequence neutral beam conditioning and plasma heating shots. Each of four independent MODCOMP Classic control computers (for four DIII-D beamlines) included a touch screen, rotary knobs, an interactive dual port terminal, and a keyboard to selectively address each of five display screens. Most of the hardware had become obsolete and repair was becoming increasingly expensive. It was clear that the hardware could be replaced with current equipment, while improving the ergonomics of control. Combined with an ongoing effort to increase the degree of automated operation and its reliability, a single microcomputer-based interface for each of the four neutral beam MODCOMP Classic control computers was developed, effectively replacing some twenty pieces of hardware. Macintosh II microcomputers were selected, with 1 megabyte of RAM and off-the-shelf'' input/output (I/O) consisting of a mouse, serial ports, and two monochrome high-resolution video monitors. The software is written in PASCAL and adopts standard Macintosh window'' techniques. From the Macintosh interface to the MODCOMP Classic, the operator can control the power supply setpoints, adjust ion source timing and synchronization, call up waveform displays on the Grinnell color display system, view the sequencing of procedures to ready a neutral beam shot, and add operator comments to an automated shot logging system. 3 refs., 2 figs.

  15. Automating Threat Modeling through the Software Development Life-Cycle

    E-print Network

    Miller, Barton P.

    Automating Threat Modeling through the Software Development Life-Cycle Guifr´e Ruiz1 , Elisa- diting from a risk management perspective through the generation of threat models. A security auditing in the development life-cycle reduces its cost dramati- cally. Companies doing software development know this reality

  16. HIGHER-ORDER MODELING AND AUTOMATED DESIGN-SPACE EXPLORATION

    E-print Network

    Esser, Robert

    HIGHER-ORDER MODELING AND AUTOMATED DESIGN-SPACE EXPLORATION J¨orn W. Janneck EECS Department in the same set of languages used to model the original sys- tem. Hence the set of design space exploration for an investigation into different solutions--an exploration of the design space. In many real-world systems

  17. Automated Verification of Model Transformations in the Automotive Industry

    E-print Network

    Cordy, James R.

    Automated Verification of Model Transformations in the Automotive Industry Gehan M. K. Selim1 reported on such industrial expe- riences by discussing the effects of MDD and the issues that still need to be addressed. However, only a few studies have discussed using au- tomated verification of industrial model

  18. Using Enterprise Reference Models for Automated ISO 9000 Compliance Evaluation

    E-print Network

    Fox, Mark S.

    1 Using Enterprise Reference Models for Automated ISO 9000 Compliance Evaluation Henry M. Kim1 A computational enterprise model representing key facets of an organization can be an effective tool to consider when planning an enterprise information architecture. For example, a specific organization's quality

  19. Automated particulate sampler field test model operations guide

    SciTech Connect

    Bowyer, S.M.; Miley, H.S.

    1996-10-01

    The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

  20. Computational design of patterned interfaces using reduced order models

    PubMed Central

    Vattré, A. J.; Abdolrahim, N.; Kolluri, K.; Demkowicz, M. J.

    2014-01-01

    Patterning is a familiar approach for imparting novel functionalities to free surfaces. We extend the patterning paradigm to interfaces between crystalline solids. Many interfaces have non-uniform internal structures comprised of misfit dislocations, which in turn govern interface properties. We develop and validate a computational strategy for designing interfaces with controlled misfit dislocation patterns by tailoring interface crystallography and composition. Our approach relies on a novel method for predicting the internal structure of interfaces: rather than obtaining it from resource-intensive atomistic simulations, we compute it using an efficient reduced order model based on anisotropic elasticity theory. Moreover, our strategy incorporates interface synthesis as a constraint on the design process. As an illustration, we apply our approach to the design of interfaces with rapid, 1-D point defect diffusion. Patterned interfaces may be integrated into the microstructure of composite materials, markedly improving performance. PMID:25169868

  1. Modeling and deadlock avoidance of automated manufacturing systems with multiple automated guided vehicles.

    PubMed

    Wu, Naiqi; Zhou, MengChu

    2005-12-01

    An automated manufacturing system (AMS) contains a number of versatile machines (or workstations), buffers, an automated material handling system (MHS), and is computer-controlled. An effective and flexible alternative for implementing MHS is to use automated guided vehicle (AGV) system. The deadlock issue in AMS is very important in its operation and has extensively been studied. The deadlock problems were separately treated for parts in production and transportation and many techniques were developed for each problem. However, such treatment does not take the advantage of the flexibility offered by multiple AGVs. In general, it is intractable to obtain maximally permissive control policy for either problem. Instead, this paper investigates these two problems in an integrated way. First we model an AGV system and part processing processes by resource-oriented Petri nets, respectively. Then the two models are integrated by using macro transitions. Based on the combined model, a novel control policy for deadlock avoidance is proposed. It is shown to be maximally permissive with computational complexity of O (n2) where n is the number of machines in AMS if the complexity for controlling the part transportation by AGVs is not considered. Thus, the complexity of deadlock avoidance for the whole system is bounded by the complexity in controlling the AGV system. An illustrative example shows its application and power. PMID:16366245

  2. An Automated Meeting Assistant: A Tangible Mixed Reality Interface for the AMIDA Automatic Content Linking Device 

    E-print Network

    Ehnes, Jochen

    2009-01-01

    We describe our approach to support ongoing meetings with an automated meeting assistant. The system based on the AMIDA Content Linking Device aims at providing relevant documents used in previous meetings for the ongoing ...

  3. A Tangible Interface for the AMI Content Linking Device -- The Automated Meeting Assistant 

    E-print Network

    Ehnes, Jochen

    2009-01-01

    In this Paper we describe our approach to support ongoing meetings with an automated meeting assistant. The system based on the AMIDA Content Linking Device aims at providing relevant documents used in previous meetings ...

  4. Automated data acquisition technology development:Automated modeling and control development

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1995-01-01

    This report documents the completion of, and improvements made to, the software developed for automated data acquisition and automated modeling and control development on the Texas Micro rackmounted PC's. This research was initiated because a need was identified by the Metal Processing Branch of NASA Marshall Space Flight Center for a mobile data acquisition and data analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC based system was chosen. The Welding Measurement System (WMS), is a dedicated instrument strickly for use of data acquisition and data analysis. In addition to the data acquisition functions described in this thesis, WMS also supports many functions associated with process control. The hardware and software requirements for an automated acquisition system for welding process parameters, welding equipment checkout, and welding process modeling were determined in 1992. From these recommendations, NASA purchased the necessary hardware and software. The new welding acquisition system is designed to collect welding parameter data and perform analysis to determine the voltage versus current arc-length relationship for VPPA welding. Once the results of this analysis are obtained, they can then be used to develop a RAIL function to control welding startup and shutdown without torch crashing.

  5. Automated construction of generative models from time series cell images

    E-print Network

    Murphy, Robert F.

    #12;Movie Analysis via Object Type Changes · HeLa cells expressing GFP-tagged growth factor receptor, Univ. Pittsburgh School Medicine #12;HeLa cells expressing growth factor receptor-bound protein 2(Grb2Automated construction of generative models from time series cell images: Tools for more complete

  6. Model-Driven Configuration of Automated Parking Facilities

    E-print Network

    Gray, Jeffrey G.

    parking space. For the purposes of this project, small robots were used to simulate cars and BluetoothModel-Driven Configuration of Automated Parking Facilities Abstract Purpose Methodology of autonomous vehicles cooperating to solve a common task. Specifically, the project is scoped within

  7. Jeffrey Walter Rickel Automated Modeling of Complex Systems

    E-print Network

    Kuipers, Benjamin

    Copyright by Jeffrey Walter Rickel 1995 #12; Automated Modeling of Complex Systems to Answer Prediction Questions by Jeffrey Walter Rickel, B.S., M.S. Dissertation Presented to the Faculty, including the Qualitative Process Com­ piler developed by Adam Farquhar and Jimi Crawford, the KM system

  8. Automating sensitivity analysis of computer models using computer calculus

    SciTech Connect

    Oblow, E.M.; Pin, F.G.

    1985-01-01

    An automated procedure for performing sensitivity analyses has been developed. The procedure uses a new FORTRAN compiler with computer calculus capabilities to generate the derivatives needed to set up sensitivity equations. The new compiler is called GRESS - Gradient Enhanced Software System. Application of the automated procedure with ''direct'' and ''adjoint'' sensitivity theory for the analysis of non-linear, iterative systems of equations is discussed. Calculational efficiency consideration and techniques for adjoint sensitivity analysis are emphasized. The new approach is found to preserve the traditional advantages of adjoint theory while removing the tedious human effort previously needed to apply this theoretical methodology. Conclusions are drawn about the applicability of the automated procedure in numerical analysis and large-scale modelling sensitivity studies. 24 refs., 2 figs.

  9. Diuse interface surface tension models in an expanding ow

    E-print Network

    Ferguson, Thomas S.

    Diuse interface surface tension models in an expanding ow Wangyi Liu, Andrea L. Bertozzi , and Theodore Kolokolnikov November 22, 2010 Abstract We consider a diusive interface surface tension model principle. 1 Background There is a need to develop simple computational models for surface tension

  10. Collaborative model of interaction and Unmanned Vehicle Systems' interface

    E-print Network

    Saget, Sylvie; Coppin, Gilles

    2008-01-01

    The interface for the next generation of Unmanned Vehicle Systems should be an interface with multi-modal displays and input controls. Then, the role of the interface will not be restricted to be a support of the interactions between the ground operator and vehicles. Interface must take part in the interaction management too. In this paper, we show that recent works in pragmatics and philosophy provide a suitable theoretical framework for the next generation of UV System's interface. We concentrate on two main aspects of the collaborative model of interaction based on acceptance: multi-strategy approach for communicative act generation and interpretation and communicative alignment.

  11. Monitoring interface and automated testing for Seaweed, a web-based economic game system

    E-print Network

    Yuan, Jessica

    2010-01-01

    Seaweed is a web-based economic game system that allows end users to design and deploy simple two-player economic games. To improve the usability of the system, we have created two new features. One: a monitoring interface ...

  12. Automated adaptive inference of phenomenological dynamical models.

    PubMed

    Daniels, Bryan C; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  13. Automated Environment Generation for Software Model Checking

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana; Dwyer, Matthew B.; Pasareanu, Corina S.

    2003-01-01

    A key problem in model checking open systems is environment modeling (i.e., representing the behavior of the execution context of the system under analysis). Software systems are fundamentally open since their behavior is dependent on patterns of invocation of system components and values defined outside the system but referenced within the system. Whether reasoning about the behavior of whole programs or about program components, an abstract model of the environment can be essential in enabling sufficiently precise yet tractable verification. In this paper, we describe an approach to generating environments of Java program fragments. This approach integrates formally specified assumptions about environment behavior with sound abstractions of environment implementations to form a model of the environment. The approach is implemented in the Bandera Environment Generator (BEG) which we describe along with our experience using BEG to reason about properties of several non-trivial concurrent Java programs.

  14. Automated adaptive inference of phenomenological dynamical models

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan C.; Nemenman, Ilya

    2015-08-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  15. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  16. Automated refinement and inference of analytical models for metabolic networks.

    PubMed

    Schmidt, Michael D; Vallabhajosyula, Ravishankar R; Jenkins, Jerry W; Hood, Jonathan E; Soni, Abhishek S; Wikswo, John P; Lipson, Hod

    2011-10-01

    The reverse engineering of metabolic networks from experimental data is traditionally a labor-intensive task requiring a priori systems knowledge. Using a proven model as a test system, we demonstrate an automated method to simplify this process by modifying an existing or related model--suggesting nonlinear terms and structural modifications--or even constructing a new model that agrees with the system's time series observations. In certain cases, this method can identify the full dynamical model from scratch without prior knowledge or structural assumptions. The algorithm selects between multiple candidate models by designing experiments to make their predictions disagree. We performed computational experiments to analyze a nonlinear seven-dimensional model of yeast glycolytic oscillations. This approach corrected mistakes reliably in both approximated and overspecified models. The method performed well to high levels of noise for most states, could identify the correct model de novo, and make better predictions than ordinary parametric regression and neural network models. We identified an invariant quantity in the model, which accurately derived kinetics and the numerical sensitivity coefficients of the system. Finally, we compared the system to dynamic flux estimation and discussed the scaling and application of this methodology to automated experiment design and control in biological systems in real time. PMID:21832805

  17. A power line data communication interface using spread spectrum technology in home automation

    SciTech Connect

    Shwehdi, M.H.; Khan, A.Z.

    1996-07-01

    Building automation technology is rapidly developing towards more reliable communication systems, devices that control electronic equipments. These equipment if controlled leads to efficient energy management, and savings on the monthly electricity bill. Power Line communication (PLC) has been one of the dreams of the electronics industry for decades, especially for building automation. It is the purpose of this paper to demonstrate communication methods among electronic control devices through an AC power line carrier within the buildings for more efficient energy control. The paper outlines methods of communication over a powerline, namely the X-10 and CE bus. It also introduces the spread spectrum technology as to increase speed to 100--150 times faster than the X-10 system. The powerline carrier has tremendous applications in the field of building automation. The paper presents an attempt to realize a smart house concept, so called, in which all home electronic devices from a coffee maker to a water heater microwave to chaos robots will be utilized by an intelligent network whenever one wishes to do so. The designed system may be applied very profitably to help in energy management for both customer and utility.

  18. Automated texture registration on 3D models

    NASA Astrophysics Data System (ADS)

    Pelagotti, A.; Uccheddu, F.; Picchioni, F.

    2011-11-01

    3D models are often lacking a photorealistic appearance, due to low quality of the acquired texture, or to the complete absence of it. Moreover, especially in case of reality based models, it is often of specific interest to texture with images different from photos, like multispectral/multimodal views (InfraRed, X-rays, UV fluorescence etc), or images taken in different moments in time. In this work, a fully automatic approach for texture mapping is proposed. The method relies on the automatic extraction from the model geometry of appropriate depth maps, in form of images, whose pixels maintain an exact correspondence with vertices of the 3D model. A multiresolution greedy method is then proposed to generate the candidate depth maps which could be related with the given texture. In order to select the best match, a suited similarity measure is computed, based on Maximixation of Mutual Information (MMI). 3D texturing is then applied to the portion of the model which is visualized in the texture.

  19. Common Subexpression Elimination in Automated Constraint Modelling

    E-print Network

    St Andrews, University of

    piece can be omitted. Hence a reduction in exe- cution time and memory usage is achieved. This paper- sion elimination has two key benefits. First, it can lead to a dramatic reduction in the size or planning, proceeds in two phases. First, the problem is modelled as a set of decision variables

  20. Towards Model Driven Engineering of Plastic User Interfaces

    E-print Network

    Towards Model Driven Engineering of Plastic User Interfaces Jean-Sébastien Sottet CLIPS of a same UI are to be produced for different platforms. The development of plastic user interfaces is even more demanding. In Human Computer Interaction, plasticity denotes the capacity of a UI to withstand

  1. A new seismically constrained subduction interface model for Central America

    E-print Network

    Frankel, Kurt L.

    -dimensional model for the subducting plate interface along the Middle America Trench between northern Nicaragua and geodynamic and tectonic development of convergent plate boundaries. 1. Introduction Convergent tectonic likely lies along the plate interface. Below this depth, an envelope above 90% of seismicity approximates

  2. Developing a Graphical User Interface to Automate the Estimation and Prediction of Risk Values for Flood Protective Structures using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Hasan, M.; Helal, A.; Gabr, M.

    2014-12-01

    In this project, we focus on providing a computer-automated platform for a better assessment of the potential failures and retrofit measures of flood-protecting earth structures, e.g., dams and levees. Such structures play an important role during extreme flooding events as well as during normal operating conditions. Furthermore, they are part of other civil infrastructures such as water storage and hydropower generation. Hence, there is a clear need for accurate evaluation of stability and functionality levels during their service lifetime so that the rehabilitation and maintenance costs are effectively guided. Among condition assessment approaches based on the factor of safety, the limit states (LS) approach utilizes numerical modeling to quantify the probability of potential failures. The parameters for LS numerical modeling include i) geometry and side slopes of the embankment, ii) loading conditions in terms of rate of rising and duration of high water levels in the reservoir, and iii) cycles of rising and falling water levels simulating the effect of consecutive storms throughout the service life of the structure. Sample data regarding the correlations of these parameters are available through previous research studies. We have unified these criteria and extended the risk assessment in term of loss of life through the implementation of a graphical user interface to automate input parameters that divides data into training and testing sets, and then feeds them into Artificial Neural Network (ANN) tool through MATLAB programming. The ANN modeling allows us to predict risk values of flood protective structures based on user feedback quickly and easily. In future, we expect to fine-tune the software by adding extensive data on variations of parameters.

  3. Rapid Automated Aircraft Simulation Model Updating from Flight Data

    NASA Technical Reports Server (NTRS)

    Brian, Geoff; Morelli, Eugene A.

    2011-01-01

    Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

  4. Automated Decomposition of Model-based Learning Problems

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Millar, Bill

    1996-01-01

    A new generation of sensor rich, massively distributed autonomous systems is being developed that has the potential for unprecedented performance, such as smart buildings, reconfigurable factories, adaptive traffic systems and remote earth ecosystem monitoring. To achieve high performance these massive systems will need to accurately model themselves and their environment from sensor information. Accomplishing this on a grand scale requires automating the art of large-scale modeling. This paper presents a formalization of [\\em decompositional model-based learning (DML)], a method developed by observing a modeler's expertise at decomposing large scale model estimation tasks. The method exploits a striking analogy between learning and consistency-based diagnosis. Moriarty, an implementation of DML, has been applied to thermal modeling of a smart building, demonstrating a significant improvement in learning rate.

  5. Optimizing Automated Call Routing by Integrating Spoken Dialog Models with Queuing Models

    E-print Network

    Horvitz, Eric

    on modeling techniques from decision analysis and queuing theory, for determining when callers shouldOptimizing Automated Call Routing by Integrating Spoken Dialog Models with Queuing Models Tim Paek a call is likely to fail using spoken dialog fea- tures with queuing models of call center vol- ume

  6. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.

    PubMed

    Sweeney, Michael W; Kabouris, John C

    2015-10-01

    A review of the literature published in 2014 on topics relating to water resource recovery facilities (WRRF) in the areas of modeling, instrumentation, automation and optimization of wastewater treatment is presented. Note that WEF has adopted 'WRRF' replacing such previous terms as publicly owned treatment works, wastewater treatment plant (WWTP), and other terms and officially instituted this change in its publications beginning in 2012. It is anticipated the replaced terms will remain in use by other publications and authors for some time. This review will strive to maintain consistency with this change but also avoid confusion where possible. PMID:26420085

  7. A new seismically constrained subduction interface model for Central America

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Newman, A. V.; Thomas, A. M.; Moore-Driskell, M.; Farmer, G. T.

    2015-08-01

    We provide a detailed, seismically defined three-dimensional model for the subducting plate interface along the Middle America Trench between northern Nicaragua and southern Costa Rica. The model uses data from a weighted catalog of about 30,000 earthquake hypocenters compiled from nine catalogs to constrain the interface through a process we term the "maximum seismicity method." The method determines the average position of the largest cluster of microseismicity beneath an a priori functional surface above the interface. This technique is applied to all seismicity above 40 km depth, the approximate intersection of the hanging wall Mohorovi?i? discontinuity, where seismicity likely lies along the plate interface. Below this depth, an envelope above 90% of seismicity approximates the slab surface. Because of station proximity to the interface, this model provides highest precision along the interface beneath the Nicoya Peninsula of Costa Rica, an area where marked geometric changes coincide with crustal transitions and topography observed seaward of the trench. The new interface is useful for a number of geophysical studies that aim to understand subduction zone earthquake behavior and geodynamic and tectonic development of convergent plate boundaries.

  8. Automated Physico-Chemical Cell Model Development through Information Theory

    SciTech Connect

    Peter J. Ortoleva

    2005-11-29

    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  9. MESA: An Interactive Modeling and Simulation Environment for Intelligent Systems Automation

    NASA Technical Reports Server (NTRS)

    Charest, Leonard

    1994-01-01

    This report describes MESA, a software environment for creating applications that automate NASA mission opterations. MESA enables intelligent automation by utilizing model-based reasoning techniques developed in the field of Artificial Intelligence. Model-based reasoning techniques are realized in Mesa through native support of causal modeling and discrete event simulation.

  10. Modelling Agents Behaviour in Automated Negotiation Tech Report kmi-04-10

    E-print Network

    a learning mechanism that applies nonlinear regression analysis to model a negotiation agent's behaviourModelling Agents Behaviour in Automated Negotiation Tech Report kmi-04-10 Chongming Hou #12;Modelling Agents Behaviour in Automated Negotiation Chongming Hou Knowledge Media Institute The Open

  11. Stress and diffusion induced interface motion: Modelling and numerical simulations

    E-print Network

    Styles, Vanessa

    Stress and diffusion induced interface motion: Modelling and numerical simulations Harald Garcke of Mathematics, University of Sussex, Brighton, BN1 9QH, U.K. Abstract We propose a phase field model for stress stress effects. In this paper we will demonstrate that the model can also be used to describe other

  12. Petri net modelling of buffers in automated manufacturing systems.

    PubMed

    Zhou, M; Dicesare, F

    1996-01-01

    This paper presents Petri net models of buffers and a methodology by which buffers can be included in a system without introducing deadlocks or overflows. The context is automated manufacturing. The buffers and models are classified as random order or order preserved (first-in-first-out or last-in-first-out), single-input-single-output or multiple-input-multiple-output, part type and/or space distinguishable or indistinguishable, and bounded or safe. Theoretical results for the development of Petri net models which include buffer modules are developed. This theory provides the conditions under which the system properties of boundedness, liveness, and reversibility are preserved. The results are illustrated through two manufacturing system examples: a multiple machine and multiple buffer production line and an automatic storage and retrieval system in the context of flexible manufacturing. PMID:18263017

  13. Empirical rheological model for rough or grooved bonded interfaces.

    PubMed

    Belloncle, Valentina Vlasie; Rousseau, Martine

    2007-12-01

    In the industrial sector, it is common to use metal/adhesive/metal structural bonds. The cohesion of such structures can be improved by preliminary chemical treatments (degreasing with solvents, alkaline, or acid pickling), electrochemical treatments (anodising), or mechanical treatments (abrasion, sandblasting, grooving) of the metallic plates. All these pretreatments create some asperities, ranging from roughnesses to grooves. On the other hand, in damage solid mechanics and in non-destructive testing, rheological models are used to measure the strength of bonded interfaces. However, these models do not take into account the interlocking of the adhesive in the porosities. Here, an empirical rheological model taking into account the interlocking effects is developed. This model depends on a characteristic parameter representing the average porosity along the interface, which considerably simplifies the corresponding stress and displacement jump conditions. The paper deals with the influence of this interface model on the ultrasonic guided modes of the structure. PMID:17659313

  14. Numerical modeling of capillary electrophoresis - electrospray mass spectrometry interface design.

    PubMed

    Jarvas, Gabor; Guttman, Andras; Foret, Frantisek

    2015-01-01

    Capillary electrophoresis hyphenated with electrospray mass spectrometry (CE-ESI-MS) has emerged in the past decade as one of the most powerful bioanalytical techniques. As the sensitivity and efficiency of new CE-ESI-MS interface designs are continuously improving, numerical modeling can play important role during their development. In this review, different aspects of computer modeling and simulation of CE-ESI-MS interfaces are comprehensively discussed. Relevant essentials of hydrodynamics as well as state-of-the-art modeling techniques are critically evaluated. Sheath liquid-, sheathless-, and liquid-junction interfaces are reviewed from the viewpoint of multidisciplinary numerical modeling along with details of single and multiphase models together with electric field mediated flows, electrohydrodynamics, and free fluid-surface methods. Practical examples are given to help non-specialists to understand the basic principles and applications. Finally, alternative approaches like air amplifiers are also included. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 34: 558-569, 2015. PMID:24676884

  15. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.

    PubMed

    Zhang, Rui; Li, Yuanqing; Yan, Yongyong; Zhang, Hao; Wu, Shaoyu; Yu, Tianyou; Gu, Zhenghui

    2016-01-01

    The concept of controlling a wheelchair using brain signals is promising. However, the continuous control of a wheelchair based on unstable and noisy electroencephalogram signals is unreliable and generates a significant mental burden for the user. A feasible solution is to integrate a brain-computer interface (BCI) with automated navigation techniques. This paper presents a brain-controlled intelligent wheelchair with the capability of automatic navigation. Using an autonomous navigation system, candidate destinations and waypoints are automatically generated based on the existing environment. The user selects a destination using a motor imagery (MI)-based or P300-based BCI. According to the determined destination, the navigation system plans a short and safe path and navigates the wheelchair to the destination. During the movement of the wheelchair, the user can issue a stop command with the BCI. Using our system, the mental burden of the user can be substantially alleviated. Furthermore, our system can adapt to changes in the environment. Two experiments based on MI and P300 were conducted to demonstrate the effectiveness of our system. PMID:26054072

  16. Development of an automated core model for nuclear reactors

    SciTech Connect

    Mosteller, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop an automated package of computer codes that can model the steady-state behavior of nuclear-reactor cores of various designs. As an added benefit, data produced for steady-state analysis also can be used as input to the TRAC transient-analysis code for subsequent safety analysis of the reactor at any point in its operating lifetime. The basic capability to perform steady-state reactor-core analysis already existed in the combination of the HELIOS lattice-physics code and the NESTLE advanced nodal code. In this project, the automated package was completed by (1) obtaining cross-section libraries for HELIOS, (2) validating HELIOS by comparing its predictions to results from critical experiments and from the MCNP Monte Carlo code, (3) validating NESTLE by comparing its predictions to results from numerical benchmarks and to measured data from operating reactors, and (4) developing a linkage code to transform HELIOS output into NESTLE input.

  17. Modeling Human-Automation Interaction in a Unified Cognitive Architecture Junya Morita

    E-print Network

    Ritter, Frank

    Modeling Human-Automation Interaction in a Unified Cognitive Architecture Junya Morita School systems by using cognitive modeling. We have conducted psychological experiments on this problem using replace human cognition in tasks completely. Bainbridge (1983) claimed that even highly automated systems

  18. Automated Analysis of Software Designs with Graphic Quality Models Department of Computer Science

    E-print Network

    Zhu, Hong

    Automated Analysis of Software Designs with Graphic Quality Models QIAN ZHANG Department to enhance its expressiveness and to facilitate automated analysis of software quality as designed and Davis' model of OO soft- ware design [5], define a set of quality related prop- erties and organises

  19. Author's personal copy Modelling and automation of water and wastewater treatment processes

    E-print Network

    Author's personal copy Preface Modelling and automation of water and wastewater treatment processes on the applications of modelling and automation to water and wastewater treatment processes. The session, under the largest number of contribu- tions involved conventional wastewater treatment plants (WWTP), for which

  20. Automated Spatial-Semantic Modeling with Applications to Place Labeling and Informed Search

    E-print Network

    Automated Spatial-Semantic Modeling with Applications to Place Labeling and Informed Search Pooja,dpmeger,tristram,little,mack}@cs.ubc.ca Abstract This paper presents a spatial-semantic modeling sys- tem featuring automated learning of object, bedrooms, and offices, while other exam- ple places might include lounges, libraries, and laun- dry rooms

  1. An Automated 3d Indoor Topological Navigation Network Modelling

    NASA Astrophysics Data System (ADS)

    Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.

    2015-10-01

    Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.

  2. Modeling of subcontinuum thermal transport across semiconductor-gas interfaces

    NASA Astrophysics Data System (ADS)

    Singh, Dhruv; Guo, Xiaohui; Alexeenko, Alina; Murthy, Jayathi Y.; Fisher, Timothy S.

    2009-07-01

    A physically rigorous computational algorithm is developed and applied to calculate subcontinuum thermal transport in structures containing semiconductor-gas interfaces. The solution is based on a finite volume discretization of the Boltzmann equation for gas molecules (in the gas phase) and phonons (in the semiconductor). A partial equilibrium is assumed between gas molecules and phonons at the interface of the two media, and the degree of this equilibrium is determined by the accommodation coefficients of gas molecules and phonons on either side of the interface. Energy balance is imposed to obtain a value of the interface temperature. The classic problem of temperature drop across a solid-gas interface is investigated with a simultaneous treatment of solid and gas phase properties for the first time. A range of transport regimes is studied, varying from ballistic phonon transport and free molecular flow to continuum heat transfer in both gas and solid. A reduced-order model is developed that captures the thermal resistance of the gas-solid interface. The formulation is then applied to the problem of combined gas-solid heat transfer in a two-dimensional nanoporous bed and the overall thermal resistance of the bed is characterized in terms of the governing parameters. These two examples exemplify the broad utility of the model in practical nanoscale heat transfer applications.

  3. ATOMIC SCALE MODELING OF SILICATE INTERFACE PROPERTIES FOR

    E-print Network

    Dutton, Robert W.

    ATOMIC SCALE MODELING OF SILICATE INTERFACE PROPERTIES FOR HIGH-K GATE DIELECTRIC APPLICATIONS on Graduate Studies: #12;iv #12;v Abstract Aggressive scaling has led to silicon dioxide (SiO2) gate the gate capacitance needed for scaled device operation. Atomic scale modeling methods based on first

  4. Extraction Error Modeling and Automated Model Debugging in High-Performance Low Power Custom Designs

    E-print Network

    Veneris, Andreas

    Extraction Error Modeling and Automated Model Debugging in High-Performance Low Power Custom-performance designs today. An au- tomated debugging solution for these errors in designs with no state equivalence in the industry confirm the fitness and practicality of the solution. 1 Introduction Large and complex VLSI

  5. Flightdeck Automation Problems (FLAP) Model for Safety Technology Portfolio Assessment

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Shih, Ann T.

    2014-01-01

    NASA's Aviation Safety Program (AvSP) develops and advances methodologies and technologies to improve air transportation safety. The Safety Analysis and Integration Team (SAIT) conducts a safety technology portfolio assessment (PA) to analyze the program content, to examine the benefits and risks of products with respect to program goals, and to support programmatic decision making. The PA process includes systematic identification of current and future safety risks as well as tracking several quantitative and qualitative metrics to ensure the program goals are addressing prominent safety risks accurately and effectively. One of the metrics within the PA process involves using quantitative aviation safety models to gauge the impact of the safety products. This paper demonstrates the role of aviation safety modeling by providing model outputs and evaluating a sample of portfolio elements using the Flightdeck Automation Problems (FLAP) model. The model enables not only ranking of the quantitative relative risk reduction impact of all portfolio elements, but also highlighting the areas with high potential impact via sensitivity and gap analyses in support of the program office. Although the model outputs are preliminary and products are notional, the process shown in this paper is essential to a comprehensive PA of NASA's safety products in the current program and future programs/projects.

  6. Improved Sharp Interface Models in Coastal Aquifers of Finite Dimensions

    NASA Astrophysics Data System (ADS)

    Christelis, Vasileios; Mantoglou, Aristotelis

    2013-04-01

    Coastal aquifer management often involves aquifers of finite dimensions where optimal pumping rates must be calculated through a combined simulation-optimization procedure. Variable-density numerical models are considered more exact than sharp interface models as they better describe the governing flow and transport equations. However, such models are not always preferable in pumping optimization studies, due to their complexity and computational burden. On the other hand, sharp interface models are approximate and can lead to large errors if they are not applied properly, particularly when model boundaries are not treated correctly. The present paper proposes improved sharp interface models considering aquifer boundaries in a proper way. Two sharp interface models are investigated based on the single potential formulation and the Ghyben-Herzberg relation. The first model (Strack, 1976) is based on the assumption of a semi-infinite aquifer with a sea-boundary only. The second model (Mantoglou, 2003) is based on an analytical solution developed for coastal aquifers of finite size and accounts for inland and lateral aquifer boundaries. Next, both models are modified using an empirical correction factor (similar to Pool and Carrera, 2011) which accounts for mixing. A simple pumping optimization problem with a single well in a confined coastal aquifer of finite size with four boundaries (sea, inland and lateral impervious boundaries) is employed. The constraint prevents the toe of the interface to reach the well and the optimal pumping rates are calculated for different locations of the pumping well and different combinations of aquifer parameters. Then the results of the sharp interface models are compared to the 'true' results of the corresponding variable-density numerical model in order to evaluate the performance of the sharp interface models. The results indicate that when the location of the well is close to the sea-boundary, the semi-infinite and the finite sized models produce similar, underestimated optimal solutions. However, when the well is placed inland, or near the lateral boundaries, the semi-infinite model yields much higher pumping rates than the finite sized model which are not always realistic and sustainable. This unrealistic performance is further exacerbated when the correction factor is applied to this model. Furthermore, it is observed that the correction factor is sensitive to different combinations of aquifer parameters in the case of the semi-infinite model. On the other hand, the finite sized sharp interface model of Mantoglou (2003), improved using the correction factor, yields increased and sustainable pumping rates regardless of the well location. This is because this model considers inland and lateral boundaries and is better suited for finite sized aquifers whereas the unrealistic behavior of the semi-infinite model is expected since it neglects those boundaries. We conclude that the finite sized sharp interface model, improved with an appropriate correction factor is a better alternative when applied to aquifers of finite dimensions.

  7. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYRDOLOGIC MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly

    developed by the USDA Agricultural Research Service, the U.S. Environmental Protection

    Agency, the University of Arizona, and the University of Wyoming to automate the

    parame...

  8. AUTOMATED GEOSPATICAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOICAL MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execut...

  9. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGIC MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...

  10. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGIC MODELING TOOL FOR WATERSHED MANAGEMENT AND LANDSCAPE ASSESSMENT 1798

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Automated Geospatial Watershed Assessment (AGWA, see: www.tucson.ars.ag.gov/agwa) tool is a GIS interface jointly developed by the USDA-ARS, US-EPA, U. Arizona, and U. Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion...

  11. Critical interfaces and duality in the Ashkin-Teller model

    SciTech Connect

    Picco, Marco; Santachiara, Raoul

    2011-06-15

    We report on the numerical measures on different spin interfaces and Fortuin-Kasteleyn (FK) cluster boundaries in the Askhin-Teller (AT) model. For a general point on the AT critical line, we find that the fractal dimension of a generic spin cluster interface can take one of four different possible values. In particular we found spin interfaces whose fractal dimension is d{sub f}=3/2 all along the critical line. Furthermore, the fractal dimension of the boundaries of FK clusters was found to satisfy all along the AT critical line a duality relation with the fractal dimension of their outer boundaries. This result provides clear numerical evidence that such duality, which is well known in the case of the O(n) model, exists in an extended conformal field theory.

  12. Automating efficiency-targeted approximations in modelling and simulation tools: dynamic decoupling and mixed-mode

    E-print Network

    Como, Giacomo

    Automating efficiency-targeted approximations in modelling and simulation tools: dynamic decoupling viewpoint. Keywords: dynamic decoupling, mixed-mode integration, modelling and simulation tools Received: 25, mod- ellers usually pursue efficiency by resorting to approximation and reduction techniques. However

  13. Automated robust generation of compact 3D statistical shape models

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  14. Sharp-interface model of electrodeposition and ramified growth

    NASA Astrophysics Data System (ADS)

    Nielsen, Christoffer P.; Bruus, Henrik

    2015-10-01

    We present a sharp-interface model of two-dimensional ramified growth during quasisteady electrodeposition. Our model differs from previous modeling methods in that it includes the important effects of extended space-charge regions and nonlinear electrode reactions. The electrokinetics is described by a continuum model, but the discrete nature of the ions is taken into account by adding a random noise term to the electrode current. The model is validated by comparing its behavior in the initial stage with the predictions of a linear stability analysis. The main limitations of the model are the restriction to two dimensions and the assumption of quasisteady transport.

  15. Individual Differences in Response to Automation: The Five Factor Model of Personality

    ERIC Educational Resources Information Center

    Szalma, James L.; Taylor, Grant S.

    2011-01-01

    This study examined the relationship of operator personality (Five Factor Model) and characteristics of the task and of adaptive automation (reliability and adaptiveness--whether the automation was well-matched to changes in task demand) to operator performance, workload, stress, and coping. This represents the first investigation of how the Five…

  16. Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems

    NASA Technical Reports Server (NTRS)

    Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael

    2013-01-01

    The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.

  17. Automated Texture Extraction from Multiple Images to Support Site Model Refinement and Visualization \\Lambda

    E-print Network

    Collins, Robert

    Automated Texture Extraction from Multiple Images to Support Site Model Refinement, and corruption caused by shadows and occlusions. In this paper, a system is developed for automated acquisition orthographic library. Occlusions and shadows caused by objects in the scene are computed and associated

  18. Automated Retrieval of 3D CAD Model Objects in Construction Range Images

    E-print Network

    Bosché, Frédéric

    Automated Retrieval of 3D CAD Model Objects in Construction Range Images F. Bosche a, C.T. Haas a a/retrieval of 3D CAD objects in range point clouds in the Architectural/Engineering/Construction & Facility Man Automated and robust retrieval of three-dimensional (3D) Computer-Aided Design (CAD) objects from laser

  19. MobiGUITAR A Tool for Automated Model-Based Testing of Mobile Apps

    E-print Network

    Memon, Atif M.

    MobiGUITAR ­ A Tool for Automated Model-Based Testing of Mobile Apps Domenico Amalfitano, Anna Rita are inappropriate for amateur program- mers, an increasing fraction of the app developer population. We present MobiGUITAR for automated GUI-driven testing of Android apps. MobiGUITAR is based on observation, extraction

  20. Automated multi-model reconstruction from single-particle electron microscopy data

    E-print Network

    Automated multi-model reconstruction from single-particle electron microscopy data Maxim Shatsky a using single-particle electron microscopy. We propose a fully automated, unsupervised method rights reserved. 1. Introduction Single-particle electron microscopy (EM) is routinely used to re- solve

  1. Designers' models of the human-computer interface

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Breedin, Sarah D.

    1993-01-01

    Understanding design models of the human-computer interface (HCI) may produce two types of benefits. First, interface development often requires input from two different types of experts: human factors specialists and software developers. Given the differences in their backgrounds and roles, human factors specialists and software developers may have different cognitive models of the HCI. Yet, they have to communicate about the interface as part of the design process. If they have different models, their interactions are likely to involve a certain amount of miscommunication. Second, the design process in general is likely to be guided by designers' cognitive models of the HCI, as well as by their knowledge of the user, tasks, and system. Designers do not start with a blank slate; rather they begin with a general model of the object they are designing. The author's approach to a design model of the HCI was to have three groups make judgments of categorical similarity about the components of an interface: human factors specialists with HCI design experience, software developers with HCI design experience, and a baseline group of computer users with no experience in HCI design. The components of the user interface included both display components such as windows, text, and graphics, and user interaction concepts, such as command language, editing, and help. The judgments of the three groups were analyzed using hierarchical cluster analysis and Pathfinder. These methods indicated, respectively, how the groups categorized the concepts, and network representations of the concepts for each group. The Pathfinder analysis provides greater information about local, pairwise relations among concepts, whereas the cluster analysis shows global, categorical relations to a greater extent.

  2. On the Temkin model of solid liquid interface

    NASA Astrophysics Data System (ADS)

    Mori, Atsushi; Maksimov, Igor L.

    1999-04-01

    The multilayer mean-field model of the solid-liquid interface (SLI) is studied. The nonequilibrium state diagram of the SLI is constructed on the basis of a continuum approach for diffuse SLIs. The kinetics of the SLI propagation in nonequilibrium conditions is considered; the dependence of the SLI velocity and the SLI width on the undercooling is found.

  3. Atomic Models of Strong Solids Interfaces Viewed as Composite Structures

    NASA Astrophysics Data System (ADS)

    Staffell, I.; Shang, J. L.; Kendall, K.

    2014-02-01

    This paper looks back through the 1960s to the invention of carbon fibres and the theories of Strong Solids. In particular it focuses on the fracture mechanics paradox of strong composites containing weak interfaces. From Griffith theory, it is clear that three parameters must be considered in producing a high strength composite:- minimising defects; maximising the elastic modulus; and raising the fracture energy along the crack path. The interface then introduces two further factors:- elastic modulus mismatch causing crack stopping; and debonding along a brittle interface due to low interface fracture energy. Consequently, an understanding of the fracture energy of a composite interface is needed. Using an interface model based on atomic interaction forces, it is shown that a single layer of contaminant atoms between the matrix and the reinforcement can reduce the interface fracture energy by an order of magnitude, giving a large delamination effect. The paper also looks to a future in which cars will be made largely from composite materials. Radical improvements in automobile design are necessary because the number of cars worldwide is predicted to double. This paper predicts gains in fuel economy by suggesting a new theory of automobile fuel consumption using an adaptation of Coulomb's friction law. It is demonstrated both by experiment and by theoretical argument that the energy dissipated in standard vehicle tests depends only on weight. Consequently, moving from metal to fibre construction can give a factor 2 improved fuel economy performance, roughly the same as moving from a petrol combustion drive to hydrogen fuel cell propulsion. Using both options together can give a factor 4 improvement, as demonstrated by testing a composite car using the ECE15 protocol.

  4. NASA: Model development for human factors interfacing

    NASA Technical Reports Server (NTRS)

    Smith, L. L.

    1984-01-01

    The results of an intensive literature review in the general topics of human error analysis, stress and job performance, and accident and safety analysis revealed no usable techniques or approaches for analyzing human error in ground or space operations tasks. A task review model is described and proposed to be developed in order to reduce the degree of labor intensiveness in ground and space operations tasks. An extensive number of annotated references are provided.

  5. Multiscale modeling of droplet interface bilayer membrane networks.

    PubMed

    Freeman, Eric C; Farimani, Amir B; Aluru, Narayana R; Philen, Michael K

    2015-11-01

    Droplet interface bilayer (DIB) networks are considered for the development of stimuli-responsive membrane-based materials inspired by cellular mechanics. These DIB networks are often modeled as combinations of electrical circuit analogues, creating complex networks of capacitors and resistors that mimic the biomolecular structures. These empirical models are capable of replicating data from electrophysiology experiments, but these models do not accurately capture the underlying physical phenomena and consequently do not allow for simulations of material functionalities beyond the voltage-clamp or current-clamp conditions. The work presented here provides a more robust description of DIB network behavior through the development of a hierarchical multiscale model, recognizing that the macroscopic network properties are functions of their underlying molecular structure. The result of this research is a modeling methodology based on controlled exchanges across the interfaces of neighboring droplets. This methodology is validated against experimental data, and an extension case is provided to demonstrate possible future applications of droplet interface bilayer networks. PMID:26594262

  6. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    SciTech Connect

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.

  7. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006 763 Extraction Error Modeling and Automated Model

    E-print Network

    Veneris, Andreas

    Extraction Error Modeling and Automated Model Debugging in High-Performance Custom Designs Yu-Shen Yang the transistor-level representation. This is a semi-automated process which is error-prone. Once a test model model representations of the pipelines in high-performance designs today. It also develops an automated

  8. Symmetric model of compressible granular mixtures with permeable interfaces

    NASA Astrophysics Data System (ADS)

    Saurel, Richard; Le Martelot, Sébastien; Tosello, Robert; Lapébie, Emmanuel

    2014-12-01

    Compressible granular materials are involved in many applications, some of them being related to energetic porous media. Gas permeation effects are important during their compaction stage, as well as their eventual chemical decomposition. Also, many situations involve porous media separated from pure fluids through two-phase interfaces. It is thus important to develop theoretical and numerical formulations to deal with granular materials in the presence of both two-phase interfaces and gas permeation effects. Similar topic was addressed for fluid mixtures and interfaces with the Discrete Equations Method (DEM) [R. Abgrall and R. Saurel, "Discrete equations for physical and numerical compressible multiphase mixtures," J. Comput. Phys. 186(2), 361-396 (2003)] but it seemed impossible to extend this approach to granular media as intergranular stress [K. K. Kuo, V. Yang, and B. B. Moore, "Intragranular stress, particle-wall friction and speed of sound in granular propellant beds," J. Ballist. 4(1), 697-730 (1980)] and associated configuration energy [J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Stewart, "Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues," Phys. Fluids 11, 378 (1999)] were present with significant effects. An approach to deal with fluid-porous media interfaces was derived in Saurel et al. ["Modelling dynamic and irreversible powder compaction," J. Fluid Mech. 664, 348-396 (2010)] but its validity was restricted to weak velocity disequilibrium only. Thanks to a deeper analysis, the DEM is successfully extended to granular media modelling in the present paper. It results in an enhanced version of the Baer and Nunziato ["A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861-889 (1986)] model as symmetry of the formulation is now preserved. Several computational examples are shown to validate and illustrate method's capabilities.

  9. Generalized model for solid-on-solid interface growth

    NASA Astrophysics Data System (ADS)

    Richele, M. F.; Atman, A. P. F.

    2015-05-01

    We present a probabilistic cellular automaton (PCA) model to study solid-on-solid interface growth in which the transition rules depend on the local morphology of the profile obtained from the interface representation of the PCA. We show that the model is able to reproduce a wide range of patterns whose critical roughening exponents are associated to different universality classes, including random deposition, Edwards-Wilkinson, and Kardar-Parisi-Zhang. By means of the growth exponent method, we consider a particular set of the model parameters to build the two-dimensional phase diagram corresponding to a planar cut of the higher dimensional parameter space. A strong indication of phase transition between different universality classes can be observed, evincing different regimes of deposition, from layer-by-layer to Volmer-Weber and Stransk-Krastanov-like modes. We expect that this model can be useful to predict the morphological properties of interfaces obtained at different surface deposition problems, since it allows us to simulate several experimental situations by setting the values of the specific transition probabilities in a very simple and direct way.

  10. Stability of finite difference models containing two boundaries or interfaces

    NASA Technical Reports Server (NTRS)

    Trefethen, L. N.

    1984-01-01

    The stability of finite difference models of hyperbolic initial boundary value problems is connected with the propagation and reflection of parasitic waves. Wave propagation ideas are applied to models containing two boundaires or interfaces, where repeated reflection of trapped wave packets is a potential new source of instability. Various known instability phenomena are accounted for in a unified way. Results show: (1) dissipativity does not ensure stability when three or more formulas are concatenated at a boundary or internal interface; (2) algebraic GKS instabilities can be converted by a second boundary to exponential instabilities only when an infinite numerical reflection coefficient is present; and (3) GKS-stability and P-stability can be established in certain problems by showing that all numerical reflection coefficients have modulus less than 1.

  11. Joint opening nonlinear mechanism: Interface smeared crack model

    NASA Astrophysics Data System (ADS)

    Kuo, J. S. H.

    1982-08-01

    Contraction joint opening behavior is studied. An economical model called the Interface Smeared Crack Model is developed to simulate the joint opening nonlinear mechanism. The model is based on the general smeared crack approach, with a specially introduced pushing back operation which is intended to correct the local structure response at element level. This method dramatically reduces the computational cost compared with that of a standard joint element analysis. It is demonstrated that it would be beneficial to include joint opening mechanism in the dynamic analysis of arch dams, because joint opening will limit the peak tensile arch stresses and thus improve the seismic resistance of the structure.

  12. Modeling and Extracting Deep-Web Query Interfaces

    E-print Network

    Meng, Weiyi

    Modeling and Extracting Deep-Web Query Interfaces Wensheng Wu, AnHai Doan, Clement Yu, and Weiyi 251, pp. 65­90. springerlink.com c Springer-Verlag Berlin Heidelberg 2009 #12;66 W. Wu et al. the Deep-Web, and they are the Deep-Web data sources [4]. The Deep-Web was es- timated to be at least 500 times larger than

  13. Automated MRI segmentation for individualized modeling of current flow in the human head

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-12-01

    Objective. High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets.Main results. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly.Significance. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  14. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  15. Automation of cross section construction and forward modelling of fault-bend folds from integrated map data

    E-print Network

    Connors, Christopher D.

    Automation of cross section construction and forward modelling of fault-bend folds from integrated map data Abstract: We present a series of software tools for the automation of cross section be fully automated or operated in an interactive mode. Keywords: fault-bend fold, cross section

  16. Thermal Edge-Effects Model for Automated Tape Placement of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.

    2000-01-01

    Two-dimensional thermal models for automated tape placement (ATP) of thermoplastic composites neglect the diffusive heat transport that occurs between the newly placed tape and the cool substrate beside it. Such lateral transport can cool the tape edges prematurely and weaken the bond. The three-dimensional, steady state, thermal transport equation is solved by the Green's function method for a tape of finite width being placed on an infinitely wide substrate. The isotherm for the glass transition temperature on the weld interface is used to determine the distance inward from the tape edge that is prematurely cooled, called the cooling incursion Delta a. For the Langley ATP robot, Delta a = 0.4 mm for a unidirectional lay-up of PEEK/carbon fiber composite, and Delta a = 1.2 mm for an isotropic lay-up. A formula for Delta a is developed and applied to a wide range of operating conditions. A surprise finding is that Delta a need not decrease as the Peclet number Pe becomes very large, where Pe is the dimensionless ratio of inertial to diffusive heat transport. Conformable rollers that increase the consolidation length would also increase Delta a, unless other changes are made, such as proportionally increasing the material speed. To compensate for premature edge cooling, the thermal input could be extended past the tape edges by the amount Delta a. This method should help achieve uniform weld strength and crystallinity across the width of the tape.

  17. Bacterial Adhesion to Hexadecane (Model NAPL)-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; Zoueki, C. R.; Tufenkji, N.

    2009-05-01

    The rates of biodegradation of NAPLs have been shown to be influenced by the adhesion of hydrocarbon- degrading microorganisms as well as their proximity to the NAPL-water interface. Several studies provide evidence for bacterial adhesion or biofilm formation at alkane- or crude oil-water interfaces, but there is a significant knowledge gap in our understanding of the processes that influence initial adhesion of bacteria on to NAPL-water interfaces. In this study bacterial adhesion to hexadecane, and a series of NAPLs comprised of hexadecane amended with toluene, and/or with asphaltenes and resins, which are the surface active fractions of crude oils, were examined using a Microbial Adhesion to Hydrocarbons (MATH) assay. The microorganisms employed were Mycobacterium kubicae, Pseudomonas aeruginosa and Pseudomonas putida, which are hydrocarbon degraders or soil microorganisms. MATH assays as well as electrophoretic mobility measurements of the bacterial cells and the NAPL droplet surfaces in aqueous solutions were conducted at three solution pHs (4, 6 and 7). Asphaltenes and resins were shown to generally decrease microbial adhesion. Results of the MATH assay were not in qualitative agreement with theoretical predictions of bacteria- hydrocarbon interactions based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model of free energy of interaction between the cell and NAPL droplets. In this model the free energy of interaction between two colloidal particles is predicted based on electrical double layer, van der Waals and hydrophobic forces. It is likely that the steric repulsion between bacteria and NAPL surfaces, caused by biopolymers on bacterial surfaces and aphaltenes and resins at the NAPL-water interface contributed to the decreased adhesion compared to that predicted by the XDLVO model.

  18. ShowFlow: A practical interface for groundwater modeling

    SciTech Connect

    Tauxe, J.D.

    1990-12-01

    ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

  19. Language Model Applications to Spelling with Brain-Computer Interfaces

    PubMed Central

    Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.

    2014-01-01

    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760

  20. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    NASA Astrophysics Data System (ADS)

    Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.

    2015-03-01

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  1. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    SciTech Connect

    Lacy, Jeffrey M. Smith, James A. Rabin, Barry H.

    2015-03-31

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  2. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    SciTech Connect

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  3. Automated Analysis of Cryptographic Assumptions in Generic Group Models

    E-print Network

    International Association for Cryptologic Research (IACR)

    outcome of this work is an automated tool which takes as input the statement of an assumption, and outputs of cryptographic schemes. Bilinear maps are perhaps the most strik- ing instance of such an abstraction; over schemes. Now it is believed that multilinear maps will lead to similar breakthroughs. Com- pared

  4. A biological model for controlling interface growth and morphology.

    SciTech Connect

    Hoyt, Jeffrey John; Holm, Elizabeth Ann

    2004-01-01

    Biological systems create proteins that perform tasks more efficiently and precisely than conventional chemicals. For example, many plants and animals produce proteins to control the freezing of water. Biological antifreeze proteins (AFPs) inhibit the solidification process, even below the freezing point. These molecules bond to specific sites at the ice/water interface and are theorized to suppress solidification chemically or geometrically. In this project, we investigated the theoretical and experimental data on AFPs and performed analyses to understand the unique physics of AFPs. The experimental literature was analyzed to determine chemical mechanisms and effects of protein bonding at ice surfaces, specifically thermodynamic freezing point depression, suppression of ice nucleation, decrease in dendrite growth kinetics, solute drag on the moving solid/liquid interface, and stearic pinning of the ice interface. Stearic pinning was found to be the most likely candidate to explain experimental results, including freezing point depression, growth morphologies, and thermal hysteresis. A new stearic pinning model was developed and applied to AFPs, with excellent quantitative results. Understanding biological antifreeze mechanisms could enable important medical and engineering applications, but considerable future work will be necessary.

  5. Electrochemical Stability of Model Polymer Electrolyte/Electrode Interfaces

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Yang, Guang

    2015-03-01

    Polymer electrolytes are promising materials for high energy density rechargeable batteries. However, typical polymer electrolytes are not electrochemically stable at the charging voltage of advanced positive electrode materials. Although not yet reported in literature, decomposition is expected to adversely affect the performance and lifetime of polymer-electrolyte-based batteries. In an attempt to better understand polymer electrolyte oxidation and design stable polymer electrolyte/positive electrode interfaces, we are studying electron transfer across model interfaces comprising gold nanoparticles and organic protecting ligands assembled into monolayer films. Gold nanoparticles provide large interfacial surface area yielding a measurable electrochemical signal. They are inert and hence non-reactive with most polymer electrolytes and lithium salts. The surface can be easily modified with ligands of different chemistry and molecular weight. In our study, poly(ethylene oxide) (PEO) will serve as the polymer electrolyte and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) will be the lithium salt. The effect of ligand type and molecular weight on both optical and electrical properties of the gold nanoparticle film will be presented. Finally, the electrochemical stability of the electrode/electrolyte interface and its dependence on interfacial properties will be presented.

  6. A symbolic/subsymbolic interface protocol for cognitive modeling

    PubMed Central

    Simen, Patrick; Polk, Thad

    2009-01-01

    Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and subsymbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive models as programmable, structured, recurrent neural networks. Feedback strength in these models determines whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These techniques support the implementation of limited production systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of brain damage on problem solving behavior. PMID:20711520

  7. A Model of Process-Based Automation: Cost and Quality Implications in the Medication Management Process

    ERIC Educational Resources Information Center

    Spaulding, Trent Joseph

    2011-01-01

    The objective of this research is to understand how a set of systems, as defined by the business process, creates value. The three studies contained in this work develop the model of process-based automation. The model states that complementarities among systems are specified by handoffs in the business process. The model also provides theory to…

  8. Automated Environment Generation for Software Model Checking Oksana Tkachuk, Matthew B. Dwyer

    E-print Network

    Pasareanu, Corina

    Automated Environment Generation for Software Model Checking Oksana Tkachuk, Matthew B. Dwyer programs or about program components, an abstract model of the environment can be essential in enabling environment behavior with sound abstractions of environment implemen­ tations to form a model

  9. Modeling the Energy Use of a Connected and Automated Transportation System (Poster)

    SciTech Connect

    Gonder, J.; Brown, A.

    2014-07-01

    Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing traffic flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.

  10. Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System

    NASA Technical Reports Server (NTRS)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2012-01-01

    The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

  11. Electroviscoelasticity of liquid/liquid interfaces: fractional-order model.

    PubMed

    Spasic, Aleksandar M; Lazarevic, Mihailo P

    2005-02-01

    A number of theories that describe the behavior of liquid-liquid interfaces have been developed and applied to various dispersed systems, e.g., Stokes, Reiner-Rivelin, Ericksen, Einstein, Smoluchowski, and Kinch. A new theory of electroviscoelasticity describes the behavior of electrified liquid-liquid interfaces in fine dispersed systems and is based on a new constitutive model of liquids. According to this model liquid-liquid droplet or droplet-film structure (collective of particles) is considered as a macroscopic system with internal structure determined by the way the molecules (ions) are tuned (structured) into the primary components of a cluster configuration. How the tuning/structuring occurs depends on the physical fields involved, both potential (elastic forces) and nonpotential (resistance forces). All these microelements of the primary structure can be considered as electromechanical oscillators assembled into groups, so that excitation by an external physical field may cause oscillations at the resonant/characteristic frequency of the system itself (coupling at the characteristic frequency). Up to now, three possible mathematical formalisms have been discussed related to the theory of electroviscoelasticity. The first is the tension tensor model, where the normal and tangential forces are considered, only in mathematical formalism, regardless of their origin (mechanical and/or electrical). The second is the Van der Pol derivative model, presented by linear and nonlinear differential equations. Finally, the third model presents an effort to generalize the previous Van der Pol equation: the ordinary time derivative and integral are now replaced with the corresponding fractional-order time derivative and integral of order p<1. PMID:15576102

  12. Modeling organohalide perovskites for photovoltaic applications: From materials to interfaces

    NASA Astrophysics Data System (ADS)

    de Angelis, Filippo

    2015-03-01

    The field of hybrid/organic photovoltaics has been revolutionized in 2012 by the first reports of solid-state solar cells based on organohalide perovskites, now topping at 20% efficiency. First-principles modeling has been widely applied to the dye-sensitized solar cells field, and more recently to perovskite-based solar cells. The computational design and screening of new materials has played a major role in advancing the DSCs field. Suitable modeling strategies may also offer a view of the crucial heterointerfaces ruling the device operational mechanism. I will illustrate how simulation tools can be employed in the emerging field of perovskite solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are presented using selected examples of relevant materials and interfaces. The main issue with hybrid perovskite modeling is to be able to accurately describe their structural, electronic and optical features. These materials show a degree of short range disorder, due to the presence of mobile organic cations embedded within the inorganic matrix, requiring to average their properties over a molecular dynamics trajectory. Due to the presence of heavy atoms (e.g. Sn and Pb) their electronic structure must take into account spin-orbit coupling (SOC) in an effective way, possibly including GW corrections. The proposed SOC-GW method constitutes the basis for tuning the materials electronic and optical properties, rationalizing experimental trends. Modeling charge generation in perovskite-sensitized TiO2 interfaces is then approached based on a SOC-DFT scheme, describing alignment of energy levels in a qualitatively correct fashion. The role of interfacial chemistry on the device performance is finally discussed. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under Grant Agreement No. 604032 of the MESO project.

  13. A robust and flexible Geospatial Modeling Interface (GMI) for environmental model deployment and evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper provides an overview of the GMI (Geospatial Modeling Interface) simulation framework for environmental model deployment and assessment. GMI currently provides access to multiple environmental models including AgroEcoSystem-Watershed (AgES-W), Nitrate Leaching and Economic Analysis 2 (NLEA...

  14. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1991-01-01

    Some of the many analytical models in human-computer interface design that are currently being developed are described. The usefulness of analytical models for human-computer interface design is evaluated. Can the use of analytical models be recommended to interface designers? The answer, based on the empirical research summarized here, is: not at this time. There are too many unanswered questions concerning the validity of models and their ability to meet the practical needs of design organizations.

  15. A Reference Model for Control and Automation Systems in Electric Power

    E-print Network

    the categories of data and functionality in the system. Then the model can be analyzed for general security, process control, security, computer security, data security, computer network security. 1. INTRODUCTION to increased security risk. Modeling the relationships among the elements of an automation system will clarify

  16. An Automated Method for High-Definition Transcranial Direct Current Stimulation Modeling*

    E-print Network

    Parra, Lucas C.

    An Automated Method for High-Definition Transcranial Direct Current Stimulation Modeling* Yu Huang1 stimulation (tDCS) therapy. I. INTRODUCTION Transcranial direct current stimulation (tDCS) applies weak transcranial stimulation with electric currents requires accurate models of the current flow from scalp

  17. Data for Environmental Modeling (D4EM): Background and Applications of Data Automation

    EPA Science Inventory

    The Data for Environmental Modeling (D4EM) project demonstrates the development of a comprehensive set of open source software tools that overcome obstacles to accessing data needed by automating the process of populating model input data sets with environmental data available fr...

  18. A Binary Programming Approach to Automated Test Assembly for Cognitive Diagnosis Models

    ERIC Educational Resources Information Center

    Finkelman, Matthew D.; Kim, Wonsuk; Roussos, Louis; Verschoor, Angela

    2010-01-01

    Automated test assembly (ATA) has been an area of prolific psychometric research. Although ATA methodology is well developed for unidimensional models, its application alongside cognitive diagnosis models (CDMs) is a burgeoning topic. Two suggested procedures for combining ATA and CDMs are to maximize the cognitive diagnostic index and to use a…

  19. A Grey-box Approach for Automated GUI-Model Generation of Mobile Applications

    E-print Network

    Xie, Tao

    , and mobile applications, or mobile apps for short, on this platform tend to be faulty just like other types of software, there is a growing need for automated testing techniques for mobile apps. Model- based testing grey-box approach for automatically extracting a model of a given mobile app. In our approach, static

  20. Classification of Mouse Sperm Motility Patterns Using an Automated Multiclass Support Vector Machines Model1

    E-print Network

    Wang, Wei

    1 Classification of Mouse Sperm Motility Patterns Using an Automated Multiclass Support Vector title: A Support Vector Machines Model for Sperm Motility Summary sentence: The application of multiclass support vector machines to CASA parameters from mouse sperm tracks generates a quantitative model

  1. Intelligent User Interfaces for Information Analysis: A Cognitive Model

    SciTech Connect

    Schwarting, Irene S.; Nelson, Rob A.; Cowell, Andrew J.

    2006-01-29

    Intelligent user interfaces (IUIs) for information analysis (IA) need to be designed with an intrinsic understanding of the analytical objectives and the dimensions of the information space. These analytical objectives are oriented around the requirement to provide decision makers with courses of action. Most tools available to support analysis barely skim the surface of the dimensions and categories of information used in analysis, and almost none are designed to address the ultimate requirement of decision support. This paper presents a high-level model of the cognitive framework of information analysts in the context of doing their jobs. It is intended that this model will enable the derivation of design requirements for advanced IUIs for IA.

  2. Model Based Control Design Using SLPS "Simulink PSpice Interface"

    NASA Astrophysics Data System (ADS)

    Moslehpour, Saeid; Kulcu, Ercan K.; Alnajjar, Hisham

    This paper elaborates on the new integration offered with the PSpice SLPS interface and the MATLAB simulink products. SLPS links the two widely used design products, PSpice and Mathwork's Simulink simulator. The SLPS simulation environment supports the substitution of an actual electronic block with an "ideal model", better known as the mathematical simulink model. Thus enabling the designer to identify and correct integration issues of electronics within a system. Moreover, stress audit can be performed by using the PSpice smoke analysis which helps to verify whether the components are working within the manufacturer's safe operating limits. It is invaluable since many companies design and test the electronics separately from the system level. Therefore, integrations usually are not discovered until the prototype level, causing critical time delays in getting a product to the market.

  3. ORIGAMI -- The Oak Ridge Geometry Analysis and Modeling Interface

    SciTech Connect

    Burns, T.J.

    1996-04-01

    A revised ``ray-tracing`` package which is a superset of the geometry specifications of the radiation transport codes MORSE, MASH (GIFT Versions 4 and 5), HETC, and TORT has been developed by ORNL. Two additional CAD-based formats are also included as part of the superset: the native format of the BRL-CAD system--MGED, and the solid constructive geometry subset of the IGES specification. As part of this upgrade effort, ORNL has designed an Xwindows-based utility (ORIGAMI) to facilitate the construction, manipulation, and display of the geometric models required by the MASH code. Since the primary design criterion for this effort was that the utility ``see`` the geometric model exactly as the radiation transport code does, ORIGAMI is designed to utilize the same ``ray-tracing`` package as the revised version of MASH. ORIGAMI incorporates the functionality of two previously developed graphical utilities, CGVIEW and ORGBUG, into a single consistent interface.

  4. Inferring Intent in Eye-Based Interfaces: Tracing Eye Movements with Process Models

    E-print Network

    Salvucci, Dario D.

    Inferring Intent in Eye-Based Interfaces: Tracing Eye Movements with Process Models Dario D movements. This paper describes how fixation tracing facilitates the interpretation of eye movements in eye-based interfaces and multimodal interfaces are discussed. Keywords Eye movements, eye

  5. Modeling the interface area aspect ratio of carbide grains in WCCo composites

    E-print Network

    Rohrer, Gregory S.

    Modeling the interface area aspect ratio of carbide grains in WC­Co composites Xiaokun Yuan a Keywords: Cemented carbide Electron backscattered diffraction Interface area aspect ratio Five parameter analysis The average interface area aspect ratios of carbide grains in WC­Co composites are measured from

  6. Model-Driven Engineering of Multi-Target Plastic User Interfaces Benot Collignon1

    E-print Network

    Model-Driven Engineering of Multi-Target Plastic User Interfaces Benoît Collignon1 , Jean and manipulate the plasticity domain of a user interface. The plasticity domain denotes the set of contexts to this problem, each has advantages, as limitations. Our alternative is based on plasticity of User Interfaces

  7. A predictive analytical friction model from basic theories of interfaces, contacts and dislocations

    E-print Network

    Marks, Laurence D.

    types of dislocation barriers or defects. The effects of third- body solid lubricants, superplasticity of dislocations near the interface (b) Motion of dislocations away from the interface (c) Rigid body translationsA predictive analytical friction model from basic theories of interfaces, contacts and dislocations

  8. An intracardiac navigation interface for electrophysiology modeling tools

    E-print Network

    Ocholi, Ojonimi A

    2006-01-01

    This thesis describes an interface that has been developed to assist in medical procedures. Several commercial systems are currently available each with their own strength and weaknesses and the goal of this interface is ...

  9. The electrical behavior of GaAs-insulator interfaces - A discrete energy interface state model

    NASA Technical Reports Server (NTRS)

    Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    The relationship between the electrical behavior of GaAs Metal Insulator Semiconductor (MIS) structures and the high density discrete energy interface states (0.7 and 0.9 eV below the conduction band) was investigated utilizing photo- and thermal emission from the interface states in conjunction with capacitance measurements. It was found that all essential features of the anomalous behavior of GaAs MIS structures, such as the frequency dispersion and the C-V hysteresis, can be explained on the basis of nonequilibrium charging and discharging of the high density discrete energy interface states.

  10. Modeling the Electrical Contact Resistance at Steel-Carbon Interfaces

    NASA Astrophysics Data System (ADS)

    Brimmo, Ayoola T.; Hassan, Mohamed I.

    2015-10-01

    In the aluminum smelting industry, electrical contact resistance at the stub-carbon (steel-carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel-carbon laboratory setup. By comparing the models' estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel-carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

  11. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGICAL MODELING TOOL FOR WATERSHED MANAGEMENT AND LANDSCAPE ASSESSMENT

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (http://www.epa.gov/nerlesd1/land-sci/agwa/introduction.htm and www.tucson.ars.ag.gov/agwa) tool is a GIS interface jointly developed by the U.S. Environmental Protection Agency, USDA-Agricultural Research Service, and the University ...

  12. IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 11, NO. 4, AUGUST 2006 381 Automated Onboard Modeling of Cartridge

    E-print Network

    Yao, Bin

    IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 11, NO. 4, AUGUST 2006 381 Automated Onboard Modeling significant problem, this paper focuses on the automated onboard modeling of the cartridge valve flow mappings the entire domain of the flow mapping during onboard experiments. Experimental results are obtained

  13. Growth/reflectance model interface for wheat and corresponding model

    NASA Technical Reports Server (NTRS)

    Suits, G. H.; Sieron, R.; Odenweller, J.

    1984-01-01

    The use of modeling to explore the possibility of discovering new and useful crop condition indicators which might be available from the Thematic Mapper and to connect these symptoms to the biological causes in the crop is discussed. A crop growth model was used to predict the day to day growth features of the crop as it responds biologically to the various environmental factors. A reflectance model was used to predict the character of the interaction of daylight with the predicted growth features. An atmospheric path radiance was added to the reflected daylight to simulate the radiance appearing at the sensor. Finally, the digitized data sent to a ground station were calculated. The crop under investigation is wheat.

  14. Parallelization of a hydrological model using the message passing interface

    USGS Publications Warehouse

    Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji

    2013-01-01

    With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.

  15. Automated microdensitometer.

    NASA Astrophysics Data System (ADS)

    Viswanath, C.

    An interface to a Carl Zeiss microdensitometer and the HCL'S micro-computer MICRO 2200 has been built to digitize, log, and process the analog variable density information on photographic plates. The automated process eliminates the tedious and time consuming reduction procedures of analog records on charts and helps a direct evaluation of intensity from the photographic plates and films for the quantitative analysis of spectrograms.

  16. Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm

    ERIC Educational Resources Information Center

    Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.

    2009-01-01

    Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…

  17. Model-driven Automated Software FMEA Neal Snooke, PhD, Aberystwyth University

    E-print Network

    Snooke, Neal

    to provide useful results for software engineers, and would suit embedded software in vehicles for example hardware counterpart, software FMEA is immensely tedious for an engineer to perform, as well as being errorModel-driven Automated Software FMEA Neal Snooke, PhD, Aberystwyth University Chris Price Ph

  18. Modeling E-Learning Activities in Automated Planning Antonio Garrido and Eva Onaindia

    E-print Network

    Castillo, Luis

    Modeling E-Learning Activities in Automated Planning Antonio Garrido and Eva Onaindia Universidad e-learning language into a planning domain, and a file containing stu- dent's learning information-GLC 2001 2009), the e-learning community can now represent information on educational domains in full

  19. Evaluation of automated cell disruptor methods for oomycetous and ascomycetous model organisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two automated cell disruptor-based methods for RNA extraction; disruption of thawed cells submerged in TRIzol Reagent (method QP), and direct disruption of frozen cells on dry ice (method CP), were optimized for a model oomycete, Phytophthora capsici, and compared with grinding in a mortar and pestl...

  20. Automated volumetric grid generation for finite element modeling of human hand joints

    SciTech Connect

    Hollerbach, K.; Underhill, K.; Rainsberger, R.

    1995-02-01

    We are developing techniques for finite element analysis of human joints. These techniques need to provide high quality results rapidly in order to be useful to a physician. The research presented here increases model quality and decreases user input time by automating the volumetric mesh generation step.

  1. Modeling Multiple Human-Automation Distributed Systems using Network-form Games

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume

    2012-01-01

    The paper describes at a high-level the network-form game framework (based on Bayes net and game theory), which can be used to model and analyze safety issues in large, distributed, mixed human-automation systems such as NextGen.

  2. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 2, APRIL 1997 161 Modeling Manufacturing Dependability

    E-print Network

    Kusiak, Andrew

    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 2, APRIL 1997 161 Modeling Manufacturing- ability evaluation of cellular manufacturing systems is presented, where a manufacturing system of the approach is that constructing a system level Markov chain (a complex task) is not required. A manufacturing

  3. AUTOMATED ACTIN FILAMENT SEGMENTATION, TRACKING AND TIP ELONGATION MEASUREMENTS BASED ON OPEN ACTIVE CONTOUR MODELS

    E-print Network

    Huang, Xiaolei

    AUTOMATED ACTIN FILAMENT SEGMENTATION, TRACKING AND TIP ELONGATION MEASUREMENTS BASED ON OPEN use a novel open active contour model for filament segmentation and tracking, which is fast and robust against noise; and (ii) different strategies are proposed to solve the filament intersection problem

  4. Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface.

    PubMed

    Zhang, Ziyin; Nagy, Peter B; Hassan, Waled

    2016-02-01

    Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the additional nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation. PMID:26482394

  5. Automated NMR fragment based screening identified a novel interface blocker to the LARG/RhoA complex.

    PubMed

    Gao, Jia; Ma, Rongsheng; Wang, Wei; Wang, Na; Sasaki, Ryan; Snyderman, David; Wu, Jihui; Ruan, Ke

    2014-01-01

    The small GTPase cycles between the inactive GDP form and the activated GTP form, catalyzed by the upstream guanine exchange factors. The modulation of such process by small molecules has been proven to be a fruitful route for therapeutic intervention to prevent the over-activation of the small GTPase. The fragment based approach emerging in the past decade has demonstrated its paramount potential in the discovery of inhibitors targeting such novel and challenging protein-protein interactions. The details regarding the procedure of NMR fragment screening from scratch have been rarely disclosed comprehensively, thus restricts its wider applications. To achieve a consistent screening applicable to a number of targets, we developed a highly automated protocol to cover every aspect of NMR fragment screening as possible, including the construction of small but diverse libray, determination of the aqueous solubility by NMR, grouping compounds with mutual dispersity to a cocktail, and the automated processing and visualization of the ligand based screening spectra. We exemplified our streamlined screening in RhoA alone and the complex of the small GTPase RhoA and its upstream guanine exchange factor LARG. Two hits were confirmed from the primary screening in cocktail and secondary screening over individual hits for LARG/RhoA complex, while one of them was also identified from the screening for RhoA alone. HSQC titration of the two hits over RhoA and LARG alone, respectively, identified one compound binding to RhoA.GDP at a 0.11 mM affinity, and perturbed the residues at the switch II region of RhoA. This hit blocked the formation of the LARG/RhoA complex, validated by the native gel electrophoresis, and the titration of RhoA to ¹?N labeled LARG in the absence and presence the compound, respectively. It therefore provides us a starting point toward a more potent inhibitor to RhoA activation catalyzed by LARG. PMID:24505392

  6. Graphical User Interface for Simulink Integrated Performance Analysis Model

    NASA Technical Reports Server (NTRS)

    Durham, R. Caitlyn

    2009-01-01

    The J-2X Engine (built by Pratt & Whitney Rocketdyne,) in the Upper Stage of the Ares I Crew Launch Vehicle, will only start within a certain range of temperature and pressure for Liquid Hydrogen and Liquid Oxygen propellants. The purpose of the Simulink Integrated Performance Analysis Model is to verify that in all reasonable conditions the temperature and pressure of the propellants are within the required J-2X engine start boxes. In order to run the simulation, test variables must be entered at all reasonable values of parameters such as heat leak and mass flow rate. To make this testing process as efficient as possible in order to save the maximum amount of time and money, and to show that the J-2X engine will start when it is required to do so, a graphical user interface (GUI) was created to allow the input of values to be used as parameters in the Simulink Model, without opening or altering the contents of the model. The GUI must allow for test data to come from Microsoft Excel files, allow those values to be edited before testing, place those values into the Simulink Model, and get the output from the Simulink Model. The GUI was built using MATLAB, and will run the Simulink simulation when the Simulate option is activated. After running the simulation, the GUI will construct a new Microsoft Excel file, as well as a MATLAB matrix file, using the output values for each test of the simulation so that they may graphed and compared to other values.

  7. Automated Measurement and Statistical Modeling of Elastic Laminae in Arteries

    PubMed Central

    Xu, Hai; Hu, Jin-Jia; Humphrey, Jay D.; Liu, Jyh-Charn

    2010-01-01

    Structural features of elastic laminae within arteries can provide vital information for both the mechanobiology and the biomechanics of the wall. In this paper, we propose, test, and illustrate a new computer-based scheme for automated analysis of regional distributions of elastic laminae thickness, inter-lamellar distances, and fragmentation (furcation points) from standard histological images. Our scheme eliminates potential artifacts produced by tissue cutting, automatically aligns tissue according to physiologic orientations, and performs cross-sectional measurements along radial directions. A statistical randomized complete block design (RCBD) and F-test were used to assess potential (non)-uniformity of lamellar thicknesses and separations along both radial and circumferential directions. Illustrative results for both normotensive and hypertensive thoracic porcine aorta revealed marked heterogeneity along the radial direction in nearly stress-free samples. Clearly, regional measurements can provide more detailed information about morphologic changes that cannot be gained by globally averaged evaluations alone. We also found that quantifying Furcation Point densities offers new information about potential elastin fragmentation, particularly in response to increased loading due to hypertension. PMID:20221934

  8. Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces

    SciTech Connect

    Lomov, I; Antoun, T; Vorobiev, O

    2009-12-16

    Accurate representation of discontinuities such as joints and faults is a key ingredient for high fidelity modeling of shock propagation in geologic media. The following study was done to improve treatment of discontinuities (joints) in the Eulerian hydrocode GEODYN (Lomov and Liu 2005). Lagrangian methods with conforming meshes and explicit inclusion of joints in the geologic model are well suited for such an analysis. Unfortunately, current meshing tools are unable to automatically generate adequate hexahedral meshes for large numbers of irregular polyhedra. Another concern is that joint stiffness in such explicit computations requires significantly reduced time steps, with negative implications for both the efficiency and quality of the numerical solution. An alternative approach is to use non-conforming meshes and embed joint information into regular computational elements. However, once slip displacement on the joints become comparable to the zone size, Lagrangian (even non-conforming) meshes could suffer from tangling and decreased time step problems. The use of non-conforming meshes in an Eulerian solver may alleviate these difficulties and provide a viable numerical approach for modeling the effects of faults on the dynamic response of geologic materials. We studied shock propagation in jointed/faulted media using a Lagrangian and two Eulerian approaches. To investigate the accuracy of this joint treatment the GEODYN calculations have been compared with results from the Lagrangian code GEODYN-L which uses an explicit treatment of joints via common plane contact. We explore two approaches to joint treatment in the code, one for joints with finite thickness and the other for tight joints. In all cases the sliding interfaces are tracked explicitly without homogenization or blending the joint and block response into an average response. In general, rock joints will introduce an increase in normal compliance in addition to a reduction in shear strength. In the present work we consider the limiting case of stiff discontinuities that only affect the shear strength of the material.

  9. Petri net-based modelling of human-automation conflicts in aviation.

    PubMed

    Pizziol, Sergio; Tessier, Catherine; Dehais, Frédéric

    2014-01-01

    Analyses of aviation safety reports reveal that human-machine conflicts induced by poor automation design are remarkable precursors of accidents. A review of different crew-automation conflicting scenarios shows that they have a common denominator: the autopilot behaviour interferes with the pilot's goal regarding the flight guidance via 'hidden' mode transitions. Considering both the human operator and the machine (i.e. the autopilot or the decision functions) as agents, we propose a Petri net model of those conflicting interactions, which allows them to be detected as deadlocks in the Petri net. In order to test our Petri net model, we designed an autoflight system that was formally analysed to detect conflicting situations. We identified three conflicting situations that were integrated in an experimental scenario in a flight simulator with 10 general aviation pilots. The results showed that the conflicts that we had a-priori identified as critical had impacted the pilots' performance. Indeed, the first conflict remained unnoticed by eight participants and led to a potential collision with another aircraft. The second conflict was detected by all the participants but three of them did not manage the situation correctly. The last conflict was also detected by all the participants but provoked typical automation surprise situation as only one declared that he had understood the autopilot behaviour. These behavioural results are discussed in terms of workload and number of fired 'hidden' transitions. Eventually, this study reveals that both formal and experimental approaches are complementary to identify and assess the criticality of human-automation conflicts. Practitioner Summary: We propose a Petri net model of human-automation conflicts. An experiment was conducted with general aviation pilots performing a scenario involving three conflicting situations to test the soundness of our formal approach. This study reveals that both formal and experimental approaches are complementary to identify and assess the criticality conflicts. PMID:24444329

  10. Automated construction of dynamic models of subcellular structure

    E-print Network

    -related variation of images of nuclei in an unsupervised manner, i.e., without information on the cell cycle phase organization, fluorescent microscope image analysis, generative models, cell shape, nonparametric shape space models, shape dynamics models, helper t cell activation, immunological synapse formation, cell signaling

  11. A Voyage to Arcturus: A model for automated management of a WLCG Tier-2 facility

    NASA Astrophysics Data System (ADS)

    Roy, Gareth; Crooks, David; Mertens, Lena; Mitchell, Mark; Purdie, Stuart; Cadellin Skipsey, Samuel; Britton, David

    2014-06-01

    With the current trend towards "On Demand Computing" in big data environments it is crucial that the deployment of services and resources becomes increasingly automated. Deployment based on cloud platforms is available for large scale data centre environments but these solutions can be too complex and heavyweight for smaller, resource constrained WLCG Tier-2 sites. Along with a greater desire for bespoke monitoring and collection of Grid related metrics, a more lightweight and modular approach is desired. In this paper we present a model for a lightweight automated framework which can be use to build WLCG grid sites, based on "off the shelf" software components. As part of the research into an automation framework the use of both IPMI and SNMP for physical device management will be included, as well as the use of SNMP as a monitoring/data sampling layer such that more comprehensive decision making can take place and potentially be automated. This could lead to reduced down times and better performance as services are recognised to be in a non-functional state by autonomous systems.

  12. Model-based metrics of human-automation function allocation in complex work environments

    NASA Astrophysics Data System (ADS)

    Kim, So Young

    Function allocation is the design decision which assigns work functions to all agents in a team, both human and automated. Efforts to guide function allocation systematically has been studied in many fields such as engineering, human factors, team and organization design, management science, and cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary issues with function allocation. Four distinctive perspectives emerged from a review of these fields: technology-centered, human-centered, team-oriented, and work-oriented. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), team structure and processes, and work structure and the work environment. Together, these perspectives identify the following eight issues with function allocation: 1) Workload, 2) Incoherency in function allocations, 3) Mismatches between responsibility and authority, 4) Interruptive automation, 5) Automation boundary conditions, 6) Function allocation preventing human adaptation to context, 7) Function allocation destabilizing the humans' work environment, and 8) Mission Performance. Addressing these issues systematically requires formal models and simulations that include all necessary aspects of human-automation function allocation: the work environment, the dynamics inherent to the work, agents, and relationships among them. Also, addressing these issues requires not only a (static) model, but also a (dynamic) simulation that captures temporal aspects of work such as the timing of actions and their impact on the agent's work. Therefore, with properly modeled work as described by the work environment, the dynamics inherent to the work, agents, and relationships among them, a modeling framework developed by this thesis, which includes static work models and dynamic simulation, can capture the issues with function allocation. Then, based on the eight issues, eight types of metrics are established. The purpose of these metrics is to assess the extent to which each issue exists with a given function allocation. Specifically, the eight types of metrics assess workload, coherency of a function allocation, mismatches between responsibility and authority, interruptive automation, automation boundary conditions, human adaptation to context, stability of the human's work environment, and mission performance. Finally, to validate the modeling framework and the metrics, a case study was conducted modeling four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight. A range of pilot cognitive control modes and maximum human taskload limits were also included in the model. The metrics were assessed for these four function allocations and analyzed to validate capability of the metrics to identify important issues in given function allocations. In addition, the design insights provided by the metrics are highlighted. This thesis concludes with a discussion of mechanisms for further validating the modeling framework and function allocation metrics developed here, and highlights where these developments can be applied in research and in the design of function allocations in complex work environments such as aviation operations.

  13. Modeling and Calibration of Automated Zoom Lenses Reg G. Willson

    E-print Network

    lenses the image-formation process is static, and thus the camera model's terms are constants. In variable-parameter lenses the image-formationprocess is an adjustable function of the lens control settings, the two traditional models of the image-formation process | the pinhole camera and the thin lens

  14. Automated parametrical antenna modelling for ambient assisted living applications

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, R.; John, W.; Mathis, W.

    2012-09-01

    In this paper a parametric modeling technique for a fast polynomial extraction of the physically relevant parameters of inductively coupled RFID/NFC (radio frequency identification/near field communication) antennas is presented. The polynomial model equations are obtained by means of a three-step procedure: first, full Partial Element Equivalent Circuit (PEEC) antenna models are determined by means of a number of parametric simulations within the input parameter range of a certain antenna class. Based on these models, the RLC antenna parameters are extracted in a subsequent model reduction step. Employing these parameters, polynomial equations describing the antenna parameter with respect to (w.r.t.) the overall antenna input parameter range are extracted by means of polynomial interpolation and approximation of the change of the polynomials' coefficients. The described approach is compared to the results of a reference PEEC solver with regard to accuracy and computation effort.

  15. Multi-robot User Interface Modeling Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

    E-print Network

    Multi-robot User Interface Modeling Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin Mobile Robot Lab College of Computing Georgia Institute of Technology Atlanta, Georgia 30332-0250 {alan.wagner systems, usability testing typically requires difficult to find domain experts to assess the interface

  16. Multirobot User Interface Modeling Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

    E-print Network

    Multi­robot User Interface Modeling Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin Mobile Robot Lab College of Computing Georgia Institute of Technology Atlanta, Georgia 30332­0250 {alan.wagner systems, usability testing typically requires difficult to find domain experts to assess the interface

  17. Modeling Auditory-Haptic Interface Cues from an Analog Multi-line Telephone

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Anderson, Mark R.; Bittner, Rachael M.

    2012-01-01

    The Western Electric Company produced a multi-line telephone during the 1940s-1970s using a six-button interface design that provided robust tactile, haptic and auditory cues regarding the "state" of the communication system. This multi-line telephone was used as a model for a trade study comparison of two interfaces: a touchscreen interface (iPad)) versus a pressure-sensitive strain gauge button interface (Phidget USB interface controllers). The experiment and its results are detailed in the authors' AES 133rd convention paper " Multimodal Information Management: Evaluation of Auditory and Haptic Cues for NextGen Communication Dispays". This Engineering Brief describes how the interface logic, visual indications, and auditory cues of the original telephone were synthesized using MAX/MSP, including the logic for line selection, line hold, and priority line activation.

  18. Automation based on knowledge modeling theory and its applications in engine diagnostic systems using Space Shuttle Main Engine vibrational data

    NASA Astrophysics Data System (ADS)

    Kim, Jonnathan H.

    1995-04-01

    Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).

  19. Automated Model Selection for Simulation Based on Relevance Reasoning

    E-print Network

    Pratt, Vaughan

    Knowledge Systems Laboratory Stanford University Gates Bldg. 2A, Rm. 256 Stanford, California 94305 iwasaki@ksl, California 94305 fikes@ksl.stanford.edu August 6, 1997 Abstract Constructing an appropriate model

  20. Automated mask creation from a 3D model using Faethm.

    SciTech Connect

    Schiek, Richard Louis; Schmidt, Rodney Cannon

    2007-11-01

    We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micro-machining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology of the model.

  1. Modeling the flow in diffuse interface methods of solidification

    NASA Astrophysics Data System (ADS)

    Subhedar, A.; Steinbach, I.; Varnik, F.

    2015-08-01

    Fluid dynamical equations in the presence of a diffuse solid-liquid interface are investigated via a volume averaging approach. The resulting equations exhibit the same structure as the standard Navier-Stokes equation for a Newtonian fluid with a constant viscosity, the effect of the solid phase fraction appearing in the drag force only. This considerably simplifies the use of the lattice Boltzmann method as a fluid dynamics solver in solidification simulations. Galilean invariance is also satisfied within this approach. Further, we investigate deviations between the diffuse and sharp interface flow profiles via both quasiexact numerical integration and lattice Boltzmann simulations. It emerges from these studies that the freedom in choosing the solid-liquid coupling parameter h provides a flexible way of optimizing the diffuse interface-flow simulations. Once h is adapted for a given spatial resolution, the simulated flow profiles reach an accuracy comparable to quasiexact numerical simulations.

  2. Modelling of transient heat conduction with diffuse interface methods

    NASA Astrophysics Data System (ADS)

    Ettrich, J.; Choudhury, A.; Tschukin, O.; Schoof, E.; August, A.; Nestler, B.

    2014-12-01

    We present a survey on different numerical interpolation schemes used for two-phase transient heat conduction problems in the context of interface capturing phase-field methods. Examples are general transport problems in the context of diffuse interface methods with a non-equal heat conductivity in normal and tangential directions to the interface. We extend the tonsorial approach recently published by Nicoli M et al (2011 Phys. Rev. E 84 1-6) to the general three-dimensional (3D) transient evolution equations. Validations for one-dimensional, two-dimensional and 3D transient test cases are provided, and the results are in good agreement with analytical and numerical reference solutions.

  3. Environment Modeling for Automated Testing of Cloud Applications

    E-print Network

    Xie, Tao

    }@microsoft.com, {xxm, lj}@nju.edu.cn Abstract: Recently, cloud computing platforms, such as Microsoft Azure-intensive computing. To ensure high quality of cloud applications under development, developer testing (also referred Cloud Computing, Software Testing, Dynamic Symbolic Execution, Cloud Environment Model Introduction

  4. Automated biowaste sampling system urine subsystem operating model, part 1

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Rosen, F.

    1973-01-01

    The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem.

  5. Automated Target Recognition Using Passive Radar and Coordinated Flight Models

    E-print Network

    Lanterman, Aaron

    approach to ATR compares the Radar Cross Section (RCS) of targets detected by a passive radar system, Passive Radar, Coordinated Flight Model, Radar Cross Section 1. INTRODUCTION Passive radar systems which if the Radar Cross Section (RCS) of the targets vary "slowly" with small changes in these components

  6. A simplified cellular automation model for city traffic

    SciTech Connect

    Simon, P.M.; Nagel, K. |

    1997-12-31

    The authors systematically investigate the effect of blockage sites in a cellular automata model for traffic flow. Different scheduling schemes for the blockage sites are considered. None of them returns a linear relationship between the fraction of green time and the throughput. The authors use this information for a fast implementation of traffic in Dallas.

  7. Automated volumetric breast density derived by shape and appearance modeling

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Kerlikowske, Karla; Shepherd, John

    2014-03-01

    The image shape and texture (appearance) estimation designed for facial recognition is a novel and promising approach for application in breast imaging. The purpose of this study was to apply a shape and appearance model to automatically estimate percent breast fibroglandular volume (%FGV) using digital mammograms. We built a shape and appearance model using 2000 full-field digital mammograms from the San Francisco Mammography Registry with known %FGV measured by single energy absorptiometry method. An affine transformation was used to remove rotation, translation and scale. Principal Component Analysis (PCA) was applied to extract significant and uncorrelated components of %FGV. To build an appearance model, we transformed the breast images into the mean texture image by piecewise linear image transformation. Using PCA the image pixels grey-scale values were converted into a reduced set of the shape and texture features. The stepwise regression with forward selection and backward elimination was used to estimate the outcome %FGV with shape and appearance features and other system parameters. The shape and appearance scores were found to correlate moderately to breast %FGV, dense tissue volume and actual breast volume, body mass index (BMI) and age. The highest Pearson correlation coefficient was equal 0.77 for the first shape PCA component and actual breast volume. The stepwise regression method with ten-fold cross-validation to predict %FGV from shape and appearance variables and other system outcome parameters generated a model with a correlation of r2 = 0.8. In conclusion, a shape and appearance model demonstrated excellent feasibility to extract variables useful for automatic %FGV estimation. Further exploring and testing of this approach is warranted.

  8. Automated calibration of a stream solute transport model: Implications for interpretation of biogeochemical parameters

    USGS Publications Warehouse

    Scott, D.T.; Gooseff, M.N.; Bencala, K.E.; Runkel, R.L.

    2003-01-01

    The hydrologic processes of advection, dispersion, and transient storage are the primary physical mechanisms affecting solute transport in streams. The estimation of parameters for a conservative solute transport model is an essential step to characterize transient storage and other physical features that cannot be directly measured, and often is a preliminary step in the study of reactive solutes. Our study used inverse modeling to estimate parameters of the transient storage model OTIS (One dimensional Transport with Inflow and Storage). Observations from a tracer injection experiment performed on Uvas Creek, California, USA, are used to illustrate the application of automated solute transport model calibration to conservative and nonconservative stream solute transport. A computer code for universal inverse modeling (UCODE) is used for the calibrations. Results of this procedure are compared with a previous study that used a trial-and-error parameter estimation approach. The results demonstrated 1) importance of the proper estimation of discharge and lateral inflow within the stream system; 2) that although the fit of the observations is not much better when transient storage is invoked, a more randomly distributed set of residuals resulted (suggesting non-systematic error), indicating that transient storage is occurring; 3) that inclusion of transient storage for a reactive solute (Sr2+) provided a better fit to the observations, highlighting the importance of robust model parameterization; and 4) that applying an automated calibration inverse modeling estimation approach resulted in a comprehensive understanding of the model results and the limitation of input data.

  9. An Improvement in Thermal Modelling of Automated Tape Placement Process

    NASA Astrophysics Data System (ADS)

    Barasinski, Anaïs; Leygue, Adrien; Soccard, Eric; Poitou, Arnaud

    2011-01-01

    The thermoplastic tape placement process offers the possibility of manufacturing large laminated composite parts with all kinds of geometries (double curved i.e.). This process is based on the fusion bonding of a thermoplastic tape on a substrate. It has received a growing interest during last years because of its non autoclave abilities. In order to control and optimize the quality of the manufactured part, we need to predict the temperature field throughout the processing of the laminate. In this work, we focus on a thermal modeling of this process which takes in account the imperfect bonding existing between the different layers of the substrate by introducing thermal contact resistance in the model. This study is leaning on experimental results which inform us that the value of the thermal resistance evolves with temperature and pressure applied on the material.

  10. An Improvement in Thermal Modelling of Automated Tape Placement Process

    SciTech Connect

    Barasinski, Anaies; Leygue, Adrien; Poitou, Arnaud; Soccard, Eric

    2011-01-17

    The thermoplastic tape placement process offers the possibility of manufacturing large laminated composite parts with all kinds of geometries (double curved i.e.). This process is based on the fusion bonding of a thermoplastic tape on a substrate. It has received a growing interest during last years because of its non autoclave abilities.In order to control and optimize the quality of the manufactured part, we need to predict the temperature field throughout the processing of the laminate. In this work, we focus on a thermal modeling of this process which takes in account the imperfect bonding existing between the different layers of the substrate by introducing thermal contact resistance in the model. This study is leaning on experimental results which inform us that the value of the thermal resistance evolves with temperature and pressure applied on the material.

  11. IDEF3 and IDEF4 automation system requirements document and system environment models

    NASA Technical Reports Server (NTRS)

    Blinn, Thomas M.

    1989-01-01

    The requirements specification is provided for the IDEF3 and IDEF4 tools that provide automated support for IDEF3 and IDEF4 modeling. The IDEF3 method is a scenario driven process flow description capture method intended to be used by domain experts to represent the knowledge about how a particular system or process works. The IDEF3 method provides modes to represent both (1) Process Flow Description to capture the relationships between actions within the context of a specific scenario, and (2) Object State Transition to capture the allowable transitions of an object in the domain. The IDEF4 method provides a method for capturing the (1) Class Submodel or object hierarchy, (2) Method Submodel or the procedures associated with each classes of objects, and (3) the Dispath Matching or the relationships between the objects and methods in the object oriented design. The requirements specified describe the capabilities that a fully functional IDEF3 or IDEF4 automated tool should support.

  12. Ab-initio molecular modeling of interfaces in tantalum-carbon system

    SciTech Connect

    Balani, Kantesh; Mungole, Tarang; Bakshi, Srinivasa Rao; Agarwal, Arvind

    2012-03-15

    Processing of ultrahigh temperature TaC ceramic material with sintering additives of B{sub 4}C and reinforcement of carbon nanotubes (CNTs) gives rise to possible formation of several interfaces (Ta{sub 2}C-TaC, TaC-CNT, Ta{sub 2}C-CNT, TaB{sub 2}-TaC, and TaB{sub 2}-CNT) that could influence the resultant properties. Current work focuses on interfaces developed during spark plasma sintering of TaC-system and performing ab initio molecular modeling of the interfaces generated during processing of TaC-B{sub 4}C and TaC-CNT composites. The energy of the various interfaces has been evaluated and compared with TaC-Ta{sub 2}C interface. The iso-surface electronic contours are extracted from the calculations eliciting the enhanced stability of TaC-CNT interface by 72.2%. CNTs form stable interfaces with Ta{sub 2}C and TaB{sub 2} phases with a reduction in the energy by 35.8% and 40.4%, respectively. The computed Ta-C-B interfaces are also compared with experimentally observed interfaces in high resolution TEM images.

  13. Ab-initio molecular modeling of interfaces in tantalum-carbon system

    NASA Astrophysics Data System (ADS)

    Balani, Kantesh; Bakshi, Srinivasa Rao; Mungole, Tarang; Agarwal, Arvind

    2012-03-01

    Processing of ultrahigh temperature TaC ceramic material with sintering additives of B4C and reinforcement of carbon nanotubes (CNTs) gives rise to possible formation of several interfaces (Ta2C-TaC, TaC-CNT, Ta2C-CNT, TaB2-TaC, and TaB2-CNT) that could influence the resultant properties. Current work focuses on interfaces developed during spark plasma sintering of TaC-system and performing ab initio molecular modeling of the interfaces generated during processing of TaC-B4C and TaC-CNT composites. The energy of the various interfaces has been evaluated and compared with TaC-Ta2C interface. The iso-surface electronic contours are extracted from the calculations eliciting the enhanced stability of TaC-CNT interface by 72.2%. CNTs form stable interfaces with Ta2C and TaB2 phases with a reduction in the energy by 35.8% and 40.4%, respectively. The computed Ta-C-B interfaces are also compared with experimentally observed interfaces in high resolution TEM images.

  14. Keratocyte Apoptosis and Not Myofibroblast Differentiation Mark the Graft/Host Interface at Early Time-Points Post-DSAEK in a Cat Model

    PubMed Central

    Weis, Adam J.; Huxlin, Krystel R.; Callan, Christine L.; DeMagistris, Margaret A.; Hindman, Holly B.

    2013-01-01

    Purpose To evaluate myofibroblast differentiation as an etiology of haze at the graft-host interface in a cat model of Descemet’s Stripping Automated Endothelial Keratoplasty (DSAEK). Methods DSAEK was performed on 10 eyes of 5 adult domestic short-hair cats. In vivo corneal imaging with slit lamp, confocal, and optical coherence tomography (OCT) were performed twice weekly. Cats were sacrificed and corneas harvested 4 hours, and 2, 4, 6, and 9 days post-DSAEK. Corneal sections were stained with the TUNEL method and immunohistochemistry was performed for ?-smooth muscle actin (?-SMA) and fibronectin with DAPI counterstain. Results At all in vivo imaging time-points, corneal OCT revealed an increase in backscatter of light and confocal imaging revealed an acellular zone at the graft-host interface. At all post-mortem time-points, immunohistochemistry revealed a complete absence of ?-SMA staining at the graft-host interface. At 4 hours, extracellular fibronectin staining was identified along the graft-host interface and both fibronectin and TUNEL assay were positive within adjacent cells extending into the host stroma. By day 2, fibronectin and TUNEL staining diminished and a distinct acellular zone was present in the region of previously TUNEL-positive cells. Conclusions OCT imaging consistently showed increased reflectivity at the graft-host interface in cat corneas in the days post-DSAEK. This was not associated with myofibroblast differentiation at the graft-host interface, but rather with apoptosis and the development of a subsequent acellular zone. The roles of extracellular matrix changes and keratocyte cell death and repopulation should be investigated further as potential contributors to the interface optical changes. PMID:24098706

  15. EST2uni: an open, parallel tool for automated EST analysis and database creation, with a data mining web interface and microarray expression data integration

    PubMed Central

    Forment, Javier; Gilabert, Francisco; Robles, Antonio; Conejero, Vicente; Nuez, Fernando; Blanca, Jose M

    2008-01-01

    Background Expressed sequence tag (EST) collections are composed of a high number of single-pass, redundant, partial sequences, which need to be processed, clustered, and annotated to remove low-quality and vector regions, eliminate redundancy and sequencing errors, and provide biologically relevant information. In order to provide a suitable way of performing the different steps in the analysis of the ESTs, flexible computation pipelines adapted to the local needs of specific EST projects have to be developed. Furthermore, EST collections must be stored in highly structured relational databases available to researchers through user-friendly interfaces which allow efficient and complex data mining, thus offering maximum capabilities for their full exploitation. Results We have created EST2uni, an integrated, highly-configurable EST analysis pipeline and data mining software package that automates the pre-processing, clustering, annotation, database creation, and data mining of EST collections. The pipeline uses standard EST analysis tools and the software has a modular design to facilitate the addition of new analytical methods and their configuration. Currently implemented analyses include functional and structural annotation, SNP and microsatellite discovery, integration of previously known genetic marker data and gene expression results, and assistance in cDNA microarray design. It can be run in parallel in a PC cluster in order to reduce the time necessary for the analysis. It also creates a web site linked to the database, showing collection statistics, with complex query capabilities and tools for data mining and retrieval. Conclusion The software package presented here provides an efficient and complete bioinformatics tool for the management of EST collections which is very easy to adapt to the local needs of different EST projects. The code is freely available under the GPL license and can be obtained at . This site also provides detailed instructions for installation and configuration of the software package. The code is under active development to incorporate new analyses, methods, and algorithms as they are released by the bioinformatics community. PMID:18179701

  16. A computational model of the motivation-learning interface Manish Saggar (mishu@cs.utexas.edu)

    E-print Network

    Maddox, W. Todd

    A computational model of the motivation-learning interface Manish Saggar (mishu the influence of motivation on learning observed by Markman, Baldwin and Maddox (2005). They showed was confirmed. These results constitute a first computational step towards understanding how motivation

  17. Sketch-based interfaces for modeling and users' needs: Redefining connections

    E-print Network

    Elsen, Catherine

    The goal of this paper is to reexamine assumptions about sketch-based interfaces for modeling in the context of designers' needs and practices. Research questions examine (a) the type of sketch support and (b) the timing ...

  18. AIDE, A SYSTEM FOR DEVELOPING INTERACTIVE USER INTERFACES FOR ENVIRONMENTAL MODELS

    EPA Science Inventory

    Recent progress in environmental science and engineering has seen increasing use of interactive interfaces for computer models. nitial applications centered on the use of interactive software to assist in building complicated input sequences required by batch programs. rom these ...

  19. Automated Geographic Simplification Tools for Development of Regional Scale Groundwater Flow Models

    NASA Astrophysics Data System (ADS)

    Craig, J. R.; Sinha, G.; Flewelling, D. M.; Silavisesrith, W.; Rabideau, A. J.

    2003-12-01

    The analytic element method is well suited for modeling regional scale saturated groundwater flow. Recent advances enable the solution of models with tens of thousands of hydrogeologic features over scales of hundreds of kilometers. In order to implement such models, automated techniques are desired to translate regional scale conceptual models and/or readily available hydrologic base maps into model features. A suite of tools derived from standard cartographic generalization operators have been developed to perform these simplification tasks. Highly detailed digitized surface features (e.g. river and lake boundaries) are simplified into representative elements and strings of elements using algorithms designed to capture important geometric and physical properties. These simplified models are more computationally efficient and achieve similar (often nearly identical) results. In addition, a general framework for application of simplification operators to vector-based numerical models has been developed.

  20. A coupled damage-plasticity model for the cyclic behavior of shear-loaded interfaces

    NASA Astrophysics Data System (ADS)

    Carrara, P.; De Lorenzis, L.

    2015-12-01

    The present work proposes a novel thermodynamically consistent model for the behavior of interfaces under shear (i.e. mode-II) cyclic loading conditions. The interface behavior is defined coupling damage and plasticity. The admissible states' domain is formulated restricting the tangential interface stress to non-negative values, which makes the model suitable e.g. for interfaces with thin adherends. Linear softening is assumed so as to reproduce, under monotonic conditions, a bilinear mode-II interface law. Two damage variables govern respectively the loss of strength and of stiffness of the interface. The proposed model needs the evaluation of only four independent parameters, i.e. three defining the monotonic mode-II interface law, and one ruling the fatigue behavior. This limited number of parameters and their clear physical meaning facilitate experimental calibration. Model predictions are compared with experimental results on fiber reinforced polymer sheets externally bonded to concrete involving different load histories, and an excellent agreement is obtained.

  1. An automation of design and modelling tasks in NX Siemens environment with original software - generator module

    NASA Astrophysics Data System (ADS)

    Zbiciak, M.; Grabowik, C.; Janik, W.

    2015-11-01

    Nowadays the design constructional process is almost exclusively aided with CAD/CAE/CAM systems. It is evaluated that nearly 80% of design activities have a routine nature. These design routine tasks are highly susceptible to automation. Design automation is usually made with API tools which allow building original software responsible for adding different engineering activities. In this paper the original software worked out in order to automate engineering tasks at the stage of a product geometrical shape design is presented. The elaborated software works exclusively in NX Siemens CAD/CAM/CAE environment and was prepared in Microsoft Visual Studio with application of the .NET technology and NX SNAP library. The software functionality allows designing and modelling of spur and helicoidal involute gears. Moreover, it is possible to estimate relative manufacturing costs. With the Generator module it is possible to design and model both standard and non-standard gear wheels. The main advantage of the model generated in such a way is its better representation of an involute curve in comparison to those which are drawn in specialized standard CAD systems tools. It comes from fact that usually in CAD systems an involute curve is drawn by 3 points that respond to points located on the addendum circle, the reference diameter of a gear and the base circle respectively. In the Generator module the involute curve is drawn by 11 involute points which are located on and upper the base and the addendum circles therefore 3D gear wheels models are highly accurate. Application of the Generator module makes the modelling process very rapid so that the gear wheel modelling time is reduced to several seconds. During the conducted research the analysis of differences between standard 3 points and 11 points involutes was made. The results and conclusions drawn upon analysis are shown in details.

  2. Piloted Simulation of a Model-Predictive Automated Recovery System

    NASA Technical Reports Server (NTRS)

    Liu, James (Yuan); Litt, Jonathan; Sowers, T. Shane; Owens, A. Karl; Guo, Ten-Huei

    2014-01-01

    This presentation describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  3. Prototype of Automated PLC Model Checking Using Continuous Integration Tools

    E-print Network

    Lettrich, Michael

    2015-01-01

    To deal with the complexity of operating and supervising large scale industrial installations at CERN, often Programmable Logic Controllers (PLCs) are used. A failure in these control systems can cause a disaster in terms of economic loses, environmental damages or human losses. Therefore the requirements to software quality are very high. To provide PLC developers with a way to verify proper functionality against requirements, a Java tool named PLCverif has been developed which encapsulates and thus simplifies the use of third party model checkers. One of our goals in this project is to integrate PLCverif in development process of PLC programs. When the developer changes the program, all the requirements should be verified again, as a change on the code can produce collateral effects and violate one or more requirements. For that reason, PLCverif has been extended to work with Jenkins CI in order to trigger automatically the verication cases when the developer changes the PLC program. This prototype has been...

  4. Modeling Speech Disfluency to Predict Conceptual Misalignment in Speech Survey Interfaces

    ERIC Educational Resources Information Center

    Ehlen, Patrick; Schober, Michael F.; Conrad, Frederick G.

    2007-01-01

    Computer-based interviewing systems could use models of respondent disfluency behaviors to predict a need for clarification of terms in survey questions. This study compares simulated speech interfaces that use two such models--a generic model and a stereotyped model that distinguishes between the speech of younger and older speakers--to several…

  5. Automated landmark generation for constructing statistical shape models

    NASA Astrophysics Data System (ADS)

    Luo, Hui

    2003-05-01

    In this paper, a novel method is provided for automatic generation of landmarks to construct statistical shape models. The method generates a sparse polygonal approximation for each shape example in the training set and then automatically aligns the shape polygons by minimizing the L2 distance of the turning functions of their polygonal approximations. The turning function measures the angle of counterclockwise tangent as a function of the arc-length and is especially suitable for shape alignment since it is piecewise constant for a polygon, and invariant under translation, rotation and scaling of the polygon. Based on the minimal L2 distance, a shape classifier is used to remove the shapes very different from the training set to prevent undesirable distortion of the mean shape. For some shapes with non-rigid deformation, such as hands, a local alignment is performed by using a visual part decomposition scheme and a partial match algorithm. Finally, a set of salient match pairs are detected and used to generate the landmarks. This method has been successfully applied to various anatomical structures. As expected, a large portion of shape variability is captured.

  6. A semi-automated vascular access system for preclinical models

    NASA Astrophysics Data System (ADS)

    Berry-Pusey, B. N.; Chang, Y. C.; Prince, S. W.; Chu, K.; David, J.; Taschereau, R.; Silverman, R. W.; Williams, D.; Ladno, W.; Stout, D.; Tsao, T. C.; Chatziioannou, A.

    2013-08-01

    Murine models are used extensively in biological and translational research. For many of these studies it is necessary to access the vasculature for the injection of biologically active agents. Among the possible methods for accessing the mouse vasculature, tail vein injections are a routine but critical step for many experimental protocols. To perform successful tail vein injections, a high skill set and experience is required, leaving most scientists ill-suited to perform this task. This can lead to a high variability between injections, which can impact experimental results. To allow more scientists to perform tail vein injections and to decrease the variability between injections, a vascular access system (VAS) that semi-automatically inserts a needle into the tail vein of a mouse was developed. The VAS uses near infrared light, image processing techniques, computer controlled motors, and a pressure feedback system to insert the needle and to validate its proper placement within the vein. The VAS was tested by injecting a commonly used radiolabeled probe (FDG) into the tail veins of five mice. These mice were then imaged using micro-positron emission tomography to measure the percentage of the injected probe remaining in the tail. These studies showed that, on average, the VAS leaves 3.4% of the injected probe in the tail. With these preliminary results, the VAS system demonstrates the potential for improving the accuracy of tail vein injections in mice.

  7. Automated Finite Element Modeling of Wing Structures for Shape Optimization

    NASA Technical Reports Server (NTRS)

    Harvey, Michael Stephen

    1993-01-01

    The displacement formulation of the finite element method is the most general and most widely used technique for structural analysis of airplane configurations. Modem structural synthesis techniques based on the finite element method have reached a certain maturity in recent years, and large airplane structures can now be optimized with respect to sizing type design variables for many load cases subject to a rich variety of constraints including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3). These structural synthesis capabilities use gradient based nonlinear programming techniques to search for improved designs. For these techniques to be practical a major improvement was required in computational cost of finite element analyses (needed repeatedly in the optimization process). Thus, associated with the progress in structural optimization, a new perspective of structural analysis has emerged, namely, structural analysis specialized for design optimization application, or.what is known as "design oriented structural analysis" (Ref. 4). This discipline includes approximation concepts and methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the optimization of large structural systems (modeled by thousands of degrees of freedom and thousands of design variables) practical and cost effective.

  8. ISOMER Augmenting Software Testing Confidence by Automated Comparison with a

    E-print Network

    Ernst, Daniel J.

    ISOMER ­ Augmenting Software Testing Confidence by Automated Comparison with a Lightweight Model on the random stimulus generated, ISOMER subjects software interfaces to dynamically- generated test cases occur during normal testing. Our system "ISOMER" helps find data-dependent errors in software programs

  9. Automated Contour Mapping With a Regional Deformable Model

    SciTech Connect

    Chao Ming; Li Tianfang; Schreibmann, Eduard; Koong, Albert; Xing Lei

    2008-02-01

    Purpose: To develop a regional narrow-band algorithm to auto-propagate the contour surface of a region of interest (ROI) from one phase to other phases of four-dimensional computed tomography (4D-CT). Methods and Materials: The ROI contours were manually delineated on a selected phase of 4D-CT. A narrow band encompassing the ROI boundary was created on the image and used as a compact representation of the ROI surface. A BSpline deformable registration was performed to map the band to other phases. A Mattes mutual information was used as the metric function, and the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm was used to optimize the function. After registration the deformation field was extracted and used to transform the manual contours to other phases. Bidirectional contour mapping was introduced to evaluate the proposed technique. The new algorithm was tested on synthetic images and applied to 4D-CT images of 4 thoracic patients and a head-and-neck Cone-beam CT case. Results: Application of the algorithm to synthetic images and Cone-beam CT images indicates that an accuracy of 1.0 mm is achievable and that 4D-CT images show a spatial accuracy better than 1.5 mm for ROI mappings between adjacent phases, and 3 mm in opposite-phase mapping. Compared with whole image-based calculations, the computation was an order of magnitude more efficient, in addition to the much-reduced computer memory consumption. Conclusions: A narrow-band model is an efficient way for contour mapping and should find widespread application in future 4D treatment planning.

  10. Design Through Manufacturing: The Solid Model-Finite Element Analysis Interface

    NASA Technical Reports Server (NTRS)

    Rubin, Carol

    2002-01-01

    State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts reflecting every detail of the finished product. Ideally, in the aerospace industry, these models should fulfill two very important functions: (1) provide numerical. control information for automated manufacturing of precision parts, and (2) enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in aircraft and space vehicles. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. Presently, the process of preparing CAD models for FEA consumes a great deal of the analyst's time.

  11. An architecture and model for cognitive engineering simulation analysis - Application to advanced aviation automation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Smith, Barry R.

    1993-01-01

    The process of designing crew stations for large-scale, complex automated systems is made difficult because of the flexibility of roles that the crew can assume, and by the rapid rate at which system designs become fixed. Modern cockpit automation frequently involves multiple layers of control and display technology in which human operators must exercise equipment in augmented, supervisory, and fully automated control modes. In this context, we maintain that effective human-centered design is dependent on adequate models of human/system performance in which representations of the equipment, the human operator(s), and the mission tasks are available to designers for manipulation and modification. The joint Army-NASA Aircrew/Aircraft Integration (A3I) Program, with its attendant Man-machine Integration Design and Analysis System (MIDAS), was initiated to meet this challenge. MIDAS provides designers with a test bed for analyzing human-system integration in an environment in which both cognitive human function and 'intelligent' machine function are described in similar terms. This distributed object-oriented simulation system, its architecture and assumptions, and our experiences from its application in advanced aviation crew stations are described.

  12. Sharp interface model of creep deformation in crystalline solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.; McFadden, G. B.; Sekerka, R. F.; Boettinger, W. J.

    2015-08-01

    We present a rigorous irreversible thermodynamics treatment of creep deformation of solid materials with interfaces described as geometric surfaces capable of vacancy generation and absorption and moving under the influence of local thermodynamic forces. The free energy dissipation rate derived in this work permits clear identification of thermodynamic driving forces for all stages of the creep process and formulation of kinetic equations of creep deformation and microstructure evolution. The theory incorporates capillary effects and reveals the different roles played by the interface free energy and interface stress. To describe the interaction of grain boundaries with stresses, we classify grain boundaries into coherent, incoherent and semicoherent, depending on their mechanical response to the stress. To prepare for future applications, we specialize the general equations to a particular case of a linear-elastic solid with a small concentration of vacancies. The proposed theory creates a thermodynamic framework for addressing more complex cases, such as creep in multicomponent alloys and cross-effects among vacancy generation/absorption and grain boundary motion and sliding.

  13. Statistical modelling of networked human-automation performance using working memory capacity.

    PubMed

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models. PMID:24308716

  14. A comparison of molecular dynamics and diffuse interface model predictions of Lennard-Jones fluid evaporation

    SciTech Connect

    Barbante, Paolo; Frezzotti, Aldo; Gibelli, Livio

    2014-12-09

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.

  15. The enhanced Software Life Cyle Support Environment (ProSLCSE): Automation for enterprise and process modeling

    NASA Technical Reports Server (NTRS)

    Milligan, James R.; Dutton, James E.

    1993-01-01

    In this paper, we have introduced a comprehensive method for enterprise modeling that addresses the three important aspects of how an organization goes about its business. FirstEP includes infrastructure modeling, information modeling, and process modeling notations that are intended to be easy to learn and use. The notations stress the use of straightforward visual languages that are intuitive, syntactically simple, and semantically rich. ProSLCSE will be developed with automated tools and services to facilitate enterprise modeling and process enactment. In the spirit of FirstEP, ProSLCSE tools will also be seductively easy to use. Achieving fully managed, optimized software development and support processes will be long and arduous for most software organizations, and many serious problems will have to be solved along the way. ProSLCSE will provide the ability to document, communicate, and modify existing processes, which is the necessary first step.

  16. Study and characterization of interfaces in a two-dimensional generalized voter model

    NASA Astrophysics Data System (ADS)

    Bordogna, Clelia M.; Albano, Ezequiel V.

    2011-04-01

    We propose and study, by means of numerical simulations, the time evolution of interfaces in a generalized voter model in d=2 dimensions. In this model, a randomly selected voter can change his or her opinion (state) with a certain probability that is an algebraic function of the average opinion of his or her nearest neighbors. By starting with well-defined (sharp) interfaces between two different states of opinion, we measure the time dependence of the interface width (w), which behaves as a power law, i.e., w?t?. In this way we characterized three different types of interfaces: (i) between an ordered phase (consensus) and a disordered one (?=1/2); (ii) between ordered phases having different states of opinion (?=1/2), which corresponds to interface coarsening without surface tension; and (iii) as in (ii) but considering surface tension. Here, we observe a finite-size induced crossover with exponents ?=1/4 and ?=1/2 for early and longer times, respectively. So, our study allows for the characterization of interfaces of quite different nature in a unified fashion, providing insight into the understanding of interface coarsening with and without surface tension.

  17. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1993-01-01

    Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.

  18. The JigCell Model Builder: A Spreadsheet Interface for Creating Biochemical Reaction

    E-print Network

    Ramakrishnan, Naren

    The JigCell Model Builder: A Spreadsheet Interface for Creating Biochemical Reaction Network Models--Converting a biochemical reaction network to a set of kinetic rate equations is tedious and error prone. We describe known, which allows users to define models as a set of reaction equations using a spreadsheet (an example

  19. Three-Dimensional Modeling of Complex Fusion Devices Using CAD-MCNPX Interface Mengkuo Wang

    E-print Network

    Three-Dimensional Modeling of Complex Fusion Devices Using CAD-MCNPX Interface Mengkuo Wang 1 in stellerators, whose geometric models are quite complex. We describe a CAD based implementation of MCNPX, where a CAD geometry engine is used directly for solid model representation and evaluation. The application

  20. Interfaces to Enhance User-Directed Experimentation with Simulation Models of Discrete-Event Systems

    E-print Network

    Herrmann, Jeffrey W.

    to improve user- directed experimentation with simulation models of discrete event systems. In user, an analyst conducts simulation runs to estimate system performance and then modifies the simulation modelInterfaces to Enhance User-Directed Experimentation with Simulation Models of Discrete

  1. FE Modeling of Guided Wave Propagation in Structures with Weak Interfaces

    NASA Astrophysics Data System (ADS)

    Hosten, Bernard; Castaings, Michel

    2005-04-01

    This paper describes the use of a Finite Element code for modeling the effects of weak interfaces on the propagation of low order Lamb modes. The variable properties of the interface are modeled by uniform repartitions of compression and shear springs that insure the continuity of the stresses and impose a discontinuity in the displacement field. The method is tested by comparison with measurements that were presented in a previous QNDE conference (B.W.Drinkwater, M.Castaings, and B.Hosten "The interaction of Lamb waves with solid-solid interfaces", Q.N.D.E. Vol. 22, (2003) 1064-1071). The interface was the contact between a rough elastomer with high internal damping loaded against one surface of a glass plate. Both normal and shear stiffnesses of the interface were quantified from the attenuation of A0 and S0 Lamb waves caused by leakage of energy from the plate into the elastomer and measured at each step of a compressive loading. The FE model is made in the frequency domain, thus allowing the viscoelastic properties of the elastomer to be modeled by using complex moduli as input data. By introducing the interface stiffnesses in the code, the predicted guided waves attenuations are compared to the experimental results to validate the numerical FE method.

  2. An automated procedure for material parameter evaluation for viscoplastic constitutive models

    NASA Technical Reports Server (NTRS)

    Imbrie, P. K.; James, G. H.; Hill, P. S.; Allen, D. H.; Haisler, W. E.

    1988-01-01

    An automated procedure is presented for evaluating the material parameters in Walker's exponential viscoplastic constitutive model for metals at elevated temperature. Both physical and numerical approximations are utilized to compute the constants for Inconel 718 at 1100 F. When intermediate results are carefully scrutinized and engineering judgement applied, parameters may be computed which yield stress output histories that are in agreement with experimental results. A qualitative assessment of the theta-plot method for predicting the limiting value of stress is also presented. The procedure may also be used as a basis to develop evaluation schemes for other viscoplastic constitutive theories of this type.

  3. A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: model development and application

    USGS Publications Warehouse

    Essaid, H.I.

    1990-01-01

    The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results and applied to the Soquel-Aptos basin, Santa Cruz County, California. -from Author

  4. Generating Phenotypical Erroneous Human Behavior to Evaluate Human-automation Interaction Using Model Checking

    PubMed Central

    Bolton, Matthew L.; Bass, Ellen J.; Siminiceanu, Radu I.

    2012-01-01

    Breakdowns in complex systems often occur as a result of system elements interacting in unanticipated ways. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. Model-driven design and analysis techniques provide engineers with formal methods tools and techniques capable of evaluating how human behavior can contribute to system failures. This paper presents a novel method for automatically generating task analytic models encompassing both normative and erroneous human behavior from normative task models. The generated erroneous behavior is capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions, jumps, repetitions, and intrusions. Multiple phenotypical acts can occur in sequence, thus allowing for the generation of higher order phenotypes. The task behavior model pattern capable of generating erroneous behavior can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human-automation interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. We present benchmarks related to the size of the statespace and verification time of models to show how the erroneous human behavior generation process scales. We demonstrate the method with a case study: the operation of a radiation therapy machine. A potential problem resulting from a generated erroneous human action is discovered. A design intervention is presented which prevents this problem from occurring. We discuss how our method could be used to evaluate larger applications and recommend future paths of development. PMID:23105914

  5. Analytic Element Modeling of Steady Interface Flow in Multilayer Aquifers Using AnAqSim.

    PubMed

    Fitts, Charles R; Godwin, Joshua; Feiner, Kathleen; McLane, Charles; Mullendore, Seth

    2015-01-01

    This paper presents the analytic element modeling approach implemented in the software AnAqSim for simulating steady groundwater flow with a sharp fresh-salt interface in multilayer (three-dimensional) aquifer systems. Compared with numerical methods for variable-density interface modeling, this approach allows quick model construction and can yield useful guidance about the three-dimensional configuration of an interface even at a large scale. The approach employs subdomains and multiple layers as outlined by Fitts (2010) with the addition of discharge potentials for shallow interface flow (Strack 1989). The following simplifying assumptions are made: steady flow, a sharp interface between fresh- and salt water, static salt water, and no resistance to vertical flow and hydrostatic heads within each fresh water layer. A key component of this approach is a transition to a thin fixed minimum fresh water thickness mode when the fresh water thickness approaches zero. This allows the solution to converge and determine the steady interface position without a long transient simulation. The approach is checked against the widely used numerical codes SEAWAT and SWI/MODFLOW and a hypothetical application of the method to a coastal wellfield is presented. PMID:24942663

  6. Aspects of automation mode confusion

    E-print Network

    Wheeler, Paul H. (Paul Harrison)

    2007-01-01

    Complex systems such as commercial aircraft are difficult for operators to manage. Designers, intending to simplify the interface between the operator and the system, have introduced automation to assist the operator. In ...

  7. Toward the virtual cell: automated approaches to building models of subcellular organization "learned" from microscopy images.

    PubMed

    Buck, Taráz E; Li, Jieyue; Rohde, Gustavo K; Murphy, Robert F

    2012-09-01

    We review state-of-the-art computational methods for constructing, from image data, generative statistical models of cellular and nuclear shapes and the arrangement of subcellular structures and proteins within them. These automated approaches allow consistent analysis of images of cells for the purposes of learning the range of possible phenotypes, discriminating between them, and informing further investigation. Such models can also provide realistic geometry and initial protein locations to simulations in order to better understand cellular and subcellular processes. To determine the structures of cellular components and how proteins and other molecules are distributed among them, the generative modeling approach described here can be coupled with high throughput imaging technology to infer and represent subcellular organization from data with few a priori assumptions. We also discuss potential improvements to these methods and future directions for research. PMID:22777818

  8. Automation, Control and Modeling of Compound Semiconductor Thin-Film Growth

    SciTech Connect

    Breiland, W.G.; Coltrin, M.E.; Drummond, T.J.; Horn, K.M.; Hou, H.Q.; Klem, J.F.; Tsao, J.Y.

    1999-02-01

    This report documents the results of a laboratory-directed research and development (LDRD) project on control and agile manufacturing in the critical metalorganic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) materials growth processes essential to high-speed microelectronics and optoelectronic components. This effort is founded on a modular and configurable process automation system that serves as a backbone allowing integration of process-specific models and sensors. We have developed and integrated MOCVD- and MBE-specific models in this system, and demonstrated the effectiveness of sensor-based feedback control in improving the accuracy and reproducibility of semiconductor heterostructures. In addition, within this framework we have constructed ''virtual reactor'' models for growth processes, with the goal of greatly shortening the epitaxial growth process development cycle.

  9. Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models

    PubMed Central

    Hagens, Olivier; Naud, Richard; Koch, Christof; Gerstner, Wulfram

    2015-01-01

    Single-neuron models are useful not only for studying the emergent properties of neural circuits in large-scale simulations, but also for extracting and summarizing in a principled way the information contained in electrophysiological recordings. Here we demonstrate that, using a convex optimization procedure we previously introduced, a Generalized Integrate-and-Fire model can be accurately fitted with a limited amount of data. The model is capable of predicting both the spiking activity and the subthreshold dynamics of different cell types, and can be used for online characterization of neuronal properties. A protocol is proposed that, combined with emergent technologies for automatic patch-clamp recordings, permits automated, in vitro high-throughput characterization of single neurons. PMID:26083597

  10. Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models.

    PubMed

    Pozzorini, Christian; Mensi, Skander; Hagens, Olivier; Naud, Richard; Koch, Christof; Gerstner, Wulfram

    2015-06-01

    Single-neuron models are useful not only for studying the emergent properties of neural circuits in large-scale simulations, but also for extracting and summarizing in a principled way the information contained in electrophysiological recordings. Here we demonstrate that, using a convex optimization procedure we previously introduced, a Generalized Integrate-and-Fire model can be accurately fitted with a limited amount of data. The model is capable of predicting both the spiking activity and the subthreshold dynamics of different cell types, and can be used for online characterization of neuronal properties. A protocol is proposed that, combined with emergent technologies for automatic patch-clamp recordings, permits automated, in vitro high-throughput characterization of single neurons. PMID:26083597

  11. Automated parameter optimization in modeling absorption spectra and resonance Raman excitation profiles.

    PubMed

    Shorr, Eric; Myers Kelley, Anne

    2007-09-14

    An automated method is described for optimizing the molecular parameters in simultaneous modeling of optical absorption spectra and resonance Raman excitation profiles. The method utilizes a previously developed Fortran routine that calculates absorption spectra and Raman excitation profiles for polyatomic molecules in solution from a model for the potential energy surfaces and spectral broadening mechanisms. It is combined here with an optimization routine from the commercial MATLAB package that iteratively adjusts the parameters of the molecular model to minimize the least-squared error between calculated and experimental spectra. Optimizations that typically require days to weeks of human time when performed interactively can be accomplished automatically in less than an hour of computer time. The method can handle large molecules (we show results for as many as 23 Raman-active modes) and mixtures of spectral broadening mechanisms (lifetime, Brownian oscillator, and inhomogeneous), and is robust toward noise or missing data points. PMID:17712457

  12. Pilot interaction with cockpit automation 2: An experimental study of pilots' model and awareness of the Flight Management System

    NASA Technical Reports Server (NTRS)

    Sarter, Nadine B.; Woods, David D.

    1994-01-01

    Technological developments have made it possible to automate more and more functions on the commercial aviation flight deck and in other dynamic high-consequence domains. This increase in the degrees of freedom in design has shifted questions away from narrow technological feasibility. Many concerned groups, from designers and operators to regulators and researchers, have begun to ask questions about how we should use the possibilities afforded by technology skillfully to support and expand human performance. In this article, we report on an experimental study that addressed these questions by examining pilot interaction with the current generation of flight deck automation. Previous results on pilot-automation interaction derived from pilot surveys, incident reports, and training observations have produced a corpus of features and contexts in which human-machine coordination is likely to break down (e.g., automation surprises). We used these data to design a simulated flight scenario that contained a variety of probes designed to reveal pilots' mental model of one major component of flight deck automation: the Flight Management System (FMS). The events within the scenario were also designed to probe pilots' ability to apply their knowledge and understanding in specific flight contexts and to examine their ability to track the status and behavior of the automated system (mode awareness). Although pilots were able to 'make the system work' in standard situations, the results reveal a variety of latent problems in pilot-FMS interaction that can affect pilot performance in nonnormal time critical situations.

  13. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    NASA Technical Reports Server (NTRS)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  14. Improved automated diagnosis of misfire in internal combustion engines based on simulation models

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Bond Randall, Robert

    2015-12-01

    In this paper, a new advance in the application of Artificial Neural Networks (ANNs) to the automated diagnosis of misfires in Internal Combustion engines(IC engines) is detailed. The automated diagnostic system comprises three stages: fault detection, fault localization and fault severity identification. Particularly, in the severity identification stage, separate Multi-Layer Perceptron networks (MLPs) with saturating linear transfer functions were designed for individual speed conditions, so they could achieve finer classification. In order to obtain sufficient data for the network training, numerical simulation was used to simulate different ranges of misfires in the engine. The simulation models need to be updated and evaluated using experimental data, so a series of experiments were first carried out on the engine test rig to capture the vibration signals for both normal condition and with a range of misfires. Two methods were used for the misfire diagnosis: one is based on the torsional vibration signals of the crankshaft and the other on the angular acceleration signals (rotational motion) of the engine block. Following the signal processing of the experimental and simulation signals, the best features were selected as the inputs to ANN networks. The ANN systems were trained using only the simulated data and tested using real experimental cases, indicating that the simulation model can be used for a wider range of faults for which it can still be considered valid. The final results have shown that the diagnostic system based on simulation can efficiently diagnose misfire, including location and severity.

  15. TOBAGO — a semi-automated approach for the generation of 3-D building models

    NASA Astrophysics Data System (ADS)

    Gruen, Armin

    3-D city models are in increasing demand for a great number of applications. Photogrammetry is a relevant technology that can provide an abundance of geometric, topologic and semantic information concerning these models. The pressure to generate a large amount of data with high degree of accuracy and completeness poses a great challenge to phtogrammetry. The development of automated and semi-automated methods for the generation of those data sets is therefore a key issue in photogrammetric research. We present in this article a strategy and methodology for an efficient generation of even fairly complex building models. Within this concept we request the operator to measure the house roofs from a stereomodel in form of an unstructured point cloud. According to our experience this can be done very quickly. Even a non-experienced operator can measure several hundred roofs or roof units per day. In a second step we fit generic building models fully automatically to these point clouds. The structure information is inherently included in these building models. In such a way geometric, topologic and even semantic data can be handed over to a CAD-system, in our case AutoCad, for further visualization and manipulation. The structuring is achieved in three steps. In a first step a classifier is initiated which recognizes the class of houses a particular roof point cloud belongs to. This recognition step is primarily based on the analysis of the number of ridge points. In the second and third steps the concrete topological relations between roof points are investigated and generic building models are fitted to the point clouds. Based on the technique of constraint-based reasoning two geometrical parsers are solving this problem. We have tested the methodology under a variety of different conditions in several pilot projects. The results will indicate the good performance of our approach. In addition we will demonstrate how the results can be used for visualization (texture mapping) and animation (walk-throughs and fly-overs).

  16. A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers

    NASA Astrophysics Data System (ADS)

    Koussis, Antonis D.; Mazi, Katerina; Riou, Fabien; Destouni, Georgia

    2015-06-01

    Interface flow models that use the Dupuit-Forchheimer (DF) approximation for assessing the freshwater lens and the seawater intrusion in coastal aquifers lack representation of the gap through which fresh groundwater discharges to the sea. In these models, the interface outcrops unrealistically at the same point as the free surface, is too shallow and intersects the aquifer base too far inland, thus overestimating an intruding seawater front. To correct this shortcoming of DF-type interface solutions for unconfined aquifers, we here adapt the outflow gap estimate of an analytical 2-D interface solution for infinitely thick aquifers to fit the 50%-salinity contour of variable-density solutions for finite-depth aquifers. We further improve the accuracy of the interface toe location predicted with depth-integrated DF interface solutions by ?20% (relative to the 50%-salinity contour of variable-density solutions) by combining the outflow-gap adjusted aquifer depth at the sea with a transverse-dispersion adjusted density ratio (Pool and Carrera, 2011), appropriately modified for unconfined flow. The effectiveness of the combined correction is exemplified for two regional Mediterranean aquifers, the Israel Coastal and Nile Delta aquifers.

  17. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    NASA Astrophysics Data System (ADS)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  18. Fullerene film on metal surface: Diffusion of metal atoms and interface model

    SciTech Connect

    Li, Wen-jie; Li, Hai-Yang; Li, Hong-Nian; Wang, Peng; Wang, Xiao-Xiong; Wang, Jia-Ou; Wu, Rui; Qian, Hai-Jie; Ibrahim, Kurash

    2014-05-12

    We try to understand the fact that fullerene film behaves as n-type semiconductor in electronic devices and establish a model describing the energy level alignment at fullerene/metal interfaces. The C{sub 60}/Ag(100) system was taken as a prototype and studied with photoemission measurements. The photoemission spectra revealed that the Ag atoms of the substrate diffused far into C{sub 60} film and donated electrons to the molecules. So the C{sub 60} film became n-type semiconductor with the Ag atoms acting as dopants. The C{sub 60}/Ag(100) interface should be understood as two sub-interfaces on both sides of the molecular layer directly contacting with the substrate. One sub-interface is Fermi level alignment, and the other is vacuum level alignment.

  19. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    ERIC Educational Resources Information Center

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  20. AIR-EARTH INTERFACE MODEL FOR RESTORING RIPARIAN HABITATS1 Robert M . Dixon2

    E-print Network

    AIR-EARTH INTERFACE MODEL FOR RESTORING RIPARIAN HABITATS1 Robert M . Dixon2 1 Presented of the watershed. Lacking protective vegetative cover, severe erosion has deeply gullied the watershed (AEI) Model involves four interrelated and interacting AEI processes--desertification, infiltration

  1. A Tactile/Haptic Interface Object Reference Model USERLab, Department of Computer Science

    E-print Network

    Carter, Jim

    A Tactile/Haptic Interface Object Reference Model Jim Carter USERLab, Department of Computer Science University of Saskatchewan Saskatoon, SK, CANADA (306) 966-4893 carter@cs.usask.ca ABSTRACT objects and groups of such objects. This model provides an understanding of the many facets involved

  2. A Prototype Natural Language Interface to a Large Complex Knowledge Base, the Foundational Model of Anatomy

    E-print Network

    Washington at Seattle, University of

    Model of Anatomy (FMA)1 . We describe a program, named GAPP, which takes natural language (NL) questionsA Prototype Natural Language Interface to a Large Complex Knowledge Base, the Foundational Model of Anatomy Gregory Distelhorst, Vishrut Srivastava, Cornelius Rosse, MD, DSc, and James F. Brinkley, MD, Ph

  3. Library Automation: A Year on.

    ERIC Educational Resources Information Center

    Electronic Library, 1997

    1997-01-01

    A follow-up interview with librarians from Hong Kong, Mexico, Australia, Canada, and New Zealand about library automation systems in their libraries and their plans for the future. Discusses system performance, upgrades, services, resources, intranets, trends in automation, Web interfaces, full-text image/document systems, document delivery, OPACs…

  4. Asymptotics and numerical efficiency of the Allen-Cahn model for phase interfaces with low energy in solids

    E-print Network

    Hans-Dieter Alber

    2015-05-20

    The accurate simulation of phase interfaces in solids requires small model error and small numerical error. If a phase field model is used and the interface carries low interface energy, then the model error is only small if the interface width in the model is chosen small. Yet, for effective numerical computation the interface width should be large. Choosing the parameters, which determine the width, is therefore an optimality problem. We study this problem for the Allen-Cahn equation coupled to the elasticity equations by constructing an asymptotic solution of second order, which yields an expansion for the kinetic relation of the model. This expansion determines the choice of the parameters, however only if the difference between the expansion and the exact kinetic relation is uniformly small with respect to a second parameter controlling the interface energy. To show this uniformity we determine the asymptotics with respect to this second parameter by scaling of the model equations. Our investigations are formal.

  5. Electronic structure of the SiNx/TiN interface: A model system for superhard nanocomposites

    NASA Astrophysics Data System (ADS)

    Patscheider, Jörg; Hellgren, Niklas; Haasch, Richard T.; Petrov, Ivan; Greene, J. E.

    2011-03-01

    Nanostructured materials such as nanocomposites and nanolaminates—subjects of intense interest in modern materials research—are defined by internal interfaces, the nature of which is generally unknown. Nevertheless, the interfaces often determine the bulk properties. An example of this is superhard nanocomposites with hardness approaching that of diamond. TiN/Si3N4 nanocomposites (TiN nanocrystals encapsulated in a fully percolated SiNx tissue phase) and nanolaminates, in particular, have attracted much attention as model systems for the synthesis of such superhard materials. Here, we use in situ angle-resolved x-ray photoelectron spectroscopy to probe the electronic structure of Si3N4/TiN(001), Si/TiN(001), and Ti/TiN(001) bilayer interfaces, in which 4-ML-thick overlayers are grown in an ultrahigh vacuum system by reactive magnetron sputter deposition onto epitaxial TiN layers on MgO(001). The thickness of the Si3N4, Si, and Ti overlayers is chosen to be thin enough to insure sufficient electron transparency to probe the interfaces, while being close to values reported in typical nanocomposites and nanolaminates. The results show that these overlayer/TiN(001) interfaces have distinctly different bonding characteristics. Si3N4 exhibits interface polarization through the formation of an interlayer, in which the N concentration is enhanced at higher substrate bias values during Si3N4 deposition. The increased number of Ti-N bonds at the interface, together with the resulting polarization, strengthens interfacial bonding. In contrast, overlayers of Si and, even more so, metallic Ti weaken the interface by minimizing the valence band energy difference between the two phases. A model is proposed that provides a semiquantitative explanation of the interfacial bond strength in nitrogen-saturated and nitrogen-deficient Ti-Si-N nanocomposites.

  6. Finite elements methods for modeling the guided waves propagation in structures with weak interfaces

    NASA Astrophysics Data System (ADS)

    Hosten, Bernard; Castaings, Michel

    2005-03-01

    This paper describes two methods using a finite element (FE) code for modeling the effects of weak interfaces on the propagation of low-order Lamb modes. The variable properties of the interfaces are modeled by either a thin layer or a uniform repartition of compression and shear springs that insure the continuity of the stresses and impose a discontinuity in the displacement field. The method is tested by comparison with measurements that were presented in a previous paper [J. Acoust. Soc. Am. 113(6) 3161-3170 (2003)]. The interface was the contact between a rough elastomer with high internal damping loaded against one surface of a glass plate. Both normal and shear stiffnesses of the interface were quantified from the attenuation of A0 and S0 Lamb waves caused by leakage of energy from the plate into the elastomer and measured at each step of a compressive loading. The FE model is made in the frequency domain, thus allowing the viscoelastic properties of the elastomer to be modeled by using complex moduli as input data. By introducing the interface stiffnesses in the code, the predicted guided waves attenuations are compared to the experimental results to validate the numerical FE methods. .

  7. Drawing interfaces : building geometric models with hand-drawn sketches

    E-print Network

    Branda, Ewan E. (Ewan Edward), 1964-

    1998-01-01

    Architects work on drawings and models, not buildings. Today, in many architectural practices, drawings and models are produced in digital format using Computer-aided Design (CAD) tools. Unquestionably, digital media have ...

  8. Rigorous analytical modeling of high-aperture focusing through a spherical interface.

    PubMed

    Hoang, Thanh Xuan; Chen, Xudong; Sheppard, Colin J R

    2013-07-01

    High-aperture focusing through a spherical interface has been employed in optical data storage, photolithography, and especially microscopy. This paper first forms an approximate model, based on geometrical optics and Fourier optics, for evaluating focal fields of the focusing systems. This approximate model helps to clarify some doubts existing in literature. We then propose a rigorous model that is applicable to more general systems. Our model is based on multipole theory, which expands the electromagnetic fields into spherical harmonics. PMID:24323160

  9. Conservative phase-field lattice Boltzmann model for interface tracking equation.

    PubMed

    Geier, Martin; Fakhari, Abbas; Lee, Taehun

    2015-06-01

    Based on the phase-field theory, we propose a conservative lattice Boltzmann method to track the interface between two different fluids. The presented model recovers the conservative phase-field equation and conserves mass locally and globally. Two entirely different approaches are used to calculate the gradient of the phase field, which is needed in computation of the normal to the interface. One approach uses finite-difference stencils similar to many existing lattice Boltzmann models for tracking the two-phase interface, while the other one invokes central moments to calculate the gradient of the phase field without any finite differences involved. The former approach suffers from the nonlocality of the collision operator while the latter is entirely local making it highly suitable for massive parallel implementation. Several benchmark problems are carried out to assess the accuracy and stability of the proposed model. PMID:26172824

  10. Conservative phase-field lattice Boltzmann model for interface tracking equation

    NASA Astrophysics Data System (ADS)

    Geier, Martin; Fakhari, Abbas; Lee, Taehun

    2015-06-01

    Based on the phase-field theory, we propose a conservative lattice Boltzmann method to track the interface between two different fluids. The presented model recovers the conservative phase-field equation and conserves mass locally and globally. Two entirely different approaches are used to calculate the gradient of the phase field, which is needed in computation of the normal to the interface. One approach uses finite-difference stencils similar to many existing lattice Boltzmann models for tracking the two-phase interface, while the other one invokes central moments to calculate the gradient of the phase field without any finite differences involved. The former approach suffers from the nonlocality of the collision operator while the latter is entirely local making it highly suitable for massive parallel implementation. Several benchmark problems are carried out to assess the accuracy and stability of the proposed model.

  11. An Agent-Based Interface to Terrestrial Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Nemani, Ramakrishna; Pang, Wan-Lin; Votava, Petr; Etzioni, Oren

    2004-01-01

    This paper describes a flexible agent-based ecological forecasting system that combines multiple distributed data sources and models to provide near-real-time answers to questions about the state of the Earth system We build on novel techniques in automated constraint-based planning and natural language interfaces to automatically generate data products based on descriptions of the desired data products.

  12. Sloan Digital Sky Survey photometric telescope automation and observing software

    SciTech Connect

    Eric H. Neilsen, Jr. et al.

    2002-10-16

    The photometric telescope (PT) provides observations necessary for the photometric calibration of the Sloan Digital Sky Survey (SDSS). Because the attention of the observing staff is occupied by the operation of the 2.5 meter telescope which takes the survey data proper, the PT must reliably take data with little supervision. In this paper we describe the PT's observing program, MOP, which automates most tasks necessary for observing. MOP's automated target selection is closely modeled on the actions a human observer might take, and is built upon a user interface that can be (and has been) used for manual operation. This results in an interface that makes it easy for an observer to track the activities of the automating procedures and intervene with minimum disturbance when necessary. MOP selects targets from the same list of standard star and calibration fields presented to the user, and chooses standard star fields covering ranges of airmass, color, and time necessary to monitor atmospheric extinction and produce a photometric solution. The software determines when additional standard star fields are unnecessary, and selects survey calibration fields according to availability and priority. Other automated features of MOP, such as maintaining the focus and keeping a night log, are also built around still functional manual interfaces, allowing the observer to be as active in observing as desired; MOP's automated features may be used as tools for manual observing, ignored entirely, or allowed to run the telescope with minimal supervision when taking routine data.

  13. The use of automated parameter searches to improve ion channel kinetics for neural modeling.

    PubMed

    Hendrickson, Eric B; Edgerton, Jeremy R; Jaeger, Dieter

    2011-10-01

    The voltage and time dependence of ion channels can be regulated, notably by phosphorylation, interaction with phospholipids, and binding to auxiliary subunits. Many parameter variation studies have set conductance densities free while leaving kinetic channel properties fixed as the experimental constraints on the latter are usually better than on the former. Because individual cells can tightly regulate their ion channel properties, we suggest that kinetic parameters may be profitably set free during model optimization in order to both improve matches to data and refine kinetic parameters. To this end, we analyzed the parameter optimization of reduced models of three electrophysiologically characterized and morphologically reconstructed globus pallidus neurons. We performed two automated searches with different types of free parameters. First, conductance density parameters were set free. Even the best resulting models exhibited unavoidable problems which were due to limitations in our channel kinetics. We next set channel kinetics free for the optimized density matches and obtained significantly improved model performance. Some kinetic parameters consistently shifted to similar new values in multiple runs across three models, suggesting the possibility for tailored improvements to channel models. These results suggest that optimized channel kinetics can improve model matches to experimental voltage traces, particularly for channels characterized under different experimental conditions than recorded data to be matched by a model. The resulting shifts in channel kinetics from the original template provide valuable guidance for future experimental efforts to determine the detailed kinetics of channel isoforms and possible modulated states in particular types of neurons. PMID:21243419

  14. CHANNEL MORPHOLOGY TOOL (CMT): A GIS-BASED AUTOMATED EXTRACTION MODEL FOR CHANNEL GEOMETRY

    SciTech Connect

    JUDI, DAVID; KALYANAPU, ALFRED; MCPHERSON, TIMOTHY; BERSCHEID, ALAN

    2007-01-17

    This paper describes an automated Channel Morphology Tool (CMT) developed in ArcGIS 9.1 environment. The CMT creates cross-sections along a stream centerline and uses a digital elevation model (DEM) to create station points with elevations along each of the cross-sections. The generated cross-sections may then be exported into a hydraulic model. Along with the rapid cross-section generation the CMT also eliminates any cross-section overlaps that might occur due to the sinuosity of the channels using the Cross-section Overlap Correction Algorithm (COCoA). The CMT was tested by extracting cross-sections from a 5-m DEM for a 50-km channel length in Houston, Texas. The extracted cross-sections were compared directly with surveyed cross-sections in terms of the cross-section area. Results indicated that the CMT-generated cross-sections satisfactorily matched the surveyed data.

  15. An Accuracy Assessment of Automated Photogrammetric Techniques for 3d Modeling of Complex Interiors

    NASA Astrophysics Data System (ADS)

    Georgantas, A.; Brédif, M.; Pierrot-Desseilligny, M.

    2012-07-01

    This paper presents a comparison of automatic photogrammetric techniques to terrestrial laser scanning for 3D modelling of complex interior spaces. We try to evaluate the automated photogrammetric techniques not only in terms of their geometric quality compared to laser scanning but also in terms of cost in money, acquisition and computational time. To this purpose we chose as test site a modern building's stairway. APERO/MICMAC ( ©IGN )which is an Open Source photogrammetric software was used for the production of the 3D photogrammetric point cloud which was compared to the one acquired by a Leica Scanstation 2 laser scanner. After performing various qualitative and quantitative controls we present the advantages and disadvantages of each 3D modelling method applied in a complex interior of a modern building.

  16. A methodology for model-based development and automated verification of software for aerospace systems

    NASA Astrophysics Data System (ADS)

    Martin, L.; Schatalov, M.; Hagner, M.; Goltz, U.; Maibaum, O.

    Today's software for aerospace systems typically is very complex. This is due to the increasing number of features as well as the high demand for safety, reliability, and quality. This complexity also leads to significant higher software development costs. To handle the software complexity, a structured development process is necessary. Additionally, compliance with relevant standards for quality assurance is a mandatory concern. To assure high software quality, techniques for verification are necessary. Besides traditional techniques like testing, automated verification techniques like model checking become more popular. The latter examine the whole state space and, consequently, result in a full test coverage. Nevertheless, despite the obvious advantages, this technique is rarely yet used for the development of aerospace systems. In this paper, we propose a tool-supported methodology for the development and formal verification of safety-critical software in the aerospace domain. The methodology relies on the V-Model and defines a comprehensive work flow for model-based software development as well as automated verification in compliance to the European standard series ECSS-E-ST-40C. Furthermore, our methodology supports the generation and deployment of code. For tool support we use the tool SCADE Suite (Esterel Technology), an integrated design environment that covers all the requirements for our methodology. The SCADE Suite is well established in avionics and defense, rail transportation, energy and heavy equipment industries. For evaluation purposes, we apply our approach to an up-to-date case study of the TET-1 satellite bus. In particular, the attitude and orbit control software is considered. The behavioral models for the subsystem are developed, formally verified, and optimized.

  17. Modeling the Assembly of Polymer-Grafted Nanoparticles at Oil-Water Interfaces.

    PubMed

    Yong, Xin

    2015-10-27

    Using dissipative particle dynamics (DPD), I model the interfacial adsorption and self-assembly of polymer-grafted nanoparticles at a planar oil-water interface. The amphiphilic core-shell nanoparticles irreversibly adsorb to the interface and create a monolayer covering the interface. The polymer chains of the adsorbed nanoparticles are significantly deformed by surface tension to conform to the interface. I quantitatively characterize the properties of the particle-laden interface and the structure of the monolayer in detail at different surface coverages. I observe that the monolayer of particles grafted with long polymer chains undergoes an intriguing liquid-crystalline-amorphous phase transition in which the relationship between the monolayer structure and the surface tension/pressure of the interface is elucidated. Moreover, my results indicate that the amorphous state at high surface coverage is induced by the anisotropic distribution of the randomly grafted chains on each particle core, which leads to noncircular in-plane morphology formed under excluded volume effects. These studies provide a fundamental understanding of the interfacial behavior of polymer-grafted nanoparticles for achieving complete control of the adsorption and subsequent self-assembly. PMID:26439456

  18. Toward automated model building from video in computer-assisted diagnoses in colonoscopy

    NASA Astrophysics Data System (ADS)

    Koppel, Dan; Chen, Chao-I.; Wang, Yuan-Fang; Lee, Hua; Gu, Jia; Poirson, Allen; Wolters, Rolf

    2007-03-01

    A 3D colon model is an essential component of a computer-aided diagnosis (CAD) system in colonoscopy to assist surgeons in visualization, and surgical planning and training. This research is thus aimed at developing the ability to construct a 3D colon model from endoscopic videos (or images). This paper summarizes our ongoing research in automated model building in colonoscopy. We have developed the mathematical formulations and algorithms for modeling static, localized 3D anatomic structures within a colon that can be rendered from multiple novel view points for close scrutiny and precise dimensioning. This ability is useful for the scenario when a surgeon notices some abnormal tissue growth and wants a close inspection and precise dimensioning. Our modeling system uses only video images and follows a well-established computer-vision paradigm for image-based modeling. We extract prominent features from images and establish their correspondences across multiple images by continuous tracking and discrete matching. We then use these feature correspondences to infer the camera's movement. The camera motion parameters allow us to rectify images into a standard stereo configuration and calculate pixel movements (disparity) in these images. The inferred disparity is then used to recover 3D surface depth. The inferred 3D depth, together with texture information recorded in images, allow us to construct a 3D model with both structure and appearance information that can be rendered from multiple novel view points.

  19. Inverse-Cantor-bar model for the ac response of a rough interface

    NASA Astrophysics Data System (ADS)

    Kaplan, Theodore; Liu, S. H.; Gray, L. J.

    1986-10-01

    It has been previously shown that models based on the Cantor-bar fractal for a rough interface between a metal and an electrolyte display constant-phase-angle (CPA) behavior. The exponent ? of the frequency dependence of the CPA element satisfies the relation ?=3-d¯s where d¯s is the fractal dimension of the interface. In this paper the generality of the ?=3-d¯s relation is tested by examining the inverse-Cantor-bar structure defined by interchanging the metal and electrolyte. Despite the fact that the electrical problem and the corresponding mathematics are vastly different for the inverse structure, ? remains unchanged. A new model for rough interfaces, called the porous electrode, consisting of a fractal distribution of transmission lines is also described.

  20. Analytical solutions in a hydraulic model of seepage with sharp interfaces

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.

    2002-02-01

    Flows in horizontal homogeneous porous layers are studied in terms of a hydraulic model with an abrupt interface between two incompressible Darcian fluids of contrasting density driven by an imposed gradient along the layer. The flow of one fluid moving above a resting finger-type pool of another is studied. A straight interface between two moving fluids is shown to slump, rotate and propagate deeper under periodic drive conditions than in a constant-rate regime. Superpropagation of the interface is related to Philip's superelevation in tidal dynamics and acceleration of the front in vertical infiltration in terms of the Green-Ampt model with an oscillating ponding water level. All solutions studied are based on reduction of the governing PDE to nonlinear ODEs and further analytical and numerical integration by computer algebra routines.

  1. Time integration for diffuse interface models for two-phase flow

    SciTech Connect

    Aland, Sebastian

    2014-04-01

    We propose a variant of the ?-scheme for diffuse interface models for two-phase flow, together with three new linearization techniques for the surface tension. These involve either additional stabilizing force terms, or a fully implicit coupling of the Navier–Stokes and Cahn–Hilliard equation. In the common case that the equations for interface and flow are coupled explicitly, we find a time step restriction which is very different to other two-phase flow models and in particular is independent of the grid size. We also show that the proposed stabilization techniques can lift this time step restriction. Even more pronounced is the performance of the proposed fully implicit scheme which is stable for arbitrarily large time steps. We demonstrate in a Taylor-flow application that this superior coupling between flow and interface equation can decrease the computation time by several orders of magnitude.

  2. Laboratory measurements and theoretical modeling of seismoelectric interface response and coseismic wave fields

    NASA Astrophysics Data System (ADS)

    Schakel, M. D.; Smeulders, D. M. J.; Slob, E. C.; Heller, H. K. J.

    2011-04-01

    A full-waveform seismoelectric numerical model incorporating the directivity pattern of a pressure source is developed. This model provides predictions of coseismic electric fields and the electromagnetic waves that originate from a fluid/porous-medium interface. An experimental setup in which coseismic electric fields and interface responses are measured is constructed. The seismo-electric origin of the signals is confirmed. The numerically predicted polarity reversal of the interfacial signal and seismoelectric effects due to multiple scattering are detected in the measurements. Both the simulated coseismic electric fields and the electromagnetic waves originating from interfaces agree with the measurements in terms of travel times, waveform, polarity, amplitude, and spatial amplitude decay, demonstrating that seismoelectric effects are comprehensively described by theory.

  3. A Translational Animal Model for Scar Compression Therapy Using an Automated Pressure Delivery System

    PubMed Central

    Alkhalil, A.; Tejiram, S.; Travis, T. E.; Prindeze, N. J.; Carney, B. C.; Moffatt, L. T.; Johnson, L. S.; Ramella-Roman, J.

    2015-01-01

    Background: Pressure therapy has been used to prevent and treat hypertrophic scars following cutaneous injury despite the limited understanding of its mechanism of action and lack of established animal model to optimize its usage. Objectives: The aim of this work was to test and characterize a novel automated pressure delivery system designed to deliver steady and controllable pressure in a red Duroc swine hypertrophic scar model. Methods: Excisional wounds were created by dermatome on 6 red Duroc pigs and allowed to scar while assessed weekly via gross visual inspection, laser Doppler imaging, and biopsy. A portable novel automated pressure delivery system was mounted on developing scars (n = 6) for 2 weeks. Results: The device maintained a pressure range of 30 ± 4 mm Hg for more than 90% of the 2-week treatment period. Pressure readings outside this designated range were attributed to normal animal behavior and responses to healing progression. Gross scar examination by the Vancouver Scar Scale showed significant and sustained (>4 weeks) improvement in pressure-treated scars (P < .05). Histological examination of pressure-treated scars showed a significant decrease in dermal thickness compared with other groups (P < .05). Pressure-treated scars also showed increased perfusion by laser Doppler imaging during the treatment period compared with sham-treated and untreated scars (P < .05). Cellular quantification showed differential changes among treatment groups. Conclusion: These results illustrate the applications of this technology in hypertrophic scar Duroc swine model and the evaluation and optimization of pressure therapy in wound-healing and hypertrophic scar management. PMID:26171101

  4. Models for ultrasonic characterization of environmental degradation of interfaces in adhesive joints

    SciTech Connect

    Lavrentyev, A.I.; Rokhlin, S.I. )

    1994-10-15

    In this paper we discuss two models of environmental degradation of adhesive joints developed from experimental observation of the joint failure mode. It is found that after severe degradation, failure is dominated by the interfacial mode, i.e., by failure at the interface between adhesive and adherend. The fraction of failure in the interfacial mode was found to be related to the joint strength and to be proportional to the frequency shift of a minimum in the spectrum of the reflected ultrasonic signal. One model considers an interface as an interphase in the form of a nonhomogeneous layer composed of two phases: soft'' which is viscoelastic (degraded part of the interphase) and stiff'' corresponding to the nondamaged interphase. Increase of the soft'' phase fraction corresponds to the process of degradation in the interphase. The second model describes degradation in a form of disbonds filled by absorbed water at the interface. The disbonded interface is modeled by transverse spring boundary conditions, with the complex spring stiffness representing the quality of the bond. The influence of different disbond growth scenarios is considered. Advantages and drawbacks of these models are discussed.

  5. Static Reservoir Model Upgridding and Design of User Interface 

    E-print Network

    Du, Song

    2011-02-22

    calculations such that the heterogeneity measure of a defined static property is minimized within the layers. In addition, the geological model coarsening will also rely on preserving geological marker information. This combination of static calculation...

  6. SENSPECTRA : an elastic, strain-aware physical modeling interface

    E-print Network

    Leclerc, Vincent, S.M. Massachusetts Institute of Technology

    2006-01-01

    Senspectra is a computationally augmented physical modeling toolkit designed for sensing and visualization of structural strain. The system functions as a distributed sensor network consisting of nodes, embedded with ...

  7. Modelling, Formality and the PhoneticsPhonology Interface Julian Bradfield

    E-print Network

    Bradfield, Julian

    predictions about reality; and the sciences of artificial systems, such as software design and verification of formal models. A pitfall common in the `artificial' sciences is `throwing the baby out with the bathwater

  8. Interfacing BIM with Building Thermal and Daylighting Modeling 

    E-print Network

    Yan, Wei; Clayton, Mark; Haberl, Jeff; WoonSeong, Jeong; Bun Kim, Jong; Sandeep, Kota; Bermudez, Jose; Dixit, Manish

    2013-01-01

    THERMAL AND DAYLIGHTING MODELING Wei Yan, Mark Clayton, Jeff Haberl, WoonSeong Jeong, Jong Bum Kim, Sandeep Kota, Jose Luis Bermudez Alcocer, and Manish Dixit Texas A&M University, College Station, USA ABSTRACT This paper presents our research...

  9. Automated Geospatial Watershed Assessment

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool is a Geographic Information Systems (GIS) interface jointly developed by the U.S. Environmental Protection Agency, the U.S. Department of Agriculture (USDA) Agricultural Research Service, and the University of Arizona to a...

  10. Smart Frameworks and Self-Describing Models: Model Metadata for Automated Coupling of Hydrologic Process Components (Invited)

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.

    2013-12-01

    Model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that allow heterogeneous sets of process models to be assembled in a plug-and-play manner to create composite "system models". These mechanisms facilitate code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers, e.g. by requiring them to provide their output in specific forms that meet the input requirements of other models. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can compare the answers to these queries with similar answers from other process models in a collection and then automatically call framework service components as necessary to mediate the differences between the coupled models. This talk will first review two key products of the CSDMS project, namely a standardized model interface called the Basic Model Interface (BMI) and the CSDMS Standard Names. The standard names are used in conjunction with BMI to provide a semantic matching mechanism that allows output variables from one process model to be reliably used as input variables to other process models in a collection. They include not just a standardized naming scheme for model variables, but also a standardized set of terms for describing the attributes and assumptions of a given model. To illustrate the power of standardized model interfaces and metadata, a smart, light-weight modeling framework written in Python will be introduced that can automatically (without user intervention) couple a set of BMI-enabled hydrologic process components together to create a spatial hydrologic model. The same mechanisms could also be used to provide seamless integration (import/export) of data and models.

  11. Automated Generation of Fault Management Artifacts from a Simple System Model

    NASA Technical Reports Server (NTRS)

    Kennedy, Andrew K.; Day, John C.

    2013-01-01

    Our understanding of off-nominal behavior - failure modes and fault propagation - in complex systems is often based purely on engineering intuition; specific cases are assessed in an ad hoc fashion as a (fallible) fault management engineer sees fit. This work is an attempt to provide a more rigorous approach to this understanding and assessment by automating the creation of a fault management artifact, the Failure Modes and Effects Analysis (FMEA) through querying a representation of the system in a SysML model. This work builds off the previous development of an off-nominal behavior model for the upcoming Soil Moisture Active-Passive (SMAP) mission at the Jet Propulsion Laboratory. We further developed the previous system model to more fully incorporate the ideas of State Analysis, and it was restructured in an organizational hierarchy that models the system as layers of control systems while also incorporating the concept of "design authority". We present software that was developed to traverse the elements and relationships in this model to automatically construct an FMEA spreadsheet. We further discuss extending this model to automatically generate other typical fault management artifacts, such as Fault Trees, to efficiently portray system behavior, and depend less on the intuition of fault management engineers to ensure complete examination of off-nominal behavior.

  12. Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing

    SciTech Connect

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-15

    Controlling electric loads to deliver power system services presents a number of interesting challenges. For example, changes in electricity consumption of Commercial and Industrial (C&I) facilities are usually estimated using counterfactual baseline models, and model uncertainty makes it difficult to precisely quantify control responsiveness. Moreover, C&I facilities exhibit variability in their response. This paper seeks to understand baseline model error and demand-side variability in responses to open-loop control signals (i.e. dynamic prices). Using a regression-based baseline model, we define several Demand Response (DR) parameters, which characterize changes in electricity use on DR days, and then present a method for computing the error associated with DR parameter estimates. In addition to analyzing the magnitude of DR parameter error, we develop a metric to determine how much observed DR parameter variability is attributable to real event-to-event variability versus simply baseline model error. Using data from 38 C&I facilities that participated in an automated DR program in California, we find that DR parameter errors are large. For most facilities, observed DR parameter variability is likely explained by baseline model error, not real DR parameter variability; however, a number of facilities exhibit real DR parameter variability. In some cases, the aggregate population of C&I facilities exhibits real DR parameter variability, resulting in implications for the system operator with respect to both resource planning and system stability.

  13. Interface modeling to predict well casing damage for big hill strategic petroleum reserve.

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon

    2012-02-01

    Oil leaks were found in well casings of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interface between the caprock and top of salt. This damage could be caused by interface movement induced by cavern volume closure due to salt creep. A three dimensional finite element model, which allows each cavern to be configured individually, was constructed to investigate shear and vertical displacements across each interface. The model contains interfaces between each lithology and a shear zone to examine the interface behavior in a realistic manner. This analysis results indicate that the casings of Caverns 105 and 109 failed by shear stress that exceeded shear strength due to the horizontal movement of the top of salt relative to the caprock, and tensile stress due to the downward movement of the top of salt from the caprock, respectively. The casings of Caverns 101, 110, 111 and 114, located at the far ends of the field, are predicted to be failed by shear stress in the near future. The casings of inmost Caverns 107 and 108 are predicted to be failed by tensile stress in the near future.

  14. Proceedings of the 2004 Intl Conference on Computer-Aided Design of User Interfaces (CADUI `04) AUTOMATING A DESIGN REUSE FACILITY

    E-print Network

    McCrickard, Scott

    Proceedings of the 2004 Intl Conference on Computer-Aided Design of User Interfaces (CADUI `04-term research growth within HCI. This effort describes a computer-aided design tool suite, LINK-UP, which process [1], in #12;Proceedings of the 2004 Intl Conference on Computer-Aided Design of User Interfaces

  15. Czochralski growth of crystals - Simple models for growth rate and interface shape

    NASA Technical Reports Server (NTRS)

    Srivastava, R. K.; Ramachandran, P. A.; Dudukovic, M. P.

    1986-01-01

    A simple model for the crystal growth by the Czochralski (CZ) process has been proposed based on semiquantitative arguments. The model provides empirical relationships for the dependence of the pulling rate and the interface shape on the important process variables such as crystal radius, crucible temperature, height of the melt level, and the height of the exposed portion of the crucible wall. The parameters of the model can be evaluated by matching the results obtained from a detailed mathematical model of the CZ process or from extensive experimental data. The model has, therefore, the potential application for determining the best process conditions and for on-line control and optimization of the crystal puller to grow crystals with constant diameter and nearly planar interface.

  16. Modelling electrified interfaces in quantum chemistry: constant charge vs. constant potential.

    PubMed

    Benedikt, Udo; Schneider, Wolfgang B; Auer, Alexander A

    2013-02-28

    The proper description of electrified metal/solution interfaces, as they occur in electrochemical systems, is a key component for simulating the unique features of electrocatalytic reactions using electronic structure calculations. While in standard solid state (plane wave, periodic boundary conditions) density functional theory (DFT) calculations several models for describing electrochemical environments exist, for cluster models in a quantum chemistry approach (atomic orbital basis, finite system) this is not straightforward. In this work, two different approaches for the theoretical description of electrified interfaces of nanoparticles, the constant charge and the constant potential model, are discussed. Different schemes for describing electrochemical reactions including solvation models are tested for a consistent description of the electrochemical potential and the local chemical behavior for finite structures. The different schemes and models are investigated for the oxygen reduction reaction (ORR) on a hemispherical cuboctahedral platinum nanoparticle. PMID:23329171

  17. Tape-Drop Transient Model for In-Situ Automated Tape Placement of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Marchello, Joseph M.

    1998-01-01

    Composite parts of nonuniform thickness can be fabricated by in-situ automated tape placement (ATP) if the tape can be started and stopped at interior points of the part instead of always at its edges. This technique is termed start/stop-on-the-part, or, alternatively, tape-add/tape-drop. The resulting thermal transients need to be managed in order to achieve net shape and maintain uniform interlaminar weld strength and crystallinity. Starting-on-the-part has been treated previously. This paper continues the study with a thermal analysis of stopping-on-the-part. The thermal source is switched off when the trailing end of the tape enters the nip region of the laydown/consolidation head. The thermal transient is determined by a Fourier-Laplace transform solution of the two-dimensional, time-dependent thermal transport equation. This solution requires that the Peclet number Pe (the dimensionless ratio of inertial to diffusive heat transport) be independent of time and much greater than 1. Plotted isotherms show that the trailing tape-end cools more rapidly than the downstream portions of tape. This cooling can weaken the bond near the tape end; however the length of the affected region is found to be less than 2 mm. To achieve net shape, the consolidation head must continue to move after cut-off until the temperature on the weld interface decreases to the glass transition temperature. The time and elapsed distance for this condition to occur are computed for the Langley ATP robot applying PEEK/carbon fiber composite tape and for two upgrades in robot performance. The elapsed distance after cut-off ranges from about 1 mm for the present robot to about 1 cm for the second upgrade.

  18. Inference in Graphical Models In an increasingly connected and automated world, machines that are capable of learning and

    E-print Network

    Winn, John

    Chapter 1 Inference in Graphical Models In an increasingly connected and automated world, machines necessity. There are an increasing number of situations where machine reasoning is the only form of reasoning that makes practical and economic sense. The commercial case is clear: machine reasoning

  19. AgRISTARS: Yield model development/soil moisture. Interface control document

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The interactions and support functions required between the crop Yield Model Development (YMD) Project and Soil Moisture (SM) Project are defined. The requirements for YMD support of SM and vice-versa are outlined. Specific tasks in support of these interfaces are defined for development of support functions.

  20. An Abstract Schema for Representing Semantic Roles and Modelling the Syntax-Semantics Interface

    E-print Network

    An Abstract Schema for Representing Semantic Roles and Modelling the Syntax-Semantics Interface approach to semantic role annotation implementing an entailment- based view of the concept of semantic role entailed by the semantics of predicates. Such meaning components generalise over a range of semantic

  1. Self-Observation Model Employing an Instinctive Interface for Classroom Active Learning

    ERIC Educational Resources Information Center

    Chen, Gwo-Dong; Nurkhamid; Wang, Chin-Yeh; Yang, Shu-Han; Chao, Po-Yao

    2014-01-01

    In a classroom, obtaining active, whole-focused, and engaging learning results from a design is often difficult. In this study, we propose a self-observation model that employs an instinctive interface for classroom active learning. Students can communicate with virtual avatars in the vertical screen and can react naturally according to the…

  2. The integrity of welded interfaces in ultra high molecular weight polyethylene: Part 1-Model.

    PubMed

    Buckley, C Paul; Wu, Junjie; Haughie, David W

    2006-06-01

    The difficulty of eradicating memory of powder-particle interfaces in UHMWPE for bearing surfaces for hip and knee replacements is well-known, and 'fusion defects' have been implicated frequently in joint failures. During processing the polymer is formed into solid directly from the reactor powder, under pressure and at temperatures above the melting point, and two types of inter-particle defect occur: Type 1 (consolidation-deficient) and Type 2 (diffusion-deficient). To gain quantitative information on the extent of the problem, the formation of macroscopic butt welds in this material was studied, by (1) modelling the process and (2) measuring experimentally the resultant evolution of interface toughness. This paper reports on the model. A quantitative measure of interface structural integrity is defined, and related to the "maximum reptated molecular weight" introduced previously. The model assumes an idealised surface topography. It is used to calculate the evolution of interface integrity during welding, for given values of temperature, pressure, and parameters describing the surfaces, and a given molar mass distribution. Only four material properties are needed for the calculation; all of them available for polyethylene. The model shows that, for UHMWPE typically employed in knee transplants, the rate of eradication of Type 1 defects is highly sensitive to surface topography, process temperature and pressure. Also, even if Type 1 defects are prevented, Type 2 defects heal extremely slowly. They must be an intrinsic feature of UHMWPE for all reasonable forming conditions, and products and forming processes should be designed accordingly. PMID:16490249

  3. Importance of interfaces in governing thermal transport in composite materials: modeling and experimental perspectives.

    PubMed

    Roy, Ajit K; Farmer, Barry L; Varshney, Vikas; Sihn, Sangwook; Lee, Jonghoon; Ganguli, Sabyasachi

    2012-02-01

    Thermal management in polymeric composite materials has become increasingly critical in the air-vehicle industry because of the increasing thermal load in small-scale composite devices extensively used in electronics and aerospace systems. The thermal transport phenomenon in these small-scale heterogeneous systems is essentially controlled by the interface thermal resistance because of the large surface-to-volume ratio. In this review article, several modeling strategies are discussed for different length scales, complemented by our experimental efforts to tailor the thermal transport properties of polymeric composite materials. Progress in the molecular modeling of thermal transport in thermosets is reviewed along with a discussion on the interface thermal resistance between functionalized carbon nanotube and epoxy resin systems. For the thermal transport in fiber-reinforced composites, various micromechanics-based analytical and numerical modeling schemes are reviewed in predicting the transverse thermal conductivity. Numerical schemes used to realize and scale the interface thermal resistance and the finite mean free path of the energy carrier in the mesoscale are discussed in the frame of the lattice Boltzmann-Peierls-Callaway equation. Finally, guided by modeling, complementary experimental efforts are discussed for exfoliated graphite and vertically aligned nanotubes based composites toward improving their effective thermal conductivity by tailoring interface thermal resistance. PMID:22295993

  4. A continuous surface tension force formulation for diffuse-interface models

    E-print Network

    Frey, Pascal

    A continuous surface tension force formulation for diffuse-interface models Junseok Kim October 2004 Available online 30 November 2004 Abstract We present a new surface tension force formulation field because pressure includes the gradient terms resulting from the modified surface tension term

  5. Area Model and Dimensioning Guidelines of Multi-source Energy Harvesting for Nano-micro Interface

    E-print Network

    Politècnica de Catalunya, Universitat

    1 Area Model and Dimensioning Guidelines of Multi-source Energy Harvesting for Nano-micro Interface´on, Member, IEEE Abstract--Multi-source energy harvesters is a promising, ro- bust alternative to power of the fact that one of its energy sources might be temporarily unavailable. Interestingly, and less explored

  6. A Monthly Water-Balance Model Driven By a Graphical User Interface

    USGS Publications Warehouse

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  7. COMBINING DJ SCRATCHING, TANGIBLE INTERFACES AND A PHYSICS-BASED MODEL OF FRICTION SOUNDS

    E-print Network

    Boye, Johan

    such as the turntable. Further, it has been a long-time tendency among hip-hop DJs to perfect their skills and performCOMBINING DJ SCRATCHING, TANGIBLE INTERFACES AND A PHYSICS-BASED MODEL OF FRICTION SOUNDS Kjetil F can be applied to new situations. In one experiment, the gestures were used to control a physics-based

  8. Development of a GIS interface for WEPP model application to Great Lakes forested watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will highlight efforts on development of a new WEPP GIS interface, targeted toward application in forested regions bordering the Great Lakes. The key components and algorithms of the online GIS system will be outlined. The general procedures used to provide input to the WEPP model ...

  9. MEASUREMENT AND MODELLING OF AMMONIA EMISSIONS AT WASTE TREATMENT LAGOON-ATMOSPHERIC INTERFACE

    E-print Network

    Aneja, Viney P.

    MEASUREMENT AND MODELLING OF AMMONIA EMISSIONS AT WASTE TREATMENT LAGOON-ATMOSPHERIC INTERFACE of ammonia are approximately 75 Tg N/yr (1 Tg = 1012g). The major global source is excreta from domestic in North Carolina (NC). Proteins and nitrogen rich compounds in the lagoon are converted to ammonia

  10. Using Domain-Specific Modeling to Generate User Interfaces for Wizards

    E-print Network

    Gray, Jeffrey G.

    Using Domain-Specific Modeling to Generate User Interfaces for Wizards Enis Afgan, Jeff Gray-computer interaction methods. Software wizards are one important example from the category of tools that simplify this interaction. Through a simple, domain-specific, and targeted set of guided questions, wizards allow complex

  11. Distribution automation applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold; Johnston, A.; Friend, H.

    1989-01-01

    Motivations for interest and research in distribution automation are discussed. The communication requirements of distribution automation are examined and shown to exceed the capabilities of power line carrier, radio, and telephone systems. A fiber optic based communication system is described that is co-located with the distribution system and that could satisfy the data rate and reliability requirements. A cost comparison shows that it could be constructed at a cost that is similar to that of a power line carrier system. The requirements for fiber optic sensors for distribution automation are discussed. The design of a data link suitable for optically-powered electronic sensing is presented. Empirical results are given. A modeling technique that was used to understand the reflections of guided light from a variety of surfaces is described. An optical position-indicator design is discussed. Systems aspects of distribution automation are discussed, in particular, the lack of interface, communications, and data standards. The economics of distribution automation are examined.

  12. A Laboratory Seismoelectric Measurement for the Permafrost Model with a Frozen-unfrozen Interface

    NASA Astrophysics Data System (ADS)

    Liu, Z.

    2007-12-01

    For the Qing-Cang railway line located in the permafrost region, the freeze-thaw cycling with the seasons and spring-thaw of the permafrost are main factors to weaken the railway bed. Therefore, the determination of the frozen-unfrozen interface depth below the railway bed is important for the railway operation, and moreover, it can contribute to the evaluation of the permafrost environment effected by the railway. Since the frozen-unfrozen interface is a contact of two media with various porosity and saturation, an electric double-layer can be formed at the interface by the absorption of electrical charge to it. When a seismic wave is incident at the interface, a relative motion of the charges in the electric double-layer would induce an electromagnetic (EM) wave, or a seismoeletric conversion signal that can be measured remotely, which is potential for determining the frost depth. A simple permafrost model with a frozen-unfrozen interface was built mainly by two parts: the upper part was a frozen sand block with a 7cm thickness and the lower one with the same material was in an unfrozen state saturated with water. And the contact of the two parts simulated the frozen-unfrozen interface. The interface model was placed in a freezer, while it was heated from the bottom with a heating sheet made by the electric heating wires laid under the unfrozen part. A P-wave source transducer with 48 kHz narrow band frequency was set on the top the frozen part and driven by a square electric pulse. The six electrodes with a 1 cm even interval were fixed inside the frozen part with 1 cm vertical distance to the interface. In the experiment, all the analog signals acquired from the temperature sensors, acoustic transducers, and electrodes were sent through preamplifiers and recorded digitally by computer-based virtual instruments (VIs). At the beginning of the experiment, the first arrivals of the seismoeletric signals observed from the six electrodes with minimum offset set to be 7cm were proportional to the distances between the acoustic sources to electrodes, and thus the EM signals are originated from the stationary electromagnetic field that moves along with the acoustic waves. After the eight hours, we recognized two new events of EM waves by their exactly identical arrive times from the six electrodes. The event A with identical arrival time being close to zero is the EM interference of the high-voltage pulse exciting the acoustic source transducer. The identical arrival time 23-25 microsecond of the event B roughly equates to that of the acoustic wave travel time from the source to the interface, and it is obviously the conversion EM signal originated from the electric double-layer in the interface. With a minimum 14cm offset, the event A arrived at the same time only with greatly reduced amplitude, and the event B had not able to be detected for its weak amplitude. Another event B' with an about 50 microsecond identical arriving time could, however, be recognized, and it should be a conversion EM wave from the interface exited by the second acoustic vibration cycle from the acoustic source wave with higher amplitude, as the arrival time just equates to that of the second cycle of the narrow band acoustic wave to travel to the interface. These measurements in the laboratory show that , the electric double-layer formed at the frozen-unfrozen interface can be polarized to generate EM waves by both an EM pulse and a vibration source, which imply that the frozen-unfrozen interface of the permafrost could be surveying by both EM, and seismoelectric methods. And the results also show that the electric double-layer needs several hours to be formed in a laboratory experiment under low tempreture.

  13. Facial pressure zones of an oronasal interface for noninvasive ventilation: a computer model analysis* **

    PubMed Central

    Barros, Luana Souto; Talaia, Pedro; Drummond, Marta; Natal-Jorge, Renato

    2014-01-01

    OBJECTIVE: To study the effects of an oronasal interface (OI) for noninvasive ventilation, using a three-dimensional (3D) computational model with the ability to simulate and evaluate the main pressure zones (PZs) of the OI on the human face. METHODS: We used a 3D digital model of the human face, based on a pre-established geometric model. The model simulated soft tissues, skull, and nasal cartilage. The geometric model was obtained by 3D laser scanning and post-processed for use in the model created, with the objective of separating the cushion from the frame. A computer simulation was performed to determine the pressure required in order to create the facial PZs. We obtained descriptive graphical images of the PZs and their intensity. RESULTS: For the graphical analyses of each face-OI model pair and their respective evaluations, we ran 21 simulations. The computer model identified several high-impact PZs in the nasal bridge and paranasal regions. The variation in soft tissue depth had a direct impact on the amount of pressure applied (438-724 cmH2O). CONCLUSIONS: The computer simulation results indicate that, in patients submitted to noninvasive ventilation with an OI, the probability of skin lesion is higher in the nasal bridge and paranasal regions. This methodology could increase the applicability of biomechanical research on noninvasive ventilation interfaces, providing the information needed in order to choose the interface that best minimizes the risk of skin lesion. PMID:25610506

  14. Modeling and matching of landmarks for automation of Mars Rover localization

    NASA Astrophysics Data System (ADS)

    Wang, Jue

    The Mars Exploration Rover (MER) mission, begun in January 2004, has been extremely successful. However, decision-making for many operation tasks of the current MER mission and the 1997 Mars Pathfinder mission is performed on Earth through a predominantly manual, time-consuming process. Unmanned planetary rover navigation is ideally expected to reduce rover idle time, diminish the need for entering safe-mode, and dynamically handle opportunistic science events without required communication to Earth. Successful automation of rover navigation and localization during the extraterrestrial exploration requires that accurate position and attitude information can be received by a rover and that the rover has the support of simultaneous localization and mapping. An integrated approach with Bundle Adjustment (BA) and Visual Odometry (VO) can efficiently refine the rover position. However, during the MER mission, BA is done manually because of the difficulty in the automation of the cross-sitetie points selection. This dissertation proposes an automatic approach to select cross-site tie points from multiple rover sites based on the methods of landmark extraction, landmark modeling, and landmark matching. The first step in this approach is that important landmarks such as craters and rocks are defined. Methods of automatic feature extraction and landmark modeling are then introduced. Complex models with orientation angles and simple models without those angles are compared. The results have shown that simple models can provide reasonably good results. Next, the sensitivity of different modeling parameters is analyzed. Based on this analysis, cross-site rocks are matched through two complementary stages: rock distribution pattern matching and rock model matching. In addition, a preliminary experiment on orbital and ground landmark matching is also briefly introduced. Finally, the reliability of the cross-site tie points selection is validated by fault detection, which considers the mapping capability of MER cameras and the reason for mismatches. Fault detection strategies are applied in each step of the cross-site tie points selection to automatically verify the accuracy. The mismatches are excluded and localization errors are minimized. The method proposed in this dissertation is demonstrated with the datasets from the 2004 MER mission (traverse of 318 m) as well as the simulated test data at Silver Lake (traverse of 5.5 km), California. The accuracy analysis demonstrates that the algorithm is efficient at automatically selecting a sufficient number of well-distributed high-quality tie points to link the ground images into an image network for BA. The method worked successfully along with a continuous 1.1 km stretch. With the BA performed, highly accurate maps can be created to help the rover to navigate precisely and automatically. The method also enables autonomous long-range Mars rover localization.

  15. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    NASA Astrophysics Data System (ADS)

    Wellmann, J. F.; Thiele, S. T.; Lindsay, M. D.; Jessell, M. W.

    2015-11-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  16. Coarse Grained Modeling of The Interface BetweenWater and Heterogeneous Surfaces

    SciTech Connect

    Willard, Adam; Chandler, David

    2008-06-23

    Using coarse grained models we investigate the behavior of water adjacent to an extended hydrophobic surface peppered with various fractions of hydrophilic patches of different sizes. We study the spatial dependence of the mean interface height, the solvent density fluctuations related to drying the patchy substrate, and the spatial dependence of interfacial fluctuations. We find that adding small uniform attractive interactions between the substrate and solvent cause the mean position of the interface to be very close to the substrate. Nevertheless, the interfacial fluctuations are large and spatially heterogeneous in response to the underlying patchy substrate. We discuss the implications of these findings to the assembly of heterogeneous surfaces.

  17. Effect of disorder on a fractal model for the ac response of a rough interface

    NASA Astrophysics Data System (ADS)

    Kaplan, Theodore; Gray, L. J.

    1985-12-01

    The effect of disorder on the fractal model of Liu for a rough interface between two materials of very different conductivities is examined. It is found that the average admittance has the experimentally observed property of a constant-phase-angle (CPA) element. The exponent ? of the frequency dependence of the CPA element depends on the specific form of the probability distribution of the scaling. Furthermore, the fractal dimension d¯s of the random surface area of the interface is calculated, and ?=3-d¯s.

  18. Modeling and Measurements for Mitigating Interface from Skyshine

    SciTech Connect

    Kernan, Warnick J.; Mace, Emily K.; Siciliano, Edward R.; Conlin, Kenneth E.; Flumerfelt, Eric L.; Kouzes, Richard T.; Woodring, Mitchell L.

    2009-12-21

    ?Abstract– Skyshine, the radiation scattered in the air above a high-activity gamma-ray source, can produce interference with radiation portal monitor (RPM) systems at distances up to even many hundred meters. Pacific Northwest National Laboratory (PNNL) has been engaged in a campaign of measurements, design work and modeling that explore methods of mitigating the effects of skyshine on outdoor measurements with sensitive instruments. An overview of our work with shielding of skyshine is being reported by us in another paper at this conference. This paper will concentrate on two topics: measurements and modeling with Monte Carlo transport calculations to characterize skyshine from an iridium-192 source, and testing of a prototype louver system, designed and fabricated at PNNL, as a shielding approach to limit the impact of skyshine interference on RPM systems.

  19. ITER physics-safety interface: models and assessments

    SciTech Connect

    Uckan, N.A.; Putvinski, S.; Wesley, J.; Bartels, H-W.; Honda, T.; Amano, T.; Boucher, D.; Fujisawa, N.; Post, D.; Rosenbluth, M.

    1996-10-01

    Plasma operation conditions and physics requirements to be used as a basis for safety analysis studies are developed and physics results motivated by safety considerations are presented for the ITER design. Physics guidelines and specifications for enveloping plasma dynamic events for Category I (operational event), Category II (likely event), and Category III (unlikely event) are characterized. Safety related physics areas that are considered are: (i) effect of plasma on machined and safety (disruptions, runaway electrons, fast plasma shutdown) and (ii) plasma response to ex-vessel LOCA from first wall providing a potential passive plasma shutdown due to Be evaporation. Physics models and expressions developed are implemented in safety analysis code (SAFALY, couples 0-D dynamic plasma model to thermal response of the in-vessel components). Results from SAFALY are presented.

  20. Model studies of Rayleigh instabilities via microdesigned interfaces

    SciTech Connect

    Glaeser, Andreas M.

    2000-10-17

    The energetic and kinetic properties of surfaces play a critical role in defining the microstructural changes that occur during sintering and high-temperature use of ceramics. Characterization of surface diffusion in ceramics is particularly difficult, and significant variations in reported values of surface diffusivities arise even in well-studied systems. Effects of impurities, surface energy anisotropy, and the onset of surface attachment limited kinetics (SALK) are believed to contribute to this variability. An overview of the use of Rayleigh instabilities as a means of characterizing surface diffusivities is presented. The development of models of morphological evolution that account for effects of surface energy anisotropy is reviewed, and the potential interplay between impurities and surface energy anisotropy is addressed. The status of experimental studies of Rayleigh instabilities in sapphire utilizing lithographically introduced pore channels of controlled geometry and crystallography is summarized. Results of model studies indicate that impurities can significantly influence both the spatial and temporal characteristics of Rayleigh instabilities; this is attributed at least in part to impurity effects on the surface energy anisotropy. Related model experiments indicate that the onset of SALK may also contribute significantly to apparent variations in surface diffusion coefficients.

  1. Modeling the Effect of Interface Wear on Fatigue Hysteresis Behavior of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-04-01

    An analytical method has been developed to investigate the effect of interface wear on fatigue hysteresis behavior in carbon fiber-reinforced ceramic-matrix composites (CMCs). The damage mechanisms, i.e., matrix multicracking, fiber/matrix interface debonding and interface wear, fibers fracture, slip and pull-out, have been considered. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Upon first loading to fatigue peak stress and subsequent cyclic loading, the fibers failure probabilities and fracture locations were determined by combining the interface wear model and fiber statistical failure model based on the assumption that the loads carried by broken and intact fibers satisfy the global load sharing criterion. The effects of matrix properties, i.e., matrix cracking characteristic strength and matrix Weibull modulus, interface properties, i.e., interface shear stress and interface debonded energy, fiber properties, i.e., fiber Weibull modulus and fiber characteristic strength, and cycle number on fibers failure, hysteresis loops and interface slip, have been investigated. The hysteresis loops under fatigue loading from the present analytical method were in good agreement with experimental data.

  2. Non-Redundant Unique Interface Structures as Templates for Modeling Protein Interactions

    PubMed Central

    Cukuroglu, Engin; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2014-01-01

    Improvements in experimental techniques increasingly provide structural data relating to protein-protein interactions. Classification of structural details of protein-protein interactions can provide valuable insights for modeling and abstracting design principles. Here, we aim to cluster protein-protein interactions by their interface structures, and to exploit these clusters to obtain and study shared and distinct protein binding sites. We find that there are 22604 unique interface structures in the PDB. These unique interfaces, which provide a rich resource of structural data of protein-protein interactions, can be used for template-based docking. We test the specificity of these non-redundant unique interface structures by finding protein pairs which have multiple binding sites. We suggest that residues with more than 40% relative accessible surface area should be considered as surface residues in template-based docking studies. This comprehensive study of protein interface structures can serve as a resource for the community. The dataset can be accessed at http://prism.ccbb.ku.edu.tr/piface. PMID:24475173

  3. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    SciTech Connect

    Steven R. Sherman

    2007-05-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant.

  4. Modeling Complex Cross-Systems Software Interfaces Using SysML

    NASA Technical Reports Server (NTRS)

    Mandutianu, Sanda; Morillo, Ron; Simpson, Kim; Liepack, Otfrid; Bonanne, Kevin

    2013-01-01

    The complex flight and ground systems for NASA human space exploration are designed, built, operated and managed as separate programs and projects. However, each system relies on one or more of the other systems in order to accomplish specific mission objectives, creating a complex, tightly coupled architecture. Thus, there is a fundamental need to understand how each system interacts with the other. To determine if a model-based system engineering approach could be utilized to assist with understanding the complex system interactions, the NASA Engineering and Safety Center (NESC) sponsored a task to develop an approach for performing cross-system behavior modeling. This paper presents the results of applying Model Based Systems Engineering (MBSE) principles using the System Modeling Language (SysML) to define cross-system behaviors and how they map to crosssystem software interfaces documented in system-level Interface Control Documents (ICDs).

  5. Context based mixture model for cell phase identification in automated fluorescence microscopy

    PubMed Central

    Wang, Meng; Zhou, Xiaobo; King, Randy W; Wong, Stephen TC

    2007-01-01

    Background Automated identification of cell cycle phases of individual live cells in a large population captured via automated fluorescence microscopy technique is important for cancer drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an important method to study the cell cycle process under different conditions of perturbation. Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not feasible. This paper presents statistical data analysis and statistical pattern recognition to perform this task. Results The data is generated from Hela H2B GFP cells imaged during a 2-day period with images acquired 15 minutes apart using an automated time-lapse fluorescence microscopy. The patterns are described with four kinds of features, including twelve general features, Haralick texture features, Zernike moment features, and wavelet features. To generate a new set of features with more discriminate power, the commonly used feature reduction techniques are used, which include Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Maximum Margin Criterion (MMC), Stepwise Discriminate Analysis based Feature Selection (SDAFS), and Genetic Algorithm based Feature Selection (GAFS). Then, we propose a Context Based Mixture Model (CBMM) for dealing with the time-series cell sequence information and compare it to other traditional classifiers: Support Vector Machine (SVM), Neural Network (NN), and K-Nearest Neighbor (KNN). Being a standard practice in machine learning, we systematically compare the performance of a number of common feature reduction techniques and classifiers to select an optimal combination of a feature reduction technique and a classifier. A cellular database containing 100 manually labelled subsequence is built for evaluating the performance of the classifiers. The generalization error is estimated using the cross validation technique. The experimental results show that CBMM outperforms all other classifies in identifying prophase and has the best overall performance. Conclusion The application of feature reduction techniques can improve the prediction accuracy significantly. CBMM can effectively utilize the contextual information and has the best overall performance when combined with any of the previously mentioned feature reduction techniques. PMID:17263881

  6. The contact line behaviour of solid-liquid-gas diffuse-interface models

    E-print Network

    Sibley, David N; Savva, Nikos; Kalliadasis, Serafim

    2013-01-01

    A solid-liquid-gas moving contact line is considered through a diffuse-interface model with the classical boundary condition of no-slip at the solid surface. Examination of the asymptotic behaviour as the contact line is approached shows that the relaxation of the classical model of a sharp liquid-gas interface, whilst retaining the no-slip condition, resolves the stress and pressure singularities associated with the moving contact line problem while the fluid velocity is well defined (not multi-valued). The moving contact line behaviour is analysed for a general problem relevant for any density dependent dynamic viscosity and volume viscosity, and for general microscopic contact angle and double well free-energy forms. Away from the contact line, analysis of the diffuse-interface model shows that the Navier--Stokes equations and classical interfacial boundary conditions are obtained at leading order in the sharp-interface limit, justifying the creeping flow problem imposed in an intermediate region in the se...

  7. Fast Model Adaptation for Automated Section Classification in Electronic Medical Records.

    PubMed

    Ni, Jian; Delaney, Brian; Florian, Radu

    2015-01-01

    Medical information extraction is the automatic extraction of structured information from electronic medical records, where such information can be used for improving healthcare processes and medical decision making. In this paper, we study one important medical information extraction task called section classification. The objective of section classification is to automatically identify sections in a medical document and classify them into one of the pre-defined section types. Training section classification models typically requires large amounts of human labeled training data to achieve high accuracy. Annotating institution-specific data, however, can be both expensive and time-consuming; which poses a big hurdle for adapting a section classification model to new medical institutions. In this paper, we apply two advanced machine learning techniques, active learning and distant supervision, to reduce annotation cost and achieve fast model adaptation for automated section classification in electronic medical records. Our experiment results show that active learning reduces the annotation cost and time by more than 50%, and distant supervision can achieve good model accuracy using weakly labeled training data only. PMID:26262005

  8. Lattice gas cellular automation model for rippling and aggregation in myxobacteria

    NASA Astrophysics Data System (ADS)

    Alber, Mark S.; Jiang, Yi; Kiskowski, Maria A.

    2004-05-01

    A lattice gas cellular automation (LGCA) model is used to simulate rippling and aggregation in myxobacteria. An efficient way of representing cells of different cell size, shape and orientation is presented that may be easily extended to model later stages of fruiting body formation. This LGCA model is designed to investigate whether a refractory period, a minimum response time, a maximum oscillation period and non-linear dependence of reversals of cells on C-factor are necessary assumptions for rippling. It is shown that a refractory period of 2-3 min, a minimum response time of up to 1 min and no maximum oscillation period best reproduce rippling in the experiments of Myxococcus xanthus. Non-linear dependence of reversals on C-factor is critical at high cell density. Quantitative simulations demonstrate that the increase in wavelength of ripples when a culture is diluted with non-signaling cells can be explained entirely by the decreased density of C-signaling cells. This result further supports the hypothesis that levels of C-signaling quantitatively depend on and modulate cell density. Analysis of the interpenetrating high density waves shows the presence of a phase shift analogous to the phase shift of interpenetrating solitons. Finally, a model for swarming, aggregation and early fruiting body formation is presented.

  9. Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland

    NASA Astrophysics Data System (ADS)

    Marmy, A.; Rajczak, J.; Delaloye, R.; Hilbich, C.; Hoelzle, M.; Kotlarski, S.; Lambiel, C.; Noetzli, J.; Phillips, M.; Salzmann, N.; Staub, B.; Hauck, C.

    2015-09-01

    Permafrost is a widespread phenomenon in the European Alps. Many important topics such as the future evolution of permafrost related to climate change and the detection of permafrost related to potential natural hazards sites are of major concern to our society. Numerical permafrost models are the only tools which facilitate the projection of the future evolution of permafrost. Due to the complexity of the processes involved and the heterogeneity of Alpine terrain, models must be carefully calibrated and results should be compared with observations at the site (borehole) scale. However, a large number of local point data are necessary to obtain a broad overview of the thermal evolution of mountain permafrost over a larger area, such as the Swiss Alps, and the site-specific model calibration of each point would be time-consuming. To face this issue, this paper presents a semi-automated calibration method using the Generalized Likelihood Uncertainty Estimation (GLUE) as implemented in a 1-D soil model (CoupModel) and applies it to six permafrost sites in the Swiss Alps prior to long-term permafrost evolution simulations. We show that this automated calibration method is able to accurately reproduce the main thermal condition characteristics with some limitations at sites with unique conditions such as 3-D air or water circulation, which have to be calibrated manually. The calibration obtained was used for RCM-based long-term simulations under the A1B climate scenario specifically downscaled at each borehole site. The projection shows general permafrost degradation with thawing at 10 m, even partially reaching 20 m depths until the end of the century, but with different timing among the sites. The degradation is more rapid at bedrock sites whereas ice-rich sites with a blocky surface cover showed a reduced sensitivity to climate change. The snow cover duration is expected to be reduced drastically (between -20 to -37 %) impacting the ground thermal regime. However, the uncertainty range of permafrost projections is large, resulting mainly from the broad range of input climate data from the different GCM-RCM chains of the ENSEMBLES data set.

  10. The location of the thermodynamic atmosphere-ice interface in fully-coupled models

    NASA Astrophysics Data System (ADS)

    West, A. E.; McLaren, A. J.; Hewitt, H. T.; Best, M. J.

    2015-11-01

    In fully-coupled climate models, it is now normal to include a sea ice component with multiple layers, each having their own temperature. When coupling this component to an atmosphere model, it is more common for surface variables to be calculated in the sea ice component of the model, the equivalent of placing an interface immediately above the surface. This study uses a one-dimensional (1-D) version of the Los Alamos sea ice model (CICE) thermodynamic solver and the Met Office atmospheric surface exchange solver (JULES) to compare this method with that of allowing the surface variables to be calculated instead in the atmosphere, the equivalent of placing an interface immediately below the surface. The model is forced with a sensible heat flux derived from a sinusoidally varying near-surface air temperature. The two coupling methods are tested first with a 1-h coupling frequency, and then a 3-h coupling frequency, both commonly-used. With an above-surface interface, the resulting surface temperature and flux cycles contain large phase and amplitude errors, as well as having a very "blocky" shape. The simulation of both quantities is greatly improved when the interface is instead placed within the top ice layer, allowing surface variables to be calculated on the shorter timescale of the atmosphere. There is also an unexpected slight improvement in the simulation of the top-layer ice temperature by the ice model. The study concludes with a discussion of the implications of these results to three-dimensional modelling. An appendix examines the stability of the alternative method of coupling under various physically realistic scenarios.

  11. What determines the take-over time? An integrated model approach of driver take-over after automated driving.

    PubMed

    Zeeb, Kathrin; Buchner, Axel; Schrauf, Michael

    2015-05-01

    In recent years the automation level of driver assistance systems has increased continuously. One of the major challenges for highly automated driving is to ensure a safe driver take-over of the vehicle guidance. This must be ensured especially when the driver is engaged in non-driving related secondary tasks. For this purpose it is essential to find indicators of the driver's readiness to take over and to gain more knowledge about the take-over process in general. A simulator study was conducted to explore how drivers' allocation of visual attention during highly automated driving influences a take-over action in response to an emergency situation. Therefore we recorded drivers' gaze behavior during automated driving while simultaneously engaging in a visually demanding secondary task, and measured their reaction times in a take-over situation. According to their gaze behavior the drivers were categorized into "high", "medium" and "low-risk". The gaze parameters were found to be suitable for predicting the readiness to take-over the vehicle, in such a way that high-risk drivers reacted late and more often inappropriately in the take-over situation. However, there was no difference among the driver groups in the time required by the drivers to establish motor readiness to intervene after the take-over request. An integrated model approach of driver behavior in emergency take-over situations during automated driving is presented. It is argued that primarily cognitive and not motor processes determine the take-over time. Given this, insights can be derived for further research and the development of automated systems. PMID:25794922

  12. Modelling and interpreting biologically crusted dryland soil sub-surface structure using automated micropenetrometry

    NASA Astrophysics Data System (ADS)

    Hoon, Stephen R.; Felde, Vincent J. M. N. L.; Drahorad, Sylvie L.; Felix-Henningsen, Peter

    2015-04-01

    Soil penetrometers are used routinely to determine the shear strength of soils and deformable sediments both at the surface and throughout a depth profile in disciplines as diverse as soil science, agriculture, geoengineering and alpine avalanche-safety (e.g. Grunwald et al. 2001, Van Herwijnen et al. 2009). Generically, penetrometers comprise two principal components: An advancing probe, and a transducer; the latter to measure the pressure or force required to cause the probe to penetrate or advance through the soil or sediment. The force transducer employed to determine the pressure can range, for example, from a simple mechanical spring gauge to an automatically data-logged electronic transducer. Automated computer control of the penetrometer step size and probe advance rate enables precise measurements to be made down to a resolution of 10's of microns, (e.g. the automated electronic micropenetrometer (EMP) described by Drahorad 2012). Here we discuss the determination, modelling and interpretation of biologically crusted dryland soil sub-surface structures using automated micropenetrometry. We outline a model enabling the interpretation of depth dependent penetration resistance (PR) profiles and their spatial differentials using the model equations, ? {}(z) ={}? c0{}+? 1n[? n{}(z){}+anz + bnz2] and d? /dz = ? 1n[d? n(z) /dz{} {}+{}Frn(z)] where ? c0 and ? n are the plastic deformation stresses for the surface and nth soil structure (e.g. soil crust, layer, horizon or void) respectively, and Frn(z)dz is the frictional work done per unit volume by sliding the penetrometer rod an incremental distance, dz, through the nth layer. Both ? n(z) and Frn(z) are related to soil structure. They determine the form of ? {}(z){} measured by the EMP transducer. The model enables pores (regions of zero deformation stress) to be distinguished from changes in layer structure or probe friction. We have applied this method to both artificial calibration soils in the laboratory, and in-situ field studies. In particular, we discuss the nature and detection of surface and buried (fossil) subsurface Biological Soil Crusts (BSCs), voids, macroscopic particles and compositional layers. The strength of surface BSCs and the occurrence of buried BSCs and layers has been detected at sub millimetre scales to depths of 40mm. Our measurements and field observations of PR show the importance of morphological layering to overall BSC functions (Felde et al. 2015). We also discuss the effect of penetrometer shaft and probe-tip profiles upon the theoretical and experimental curves, EMP resolution and reproducibility, demonstrating how the model enables voids, buried biological soil crusts, exotic particles, soil horizons and layers to be distinguished one from another. This represents a potentially important contribution to advancing understanding of the relationship between BSCs and dryland soil structure. References: Drahorad SL, Felix-Henningsen P. (2012) An electronic micropenetrometer (EMP) for field measurements of biological soil crust stability, J. Plant Nutr. Soil Sci., 175, 519-520 Felde V.J.M.N.L., Drahorad S.L., Felix-Henningsen P., Hoon S.R. (2015) Ongoing oversanding induces biological soil crust layering - a new approach for BSC structure elucidation determined from high resolution penetration resistance data (submitted) Grunwald, S., Rooney D.J., McSweeney K., Lowery B. (2001) Development of pedotransfer functions for a profile cone penetrometer, Geoderma, 100, 25-47 Van Herwijnen A., Bellaire S., Schweizer J. (2009) Comparison of micro-structural snowpack parameters derived from penetration resistance measurements with fracture character observations from compression tests, Cold Regions Sci. {& Technol.}, 59, 193-201

  13. Semi-automated DIRSIG scene modeling from 3D LIDAR and passive imaging sources

    NASA Astrophysics Data System (ADS)

    Lach, S. R.; Brown, S. D.; Kerekes, J. P.

    2006-05-01

    The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is an established, first-principles based scene simulation tool that produces synthetic multispectral and hyperspectral images from the visible to long wave infrared (0.4 to 20 microns). Over the last few years, significant enhancements such as spectral polarimetric and active Light Detection and Ranging (LIDAR) models have also been incorporated into the software, providing an extremely powerful tool for algorithm testing and sensor evaluation. However, the extensive time required to create large-scale scenes has limited DIRSIG's ability to generate scenes "on demand." To date, scene generation has been a laborious, time-intensive process, as the terrain model, CAD objects and background maps have to be created and attributed manually. To shorten the time required for this process, we are initiating a research effort that aims to reduce the man-in-the-loop requirements for several aspects of synthetic hyperspectral scene construction. Through a fusion of 3D LIDAR data with passive imagery, we are working to semi-automate several of the required tasks in the DIRSIG scene creation process. Additionally, many of the remaining tasks will also realize a shortened implementation time through this application of multi-modal imagery. This paper reports on the progress made thus far in achieving these objectives.

  14. DockTope: a Web-based tool for automated pMHC-I modelling

    PubMed Central

    Menegatti Rigo, Maurício; Amaral Antunes, Dinler; Vaz de Freitas, Martiela; Fabiano de Almeida Mendes, Marcus; Meira, Lindolfo; Sinigaglia, Marialva; Fioravanti Vieira, Gustavo

    2015-01-01

    The immune system is constantly challenged, being required to protect the organism against a wide variety of infectious pathogens and, at the same time, to avoid autoimmune disorders. One of the most important molecules involved in these events is the Major Histocompatibility Complex class I (MHC-I), responsible for binding and presenting small peptides from the intracellular environment to CD8+ T cells. The study of peptide:MHC-I (pMHC-I) molecules at a structural level is crucial to understand the molecular mechanisms underlying immunologic responses. Unfortunately, there are few pMHC-I structures in the Protein Data Bank (PDB) (especially considering the total number of complexes that could be formed combining different peptides), and pMHC-I modelling tools are scarce. Here, we present DockTope, a free and reliable web-based tool for pMHC-I modelling, based on crystal structures from the PDB. DockTope is fully automated and allows any researcher to construct a pMHC-I complex in an efficient way. We have reproduced a dataset of 135 non-redundant pMHC-I structures from the PDB (C? RMSD below 1?Å). Modelling of pMHC-I complexes is remarkably important, contributing to the knowledge of important events such as cross-reactivity, autoimmunity, cancer therapy, transplantation and rational vaccine design. PMID:26674250

  15. DockTope: a Web-based tool for automated pMHC-I modelling.

    PubMed

    Menegatti Rigo, Maurício; Amaral Antunes, Dinler; Vaz de Freitas, Martiela; Fabiano de Almeida Mendes, Marcus; Meira, Lindolfo; Sinigaglia, Marialva; Fioravanti Vieira, Gustavo

    2015-01-01

    The immune system is constantly challenged, being required to protect the organism against a wide variety of infectious pathogens and, at the same time, to avoid autoimmune disorders. One of the most important molecules involved in these events is the Major Histocompatibility Complex class I (MHC-I), responsible for binding and presenting small peptides from the intracellular environment to CD8(+) T cells. The study of peptide:MHC-I (pMHC-I) molecules at a structural level is crucial to understand the molecular mechanisms underlying immunologic responses. Unfortunately, there are few pMHC-I structures in the Protein Data Bank (PDB) (especially considering the total number of complexes that could be formed combining different peptides), and pMHC-I modelling tools are scarce. Here, we present DockTope, a free and reliable web-based tool for pMHC-I modelling, based on crystal structures from the PDB. DockTope is fully automated and allows any researcher to construct a pMHC-I complex in an efficient way. We have reproduced a dataset of 135 non-redundant pMHC-I structures from the PDB (C? RMSD below 1?Å). Modelling of pMHC-I complexes is remarkably important, contributing to the knowledge of important events such as cross-reactivity, autoimmunity, cancer therapy, transplantation and rational vaccine design. PMID:26674250

  16. Partially Automated Method for Localizing Standardized Acupuncture Points on the Heads of Digital Human Models

    PubMed Central

    Kim, Jungdae; Kang, Dae-In

    2015-01-01

    Having modernized imaging tools for precise positioning of acupuncture points over the human body where the traditional therapeutic method is applied is essential. For that reason, we suggest a more systematic positioning method that uses X-ray computer tomographic images to precisely position acupoints. Digital Korean human data were obtained to construct three-dimensional head-skin and skull surface models of six individuals. Depending on the method used to pinpoint the positions of the acupoints, every acupoint was classified into one of three types: anatomical points, proportional points, and morphological points. A computational algorithm and procedure were developed for partial automation of the positioning. The anatomical points were selected by using the structural characteristics of the skin surface and skull. The proportional points were calculated from the positions of the anatomical points. The morphological points were also calculated by using some control points related to the connections between the source and the target models. All the acupoints on the heads of the six individual were displayed on three-dimensional computer graphical image models. This method may be helpful for developing more accurate experimental designs and for providing more quantitative volumetric methods for performing analyses in acupuncture-related research. PMID:26101534

  17. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  18. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  19. Automated Geometric Model Builder Using Range Image Sensor Data: Final Acquistion

    SciTech Connect

    Diegert, C.; Sackos, J.

    1999-02-01

    This report documents a data collection where we recorded redundant range image data from multiple views of a simple scene, and recorded accurate survey measurements of the same scene. Collecting these data was a focus of the research project Automated Geometric Model Builder Using Range Image Sensor Data (96-0384), supported by Sandia's Laboratory-Directed Research and Development (LDRD) Program during fiscal years 1996, 1997, and 1998. The data described here are available from the authors on CDROM, or electronically over the Internet. Included in this data distribution are Computer-Aided Design (CAD) models we constructed from the survey measurements. The CAD models are compatible with the SolidWorks 98 Plus system, the modern Computer-Aided Design software system that is central to Sandia's DeskTop Engineering Project (DTEP). Integration of our measurements (as built) with the constructive geometry process of the CAD system (as designed) delivers on a vision of the research project. This report on our final data collection will also serve as a final report on the project.

  20. VoICE: A semi-automated pipeline for standardizing vocal analysis across models

    PubMed Central

    Burkett, Zachary D.; Day, Nancy F.; Peñagarikano, Olga; Geschwind, Daniel H.; White, Stephanie A.

    2015-01-01

    The study of vocal communication in animal models provides key insight to the neurogenetic basis for speech and communication disorders. Current methods for vocal analysis suffer from a lack of standardization, creating ambiguity in cross-laboratory and cross-species comparisons. Here, we present VoICE (Vocal Inventory Clustering Engine), an approach to grouping vocal elements by creating a high dimensionality dataset through scoring spectral similarity between all vocalizations within a recording session. This dataset is then subjected to hierarchical clustering, generating a dendrogram that is pruned into meaningful vocalization “types” by an automated algorithm. When applied to birdsong, a key model for vocal learning, VoICE captures the known deterioration in acoustic properties that follows deafening, including altered sequencing. In a mammalian neurodevelopmental model, we uncover a reduced vocal repertoire of mice lacking the autism susceptibility gene, Cntnap2. VoICE will be useful to the scientific community as it can standardize vocalization analyses across species and laboratories. PMID:26018425

  1. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    NASA Astrophysics Data System (ADS)

    Moreau, P.; César de Sá, J.; Grégoire, S.; Lochegnies, D.

    2007-05-01

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication…). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  2. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    SciTech Connect

    Moreau, P.; Gregoire, S.; Lochegnies, D.; Cesar de Sa, J.

    2007-05-17

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication...). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  3. Optics of an opal modeled with a stratified effective index and the effect of the interface

    E-print Network

    Maurin, Isabelle; Laliotis, Athanasios; Bloch, Daniel

    2015-01-01

    Reflection and transmission for an artificial opal are described through a model of stratified medium based upon a one-dimensional variation of an effective index. The model is notably applicable to a Langmuir-Blodgett type disordered opal. Light scattering is accounted for by a phenomenological absorption. The interface region between the opal and the substrate -or the vacuum- induces a periodicity break in the photonic crystal arrangement, which exhibits a prominent influence on the reflection, notably away from the Bragg reflection peak. Experimental results are compared to our model. The model is extendable to inverse opals, stacked cylinders, or irradiation by evanescent waves

  4. Automated inter-model parameter connection synthesis for simulation model integration

    E-print Network

    Ligon, Thomas (Thomas Crumrine)

    2007-01-01

    New simulation modeling environments have been developed such that multiple models can be integrated into a single model. This conglomeration of model data allows designers to better understand the physical phenomenon being ...

  5. Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods

    NASA Astrophysics Data System (ADS)

    Tezduyar, Tayfun E.; Sathe, Sunil; Pausewang, Jason; Schwaab, Matthew; Christopher, Jason; Crabtree, Jason

    2008-12-01

    The stabilized space-time fluid-structure interaction (SSTFSI) technique developed by the Team for Advanced Flow Simulation and Modeling (T?AFSM) was applied to a number of 3D examples, including arterial fluid mechanics and parachute aerodynamics. Here we focus on the interface projection techniques that were developed as supplementary methods targeting the computational challenges associated with the geometric complexities of the fluid-structure interface. Although these supplementary techniques were developed in conjunction with the SSTFSI method and in the context of air-fabric interactions, they can also be used in conjunction with other moving-mesh methods, such as the Arbitrary Lagrangian-Eulerian (ALE) method, and in the context of other classes of FSI applications. The supplementary techniques currently consist of using split nodal values for pressure at the edges of the fabric and incompatible meshes at the air-fabric interfaces, the FSI Geometric Smoothing Technique (FSI-GST), and the Homogenized Modeling of Geometric Porosity (HMGP). Using split nodal values for pressure at the edges and incompatible meshes at the interfaces stabilizes the structural response at the edges of the membrane used in modeling the fabric. With the FSI-GST, the fluid mechanics mesh is sheltered from the consequences of the geometric complexity of the structure. With the HMGP, we bypass the intractable complexities of the geometric porosity by approximating it with an “equivalent”, locally-varying fabric porosity. As test cases demonstrating how the interface projection techniques work, we compute the air-fabric interactions of windsocks, sails and ringsail parachutes.

  6. Integrated surface and groundwater modelling in the Thames Basin, UK using the Open Modelling Interface

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Abesser, Corinna; Hughes, Andrew; Jackson, Chris; Kingdon, Andrew; Mansour, Majdi; Pachocka, Magdalena; Wang, Lei; Williams, Ann

    2013-04-01

    The River Thames catchment is situated in the south-east of England. It covers approximately 16,000 km2 and is the most heavily populated river basin in the UK. It is also one of the driest and has experienced severe drought events in the recent past. With the onset of climate change and human exploitation of our environment, there are now serious concerns over the sustainability of water resources in this basin with 6 million m3 consumed every day for public water supply alone. Groundwater in the Thames basin is extremely important, providing 40% of water for public supply. The principal aquifer is the Chalk, a dual permeability limestone, which has been extensively studied to understand its hydraulic properties. The fractured Jurassic limestone in the upper catchment also forms an important aquifer, supporting baseflow downstream during periods of drought. These aquifers are unconnected other than through the River Thames and its tributaries, which provide two-thirds of London's drinking water. Therefore, to manage these water resources sustainably and to make robust projections into the future, surface and groundwater processes must be considered in combination. This necessitates the simulation of the feedbacks and complex interactions between different parts of the water cycle, and the development of integrated environmental models. The Open Modelling Interface (OpenMI) standard provides a method through which environmental models of varying complexity and structure can be linked, allowing them to run simultaneously and exchange data at each timestep. This architecture has allowed us to represent the surface and subsurface flow processes within the Thames basin at an appropriate level of complexity based on our understanding of particular hydrological processes and features. We have developed a hydrological model in OpenMI which integrates a process-driven, gridded finite difference groundwater model of the Chalk with a more simplistic, semi-distributed conceptual model of the Jurassic limestone. A distributed river routing model of the Thames has also been integrated to connect the surface and subsurface hydrological processes. This application demonstrates the potential benefits and issues associated with implementing this approach.

  7. Interfacing MATLAB and Python Optimizers to Black-Box Environmental Simulation Models

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Leung, K.; Tolson, B.

    2009-12-01

    A common approach for utilizing environmental models in a management or policy-analysis context is to incorporate them into a simulation-optimization framework - where an underlying process-based environmental model is linked with an optimization search algorithm. The optimization search algorithm iteratively adjusts various model inputs (i.e. parameters or design variables) in order to minimize an application-specific objective function computed on the basis of model outputs (i.e. response variables). Numerous optimization algorithms have been applied to the simulation-optimization of environmental systems and this research investigated the use of optimization libraries and toolboxes that are readily available in MATLAB and Python - two popular high-level programming languages. Inspired by model-independent calibration codes (e.g. PEST and UCODE), a small piece of interface software (known as PIGEON) was developed. PIGEON allows users to interface Python and MATLAB optimizers with arbitrary black-box environmental models without writing any additional interface code. An initial set of benchmark tests (involving more than 20 MATLAB and Python optimization algorithms) were performed to validate the interface software - results highlight the need to carefully consider such issues as numerical precision in output files and enforcement (or not) of parameter limits. Additional benchmark testing considered the problem of fitting isotherm expressions to laboratory data - with an emphasis on dual-mode expressions combining non-linear isotherms with a linear partitioning component. With respect to the selected isotherm fitting problems, derivative-free search algorithms significantly outperformed gradient-based algorithms. Attempts to improve gradient-based performance, via parameter tuning and also via several alternative multi-start approaches, were largely unsuccessful.

  8. Modeling strategic use of human computer interfaces with novel hidden Markov models

    PubMed Central

    Mariano, Laura J.; Poore, Joshua C.; Krum, David M.; Schwartz, Jana L.; Coskren, William D.; Jones, Eric M.

    2015-01-01

    Immersive software tools are virtual environments designed to give their users an augmented view of real-world data and ways of manipulating that data. As virtual environments, every action users make while interacting with these tools can be carefully logged, as can the state of the software and the information it presents to the user, giving these actions context. This data provides a high-resolution lens through which dynamic cognitive and behavioral processes can be viewed. In this report, we describe new methods for the analysis and interpretation of such data, utilizing a novel implementation of the Beta Process Hidden Markov Model (BP-HMM) for analysis of software activity logs. We further report the results of a preliminary study designed to establish the validity of our modeling approach. A group of 20 participants were asked to play a simple computer game, instrumented to log every interaction with the interface. Participants had no previous experience with the game's functionality or rules, so the activity logs collected during their naïve interactions capture patterns of exploratory behavior and skill acquisition as they attempted to learn the rules of the game. Pre- and post-task questionnaires probed for self-reported styles of problem solving, as well as task engagement, difficulty, and workload. We jointly modeled the activity log sequences collected from all participants using the BP-HMM approach, identifying a global library of activity patterns representative of the collective behavior of all the participants. Analyses show systematic relationships between both pre- and post-task questionnaires, self-reported approaches to analytic problem solving, and metrics extracted from the BP-HMM decomposition. Overall, we find that this novel approach to decomposing unstructured behavioral data within software environments provides a sensible means for understanding how users learn to integrate software functionality for strategic task pursuit. PMID:26191026

  9. Similarities of coherent tunneling spectroscopy of ferromagnet/ferromagnet junction within two interface models: Delta potential and finite width model

    NASA Astrophysics Data System (ADS)

    Pasanai, K.

    2016-03-01

    The tunneling conductance spectra of a ferromagnet/ferromagnet junction was theoretically studied under a scattering approach using two models of the interface: delta potential and finite width model in a one dimensional system. In the first model, the interface between the materials was characterized by the delta potential that has infinite height but no width. For the other model, the interface was modeled by an insulator with a finite thickness and potential barrier height. As a result, it was found that the potential strength under the delta potential model suppressed the conductance spectra as expected. In the finite width model, the insulating layer can give rise to an oscillation behavior when the layer is thick. This oscillation occurs in the region of the energy that is larger than the potential barrier. Moreover, the conductance spectra was suppressed by varying the insulating thickness, also depending on how high the potential barrier was. When the results from the two models were compared, they gave rise to the same result when the insulating layer was thin and the potential barrier was slightly larger than the energy of the bottom of the minority band of the ferromagnet.

  10. Wall modeling for implicit large-eddy simulation and immersed-interface methods

    NASA Astrophysics Data System (ADS)

    Chen, Zhen Li; Hickel, Stefan; Devesa, Antoine; Berland, Julien; Adams, Nikolaus A.

    2014-02-01

    We propose and analyze a wall model based on the turbulent boundary layer equations (TBLE) for implicit large-eddy simulation (LES) of high Reynolds number wall-bounded flows in conjunction with a conservative immersed-interface method for mapping complex boundaries onto Cartesian meshes. Both implicit subgrid-scale model and immersed-interface treatment of boundaries offer high computational efficiency for complex flow configurations. The wall model operates directly on the Cartesian computational mesh without the need for a dual boundary-conforming mesh. The combination of wall model and implicit LES is investigated in detail for turbulent channel flow at friction Reynolds numbers from Re ? = 395 up to Re ? =100,000 on very coarse meshes. The TBLE wall model with implicit LES gives results of better quality than current explicit LES based on eddy viscosity subgrid-scale models with similar wall models. A straightforward formulation of the wall model performs well at moderately large Reynolds numbers. A logarithmic-layer mismatch, observed only at very large Reynolds numbers, is removed by introducing a new structure-based damping function. The performance of the overall approach is assessed for two generic configurations with flow separation: the backward-facing step at Re h = 5,000 and the periodic hill at Re H = 10,595 and Re H = 37,000 on very coarse meshes. The results confirm the observations made for the channel flow with respect to the good prediction quality and indicate that the combination of implicit LES, immersed-interface method, and TBLE-based wall modeling is a viable approach for simulating complex aerodynamic flows at high Reynolds numbers. They also reflect the limitations of TBLE-based wall models.

  11. Mixed-level optical-system simulation incorporating component-level modeling of interface elements

    NASA Astrophysics Data System (ADS)

    Mena, Pablo V.; Stone, Bryan; Heller, Evan; Herrmann, Dan; Ghillino, Enrico; Scarmozzino, Rob

    2014-03-01

    While system-level simulation can allow designers to assess optical system performance via measures such as signal waveforms, spectra, eye diagrams, and BER calculations, component-level modeling can provide a more accurate description of coupling into and out of individual devices, as well as their detailed signal propagation characteristics. In particular, the system-level simulation of interface components used in optical systems, including splitters, combiners, grating couplers, waveguides, spot-size converters, and lens assemblies, can benefit from more detailed component-level modeling. Depending upon the nature of the device and the scale of the problem, simulation of optical transmission through these components can be carried out using either electromagnetic device-level simulation, such as the beampropagation method, or ray-based approaches. In either case, system-level simulation can interface to such componentlevel modeling via a suitable exchange of optical signal data. This paper presents the use of a mixed-level simulation flow in which both electromagnetic device-level and ray-based tools are integrated with a system-level simulation environment in order to model the use of various interface components in optical systems for a range of purposes, including, for example, coupling to and from optical transmission media such as single- and multimode optical fiber. This approach enables case studies on the impact of physical and geometric component variations on system performance, and the sensitivity of system behavior to misalignment between components.

  12. Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles.

    PubMed

    Back, Julian M; McCue, Scott W; Moroney, Timothy J

    2014-01-01

    The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs-Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs-Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle. PMID:25399918

  13. Multiscale Modeling of Intergranular Fracture in Aluminum: Constitutive Relation For Interface Debonding

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E. H.

    2008-01-01

    Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.

  14. A DIFFUSE-INTERFACE APPROACH FOR MODELING TRANSPORT, DIFFUSION AND ADSORPTION/DESORPTION OF MATERIAL QUANTITIES ON A DEFORMABLE INTERFACE*

    PubMed Central

    Teigen, Knut Erik; Li, Xiangrong; Lowengrub, John; Wang, Fan; Voigt, Axel

    2010-01-01

    A method is presented to solve two-phase problems involving a material quantity on an interface. The interface can be advected, stretched, and change topology, and material can be adsorbed to or desorbed from it. The method is based on the use of a diffuse interface framework, which allows a simple implementation using standard finite-difference or finite-element techniques. Here, finite-difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Interfacial flow with soluble surfactants is used as an example of the application of the method, and several test cases are presented demonstrating its accuracy and convergence. PMID:21373370

  15. The DaveMLTranslator: An Interface for DAVE-ML Aerodynamic Models

    NASA Technical Reports Server (NTRS)

    Hill, Melissa A.; Jackson, E. Bruce

    2007-01-01

    It can take weeks or months to incorporate a new aerodynamic model into a vehicle simulation and validate the performance of the model. The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) has been proposed as a means to reduce the time required to accomplish this task by defining a standard format for typical components of a flight dynamic model. The purpose of this paper is to describe an object-oriented C++ implementation of a class that interfaces a vehicle subsystem model specified in DAVE-ML and a vehicle simulation. Using the DaveMLTranslator class, aerodynamic or other subsystem models can be automatically imported and verified at run-time, significantly reducing the elapsed time between receipt of a DAVE-ML model and its integration into a simulation environment. The translator performs variable initializations, data table lookups, and mathematical calculations for the aerodynamic build-up, and executes any embedded static check-cases for verification. The implementation is efficient, enabling real-time execution. Simple interface code for the model inputs and outputs is the only requirement to integrate the DaveMLTranslator as a vehicle aerodynamic model. The translator makes use of existing table-lookup utilities from the Langley Standard Real-Time Simulation in C++ (LaSRS++). The design and operation of the translator class is described and comparisons with existing, conventional, C++ aerodynamic models of the same vehicle are given.

  16. Modeling of ultrasound transmission through a solid-liquid interface comprising a network of gas pockets

    SciTech Connect

    Paumel, K.; Baque, F.; Moysan, J.; Corneloup, G.; Chatain, D.

    2011-08-15

    Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffness has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.

  17. Tunneling of electrons via rotor-stator molecular interfaces: combined ab initio and model study

    E-print Network

    Petreska, Irina; Pejov, Ljupco; Kocarev, Ljupco

    2015-01-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that confirmation dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previ...

  18. Modeling of ultrasound transmission through a solid-liquid interface comprising a network of gas pockets

    NASA Astrophysics Data System (ADS)

    Paumel, K.; Moysan, J.; Chatain, D.; Corneloup, G.; Baqué, F.

    2011-08-01

    Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffness has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.

  19. Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Cheng, Ron-Bin

    2010-01-01

    A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.

  20. Characterizing and Modeling Brittle Bi-material Interfaces Subjected to Shear

    NASA Astrophysics Data System (ADS)

    Anyfantis, Konstantinos N.; Berggreen, Christian

    2014-12-01

    This work is based on the investigation, both experimentally and numerically, of the Mode II fracture process and bond strength of bondlines formed in co-cured composite/metal joints. To this end, GFRP-to-steel double strap joints were tested in tension, so that the bi-material interface was subjected to shear with debonding occurring under Mode II conditions. The study of the debonding process and thus failure of the joints was based both on stress and energy considerations. Analytical formulas were utilized for the derivation of the respective shear strength and fracture toughness measures which characterize the bi-material interface, by considering the joint's failure load, geometry and involved materials. The derived stress and toughness magnitudes were further utilized as the parameters of an extrinsic cohesive law, applied in connection with the modeling the bi-material interface in a finite element simulation environment. It was concluded that interfacial fracture in the considered joints was driven by the fracture toughness and not by strength considerations, and that LEFM is well suited to analyze the failure of the joint. Additionally, the double strap joint geometry was identified and utilized as a characterization test for measuring the Mode II fracture toughness of brittle bi-material interfaces.

  1. A surfactantless emulsion as a model for the liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Knight, Katherine Mary

    An electrochemically polarised liquid-liquid interface in the form of a surfactantless oil-in-water emulsion has been developed, and its creation, stabilisation and use as a model liquid-liquid system for structural characterisation using Small Angle Neutron Scattering (SANS) are described. The emulsion, composed of 1,2-dichloroethane (DCE)-in-D20, was created using a condensation method and the two main processes of destabilisation, sedimentation and coalescence, were minimised using density-matching and electrochemistry. The stabilised emulsion interface was then studied with SANS, using the Dll and D22 diffractometers at the ILL and LOQ at ISIS. This was to determine structural information regarding a layer of adsorbed Bovine Serum Albumin (BSA) protein at the interface with and without stabilising salts and the only analysable results were obtained using Dll, due to the lower Q-range accessible. The BSA layer thickness was determined to be 40 and 48 A for emulsions with and without salts respectively, and this was comparable with the literature thickness of 40 A. Another use for the surfactantless emulsion would be for electrodeless electrodeposition of metals at the interface, utilising the interfacial potential, and preliminary experiments were carried out using both oil-in-water and water-in-oil emulsions.

  2. Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    NASA Technical Reports Server (NTRS)

    Kroemer, Karl H. E. (editor); Snook, Stover H. (editor); Meadows, Susan K. (editor); Deutsch, Stanley (editor)

    1988-01-01

    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.

  3. Formulation of consumables management models: Mission planning processor payload interface definition

    NASA Technical Reports Server (NTRS)

    Torian, J. G.

    1977-01-01

    Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.

  4. Capacitive coupling model and extraction of the molecular interface states in porphyrin-silicon nanowire hybrid field-effect transistor

    E-print Network

    Hwang, Sung Woo

    Capacitive coupling model and extraction of the molecular interface states in porphyrin-silicon of the molecular interface states in porphyrin-silicon nanowire hybrid field-effect transistor I. Nam,1 B. Hong,1 M of Electrical Engineering, Kookmin University, 77 Jeongneung, Seongbuk, Seoul 136-702, South Korea 4 Frontier

  5. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    SciTech Connect

    Schebarchov, D.; Schulze, T. P.; Hendy, S. C.; Department of Physics, University of Auckland, Auckland 1010

    2014-02-21

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.

  6. An approximate model and empirical energy function for solute interactions with a water-phosphatidylcholine interface.

    PubMed Central

    Sanders, C R; Schwonek, J P

    1993-01-01

    An empirical model of a liquid crystalline (L alpha phase) phosphatidylcholine (PC) bilayer interface is presented along with a function which calculates the position-dependent energy of associated solutes. The model approximates the interface as a gradual two-step transition, the first step being from an aqueous phase to a phase of reduced polarity, but which maintains a high enough concentration of water and/or polar head group moieties to satisfy the hydrogen bond-forming potential of the solute. The second transition is from the hydrogen bonding/low polarity region to an effectively anhydrous hydrocarbon phase. The "interfacial energies" of solutes within this variable medium are calculated based upon atomic positions and atomic parameters describing general polarity and hydrogen bond donor/acceptor propensities. This function was tested for its ability to reproduce experimental water-solvent partitioning energies and water-bilayer partitioning data. In both cases, the experimental data was reproduced fairly well. Energy minimizations carried out on beta-hexyl glucopyranoside led to identification of a global minimum for the interface-associated glycolipid which exhibited glycosidic torsion angles in agreement with prior results (Hare, B.J., K.P. Howard, and J.H. Prestegard. 1993. Biophys. J. 64:392-398). Molecular dynamics simulations carried out upon this same molecule within the simulated interface led to results which were consistent with a number of experimentally based conclusions from previous work, but failed to quantitatively reproduce an available NMR quadrupolar/dipolar coupling data set (Sanders, C.R., and J.H. Prestegard. 1991. J. Am. Chem. Soc. 113:1987-1996). The proposed model and functions are readily incorporated into computational energy modeling algorithms and may prove useful in future studies of membrane-associated molecules. PMID:8241401

  7. Molecular simulation of water vapor-liquid phase interfaces using TIP4P/2005 model

    NASA Astrophysics Data System (ADS)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan; Duška, Michal; N?mec, Tomáš; Celný, David

    2015-05-01

    Molecular dynamics simulations for water were run using the TIP4P/2005 model for temperatures ranging from 250 K to 600 K. The density profile, the surface tension and the thickness of the phase interface were calculated as preliminary results. The surface tension values matched nicely with the IAPWS correlation over wide range of temperatures. As a partial result, DL_POLY Classis was successfully used for tests of the new computing cluster in our institute.

  8. Simplifying the interaction between cognitive models and task environments with the JSON Network Interface.

    PubMed

    Hope, Ryan M; Schoelles, Michael J; Gray, Wayne D

    2014-12-01

    Process models of cognition, written in architectures such as ACT-R and EPIC, should be able to interact with the same software with which human subjects interact. By eliminating the need to simulate the experiment, this approach would simplify the modeler's effort, while ensuring that all steps required of the human are also required by the model. In practice, the difficulties of allowing one software system to interact with another present a significant barrier to any modeler who is not also skilled at this type of programming. The barrier increases if the programming language used by the modeling software differs from that used by the experimental software. The JSON Network Interface simplifies this problem for ACT-R modelers, and potentially, modelers using other systems. PMID:24338626

  9. Raise and peel models of fluctuating interfaces and combinatorics of Pascal's hexagon

    NASA Astrophysics Data System (ADS)

    Pyatov, P.

    2004-09-01

    The raise and peel model of a one-dimensional fluctuating interface (model A) is extended by considering one source (model B) or two sources (model C) at the boundaries. The Hamiltonians describing the three processes have, in the thermodynamic limit, spectra given by conformal field theory. The probabilities of the different configurations in the stationary states of the three models are not only related but have interesting combinatorial properties. We show that by extending Pascal's triangle (which gives solutions to linear relations in terms of integer numbers), to an hexagon, one obtains integer solutions of bilinear relations. These solutions not only give the weights of the various configurations in the three models but also give an insight into the connections between the probability distributions in the stationary states of the three models. Interestingly enough, Pascal's hexagon also gives solutions to a Hirota's difference equation.

  10. Easy-to-use interface

    SciTech Connect

    Blattner, M M; Blattner, D O; Tong, Y

    1999-04-01

    Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodate the visually disabled in the near future.

  11. Modelisation microstructurale en fatigue/fluage a froid des alliages de titane quasi alpha par le modele des automates cellulaires

    NASA Astrophysics Data System (ADS)

    Boutana, Mohammed Nabil

    Les proprietes d'emploi des alliages de titane sont extremement dependantes a certains aspects des microstructures developpees lors de leur elaboration. Ces microstructures peuvent etre fortement heterogenes du point de vue de leur orientation cristallographique et de leur repartition spatiale. Leurs influences sur le comportement du materiau et son endommagement precoce sont des questions qui sont actuellement soulevees. Dans le present projet de doctorat on chercher a repondre a cette question mais aussi de presenter des solutions tangibles quant a l'utilisation securitaire de ces alliages. Un nouveau modele appele automate cellulaire a ete developpe pour simuler le comportement mecanique des alliages de titane en fatigue-fluage a froid. Ces modeles ont permet de mieux comprendre la correlation entre la microstructure et le comportement mecanique du materiau et surtout une analyse detaillee du comportement local du materiau. Mots-cles: Automate cellulaire, fatigue/fluage, alliage de titane, inclusion d'Eshelby, modelisation

  12. Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images

    PubMed Central

    Pouch, Alison M.; Wang, Hongzhi; Takabe, Manabu; Jackson, Benjamin M.; Sehgal, Chandra M.; Gorman, Joseph H.; Gorman, Robert C.; Yushkevich, Paul A.

    2013-01-01

    The aortic valve has been described with variable anatomical definitions, and the consistency of 2D manual measurement of valve dimensions in medical image data has been questionable. Given the importance of image-based morphological assessment in the diagnosis and surgical treatment of aortic valve disease, there is considerable need to develop a standardized framework for 3D valve segmentation and shape representation. Towards this goal, this work integrates template-based medial modeling and multi-atlas label fusion techniques to automatically delineate and quantitatively describe aortic leaflet geometry in 3D echocardiographic (3DE) images, a challenging task that has been explored only to a limited extent. The method makes use of expert knowledge of aortic leaflet image appearance, generates segmentations with consistent topology, and establishes a shape-based coordinate system on the aortic leaflets that enables standardized automated measurements. In this study, the algorithm is evaluated on 11 3DE images of normal human aortic leaflets acquired at mid systole. The clinical relevance of the method is its ability to capture leaflet geometry in 3DE image data with minimal user interaction while producing consistent measurements of 3D aortic leaflet geometry. PMID:24505702

  13. Automation based on knowledge modeling theory and its applications in engine diagnostic systems using Space Shuttle Main Engine vibrational data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, Jonnathan H.

    1995-01-01

    Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).

  14. Interface Generation and Compositional Verification in JavaPathfinder

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina

    2009-01-01

    We present a novel algorithm for interface generation of software components. Given a component, our algorithm uses learning techniques to compute a permissive interface representing legal usage of the component. Unlike our previous work, this algorithm does not require knowledge about the component s environment. Furthermore, in contrast to other related approaches, our algorithm computes permissive interfaces even in the presence of non-determinism in the component. Our algorithm is implemented in the JavaPathfinder model checking framework for UML statechart components. We have also added support for automated assume-guarantee style compositional verification in JavaPathfinder, using component interfaces. We report on the application of the presented approach to the generation of interfaces for flight software components.

  15. Web Navigation Sequences Automation in Modern Websites

    NASA Astrophysics Data System (ADS)

    Montoto, Paula; Pan, Alberto; Raposo, Juan; Bellas, Fernando; López, Javier

    Most today’s web sources are designed to be used by humans, but they do not provide suitable interfaces for software programs. That is why a growing interest has arisen in so-called web automation applications that are widely used for different purposes such as B2B integration, automated testing of web applications or technology and business watch. Previous proposals assume models for generating and reproducing navigation sequences that are not able to correctly deal with new websites using technologies such as AJAX: on one hand existing systems only allow recording simple navigation actions and, on the other hand, they are unable to detect the end of the effects caused by an user action. In this paper, we propose a set of new techniques to record and execute web navigation sequences able to deal with all the complexity existing in AJAX-based web sites. We also present an exhaustive evaluation of the proposed techniques that shows very promising results.

  16. Cockpit automation - In need of a philosophy

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.

    1985-01-01

    Concern has been expressed over the rapid development and deployment of automatic devices in transport aircraft, due mainly to the human interface and particularly the role of automation in inducing human error. The paper discusses the need for coherent philosophies of automation, and proposes several approaches: (1) flight management by exception, which states that as long as a crew stays within the bounds of regulations, air traffic control and flight safety, it may fly as it sees fit; (2) exceptions by forecasting, where the use of forecasting models would predict boundary penetration, rather than waiting for it to happen; (3) goal-sharing, where a computer is informed of overall goals, and subsequently has the capability of checking inputs and aircraft position for consistency with the overall goal or intentions; and (4) artificial intelligence and expert systems, where intelligent machines could mimic human reason.

  17. Organic solar cells: a rigorous model of the donor-acceptor interface for various bulk heterojunction morphologies

    NASA Astrophysics Data System (ADS)

    Raba, Adam; Leroy, Yann; Cordan, Anne-Sophie

    2014-02-01

    Theoretical studies of organic solar cells are mostly based on one dimensional models. Despite their accuracy to reproduce most of the experimental trends, they intrinsically cannot correctly integrate the effects of morphology in cells based on a bulk heterojunction structure. Therefore, accounting for these effects requires the development of two dimensional models, in which donor and acceptor domains are explicitly distinct. In this context, we propose an analytical approach, which focuses on the description of the interface between the two domains. Assuming pinned charge transfer states, we rigorously derive the corresponding boundary conditions and explore the differences between this model and other existing models in the literature for various morphologies of the active layer. On one hand, all tested models are equivalent for an ideal interdigitated bulk heterojunction solar cell with a planar donor-acceptor interface, but divergences between the models rise for small sizes of the donor domain. On the other hand, we carried out a comparison on a less ideal case of cell, with a rough interface between the two domains. Simulations with such cells exhibit distinct behaviors for each model. We conclude that the boundary condition for the interface between the materials is of great importance for the study of solar cells with a non-planar interface. The model must account initially for the roughness of the interface.

  18. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  19. Automated parameter estimation for biological models using Bayesian statistical model checking

    PubMed Central

    2015-01-01

    Background Probabilistic models have gained widespread acceptance in the systems biology community as a useful way to represent complex biological systems. Such models are developed using existing knowledge of the structure and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data. A key bottleneck in building such models is that some system variables cannot be measured experimentally. These variables are incorporated into the model as numerical parameters. Determining values of these parameters that justify existing experiments and provide reliable predictions when model simulations are performed is a key research problem. Domain experts usually estimate the values of these parameters by fitting the model to experimental data. Model fitting is usually expressed as an optimization problem that requires minimizing a cost-function which measures some notion of distance between the model and the data. This optimization problem is often solved by combining local and global search methods that tend to perform well for the specific application domain. When some prior information about parameters is available, methods such as Bayesian inference are commonly used for parameter learning. Choosing the appropriate parameter search technique requires detailed domain knowledge and insight into the underlying system. Results Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel parameter estimation algorithm by discovering the amount and schedule of doses of bacterial lipopolysaccharide that guarantee a set of observed clinical outcomes with high probability. We synthesized values of twenty-eight unknown parameters such that the parameterized model instantiated with these parameter values satisfies four specifications describing the dynamic behavior of the model. Conclusions We have developed a new algorithmic technique for discovering parameters in complex stochastic models of biological systems given behavioral specifications written in a formal mathematical logic. Our algorithm uses Bayesian model checking, sequential hypothesis testing, and stochastic optimization to automatically synthesize parameters of probabilistic biological models. PMID:26679759

  20. PRay - A graphical user interface for interactive visualization and modification of rayinvr models

    NASA Astrophysics Data System (ADS)

    Fromm, T.

    2016-01-01

    PRay is a graphical user interface for interactive displaying and editing of velocity models for seismic refraction. It is optimized for editing rayinvr models but can also be used as a dynamic viewer for ray tracing results from other software. The main features are the graphical editing of nodes and fast adjusting of the display (stations and phases). It can be extended by user-defined shell scripts and links to phase picking software. PRay is open source software written in the scripting language Perl, runs on Unix-like operating systems including Mac OS X and provides a version controlled source code repository for community development.

  1. A multiphase electrokinetic flow model for electrolytes with liquid/liquid interfaces

    SciTech Connect

    Berry, J.D. Davidson, M.R. Harvie, D.J.E.

    2013-10-15

    A numerical model for electrokinetic flow of multiphase systems with deformable interfaces is presented, based on a combined level set-volume of fluid technique. A new feature is a multiphase formulation of the Nernst–Planck transport equation for advection, diffusion and conduction of individual charge carrier species that ensures their conservation in each fluid phase. The numerical model is validated against the analytical results of Zholkovskij et al. (2002) [1], and results for the problem of two drops coalescing in the presence of mobile charge carriers are presented. The time taken for two drops containing ions to coalesce decreases with increasing ion concentration.

  2. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  3. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  4. Automating spectral measurements

    NASA Astrophysics Data System (ADS)

    Goldstein, Fred T.

    2008-09-01

    This paper discusses the architecture of software utilized in spectroscopic measurements. As optical coatings become more sophisticated, there is mounting need to automate data acquisition (DAQ) from spectrophotometers. Such need is exacerbated when 100% inspection is required, ancillary devices are utilized, cost reduction is crucial, or security is vital. While instrument manufacturers normally provide point-and-click DAQ software, an application programming interface (API) may be missing. In such cases automation is impossible or expensive. An API is typically provided in libraries (*.dll, *.ocx) which may be embedded in user-developed applications. Users can thereby implement DAQ automation in several Windows languages. Another possibility, developed by FTG as an alternative to instrument manufacturers' software, is the ActiveX application (*.exe). ActiveX, a component of many Windows applications, provides means for programming and interoperability. This architecture permits a point-and-click program to act as automation client and server. Excel, for example, can control and be controlled by DAQ applications. Most importantly, ActiveX permits ancillary devices such as barcode readers and XY-stages to be easily and economically integrated into scanning procedures. Since an ActiveX application has its own user-interface, it can be independently tested. The ActiveX application then runs (visibly or invisibly) under DAQ software control. Automation capabilities are accessed via a built-in spectro-BASIC language with industry-standard (VBA-compatible) syntax. Supplementing ActiveX, spectro-BASIC also includes auxiliary serial port commands for interfacing programmable logic controllers (PLC). A typical application is automatic filter handling.

  5. Evidence evaluation in fingerprint comparison and automated fingerprint identification systems--Modeling between finger variability.

    PubMed

    Egli Anthonioz, N M; Champod, C

    2014-02-01

    In the context of the investigation of the use of automated fingerprint identification systems (AFIS) for the evaluation of fingerprint evidence, the current study presents investigations into the variability of scores from an AFIS system when fingermarks from a known donor are compared to fingerprints that are not from the same source. The ultimate goal is to propose a model, based on likelihood ratios, which allows the evaluation of mark-to-print comparisons. In particular, this model, through its use of AFIS technology, benefits from the possibility of using a large amount of data, as well as from an already built-in proximity measure, the AFIS score. More precisely, the numerator of the LR is obtained from scores issued from comparisons between impressions from the same source and showing the same minutia configuration. The denominator of the LR is obtained by extracting scores from comparisons of the questioned mark with a database of non-matching sources. This paper focuses solely on the assignment of the denominator of the LR. We refer to it by the generic term of between-finger variability. The issues addressed in this paper in relation to between-finger variability are the required sample size, the influence of the finger number and general pattern, as well as that of the number of minutiae included and their configuration on a given finger. Results show that reliable estimation of between-finger variability is feasible with 10,000 scores. These scores should come from the appropriate finger number/general pattern combination as defined by the mark. Furthermore, strategies of obtaining between-finger variability when these elements cannot be conclusively seen on the mark (and its position with respect to other marks for finger number) have been presented. These results immediately allow case-by-case estimation of the between-finger variability in an operational setting. PMID:24447455

  6. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.

    PubMed

    Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan

    2012-03-01

    Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot. PMID:22258275

  7. A model of blind zone for in situ monitoring the solid/liquid interface using ultrasonic wave.

    PubMed

    Peng, Song; Ouyang, Qi; Zhu, Z Z; Zhang, X L

    2015-07-01

    To in situ monitor a solid/liquid interface to control metal qualities, the paper analysis blind models of the ultrasonic propagation in the solidifying molten metal with a solid/liquid interface in the Bridgman type furnace, and a mathematical calculation model of blind zone with different source locations and surface concavities is built. The study points out that the blind zone I is caused by ray bending in the interface edge, and the blind zone II is caused by totally reflection which is related with initial ray angle, critical refraction angle of solid/liquid media. A serial of simulation experiments are operated on the base of the model, and numerical computation results coincide with model calculated results very well. Therefore, receiver should locate beyond these blind zones in the right boundary to obtain time of flight data which is used to reconstruct the solid/liquid interface. PMID:25783779

  8. Fracture permeability and seismic wave scattering--Poroelastic linear-slip interface model for heterogeneous fractures

    SciTech Connect

    Nakagawa, S.; Myer, L.R.

    2009-06-15

    Schoenberg's Linear-slip Interface (LSI) model for single, compliant, viscoelastic fractures has been extended to poroelastic fractures for predicting seismic wave scattering. However, this extended model results in no impact of the in-plane fracture permeability on the scattering. Recently, we proposed a variant of the LSI model considering the heterogeneity in the in-plane fracture properties. This modified model considers wave-induced, fracture-parallel fluid flow induced by passing seismic waves. The research discussed in this paper applies this new LSI model to heterogeneous fractures to examine when and how the permeability of a fracture is reflected in the scattering of seismic waves. From numerical simulations, we conclude that the heterogeneity in the fracture properties is essential for the scattering of seismic waves to be sensitive to the permeability of a fracture.

  9. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    PubMed Central

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  10. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    PubMed

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  11. Automated modeling of ecosystem CO2 fluxes based on closed chamber measurements: A standardized conceptual and practical approach

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Albiac Borraz, Elisa; Hagemann, Ulrike; Sommer, Michael; Augustin, Jürgen

    2015-04-01

    Closed chamber measurements are widely used for determining the CO2 exchange of small-scale or heterogeneous ecosystems. Among the chamber design and operational handling, the data processing procedure is a considerable source of uncertainty of obtained results. We developed a standardized automatic data processing algorithm, based on the language and statistical computing environment R© to (i) calculate measured CO2 flux rates, (ii) parameterize ecosystem respiration (Reco) and gross primary production (GPP) models, (iii) optionally compute an adaptive temperature model, (iv) model Reco, GPP and net ecosystem exchange (NEE), and (v) evaluate model uncertainty (calibration, validation and uncertainty prediction). The algorithm was tested for different manual and automatic chamber measurement systems (such as e.g. automated NEE-chambers and the LI-8100A soil CO2 Flux system) and ecosystems. Our study shows that even minor changes within the modelling approach may result in considerable differences of calculated flux rates, derived photosynthetic active radiation and temperature dependencies and subsequently modeled Reco, GPP and NEE balance of up to 25%. Thus, certain modeling implications will be given, since automated and standardized data processing procedures, based on clearly defined criteria, such as statistical parameters and thresholds are a prerequisite and highly desirable to guarantee the reproducibility, traceability of modelling results and encourage a better comparability between closed chamber based CO2 measurements.

  12. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  13. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface

    PubMed Central

    Lee, A J; Cunningham, A P; Kuchenbaecker, K B; Mavaddat, N; Easton, D F; Antoniou, A C

    2014-01-01

    Background: The Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) is a risk prediction model that is used to compute probabilities of carrying mutations in the high-risk breast and ovarian cancer susceptibility genes BRCA1 and BRCA2, and to estimate the future risks of developing breast or ovarian cancer. In this paper, we describe updates to the BOADICEA model that extend its capabilities, make it easier to use in a clinical setting and yield more accurate predictions. Methods: We describe: (1) updates to the statistical model to include cancer incidences from multiple populations; (2) updates to the distributions of tumour pathology characteristics using new data on BRCA1 and BRCA2 mutation carriers and women with breast cancer from the general population; (3) improvements to the computational efficiency of the algorithm so that risk calculations now run substantially faster; and (4) updates to the model's web interface to accommodate these new features and to make it easier to use in a clinical setting. Results: We present results derived using the updated model, and demonstrate that the changes have a significant impact on risk predictions. Conclusion: All updates have been implemented in a new version of the BOADICEA web interface that is now available for general use: http://ccge.medschl.cam.ac.uk/boadicea/. PMID:24346285

  14. Automated extraction of digital terrain models, roads and buildings using airborne lidar data

    NASA Astrophysics Data System (ADS)

    Hu, Yong

    Airborne lidar has become a commercially viable remote sensing platform, and can provide accurate elevation data about both topographic surfaces and non-terrain objects. Its capability of mapping topography and 3-D models of civil objects is uncommon to other remote sensing technologies. This dissertation presents a collection of algorithms developed for automatically extracting useful information from lidar data exclusively. The algorithms focus on automated extraction of DTMs, 3-D roads and buildings utilizing single- or multi-return lidar range and intensity data. The hierarchical terrain recovery algorithm can intelligently discriminate between terrain and non-terrain lidar points by adaptive and robust filtering. It processes the range data bottom up and top down to estimate high quality DTMs using the hierarchical strategy. Road ribbons are detected by classifying lidar intensity and height data. The 3-D grid road networks are reconstructed using a sequential Hough transformation, and are verified using road ribbons and lidar-derived DTMs. The attributes of road segments including width, length and slope are computed. Building models are created with a high level of accuracy. The building boundaries are detected by segmenting lidar height data. A sequential linking technique is proposed to reconstruct building boundaries to regular polygons, which are then rectified to be of cartographical quality. Then prismatic models are created for flat roof buildings, and polyhedral models are created for non-flat roof buildings by the incremental selective refining and vertical wall rectification procedures. Many attributes of these building models are derived from the lidar data. These algorithms have been tested using many lidar datasets of varying terrain type, coverage type and point density. The results show that in most areas the lidar-derived DTMs retain most terrain details and remove non-terrain objects reliably; the road ribbons and grid road networks are sketched well in built-up areas; and the extracted building footprints have high positioning accuracy equivalent to ground-truth data surveyed in field. A toolkit, called Lidar Expert, has been developed to bundle these algorithms and to offer the capability of performing fast information extraction from lidar data.

  15. Automation for System Safety Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  16. Automated Bayesian model development for frequency detection in biological time series

    PubMed Central

    2011-01-01

    Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure. PMID:21702910

  17. Improved modeling of electrified interfaces using the effective screening medium method

    NASA Astrophysics Data System (ADS)

    Hamada, Ikutaro; Sugino, Osamu; Bonnet, Nicéphore; Otani, Minoru

    2014-03-01

    The effective screening medium (ESM) method has been developed as a way to simulate electrified interfaces within a first principles framework using periodic boundary conditions. Given a slab geometry standing for the interface, the ESM method allows filling the region away from the slab with a dielectric screening medium- the ESM per se-as a simple way to include electrostatic screening effect of the environment. In the original version of the ESM method, the relative permittivity changes discontinuously from ? = 1 to ? > 1 at the boundary located between the molecular system and the ESM, which causes numerical instability when the electron density of the molecular system touches the boundary. Here we improve upon the description of the screening medium by imposing a smooth transition of the dielectric permittivity between the molecular system and the ESM (smooth ESM), thus precluding numerical instabilities when molecules come in contact with the ESM. Moreover, at short distances, the smooth ESM acts as a repulsive wall, and thus the simulation cell can serve as a natural container for molecules in molecular dynamics simulations. Consequently, the smooth ESM method is a substantial advancement in modeling solid-liquid interfaces under electric bias.

  18. In-situ Studies of Structures and Processes at Model Battery Electrode/Electrolyte Interfaces

    NASA Astrophysics Data System (ADS)

    Fenter, Paul

    2015-03-01

    The ability to understand and control materials properties within electrochemical energy storage systems is a significant scientific and technical challenge. This is due, at least in part, to the extreme conditions present within these systems, and the significant structural and chemical changes that take place as lithium ions are incorporated in the active electrode material. In particular, the behavior of interfaces in such systems is poorly understood, notably the solid-liquid interface that separates the electrode and the liquid electrolyte. I will review our recent work in which we seek to isolate and understand the role of interfacial reactivity in these systems through in-situ, real-time, observations of electrochemically driven lithiation/delithation reactions. This is achieved by observing well-defined model electrode-electrolyte interfaces using X-ray reflectivity. These results reveal novel understandings of interfacial reactivity in conversion reactions (e.g., Si, SixCr, Ge, NiO) that can be used to control the complex reaction lithiation pathway through the use of thin-film and multilayer electrode structures. This work was supported by the Center for Electrochemical Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, in collaboration with T. Fister, A. Gewirth, M.J. Bedzyk and others.

  19. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  20. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. PMID:25122383

  1. Automating ground-fixed target modeling with the smart target model generator

    NASA Astrophysics Data System (ADS)

    Verner, D.; Dukes, R.

    2007-04-01

    The Smart Target Model Generator (STMG) is an AFRL/MNAL sponsored tool for generating 3D building models for use in various weapon effectiveness tools. These tools include tri-service approved tools such as Modular Effectiveness/Vulnerability Assessment (MEVA), Building Analysis Module in Joint Weaponeering System (JWS), PENCRV3D, and WinBlast. It also supports internal dispersion modeling of chemical contaminants. STMG also has capabilities to generate infrared or other sensor images. Unlike most CAD-models, STMG provides physics-based component properties such as strength, density, reinforcement, and material type. Interior components such as electrical and mechanical equipment, rooms, and ducts are also modeled. Buildings can be manually created with a graphical editor or automatically generated using rule-bases which size and place the structural components using rules based on structural engineering principles. In addition to its primary purposes of supporting conventional kinetic munitions, it can also be used to support sensor modeling and automatic target recognition.

  2. Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.

    PubMed

    Weidlich, Iwona E; Pevzner, Yuri; Miller, Benjamin T; Filippov, Igor V; Woodcock, H Lee; Brooks, Bernard R

    2015-01-01

    Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a web-based tool for structure activity relationship and quantitative structure activity relationship modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms-Random Forest, Support Vector Machine, Stochastic Gradient Descent, Gradient Tree Boosting, so forth. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. PMID:25362883

  3. Design of an automated cocktail mixing experience

    E-print Network

    Aguirre, Alejandro, S.B. Massachusetts Institute of Technology

    2013-01-01

    This thesis describes the design concept development of an automated cocktail mixing device and user interface that is capable of dispensing a variety of alcoholic and non-alcoholic ingredients to produce a myriad of drink ...

  4. ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs.

    PubMed

    Balwierz, Piotr J; Pachkov, Mikhail; Arnold, Phil; Gruber, Andreas J; Zavolan, Mihaela; van Nimwegen, Erik

    2014-05-01

    Accurate reconstruction of the regulatory networks that control gene expression is one of the key current challenges in molecular biology. Although gene expression and chromatin state dynamics are ultimately encoded by constellations of binding sites recognized by regulators such as transcriptions factors (TFs) and microRNAs (miRNAs), our understanding of this regulatory code and its context-dependent read-out remains very limited. Given that there are thousands of potential regulators in mammals, it is not practical to use direct experimentation to identify which of these play a key role for a particular system of interest. We developed a methodology that models gene expression or chromatin modifications in terms of genome-wide predictions of regulatory sites and completely automated it into a web-based tool called ISMARA (Integrated System for Motif Activity Response Analysis). Given only gene expression or chromatin state data across a set of samples as input, ISMARA identifies the key TFs and miRNAs driving expression/chromatin changes and makes detailed predictions regarding their regulatory roles. These include predicted activities of the regulators across the samples, their genome-wide targets, enriched gene categories among the targets, and direct interactions between the regulators. Applying ISMARA to data sets from well-studied systems, we show that it consistently identifies known key regulators ab initio. We also present a number of novel predictions including regulatory interactions in innate immunity, a master regulator of mucociliary differentiation, TFs consistently disregulated in cancer, and TFs that mediate specific chromatin modifications. PMID:24515121

  5. Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model

    NASA Astrophysics Data System (ADS)

    Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.

    2009-05-01

    Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.

  6. Automated identification of potential snow avalanche release areas based on digital elevation models

    NASA Astrophysics Data System (ADS)

    Bühler, Y.; Kumar, S.; Veitinger, J.; Christen, M.; Stoffel, A.; Snehmani

    2013-05-01

    The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA) detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs) and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.

  7. Automated characterization of bending and expansion of a lattice of a Si substrate near a SiGe/Si interface by using split HOLZ line patterns.

    PubMed

    Saitoh, Koh; Yasuda, Yoshifumi; Hamabe, Maiko; Tanaka, Nobuo

    2010-01-01

    A method to determine lattice parameters and parameters characterizing the bending strain of the lattice, the direction and magnitude of the displacement field of the bending strain, by using higher-order Laue zone (HOLZ) reflection lines observed in convergent-beam electron diffraction patterns is proposed. In this method, all of the parameters are simultaneously determined by a fit of two Hough transforms of experimental and kinematically simulated HOLZ line patterns. This method has been used to obtain two-dimensional maps of lattice parameter a, the direction and relative magnitude of the displacement field in a Si substrate near a SiGe/Si interface. PMID:20484750

  8. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models

    PubMed Central

    Misra, Dharitri; Chen, Siyuan; Thoma, George R.

    2010-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques. At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts. In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system. PMID:21179386

  9. Modulation depth estimation and variable selection in state-space models for neural interfaces.

    PubMed

    Malik, Wasim Q; Hochberg, Leigh R; Donoghue, John P; Brown, Emery N

    2015-02-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627

  10. Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces

    PubMed Central

    Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.

    2015-01-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627

  11. A Cognitive System Model for Human/Automation Dynamics in Airspace Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. In order to support that cognitive function definition, we have extended the Man Machine Integrated Design and Analysis System (MIDAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems) operating aircraft, airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The MIDAS operator models have undergone significant development in order to understand the requirements for operator aiding and the impact of that aiding in the complex nondeterminate system of national airspace operations. The operator model's structure has been modified to include attention functions, action priority, and situation assessment. The cognitive function model has been expanded to include working memory operations including retrieval from long-term store, interference, visual-motor and verbal articulatory loop functions, and time-based losses. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. The model's internal representation has been be modified so that multiple, autonomous sets of equipment will function in a scenario as the single equipment sets do now. In order to support the analysis requirements with multiple items of equipment, it is necessary for equipment to access the state of other equipment objects at initialization time (a radar object may need to access the position and speed of aircraft in its area, for example), and as a function of perception and sensor system interaction. The model has been improved to include multiple world-states as a function of equipment am operator interaction. The model has been used -1o predict the impact of warning and alert zones in aircraft operation, and, more critic-ally, the interaction of flight-deck based warning mechanisms and air traffic controller action in response to ground-based conflict prediction and alerting systems. In this operation, two operating systems provide alerting to two autonomous, but linked sets of operators, whose view of the system and whose dynamics in response are radically different. System stability and operator action was predicted using the MIDAS model.

  12. Work Practice Simulation of Complex Human-Automation Systems in Safety Critical Situations: The Brahms Generalized berlingen Model

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Linde, Charlotte; Seah, Chin; Shafto, Michael

    2013-01-01

    The transition from the current air traffic system to the next generation air traffic system will require the introduction of new automated systems, including transferring some functions from air traffic controllers to on­-board automation. This report describes a new design verification and validation (V&V) methodology for assessing aviation safety. The approach involves a detailed computer simulation of work practices that includes people interacting with flight-critical systems. The research is part of an effort to develop new modeling and verification methodologies that can assess the safety of flight-critical systems, system configurations, and operational concepts. The 2002 Ueberlingen mid-air collision was chosen for analysis and modeling because one of the main causes of the accident was one crew's response to a conflict between the instructions of the air traffic controller and the instructions of TCAS, an automated Traffic Alert and Collision Avoidance System on-board warning system. It thus furnishes an example of the problem of authority versus autonomy. It provides a starting point for exploring authority/autonomy conflict in the larger system of organization, tools, and practices in which the participants' moment-by-moment actions take place. We have developed a general air traffic system model (not a specific simulation of Überlingen events), called the Brahms Generalized Ueberlingen Model (Brahms-GUeM). Brahms is a multi-agent simulation system that models people, tools, facilities/vehicles, and geography to simulate the current air transportation system as a collection of distributed, interactive subsystems (e.g., airports, air-traffic control towers and personnel, aircraft, automated flight systems and air-traffic tools, instruments, crew). Brahms-GUeM can be configured in different ways, called scenarios, such that anomalous events that contributed to the Überlingen accident can be modeled as functioning according to requirements or in an anomalous condition, as occurred during the accident. Brahms-GUeM thus implicitly defines a class of scenarios, which include as an instance what occurred at Überlingen. Brahms-GUeM is a modeling framework enabling "what if" analysis of alternative work system configurations and thus facilitating design of alternative operations concepts. It enables subsequent adaption (reusing simulation components) for modeling and simulating NextGen scenarios. This project demonstrates that BRAHMS provides the capacity to model the complexity of air transportation systems, going beyond idealized and simple flights to include for example the interaction of pilots and ATCOs. The research shows clearly that verification and validation must include the entire work system, on the one hand to check that mechanisms exist to handle failures of communication and alerting subsystems and/or failures of people to notice, comprehend, or communicate problematic (unsafe) situations; but also to understand how people must use their own judgment in relating fallible systems like TCAS to other sources of information and thus to evaluate how the unreliability of automation affects system safety. The simulation shows in particular that distributed agents (people and automated systems) acting without knowledge of each others' actions can create a complex, dynamic system whose interactive behavior is unexpected and is changing too quickly to comprehend and control.

  13. Molecules to modeling: Toxoplasma gondii oocysts at the human–animal–environment interface

    PubMed Central

    VanWormer, Elizabeth; Fritz, Heather; Shapiro, Karen; Mazet, Jonna A.K.; Conrad, Patricia A.

    2013-01-01

    Environmental transmission of extremely resistant Toxoplasma gondii oocysts has resulted in infection of diverse species around the world, leading to severe disease and deaths in human and animal populations. This review explores T. gondii oocyst shedding, survival, and transmission, emphasizing the importance of linking laboratory and landscape from molecular characterization of oocysts to watershed-level models of oocyst loading and transport in terrestrial and aquatic systems. Building on discipline-specific studies, a One Health approach incorporating tools and perspectives from diverse fields and stakeholders has contributed to an advanced understanding of T. gondii and is addressing transmission at the rapidly changing human–animal–environment interface. PMID:23218130

  14. High-frequency surface waves at a plasma-metal interface: I. Linear model

    SciTech Connect

    Dvinin, S. A.; Vologirov, A. G.; Mikheev, V. V.; Sviridkina, V. S.

    2008-08-15

    A study is made of the dispersion properties of surface waves at a plasma-metal interface under thermodynamically nonequilibrium conditions such that a space charge sheath forms at the plasma boundary. In the simplest model, the sheath is described as a dielectric with a given permittivity. The wave parameters in a highly collisional plasma are discussed. The effect of interaction between waves propagating near the opposite plasma boundaries is considered, in particular, for space charge sheaths of different thicknesses. Conditions are determined under which the parameters of surface waves are substantially altered by the plasma-sheath geometric resonance.

  15. Intelligent interface design and evaluation

    NASA Technical Reports Server (NTRS)

    Greitzer, Frank L.

    1988-01-01

    Intelligent interface concepts and systematic approaches to assessing their functionality are discussed. Four general features of intelligent interfaces are described: interaction efficiency, subtask automation, context sensitivity, and use of an appropriate design metaphor. Three evaluation methods are discussed: Functional Analysis, Part-Task Evaluation, and Operational Testing. Design and evaluation concepts are illustrated with examples from a prototype expert system interface for environmental control and life support systems for manned space platforms.

  16. Modelling the Bioelectronic Interface in Engineered Tethered Membranes: From Biosensing to Electroporation.

    PubMed

    Hoiles, William; Krishnamurthy, Vikram; Cornell, Bruce

    2015-06-01

    This paper studies the construction and predictive models of three novel measurement platforms: (i) a Pore Formation Measurement Platform (PFMP) for detecting the presence of pore forming proteins and peptides, (ii) the Ion Channel Switch (ICS) biosensor for detecting the presence of analyte molecules in a fluid chamber, and (iii) an Electroporation Measurement Platform (EMP) that provides reliable measurements of the electroporation phenomenon. Common to all three measurement platforms is that they are comprised of an engineered tethered membrane that is formed via a rapid solvent exchange technique allowing the platform to have a lifetime of several months. The membrane is tethered to a gold electrode bioelectronic interface that includes an ionic reservoir separating the membrane and gold surface, allowing the membrane to mimic the physiological response of natural cell membranes. The electrical response of the PFMP, ICS, and EMP are predicted using continuum theories for electrodiffusive flow coupled with boundary conditions for modelling chemical reactions and electrical double layers present at the bioelectronic interface. Experimental measurements are used to validate the predictive accuracy of the dynamic models. These include using the PFMP for measuring the pore formation dynamics of the antimicrobial peptide PGLa and the protein toxin Staphylococcal ?-Hemolysin; the ICS biosensor for measuring nano-molar concentrations of streptavidin, ferritin, thyroid stimulating hormone (TSH), and human chorionic gonadotropin (pregnancy hormone hCG); and the EMP for measuring electroporation of membranes with different tethering densities, and membrane compositions. PMID:25373111

  17. An optimization based study of equivalent circuit models for representing recordings at the neuron-electrode interface

    PubMed Central

    Thakore, Vaibhav; Molnar, Peter; Hickman, James J.

    2014-01-01

    Extracellular neuroelectronic interfacing is an emerging field with important applications in the fields of neural prosthetics, biological computation and biosensors. Traditionally, neuron-electrode interfaces have been modeled as linear point or area contact equivalent circuits but it is now being increasingly realized that such models cannot explain the shapes and magnitudes of the observed extracellular signals. Here, results were compared and contrasted from an unprecedented optimization based study of the point contact models for an extracellular ‘on-cell’ neuron-patch electrode and a planar neuron-microelectrode interface. Concurrent electrophysiological recordings from a single neuron simultaneously interfaced to three distinct electrodes (intracellular, ‘on-cell’ patch and planar microelectrode) allowed novel insights into the mechanism of signal transduction at the neuron-electrode interface. After a systematic isolation of the nonlinear neuronal contribution to the extracellular signal, a consistent underestimation of the simulated supra-threshold extracellular signals compared to the experimentally recorded signals was observed. This conclusively demonstrated that the dynamics of the interfacial medium contribute nonlinearly to the process of signal transduction at the neuron-electrode interface. Further, an examination of the optimized model parameters for the experimental extracellular recordings from sub- and supra-threshold stimulations of the neuron-electrode junctions revealed that ionic transport at the ‘on-cell’ neuron-patch electrode is dominated by diffusion whereas at the neuron-microelectrode interface the electric double layer (EDL) effects dominate. Based on this study, the limitations of the equivalent circuit models in their failure to account for the nonlinear EDL and ionic electrodiffusion effects occurring during signal transduction at the neuron-electrode interfaces are discussed. PMID:22695342

  18. Molecular-Level Thermodynamic Models for the Origin and Distribution of Charge at the Metal Oxide/Water Interface

    SciTech Connect

    Boily, Jean F.

    2006-05-05

    In this contribution, the origin of surface charge is presented to recall important driving forces behind charge generation at the metal oxide/water interface, the mechanisms and models describing the distribution of charge across the EDL are discussed, as well as novel modelling strategies that may potentially pave the way to new generations of thermodynamic surface complexation models.

  19. TSD capacity model interface with waste reduction planning in the Environmental Restoration Program

    SciTech Connect

    Phifer, B.E. Jr.; Grumski, J.T.

    1991-01-01

    This report provides a picture of how the integration of waste generation forecasting with treatment, storage, and disposal (TSD) capacity modeling interfaces with waste reduction planning in the Environmental Restoration Program. Background information is given for the major activities at the seven Martin Marietta Energy Systems, Inc., sites: (1) Oak Ridge National Laboratory; (2) Oak Ridge Y-12 Plant; (3) Oak Ridge K-25 Site; (4) Paducah Gaseous Diffusion Plant; (5) Portsmouth Gaseous Diffusion Plant; (6) Oak Ridge Associated Universities; and (7) the off-site contaminated areas near DOE facilities. A perspective is provided for strategies to achieve waste reduction, how waste generation forecasts rates were developed, and how those forecasted waste generation rates will be used in TSD capacity modeling. The generation forecasting in combination with TSD modeling allows development of quantifiable goals and subsequent waste reduction. 2 figs.

  20. Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System

    PubMed Central

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2008-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated. PMID:19562085

  1. AUTOMATED GIS WATERSHED ANALYSIS TOOLS FOR RUSLE/SEDMOD SOIL EROSION AND SEDIMENTATION MODELING

    EPA Science Inventory

    A comprehensive procedure for computing soil erosion and sediment delivery metrics has been developed using a suite of automated Arc Macro Language (AML ) scripts and a pair of processing- intensive ANSI C++ executable programs operating on an ESRI ArcGIS 8.x Workstation platform...

  2. Automated Tracking of Pallets in Warehouses: Beacon Layout and Asymmetric Ultrasound Observation Models

    E-print Network

    Goldberg, Ken

    Automated Tracking of Pallets in Warehouses: Beacon Layout and Asymmetric Ultrasound Observation motes and beacons. We develop a non-parametric particle filtering approach to estimate trajectories as a function of ceiling height and beacon density, and then perform physical experiments to evaluate

  3. Automated Software Development Workstation (ASDW)

    NASA Technical Reports Server (NTRS)

    Fridge, Ernie

    1990-01-01

    Software development is a serious bottleneck in the construction of complex automated systems. An increase of the reuse of software designs and components has been viewed as a way to relieve this bottleneck. One approach to achieving software reusability is through the development and use of software parts composition systems. A software parts composition system is a software development environment comprised of a parts description language for modeling parts and their interfaces, a catalog of existing parts, a composition editor that aids a user in the specification of a new application from existing parts, and a code generator that takes a specification and generates an implementation of a new application in a target language. The Automated Software Development Workstation (ASDW) is an expert system shell that provides the capabilities required to develop and manipulate these software parts composition systems. The ASDW is now in Beta testing at the Johnson Space Center. Future work centers on responding to user feedback for capability and usability enhancement, expanding the scope of the software lifecycle that is covered, and in providing solutions to handling very large libraries of reusable components.

  4. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    NASA Astrophysics Data System (ADS)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models makes the system act like a band-stop filter over an infinite frequency range.

  5. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence and model well-posedness are also investigated in the present work. PMID:20396650

  6. Modeling Fire Susceptibility to Delineate Wildland-Urban Interface for Municipal-Scale Fire Risk Management

    NASA Astrophysics Data System (ADS)

    Whitman, Ellen; Rapaport, Eric; Sherren, Kate

    2013-12-01

    The wildland-urban interface (WUI) is the region where development meets and intermingles with wildlands. The WUI has an elevated fire risk due to the proximity of development and residents to wildlands with natural wildfire regimes. Existing methods of delineating WUI are typically applied over a large region, use proxies for risk, and do not consider site-specific fire hazard drivers. While these models are appropriate for federal and provincial risk management, municipal managers require models intended for smaller regions. The model developed here uses the Burn-P3 fire behavior model to model WUI from local fire susceptibility (FS) in two study communities. Forest fuel code (FFC) maps for the study communities were modified using remote sensing data to produce detailed forest edges, including ladder fuels, update data currency, and add buildings and roads. The modified FFC maps used in Burn-P3 produced bimodal FS distributions for each community. The WUI in these communities was delineated as areas within community bounds where FS was greater than or equal to -1 SD from the mean FS value (), which fell in the trough of the bimodal distribution. The WUI so delineated conformed to the definition of WUI. This model extends WUI modeling for broader risk management initiatives for municipal management of risk, as it (a) considers site-specific drivers of fire behavior; (b) models risk, represented by WUI, specific to a community; and, (c) does not use proxies for risk.

  7. Rnomads: An R Interface with the NOAA Operational Model Archive and Distribution System

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.

    2014-12-01

    The National Oceanic and Atmospheric Administration Operational Model Archive and Distribution System (NOMADS) facilitates rapid delivery of real time and archived environmental data sets from multiple agencies. These data are distributed free to the scientific community, industry, and the public. The rNOMADS package provides an interface between NOMADS and the R programming language. Like R itself, rNOMADS is open source and cross platform. It utilizes server-side functionality on the NOMADS system to subset model outputs for delivery to client R users. There are currently 57 real time and 10 archived models available through rNOMADS. Atmospheric models include the Global Forecast System and North American Mesoscale. Oceanic models include WAVEWATCH III and U. S. Navy Operational Global Ocean Model. rNOMADS has been downloaded 1700 times in the year since it was released. At the time of writing, it is being used for wind and solar power modeling, climate monitoring related to food security concerns, and storm surge/inundation calculations, among others. We introduce this new package and show how it can be used to extract data for infrasonic waveform modeling in the atmosphere.

  8. MIG version 0.0 model interface guidelines: Rules to accelerate installation of numerical models into any compliant parent code

    SciTech Connect

    Brannon, R.M.; Wong, M.K.

    1996-08-01

    A set of model interface guidelines, called MIG, is presented as a means by which any compliant numerical material model can be rapidly installed into any parent code without having to modify the model subroutines. Here, {open_quotes}model{close_quotes} usually means a material model such as one that computes stress as a function of strain, though the term may be extended to any numerical operation. {open_quotes}Parent code{close_quotes} means a hydrocode, finite element code, etc. which uses the model and enforces, say, the fundamental laws of motion and thermodynamics. MIG requires the model developer (who creates the model package) to specify model needs in a standardized but flexible way. MIG includes a dictionary of technical terms that allows developers and parent code architects to share a common vocabulary when specifying field variables. For portability, database management is the responsibility of the parent code. Input/output occurs via structured calling arguments. As much model information as possible (such as the lists of required inputs, as well as lists of precharacterized material data and special needs) is supplied by the model developer in an ASCII text file. Every MIG-compliant model also has three required subroutines to check data, to request extra field variables, and to perform model physics. To date, the MIG scheme has proven flexible in beta installations of a simple yield model, plus a more complicated viscodamage yield model, three electromechanical models, and a complicated anisotropic microcrack constitutive model. The MIG yield model has been successfully installed using identical subroutines in three vectorized parent codes and one parallel C++ code, all predicting comparable results. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort, thereby reducing the cost of installing and sharing models in diverse new codes.

  9. Experimental study and modeling of laser plasma ion implantation for WSex/57Fe interface modification

    NASA Astrophysics Data System (ADS)

    Fominski, V. Yu.; Grigoriev, S. N.; Gnedovets, A. G.; Romanov, R. I.; Volosova, M. A.

    2013-07-01

    A multilayer WSe1.7/57Fe/54Fe structure was created by sequential pulsed laser deposition on a Si substrate of 54Fe-rich, 57Fe-rich, and WSe1.7 thin films subjected to laser plasma ion implantation (LPII). Electric pulses of negative polarity with amplitude 45 kV were applied to the 54Fe laser target. The turn-on time of the pulse, with a duration of ~10 ?s, was varied in the range of 0-9 ?s after the laser pulse. Modeling of the LPII was carried out using the particle in the cell method in a one-dimensional approximation. The initial input characteristics of the plasma (velocity, temperature, concentrations of ions) were measured experimentally. The model adequately describes the ion pulses and results in terms of energy distribution of the ions. The LPII regime, providing an efficient implantation of 54Fe+2 ions with energies up to 90 keV, was used. Before and after LPII the structure was studied by Rutherford backscattering spectroscopy of 4He+ ions and conversion-electron Mössbauer spectroscopy. LPII treatment induced mixing of W, Se and 57Fe atoms. 57Fe-Se phases and non-equilibrium 57Fe-W compound were detected in a local structure of the interface layer. Thus, LPII may be considered as a promising method in combined laser technology, allowing deposition of coatings and modification of the interface, which may provide an enhanced adhesion and improved tribological properties

  10. MaizeGDB update: new tools, data and interface for the maize model organism database.

    PubMed

    Andorf, Carson M; Cannon, Ethalinda K; Portwood, John L; Gardiner, Jack M; Harper, Lisa C; Schaeffer, Mary L; Braun, Bremen L; Campbell, Darwin A; Vinnakota, Abhinav G; Sribalusu, Venktanaga V; Huerta, Miranda; Cho, Kyoung Tak; Wimalanathan, Kokulapalan; Richter, Jacqueline D; Mauch, Emily D; Rao, Bhavani S; Birkett, Scott M; Sen, Taner Z; Lawrence-Dill, Carolyn J

    2016-01-01

    MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, the original maize genetics database MaizeDB was created. In 2003, the combined contents of MaizeDB and the sequence data from ZmDB were made accessible as a single resource named MaizeGDB. Over the next decade, MaizeGDB became more sequence driven while still maintaining traditional maize genetics datasets. This enabled the project to meet the continued growing and evolving needs of the maize research community, yet the interface and underlying infrastructure remained unchanged. In 2015, the MaizeGDB team completed a multi-year effort to update the MaizeGDB resource by reorganizing existing data, upgrading hardware and infrastructure, creating new tools, incorporating new data types (including diversity data, expression data, gene models, and metabolic pathways), and developing and deploying a modern interface. In addition to coordinating a data resource, the MaizeGDB team coordinates activities and provides technical support to the maize research community. MaizeGDB is accessible online at http://www.maizegdb.org. PMID:26432828

  11. MaizeGDB update: new tools, data and interface for the maize model organism database

    PubMed Central

    Andorf, Carson M.; Cannon, Ethalinda K.; Portwood, John L.; Gardiner, Jack M.; Harper, Lisa C.; Schaeffer, Mary L.; Braun, Bremen L.; Campbell, Darwin A.; Vinnakota, Abhinav G.; Sribalusu, Venktanaga V.; Huerta, Miranda; Cho, Kyoung Tak; Wimalanathan, Kokulapalan; Richter, Jacqueline D.; Mauch, Emily D.; Rao, Bhavani S.; Birkett, Scott M.; Sen, Taner Z.; Lawrence-Dill, Carolyn J.

    2016-01-01

    MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, the original maize genetics database MaizeDB was created. In 2003, the combined contents of MaizeDB and the sequence data from ZmDB were made accessible as a single resource named MaizeGDB. Over the next decade, MaizeGDB became more sequence driven while still maintaining traditional maize genetics datasets. This enabled the project to meet the continued growing and evolving needs of the maize research community, yet the interface and underlying infrastructure remained unchanged. In 2015, the MaizeGDB team completed a multi-year effort to update the MaizeGDB resource by reorganizing existing data, upgrading hardware and infrastructure, creating new tools, incorporating new data types (including diversity data, expression data, gene models, and metabolic pathways), and developing and deploying a modern interface. In addition to coordinating a data resource, the MaizeGDB team coordinates activities and provides technical support to the maize research community. MaizeGDB is accessible online at http://www.maizegdb.org. PMID:26432828

  12. Automated Kinematic Modelling of Warped Galaxy Discs in Large Hi Surveys: 3D Tilted Ring Fitting of HI Emission Cubes

    E-print Network

    Kamphuis, P; Oh, S- H; Spekkens, K; Urbancic, N; Serra, P; Koribalski, B S; Dettmar, R -J

    2015-01-01

    Kinematical parameterisations of disc galaxies, employing emission line observations, are indispensable tools for studying the formation and evolution of galaxies. Future large-scale HI surveys will resolve the discs of many thousands of galaxies, allowing a statistical analysis of their disc and halo kinematics, mass distribution and dark matter content. Here we present an automated procedure which fits tilted-ring models to Hi data cubes of individual, well-resolved galaxies. The method builds on the 3D Tilted Ring Fitting Code (TiRiFiC) and is called FAT (Fully Automated TiRiFiC). To assess the accuracy of the code we apply it to a set of 52 artificial galaxies and 25 real galaxies from the Local Volume HI Survey (LVHIS). Using LVHIS data, we compare our 3D modelling to the 2D modelling methods DiskFit and rotcur. A conservative result is that FAT accurately models the kinematics and the morphologies of galaxies with an extent of eight beams across the major axis in the inclination range 20$^{\\circ}$-90$^{...

  13. Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation

    NASA Astrophysics Data System (ADS)

    Ndanou, S.; Favrie, N.; Gavrilyuk, S.

    2015-08-01

    We extend the model of diffuse solid-fluid interfaces developed earlier by authors of this paper to the case of arbitrary number of interacting hyperelastic solids. Plastic transformations of solids are taken into account through a Maxwell type model. The specific energy of each solid is given in separable form: it is the sum of a hydrodynamic part of the energy depending only on the density and the entropy, and an elastic part of the energy which is unaffected by the volume change. It allows us to naturally pass to the fluid description in the limit of vanishing shear modulus. In spite of a large number of governing equations, the model has a quite simple mathematical structure: it is a duplication of a single visco-elastic model. The model is well posed both mathematically and thermodynamically: it is hyperbolic and compatible with the second law of thermodynamics. The resulting model can be applied in the situations involving an arbitrary number of fluids and solids. In particular, we show the ability of the model to describe spallation and penetration phenomena occurring during high velocity impacts.

  14. Industrial data monitoring using intranet-based high level of a hierarchical model of an automated system of industrial enterprise maintenance and control

    NASA Astrophysics Data System (ADS)

    Budnikov, Konstantin I.

    2001-10-01

    It's difficult now to disclaim the availability of application of Internet technologies in industry. Originally not intended for industrial automation they nevertheless can be used as a part of a multilevel hierarchical automation system. The paper shows one of the possible solutions. A way to construct Intranet based high level of a hierarchical model of an automated system for a complex industrial object (reactor, power unit, continuous process) is considered. Some schemes of the level construction are proposed. The main point of these schemes is disposition of the Web server in interlevel area to collect data and to keep system integrity. The approach is illustrated on the example of the Novosibirsk Hydroelectric Power Station (NHPS) automated system of maintenance and control (ASMC) Engineering Level.

  15. Non-ideal atom-light interfaces: modeling real-world effects

    E-print Network

    M. Koschorreck; M. W. Mitchell

    2008-02-22

    We present a model which describes coherent and incoherent processes in continuous-variable atom-light interfaces. We assume Gaussian states for light and atoms and formulate the system dynamics in terms of first and second moments of the angular momentum operators. Spatial and temporal inhomogeneities in light and atom variables are incorporated by partitioning the system into small homogeneous segments. Furthermore, other experimental imperfections as for instance limited detector time-resolution and atomic motion are simulated. The model is capable of describing many experimental situations ranging from room temperature vapor cells to sub-mK atomic clouds. To illustrate the method, we calculate the effect of detector time-resolution, spatial inhomogeneities and atomic motion on the spin squeezing dynamics of rubidium 87 on the D2 transition.

  16. A Model for Interface Dynamos in Late K and Early M Dwarfs

    NASA Astrophysics Data System (ADS)

    Mullan, D. J.; Houdebine, E. R.; MacDonald, J.

    2015-09-01

    Measurements of the equivalent width EW(CaK) of emission in the Ca ii K line have been obtained by Houdebine et al. for stars with spectral types from dK5 to dM4. In order to explain the observed variations of EW(CaK) with spectral sub-type, we propose a quantitative model of interface dynamos in low-mass stars. Our model leads to surface field strengths Bs which turn out to be essentially linearly proportional to EW(CaK). This result is reminiscent of the Sun, where Skumanich et al. found that the intensity of CaK emission in solar active regions is linearly proportional to the local field strength.

  17. Champagne Flutes and Brandy Snifters: Modelling Protostellar Outflow-Cloud Chemical Interfaces

    E-print Network

    Rollins, Richard P; Williams, David A; Redman, Matt P

    2014-01-01

    A rich variety of molecular species has now been observed towards hot cores in star forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interface between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled "brandy snifter" shaped outflows over narrower "champagne flute" shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO$^+$. We present results from a chemo-dynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained natu...

  18. Random interface growth in a random environment: Renormalization group analysis of a simple model

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Kakin, P. I.

    2015-10-01

    We study the effects of turbulent mixing on the random growth of an interface in the problem of the deposition of a substance on a substrate. The growth is modeled by the well-known Kardar-Parisi-Zhang model. The turbulent advecting velocity field is modeled by the Kraichnan rapid-change ensemble: Gaussian statistics with the correlation function < vv> ? ?( t - t? ) k - d-?, where k is the wave number and ? is a free parameter, 0 < ? < 2. We study the effects of the fluid compressibility. Using the field theory renormalization group, we show that depending on the relation between the exponent ? and the spatial dimension d, the system manifests different types of large-scale, long-time asymptotic behavior associated with four possible fixed points of the renormalization group equations. In addition to the known regimes (ordinary diffusion, the ordinary growth process, and a passively advected scalar field), we establish the existence of a new nonequilibrium universality class. We calculate the fixed-point coordinates and their stability regions and critical dimensions to the first order of the double expansion in ? and ? = 2 - d (one-loop approximation). It turns out that for an incompressible fluid, the most realistic values ? = 4/3 or ? = 2 and d = 1 or d = 2 correspond to the case of a passive scalar field, where the nonlinearity of the Kardar-Parisi-Zhang model is irrelevant and the interface growth is completely determined by the turbulent transfer. If the compressibility becomes sufficiently strong, then a crossover occurs in the critical behavior, and these values of d and ? are in the stability region of the new regime, where the advection and nonlinearity are both important. But the coordinates of the fixed point for this regime are in the unphysical region, and its physical interpretation hence remains an open problem.

  19. Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model.

    PubMed

    Sundstrøm, Terje; Daphu, Inderjit; Wendelbo, Ingvild; Hodneland, Erlend; Lundervold, Arvid; Immervoll, Heike; Skaftnesmo, Kai Ove; Babic, Michal; Jendelova, Pavla; Sykova, Eva; Lund-Johansen, Morten; Bjerkvig, Rolf; Thorsen, Frits

    2013-04-15

    Biologic and therapeutic advances in melanoma brain metastasis are hampered by the paucity of reproducible and predictive animal models. In this work, we developed a robust model of brain metastasis that empowers quantitative tracking of cellular dissemination and tumor progression. Human melanoma cells labeled with superparamagnetic iron oxide nanoparticles (SPION) were injected into the left cardiac ventricle of mice and visualized by MRI. We showed that SPION exposure did not affect viability, growth, or migration in multiple cell lines across several in vitro assays. Moreover, labeling did not impose changes in cell-cycle distribution or apoptosis. In vivo, several SPION-positive cell lines displayed similar cerebral imaging and histologic features. MRI-based automated quantification of labeled cells in the brain showed a sigmoid association between metastasis frequency and doses of inoculated cells. Validation of this fully automated quantification showed a strong correlation with manual signal registration (r(2) = 0.921, P < 0.001) and incidence of brain metastases (r(2) = 0.708, P < 0.001). Metastasis formation resembled the pattern seen in humans and was unaffected by SPION labeling (histology; tumor count, P = 0.686; survival, P = 0.547). In summary, we present here a highly reproducible animal model that can improve the predictive value of mechanistic and therapeutic studies of melanoma brain metastasis. PMID:23423977

  20. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    NASA Astrophysics Data System (ADS)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls in parabolic flows were in qualitative agreement with some experimental and numerical results. The Fahraeus and the Fahraeus-Lindqvist effects were reproduced. The proposed LBM model provides a flexible numerical platform consisting of various modules which could be used separately or in combination for the study of a variety of colloids and biological suspensions flow deformation problems.

  1. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    NASA Astrophysics Data System (ADS)

    Pigozzi, Giancarlo; Antušek, Andrej; Janczak-Rusch, Jolanta; Parlinska-Wojtan, Magdalena; Passerone, Daniele; Antonio Pignedoli, Carlo; Bissig, Vinzenz; Patscheider, Jörg; Jeurgens, Lars P. H.

    2012-10-01

    Nano-sized Ag-Cu8nm/AlN10nm multilayers were deposited by reactive DC sputtering on ?-Al2O3(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  2. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    SciTech Connect

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H.; Antusek, Andrej; Parlinska-Wojtan, Magdalena; Bissig, Vinzenz

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  3. Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kaber, David B.

    2006-01-01

    This report presents a review of literature on approaches to adaptive and adaptable task/function allocation and adaptive interface technologies for effective human management of complex systems that are likely to be issues for the Next Generation Air Transportation System, and a focus of research under the Aviation Safety Program, Integrated Intelligent Flight Deck Project. Contemporary literature retrieved from an online database search is summarized and integrated. The major topics include the effects of delegation-type, adaptable automation on human performance, workload and situation awareness, the effectiveness of various automation invocation philosophies and strategies to function allocation in adaptive systems, and the role of user modeling in adaptive interface design and the performance implications of adaptive interface technology.

  4. A Hierarchical Approach to Model Web Query Interfaces for Web Source Integration

    E-print Network

    Meng, Weiyi

    is by formulating complex queries on such interfaces. Applications such as Deep Web crawling and Web database interfaces on about 6.5% in accuracy as evaluated over three corpora with more than 500 Deep Web interfaces to as the Deep Web. Recent surveys estimated millions of such sources [6, 16]. In order to obtain the contents

  5. Model of the L 2 Integrin I-Domain/ICAM-1 DI Interface Suggests That Subtle Changes in Loop Orientation

    E-print Network

    Sanner, Michel

    Model of the L 2 Integrin I-Domain/ICAM-1 DI Interface Suggests That Subtle Changes in Loop words: L I-domain; ICAM-1; modeling; dock- ing; integrin, activation INTRODUCTION Leukocyte adhesion before transendothelial migration.1,2 L 2 is a member of the integrin family and is an heterodimer

  6. Automation in organizations: Eternal conflict

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1981-01-01

    Some ideas on and insights into the problems associated with automation in organizations are presented with emphasis on the concept of automation, its relationship to the individual, and its impact on system performance. An analogy is drawn, based on an American folk hero, to emphasize the extent of the problems encountered when dealing with automation within an organization. A model is proposed to focus attention on a set of appropriate dimensions. The function allocation process becomes a prominent aspect of the model. The current state of automation research is mentioned in relation to the ideas introduced. Proposed directions for an improved understanding of automation's effect on the individual's efficiency are discussed. The importance of understanding the individual's perception of the system in terms of the degree of automation is highlighted.

  7. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.

  8. An Analysis Technique/Automated Tool for Comparing and Tracking Analysis Modes of Different Finite Element Models

    NASA Technical Reports Server (NTRS)

    Towner, Robert L.; Band, Jonathan L.

    2012-01-01

    An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.

  9. Dynamic Impedance Model of the Skin-Electrode Interface for Transcutaneous Electrical Stimulation

    PubMed Central

    Vargas Luna, José Luis; Krenn, Matthias; Cortés Ramírez, Jorge Armando; Mayr, Winfried

    2015-01-01

    Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes. PMID:25942010

  10. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.

    PubMed

    Vargas Luna, José Luis; Krenn, Matthias; Cortés Ramírez, Jorge Armando; Mayr, Winfried

    2015-01-01

    Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes. PMID:25942010

  11. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    NASA Technical Reports Server (NTRS)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  12. Conceptual model analysis of interaction at a concrete-Boom Clay interface

    NASA Astrophysics Data System (ADS)

    Liu, Sanheng; Jacques, Diederik; Govaerts, Joan; Wang, Lian

    In many concepts for deep disposal of high-level radioactive waste, cementitious materials are used in the engineered barriers. For example, in Belgium the engineered barrier system is based on a considerable amount of cementitious materials as buffer and backfill in the so-called supercontainer embedded in the hosting geological formation. A potential hosting formation is Boom Clay. Insight in the interaction between the high-pH pore water of the cementitious materials and neutral-pH Boom Clay pore water is required. Two problems are quite common for modeling of such a system. The first one is the computational cost due to the long timescale model assessments envisaged for the deep disposal system. Also a very fine grid (in sub-millimeter), especially at interfaces has to be used in order to accurately predict the evolution of the system. The second one is whether to use equilibrium or kinetic reaction models. The objectives of this paper are twofold. First, we develop an efficient coupled reactive transport code for this diffusion-dominated system by making full use of multi-processors/cores computers. Second, we investigate how sensitive the system is to chemical reaction models especially when pore clogging due to mineral precipitation is considered within the cementitious system. To do this, we selected two portlandite dissolution models, i.e., equilibrium (fastest) and diffusion-controlled model with precipitation of a calcite layer around portlandite particles (diffusion-controlled dissolution). The results show that with shrinking core model portlandite dissolution and calcite precipitation are much slower than with the equilibrium model. Also diffusion-controlled dissolution smooths out dissolution fronts compared to the equilibrium model. However, only a slight difference with respect to the clogging time can be found even though we use a very small diffusion coefficient (10-20 m2/s) in the precipitated calcite layer.

  13. Automation or De-automation

    NASA Astrophysics Data System (ADS)

    Gorlach, Igor; Wessel, Oliver

    2008-09-01

    In the global automotive industry, for decades, vehicle manufacturers have continually increased the level of automation of production systems in order to be competitive. However, there is a new trend to decrease the level of automation, especially in final car assembly, for reasons of economy and flexibility. In this research, the final car assembly lines at three production sites of Volkswagen are analysed in order to determine the best level of automation for each, in terms of manufacturing costs, productivity, quality and flexibility. The case study is based on the methodology proposed by the Fraunhofer Institute. The results of the analysis indicate that fully automated assembly systems are not necessarily the best option in terms of cost, productivity and quality combined, which is attributed to high complexity of final car assembly systems; some de-automation is therefore recommended. On the other hand, the analysis shows that low automation can result in poor product quality due to reasons related to plant location, such as inadequate workers' skills, motivation, etc. Hence, the automation strategy should be formulated on the basis of analysis of all relevant aspects of the manufacturing process, such as costs, quality, productivity and flexibility in relation to the local context. A more balanced combination of automated and manual assembly operations provides better utilisation of equipment, reduces production costs and improves throughput.

  14. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    NASA Technical Reports Server (NTRS)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  15. Properties of Interfaces in the two and three dimensional Ising Model

    E-print Network

    B. A. Berg; U. Hansmann; T. Neuhaus

    1992-06-25

    To investigate order-order interfaces, we perform multimagnetical Monte Carlo simulations of the $2D$ and $3D$ Ising model. Following Binder we extract the interfacial free energy from the infinite volume limit of the magnetic probability density. Stringent tests of the numerical methods are performed by reproducing with high precision exact $2D$ results. In the physically more interesting $3D$ case we estimate the amplitude $F^s_0$ of the critical interfacial tension $F^s = F^s_0 t^\\mu$ to be $F^s_0 = 1.52 \\pm 0.05$. This result is in good agreement with a previous MC calculation by Mon, as well as with experimental results for related amplitude ratios. In addition, we study in some details the shape of the magnetic probability density for temperatures below the Curie point.

  16. Influence of active sites organisation on calcium carbonate formation at model biomolecular interfaces

    NASA Astrophysics Data System (ADS)

    Hacke, S.; Möbius, D.; Lieu, V.-T.

    2005-06-01

    In an approach to understand the influence of structural parameters of interfaces on calcification in biomineralisation, the distribution and conformation of head groups as active sites in an inert matrix were varied using two-component phospholipid model monolayers. Dimyristoylphosphatidic acid (DMPA) and dipalmitoylphosphatidylcholin (DPPC), respectively, were the active components, and methyl octadecanoate (MOD) was used as inactive matrix. Surface pressure-area isotherms provide evidence for a different distribution of the active components in the matrix. Formation of solid calcium carbonate with two-component monolayers on subphases containing aqueous CaCO 3 was observed in situ by Brewster angle microscopy, where CaCO 3 domains appear bright. Striking differences in kinetics and extent of CaCO 3 formation are observed between monolayers containing dimyristoylphosphatidic acid and those containing dipalmitoylphosphatidylcholin. The presence of ?-carrageenan in the subphase as a further active component resulted in partial inhibition of CaCO 3 formation.

  17. Activity and property landscape modeling is at the interface of chemoinformatics and medicinal chemistry.

    PubMed

    Medina-Franco, José L; Navarrete-Vázquez, Gabriel; Méndez-Lucio, Oscar

    2015-01-01

    Property landscape modeling (PLM) methods are at the interface of experimental sciences and computational chemistry. PLM are becoming a common strategy to describe systematically structure-property relationships of datasets. Thus far, PLM have been used mainly in medicinal chemistry and drug discovery. Herein, we survey advances on key topics on PLM with emphasis on questions often raised regarding the outcomes of the property landscape studies. We also emphasize on concepts of PLM that are being extended to other experimental areas beyond drug discovery. Topics discussed in this paper include applications of PLM to further characterize protein-ligand interactions, the utility of PLM as a quantitative and descriptive approach, and the statistical validation of property cliffs. PMID:26132526

  18. Microenvironment temperature prediction between body and seat interface using autoregressive data-driven model.

    PubMed

    Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W

    2015-11-01

    There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of <0.4 °C when used to predict the temperature at the seat and skin interface 15 min ahead, but required 45 min data prior to give this accuracy. Although the 45 min front loading of data appears large (in proportion to the 15 min prediction), a relative strength derives from the fact that the same algorithm could be used on the other 4 sitting datasets created by the same individual, suggesting that the period of 45 min required to train the algorithm is transferable to other data from the same individual. This approach might be developed (along with incorporation of other measures such as movement and humidity) into a system that can give caregivers prior warning to help avoid exacerbating the skin disorders of patients who suffer from low body insensitivity and disability requiring them to be immobile in seats for prolonged periods. PMID:26338500

  19. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    PubMed

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures. PMID:25962800

  20. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    NASA Astrophysics Data System (ADS)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  1. Towards High-accuracy MHD-Boltzmann Model of the Heliospheric Interface

    NASA Astrophysics Data System (ADS)

    Borovikov, S. N.; Heerikhuisen, J.; Pogorelov, N. V.; Kryukov, I. A.; Zank, G. P.

    2007-05-01

    With Voyager 1 crossing the solar wind (SW) termination shock and Voyager 2 approaching it, we need to develop highly accurate models of the heliospheric interface capable of reproducing a fine structure of the SW flow in the vicinity of the termination shock (TS) and in the heliosheath. A model of such type should, on the one hand, involve a kinetic treatment of the neutral component in the partially ionized SW and local interstellar medium plasmas and, on the other hand, take advantage of adaptive mesh refinement (AMR) techniques for resolving the heliospheric discontinuities (the TS, the heliopause, the bow shock, and additional transients) sharply enough so that they can be meaningfully compared with the spacecraft observations. Charge exchange between hydrogen atoms and ions substantially modifies the TS shape, its position with respect to the Sun, and, as a consequence, the properties of the SW in the heliosheath. We present new results obtained with our numerical code which models the ion flow magnetohydrodynamically, while transport of neutral hydrogen is described stochastically, using direct simulation Monte Carlo (DSMC) method. Solutions obtained with such calculations are compared with those obtained in the framework of our multi-fluid, AMR model, where different populations of neutral particles are treated hydrodynamically.

  2. Software interface verifier

    NASA Technical Reports Server (NTRS)

    Soderstrom, Tomas J.; Krall, Laura A.; Hope, Sharon A.; Zupke, Brian S.

    1994-01-01

    A Telos study of 40 recent subsystem deliveries into the DSN at JPL found software interface testing to be the single most expensive and error-prone activity, and the study team suggested creating an automated software interface test tool. The resulting Software Interface Verifier (SIV), which was funded by NASA/JPL and created by Telos, employed 92 percent software reuse to quickly create an initial version which incorporated early user feedback. SIV is now successfully used by developers for interface prototyping and unit testing, by test engineers for formal testing, and by end users for non-intrusive data flow tests in the operational environment. Metrics, including cost, are included. Lessons learned include the need for early user training. SIV is ported to many platforms and can be successfully used or tailored by other NASA groups.

  3. Automated fault-management in a simulated spaceflight micro-world

    NASA Technical Reports Server (NTRS)

    Lorenz, Bernd; Di Nocera, Francesco; Rottger, Stefan; Parasuraman, Raja

    2002-01-01

    BACKGROUND: As human spaceflight missions extend in duration and distance from Earth, a self-sufficient crew will bear far greater onboard responsibility and authority for mission success. This will increase the need for automated fault management (FM). Human factors issues in the use of such systems include maintenance of cognitive skill, situational awareness (SA), trust in automation, and workload. This study examine the human performance consequences of operator use of intelligent FM support in interaction with an autonomous, space-related, atmospheric control system. METHODS: An expert system representing a model-base reasoning agent supported operators at a low level of automation (LOA) by a computerized fault finding guide, at a medium LOA by an automated diagnosis and recovery advisory, and at a high LOA by automate diagnosis and recovery implementation, subject to operator approval or veto. Ten percent of the experimental trials involved complete failure of FM support. RESULTS: Benefits of automation were reflected in more accurate diagnoses, shorter fault identification time, and reduced subjective operator workload. Unexpectedly, fault identification times deteriorated more at the medium than at the high LOA during automation failure. Analyses of information sampling behavior showed that offloading operators from recovery implementation during reliable automation enabled operators at high LOA to engage in fault assessment activities CONCLUSIONS: The potential threat to SA imposed by high-level automation, in which decision advisories are automatically generated, need not inevitably be counteracted by choosing a lower LOA. Instead, freeing operator cognitive resources by automatic implementation of recover plans at a higher LOA can promote better fault comprehension, so long as the automation interface is designed to support efficient information sampling.

  4. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  5. Modeling of Instabilities and Self-organization at the Frictional Interface

    NASA Astrophysics Data System (ADS)

    Mortazavi, Vahid

    The field of friction-induced self-organization and its practical importance remains unknown territory to many tribologists. Friction is usually thought of as irreversible dissipation of energy and deterioration; however, under certain conditions, friction can lead to the formation of new structures at the interface, including in-situ tribofilms and various patterns at the interface. This thesis studies self-organization and instabilities at the frictional interface, including the instability due to the temperature-dependency of the coefficient of friction, the transient process of frictional running-in, frictional Turing systems, the stick-and-slip phenomenon, and, finally, contact angle (CA) hysteresis as an example of solid-liquid friction and dissipation. All these problems are chosen to bridge the gap between fundamental interest in understanding the conditions leading to self-organization and practical motivation. We study the relationship between friction-induced instabilities and friction-induced self-organization. Friction is usually thought of as a stabilizing factor; however, sometimes it leads to the instability of sliding, in particular when friction is coupled with another process. Instabilities constitute the main mechanism for pattern formation. At first, a stationary structure loses its stability; after that, vibrations with increasing amplitude occur, leading to a limit cycle corresponding to a periodic pattern. The self-organization is usually beneficial for friction and wear reduction because the tribological systems tend to enter a state with the lowest energy dissipation. The introductory chapter starts with basic definitions related to self-organization, instabilities and friction, literature review, and objectives. We discuss fundamental concepts that provide a methodological tool to investigate, understand and enhance beneficial processes in tribosystems which might lead to self-organization. These processes could result in the ability of a frictional surface to exhibit "self-protection" and "self-healing" properties. Hence, this research is dealing with the fundamental concepts that allow the possibility of the development of a new generation of tribosystem and materials that reinforce such properties. In chapter 2, we investigate instabilities due to the temperature-dependency of the coefficient of friction. The temperature-dependency of the coefficient of friction can have a significant effect on the frictional sliding stability, by leading to the formation of "hot" and "cold" spots on the contacting surfaces. We formulate a stability criterion and perform a case study of a brake disk. In chapter 3, we study frictional running-in. Running-in is a transient period on the onset of the frictional sliding, in which friction and wear decrease to their stationary values. In this research, running-in is interpreted as friction-induced self-organization process. We introduce a theoretical model of running-in and investigate rough profile evolution assuming that its kinetics is driven by two opposite processes or events, i.e., smoothening which is typical for the deformation-driven friction and wear, and roughening which is typical for the adhesion-driven friction and wear. In chapter 4, we investigate the possibility of the so-called Turing-type pattern formation during friction. Turing or reaction-diffusion systems describe variations of spatial concentrations of chemical components with time due to local chemical reactions coupled with diffusion. During friction, the patterns can form at the sliding interface due to the mass transfer (diffusion), heat transfer, various tribochemical reactions, and wear. In chapter 5, we investigate how interfacial patterns including propagating trains of stick and slip zones form due to dynamic sliding instabilities. These can be categorized as self-organized patterns. We treat stick and slip as two phases at the interface, and study the effects related to phase transitions. Our results show how interfacial patterns form, how

  6. Automated Camera Calibration

    NASA Technical Reports Server (NTRS)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  7. Human-system Interfaces for Automatic Systems

    SciTech Connect

    OHara, J.M.; Higgins,J.; Fleger, S.; Barnes V.

    2010-11-07

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, our study identified several topics for additional research.

  8. Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method

    SciTech Connect

    Han, L.H. Hu, X.Y. Adams, N.A.

    2015-01-01

    In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separation approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.

  9. Mesh Smoothing Algorithm Applied to a Finite Element Model of the Brain for Improved Brain-Skull Interface.

    PubMed

    Kelley, Mireille E; Miller, Logan E; Urban, Jillian E; Stitzel, Joel D

    2015-01-01

    The brain-skull interface plays an important role in the strain and pressure response of the brain due to impact. In this study, a finite element (FE) model was developed from a brain atlas, representing an adult brain, by converting each 1mm isotropic voxel into a single element of the same size using a custom code developed in MATLAB. This model includes the brain (combined cerebrum and cerebellum), cerebrospinal fluid (CSF), ventricles, and a rigid skull. A voxel-based approach to develop a FE model causes the outer surface of each part to be stair-stepped, which may affect the stress and strain measurements at interfaces between parts. To improve the interaction between the skull, CSF, and brain surfaces, a previously developed mesh smoothing algorithm based on a Laplacian non-shrinking smoothing algorithm was applied to the FE model. This algorithm not only applies smoothing to the surface of the model, but also to the interfaces between the brain, CSF, and skull, while preserving volume and element quality. Warpage, jacobian, aspect ratio, and skew were evaluated and reveal that >99% of the elements retain good element quality. Future work includes implementation of contact definitions to accurately represent the brain-skull interface and to ultimately better understand and predict head injury. PMID:25996716

  10. Thermal modeling of head disk interface system in heat assisted magnetic recording

    SciTech Connect

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S.; Min Kim, Hyung

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  11. A Home Ignition Assessment Model Applied to Structures in the Wildland-Urban Interface

    SciTech Connect

    Biswas, Kaushik; Werth, David; Gupta, Narendra

    2013-01-01

    The issue of exterior fire threat to buildings, from either wildfires in the wildland-urban interface or neighboring structure fires, is critically important. To address this, theWildfire Ignition Resistant Home Design (WIRHD) program was initiated. The WIRHD program developed a tool, theWildFIREWizard, that will allow homeowners to estimate the external fire threat to their homes based on specific features and characteristics of the homes and yards. The software then makes recommendations to reduce the threat. The inputs include the structural and material features of the home and information about any ignition sources or flammable objects in its immediate vicinity, known as the home ignition zone. The tool comprises an ignition assessment model that performs explicit calculations of the radiant and convective heating of the building envelope from the potential ignition sources. This article describes a series of material ignition and flammability tests that were performed to calibrate and/or validate the ignition assessment model. The tests involved exposing test walls with different external siding types to radiant heating and/or direct flame contact.The responses of the test walls were used to determine the conditions leading to melting, ignition, or any other mode of failure of the walls. Temperature data were used to verify the model predictions of temperature rises and ignition times of the test walls.

  12. Dynamic model of the interface reactions in an aircraft bomb rack due to an external store

    NASA Astrophysics Data System (ADS)

    Schoppert, Tim C.

    In today's downsizing environment, more demands than ever are being placed on aircraft flight test programs. To compensate for shrinking budgets and increased requirements, new and more versatile test techniques and data processing systems must be developed. Standard flight test procedures must be reexamined and optimized to maximize the availability of the test asset while processing the collected data more quickly and at a lower cost. This research demonstrated the ability to predict the reaction loads transmitted to an aircraft bomb rack due to the inertial forces acting on an external store. These load calculations typically require lengthy test programs with strain gage and accelerometer instrumentation placed on the store, suspension equipment and rack interface points. Instrumented testing procedures are cost prohibitive and time consuming, requiring much pre-flight and post-flight work to instrument the test articles and reduce the data, respectively. This research focused on calculating the interface reactions relying only on store mass properties, accelerometer data and geometry, all of which can be collected at minimal effort and cost while allowing real-time data reduction. Equations were developed from classical theory and the accuracy of the data was proven with actual flight test information. A full-scale static ground test provided data for model improvement and verification. Flight test data for final validation were primarily accumulated during a carrier suitability flight test program conducted at the Naval Air Warfare Center, Patuxent River, Maryland on a fully instrumented F-14, BRU-32/A bomb ejector rack and a GBU-24B/B 2,000-lb. bomb. In the 300 milliseconds following arrestment, forces and moments up to 15,000 lbs. and 150,000 in-lbs., respectively, were calculated at the store CG. Compared to the measured data, very good agreement was found in form and magnitude for all calculated interface reactions. Critical lug and swaybrace rod reactions averaged less than 7% and 9% absolute error, respectively. Swaybrace rod and vertical lug reactions that were less than 2,000 lbs. and 5,000 lbs., respectively, were considered non-critical and in the noise of the test.

  13. Automation of block assignment planning using a diagram-based scenario modeling method

    NASA Astrophysics Data System (ADS)

    Hwang, In Hyuck; Kim, Youngmin; Lee, Dong Kun; Shin, Jong Gye

    2014-03-01

    Most shipbuilding scheduling research so far has focused on the load level on the dock plan. This is be¬cause the dock is the least extendable resource in shipyards, and its overloading is difficult to resolve. However, once dock scheduling is completed, making a plan that makes the best use of the rest of the resources in the shipyard to minimize any additional cost is also important. Block assignment planning is one of the midterm planning tasks; it assigns a block to the facility (factory/shop or surface plate) that will actually manufacture the block according to the block characteristics and current situation of the facility. It is one of the most heavily loaded midterm planning tasks and is carried out manu¬ally by experienced workers. In this study, a method of representing the block assignment rules using a diagram was su¬ggested through analysis of the existing manual process. A block allocation program was developed which automated the block assignment process according to the rules represented by the diagram. The planning scenario was validated through a case study that compared the manual assignment and two automated block assignment results.

  14. Automated mixed traffic vehicle control and scheduling study

    NASA Technical Reports Server (NTRS)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  15. Ranking Docked Models of Protein-Protein Complexes Using Predicted Partner-Specific Protein-Protein Interfaces: A Preliminary Study

    PubMed Central

    Xue, Li C.; Jordan, Rafael A.; EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2015-01-01

    Computational protein-protein docking is a valuable tool for determining the conformation of complexes formed by interacting proteins. Selecting near-native conformations from the large number of possible models generated by docking software presents a significant challenge in practice. We introduce a novel method for ranking docked conformations based on the degree of overlap between the interface residues of a docked conformation formed by a pair of proteins with the set of predicted interface residues between them. Our approach relies on a method, called PS-HomPPI, for reliably predicting protein-protein interface residues by taking into account information derived from both interacting proteins. PS-HomPPI infers the residues of a query protein that are likely to interact with a partner protein based on known interface residues of the homo-interologs of the query-partner protein pair, i.e., pairs of interacting proteins that are homologous to the query protein and partner protein. Our results on Docking Benchmark 3.0 show that the quality of the ranking of docked conformations using our method is consistently superior to that produced using ClusPro cluster-size-based and energy-based criteria for 61 out of the 64 docking complexes for which PS-HomPPI produces interface predictions. An implementation of our method for ranking docked models is freely available at: http://einstein.cs.iastate.edu/DockRank/. PMID:25905110

  16. A model for electromigration-induced degradation mechanisms in dual-inlaid copper interconnects: Effect of interface bonding strength

    NASA Astrophysics Data System (ADS)

    Sukharev, Valeriy; Zschech, Ehrenfried

    2004-12-01

    A physical model and a simulation algorithm are used to predict an electromigration-(EM-) induced void nucleation and growth in dual-inlaid copper interconnect. Incorporation of all important atom migration driving forces into the mass balance equation and its solution together with solution of the coupled electromagnetics, heat transfer, and elasticity problems allows to simulate EM-induced degradation in a variety of dual-inlaid copper interconnect segments characterized by different dominant channels for mass transport. The interface bonding strengths, significantly influencing the interface diffusivity and consequently the mass transport along interfaces, result in completely different degradation and failure pictures for the weak and strengthened copper/capping layer interfaces. Strengthening of the top interface of inlaid copper interconnect metal line is a promising way to prolong the EM lifetime. The results of the numerical simulation have been proven experimentally by the EM degradation studies on the fully embedded dual-inlaid copper interconnect test structures. EM-induced void formation, movement, and growth in a copper interconnect were continuously monitored in an in situ scanning electron microscopy experiment. The correspondence between simulation results and experimental data indicates the applicability of the developed model for optimization of the physical and electrical design rules. Simulation-based optimization of the interconnect architecture, segment geometry, material properties, and some of the process parameters can generate on-chip interconnect systems with a high immunity to EM-induced failures.

  17. Molecular modeling of lipase binding to a substrate-water interface.

    PubMed

    Gruber, Christian C; Pleiss, Jürgen

    2012-01-01

    Interactions of lipases with hydrophobic substrate-water interfaces are of great interest to design improved lipase variants and engineer reaction conditions. This chapter describes the necessary steps to carry out molecular dynamics simulations of Candida antarctica lipase B at tributyrin-water interface using the GROMACS simulation software. Special attention is drawn to the preparation of the protein and the substrate-water interface and to the analysis of the obtained trajectory. PMID:22426727

  18. Finite element modeling of the effect of interface anomalies on thermal stresses in alumina scales.

    SciTech Connect

    Wright, J. K.

    1998-06-10

    The scales that grow from oxidation often develop a convoluted morphology or interface pores. High thermal stresses can develop locally and are potentially detrimental to the scale or interface integrity. Finite element simulations are used to examine residual thermal stresses and strains that result when these deviations from a flat interface have formed, and the resulting geometry is subsequently cooled to room temperature. A variety of geometries will be considered for alumina scales on a FeCrAl substrate.

  19. Finite element modeling of the effect of interface anomalies on thermal stresses in alumina scales

    SciTech Connect

    Wright, J.K.; Williamson, R.L.; Hou, P.Y.; Cannon, R.M.; Renusch, D.; Veal, B.; Grimsditch, M.

    1998-07-01

    The scales that grow from oxidation often develop a convoluted morphology or interface pores. High thermal stresses can develop locally and are potentially detrimental to the scale or interface integrity. Finite element simulations are used to examine residual thermal stresses and strains that result when these deviations from a flat interface have formed, and the resulting geometry is subsequently cooled to room temperature. A variety of geometries will be considered for alumina scales on a FeCrAl substrate.

  20. Guide to the stand-damage model interface management system. Forest Service general technical report (Final)

    SciTech Connect

    Racin, G.; Colbert, J.J.

    1995-08-16

    Describes the Gypsy Moth Stand-Damage interface management system. Management of stand-damage data made it necessary to define structures to store data and provide the mechanisms to manipulate these data. The software is used to manipulate files, graph and manage outputs, and edit input data. The interface was built using pop-up windows, menuing systems, text editing and validation, mouse support, and context-sensitive help. The interface is written in the C language for DOS microcomputers.

  1. CIMplementation™: Evaluating Manufacturing Automation 

    E-print Network

    Krakauer, J.

    1985-01-01

    handling equipment will consistlof robots for loading and unloading machines~ flexible transfer systems such as programm1able carts guided by floor-embedded wire, and automated materials warehousing sy~tems. I I CAM software will think for the hard...;ve programs and data, will reside in the cen~ral database, or be accessible from one of many individual, networked workstations. , This CIM model is a simplified pictute of an automated factory. The key featu res of thi s model are the degree...

  2. Firedrake-Fluids v0.1: numerical modelling of shallow water flows using an automated solution framework

    NASA Astrophysics Data System (ADS)

    Jacobs, C. T.; Piggott, M. D.

    2015-03-01

    This model description paper introduces a new finite element model for the simulation of non-linear shallow water flows, called Firedrake-Fluids. Unlike traditional models that are written by hand in static, low-level programming languages such as Fortran or C, Firedrake-Fluids uses the Firedrake framework to automatically generate the model's code from a high-level abstract language called Unified Form Language (UFL). By coupling to the PyOP2 parallel unstructured mesh framework, Firedrake can then target the code towards a desired hardware architecture to enable the efficient parallel execution of the model over an arbitrary computational mesh. The description of the model includes the governing equations, the methods employed to discretise and solve the governing equations, and an outline of the automated solution process. The verification and validation of the model, performed using a set of well-defined test cases, is also presented along with a road map for future developments and the solution of more complex fluid dynamical systems.

  3. AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON AB INITIO TARGET DATA

    PubMed Central

    Huang, Lei; Roux, Benoît

    2013-01-01

    Classical molecular dynamics (MD) simulations based on atomistic models are increasingly used to study a wide range of biological systems. A prerequisite for meaningful results from such simulations is an accurate molecular mechanical force field. Most biomolecular simulations are currently based on the widely used AMBER and CHARMM force fields, which were parameterized and optimized to cover a small set of basic compounds corresponding to the natural amino acids and nucleic acid bases. Atomic models of additional compounds are commonly generated by analogy to the parameter set of a given force field. While this procedure yields models that are internally consistent, the accuracy of the resulting models can be limited. In this work, we propose a method, General Automated Atomic Model Parameterization (GAAMP), for generating automatically the parameters of atomic models of small molecules using the results from ab initio quantum mechanical (QM) calculations as target data. Force fields that were previously developed for a wide range of model compounds serve as initial guess, although any of the final parameter can be optimized. The electrostatic parameters (partial charges, polarizabilities and shielding) are optimized on the basis of QM electrostatic potential (ESP) and, if applicable, the interaction energies between the compound and water molecules. The soft dihedrals are automatically identified and parameterized by targeting QM dihedral scans as well as the energies of stable conformers. To validate the approach, the solvation free energy is calculated for more than 200 small molecules and MD simulations of 3 different proteins are carried out. PMID:24223528

  4. Automated Urinalysis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Information from NASA Tech Briefs assisted DiaSys Corporation in the development of the R/S 2000 which automates urinalysis, eliminating most manual procedures. An automatic aspirator is inserted into a standard specimen tube, the "Sample" button is pressed, and within three seconds a consistent amount of urine sediment is transferred to a microscope. The instrument speeds up, standardizes, automates and makes urine analysis safer. Additional products based on the same technology are anticipated.

  5. Interstellar dust modelling: Interfacing laboratory, theoretical and observational studies (The THEMIS model)

    E-print Network

    Jones, Ant

    2015-01-01

    The construction of viable and physically-realistic interstellar dust models is only possible if the constraints imposed by laboratory data on interstellar dust analogue materials are respected and used within a meaningful theoretical framework. These physical dust models can then be directly compared to observations without the need for any tuning to fit the observations. Such models will generally fail to achieve the excellent fits to observations that empirical models are able to achieve. However, the physically-realistic approach will necessarily lead to a deeper insight and a fuller understanding of the nature and evolution of interstellar dust. The THEMIS modelling approach, based on (hydrogenated) amorphous carbons and amorphous silicates with metallic Fe and/or FeS nano-inclusions appears to be a promising move in this direction.

  6. Implementation of a Message Passing Interface into a Cloud-Resolving Model for Massively Parallel Computing

    NASA Technical Reports Server (NTRS)

    Juang, Hann-Ming Henry; Tao, Wei-Kuo; Zeng, Xi-Ping; Shie, Chung-Lin; Simpson, Joanne; Lang, Steve

    2004-01-01

    The capability for massively parallel programming (MPP) using a message passing interface (MPI) has been implemented into a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model. The design for the MPP with MPI uses the concept of maintaining similar code structure between the whole domain as well as the portions after decomposition. Hence the model follows the same integration for single and multiple tasks (CPUs). Also, it provides for minimal changes to the original code, so it is easily modified and/or managed by the model developers and users who have little knowledge of MPP. The entire model domain could be sliced into one- or two-dimensional decomposition with a halo regime, which is overlaid on partial domains. The halo regime requires that no data be fetched across tasks during the computational stage, but it must be updated before the next computational stage through data exchange via MPI. For reproducible purposes, transposing data among tasks is required for spectral transform (Fast Fourier Transform, FFT), which is used in the anelastic version of the model for solving the pressure equation. The performance of the MPI-implemented codes (i.e., the compressible and anelastic versions) was tested on three different computing platforms. The major results are: 1) both versions have speedups of about 99% up to 256 tasks but not for 512 tasks; 2) the anelastic version has better speedup and efficiency because it requires more computations than that of the compressible version; 3) equal or approximately-equal numbers of slices between the x- and y- directions provide the fastest integration due to fewer data exchanges; and 4) one-dimensional slices in the x-direction result in the slowest integration due to the need for more memory relocation for computation.

  7. Power Modeling of Graphical User Interfaces on OLED Mian Dong Yung-Seok Kevin Choi Lin Zhong

    E-print Network

    Zhong, Lin

    -4]. Conventional liquid crystal display (LCD) systems provide very little flexibility for power saving because the LCD panel consumes almost constant power regardless of the display content while the external lightingPower Modeling of Graphical User Interfaces on OLED Displays Mian Dong Yung-Seok Kevin Choi Lin

  8. A CASE STUDY USING THE EPA'S WATER QUALITY MODELING SYSTEM, THE WINDOWS INTERFACE FOR SIMULATING PLUMES (WISP)

    EPA Science Inventory

    Wisp, the Windows Interface for Simulating Plumes, is designed to be an easy-to-use windows platform program for aquatic modeling. Wisp inherits many of its capabilities from its predecessor, the DOS-based PLUMES (Baumgartner, Frick, Roberts, 1994). These capabilities have been ...

  9. Transport, Interfaces, and Modeling in Amorphous Silicon Based Solar Cells: Final Technical Report, 11 February 2002 - 30 September 2006

    SciTech Connect

    Schiff, E. A.

    2008-10-01

    Results for a-Si characteristics/modeling; photocarrier drift mobilities in a-Si;H, ..mu..c-Si:H, CIGS; hole-conducting polymers as p-layer for a-Si and c-Si; IR spectra of p/i and n/i interfaces in a-Si.

  10. Abstract--Brain machine interface (BMI) design can be achieved by training linear and nonlinear models with

    E-print Network

    Slatton, Clint

    Abstract--Brain machine interface (BMI) design can be achieved by training linear and nonlinear of a primate). We propose the use of optimized BMI models for analyzing neural activity to assess the role. In addition, this analysis revealed the role of these areas and the importance of the neurons in terms of BMI

  11. DEVELOPMENT OF A CHEMICAL PROCESS MODELING ENVIRONMENT BASED ON CAPE-OPEN INTERFACE STANDARDS AND THE MICROSOFT .NET FRAMEWORK

    EPA Science Inventory

    Chemical process simulation has long been used as a design tool in the development of chemical plants, and has long been considered a means to evaluate different design options. With the advent of large scale computer networks and interface models for program components, it is po...

  12. A reference model based interface terminology for generic observations in Anatomic Pathology Structured Reports

    PubMed Central

    2014-01-01

    Background Current terminology systems for structured reporting in pathology are more or less focused on tumor pathology. They have not been compiled in a systematic approach, therefore they gather terms of very different granularity. Generic models for terminology development could help in establishing reference terminologies for all fields of anatomic pathology. The core principle of those models is the ontological structure of native speaking terminology. By analyzing the PathLex interface a generic terminology model will be derived. Methods For each element template of PathLex its possible generic nature and its value set was analyzed, looking for the uniqueness or multiplicity of the values in the value sets. The generic terms were mapped to SNOMED-CT terms using "ArtDecor". Results The 488 PathLex element templates for Anatomic Pathology (AP) observations can be reduced to 53 generic templates, leaving out only 17 templates very specific for organ and/or disease. Among those 53 templates 28 are describing UICC-TNM staging, ICD-O-classification, and grading. Further 15 templates describe the results from marker investigations. Almost all of the terms, used in those templates could be mapped to SNOMED CT. All of the generic elements have their "organ specific" counterparts by assigning them to one of 20 organs and invasive or noninvasive cancer, respectively. Studying the structure of generic and specific terms it becomes obvious that any AP observation - occurs always in a context - consists of three basic elements (target of observation, property of observation, additional qualifiers, added by value sets for coded data). Conclusions If a machine-readable terminology is aimed to preserve all the information of native speaking, then two principal solutions exist: - ystematic consideration of all the aspects mentioned above in each single term - ocusing on the generic elements of terms and combining this with the structure of communication, reflecting the non-obvious elements of the terminology. The fastest way for establishing an interface terminology is the first approach, which lists all of the terms needed for e.g. a checklist in a comprehensive manner (precoordination). However, if the list of terms and problems increases, or new requirements have to be met, considerable difficulties may arise in keeping the terminology consistent and complete. The second, postcoordination approach offers some advantages. It does not have limitations in the organ- or disease specificity, and it keeps the number of terms limited, making them more easily to survey. PMID:25565606

  13. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example

    USGS Publications Warehouse

    Wu, Y.; Liu, S.

    2012-01-01

    Parameter optimization and uncertainty issues are a great challenge for the application of large environmental models like the Soil and Water Assessment Tool (SWAT), which is a physically-based hydrological model for simulating water and nutrient cycles at the watershed scale. In this study, we present a comprehensive modeling environment for SWAT, including automated calibration, and sensitivity and uncertainty analysis capabilities through integration with the R package Flexible Modeling Environment (FME). To address challenges (e.g., calling the model in R and transferring variables between Fortran and R) in developing such a two-language coupling framework, 1) we converted the Fortran-based SWAT model to an R function (R-SWAT) using the RFortran platform, and alternatively 2) we compiled SWAT as a Dynamic Link Library (DLL). We then wrapped SWAT (via R-SWAT) with FME to perform complex applications including parameter identifiability, inverse modeling, and sensitivity and uncertainty analysis in the R environment. The final R-SWAT-FME framework has the following key functionalities: automatic initialization of R, running Fortran-based SWAT and R commands in parallel, transferring parameters and model output between SWAT and R, and inverse modeling with visualization. To examine this framework and demonstrate how it works, a case study simulating streamflow in the Cedar River Basin in Iowa in the United Sates was used, and we compared it with the built-in auto-calibration tool of SWAT in parameter optimization. Results indicate that both methods performed well and similarly in searching a set of optimal parameters. Nonetheless, the R-SWAT-FME is more attractive due to its instant visualization, and potential to take advantage of other R packages (e.g., inverse modeling and statistical graphics). The methods presented in the paper are readily adaptable to other model applications that require capability for automated calibration, and sensitivity and uncertainty analysis.

  14. Metabolic Modeling of Dynamic (13)C NMR Isotopomer Data in the Brain In Vivo: Fast Screening of Metabolic Models Using Automated Generation of Differential Equations.

    PubMed

    Tiret, Brice; Shestov, Alexander A; Valette, Julien; Henry, Pierre-Gilles

    2015-12-01

    Most current brain metabolic models are not capable of taking into account the dynamic isotopomer information available from fine structure multiplets in (13)C spectra, due to the difficulty of implementing such models. Here we present a new approach that allows automatic implementation of multi-compartment metabolic models capable of fitting any number of (13)C isotopomer curves in the brain. The new automated approach also makes it possible to quickly modify and test new models to best describe the experimental data. We demonstrate the power of the new approach by testing the effect of adding separate pyruvate pools in astrocytes and neurons, and adding a vesicular neuronal glutamate pool. Including both changes reduced the global fit residual by half and pointed to dilution of label prior to entry into the astrocytic TCA cycle as the main source of glutamine dilution. The glutamate-glutamine cycle rate was particularly sensitive to changes in the model. PMID:26553273

  15. Theoretical modelling of self assembly of zwitterionic surfactants at the silica/water interface

    NASA Astrophysics Data System (ADS)

    Drach, Mateusz; Andrzejewska, Anna; Narkiewicz-Micha?ek, Jolanta

    2005-10-01

    A theoretical description of surfactant adsorption based on the model of the adsorbed phase being a mixture of single monomers and spherical and globular aggregates of different sizes has been developed. The assumed aggregate shapes were such that the cross-section of each aggregate parallel to the adsorbent surface was a circle with a radius depending on the aggregation number. The aggregates were allowed to move along the surface and all the lateral interactions between them were neglected except the "excluded area" ones. With such assumptions the adsorbed phase could be considered as a 2D fluid of hard disks of various dimensions being under the influence of the potential field due to the adsorbent. Using the scaled particle theory (SPT), the expressions for adsorption isotherm and heat of adsorption were derived and next fitted to the experimental data for three zwitterionic surfactants adsorbed on hydrophilic silica. The detailed expression for the chemical potential of transfer of a surfactant molecule from the bulk phase to the surface aggregate proposed by Nagarajan and co-workers [E. Nagarajan, E. Ruckenstein, Langmuir 7 (1991) 2934; R.A. Johnson, R. Nagarajan, Colloids Surf. A 167 (2000) 21; R.A. Johnson, R. Nagarajan, Colloids Surf. A 167 (2000) 31] was incorporated into the model. On the basis of the obtained results the effect of the surfactant-surfactant and solid-surfactant interactions on the organisation of surfactant molecules at the solid-liquid interface is discussed.

  16. Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces

    NASA Astrophysics Data System (ADS)

    Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.

    2014-10-01

    A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.

  17. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi

    PubMed Central

    2014-01-01

    Background The advent of Next Generation Sequencing technologies and corresponding bioinformatics tools allows the definition of transcriptomes in non-model organisms. Non-model organisms are of great ecological and biotechnological significance, and consequently the understanding of their unique metabolic pathways is essential. Several methods that integrate de novo assembly with genome-based assembly have been proposed. Yet, there are many open challenges in defining genes, particularly where genomes are not available or incomplete. Despite the large numbers of transcriptome assemblies that have been performed, quality control of the transcript building process, particularly on the protein level, is rarely performed if ever. To test and improve the quality of the automated transcriptome reconstruction, we used manually defined and curated genes, several of them experimentally validated. Results Several approaches to transcript construction were utilized, based on the available data: a draft genome, high quality RNAseq reads, and ESTs. In order to maximize the contribution of the various data, we integrated methods including de novo and genome based assembly, as well as EST clustering. After each step a set of manually curated genes was used for quality assessment of the transcripts. The interplay between the automated pipeline and the quality control indicated which additional processes were required to improve the transcriptome reconstruction. We discovered that E. huxleyi has a very high percentage of non-canonical splice junctions, and relatively high rates of intron retention, which caused unique issues with the currently available tools. While individual tools missed genes and artificially joined overlapping transcripts, combining the results of several tools improved the completeness and quality considerably. The final collection, created from the integration of several quality control and improvement rounds, was compared to the manually defined set both on the DNA and protein levels, and resulted in an improvement of 20% versus any of the read-based approaches alone. Conclusions To the best of our knowledge, this is the first time that an automated transcript definition is subjected to quality control using manually defined and curated genes and thereafter the process is improved. We recommend using a set of manually curated genes to troubleshoot transcriptome reconstruction. PMID:24559402

  18. EASY-GOING deconvolution: Automated MQMAS NMR spectrum analysis based on a model with analytical crystallite excitation efficiencies

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; van Meerten, Bas; Verkuijlen, Margriet H. W.; van Eck, Ernst R. H.; Leo Meerts, W.; Kentgens, Arno P. M.

    2013-03-01

    The EASY-GOING deconvolution (EGdeconv) program is extended to enable fast and automated fitting of multiple quantum magic angle spinning (MQMAS) spectra guided by evolutionary algorithms. We implemented an analytical crystallite excitation model for spectrum simulation. Currently these efficiencies are limited to two-pulse and z-filtered 3QMAS spectra of spin 3/2 and 5/2 nuclei, whereas for higher spin-quantum numbers ideal excitation is assumed. The analytical expressions are explained in full to avoid ambiguity and facilitate others to use them. The EGdeconv program can fit interaction parameter distributions. It currently includes a Gaussian distribution for the chemical shift and an (extended) Czjzek distribution for the quadrupolar interaction. We provide three case studies to illustrate EGdeconv's capabilities for fitting MQMAS spectra. The EGdeconv program is available as is on our website http://egdeconv.science.ru.nl for 64-bit Linux operating systems.

  19. STATISTICAL CONSIDERATIONS IN THE EMPLOYMENT OF SAX (SCANNING ELECTRON MICROSOPY WITH AUTOMATED IMAGE ANALYSIS AND X-RAY ENERGY SPECTROSCOPY) RESULTS FOR RECEPTOR MODELS

    EPA Science Inventory

    Hundreds of thousands of individual particle measurements may be accumulated in a receptor model study employing Scanning electron microscopy with Automated image analysis and X-ray energy spectroscopy (SAX). At present, the summaries of these data are utilized in apportionment c...

  20. A simple interface sharpening technique with a hyperbolic tangent function applied to compressible two-fluid modeling

    NASA Astrophysics Data System (ADS)

    Nonomura, Taku; Kitamura, Keiichi; Fujii, Kozo

    2014-02-01

    A simple interface sharpening technique based on hyperbolic tangent interpolation, which was proposed in the previous study [F. Xiao, Y. Honma, K. Kono, A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. Numer. Methods Fluids 48 (2005) 1023-1040], is applied to the compressible two-fluid modeling. The implementation of this scheme is very simple: the interpolation of the volume fraction in the monotonicity-upwind-scheme-for-conservation-law (MUSCL) solver is just replaced by the hyperbolic tangent interpolation, while the MUSCL interpolations for other variables are maintained. This technique is limited for the region near the interface to prevent the spurious oscillations of a minor phase. The one-dimensional and two-dimensional problems are solved, and the results are compared with those of the original MUSCL solver. The results show that the interface is significantly sharpened with this technique, and its sharpness is well controlled by one parameter. In addition, the robustness of the scheme does not change with sharpening the interface in the range we investigated.