Science.gov

Sample records for automatic vehicle monitoring

  1. Exporting automatic vehicle SNM monitoring technology

    SciTech Connect

    York, R.L.; Fehlau, P.E.; Close, D.A.

    1995-10-01

    Controlling the transportation of nuclear materials is still one of the most effective nuclear proliferation barriers. The recent increase of global nuclear material proliferation has expanded the application of vehicle monitor technology to prevent the diversion of special nuclear material across international borders. To satisfy this new application, a high-sensitivity vehicle monitor, which is easy to install and capable of operating in high-traffic areas, is required. A study of a new detector configuration for a drive-through vehicle monitor is discussed in this paper.

  2. Automatic vehicle monitoring systems study. Report of phase O. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A set of planning guidelines is presented to help law enforcement agencies and vehicle fleet operators decide which automatic vehicle monitoring (AVM) system could best meet their performance requirements. Improvements in emergency response times and resultant cost benefits obtainable with various operational and planned AVM systems may be synthesized and simulated by means of special computer programs for model city parameters applicable to small, medium, and large urban areas. Design characteristics of various AVM systems and the implementation requirements are illustrated and cost estimated for the vehicles, the fixed sites, and the base equipments. Vehicle location accuracies for different RF links and polling intervals are analyzed.

  3. Automatic vehicle monitoring systems study. Report of phase O. Volume 2: Problem definition and derivation of AVM system selection techniques

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A set of planning guidelines is presented to help law enforcement agencies and vehicle fleet operators decide which automatic vehicle monitoring (AVM) system could best meet their performance requirements. Improvements in emergency response times and resultant cost benefits obtainable with various operational and planned AVM systems may be synthesized and simulated by means of special computer programs for model city parameters applicable to small, medium and large urban areas. Design characteristics of various AVM systems and the implementation requirements are illustrated and cost estimated for the vehicles, the fixed sites and the base equipments. Vehicle location accuracies for different RF links and polling intervals are analyzed. Actual applications and coverage data are tabulated for seven cities whose police departments actively cooperated in the study.

  4. An optimized international vehicle monitor

    SciTech Connect

    York, R.L.; Close, D.A.; Fehlau, P.E.

    1997-03-01

    The security plans for many DOE facilities require the monitoring of pedestrians and vehicles to control the movement of special nuclear material (SNM). Vehicle monitors often provide the outer-most barrier against the theft of SNM. Automatic monitors determine the presence of SNM by comparing the gamma-ray and neutron intensity while occupied, to the continuously updated background radiation level which is measured while the unit is unoccupied. The most important factors in choosing automatic vehicle monitors are sensitivity, cost and in high traffic applications total monitoring time. The two types of automatic vehicle monitors presently in use are the vehicle monitoring station and the drive-through vehicle monitor. These two types have dramatically different cost and sensitivities. The vehicle monitoring station has a worst-case detection sensitivity of 40 g of highly enriched uranium, HEU, and a cost approximately $180k. This type of monitor is very difficult to install and can only be used in low traffic flow locations. The drive-through vehicle portal has a worst-case detection sensitivity of 1 kg of HEU and a cost approximately $20k. The world`s political situation has created a pressing need to prevent the diversion of SNM from FSU nuclear facilities and across international borders. Drive-through vehicle monitors would be an effective and practical nuclear material proliferation deterrent if their sensitivity can be improved to a sufficient level. The goal of this project is to evaluate different detector configurations as a means of improving the sensitivity of these instruments to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of SNM.

  5. 1997 update for the applications guide to vehicle SNM monitors

    SciTech Connect

    York, R.L.; Fehlau, P.E.

    1997-04-01

    Ten years have elapsed since the publication of the original applications guide to vehicle special nuclear material (SNM) monitors. During that interval, use of automatic vehicle monitors has become more commonplace, and formal procedures for monitor upkeep and evaluation have become available. New concepts for vehicle monitoring are being explored, as well. This update report reviews the basics of vehicle SNM monitoring, discusses what is new in vehicle SNM monitoring, and catalogs the vehicle SNM monitors that are commercial available.

  6. Vision-based industrial automatic vehicle classifier

    NASA Astrophysics Data System (ADS)

    Khanipov, Timur; Koptelov, Ivan; Grigoryev, Anton; Kuznetsova, Elena; Nikolaev, Dmitry

    2015-02-01

    The paper describes the automatic motor vehicle video stream based classification system. The system determines vehicle type at payment collection plazas on toll roads. Classification is performed in accordance with a preconfigured set of rules which determine type by number of wheel axles, vehicle length, height over the first axle and full height. These characteristics are calculated using various computer vision algorithms: contour detectors, correlational analysis, fast Hough transform, Viola-Jones detectors, connected components analysis, elliptic shapes detectors and others. Input data contains video streams and induction loop signals. Output signals are vehicle enter and exit events, vehicle type, motion direction, speed and the above mentioned features.

  7. Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Darrach, Muray

    2007-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) identifies gases that are present in minute quantities in the International Space Station (ISS) breathing air that could harm the crew s health. If successful, instruments like VCAM could accompany crewmembers during long-duration exploration missions to the Moon or traveling to Mars.

  8. Auxiliary circuit enables automatic monitoring of EKG'S

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Auxiliary circuits allow direct, automatic monitoring of electrocardiograms by digital computers. One noiseless square-wave output signal for each trigger pulse from an electrocardiogram preamplifier is produced. The circuit also permits automatic processing of cardiovascular data from analog tapes.

  9. Control of a vehicle automatic transmission

    SciTech Connect

    Kikuchi, T.; Yamamoto, K.

    1987-09-22

    This patent describes a vehicle having vehicle brake means, an engine provided with engine output control means having an idle position, an automatic transmission comprising a torque converter having a turbine, a multiple-stage transmission gear mechanism connected with the turbine of the torque converter and having a neutral gear stage, a first gear stage and at least one higher gear stage. It also includes a gear stage selecting means for selecting one of the gear states, and a shift lever having a neutral range and at least one running range for operating the gear stage selecting means so that the neutral gear stage is selected when the shift lever is in the neutral range and one of the first and higher gear stages is selected when the shift lever is in the running range. The improvement consists of a shift position detecting means for detecting that the shift lever is in the running range, engine idle detecting means for detecting that the engine output control means is in the idle position, vehicle stop detecting means for detecting that the vehicle is substantially stopped, vehicle brake detecting means for detecting that the vehicle brake means is engaged. There is also a control means responsive to output signals from the detecting means to operate the gear stage selecting means when the shift lever is in the running range and the vehicle is stopped so that the gear mechanism is shifted to the higher gear stage in an instance where the engine output control means is in the idle position.

  10. Automatic communication signal monitoring system

    NASA Technical Reports Server (NTRS)

    Bernstein, A. J. (Inventor)

    1978-01-01

    A system is presented for automatic monitoring of a communication signal in the RF or IF spectrum utilizing a superheterodyne receiver technique with a VCO to select and sweep the frequency band of interest. A first memory is used to store one band sweep as a reference for continual comparison with subsequent band sweeps. Any deviation of a subsequent band sweep by more than a predetermined tolerance level produces an alarm signal which causes the band sweep data temporarily stored in one of two buffer memories to be transferred to long-term store while the other buffer memory is switched to its store mode to assume the task of temporarily storing subsequent band sweeps.

  11. Global positioning automatic vehicle location system

    SciTech Connect

    Papatheofanis, B.J.; Hasenack, M.L.; Teller, R.T.; Ramsey, G.F.

    1997-03-01

    Los Alamos National Laboratory (LANL) is a unique facility covering over 43 square miles. The Emergency Management and Response Office (EM&R) is required to respond, provide Incident Command (IC), and coordination for all Laboratory emergencies. This requires IC`s and support staff to respond to the actual scene of the incident. Since the IC is under numerous constraints and stress, the office wanted the capability of locating the EM&R vehicles on an electronic map. An automated vehicle location (AVL) system was required for the additional safety of the emergency response personal. The requirements for the AVL system include total automatic tracking and low cost. After careful consideration, it was determined that the most efficient and cost effective system would be based on packet radio technology as the transmission media. The location is determined by the Department of Defense Global Positioning System (GPS). The system that was designed and constructed required four components to be interfaced and communicate with each other. The first component was a GPS receiver which actually provides the location information, equipped with a digital interface to communicate location information remotely. The second component is a modem that interfaces the GPS digital interface information to a radio. The third component is the radio itself which allows for the actual information transfer from the remote GPS receiver and modem. The fourth component is the software package that provides moving maps and displays the vehicle location on that map. The equipment was all commercial off-the-shelf that only required proper integration and packaging for the AVL application. This paper describes the steps taken in the integration of the equipment into the AVL package.

  12. Rain sensor for automatic systems on vehicles

    NASA Astrophysics Data System (ADS)

    Vasile, Alexandru; Vasile, Irina; Nistor, Adrian; Vladareanu, Luige; Pantazica, Mihaela; Caldararu, Florin; Bonea, Andreea; Drumea, Andrei; Plotog, Ioan

    2010-11-01

    Despite the fact that today vehicles are easier to drive and more reliable, the drivers' carefulness is diverted by a large number of factors (road conditions, traffic conditions, phone calls, navigation systems etc.). The automatic system of controlling the windscreen wipers meets exactly one of the carelessness factors. A rain sensor makes the activation of the system of windscreen wipers to become something that you turn on and forget about it. This completely automated system activated by rain measures the rain intensity and also the necessity to turn on the windscreen wipers and with what velocity. Using an advanced optical system, analogue signal processing and a control algorithm, this technology offers more safety and comfort on different weather conditions. The sensor beams an infrared light on the windshield at an angle carefully chosen. If the windshield is dry, the beam is reflected back in the sensor. If on the glass there are rain drops, they will reflect the light in different directions (the wetter the windshield is, the least of the beam ray is reflected back in the sensor).

  13. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, Jr., G. Harold

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  14. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, G.H. Jr.

    1993-01-12

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  15. An Optimized International Vehicle Monitor

    SciTech Connect

    York, R.L.; Close, D.A.; Fehlau, P.E.

    1999-07-16

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to evaluate detector configurations to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of special nuclear materials. We designed a new detector configuration that improves the sensitivity of available drive-through vehicle monitors by more than a factor of 5 while not changing the nuisance alarm rate.

  16. Automatic Fall Monitoring: A Review

    PubMed Central

    Pannurat, Natthapon; Thiemjarus, Surapa; Nantajeewarawat, Ekawit

    2014-01-01

    Falls and fall-related injuries are major incidents, especially for elderly people, which often mark the onset of major deterioration of health. More than one-third of home-dwelling people aged 65 or above and two-thirds of those in residential care fall once or more each year. Reliable fall detection, as well as prevention, is an important research topic for monitoring elderly living alone in residential or hospital units. The aim of this study is to review the existing fall detection systems and some of the key research challenges faced by the research community in this field. We categorize the existing platforms into two groups: wearable and ambient devices; the classification methods are divided into rule-based and machine learning techniques. The relative merit and potential drawbacks are discussed, and we also outline some of the outstanding research challenges that emerging new platforms need to address. PMID:25046016

  17. Remote monitoring of emissions using on-vehicle sensing and vehicle to roadside communications

    SciTech Connect

    Davis, D.T.

    1995-06-01

    Recent developments in on-vehicle electronics makes practical remote monitoring of vehicle emissions compliance with CARB and EPA regulations. A system consisting of emission controls malfunction sensors, an on-board computer (OBC), and vehicle-to-roadside communications (VRC) would enable enforcement officials to remotely and automatically detect vehicle out-of-compliance status. Remote sensing could be accomplished at highway speeds as vehicles pass a roadside RF antenna and reader unit which would interrogate the on- vehicle monitoring and recording system. This paper will focus on the hardware system components require to achieve this goal with special attention to the VRC; a key element for remote monitoring. this remote sensing concept piggybacks on the development of inexpensive VRC equipment for automatic vehicle identification for electronic toll collection and intelligent transportation applications. Employing an RF transponder with appropriate interface to the OBC and malfunction sensors, a practical monitoring system can be developed with potentially important impact on air quality and enforcement. With such a system in place, the current -- and costly and ineffective -- emission control strategy of periodic smog checking could be replaced or modified.

  18. Automatic radioxenon analyzer for CTBT monitoring

    SciTech Connect

    Bowyer, T.W.; Abel, K.H.; Hensley, W.K.

    1996-12-01

    Over the past 3 years, with support from US DOE`s NN-20 Comprehensive Test Ban Treaty (CTBT) R&D program, PNNL has developed and demonstrated a fully automatic analyzer for collecting and measuring the four Xe radionuclides, {sup 131m}Xe(11.9 d), {sup 133m}Xe(2.19 d), {sup 133}Xe (5.24 d), and {sup 135}Xe(9.10 h), in the atmosphere. These radionuclides are important signatures in monitoring for compliance to a CTBT. Activity ratios permit discriminating radioxenon from nuclear detonation and that from nuclear reactor operations, nuclear fuel reprocessing, or medical isotope production and usage. In the analyzer, Xe is continuously and automatically separated from the atmosphere at flow rates of about 7 m{sup 3}/h on sorption bed. Aliquots collected for 6-12 h are automatically analyzed by electron-photon coincidence spectrometry to produce sensitivities in the range of 20-100 {mu}Bq/m{sup 3} of air, about 100-fold better than with reported laboratory-based procedures for short time collection intervals. Spectral data are automatically analyzed and the calculated radioxenon concentrations and raw gamma- ray spectra automatically transmitted to data centers.

  19. Automatic license plate reader: a solution to avoiding vehicle pursuit

    NASA Astrophysics Data System (ADS)

    Jordan, Stanley K.

    1997-01-01

    The Massachusetts Governor's Auto Theft Strike Force has tested an automatic license plate reader (LPR) to recover stolen cars and catch car thieves, without vehicle pursuit. Experiments were conducted at the Sumner Tunnel in Boston, and proved the feasibility of a LPR for identifying stolen cars instantly. The same technology can be applied to other law-enforcement objectives.

  20. The development of an automatic method of safety monitoring at Pelican crossings.

    PubMed

    Malkhamah, Siti; Tight, Miles; Montgomery, Frank

    2005-09-01

    This paper reports on the development of a method for automatic monitoring of safety at Pelican crossings. Historically, safety monitoring has typically been carried out using accident data, though given the rarity of such events it is difficult to quickly detect change in accident risk at a particular site. An alternative indicator sometimes used is traffic conflicts, though this data can be time consuming and expensive to collect. The method developed in this paper uses vehicle speeds and decelerations collected using standard in situ loops and tubes, to determine conflicts using vehicle decelerations and to assess the possibility of automatic safety monitoring at Pelican crossings. Information on signal settings, driver crossing behaviour, pedestrian crossing behaviour and delays, and pedestrian-vehicle conflicts was collected synchronously through a combination of direct observation, video analysis, and analysis of output from tube and loop detectors. Models were developed to predict safety, i.e. pedestrian-vehicle conflicts using vehicle speeds and decelerations. PMID:15919048

  1. Automatic vehicle record for electric vehicles. Research Project 1136-18

    SciTech Connect

    Reese, R.W.

    1983-09-01

    This report contains specification requirements for the Automatic Vehicle Record (AVR), a data logging device for electric vehicles (EVs). These specifications were developed under the AVR work task of the Electric Power Research Institute/Tennessee Valley Authority Phase II EV Project. Detailed requirements for the AVR are presented along with recommendations for device construction and operation.

  2. Space shuttle vehicle automatic docking study

    NASA Technical Reports Server (NTRS)

    Blanchard, E. P.; Hutchinson, R. C.; Johnson, L. B.

    1971-01-01

    The material presented is divided into three main areas of accomplishment. The first is a description of the angle only docking sensor concept and the computational requirements to develop useful guidance information from the raw angle only data. The second describes the analytical effort including the MIT in-house computer simulation, the development of guidance equations and vehicle stability related thereto, and presents the results of studies covering the effects of employing Kalman filtering with the sensor. The third area presents the conclusions and recommendations resulting from the program. Much of the material has appeared in previous reports, but is included here for the sake of completeness. New material indicating how the computer might operate to identify the individual sources in the target array is included.

  3. Automatic Transfer Vehicle (ATV) GNC overview

    NASA Astrophysics Data System (ADS)

    Chabert, F.

    One of Europe's major contributions to the International Space Station (ISS) is the Automated Transfer Vehicle (ATV). Launched as an unmanned expendable upper stage of Ariane 5, the ATV has to approach and dock to the Russian Service Module (SM). As Europe has no prior experience in orbital rendezvous, the approach chosen was to develop autonomous procedures relying mostly on onboard sensors and automated processes to perform the controlled approach. An overview of the relevant ATV GNC system design and implementation will be given. In the first part, the avionic architecture as it pertains to the GNC functional chain is presented. That is; the set of sensors used for navigation and the actuators in the form of a propulsion subsystem that allows to control the ATV motion. The task sharing between on-board functions and those implemented in external entities, as the ISS or ATV-Control Centre, are addressed as far as relevant to the GNC architecture design. An overall description of the different applied algorithms is given, covering the functions of Guidance, Navigation, Control, as pertaining to the different flight phases of post launch manoeuvres, orbital operation, far rendezvous, final approach, docking, and eventually departure and re-entry. Aspects of sensor failure detection and isolation will also be touched upon. This will include a review of the main constraints of the GNC, implementation, performance, contingencies and fault management.

  4. Automatic lane keeping of a vehicle based on perception net

    NASA Astrophysics Data System (ADS)

    Boo, Kwangsuck; Jung, Moonyoung

    2000-10-01

    The objective of this research is to monitor and control the vehicle motion in order to remove out the existing safety risk based upon the human-machine cooperative vehicle control. A predictive control method is proposed to control the steering wheel of the vehicle to keep the lane. Desired angle of the steering wheel to control the vehicle motion could be calculated based upon vehicle dynamics, current and estimated pose of the vehicle every sample steps. The vehicle pose and the road curvature were calculated by geometrically fusing sensor data from camera image, tachometer and steering wheel encoder through the Perception Net, where not only the state variables, but also the corresponding uncertainties were propagated in forward and backward direction in such a way to satisfy the given constraint condition, maintain consistency, reduce the uncertainties, and guarantee robustness. A series of experiments was conducted to evaluate the control performance, in which a car like robot was utilized to quit unwanted safety problem. As the results, the robot was keeping very well a given lane with arbitrary shape at moderate speed.

  5. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  6. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  7. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  8. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  9. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  10. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  11. Information processing requirements for on-board monitoring of automatic landing

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Karmarkar, J. S.

    1977-01-01

    A systematic procedure is presented for determining the information processing requirements for on-board monitoring of automatic landing systems. The monitoring system detects landing anomalies through use of appropriate statistical tests. The time-to-correct aircraft perturbations is determined from covariance analyses using a sequence of suitable aircraft/autoland/pilot models. The covariance results are used to establish landing safety and a fault recovery operating envelope via an event outcome tree. This procedure is demonstrated with examples using the NASA Terminal Configured Vehicle (B-737 aircraft). The procedure can also be used to define decision height, assess monitoring implementation requirements, and evaluate alternate autoland configurations.

  12. Hydraulic servo mechanism of automatic transmission for vehicle

    SciTech Connect

    Sumiya, K.; Sakaguchi, Y.; Taga, Y.; Kubo, S.; Moroto, S.

    1988-06-07

    In a vehicle having an automatic transmission, a hydraulic servo control mechanism is described comprising: a hydraulic pressure source, a hydraulic servo; an accumulator; a drain oil line; interconnecting passage means providing a fluid path from the hydraulic pressure source to the hydraulic servo and from the hydraulic servo to the drain oil line; a selector valve, connected in the interconnecting passage means, for alternately connecting the hydraulic servo to the hydraulic pressure source and to the drain oil line; branch passage means connecting the accumulator to a portion of the interconnecting passage extending from the selector valve to the servo, the branch passage means meeting the portion of the interconnecting passage at a junction; first throttle means (R/sub 10/) in the branch passage means to connect the accumulator to the hydraulic servo; check valve means (q/sub 1/) in the branch passage means, and in parallel with the first throttle means, to connect the hydraulic servo to the accumulator; second throttle means (R/sub 20/), in the interconnecting passage means between the junction and the oil drain line; and relief valve means (V/sub r/), in the interconnecting passage means between the junction and the oil drain line, for adjusting the working oil discharge rate.

  13. Efficient and automatic wireless geohazard monitoring

    NASA Astrophysics Data System (ADS)

    Rubin, Marc J.

    In this dissertation, we present our research contributions geared towards creating an automated and efficient wireless sensor network (WSN) for geohazard monitoring. Specifically, this dissertation addresses three overall technical research problems inherent in implementing and deploying such a WSN, i.e., 1) automated event detection from geophysical data, 2) efficient wireless transmission, and 3) low-cost wireless hardware. In addition, after presenting algorithms, experimentation, and results from these three overall problems, we take a step back and discuss how, when, and why such scientific work matters in a geohazardous risk scenario. First, in Chapter 2, we discuss automated geohazard event detection within geophysical data. In particular, we present our pattern recognition workflow that can automatically detect snow avalanche events in seismic (geophone sensor) data. This workflow includes customized signal preprocessing for feature extraction, cluster-based stratified sub-sampling for majority class reduction, and experimentation with 12 different machine learning algorithms; results show that a decision stump classifier achieved 99.8% accuracy, 88.8% recall, and 13.2% precision in detecting avalanches within seismic data collected in the mountains above Davos, Switzerland, an improvement on previous work in the field. To address the second overall research problem (i.e., efficient wireless transmission), we present and evaluate our on-mote compressive sampling algorithm called Randomized Timing Vector (RTV) in Chapter 3 and compare our approach to four other on-mote, lossy compression algorithms in Chapter 4. Results from our work show that our RTV algorithm outperforms current on-mote compressive sampling algorithms and performs comparably to (and in many cases better than) the four state-of-the-art, on-mote lossy compression techniques. The main benefit of RTV is that it can guarantee a desired level of compression performance (and thus, radio usage

  14. Automatic calorimetry system monitors RF power

    NASA Technical Reports Server (NTRS)

    Harness, B. W.; Heiberger, E. C.

    1969-01-01

    Calorimetry system monitors the average power dissipated in a high power RF transmitter. Sensors measure the change in temperature and the flow rate of the coolant, while a multiplier computes the power dissipated in the RF load.

  15. Development of vehicle intelligent monitoring system (VIMS)

    NASA Astrophysics Data System (ADS)

    Fujino, Yozo; Kitagawa, Keisuke; Furukawa, Takashi; Ishii, Hironori

    2005-05-01

    In an urban highway network system such as Tokyo Metropolitan Expressway, to detect conditions of road pavement and expansion joints is a very important issue. Although accurate surface condition can be captured by using a road profiler system, the operating cost is expensive and development of a simpler and more inexpensive system is really needed to reduce monitoring cost. "Vehicle Intelligent Monitoring System (VIMS)" developed for this purpose is described in this paper. An accelerometer and GPS are installed to an ordinary road patrol car. GPS together with a PC computer are used to measure the road surface condition and to identify the location of the vehicle, respectively. Dynamic response of the vehicle is used as a measure of the road pavements surface condition as well as the expansion joints. A prototype of VIMS is installed to a motor car and measurement is made at the actual roads. Accuracy of measuring result and effectiveness of this system are demonstrated; the outline of the system and some of the measurement results are reported herein.

  16. An automatically-shifted two-speed transaxle system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Gordon, H. S.; Hassman, G. V.

    1980-01-01

    An automatic shifting scheme for a two speed transaxle for use with an electric vehicle propulsion system is described. The transaxle system was to be installed in an instrumented laboratory propulsion system of an ac electric vehicle drive train. The transaxle which had been fabricated is also described.

  17. Automatic outdoor monitoring system for photovoltaic panels

    NASA Astrophysics Data System (ADS)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  18. Automatic outdoor monitoring system for photovoltaic panels.

    PubMed

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented. PMID:27250467

  19. Monitoring human and vehicle activities using airborne video

    NASA Astrophysics Data System (ADS)

    Cutler, Ross; Shekhar, Chandra S.; Burns, B.; Chellappa, Rama; Bolles, Robert C.; Davis, Larry S.

    2000-05-01

    Ongoing work in Activity Monitoring (AM) for the Airborne Video Surveillance (AVS) project is described. The goal for AM is to recognize activities of interest involving humans and vehicles using airborne video. AM consists of three major components: (1) moving object detection, tracking, and classification; (2) image to site-model registration; (3) activity recognition. Detecting and tracking humans and vehicles form airborne video is a challenging problem due to image noise, low GSD, poor contrast, motion parallax, motion blur, and camera blur, and camera jitter. We use frame-to- frame affine-warping stabilization and temporally integrated intensity differences to detect independent motion. Moving objects are initially tracked using nearest-neighbor correspondence, followed by a greedy method that favors long track lengths and assumes locally constant velocity. Object classification is based on object size, velocity, and periodicity of motion. Site-model registration uses GPS information and camera/airplane orientations to provide an initial geolocation with +/- 100m accuracy at an elevation of 1000m. A semi-automatic procedure is utilized to improve the accuracy to +/- 5m. The activity recognition component uses the geolocated tracked objects and the site-model to detect pre-specified activities, such as people entering a forbidden area and a group of vehicles leaving a staging area.

  20. An implementation of redundancy resolution and stability monitoring for a material handling vehicle

    SciTech Connect

    Bangs, A.L.; Pin, F.G.; Killough, S.M.

    1992-01-01

    The ATLAS (All-Terrain Lifter Articulated System) vehicle is a prototype for the next-generation Army material handling vehicle. The vehicle features a redundant manipulator with five degrees of freedom in a plane and a forklift end-effector. The original control system only allowed single joint motion control via a set of joysticks in the cab. A new controller was developed to automatically coordinate all joints in the system and allow the operator to directly control the motions of the end-effector with constant orientation via a single joystick. In addition, a stability monitor was developed that prevents the operator from tipping over the vehicle when manipulating heavy loads of uncertain weight, or warns him of approaching stability limits when driving. Finally, a load-compensation function was developed that automatically tips back the fork tines when a heavy load is lifted. 3 refs.

  1. An implementation of redundancy resolution and stability monitoring for a material handling vehicle

    SciTech Connect

    Bangs, A.L.; Pin, F.G.; Killough, S.M.

    1992-06-01

    The ATLAS (All-Terrain Lifter Articulated System) vehicle is a prototype for the next-generation Army material handling vehicle. The vehicle features a redundant manipulator with five degrees of freedom in a plane and a forklift end-effector. The original control system only allowed single joint motion control via a set of joysticks in the cab. A new controller was developed to automatically coordinate all joints in the system and allow the operator to directly control the motions of the end-effector with constant orientation via a single joystick. In addition, a stability monitor was developed that prevents the operator from tipping over the vehicle when manipulating heavy loads of uncertain weight, or warns him of approaching stability limits when driving. Finally, a load-compensation function was developed that automatically tips back the fork tines when a heavy load is lifted. 3 refs.

  2. Automatic monitoring of vibration welding equipment

    DOEpatents

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  3. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    NASA Astrophysics Data System (ADS)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  4. Unattended vehicle detection for automatic traffic light control

    NASA Astrophysics Data System (ADS)

    Abdel Hady, Aya Salama; Moustafa, Mohamed

    2013-12-01

    Machine vision based traffic light control depends mainly on measuring traffic statistics at cross roads. Most of the previous studies have not taken unattended vehicles into consideration when calculating either the traffic density or the traffic flow. In this paper, we propose incorporating unattended vehicles into a new metric for measuring the traffic congestion. In addition to the vehicle motion analysis, opening the driver's side door is an important indicator that this vehicle is going to be unattended. Therefore, we focus in this paper on presenting how to detect this event for stationary vehicles from a live camera or a video feed. Through a set of experiments, we have found out that a Scale Invariant Feature Transform (SIFT) feature-descriptor with a Support Vector Machines (SVM) classifier was able to successfully classify open-door vehicles from closed-door ones in 96.7% of our test dataset.

  5. Automatic contact in DYNA3D for vehicle crashworthiness

    SciTech Connect

    Whirley, R.G.; Engelmann, B.E.

    1993-07-15

    This paper presents a new formulation for the automatic definition and treatment of mechanical contact in explicit nonlinear finite element analysis. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but faces significant challenges in reliability and computational costs. This paper discusses in detail a new four-step automatic contact algorithm. Key aspects of the proposed method include automatic identification of adjacent and opposite surfaces in the global search phase, and the use of a smoothly varying surface normal which allows a consistent treatment of shell intersection and corner contact conditions without ad-hoc rules. The paper concludes with three examples which illustrate the performance of the newly proposed algorithm in the public DYNA3D code.

  6. Precision wildlife monitoring using unmanned aerial vehicles

    PubMed Central

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  7. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  8. The use of GPS for automatic vehicle location and fleet management - A reliable and economic system for the 90's

    NASA Astrophysics Data System (ADS)

    Denaro, Robert P.

    1991-01-01

    This paper offers an approach to an integrated automatic vehicle location (AVL) system that integrates GPS with communications links, auxiliary dead reckoning sensors, and modern workstation implementation of a control and location monitoring center. The actual implementation of this AVL system in a municipal bus operation is described, along with other fleet management applications. Then, further details are provided on Trimble's development of the AVL system that uses a deep integration where the dead reckoning subsystem is continually calibrated by the GPS measurements when GPS is available; then the dead reckoning continues alone with newly calibrated drift parameters when the GPS signal is interrupted.

  9. Automatically monitoring driftwood in large rivers: preliminary results

    NASA Astrophysics Data System (ADS)

    Piegay, H.; Lemaire, P.; MacVicar, B.; Mouquet-Noppe, C.; Tougne, L.

    2014-12-01

    Driftwood in rivers impact sediment transport, riverine habitat and human infrastructures. Quantifying it, in particular large woods on fairly large rivers where it can move easily, would allow us to improve our knowledge on fluvial transport processes. There are several means of studying this phenomenon, amongst which RFID sensors tracking, photo and video monitoring. In this abstract, we are interested in the latter, being easier and cheaper to deploy. However, video monitoring of driftwood generates a huge amount of images and manually labeling it is tedious. It is essential to automate such a monitoring process, which is a difficult task in the field of computer vision, and more specifically automatic video analysis. Detecting foreground into dynamic background remains an open problem to date. We installed a video camera at the riverside of a gauging station on the Ain River, a 3500 km² Piedmont River in France. Several floods were manually annotated by a human operator. We developed software that automatically extracts and characterizes wood blocks within a video stream. This algorithm is based upon a statistical model and combines static, dynamic and spatial data. Segmented wood objects are further described with the help of a skeleton-based approach that helps us to automatically determine its shape, diameter and length. The first detailed comparisons between manual annotations and automatically extracted data show that we can fairly well detect large wood until a given size (approximately 120 cm in length or 15 cm in diameter) whereas smaller ones are difficult to detect and tend to be missed by either the human operator, either the algorithm. Detection is fairly accurate in high flow conditions where the water channel is usually brown because of suspended sediment transport. In low flow context, our algorithm still needs improvement to reduce the number of false positive so as to better distinguish shadow or turbulence structures from wood pieces.

  10. Vehicle Radiation Monitoring Systems for Medical Waste Disposal - 12102

    SciTech Connect

    Kondrashov, Vladislav S.; Steranka, Steve A.

    2012-07-01

    Hospitals often declare their waste as being 'non-radioactive'; however this material often has excessive levels of radiation caused either by an accident or lack of control. To ensure the best possible protection against the accidental receipt of radioactive materials and as a safety precaution for their employees, waste-handling companies have installed large-scale radiation portal monitors at their weigh scales or entry gates of the incinerator plant, waste transfer station, and/or landfill. Large-volume plastic scintillator-based systems can be used to monitor radiation levels at entry points to companies handling medical waste. The recent and intensive field tests together with the thousands of accumulated hours of actual real-life vehicle scanning have proven that the plastic scintillation based system is an appropriate radiation control instrument for waste management companies. The Real-Time background compensation algorithm is flexible with automatic adjustable coefficients that will response to rapidly changing environmental and weather conditions maintaining the preset alarm threshold levels. The Dose Rate correction algorithms further enhance the system's ability to meet the stringent requirements of the waste industries need for Dose Rate measurements. (authors)

  11. Managed PACS operation with an automatic monitoring tool

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Han, Ruolin; Wu, Dongqing; Zhang, Xiaoyan; Zhuang, Jun; Feng, Jie; Wang, Mingpeng; Zhang, Guozhen; Wang, Cuanfu

    2002-05-01

    Huadong hospital in Shanghai with 800 beds provides health care services for inpatients and outpatients, as well as special senior and VIP patients. In order to move to digital imaging based radiology practice, and also provide better intra-hospital consultation services for senior and VIP patients, we started to implement PACS for hospital wide services from 1999, and also designed and developed an automatic monitoring system (AMS) to monitor and control PACS operation and dataflow to decrease the total cost of ownership for PACS operation. We installed the AMS on top of the Huadong Hospital PACS in the May of 2001. The installation was painless, did not interrupt the normal PACS operation, and took only one month. The PACS administrators with the AMS can now monitor and control the entire PACS operation in real time, and also track patient and image data flow automatically. These features make administrators take proper action even before user's complaint if any failure happened in any PACS component or process, they reduce the size of the management team, and decrease total cost of PACS ownership.

  12. MaNIAC-UAV - a methodology for automatic pavement defects detection using images obtained by Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Henrique Castelo Branco, Luiz; César Lima Segantine, Paulo

    2015-09-01

    Intelligent Transportation Systems - ITS is a set of integrated technologies (Remote Sensing, Image Processing, Communications Systems and others) that aim to offer services and advanced traffic management for the several transportation modes (road, air and rail). Collect data on the characteristics and conditions of the road surface and keep them update is an important and difficult task that needs to be currently managed in order to reduce accidents and vehicle maintenance costs. Nowadays several roads and highways are paved, but usually there is insufficient updated data about current condition and status. There are different types of pavement defects on the roads and to keep them in good condition they should be constantly monitored and maintained according to pavement management strategy. This paper presents a methodology to obtain, automatically, information about the conditions of the highway asphalt pavement. Data collection was done through remote sensing using an UAV (Unmanned Aerial Vehicle) and the image processing and pattern recognition techniques through Geographic Information System.

  13. Design and Implementation of a Modern Automatic Deformation Monitoring System

    NASA Astrophysics Data System (ADS)

    Engel, Philipp; Schweimler, Björn

    2016-03-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the University of Applied Sciences in Neubrandenburg (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  14. An embedded omnidirectional vision navigator for automatic guided vehicles

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Cao, Zuoliang; Zong, Xiaoning

    2011-01-01

    Omnidirectional vision appears the definite significance since its advantage of acquiring full 360° horizontal field of vision information simultaneously. In this paper, an embedded original omnidirectional vision navigator (EOVN) based on fish-eye lens and embedded technology has been researched. Fish-eye lens is one of the special ways to establish omnidirectional vision. However, it appears with an unavoidable inherent and enormous distortion. A unique integrated navigation method which is conducted on the basis of targets tracking has been proposed. It is composed of multi-target recognition and tracking, distortion rectification, spatial location and navigation control. It is called RTRLN. In order to adapt to the different indoor and outdoor navigation environments, we implant mean-shift and dynamic threshold adjustment into the Particle Filter algorithm to improve the efficiency and robustness of tracking capability. RTRLN has been implanted in an independent development embedded platform. EOVN likes a smart crammer based on COMS+FPGA+DSP. It can guide various vehicles in outdoor environments by tracking the diverse marks hanging in the air. The experiments prove that the EOVN is particularly suitable for the guidance applications which need high requirements on precision and repeatability. The research achievements have a good actual applied inspection.

  15. Automatic power transmission mechanism for a four wheel drive vehicle

    SciTech Connect

    Garrett, R.J.

    1987-11-17

    In a transmission for a vehicle having two forward traction wheels and two rear traction wheels, this patent describes a multiple ratio transaxle having an input shaft adapted to be connected to an engine and arranged on a first axis and planetary gearing coaxially disposed relative to the input shaft and an output shaft; a first differential gear mechanism forming a part of the transaxle and having a torque output gear and side gears adapted to be connected to axle shafts for the forward wheels; a torque transfer drive means connecting the output shaft with the torque output gear including a first drive gear coaxially mounted relative to the torque output gear; an interaxle geared differential having a differential carrier and a pair of side gears, an interaxle torque input shaft having a third axis parallel to the second axis; a rear axle drive means connected to one of the interaxle differential side gears; a second drive gear and a third drive gear coaxially mounted with respect to the interaxle differential side gears; and first, second, third and fourth clutch means coaxially arranged with respect to the interaxle torque input shaft and independently actuatable for selectively connecting respectively (i) the third drive gear with the second drive gear, (ii) the second drive gear with the intermediate shaft, (iii) the third drive gear with the other side gear of the interaxle differential and (iv) the rear axle drive means with the carrier of the interaxle differential.

  16. Application of automatic vehicle location in law enforcement: An introductory planning guide

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.; Leflang, W. G.

    1976-01-01

    A set of planning guidelines for the application of automatic vehicle location (AVL) to law enforcement is presented. Some essential characteristics and applications of AVL are outlined; systems in the operational or planning phases are discussed. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. A detailed description of a typical law enforcement AVL system, and a list of vendor sources are given in appendixes.

  17. Major Constituents Analysis for the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas; Bornstein, Benjamin J.; Madzunkov, Stojan; Macaskill, John A.

    2011-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) can provide a means for monitoring the air within enclosed environments such as the International Space Station, the Crew Exploration Vehicle (CEV), a Lunar habitat, or another vehicle traveling to Mars. The software processes a sum total spectra (counts vs. mass channel) with the intention of computing abundance ratios for N2, O2, CO2, Ar2, and H2O. A brute-force powerset expansion compares a library of expected mass lines with those found within the data. Least squares error is combined with a penalty term for using small peaks.

  18. Adaptable System for Vehicle Health and Usage Monitoring

    NASA Technical Reports Server (NTRS)

    Woodart, Stanley E.; Woodman, Keith L.; Coffey, Neil C.; Taylor, Bryant D.

    2005-01-01

    Aircraft and other vehicles are often kept in service beyond their original design lives. As they age, they become susceptible to system malfunctions and fatigue. Unlike future aircraft that will include health-monitoring capabilities as integral parts in their designs, older aircraft have not been so equipped. The Adaptable Vehicle Health and Usage Monitoring System is designed to be retrofitted into a preexisting fleet of military and commercial aircraft, ships, or ground vehicles to provide them with state-of-the-art health- and usage-monitoring capabilities. The monitoring system is self-contained, and the integration of it into existing systems entails limited intrusion. In essence, it has bolt-on/ bolt-off simplicity that makes it easy to install on any preexisting vehicle or structure. Because the system is completely independent of the vehicle, it can be certified for airworthiness as an independent system. The purpose served by the health-monitoring system is to reduce vehicle operating costs and to increase safety and reliability. The monitoring system is a means to identify damage to, or deterioration of, vehicle subsystems, before such damage or deterioration becomes costly and/or disastrous. Frequent monitoring of a vehicle enables identification of the embryonic stages of damage or deterioration. The knowledge thus gained can be used to correct anomalies while they are still somewhat minor. Maintenance can be performed as needed, instead of having the need for maintenance identified during cyclic inspections that take vehicles off duty even when there are no maintenance problems. Measurements and analyses acquired by the health-monitoring system also can be used to analyze mishaps. Overall, vehicles can be made more reliable and kept on duty for longer times. Figure 1 schematically depicts the system as applied to a fleet of n vehicles. The system has three operational levels. All communication between system components is by use of wireless

  19. Design and implementation for satellite remote sensing forest fire-points automatic monitoring system

    NASA Astrophysics Data System (ADS)

    Zou, Chunhui; Chen, Huailiang; Yin, Qing

    2009-08-01

    Satellite remote sensing monitoring of forest fire-points is a routine operation of weather service. By taking advantage of remote sensing information's characteristics such as relatively fixed resolution, little geometric distortion and quite stable data quality, the thesis establishes Henan Satellite Remote Sensing Forest Fire-points Automatic Monitoring System in the way of automatic geography registration based on gray correlation and control point database, which can realize automation of the whole process including automatic monitoring,automatic geography registration,automatic fire-points monitoring,automatic production releasing and cell phone short-message notice of fire-points warning information. The system could greatly improve service efficiency. Automatic registration of remote sensing information based on gray correlation and control point database features simpleness and quickness. Through automatic geography registration testing of sunny EOS/MODIS data (at daytime and nightime) during 18 periods from February 2008 to May 2008 in Henan Province with average error of registration is 0.637 pixels at daytime and 0.319 at nighttime, it can fully meet ordinary operation requirements. Fire-point identification and fire-point area estimate method in the system can be applied to monitoring different fires at daytime and at nighttime. Besides, it can automatically screen effective fire-points according to background geographic information, and thus it can improve monitoring accuracy.

  20. Energy Management for Automatic Monitoring Stations in Arctic Regions

    NASA Astrophysics Data System (ADS)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  1. Automatic outage reporting through in-home monitors

    SciTech Connect

    Wyse, G.D.

    1994-12-31

    Customer service and customer satisfaction initiatives take as many varied forms as there are perceptions of the words service and satisfaction. Too often utilities define service and satisfaction in ways that they understand but not in accordance with customers` expectations. Outage reporting and restoration of service is no exception to these expectations. Utilities expect customers to call when they are out of power while many customers expect the utility to know when the power is off. Also, customers` expectations are changing in regards to momentary outages caused by automatic switching devices. Where momentary interruptions were once an inconvenience, some customers are including resultant lost product and sales as a part of the total cost of energy. Redefining the interface between the customer and the utility from the customer`s perspective is fundamental in beginning to serve customers on their terms and expectations. Questions that address one`s vision of how outages are reported and the customers role in the restoration process surfaces the need to reduce customer frustration and involvement in reporting outages while increasing the information needed to restore service efficiently and provide early detection of developing system problems. A customer installed monitoring device has been developed that removes them completely from the process of reporting outages while providing restoration and momentary interruption information. The following discusses the implementation and roll-out of an in-progress pilot to test this technology.

  2. Quartz resonator fluid monitors for vehicle applications

    SciTech Connect

    Cernosek, R.W.; Martin, S.J.; Wessendorf, K.O.; Terry, M.D.; Rumpf, A.N.

    1994-09-01

    Thickness shear mode (TSM) quartz resonators operating in a new {open_quotes}Lever oscillator{close_quotes} circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  3. Quartz resonator fluid monitors for vehicle applications

    NASA Astrophysics Data System (ADS)

    Cernosek, R. W.; Martin, S. J.; Wessendorf, K. O.; Terry, M. D.; Rumpf, A. N.

    Thickness shear mode (TSM) quartz resonators operating in a new 'Lever oscillator' circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  4. Automatic theodolite for pre-launch azimuth alignment of the saturn space vehicles.

    PubMed

    Mrus, G J; Zukowsky, W S; Kokot, W; Yoder, P R; Wood, J T

    1971-03-01

    The inertial guidance system in the Saturn 1B and Saturn 5 space vehicles is aligned in azimuth prior to lift-off by a Perkin-Elmer high precision, automatic alignment theodolite. This special theodolite, designated the AALT-SV-M2, acquires and locks onto the autocollimated images from each of two porro prisms mounted within the instrument unit on top of the S4-B booster stage of the vehicle. A separate retroreflecting prism on the skin of the instrument unit near the porro prisms is also tracked to eliminate the effects of vehicle sway. The theodolite itself is located in an underground hut between the crawler-ways about 232 m from the base of the vehicle. Six of these theodolite systems have been built by Perkin-Elmer under contract to NASA. These units have been used successfully in all the Saturn launches to date; they have consistently achieved better than the required alignment accuracy of +/-2 sec of arc for all missions. In this paper, we describe the theodolite and its function as an integrated electrooptical system. The means employed to separate the various return images into the proper channels and to generate the required error signals are discussed. PMID:20094480

  5. Automatic vehicle detection based on automatic histogram-based fuzzy C-means algorithm and perceptual grouping using very high-resolution aerial imagery and road vector data

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Gökaşar, Ilgın

    2016-01-01

    This study presents an approach for the automatic detection of vehicles using very high-resolution images and road vector data. Initially, road vector data and aerial images are integrated to extract road regions. Then, the extracted road/street region is clustered using an automatic histogram-based fuzzy C-means algorithm, and edge pixels are detected using the Canny edge detector. In order to automatically detect vehicles, we developed a local perceptual grouping approach based on fusion of edge detection and clustering outputs. To provide the locality, an ellipse is generated using characteristics of the candidate clusters individually. Then, ratio of edge pixels to nonedge pixels in the corresponding ellipse is computed to distinguish the vehicles. Finally, a point-merging rule is conducted to merge the points that satisfy a predefined threshold and are supposed to denote the same vehicles. The experimental validation of the proposed method was carried out on six very high-resolution aerial images that illustrate two highways, two shadowed roads, a crowded narrow street, and a street in a dense urban area with crowded parked vehicles. The evaluation of the results shows that our proposed method performed 86% and 83% in overall correctness and completeness, respectively.

  6. Predicting severe head injury after light motor vehicle crashes: implications for automatic crash notification systems.

    PubMed

    Talmor, Daniel; Thompson, Kimberly M; Legedza, Anna T R; Nirula, Ram

    2006-07-01

    Motor vehicle crashes (MVC) are a leading public health problem. Improving notification times and the ability to predict which crashes will involve severe injuries may improve trauma system utilization. This study was undertaken to develop and validate a model to predict severe head injury following MVC using information readily incorporated into an automatic crash notification system. A cross-sectional study with derivation and validation sets was performed. The cohort was drawn from drivers of vehicles involved in MVC obtained from the National Automotive Sampling System (NASS). Independent multivariable predictors of severe head injury were identified. The model was able to stratify drivers according to their risk of severe head injury indicating its validity. The areas under the receiver-operating characteristic (ROC) curves were 0.7928 in the derivation set and 0.7940 in the validation set. We have developed a prediction model for head injury in MVC. As the development of automatic crash notification systems improves, models such as this one will be necessary to permit triage of what would be an overwhelming increase in crash notifications to pre-hospital responders. PMID:16530717

  7. 30 CFR 77.211-1 - Continuous methane monitoring device; installation and operation; automatic deenergization of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Continuous methane monitoring device... Installations § 77.211-1 Continuous methane monitoring device; installation and operation; automatic deenergization of electric equipment. Continuous methane monitoring devices shall be set to...

  8. Towards Comprehensive Variation Models for Designing Vehicle Monitoring Systems

    NASA Technical Reports Server (NTRS)

    McAdams, Daniel A.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When designing vehicle vibration monitoring systems for aerospace devices, it is common to use well-established models of vibration features to determine whether failures or defects exist. Most of the algorithms used for failure detection rely on these models to detect significant changes in a flight environment. In actual practice, however, most vehicle vibration monitoring systems are corrupted by high rates of false alarms and missed detections. This crucial roadblock makes their implementation in real vehicles (e.g., helicopter transmissions and aircraft engines) difficult, making their operation costly and unreliable. Research conducted at the NASA Ames Research Center has determined that a major reason for the high rates of false alarms and missed detections is the numerous sources of statistical variations that are not taken into account in the modeling assumptions. In this paper, we address one such source of variations, namely, those caused during the design and manufacturing of rotating machinery components that make up aerospace systems. We present a novel way of modeling the vibration response by including design variations via probabilistic methods. Using such models, we develop a methodology to account for design and manufacturing variations, and explore the changes in the vibration response to determine its stochastic nature. We explore the potential of the methodology using a nonlinear cam-follower model, where the spring stiffness values are assumed to follow a normal distribution. The results demonstrate initial feasibility of the method, showing great promise in developing a general methodology for designing more accurate aerospace vehicle monitoring systems.

  9. Speed change control method and device of automatic transmission for vehicle

    SciTech Connect

    Kinugasa, Y.; Yaegashi, T.

    1986-02-25

    A speed change control device of an automatic transmission for a vehicle is described, the control device comprising: a first voltage producing means for producing voltage related with engine temperature; a second voltage producing means for producing voltage related with vehicle speed; a first comparator for comparing the output voltage of the first voltage producing means with a first predetermined value; a second comparator for comparing the output voltage of the second voltage producing means with a second predetermined value; an oil pressure supply controlling means for controlling oil pressure supply to a hydraulic servo for a friction engaging device upon receiving operating signals when a speed change stage producing a reduction gear ratio lower than a predetermined value is to be performed; and a blocking means for blocking input of the operating signals to the oil pressure supply controlling means only when the engine temperature is lower than the first predetermined value and the vehicle speed is lower than the second predetermined value in response to the outputs of the first and second comparators.

  10. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    PubMed Central

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2013-01-01

    We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method”) using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal. PMID:23774988

  11. Automatic Ingestion Monitor: A Novel Wearable Device for Monitoring of Ingestive Behavior

    PubMed Central

    Fontana, Juan M.; Farooq, Muhammad

    2014-01-01

    Objective monitoring of food intake and ingestive behavior in a free-living environment remains an open problem that has significant implications in study and treatment of obesity and eating disorders. In this paper, a novel wearable sensor system (automatic ingestion monitor, AIM) is presented for objective monitoring of ingestive behavior in free living. The proposed device integrates three sensor modalities that wirelessly interface to a smartphone: a jaw motion sensor, a hand gesture sensor, and an accelerometer. A novel sensor fusion and pattern recognition method was developed for subject-independent food intake recognition. The device and the methodology were validated with data collected from 12 subjects wearing AIM during the course of 24 h in which both the daily activities and the food intake of the subjects were not restricted in any way. Results showed that the system was able to detect food intake with an average accuracy of 89.8%, which suggests that AIM can potentially be used as an instrument to monitor ingestive behavior in free-living individuals. PMID:24845288

  12. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2002-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  13. Thermal Analysis Of The NASA Integrated Vehicle Health Monitoring Experiment Technology For X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2001-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  14. Clutch fill control of an automatic transmission for heavy-duty vehicle applications

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Chen, Huiyan; Zhang, Tao; Zhu, Xiaoyuan

    2015-12-01

    In this paper an integrated clutch filling phase control for gearshifts on wet clutch transmissions is developed. In a clutch-to-clutch shift of an automatic transmission, in order to obtain smooth gearshift, it should synchronize the oncoming clutch and the off-going clutch timely as well as precise pressure control for the engagement of the oncoming clutch. However, before the oncoming clutch pressure starts to increase, the initial cavity of the clutch chamber has to be filled first. The filling time and stability of the fill phase are very important for the clutch control. In order to improve the shift quality of the automatic transmission which is equipped on heavy-duty vehicles, the electro-hydraulic clutch actuation system is analysed and modelled. A new fill phase control strategy is proposed based on the system analysis as well as the control parameters are optimized according to the variation of the oil temperature and engine speed. The designed strategy is validated by a simulation work. The results demonstrate that the proposed control strategy and parameters modified method can transit the shift process from the fill phase to the torque phase effectively.

  15. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location

  16. Clinical significance of automatic warning function of cardiac remote monitoring systems in preventing acute cardiac episodes

    PubMed Central

    Chen, Shou-Qiang; Xing, Shan-Shan; Gao, Hai-Qing

    2014-01-01

    Objective: In addition to ambulatory Holter electrocardiographic recording and transtelephonic electrocardiographic monitoring (TTM), a cardiac remote monitoring system can provide an automatic warning function through the general packet radio service (GPRS) network, enabling earlier diagnosis, treatment and improved outcome of cardiac diseases. The purpose of this study was to estimate its clinical significance in preventing acute cardiac episodes. Methods: Using 2 leads (V1 and V5 leads) and the automatic warning mode, 7160 patients were tested with a cardiac remote monitoring system from October 2004 to September 2007. If malignant arrhythmias or obvious ST-T changes appeared in the electrocardiogram records was automatically transferred to the monitoring center, the patient and his family members were informed, and the corresponding precautionary or therapeutic measures were implemented immediately. Results: In our study, 274 cases of malignant arrhythmia, including sinus standstill and ventricular tachycardia, and 43 cases of obvious ST-segment elevation were detected and treated. Because of early detection, there was no death or deformity. Conclusions: A cardiac remote monitoring system providing an automatic warning function can play an important role in preventing acute cardiac episodes. PMID:25674124

  17. The D0 online monitoring and automatic DAQ recovery

    SciTech Connect

    A. Haas et al.

    2004-04-06

    The DZERO experiment, located at the Fermi National Accelerator Laboratory, has recently started the Run 2 physics program. The detector upgrade included a new Data Acquisition/Level 3 Trigger system. Part of the design for the DAQ/Trigger system was a new monitoring infrastructure. The monitoring was designed to satisfy real-time requirements with 1-second resolution as well as nonreal-time data. It was also designed to handle a large number of displays without putting undue load on the sources of monitoring information. The resulting protocol is based on XML, is easily extensible, and has spawned a large number of displays, clients, and other applications. It is also one of the few sources of detector performance available outside the Online System's security wall. A tool, based on this system, which provides for auto-recovery of DAQ errors, has been designed. This talk will include a description of the DZERO DAQ/Online monitor server, based on the ACE framework, the protocol, the auto-recovery tool, and several of the unique displays which include an ORACLE-based archiver and numerous GUIs.

  18. New Navigation System for Automatic Guided Vehicles Using an Ultrasonic Sensor Array

    NASA Astrophysics Data System (ADS)

    Tabata, Katsuhiko; Nishida, Yoshifumi; Iida, Yoshihiro; Iwai, Toshiaki

    We propose a new navigation system for Automatic Guided Vehicles (AGV) used as a carrier in the factory. The guided marker of the navigation system is composed of ultrasonic transducers instead of the traditional markers such as electromagnetic tape, light reflective tape and so on. The proposed system is available to be used not only indoors but also outdoors and adaptable to a temporary route. The ultrasonic sensor is generically susceptible to noise, so that we make the following propositions. First, a phased array of the ultrasonic sensors is employed in searching a land marker to improve the signal-to-noise ratio. Second, the specific ID with 7bits is assigned as the land marker to avoid the system errors ascribable to an ultrasonic interference. In addition, the proposed system is quite compact in virtue of the embedded technology of a microcomputer and Field Programmable Gate Array (FPGA). This paper reports the development of the proto-type system of navigation system and confirmation of its fundamental performances.

  19. Automatic Parameter Tuning for the Morpheus Vehicle Using Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Birge, B.

    2013-01-01

    A high fidelity simulation using a PC based Trick framework has been developed for Johnson Space Center's Morpheus test bed flight vehicle. There is an iterative development loop of refining and testing the hardware, refining the software, comparing the software simulation to hardware performance and adjusting either or both the hardware and the simulation to extract the best performance from the hardware as well as the most realistic representation of the hardware from the software. A Particle Swarm Optimization (PSO) based technique has been developed that increases speed and accuracy of the iterative development cycle. Parameters in software can be automatically tuned to make the simulation match real world subsystem data from test flights. Special considerations for scale, linearity, discontinuities, can be all but ignored with this technique, allowing fast turnaround both for simulation tune up to match hardware changes as well as during the test and validation phase to help identify hardware issues. Software models with insufficient control authority to match hardware test data can be immediately identified and using this technique requires very little to no specialized knowledge of optimization, freeing model developers to concentrate on spacecraft engineering. Integration of the PSO into the Morpheus development cycle will be discussed as well as a case study highlighting the tool's effectiveness.

  20. Photoelectric scanning-based method for positioning omnidirectional automatic guided vehicle

    NASA Astrophysics Data System (ADS)

    Huang, Zhe; Yang, Linghui; Zhang, Yunzhi; Guo, Yin; Ren, Yongjie; Lin, Jiarui; Zhu, Jigui

    2016-03-01

    Automatic guided vehicle (AGV) as a kind of mobile robot has been widely used in many applications. For better adapting to the complex working environment, more and more AGVs are designed to be omnidirectional by being equipped with Mecanum wheels for increasing their flexibility and maneuverability. However, as the AGV with this kind of wheels suffers from the position errors mainly because of the frequent slipping property, how to measure its position accurately in real time is an extremely important issue. Among the ways of achieving it, the photoelectric scanning methodology based on angle measurement is efficient. Hence, we propose a feasible method to ameliorate the positioning process, which mainly integrates four photoelectric receivers and one laser transmitter. To verify the practicality and accuracy, actual experiments and computer simulations have been conducted. In the simulation, the theoretical positioning error is less than 0.28 mm in a 10 m×10 m space. In the actual experiment, the performances about the stability, accuracy, and dynamic capability of this method were inspected. It demonstrates that the system works well and the performance of the position measurement is high enough to fulfill the mainstream tasks.

  1. Multi-level Bayesian safety analysis with unprocessed Automatic Vehicle Identification data for an urban expressway.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie

    2016-03-01

    In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. PMID:26722989

  2. Automatism

    PubMed Central

    McCaldon, R. J.

    1964-01-01

    Individuals can carry out complex activity while in a state of impaired consciousness, a condition termed “automatism”. Consciousness must be considered from both an organic and a psychological aspect, because impairment of consciousness may occur in both ways. Automatism may be classified as normal (hypnosis), organic (temporal lobe epilepsy), psychogenic (dissociative fugue) or feigned. Often painstaking clinical investigation is necessary to clarify the diagnosis. There is legal precedent for assuming that all crimes must embody both consciousness and will. Jurists are loath to apply this principle without reservation, as this would necessitate acquittal and release of potentially dangerous individuals. However, with the sole exception of the defence of insanity, there is at present no legislation to prohibit release without further investigation of anyone acquitted of a crime on the grounds of “automatism”. PMID:14199824

  3. Automatic post processing algorithm for passive seismic monitoring data

    NASA Astrophysics Data System (ADS)

    Nepeina, K.

    2014-05-01

    The problem of monitoring of different types of seismic events - geoacoustic precursors of earthquakes, industrial and field explosions, places fragments fall of separating parts of rockets-carriers, etc. is one of the key in the modern ecology of the environment. The peculiarity of this kind of monitoring is that it is mobile seismic groups, which should be based in the proposed area of occurrence of events. One of the most important steps for solving the problems connected with the detection and identification of recorded data from passive sensors in mobile seismic array (MSA). The task of determining the nature of the source and its' coordinates lies in the basis of direction, referred to as the geoacoustic location. Using a new approach (not by location but by neural classification of waveform "portraits") usability of algorithm which based on quantitative parameters of signal will be demonstrated.

  4. Automatic set-point titration for monitoring nitrification in SBRs.

    PubMed

    Fiocchi, N; Ficara, E; Bonelli, S; Canziani, R; Ciappelloni, F; Mariani, S; Pirani, M; Ratini, P; Mazouni, D; Harmand, J

    2008-01-01

    Nitrification is usually the bottleneck of biological nitrogen removal processes. In SBRs systems, it is not often enough to monitor dissolved oxygen, pH and ORP to spot problems which may occur in nitrification processes. Therefore, automated supervision systems should be designed to include the possibility of monitoring the activity of nitrifying populations. Though the applicability of set-point titration for monitoring biological processes has been widely demonstrated in the literature, the possibility of an automated procedure is still at its early stage of industrial development. In this work, the use of an at-line automated titrator named TITAAN (TITrimetric Automated ANalyser) is presented. The completely automated sensor enables us to track nitrification rate trend with time in an SBR, detecting the causes leading to slower specific nitrification rates. It was also possible to perform early detection of toxic compounds in the influent by assessing their effect on the nitrifying biomass. Nitrifications rates were determined with average errors+/-10% (on 26 tests), never exceeding 20% as compared with UV-spectrophotometric determinations. PMID:18701782

  5. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  6. Use of Automatic Interaction Detector in Monitoring Faculty Salaries. AIR 1983 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Cohen, Margaret E.

    A university's use of the Automatic Interaction Detector (AID) to monitor faculty salary data is described. The first step consists of examining a tree diagram and summary table produced by AID. The tree is used to identify the characteristics of faculty at different salary levels. The table is used to determine the explanatory power of the…

  7. An automatic identification and monitoring system for coral reef fish

    NASA Astrophysics Data System (ADS)

    Wilder, Joseph; Tonde, Chetan; Sundar, Ganesh; Huang, Ning; Barinov, Lev; Baxi, Jigesh; Bibby, James; Rapport, Andrew; Pavoni, Edward; Tsang, Serena; Garcia, Eri; Mateo, Felix; Lubansky, Tanya M.; Russell, Gareth J.

    2012-10-01

    To help gauge the health of coral reef ecosystems, we developed a prototype of an underwater camera module to automatically census reef fish populations. Recognition challenges include pose and lighting variations, complicated backgrounds, within-species color variations and within-family similarities among species. An open frame holds two cameras, LED lights, and two `background' panels in an L-shaped configuration. High-resolution cameras send sequences of 300 synchronized image pairs at 10 fps to an on-shore PC. Approximately 200 sequences containing fish were recorded at the New York Aquarium's Glover's Reef exhibit. These contained eight `common' species with 85-672 images, and eight `rare' species with 5-27 images that were grouped into an `unknown/rare' category for classification. Image pre-processing included background modeling and subtraction, and tracking of fish across frames for depth estimation, pose correction, scaling, and disambiguation of overlapping fish. Shape features were obtained from PCA analysis of perimeter points, color features from opponent color histograms, and `banding' features from DCT of vertical projections. Images were classified to species using feedforward neural networks arranged in a three-level hierarchy in which errors remaining after each level are targeted by networks in the level below. Networks were trained and tested on independent image sets. Overall accuracy of species-specific identifications typically exceeded 96% across multiple training runs. A seaworthy version of our system will allow for population censuses with high temporal resolution, and therefore improved statistical power to detect trends. A network of such devices could provide an `early warning system' for coral ecosystem collapse.

  8. Piloted Simulation Evaluation of a Model-Predictive Automatic Recovery System to Prevent Vehicle Loss of Control on Approach

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Liu, Yuan; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2014-01-01

    This paper describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  9. Image structural analysis in the tasks of automatic navigation of unmanned vehicles and inspection of Earth surface

    NASA Astrophysics Data System (ADS)

    Lutsiv, Vadim; Malyshev, Igor

    2013-10-01

    The automatic analysis of images of terrain is urgent for several decades. On the one hand, such analysis is a base of automatic navigation of unmanned vehicles. On the other hand, the amount of information transferred to the Earth by modern video-sensors increases, thus a preliminary classification of such data by onboard computer becomes urgent. We developed an object-independent approach to structural analysis of images. While creating the methods of image structural description, we did our best to abstract away from the partial peculiarities of scenes. Only the most general limitations were taken into account, that were derived from the laws of organization of observable environment and from the properties of image formation systems. The practical application of this theoretic approach enables reliable matching the aerospace photographs acquired from differing aspect angles, in different day-time and seasons by sensors of differing types. The aerospace photographs can be matched even with the geographic maps. The developed approach enabled solving the tasks of automatic navigation of unmanned vehicles. The signs of changes and catastrophes can be detected by means of matching and comparison of aerospace photographs acquired at different time. We present the theoretical proofs of chosen strategy of structural description and matching of images. Several examples of matching of acquired images with template pictures and maps of terrain are shown within the frameworks of navigation of unmanned vehicles or detection of signs of disasters.

  10. Automatic electrochemical ambient air monitor for chloride and chlorine

    DOEpatents

    Mueller, Theodore R.

    1976-07-13

    An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

  11. RendezVous sensor for automatic guidance of transfer vehicles to ISS concept of the operational modes depending on actual optical and geometrical-dynamical conditions

    NASA Astrophysics Data System (ADS)

    Moebius, Bettina G.; Kolk, Karl-Hermann

    2000-10-01

    Based on an ATV RendezVous Predevelopment Program initiated by ESTEC, an automatically operating Rendez Vous Sensor has been developed. The sensor--a Scanning Tele-Goniometer--shall guide docking and retreat of the European Automatic Transfer Vehicle as well as berthing and retreat of the Japanese H-II Transfer Vehicle. The sensor performance will be strongly connected with the properties of cooperative targets, consisting of an arrangement of retro reflectors mounted on ISS each.

  12. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.

    PubMed

    Diaz-Varela, R A; Zarco-Tejada, P J; Angileri, V; Loudjani, P

    2014-02-15

    Agricultural terraces are features that provide a number of ecosystem services. As a result, their maintenance is supported by measures established by the European Common Agricultural Policy (CAP). In the framework of CAP implementation and monitoring, there is a current and future need for the development of robust, repeatable and cost-effective methodologies for the automatic identification and monitoring of these features at farm scale. This is a complex task, particularly when terraces are associated to complex vegetation cover patterns, as happens with permanent crops (e.g. olive trees). In this study we present a novel methodology for automatic and cost-efficient identification of terraces using only imagery from commercial off-the-shelf (COTS) cameras on board unmanned aerial vehicles (UAVs). Using state-of-the-art computer vision techniques, we generated orthoimagery and digital surface models (DSMs) at 11 cm spatial resolution with low user intervention. In a second stage, these data were used to identify terraces using a multi-scale object-oriented classification method. Results show the potential of this method even in highly complex agricultural areas, both regarding DSM reconstruction and image classification. The UAV-derived DSM had a root mean square error (RMSE) lower than 0.5 m when the height of the terraces was assessed against field GPS data. The subsequent automated terrace classification yielded an overall accuracy of 90% based exclusively on spectral and elevation data derived from the UAV imagery. PMID:24473345

  13. Remote Video Monitor of Vehicles in Cooperative Information Platform

    NASA Astrophysics Data System (ADS)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  14. Automatic evaluation of progression angle and fetal head station through intrapartum echographic monitoring.

    PubMed

    Casciaro, Sergio; Conversano, Francesco; Casciaro, Ernesto; Soloperto, Giulia; Perrone, Emanuele; Di Renzo, Gian Carlo; Perrone, Antonio

    2013-01-01

    Labor progression is routinely assessed through transvaginal digital inspections, meaning that the clinical decisions taken during the most delicate phase of pregnancy are subjective and scarcely supported by technological devices. In response to such inadequacies, we combined intrapartum echographic acquisitions with advanced tracking algorithms in a new method for noninvasive, quantitative, and automatic monitoring of labor. Aim of this work is the preliminary clinical validation and accuracy evaluation of our automatic algorithm in assessing progression angle (PA) and fetal head station (FHS). A cohort of 10 parturients underwent conventional labor management, with additional translabial echographic examinations after each uterine contraction. PA and FHS were evaluated by our automatic algorithm on the acquired images. Additionally, an experienced clinical sonographer, blinded regarding the algorithm results, quantified on the same acquisitions of the two parameters through manual contouring, which were considered as the standard reference in the evaluation of automatic algorithm and routine method accuracies. The automatic algorithm (mean error ± 2SD) provided a global accuracy of 0.9 ± 4.0 mm for FHS and 4° ± 9° for PA, which is far above the diagnostic ability shown by the routine method, and therefore it resulted in a reliable method for earlier identification of abnormal labor patterns in support of clinical decisions. PMID:24106524

  15. Automatic Evaluation of Progression Angle and Fetal Head Station through Intrapartum Echographic Monitoring

    PubMed Central

    Casciaro, Ernesto; Di Renzo, Gian Carlo; Perrone, Antonio

    2013-01-01

    Labor progression is routinely assessed through transvaginal digital inspections, meaning that the clinical decisions taken during the most delicate phase of pregnancy are subjective and scarcely supported by technological devices. In response to such inadequacies, we combined intrapartum echographic acquisitions with advanced tracking algorithms in a new method for noninvasive, quantitative, and automatic monitoring of labor. Aim of this work is the preliminary clinical validation and accuracy evaluation of our automatic algorithm in assessing progression angle (PA) and fetal head station (FHS). A cohort of 10 parturients underwent conventional labor management, with additional translabial echographic examinations after each uterine contraction. PA and FHS were evaluated by our automatic algorithm on the acquired images. Additionally, an experienced clinical sonographer, blinded regarding the algorithm results, quantified on the same acquisitions of the two parameters through manual contouring, which were considered as the standard reference in the evaluation of automatic algorithm and routine method accuracies. The automatic algorithm (mean error ± 2SD) provided a global accuracy of 0.9 ± 4.0 mm for FHS and 4° ± 9° for PA, which is far above the diagnostic ability shown by the routine method, and therefore it resulted in a reliable method for earlier identification of abnormal labor patterns in support of clinical decisions. PMID:24106524

  16. Factors affecting performance on a target monitoring task employing an automatic tracker.

    PubMed

    McFadden, Sharon M; Vimalachandran, Abhirami; Blackmore, Elizabeth

    2004-02-26

    The experiments in this paper examined the extent to which performance on a task employing an automatic tracker was similar to performance on tasks employing other types of automation that have been studied more extensively. Automated target tracking is being used in many sensor and navigation systems to improve performance and help the operator cope with increased data loads. With many automated systems these goals are not met. In particular, the operator often misses errors made by the automated system and may report no decrease in workload. Several hypotheses have been offered for the operator's failure to monitor an automated system adequately. These include lack of experience with the manual task, a vigilance decrement, complacency, and inappropriate level of automation. The relevance of each of these hypotheses to failure to monitor an automatic tracker adequately was examined. Performance and perceived workload on a target tracking task employing an automatic tracker, in which participants had to detect and then update the position of several targets (e.g. ships) at regular intervals, were measured as a function of number of targets, training with the manual task, experience, and time on task. The results suggested that failure to detect errors made by the automated system was due largely to the lack of visibility of the automation errors relative to other errors. However, complacency could not be ruled out entirely. Unlike some other tasks, the availability of a reliable automatic tracker did lead to a substantial reduction in perceived workload. PMID:14668161

  17. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network

    NASA Astrophysics Data System (ADS)

    Hiemstra, Paul H.; Pebesma, Edzer J.; Twenhöfel, Chris J. W.; Heuvelink, Gerard B. M.

    2009-08-01

    Detection of radiological accidents and monitoring the spread of the contamination is of great importance. Following the Chernobyl accident many European countries have installed monitoring networks to perform this task. Real-time availability of automatically interpolated maps showing the spread of radioactivity during and after an accident would improve the capability of decision makers to accurately respond to a radiological accident. The objective of this paper is to present a real-time automatic interpolation system suited for natural background radioactivity. Interpolating natural background radiation allows us to better understand the natural variability, thus improving our ability to detect accidents. A real-time automatic interpolation system suited for natural background radioactivity presents a first step towards a system that can deal with radiological accidents. The interpolated maps are produced using a combination of universal kriging and an automatic variogram fitting procedure. The system provides a map of (1) the kriging prediction, (2) the kriging standard error and (3) the position of approximate prediction intervals relative to a threshold. The maps are presented through a Web Map Service (WMS) to ensure interoperability with existing Geographic Information Systems (GIS).

  18. A unique concept for automatically controlling the braking action of wheeled vehicles during minimum distance stops

    NASA Technical Reports Server (NTRS)

    Barthlome, D. E.

    1975-01-01

    Test results of a unique automatic brake control system are outlined and a comparison is made of its mode of operation to that of an existing skid control system. The purpose of the test system is to provide automatic control of braking action such that hydraulic brake pressure is maintained at a near constant, optimum value during minimum distance stops.

  19. HIPAA-compliant automatic monitoring system for RIS-integrated PACS operation

    NASA Astrophysics Data System (ADS)

    Jin, Jin; Zhang, Jianguo; Chen, Xiaomeng; Sun, Jianyong; Yang, Yuanyuan; Liang, Chenwen; Feng, Jie; Sheng, Liwei; Huang, H. K.

    2006-03-01

    As a governmental regulation, Health Insurance Portability and Accountability Act (HIPAA) was issued to protect the privacy of health information that identifies individuals who are living or deceased. HIPAA requires security services supporting implementation features: Access control; Audit controls; Authorization control; Data authentication; and Entity authentication. These controls, which proposed in HIPAA Security Standards, are Audit trails here. Audit trails can be used for surveillance purposes, to detect when interesting events might be happening that warrant further investigation. Or they can be used forensically, after the detection of a security breach, to determine what went wrong and who or what was at fault. In order to provide security control services and to achieve the high and continuous availability, we design the HIPAA-Compliant Automatic Monitoring System for RIS-Integrated PACS operation. The system consists of two parts: monitoring agents running in each PACS component computer and a Monitor Server running in a remote computer. Monitoring agents are deployed on all computer nodes in RIS-Integrated PACS system to collect the Audit trail messages defined by the Supplement 95 of the DICOM standard: Audit Trail Messages. Then the Monitor Server gathers all audit messages and processes them to provide security information in three levels: system resources, PACS/RIS applications, and users/patients data accessing. Now the RIS-Integrated PACS managers can monitor and control the entire RIS-Integrated PACS operation through web service provided by the Monitor Server. This paper presents the design of a HIPAA-compliant automatic monitoring system for RIS-Integrated PACS Operation, and gives the preliminary results performed by this monitoring system on a clinical RIS-integrated PACS.

  20. Automatic home care system for monitoring HR/RR during sleep.

    PubMed

    Zhu, Xin; Chen, Wenxi; Tang, Zunyi; Nemoto, Tetsu; Wei, Daming

    2008-01-01

    This paper described an automatic home care system for monitoring HR/RR during sleep. Pressure signal is measured with a completely unconstrained pressure sensor beneath a pillow; then the signal is digitalized and the data are transmitted to a remote server using TCP/IP via a netbox. The data are processed and analyzed with a wavelet-based algorithm to obtain the heart rate and respiration rhythm during sleep. Through analyzing 180 days' data obtained from a female subject, it was found that this system can be used for daily monitoring heart rate and respiration rhythm during sleep and evaluating the quality of sleep at home. PMID:19162708

  1. Investigation of Matlab® as Platform in Navigation and Control of an Automatic Guided Vehicle Utilising an Omnivision Sensor

    PubMed Central

    Kotze, Ben; Jordaan, Gerrit

    2014-01-01

    Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed. PMID:25157548

  2. RendezVous sensor for automatic guidance of transfer vehicles to the International Space Station

    NASA Astrophysics Data System (ADS)

    Kolk, Karl-Hermann; Moebius, Bettina G.

    2000-10-01

    Based on a Predevelopment Program, initiated by the European Space Agency, an automatically operating RendezVous Sensor (RVS) is currently developed. This paper describes in more detail the RVS concept emphasizing the electro-optical elements of the sensor.

  3. Automatic, continuous online monitoring of polymerization reactions (ACOMP): Progress in characterization of polymers and polymerization reactions

    NASA Astrophysics Data System (ADS)

    Alb, Alina M.

    An original method is presented as an efficient technique for characterizing polymers, and understanding the kinetics of the polymerization reactions. The Automatic Continuous Online Monitoring of Polymerization Reactions (ACOMP) method developed at Tulane University involves following one or more characteristics of a polymerization reaction: monomer conversion, different molecular weight averages, intrinsic viscosity, etc. By performing an automatic withdrawal and dilution of the polymer solution to create a small stream which flows through a detector train, including light scattering, viscometer, refractive index, Ultraviolet/Visible detectors, a continuum of data points can be obtained, allowing powerful analysis methods to be developed. The goal of this work is to expand ACOMP to new polymerization reactions, such as free radical copolymerization, controlled radical polymerization, inverse emulsion polymerization, both to achieve a complete physical characterization of the polymers synthesized and a better understanding of the reaction mechanisms. For each of the reactions ACOMP brings significant innovations in the analysis of the kinetics. Other new methods, such as Automatic Continuous Mixing (ACM) and Simultaneous Multiple Sample Light Scattering (SMSLS) are also used, as well as traditional multi-detector Size Exclusion Chromatography (SEC). As an immediate consequence it is hoped that the information on reaction kinetics and mechanisms offer a better fundamental knowledge, control and ability to optimize reactions. At the industrial scale, online monitoring should allow a more efficient use of resources, energy, reactor and personnel time as well as a higher product quality.

  4. Active System for Electromagnetic Perturbation Monitoring in Vehicles

    NASA Astrophysics Data System (ADS)

    Matoi, Adrian Marian; Helerea, Elena

    Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.

  5. Condition Monitoring of Railway Vehicle Suspension Using Multiple Model Approach

    NASA Astrophysics Data System (ADS)

    Mori, Hirotaka; Tsunashima, Hitoshi

    This paper demonstrates the possibility to detect suspension failures of railway vehicles using a multiple-model approach from on-board measurement data. The railway vehicle model used in this study includes lateral and yaw motions of wheelsets and bogie, and the lateral motion of the vehicle body. These motions are measured by on-board sensors for lateral acceleration and yaw rate. The detection algorithm is formulated based on the interacting multiple-model (IMM) algorithm adding a method updating estimation model. The IMM method has been applied for detecting faults in vehicle suspension systems in a simulation study. The mode probabilities and states of vehicle suspension systems are estimated based on a Kalman filter (KF). This algorithm is evaluated in simulation examples. Simulation results indicate that the algorithm effectively detects on-board faults of railway vehicle suspension systems in realistic situation.

  6. A New Technique for the Automatic Monitoring of Erosion and Deposition Rates

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.

    1991-08-01

    The rates and processes of erosion and deposition of soils and sediments are subjects of widespread and increasing concern in the Earth and environmental sciences. Process inference from field studies, however, has been hampered by a lack of information on the precise magnitude, frequency and timing of erosional and depositional activity, because no automatic monitoring technique has hitherto been available. I describe here an automatic Photo-Electronic Erosion Pin (PEEP) system which, apparently for the first time, allows quasi-continuous time series of erosion and deposition data to be collected. Example results from a river bank site show how the PEEP system helps to define the true temporal distribution of geomorphological change, quantify the erosional impact of individual forcing events, and discriminate between competing hypotheses of process control in erosional and depositional contexts. The system should thus allow more effective testing of erosion models of high temporal resolution and facilitate a more rigorous linking of catchment sediment output to supply dynamics.

  7. Automatic data processing and analysis system for monitoring region around a planned nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tiira, Timo; Kaisko, Outi; Kortström, Jari; Vuorinen, Tommi; Uski, Marja; Korja, Annakaisa

    2015-04-01

    The site of a new planned nuclear power plant is located in Pyhäjoki, eastern coast of the Bay of Bothnia. The area is characterized by low-active intraplate seismicity, with earthquake magnitudes rarely exceeding 4.0. IAEA guidelines state that when a nuclear power plant site is evaluated a network of sensitive seismographs having a recording capability for micro-earthquakes should be installed to acquire more detailed information on potential seismic sources. The operation period of the network should be long enough to obtain a comprehensive earthquake catalogue for seismotectonic interpretation. A near optimal configuration of ten seismograph stations will be installed around the site. A central station, including 3-C high-frequency and strong motion seismographs, is located in the site area. In addition, the network comprises nine high-frequency 3-C stations within a distance of 50 km from the central station. The network is dense enough to fulfil the requirements of azimuthal coverage better than 180o and automatic event location capability down to ~ ML -0.1 within a radius of 25 km from the site. Automatic processing and analysis of the planned seismic network is presented. Following the IAEA guidelines, real-time monitoring of the site area is integrated with the automatic detection and location process operated by the Institute of Seismology, University of Helsinki. In addition interactive data analysis is needed. At the end of year 2013 5 stations have been installed. The automatic analysis utilizes also 7 near by stations of national seismic networks of Finland and Sweden. During this preliminary phase several small earthquakes have been detected. The detection capability and location accuracy of the automatic analysis is estimated using chemical explosions at 15 known sites.

  8. Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.

  9. Dugong (Dugong dugon) vocalization patterns recorded by automatic underwater sound monitoring systems.

    PubMed

    Ichikawa, Kotaro; Tsutsumi, Chika; Arai, Nobuaki; Akamatsu, Tomonari; Shinke, Tomio; Hara, Takeshi; Adulyanukosol, Kanjana

    2006-06-01

    To quantitatively examine the diurnal, or tidal, effects on dugong behavior, we employed passive acoustic observation techniques to monitor the animals. Automatic underwater sound monitoring systems for dugongs (AUSOMS-D) were deployed on the sea floor at depths of about 5 m south of Talibong Island, Thailand. The AUSOMS-D recorded underwater sound in stereo at a sampling frequency of 44.1 kHz for more than 116 consecutive hours. Dugong calls were automatically detected by newly developed software with a detection rate of 36.1% and a false alarm rate of 2.9%. In total, 3453 calls were detected during the 164 h of recording. The autocorrelation of the call rate indicated an attendance cycle of about 24 or 25 h, and the most frequent vocalizations were observed from 0300 to 0500 h. The calculated bearings of the sound sources, i.e., dugongs, were used as an indicator to track the relative numbers of dugongs during the monitoring periods. PMID:16838515

  10. Sleep-monitoring, experiment M133. [electronic recording system for automatic analysis of human sleep patterns

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Salamy, J. G.

    1973-01-01

    The Skylab sleep-monitoring experiment simulated the timelines and environment expected during a 56-day Skylab mission. Two crewmembers utilized the data acquisition and analysis hardware, and their sleep characteristics were studied in an online fashion during a number of all night recording sessions. Comparison of the results of online automatic analysis with those of postmission visual data analysis was favorable, confirming the feasibility of obtaining reliable objective information concerning sleep characteristics during the Skylab missions. One crewmember exhibited definite changes in certain sleep characteristics (e.g., increased sleep latency, increased time Awake during first third of night, and decreased total sleep time) during the mission.

  11. Sequential and Automatic Image-Sequence Registration of Road Areas Monitored from a Hovering Helicopter

    PubMed Central

    Nejadasl, Fatemeh Karimi.; Lindenbergh, Roderik.

    2014-01-01

    In this paper, we propose an automatic and sequential method for the registration of an image sequence of a road area without ignoring scene-induced motion. This method contributes to a larger work, aiming at vehicle tracking. A typical image sequence is recorded from a helicopter hovering above the freeway. The demand for automation is inevitable due to the large number of images and continuous changes in the traffic situation and weather conditions. A framework is designed and implemented for this purpose. The registration errors are removed in a sequential way based on two homography assumptions. First, an approximate registration is obtained, which is efficiently refined in a second step, using a restricted search area. The results of the stabilization framework are demonstrated on an image sequence consisting of 1500 images and show that our method allows a registration between arbitrary images in the sequence with a geometric error of zero in pixel accuracy. PMID:25198006

  12. FishCam - A semi-automatic video-based monitoring system of fish migration

    NASA Astrophysics Data System (ADS)

    Kratzert, Frederik; Mader, Helmut

    2016-04-01

    One of the main objectives of the Water Framework Directive is to preserve and restore the continuum of river networks. Regarding vertebrate migration, fish passes are widely used measure to overcome anthropogenic constructions. Functionality of this measure needs to be verified by monitoring. In this study we propose a newly developed monitoring system, named FishCam, to observe fish migration especially in fish passes without contact and without imposing stress on fish. To avoid time and cost consuming field work for fish pass monitoring, this project aims to develop a semi-automatic monitoring system that enables a continuous observation of fish migration. The system consists of a detection tunnel and a high resolution camera, which is mainly based on the technology of security cameras. If changes in the image, e.g. by migrating fish or drifting particles, are detected by a motion sensor, the camera system starts recording and continues until no further motion is detectable. An ongoing key challenge in this project is the development of robust software, which counts, measures and classifies the passing fish. To achieve this goal, many different computer vision tasks and classification steps have to be combined. Moving objects have to be detected and separated from the static part of the image, objects have to be tracked throughout the entire video and fish have to be separated from non-fish objects (e.g. foliage and woody debris, shadows and light reflections). Subsequently, the length of all detected fish needs to be determined and fish should be classified into species. The object classification in fish and non-fish objects is realized through ensembles of state-of-the-art classifiers on a single image per object. The choice of the best image for classification is implemented through a newly developed "fish benchmark" value. This value compares the actual shape of the object with a schematic model of side-specific fish. To enable an automatization of the

  13. Design and construction of an automatic system for minimizing the risk of sinking of water vehicle

    NASA Astrophysics Data System (ADS)

    Sutradhar, Amit; Rashid, Md. Mahbubur; Helal-An-Nahiyan, Md.; Mandal, Manash Kumar

    2016-07-01

    This paper focuses on the reduction of the risk of water vehicle like launch, ferry, ship and boat from sinking which is a burning problem of Bangladesh now-a-days. Every year death toll is rising by leaps and bounds due to this unexpected phenomenon. The sinking mostly occurs due to overloading and lack of consciousness. That's why, an automated system is introduced here to make the travelers warned about the overloading situation through raising alarm before the vehicle starts to move on. The tolerance limit of the vehicle is determined based on the theory of buoyancy and floatation. Moreover, while moving on the water, the vehicle may get victim of sinking due to rough weather, low visibility or machineries breakdown. So water level indicator is used to determine the safe level of water. When water level rises up to the safe limit or just before crossing the safe limit, another alarm will warn the passengers which will sound quite different from the first alarm as stated before. And at once the on board GPS sensor will record the current position of the vehicle and transmit the location to the nearest rescue authority via GSM module in the form of text message which will help them to take necessary steps for the rescue of the passengers as soon as possible. Effective implementation of this method can reduce the accident as well as this research can also be a helpful tool to organize further researches in this field for the sake of humanity.

  14. Applications of the automatic change detection for disaster monitoring by the knowledge-based framework

    NASA Astrophysics Data System (ADS)

    Tadono, T.; Hashimoto, S.; Onosato, M.; Hori, M.

    2012-11-01

    Change detection is a fundamental approach in utilization of satellite remote sensing image, especially in multi-temporal analysis that involves for example extracting damaged areas by a natural disaster. Recently, the amount of data obtained by Earth observation satellites has increased significantly owing to the increasing number and types of observing sensors, the enhancement of their spatial resolution, and improvements in their data processing systems. In applications for disaster monitoring, in particular, fast and accurate analysis of broad geographical areas is required to facilitate efficient rescue efforts. It is expected that robust automatic image interpretation is necessary. Several algorithms have been proposed in the field of automatic change detection in past, however they are still lack of robustness for multi purposes, an instrument independency, and accuracy better than a manual interpretation. We are trying to develop a framework for automatic image interpretation using ontology-based knowledge representation. This framework permits the description, accumulation, and use of knowledge drawn from image interpretation. Local relationships among certain concepts defined in the ontology are described as knowledge modules and are collected in the knowledge base. The knowledge representation uses a Bayesian network as a tool to describe various types of knowledge in a uniform manner. Knowledge modules are synthesized and used for target-specified inference. The results applied to two types of disasters by the framework without any modification and tuning are shown in this paper.

  15. Monitoring fleets of electric vehicles: optimizing operational use and maintenance

    NASA Astrophysics Data System (ADS)

    Lenain, P.; Kechmire, M.; Smaha, J. P.

    Electric vehicles can make a substantial contribution to an improved urban environment. Reduced atmospheric pollution and noise emissions make the increased use of electric vehicles highly desirable and their suitability for dedicated fleets of vehicles is well recognized. As a result, a suitable system of supervision and management is necessary for fleet operators, to allow them to see the key parameters for the optimum use of the electric vehicle at all times. A computer-based data acquisition and analysis system will allow access to critical control parameters and display the operation of chargers and batteries in real time. Battery condition and charging can be followed. Information is stored in a database and can be readily analyzed and retrieved to manage extensive charging installations. In this paper, the operation of a battery/charger management system is described. The effective use of the system in electric utility vans is demonstrated.

  16. Automatic modal identification of cable-supported bridges instrumented with a long-term monitoring system

    NASA Astrophysics Data System (ADS)

    Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.

    2003-08-01

    An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.

  17. Using Unmanned Aerial Vehicles for monitoring glacial moulins

    NASA Astrophysics Data System (ADS)

    Santagata, Tommaso

    2016-04-01

    The exploration of cavities on glaciers has always represented a fascinating activity that attracts scientists and researchers since many decades. Several explorations performed by speleologists and scientists since 1985 on the Gorner Gletscher (Mount Rosa group, SW Switzerland) have allowed to survey more than 40 endoglacial caves and some marginal tunnels of this glacier, which is the most interesting in the Alps for its supraglacial and englacial pseudo-karst forms. In recent years, the study of these caves has led to the distinction of two morphological and genetic types: marginal tunnels, that generally forms at the contact between ice and lateral moraine, and swallow holes (moulins) which are vertical shafts where a supraglacial stream sinks into the ice. During the first International glacier-caving camp organized in October 2014 as part of the project "Inside the glaciers" which had the main objective to explore the cavities of this glacier and to study the cryo-karstic processes that lead to the formation of deep shafts, an unmanned aerial vehicle (UAV) equipped with camera and GPS system was used for the first time to perform photogrammetric surveys on three different areas. This technique allowed to derive detailed 3D models with very high resolution and accuracy of the entrance of the main moulins and other interesting parts of this glacier. Thanks to the acquisition of geo-referenced images and post-processing the acquired data (i.e. motion corrections), with the realized 3D point clouds and mesh models it was possible to obtain geo-referenced ortophoto and digital surface models which have been used to calculate contour lines and calculate the difference of position of the same moulins detected during the last years expeditions. Moreover, the data acquired have allowed to perform other different type of surface analysis and obtain an excellent photographic database that will surely be useful for further comparisons in future, proving the importance of

  18. Automatic crack detection and classification method for subway tunnel safety monitoring.

    PubMed

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-01-01

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337

  19. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-01-01

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337

  20. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    NASA Astrophysics Data System (ADS)

    Hervas, Jaime Rubio; Reyhanoglu, Mahmut; Tang, Hui

    2014-12-01

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  1. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    SciTech Connect

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  2. Automatic and continuous landslide monitoring: the Rotolon Web-based platform

    NASA Astrophysics Data System (ADS)

    Frigerio, Simone; Schenato, Luca; Mantovani, Matteo; Bossi, Giulia; Marcato, Gianluca; Cavalli, Marco; Pasuto, Alessandro

    2013-04-01

    Mount Rotolon (Eastern Italian Alps) is affected by a complex landslide that, since 1985, is threatening the nearby village of Recoaro Terme. The first written proof of a landslide occurrence dated back to 1798. After the last re-activation on November 2010 (637 mm of intense rainfall recorded in the 12 days prior the event), a mass of approximately 320.000 m3 detached from the south flank of Mount Rotolon and evolved into a fast debris flow that ran for about 3 km along the stream bed. A real-time monitoring system was required to detect early indication of rapid movements, potentially saving lives and property. A web-based platform for automatic and continuous monitoring was designed as a first step in the implementation of an early-warning system. Measurements collected by the automated geotechnical and topographic instrumentation, deployed over the landslide body, are gathered in a central box station. After the calibration process, they are transmitted by web services on a local server, where graphs, maps, reports and alert announcement are automatically generated and updated. All the processed information are available by web browser with different access rights. The web environment provides the following advantages: 1) data is collected from different data sources and matched on a single server-side frame 2) a remote user-interface allows regular technical maintenance and direct access to the instruments 3) data management system is synchronized and automatically tested 4) a graphical user interface on browser provides a user-friendly tool for decision-makers to interact with a system continuously updated. On this site two monitoring systems are actually on course: 1) GB-InSAR radar interferometer (University of Florence - Department of Earth Science) and 2) Automated Total Station (ATS) combined with extensometers network in a Web-based solution (CNR-IRPI Padova). This work deals with details on methodology, services and techniques adopted for the second

  3. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    NASA Astrophysics Data System (ADS)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  4. Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites

    NASA Astrophysics Data System (ADS)

    Tuch, T. M.; Haudek, A.; Müller, T.; Nowak, A.; Wex, H.; Wiedensohler, A.

    2009-04-01

    Sizes of aerosol particles depend on the relative humidity of their carrier gas. Most monitoring networks require therefore that the aerosol is dried to a relative humidity below 50% RH to ensure comparability of measurements at different sites. Commercially available aerosol dryers are often not suitable for this purpose at remote monitoring sites. Adsorption dryers need to be regenerated frequently and maintenance-free single column Nafion dryers are not designed for high aerosol flow rates. We therefore developed an automatic regenerating adsorption aerosol dryer with a design flow rate of 1 m3/h. Particle transmission efficiency of this dryer has been determined during a 3 weeks experiment. The lower 50% cut-off was found to be below 3 nm at the design flow rate of the instrument. Measured transmission efficiencies are in good agreement with theoretical calculations. One drier has been successfully deployed in the Amazonas river basin. From this monitoring site, we present data from the first 6 months of measurements (February 2008-August 2008). Apart from one unscheduled service, this dryer did not require any maintenance during this time period. The average relative humidity of the dried aerosol was 27.1+/-7.5% RH compared to an average ambient relative humidity of nearly 80% and temperatures around 30°C. This initial deployment demonstrated that these dryers are well suitable for continuous operation at remote monitoring sites under adverse ambient conditions.

  5. Video-based respiration monitoring with automatic region of interest detection.

    PubMed

    Janssen, Rik; Wang, Wenjin; Moço, Andreia; de Haan, Gerard

    2016-01-01

    Vital signs monitoring is ubiquitous in clinical environments and emerging in home-based healthcare applications. Still, since current monitoring methods require uncomfortable sensors, respiration rate remains the least measured vital sign. In this paper, we propose a video-based respiration monitoring method that automatically detects a respiratory region of interest (RoI) and signal using a camera. Based on the observation that respiration induced chest/abdomen motion is an independent motion system in a video, our basic idea is to exploit the intrinsic properties of respiration to find the respiratory RoI and extract the respiratory signal via motion factorization. We created a benchmark dataset containing 148 video sequences obtained on adults under challenging conditions and also neonates in the neonatal intensive care unit (NICU). The measurements obtained by the proposed video respiration monitoring (VRM) method are not significantly different from the reference methods (guided breathing or contact-based ECG; p-value  =  0.6), and explain more than 99% of the variance of the reference values with low limits of agreement (-2.67 to 2.81 bpm). VRM seems to provide a valid solution to ECG in confined motion scenarios, though precision may be reduced for neonates. More studies are needed to validate VRM under challenging recording conditions, including upper-body motion types. PMID:26640970

  6. Monitoring caustic injuries from emergency department databases using automatic keyword recognition software

    PubMed Central

    Vignally, P.; Fondi, G.; Taggi, F.; Pitidis, A.; National Injury Database and National Information System on Accidents in the Home Surveillance Groups

    2011-01-01

    Summary In Italy the European Union Injury Database reports the involvement of chemical products in 0.9% of home and leisure accidents. The Emergency Department registry on domestic accidents in Italy and the Poison Control Centres record that 90% of cases of exposure to toxic substances occur in the home. It is not rare for the effects of chemical agents to be observed in hospitals, with a high potential risk of damage - the rate of this cause of hospital admission is double the domestic injury average. The aim of this study was to monitor the effects of injuries caused by caustic agents in Italy using automatic free-text recognition in Emergency Department medical databases. We created a Stata software program to automatically identify caustic or corrosive injury cases using an agent-specific list of keywords. We focused attention on the procedure’s sensitivity and specificity. Ten hospitals in six regions of Italy participated in the study. The program identified 112 cases of injury by caustic or corrosive agents. Checking the cases by quality controls (based on manual reading of ED reports), we assessed 99 cases as true positive, i.e. 88.4% of the patients were automatically recognized by the software as being affected by caustic substances (99% CI: 80.6%- 96.2%), that is to say 0.59% (99% CI: 0.45%-0.76%) of the whole sample of home injuries, a value almost three times as high as that expected (p < 0.0001) from European codified information. False positives were 11.6% of the recognized cases (99% CI: 5.1%- 21.5%). Our automatic procedure for caustic agent identification proved to have excellent product recognition capacity with an acceptable level of excess sensitivity. Contrary to our a priori hypothesis, the automatic recognition system provided a level of identification of agents possessing caustic effects that was significantly much greater than was predictable on the basis of the values from current codifications reported in the European Database. PMID

  7. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  8. Environmental monitoring based on automatic change detection from remotely sensed data: kernel-based approach

    NASA Astrophysics Data System (ADS)

    Shah-Hosseini, Reza; Homayouni, Saeid; Safari, Abdolreza

    2015-01-01

    In the event of a natural disaster, such as a flood or earthquake, using fast and efficient methods for estimating the extent of the damage is critical. Automatic change mapping and estimating are important in order to monitor environmental changes, e.g., deforestation. Traditional change detection (CD) approaches are time consuming, user dependent, and strongly influenced by noise and/or complex spectral classes in a region. Change maps obtained by these methods usually suffer from isolated changed pixels and have low accuracy. To deal with this, an automatic CD framework-which is based on the integration of change vector analysis (CVA) technique, kernel-based C-means clustering (KCMC), and kernel-based minimum distance (KBMD) classifier-is proposed. In parallel with the proposed algorithm, a support vector machine (SVM) CD method is presented and analyzed. In the first step, a differential image is generated via two approaches in high dimensional Hilbert space. Next, by using CVA and automatically determining a threshold, the pseudo-training samples of the change and no-change classes are extracted. These training samples are used for determining the initial value of KCMC parameters and training the SVM-based CD method. Then optimizing a cost function with the nature of geometrical and spectral similarity in the kernel space is employed in order to estimate the KCMC parameters and to select the precise training samples. These training samples are used to train the KBMD classifier. Last, the class label of each unknown pixel is determined using the KBMD classifier and SVM-based CD method. In order to evaluate the efficiency of the proposed algorithm for various remote sensing images and applications, two different datasets acquired by Quickbird and Landsat TM/ETM+ are used. The results show a good flexibility and effectiveness of this automatic CD method for environmental change monitoring. In addition, the comparative analysis of results from the proposed method

  9. Study of automatic and manual terminal guidance and control systems for space shuttle vehicles. Volume 1: Sections 1 through 3

    NASA Technical Reports Server (NTRS)

    Osder, S.; Keller, R.

    1971-01-01

    The results of a study to analyze, design, and evaluate guidance and control systems are presented that start at an altitude of about 100,000 feet and bring the unpowered space shuttle orbiters to a precision horizontal landing. The systems under consideration included fully automatic versions which involve no pilot participation as well as various manual configurations that provide combinations of displays and control augmentation which permit the pilot to control the vehicle to a successful landing. Two classes of vehicles were studied: the low cross range or straight-wing orbiter and the high cross range or delta-wing (delta body) orbiter. The recommended navigation, guidance and control system is shown to be compatible with realistic physical constraints that would exist in space shuttlecraft and to be consistent with the 1971 avionics equipment state of the art. Aircraft capable of aerodynamically simulating the various candidate space shuttlecraft in their unpowered, terminal area descent were investigated, and flight test recommendations, including system mechanizations, are made.

  10. Online monitoring and Automatic Classificaton of Volcanic Tremor on Mt Etna.

    NASA Astrophysics Data System (ADS)

    Alfio, Messina; D'Agostino, Marcello; Langer, Horst; Reitano, Danilo

    2010-05-01

    Continuous seismic monitoring plays a key role for surveillance of Mt Etna volcano. Besides earthquakes, which often herald eruptive episodes, the persistent background signal, known as volcanic tremor has proven to provide extremely important information on the status of the volcano as changes in the regimes of activity are usually concurrent with variations of tremor characteristics. This strict relationship is useful for monitoring volcanic activity in any moment and in whatever condition (such as day-night, meteo). As continuous recording leads rapidly to the accumulation of large data masses, parameter extraction and automated processing becomes crucial. We therefore developed a software package which allows automatic unsupervised classification near-online. The software package is based on Self Organizing Maps and Fuzzy Clustering, and displays the results of both approaches in a synoptic way. The concept has proven its efficiency during various phases of volcanic unrest in 2007-08, where subtle, nonetheless significant changes in the signal could be evidenced well before they became visible in conventional monitoring. Automatic on-line classification of patterns needs robust procedures for the extraction of feature vectors from the incoming data stream. We achieve this goal transforming the time series to spectrograms using a gliding window scheme, and taking 10%-percentiles of the amplitude values in the spectrograms. In doing so we widely exclude transient signals (such as earthquakes, explosions, wind gusts, etc) which, in terms of tremor analysis, are considered as a disturbing effect. The online unsupervised classification is carried out using a data set made up of two pools of patterns. A first reference pool consists of patterns collected during a wide variety of scenarios of volcanic activity - here the ones encountered in 2007-08. The second pool is a ring buffer which is continuously updated with new incoming patterns. Applying the automatic

  11. A low-cost on-board vehicle load monitor

    NASA Astrophysics Data System (ADS)

    Lacquet, Beatrys M.; Swart, Pieter L.; Kotzé, Abraham P.

    1996-12-01

    We propose the use of etched optical fibre strain sensors to provide an economical on-board load indicator for minibuses and heavy vehicles. By improving the fabrication process we produced symmetrically etched fibre strain gauges. Manufactured sensors were evaluated experimentally by straining them on a cantilever beam. For strains smaller than 600 microstrain the output of a ten-segment sensor was linear with a typical gauge factor of -57. Bending losses in the fibre sensor became more pronounced for larger strains. This sensor has only two optical components apart from the sensing element. Strain sensors were mounted on the rear axle and on the front torsion bar of a minibus taxi test vehicle. Proper weighting of the outputs of the front and back sensors on the vehicle ensures a monotonic relationship between the sensor output and load. In addition, the reading of the sensor system is virtually independent of the load distribution in the vehicle. Difference-over-sum processing ensures insensitivity to common-mode perturbations such as temperature and source intensity changes.

  12. Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring

    PubMed Central

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin

    2016-01-01

    Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset. PMID:27540353

  13. Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring.

    PubMed

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M Iqbal Bin

    2016-01-01

    Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset. PMID:27540353

  14. An automatic water body area monitoring algorithm for satellite images based on Markov Random Fields

    NASA Astrophysics Data System (ADS)

    Elmi, Omid; Tourian, Mohammad J.; Sneeuw, Nico

    2016-04-01

    Our knowledge about spatial and temporal variation of hydrological parameters are surprisingly poor, because most of it is based on in situ stations and the number of stations have reduced dramatically during the past decades. On the other hand, remote sensing techniques have proven their ability to measure different parameters of Earth phenomena. Optical and SAR satellite imagery provide the opportunity to monitor the spatial change in coastline, which can serve as a way to determine the water extent repeatedly in an appropriate time interval. An appropriate classification technique to separate water and land is the backbone of each automatic water body monitoring. Due to changes in the water level, river and lake extent, atmosphere, sunlight radiation and onboard calibration of the satellite over time, most of the pixel-based classification techniques fail to determine accurate water masks. Beyond pixel intensity, spatial correlation between neighboring pixels is another source of information that should be used to decide the label of pixels. Water bodies have strong spatial correlation in satellite images. Therefore including contextual information as additional constraint into the procedure of water body monitoring improves the accuracy of the derived water masks significantly. In this study, we present an automatic algorithm for water body area monitoring based on maximum a posteriori (MAP) estimation of Markov Random Fields (MRF). First we collect all available images from selected case studies during the monitoring period. Then for each image separately we apply a k-means clustering to derive a primary water mask. After that we develop a MRF using pixel values and the primary water mask for each image. Then among the different realizations of the field we select the one that maximizes the posterior estimation. We solve this optimization problem using graph cut techniques. A graph with two terminals is constructed, after which the best labelling structure for

  15. IESID: Automatic system for monitoring ground deformation on the Deception Island volcano (Antarctica)

    NASA Astrophysics Data System (ADS)

    Peci, Luis Miguel; Berrocoso, Manuel; Páez, Raúl; Fernández-Ros, Alberto; de Gil, Amós

    2012-11-01

    When establishing the relative distance between two GNSS-GPS stations with sub-centimeter accuracy, it is necessary to have auxiliary data, some of which can only be collected some time after the moment of measurement. However, for monitoring highly-active geodynamic areas, such as volcanoes and landslides, data precision is not as essential as rapid availability, processing of data in real-time, and fast interpretation of the results. This paper describes the development of an integrated automatic system for monitoring volcanic deformation in quasi real-time, applied to the Deception volcano (Antarctica). This experimental system integrates two independent modules that enable researchers to monitor and control the status of the GNSS-GPS stations, and to determine a surface deformation parameter. It comprises three permanent stations, one of which serves as the reference for assessing the relative distance in relation to the other two. The availability of GNSS-GPS data in quasi real-time is achieved by means of a WiFi infrastructure and automated data processing. This system provides, in quasi real-time, a time series of varying distances that tells us the extent to which any ground deformation is taking place.

  16. Field tests of automatic water-level monitor systems: Technology Development Program: Site Investigation Technology Project

    SciTech Connect

    Campbell, M.D.; Schalla, R.

    1990-10-01

    Groundwater in the aquifer beneath the Hanford Site contains radioactive and other contaminants from deposits in the overlying vadose zone. These contaminants flow with the groundwater into the Columbia River. The rate of contaminant movement toward the river depends on hydraulic gradients resulting from aquifer recharge by process water and other liquid waste. Historically, hydraulic gradients were deduced from water-level measurements made manually using steel tapes. However, frequent or simultaneous measurements essential to proper site characterization and remediation under the Resource Conservation and Recovery Act; Comprehensive Environmental Response, Compensation, and Liability Act; and US Environmental Protection Agency (EPA) have been either too costly or impossible. This investigation was authorized to identify technologies capable of meeting site characterization and remediation requirements with precision suitable to EPA. Therefore, we identified and tested available automatic monitoring systems for cost-effective and timely measurements of aquifer water levels. 5 refs., 9 figs.

  17. Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention

    PubMed Central

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813

  18. Field Tests of a NaI(Tl)-Based Vehicle Portal Monitor at Border Crossings

    SciTech Connect

    Stromswold, David C.; Darkoch, Justin; Ely, James H.; Hansen, Randy R.; Kouzes, Richard T.; Milbrath, Brian D.; Runkle, Robert C.; Sliger, William A.; Smart, John E.; Stephens, Daniel L.; Todd, Lindsay C.; Woodring, Mitchell L.

    2004-10-01

    Radiation portal monitors are commonly used at international border crossings to detect illicit transport of radioactive material. Most monitors use plastic scintillators to detect gamma rays, but next-generation monitors may contain NaI(Tl). In order to directly compare the performance of the two types of detectors, a prototype NaI(Tl) monitor was tested at two international border crossings adjacent to a comparable plastic scintillator monitor. The NaI(Tl) monitor housed four large detectors, each 10.2 cm x 10.2 cm x 41 cm. The empirical data set from the two field tests contains approximately 3800 passages with known cargo loads for each vehicle For a small subset of the vehicles, high purity germanium detector spectra were also collected. During the survey period several vehicles containing commercial products with naturally occurring radioactive material (NORM) passed through the monitor. Typical NORM cargo included pottery, large granite slabs, rock-based floor tiles, construction stone blocks, abrasive material, and fertilizer. Non-NORM sources encountered during the field tests included a large source of 60Co (200,000 GBq) and a shipment of uranium oxide, both items being legally transported. The information obtained during the tests provides a good empirical data set to compare the effectiveness of NaI(Tl) and plastic-scintillator portal monitors. The capability to be sensitive to illicit materials, but not alarm on NORM, is a key figure of merit for portal monitors. (PIET-43741-TM-210)

  19. Automatic Generation of Overlays and Offset Values Based on Visiting Vehicle Telemetry and RWS Visuals

    NASA Technical Reports Server (NTRS)

    Dunne, Matthew J.

    2011-01-01

    The development of computer software as a tool to generate visual displays has led to an overall expansion of automated computer generated images in the aerospace industry. These visual overlays are generated by combining raw data with pre-existing data on the object or objects being analyzed on the screen. The National Aeronautics and Space Administration (NASA) uses this computer software to generate on-screen overlays when a Visiting Vehicle (VV) is berthing with the International Space Station (ISS). In order for Mission Control Center personnel to be a contributing factor in the VV berthing process, computer software similar to that on the ISS must be readily available on the ground to be used for analysis. In addition, this software must perform engineering calculations and save data for further analysis.

  20. Automatic mapping of off-road vehicle trails and paths at Fort Riley Installation, Kansas

    NASA Astrophysics Data System (ADS)

    Oller, Adam

    The U.S. Army manages thousands of sites that cover millions of acres of land for various military training purposes and activities and often faces a great challenge on how to optimize the use of resources. A typical example is that the training activities often lead to off-road vehicle trails and paths and how to use the trails and paths in terms of minimizing maintenance cost becomes a problem. Being able to accurately extract and map the trails and paths is critical in advancing the U.S. Army's sustainability practices. The primary objective of this study is to develop a method geared specifically toward the military's needs of identifying and updating the off-road vehicle trails and paths for both environmental and economic purposes. The approach was developed using a well-known template matching program, called Feature Analyst, to analyze and extract the relevant trails and paths from Fort Riley's designated training areas. A 0.5 meter resolution false color infrared orthophoto with various spectral transformations/enhancements were used to extract the trails and paths. The optimal feature parameters for the highest accuracy of detecting the trails and paths were also investigated. A modified Heidke skill score was used for accuracy assessment of the outputs in comparison to the observed. The results showed the method was very promising, compared to traditional visual interpretation and hand digitizing. Moreover, suggested methods for extracting the trails and paths using remotely sensed images, including image spatial and spectral resolution, image transformations and enhancements, and kernel size, was obtained. In addition, the complexity of the trails and paths and the discussion on how to improve their extraction in the future were given.

  1. Studies on automatic hot gas reader used in the countrywide personnel monitoring programme.

    PubMed

    Kumar, Munish; Alagu Raja, E; Prasad, L C; Popli, K L; Kher, R K; Bhatt, B C

    2005-01-01

    In India, approximately 58,000 radiation workers are monitored using locally made CaSO4:Dy teflon embedded thermoluminescence dosemeter (TLD) badge system. The automatic hot gas readers developed locally are also used in TL measurements. The hot gas reader system has many advantages over the manual readers used previously and has completely replaced the manual reader system in all TLD personnel monitoring units in India. In the present study, the new reader system is studied and a theoretical attempt has been made to interpret the experimentally obtained results. The glow curves are generated theoretically and are also plotted experimentally. It has been found that the heat capacity of the heating gas, which is responsible for the transfer of heat, has a role in deciding the position of peak and is verified experimentally using different gas flow rates of nitrogen and argon as heating gases in the reader. The theoretical study may also be helpful in fitting the experimentally obtained glow curves and, therefore, the elimination of unwanted non-radiation-induced contributions, such as dark current, electronic spikes, light leakage and triboluminescence that generally distort the glow curve shape, can be achieved. PMID:15843392

  2. A Sensor System for Automatic Detection of Food Intake Through Non-Invasive Monitoring of Chewing

    PubMed Central

    Sazonov, Edward S.; Fontana, Juan M.

    2012-01-01

    Objective and automatic sensor systems to monitor ingestive behavior of individuals arise as a potential solution to replace inaccurate method of self-report. This paper presents a simple sensor system and related signal processing and pattern recognition methodologies to detect periods of food intake based on non-invasive monitoring of chewing. A piezoelectric strain gauge sensor was used to capture movement of the lower jaw from 20 volunteers during periods of quiet sitting, talking and food consumption. These signals were segmented into non-overlapping epochs of fixed length and processed to extract a set of 250 time and frequency domain features for each epoch. A forward feature selection procedure was implemented to choose the most relevant features, identifying from 4 to 11 features most critical for food intake detection. Support vector machine classifiers were trained to create food intake detection models. Twenty-fold cross-validation demonstrated per-epoch classification accuracy of 80.98% and a fine time resolution of 30 s. The simplicity of the chewing strain sensor may result in a less intrusive and simpler way to detect food intake. The proposed methodology could lead to the development of a wearable sensor system to assess eating behaviors of individuals. PMID:22675270

  3. Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness.

    PubMed

    Ofochebe, Sunday M; Enibe, Samuel O; Ozoegwu, Chigbogu G

    2016-05-01

    In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC) models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS) presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS) vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development. PMID:27441279

  4. Compact semi-automatic incident sampler for personal monitoring of volatile organic compounds in occupational air.

    PubMed

    Solbu, Kasper; Hersson, Merete; Thorud, Syvert; Lundanes, Elsa; Nilsen, Terje; Synnes, Ole; Ellingsen, Dag; Molander, Paal

    2010-05-01

    Suddenly occurring and time limited chemical exposures caused by unintended incidents might pose a threat to many workers at various work sites. Monitoring of exposure during such occasional incidents is challenging. In this study a compact, low-weight and personal semi-automatic pumped unit for sampling of organic vapor phase compounds from occupational air during sporadic and suddenly occurring incidents has been developed, providing simple activation by the worker potentially subjected to the sudden occurring exposures when a trained occupational hygienist is not available. The sampler encompasses a tube (glass or stainless steel) containing an adsorbent material in combination with a small membrane pump, where the adsorbent is capped at both ends by gas tight solenoid valves. The sampler is operated by a conventional 9 V battery which tolerates long storage time (at least one year), and is activated by pulling a pin followed by automatic operation and subsequent closing of valves, prior to shipping to a laboratory. The adjustable sampling air flow rate and the sampling time are pre-programmed with a standard setting of 200 mL min(-1) and 30 min, respectively. The average airflow in the time interval 25-30 min compared to average airflow in the interval 2-7 min was 92-95% (n = 6), while the flow rate between-assay precisions (RSD) for six different samplers on three days each were in the range 0.5-3.7%. Incident sampler recoveries of VOCs from a generated VOC atmosphere relative to a validated standard method were between 95 and 102% (+/-4-5%). The valves that seal the sampler adsorbent during storage have been shown to prevent an external VOC atmosphere (500 mg m(-3)) to enter the adsorbent tube, in addition to that the sampler adsorbent is storable for at least one month due to absence of ingress of contaminants from internal parts. The sampler was also suitable for trapping of semi-volatile organophosphates. PMID:21491688

  5. Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra

    NASA Astrophysics Data System (ADS)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.

    2015-03-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low Arctic shrub tundra near Umiujaq, Quebec, (56°34´ N; 76°29´ W) and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at 4 heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time-evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. Shrubs are observed to have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevents snow compaction and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  6. Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

    NASA Astrophysics Data System (ADS)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.; Arnaud, L.

    2015-06-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56°34'; W76°29') and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  7. Development of portable health monitoring system for automatic self-blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Huijun; Mizuno, Yoshihumi; Nakamachi, Eiji; Morita, Yusuke

    2010-02-01

    In this study, a new HMS (Health Monitoring System) device is developed for diabetic patient. This device mainly consists of I) 3D blood vessel searching unit and II) automatic blood glucose measurement (ABGM) unit. This device has features such as 1)3D blood vessel location search 2) laptop type, 3) puncturing a blood vessel by using a minimally invasive micro-needle, 4) very little blood sampling (10μl), and 5) automatic blood extraction and blood glucose measurement. In this study, ABGM unit is described in detail. It employs a syringe type's blood extraction mechanism because of its high accuracy. And it consists of the syringe component and the driving component. The syringe component consists of a syringe itself, a piston, a magnet, a ratchet and a micro-needle whose inner diameter is about 80μm. And the syringe component is disposable. The driving component consists of body parts, a linear stepping motor, a glucose enzyme sensor and a slider for accurate positioning control. The driving component has the all-in-one mechanism with a glucose enzyme sensor for compact size and stable blood transfer. On designing, required thrust force to drive the slider is designed to be greater than the value of the blood extraction force. Further, only one linear stepping motor is employed for blood extraction and transportation processes. The experimental result showed more than 80% of volume ratio under the piston speed 2.4mm/s. Further, the blood glucose was measured successfully by using the prototype unit. Finally, the availability of our ABGM unit was confirmed.

  8. Continuous monitoring of a large active earth flow using an integrated GPS - automatic total station approach

    NASA Astrophysics Data System (ADS)

    Corsini, A.

    2009-04-01

    Landslide monitoring has evolved as a crucial tool in civil protection to mitigate and prevent disasters. The research presents an approach to continuous monitoring of a large-scale active earth flow using a system that integrates surface measurements obtained by a GPS and an automatic total station. With the data obtained from the system the landslide can be monitored in near-real-time and surface displacements can be directly utilized to provide early warning of slope movements and to study the behavior of the landslide, e.g. to predict timing and mechanisms of future failure. The Valoria landslide located in the northern Apennines of Italy was reactivated in 2001, 2005 and 2007 damaging roads and endangering houses. A monitoring system was installed in 2007-2008 in the frame of a civil protection plan aimed at risk mitigation. The system consists of an automatic total station measuring about 40 prisms located in the landslide to a maximum distance of 1.800 km; one double-frequency GPS receiver connects in streaming by wireless communication with 4 single-frequency GPS in side the flow. Until December 2007 the monitoring network was operated with periodic static surveying followed by the data post-processing. From September 2007 until March 2008 the landslide deformation was evaluated by periodic surveys with the total station and the GPS system. This first measure showed that the displacements were influenced by the rainfall events and by the snow melting. The total displacements measured vary from centimeter scale in the crown zone, where retrogressive movements were in progress, to over 50 m in the flow track zone. Starting in March 2008 data acquisition by the total station system and GPS were automated in order to allow continuous and near-real-time data processing. The displacement data collected in one and a half year of continuous operation show different acceleration and deceleration phases as a result of the pore water pressure distribution inside the

  9. Landslide Activity Monitoring with the Help of Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Peterman, V.

    2015-08-01

    This paper presents a practical example of a landslide monitoring through the use of a UAV - tracking and monitoring the movements of the Potoska Planina landslide located above the village of Koroska Bela in the western Karavanke Mountains in north-western Slovenia. Past geological research in this area indicated slope landmass movement of more than 10 cm per year. However, much larger movements have been detected since - significant enough to be observed photogrammetrically with the help of a UAV. With the intention to assess the dynamics of the landslide we have established a system of periodic observations carried out twice per year - in mid-spring and mid-autumn. This paper offers an activity summary along with the presentation of data acquisition, data processing and results.

  10. DEVELOPMENT OF A GEOGRAPHIC VISUALIZATION AND COMMUNICATIONS SYSTEMS (GVCS) FOR MONITORING REMOTE VEHICLES

    SciTech Connect

    COLEMAN, P.; DUNCAN, M.; DURFEE, R.C.; GOELTZ, R; HARRISON, G.; HODGSON, M.E.; KOOK, M.; MCCLAIN, S.

    1998-03-30

    The purpose of this project is to integrate a variety of geographic information systems capabilities and telecommunication technologies for potential use in geographic network and visualization applications. The specific technical goals of the project were to design, develop, and simulate the components of an audio/visual geographic communications system to aid future real-time monitoring, mapping and managing of transport vehicles. The system components of this feasibility study are collectively referred to as a Geographic Visualization and Communications System (GVCS). State-of-the-art techniques will be used and developed to allow both the vehicle operator and network manager to monitor the location and surrounding environment of a transport vehicle during shipment.

  11. Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we examine the potential of using a small unmanned aerial vehicle (UAV) for rangeland inventory, assessment and monitoring. Imagery with 8-cm resolution was acquired over 290 ha in southwestern Idaho. We developed a semi-automated orthorectification procedure suitable for handling lar...

  12. Study of automatic and manual terminal guidance and control systems for space shuttle vehicles. Volume 2: Section 4 through appendix B

    NASA Technical Reports Server (NTRS)

    Osder, S.; Keller, R.

    1971-01-01

    Guidance and control design studies that were performed for three specific space shuttle candidate vehicles are described. Three types of simulation were considered. The manual control investigations and pilot evaluations of the automatic system performance is presented. Recommendations for systems and equipment, both airborne and ground-based, necessary to flight test the guidance and control concepts for shuttlecraft terminal approach and landing are reported.

  13. Gastrointestinal monitor: automatic titration of jejunal inflow to match peristaltic outflow.

    PubMed

    Moss, Gerald; Posada, Jose G

    2007-06-15

    A peristaltic gradient insures that chyme normally removed from the jejunal feeding site continues to be propelled caudad. The trigger for iatrogenic "feeding intolerance" is the inadvertently overwhelming of the jejunum's peristaltic outflow, even momentarily. Even minimum local stasis can stimulate a vagal reflex response. Motility of the sluggish gut further slows, leading to generalized abdominal distention, malaise, immobility, and impaired respiratory mechanics. Vagal vascular reflexes could explain the 1:1000 incidence of bowel necrosis for jejunally fed patients. We developed a clinical regimen that continuously "checks for residual" at the enteral feeding site, monitoring the adequacy of emptying. The jejunal inflow automatically is titrated to match peristaltic outflow if the latter cannot keep up. Intermittent suction aspirates the feeding catheter into a plastic chamber for 30 s. All swallowed air is removed efficiently within the close confines of the jejunal segment, without wasting digestive juices. The degassed aspirate is returned by gravity with the feedings during the second half of the 1-min cycle, unless incipient excess (>or=20 mL) fluid overflows. Only this relatively small volume of potentially excess fluid is discarded, forestalling the local distention. All patients tolerated immediate feeding without discomfort or abdominal distention, including three that had esophageal resection (including vagotomy) for carcinoma. Postoperative full enteral nutrition can be achieved quickly and safely with minimum attention, despite initially marginal gastrointestinal function. PMID:17509263

  14. Vehicle tethered aerostat optoelectronic monitoring platform system for Shanghai World EXPO

    NASA Astrophysics Data System (ADS)

    Zhou, Weihu; Wang, Yawei; Han, Xiaoquan; Yuan, Jiang

    2010-08-01

    To monitor the whole Shanghai Expo Park, a vehicle tethered aerostat optoelectronic monitoring platform with the characteristic of time-sensitive and all-weather monitoring is described in detail in this paper, which is hung beneath the tethered balloon and equipped with a variety of payloads, including visible light monitoring system, infrared monitoring system, hyperspectral monitoring system, GPS/INS system, monitoring and control system and so on. These equipments can be used for real-time monitoring, environmental monitoring, and ground target location of Shanghai Expo Park. The output High Definition (HD) image of Shanghai Expo Park from visible light monitoring system is clear and stable, and the stabilization accuracy of visual axis is 0.07°(3δ). The optoelectronic monitoring platform system uses the target location technology based on Global Position System/Inertial Navigation System (GPS/INS) system to output real-time location data compatible with Geographic Information System (GIS). Test results show that the maximum errors between the location results (latitude and longitude) solved by the target location program and the reference target are 0.2 0/00(latitude) and 2 0/00(longitude). Now the whole system has been used for surveillance the Shanghai Expo Park since April 2010.

  15. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Alfi, S.; Bruni, S.

    2016-06-01

    A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.

  16. Seismic monitoring of roadbeds for traffic flow, vehicle characterization, and pavement deterioration

    SciTech Connect

    Elbring, G.J.; Ormesher, R.C.; Holcomb, D.J.

    1998-01-01

    A road-side seismic monitoring system has been developed that includes not only instrumentation and fielding methods, but also data analysis methods and codes. The system can be used as either a passive or active monitoring system. In the passive mode, seismic signals generated by passing vehicles are recorded. Analysis of these signals provides information on the location, speed, length, and weight of the vehicle. In the active mode, designed for monitoring pavement degradation, a vibrating magnetostrictive source is coupled to the shoulder of the road and signals generated are recorded on the opposite side of the road. Analysis of the variation in surface wave velocity at various frequencies (dispersion) is used in an attempt to develop models of the near-surface pavement velocity structure. The monitoring system was tested at two sites in New Mexico, an older two-lane road and a newly-paved section of interstate highway. At the older site, the system was able to determine information about vehicle velocity, wheel-base length and weight. The sites showed significant differences in response and the results indicate the need for further development of the method to extract the most information possible for each site investigated.

  17. Perspectives on railway track geometry condition monitoring from in-service railway vehicles

    NASA Astrophysics Data System (ADS)

    Weston, P.; Roberts, C.; Yeo, G.; Stewart, E.

    2015-07-01

    This paper presents a view of the current state of monitoring track geometry condition from in-service vehicles. It considers technology used to provide condition monitoring; some issues of processing and the determination of location; how things have evolved over the past decade; and what is being, or could/should be done in future research. Monitoring railway track geometry from an in-service vehicle is an attractive proposition that has become a reality in the past decade. However, this is only the beginning. Seeing the same track over and over again provides an opportunity for observing track geometry degradation that can potentially be used to inform maintenance decisions. Furthermore, it is possible to extend the use of track condition information to identify if maintenance is effective, and to monitor the degradation of individual faults such as dipped joints. There are full unattended track geometry measurement systems running on in-service vehicles in the UK and elsewhere around the world, feeding their geometry measurements into large databases. These data can be retrieved, but little is currently done with the data other than the generation of reports of track geometry that exceeds predefined thresholds. There are examples of simpler systems that measure some track geometry parameters more or less directly and accurately, but forego parameters such as gauge. Additionally, there are experimental systems that use mathematics and models to infer track geometry using data from sensors placed on an in-service vehicle. Finally, there are systems that do not claim to measure track geometry, but monitor some other quantity such as ride quality or bogie acceleration to infer poor track geometry without explicitly measuring it.

  18. Driving with Diabetes in the Future: In-Vehicle Medical Monitoring

    PubMed Central

    Kerr, David; Olateju, Tolulope

    2010-01-01

    The motor car is a ubiquitous feature of modern life, and most of us spend significant amounts of time in a car, behind the wheel. Driving a vehicle requires complex coordination of cognitive, motor, and sensory skills. All of these aspects can be affected adversely by diabetes per se, with hypoglycemia being the main concern for people with diabetes who drive. Here we introduce the concept of using the motor vehicle as a device to collect and deliver physiological and clinical information, which, in turn, may enable more people to drive more safely by reducing the chances of medical mishaps behind the wheel. This is particularly relevant for people living with diabetes who are at risk from a number of medical conditions that have the potential to have an impact on safe driving. The development of in-vehicle medical monitoring presents a new opportunity for novel collaborations between two industries, which have safety as a core value. PMID:20307408

  19. Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation (SAE Paper 2015-01-1142)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...

  20. Beach monitoring using Unmanned Aerial Vehicles: results of a multi-temporal study

    NASA Astrophysics Data System (ADS)

    Casella, Elisa; Rovere, Alessio; Casella, Marco; Pedroncini, Andrea; Ferrari, Marco; Vacchi, Matteo; Firpo, Marco

    2015-04-01

    The application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing. In this study, we show how we applied small Unmanned Aerial Vehicles to the study of topographic changes of a beach in Italy, NW Mediterranean Sea. We surveyed the same stretch of coastline three times in 5 months, obtaining ortophotos and digital elevation models of the beach using a structure from motion approach. We then calculated the difference in beach topography between each time step, and we related topography changes to both human and natural modifications of the beach morphology that can be inferred from aerial photos or wave data. We conclude that small drones have the potential to open new possibilities for beach monitoring studies, and can be successfully employed for multi-temporal monitoring studies at relatively low cost.

  1. The use of Unmanned Aerial Vehicles in monitoring applications and management of natural hazards

    NASA Astrophysics Data System (ADS)

    Piras, Marco; Aicardi, Irene; Lingua, Andrea; Noardo, Francesca; Chiabrando, Filiberto

    2015-04-01

    In the last years following the damages derived by the climate change (such as flooding and so on) it is growing the necessity to monitor the watercourses with effective and quickly method, where low cost solutions are particularly interested. In some cases, it is essential to have information about the riverbed, the river banks and to analyze the springs and the way in which the water moves. For the terrestrial point of view this knowledge can be acquired through GNSS and topographic methods, but they are still too manually so that they are time-consuming with respect the acquisition of information about the entire area. Another possibility is to perform a laser scanner survey, but the most common instruments (economically sustainable) have some problems to acquire information of sub-water-layer. Moreover, terrestrial surveys from cameras (such as visible, thermic or hyperspectral sensors) can't always offer a useful view of the case study due to the fact that they have a limited range of possible points of acquisition. For these reasons, it can be more effective to have an aerial point of view of the river, for example using UAVs (Unmanned Aerial Vehicles), which have been experimented in these last years for environmental investigations. The proposed studies include photogrammetric and thermographic applications in order to investigate a new post-flooding riverbed arrangement and to identify some sub-riverbed springs inside a stream in order to monitor the behavior of two studied watercourses. The tests have been carried out with a customized low-cost mini-UAV based on the Mikrokopter Hexakopter solution embedded with a navigation system for the autonomous flight (GNSS/IMU) and with the possibility to house different kind of sensors, such as a camera, a GNSS receiver, a LiDAR sensor, a thermographic camera and more other sensors, but with the limitation of a 1.2 Kg payload. The most significant innovation is the possibility to perform quickly and economical

  2. Load tracking and structural health monitoring of unmanned aerial vehicles using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Handelman, A.; Botsev, Y.; Balter, J.; Gud's, P.; Kressel, I.; Tur, M.; Gali, S.; Pillai, A. C. R.; Hari Prasad, M.; Yadav, A. Kumar; Gupta, Nitesh; Sathya, Sakthi; Sundaram, Ramesh

    2011-08-01

    An airborne, high resolution, load tracking and structural health monitoring system for unmanned aerial vehicles is presented. The system is based on embedded optical fiber Bragg sensors interrogated in real time during flight at 2.5 kHz. By analyzing the recorded vibration signature it is now possible to identify and trace the dynamic response of an airborne structure and track its loads.

  3. Load tracking and structural health monitoring of unmanned aerial vehicles using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Handelman, A.; Botsev, Y.; Balter, J.; Gud'S, P.; Kressel, I.; Tur, M.; Gali, S.; Pillai, A. C. R.; Hari Prasad, M.; Yadav, A. Kumar; Gupta, Nitesh; Sathya, Sakthi; Sundaram, Ramesh

    2010-12-01

    An airborne, high resolution, load tracking and structural health monitoring system for unmanned aerial vehicles is presented. The system is based on embedded optical fiber Bragg sensors interrogated in real time during flight at 2.5 kHz. By analyzing the recorded vibration signature it is now possible to identify and trace the dynamic response of an airborne structure and track its loads.

  4. Key solutions to WEB-GIS based GPS vehicle monitoring system

    NASA Astrophysics Data System (ADS)

    Tan, Jian; Gao, Liang; Zhang, Jian Bing; Ren, Yingchao; Wu, Lei; Sheng, Lei

    2007-11-01

    Using Web-GIS to implement GPS monitoring is a promising implementation mode for public service and GPS monitoring in big organization. The critical bottle neck is the bandwidth, because both geographic maps and vehicle positioning data in the system are mass and they need to be transmitted frequently. In this paper, we illustrate five methods to solve this problem. The performances demonstrated in practicing application confirm the validity of these measures. Finally, the system achieves the balance between computational efficiency and transmission speed on internet and gains a nice user experience.

  5. Design and test of a situation-augmented display for an unmanned aerial vehicle monitoring task.

    PubMed

    Lu, Jen-Li; Horng, Ruey-Yun; Chao, Chin-Jung

    2013-08-01

    In this study, a situation-augmented display for unmanned aerial vehicle (UAV) monitoring was designed, and its effects on operator performance and mental workload were examined. The display design was augmented with the knowledge that there is an invariant flight trajectory (formed by the relationship between altitude and velocity) for every flight, from takeoff to landing. 56 participants were randomly assigned to the situation-augmented display or a conventional display condition to work on 4 (number of abnormalities) x 2 (noise level) UAV monitoring tasks three times. Results showed that the effects of situation-augmented display on flight completion time and time to detect abnormalities were robust under various workload conditions, but error rate and perceived mental workload were unaffected by the display type. Results suggest that the UAV monitoring task is extremely difficult, and that display devices providing high-level situation-awareness may improve operator monitoring performance. PMID:24422345

  6. An automatic segmentation method for building facades from vehicle-borne LiDAR point cloud data based on fundamental geographical data

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; Mao, Jie; Cai, Lailiang; Zhang, Xitong; Li, Lixue

    2016-03-01

    In this paper, the author proposed a segmentation method based on the fundamental geographic data, the algorithm describes as following: Firstly, convert the coordinate system of fundamental geographic data to that of vehicle- borne LiDAR point cloud though some data preprocessing work, and realize the coordinate system between them; Secondly, simplify the feature of fundamental geographic data, extract effective contour information of the buildings, then set a suitable buffer threshold value for building contour, and segment out point cloud data of building facades automatically; Thirdly, take a reasonable quality assessment mechanism, check and evaluate of the segmentation results, control the quality of segmentation result. Experiment shows that the proposed method is simple and effective. The method also has reference value for the automatic segmentation for surface features of other types of point cloud.

  7. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section...

  8. A web-based platform for automatic and continuous landslide monitoring: The Rotolon (Eastern Italian Alps) case study

    NASA Astrophysics Data System (ADS)

    Frigerio, Simone; Schenato, Luca; Bossi, Giulia; Cavalli, Marco; Mantovani, Matteo; Marcato, Gianluca; Pasuto, Alessandro

    2014-02-01

    In the Small Dolomites group (Eastern Italian Alps), the Rotolon catchment is affected by a landslide that historically threatened the nearby village of Recoaro Terme. After the last re-activation on November 2010, the need to deploy devices to monitor deformations on the unstable slope became of paramount importance. This paper deals with the methodology, the techniques and the integrated services adopted for the design and the realization of a web-based platform for automatic and continuous monitoring of the Rotolon landslide. The choice of a web environment simplifies data collection, while a remote control permits technical maintenance and calibration on instruments and sensors in the field. Data management is straightforward on a single server, with the dataset being continuously updated. There is a user-friendly web interface which allows a practical up-to-date solution for decision-makers. This web-based monitoring platform represents the first step in the implementation of a complete early warning system.

  9. Development and Flight Testing of an Adaptable Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.; Taylor, B. Douglas; Brett, Rube R.

    2003-01-01

    Development and testing of an adaptable wireless health-monitoring architecture for a vehicle fleet is presented. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained adaptable expert system. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate, and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear.

  10. Advanced laser-based tracking device for motor vehicle lane position monitoring and steering assistance

    NASA Astrophysics Data System (ADS)

    Bachalo, William D.; Inenaga, Andrew; Schuler, Carlos A.

    1995-12-01

    Aerometrics is developing an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. No additional markings are required. A warning is used to alert the driver of excessive weaving or unanticipated departure from the center of the lane. The laser beams are at invisible wavelengths to that operation of the device does not pose a distraction to the driver or other motorists: When appropriate markers are not present on the road, the device is capable of detecting this condition and warn the driver. The sensor system is expected to work well irrespective of ambient light levels, fog and rain. This sensor has enormous commercial potential. It could be marketed as an instrument to warn drivers that they are weaving, used as a research tool to monitor driving patterns, be required equipment for those previously convicted of driving under the influence, or used as a backup sensor for vehicle lateral position control. It can also be used in storage plants to guide robotic delivery vehicles. In this paper, the principles of operation of the sensor, and the results of Aerometrics ongoing testing will be presented.

  11. A model-based approach to monitor complex road-vehicle interactions through first principles

    NASA Astrophysics Data System (ADS)

    Chakravarty, T.; Srinivasarengan, K.; Roy, S.; Bilal, S.; Balamuralidhar, P.

    2013-02-01

    The increasing availability of portable computing devices and their interaction with physical systems ask for designing compact models and simulations to understand and characterize such interactions. For instance, monitoring a road's grade using accelerometer stationed inside a moving ground vehicle is an emerging trend in city administration. Typically the focus has largely been to develop algorithms to articulate meaning from that. But, the experimentation cannot provide with an exhaustive analysis of all scenarios and the characteristics of them. We propose an approach of modeling these interactions of physical systems with gadgets through first principles, in a compact manner to focus on limited number of interactions. We derive an approach to model the vehicle interaction with a pothole on a road, a specific case, but allowing for selectable car parameters like natural damped frequency, tire size etc, thus generalizing it. Different road profiles are also created to represent rough road with sharp irregularities. These act as excitation to the moving vehicle and the interaction is computed to determine the vertical/ lateral vibration of the system i.e vehicle with sensors using joint time-frequency signal analysis methods. The simulation is compared with experimental data for validation. We show some directions as to how simulation of such models can reveal different characteristics of the interaction through analysis of their frequency spectrum. It is envisioned that the proposed models will get enriched further as and when large data set of real life data is captured and appropriate sensitivity analysis is done.

  12. Application of remote monitoring and automatic control system using neural network for small wastewater treatment plants in Korea.

    PubMed

    Lee, H; Lee, K M; Park, C H; Park, Y H

    2005-01-01

    For this study, an automatic control system has been developed by using a neural network and internet-based remote monitoring system for efficient operation of plants that have a serious variance of influent loading and have difficulties in appropriate maintenance, just like small wastewater treatment plants in Korea. In the control algorithm, ORP was used as the main sensor for control. At the point where the ORP value was judged to reach the "nitrate knee" of denitrification and phosphorus release, ORP indicated the state of lower saturation read by the neural network and then changed the operating condition from the reduction state to the oxidation state. For example, if ORP indicates the state of higher saturation at the point of "nitrogen breakpoint" or "ammonia valley" of nitrification, the neural network reads it and cuts off the oxygen supply and mixing. The dORP data have been used as one of the main input for the neural network. After the operation of lab-scale cyclic aeration process using an automatic control system, it has been found that regardless of loading variance, more than 95% of organic matters and more than 60% of nitrogen and phosphorus have been removed. Assuming that an internet-connected computer and a basic web browser are available, this study has developed a remote monitoring system that can monitor the operating status of small plants or any troubles with them. PMID:16104428

  13. Automatic monitoring system for high-steep slope in open-pit mine based on GPS and data analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Chunmei; Li, Xianfu; Qin, Sunwei; Qiu, Dandan; Wu, Yanlin; Xiao, Yun; Zhou, Jian

    2008-12-01

    Recently, GPS has been more and more applicative in open pit mine slope safety monitoring. Daye Iron Mine open pit high-steep slope automatic monitoring system mainly consists of three modules, namely, GPS data processing module, monitoring and warning module, emergency plans module. According to the rock mass structural feature and the side slope stability evaluation, it is arranged altogether to seven GPS distortion monitoring points on the sharp of Fault F9 at Daye iron Mine, adopted the combination of monofrequent static GPS receiver and data-transmission radio to carry on the observation, the data processing mainly uses three transect interpolation method to solve the questions of discontinuity and Effectiveness in the data succession. According to the displacement monitoring data from 1990 to 1996 of Daye Iron Mine East Open Pit Shizi mountain Landslide A2, researching the displacement criterion, rate criterion, acceleration criterion, creep curve tangent angle criterion etc of landslide failure, the result shows that the landslide A2 is the lapse type crag nature landslide whose movement in three phases, namely creep stage, accelerated phase, destruction stage. It is different of the failure criterion in different stages and different position that is at the rear, central, front margin of the landslide. It has important guiding significance to put forward the comprehensive failure criterion of seven new-settled monitoring points combining the slope deformation destruction and macroscopic evidence.

  14. Flight validation of an embedded structural health monitoring system for an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Kressel, I.; Dorfman, B.; Botsev, Y.; Handelman, A.; Balter, J.; Pillai, A. C. R.; Prasad, M. H.; Gupta, N.; Joseph, A. M.; Sundaram, R.; Tur, M.

    2015-07-01

    This paper presents the design and flight validation of an embedded fiber Bragg gratings (FBG) based structural health monitoring (SHM) system for the Indian unmanned aerial vehicle (UAV), Nishant. The embedding of the sensors was integrated with the manufacturing process, taking into account the trimming of parts and assembly considerations. Reliable flight data were recorded on board the vehicle and analyzed so that deviations from normal structural behaviors could be identified, evaluated and tracked. Based on the data obtained, it was possible to track both the loads and vibration signatures by direct sensors’ cross correlation using principal component analysis (PCA) and artificial neural networks (ANNs). Sensor placement combined with proper ground calibration, enabled the distinction between strain and temperature readings. The start of a minor local structural temporary instability was identified during landing, proving the value of such continuous structural airworthy assessment for UAV structures.

  15. Automatic data processing and analysis system for monitoring region around a planned nuclear power plant

    NASA Astrophysics Data System (ADS)

    Kortström, Jari; Tiira, Timo; Kaisko, Outi

    2016-03-01

    The Institute of Seismology of University of Helsinki is building a new local seismic network, called OBF network, around planned nuclear power plant in Northern Ostrobothnia, Finland. The network will consist of nine new stations and one existing station. The network should be dense enough to provide azimuthal coverage better than 180° and automatic detection capability down to ML -0.1 within a radius of 25 km from the site.The network construction work began in 2012 and the first four stations started operation at the end of May 2013. We applied an automatic seismic signal detection and event location system to a network of 13 stations consisting of the four new stations and the nearest stations of Finnish and Swedish national seismic networks. Between the end of May and December 2013 the network detected 214 events inside the predefined area of 50 km radius surrounding the planned nuclear power plant site. Of those detections, 120 were identified as spurious events. A total of 74 events were associated with known quarries and mining areas. The average location error, calculated as a difference between the announced location from environment authorities and companies and the automatic location, was 2.9 km. During the same time period eight earthquakes between magnitude range 0.1-1.0 occurred within the area. Of these seven could be automatically detected. The results from the phase 1 stations of the OBF network indicates that the planned network can achieve its goals.

  16. Design of overload vehicle monitoring and response system based on DSP

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Yiheng; Zhao, Xuefeng

    2014-03-01

    The overload vehicles are making much more damage to the road surface than the regular ones. Many roads and bridges are equipped with structural health monitoring system (SHM) to provide early-warning to these damage and evaluate the safety of road and bridge. However, because of the complex nature of SHM system, it's expensive to manufacture, difficult to install and not well-suited for the regular bridges and roads. Based on this application background, this paper designs a compact structural health monitoring system based on DSP, which is highly integrated, low-power, easy to install and inexpensive to manufacture. The designed system is made up of sensor arrays, the charge amplifier module, the DSP processing unit, the alarm system for overload, and the estimate for damage of the road and bridge structure. The signals coming from sensor arrays go through the charge amplifier. DSP processing unit will receive the amplified signals, estimate whether it is an overload signal or not, and convert analog variables into digital ones so that they are compatible with the back-end digital circuit for further processing. The system will also restrict certain vehicles that are overweight, by taking image of the car brand, sending the alarm, and transferring the collected pressure data to remote data center for further monitoring analysis by rain-flow counting method.

  17. Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2002-01-01

    On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.

  18. Research and implement of remote vehicle monitoring and early-warning system based on GPS/GPRS

    NASA Astrophysics Data System (ADS)

    Li, Shiwu; Tian, Jingjing; Yang, Zhifa; Qiao, Feiyan

    2013-03-01

    Concerning the problem of road traffic safety, remote monitoring and early-warning of vehicle states was the key to prevent road traffic accidents and improve the transportation effectiveness. Through the embedded development technology, a remote vehicle monitoring and early-warning system was developed based on UNO2170 industrial computer of Advantech with WinCE operating system using Embedded Visual C++ (EVC), which combined with multisensor data acquisition technology, global positioning system (GPS) and general packet radio service (GPRS). It achieved the remote monitoring and early-warning of commercial vehicle. This system was installed in a CA1046L2 light truck. Through many road tests, test results showed that the system reacted rapidly for abnormal vehicle states and had stable performance.

  19. Space Shuttle Main Engine plume diagnostics: OPAD approach to vehicle health monitoring

    NASA Astrophysics Data System (ADS)

    Powers, W. T.; Cooper, A. E.; Wallace, T. L.; Buntine, W. L.; Whitaker, K.

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup, AEDC, in Tullahoma, Tennessee. This process, Optical Plume Anomaly Detection (OPAD), has formed the basis for various efforts in the development of in-flight plume spectroscopy and in addition produced a viable test stand vehicle health monitor. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data.

  20. Space Shuttle Main Engine plume diagnostics: OPAD approach to vehicle health monitoring

    NASA Technical Reports Server (NTRS)

    Powers, W. T.; Cooper, A. E.; Wallace, T. L.; Buntine, W. L.; Whitaker, K.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup, AEDC, in Tullahoma, Tennessee. This process, Optical Plume Anomaly Detection (OPAD), has formed the basis for various efforts in the development of in-flight plume spectroscopy and in addition produced a viable test stand vehicle health monitor. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data.

  1. Cloud-Based Smart Health Monitoring System for Automatic Cardiovascular and Fall Risk Assessment in Hypertensive Patients.

    PubMed

    Melillo, P; Orrico, A; Scala, P; Crispino, F; Pecchia, L

    2015-10-01

    The aim of this paper is to describe the design and the preliminary validation of a platform developed to collect and automatically analyze biomedical signals for risk assessment of vascular events and falls in hypertensive patients. This m-health platform, based on cloud computing, was designed to be flexible, extensible, and transparent, and to provide proactive remote monitoring via data-mining functionalities. A retrospective study was conducted to train and test the platform. The developed system was able to predict a future vascular event within the next 12 months with an accuracy rate of 84 % and to identify fallers with an accuracy rate of 72 %. In an ongoing prospective trial, almost all the recruited patients accepted favorably the system with a limited rate of inadherences causing data losses (<20 %). The developed platform supported clinical decision by processing tele-monitored data and providing quick and accurate risk assessment of vascular events and falls. PMID:26276015

  2. The explosive transient camera - An automatic, wide-field sky monitor for short-timescale optical transients

    NASA Technical Reports Server (NTRS)

    Vanderspek, Roland K.; Ricker, George R.; Doty, John P.

    1992-01-01

    The Explosive Transient Camera (ETC) is a widefield sky monitor designed to detect short-timescale (1-l0 s) celestial optical flashes. It consists of two arrays of wide-field CCD cameras monitoring about 0.4 steradian of the night sky for optical transients with risetimes of about 1-10 s and peak magnitudes m(V) of less than about 10. The ETC was designed to be completely automated in order to make year-round observations with minimal human intervention. A small, powerful 68,000-based computer controls all aspects of observations, including roof motion, CCD readouts, and weather sensing: under software control, the ETC is able to perform all the functions of a human observer automatically.

  3. The explosive transient camera - An automatic, wide-field sky monitor for short-timescale optical transients

    NASA Astrophysics Data System (ADS)

    Vanderspek, Roland K.; Ricker, George R.; Doty, John P.

    The Explosive Transient Camera (ETC) is a widefield sky monitor designed to detect short-timescale (1-l0 s) celestial optical flashes. It consists of two arrays of wide-field CCD cameras monitoring about 0.4 steradian of the night sky for optical transients with risetimes of about 1-10 s and peak magnitudes m(V) of less than about 10. The ETC was designed to be completely automated in order to make year-round observations with minimal human intervention. A small, powerful 68,000-based computer controls all aspects of observations, including roof motion, CCD readouts, and weather sensing: under software control, the ETC is able to perform all the functions of a human observer automatically.

  4. Integrating High-Resolution Taskable Imagery into a Sensorweb for Automatic Space-Based Monitoring of Flooding in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mclaren, David; Doubleday, Joshua; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royol; Boonya-aroonnet, Surajate; Thanapakpawin, Porranee; Mandl, Daniel

    2012-01-01

    Several space-based assets (Terra, Aqua, Earth Observing One) have been integrated into a sensorweb to monitor flooding in Thailand. In this approach, the Moderate Imaging Spectrometer (MODIS) data from Terra and Aqua is used to perform broad-scale monitoring to track flooding at the regional level (250m/pixel) and EO-1 is autonomously tasked in response to alerts to acquire higher resolution (30m/pixel) Advanced Land Imager (ALI) data. This data is then automatically processed to derive products such as surface water extent and volumetric water estimates. These products are then automatically pushed to organizations in Thailand for use in damage estimation, relief efforts, and damage mitigation. More recently, this sensorweb structure has been used to request imagery, access imagery, and process high-resolution (several m to 30m), targetable asset imagery from commercial assets including Worldview-2, Ikonos, Radarsat-2, Landsat-7, and Geo-Eye-1. We describe the overall sensorweb framework as well as new workflows and products made possible via these extensions.

  5. Novel compact panomorph lens based vision system for monitoring around a vehicle

    NASA Astrophysics Data System (ADS)

    Thibault, Simon

    2008-04-01

    Automotive applications are one of the largest vision-sensor market segments and one of the fastest growing ones. The trend to use increasingly more sensors in cars is driven both by legislation and consumer demands for higher safety and better driving experiences. Awareness of what directly surrounds a vehicle affects safe driving and manoeuvring of a vehicle. Consequently, panoramic 360° Field of View imaging can contributes most to the perception of the world around the driver than any other sensors. However, to obtain a complete vision around the car, several sensor systems are necessary. To solve this issue, a customized imaging system based on a panomorph lens will provide the maximum information for the drivers with a reduced number of sensors. A panomorph lens is a hemispheric wide angle anamorphic lens with enhanced resolution in predefined zone of interest. Because panomorph lenses are optimized to a custom angle-to-pixel relationship, vision systems provide ideal image coverage that reduces and optimizes the processing. We present various scenarios which may benefit from the use of a custom panoramic sensor. We also discuss the technical requirements of such vision system. Finally we demonstrate how the panomorph based visual sensor is probably one of the most promising ways to fuse many sensors in one. For example, a single panoramic sensor on the front of a vehicle could provide all necessary information for assistance in crash avoidance, lane tracking, early warning, park aids, road sign detection, and various video monitoring views.

  6. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  7. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  8. Health Monitoring Technology for Thermal Protection Systems on Reusable Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Watters, D. G.; Heinemann, J. M.; Karunaratne, K. S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Integrated subsystem health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. This talk summarizes a joint effort between NASA Ames and industry partners to develop rapid non-contact diagnostic tools for health and performance monitoring of thermal protection systems (TPS) on future RLVs. The specific goals for TPS health monitoring are to increase the speed and reliability of TPS inspections for improved operability at lower cost. The technology being developed includes a 3-D laser scanner for examining the exterior surface of the TPS, and a subsurface microsensor suite for monitoring the health and performance of the TPS. The sensor suite consists of passive overlimit sensors and sensors for continuous parameter monitoring in flight. The sensors are integrated with radio-frequency identification (RFID) microchips to enable wireless communication of-the sensor data to an external reader that may be a hand-held scanner or a large portal. Prototypes of the laser system and both types of subsurface sensors have been developed. The laser scanner was tested on Shuttle Orbiter Columbia and was able to dimension surface chips and holes on a variety of TPS materials. The temperature-overlimit microsensor has a diameter under 0.05 inch (suitable for placement in gaps between ceramic TPS tiles) and can withstand 700 F for 15 minutes.

  9. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    NASA Astrophysics Data System (ADS)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  10. GSM Web-Based Centralized Remote Wireless Automatic Controlling and Monitoring of Aquafeeder

    NASA Astrophysics Data System (ADS)

    Wong, C. L.; Idris, A.; Hasan, Z.

    2016-03-01

    This project is about producing a prototype to feed fishes at fish ponds of remote location with the use of GSM mobile phone. An automatic fish feeder is an electric device that has been designed to give out the right amount of pellets at the designed time. In this project, the automatic feeder designed consists of photovoltaic solar cells that are used to generate electricity and storing it into batteries. Solar charge controllers can be used to determine the rate of which current is drawn and added from the batteries. GSM cellular communication is used to allow user to control from a distance. Commands or instructions are sent to the operating system which in return runs the servomotor and blower by blowing certain amount of fish pallets into the pond to feed the fishes. The duration of the feeding processes is fixed by the user, hence the amount of fish food pallets released are precisely the same for each time. This technology is especially useful for fish farmers where they can remotely feed their fishes.

  11. Automatized system of precipitation monitoring and recording with use of radiolocation for urban areas

    NASA Astrophysics Data System (ADS)

    Voronov, Nikolai; Dikinis, Alexandr; Ivanov, Maxim

    2016-04-01

    One of the most important lines of work in the field of increasing the efficiency of functioning of urban water disposal systems is automation of precipitation recording with application of new technological tools for measuring precipitations fallout and forecast. The developed Automatized Information System for Atmospheric Precipitation Recording (AIS «Osadki») includes a network of automatic precipitation stations on the basis of use of the precipitation gauge OTT Pluvio2; a Doppler meteorological radar; software for collection of information about precipitations and control of work of the precipitation stations network; a specialized database that provides direct access to meteorological information and statistical estimation of precipitation distribution for urban conditions. The main advantage of the System is the use of a Doppler meteorological radar which, in combination with the measurement data of the station in the automated mode with a 5-minute interval allows to estimate both the distribution of precipitations on the urban territory their intensity. As the result, it allows to drastically increase the speed of processing of hydrometeorological information and the efficiency of using it for the needs of urban services. This article was prepared within the framework of the Federal Targeted Programme for Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014-2020 (agreement № 14.574.21.0088).

  12. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  13. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    NASA Technical Reports Server (NTRS)

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  14. Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of Shuttle and Shuttle derived vehicles) engineering manual

    NASA Technical Reports Server (NTRS)

    Lyons, J. T.

    1993-01-01

    The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing

  15. Networking Multiple Autonomous Air and Ocean Vehicles for Oceanographic Research and Monitoring

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Rajan, K.

    2013-12-01

    Autonomous underwater and surface vessels (AUVs and ASVs) are coming into wider use as components of oceanographic research, including ocean observing systems. Unmanned airborne vehicles (UAVs) are now available at modest cost, allowing multiple UAVs to be deployed with multiple AUVs and ASVs. For optimal use good communication and coordination among vehicles is essential. We report on the use of multiple AUVs networked in communication with multiple UAVs. The UAVs are augmented by inferential reasoning software developed at MBARI that allows UAVs to recognize oceanographic fronts and change their navigation and control. This in turn allows UAVs to automatically to map frontal features, as well as to direct AUVs and ASVs to proceed to such features and conduct sampling via onboard sensors to provide validation for airborne mapping. ASVs can also act as data nodes for communication between UAVs and AUVs, as well as collecting data from onboard sensors, while AUVs can sample the water column vertically. This allows more accurate estimation of phytoplankton biomass and productivity, and can be used in conjunction with UAV sampling to determine air-sea flux of gases (e.g. CO2, CH4, DMS) affecting carbon budgets and atmospheric composition. In particular we describe tests in July 2013 conducted off Sesimbra, Portugal in conjunction with the Portuguese Navy by the University of Porto and MBARI with the goal of tracking large fish in the upper water column with coordinated air/surface/underwater measurements. A thermal gradient was observed in the infrared by a low flying UAV, which was used to dispatch an AUV to obtain ground truth to demonstrate the event-response capabilities using such autonomous platforms. Additional field studies in the future will facilitate integration of multiple unmanned systems into research vessel operations. The strength of hardware and software tools described in this study is to permit fundamental oceanographic measurements of both ocean

  16. A Pure-Python Robust Frequency Band Automatic Phase Picker for Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, C.; Holland, A. A.

    2013-12-01

    We modify the FPPICK algorithm of Lomax et al. (2012) and implement an automatic phase picking algorithm implemented in Python. The algorithm takes advantage of existing seismological Python libraries, Obspy. The algorithm is designed to work on a variety of instrumentation and automatically adapts to different sampling rates. The time series signals are band-pass filtered for each band, octave, considered within the picker algorithm. The energy of the signal is calculated over an averaging window and multiplied by the instantaneous energy of the signal. This energy time-series is the statistic we can then examine for each frequency band considered. The summary statistic, which allows the identification of a trigger, is simply the maximum value of any frequency bands energy statistic at each sample time. A trigger is identified by using a control chart type statistic to identify when our statistics summary is changing rapidly and exceeds a specified number of standard deviations from the mean of the summary energy statistic. This has the advantage that the picker parameters don't necessarily need to be modified when processing data from a wide variety of instrumentation with different response characteristics. The algorithm also contains a method to determine the first motion direction associated with a pick as well as an uncertainty for the pick. As with any automatic phase identification system false picks can and do occur. A few simple algorithms are implemented to avoid false-picks, the picker can be configured not to include these checks. These algorithms remove picks that occur very close in time, and picks for which a phase has a smaller RMS than the previous time interval. The algorithm uses many techniques within Numpy to improve computation times. The algorithm effectively picks both P- and S-phase from local and regional earthquakes with only small amounts of picker parameter modifications. The picker can pick both P and S phases on local and regional

  17. Monitoring the urban heat island of Bucharest (Romania) through a network of automatic meteorological sensors - first results

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Lucaschi, Bogdan; Ioja, Cristian; Dumitrescu, Alexandru; Manea, Ancuta; Radulescu, Adrian; Dumitrache, Catalin; Tudorache, George; Vanau, Gabriel; Onose, Diana

    2015-04-01

    Extreme warm temperatures and heat waves represent one of the major climate hazards which impact the city of Bucharest (Romania), favoured by the climate background and by the urban characteristics. Previous studies based either on sparse ground sensors or satellite remote sensing indicate that the average differences between the monthly temperature of the built area and the neighbouring rural buffers of Bucharest can reach 3-4°C, but instantaneous values are certainly higher. Since the city shelters about 2 million residents, as well as the major administrative and economic facilities of the country, the hazard management should receive a vivid attention. The meteorological monitoring of the city is currently performed in a systematic manner by the National Meteorological Administration (NMA) through 3 ground-based stations following the standards of the World Meteorological Organization, and through radar and satellite remote sensing. In 2014, NMA set up 7 automatic sensors in specific urban conditions, while the University of Bucharest deployed 30 mobile sensors in a joint effort for enhancing the accuracy of the urban heat island monitoring. Both sensor devices are designed for continuous monitoring (24/7). This presentation focuses on the technical characteristics of the recently implemented network (1), and brings to the public the first results of the monitoring (2), including the implementation experience, the observed benefits and plans for development and applications. The data obtained are compared with the existing data sets from meteorological stations and satellite products, and they are currently integrated in a common database, providing valuable information about the Bucharest's urban heat island. The results have been obtained within the project UCLIMESA (Urban Heat Island Monitoring under Present and Future Climate), ongoing between 2013 and 2015 in the framework of the Programme for Research-Development-Innovation for Space Technology and

  18. Nitrogen dioxide monitoring with an automatic DOAS station at Terra Nova Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Ravegnani, Fabrizio; Kostadinov, Ivan K.; Giovanelli, Giorgio

    1998-08-01

    During the last few years UV-Vis spectrometers were developed at the FISBAT Institute and are used for application of differential optical absorption spectroscopy method to detect many atmospheric trace gases playing important roles in the stratospheric chemistry. After several test both in laboratory and in Antarctic region, one of the spectrometers, called GASCOD2/2, was modified in collaboration with ENEA for unattended and automatic measurement in extreme high-latitude environment. The instrument was installed in December 1995 in the Italian Station at Terra Nova Bay. The aim of this research is to study the dentrification processes during the formation of the so-called ozone hole over the Antarctic region. The preliminary results for the first year of nitrogen dioxide measurement are presented and discussed.

  19. Mobile sailing robot for automatic estimation of fish density and monitoring water quality

    PubMed Central

    2013-01-01

    Introduction The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. Material and method The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Results Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Summary Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health. PMID:23815984

  20. Autonomous monitoring of control hardware to predict off-normal conditions using NIF automatic Alignment Systems

    SciTech Connect

    Awwal, A; Wilhelmsen, K; Leach, R; Kamm, V M; Burkhart, S; Lowe-Webb, R; Cohen, S

    2011-07-20

    The National Ignition Facility (NIF) is a high power laser system capable of supporting high-energy-density experimentation as a user facility for the next 30 years. In order to maximize the facility availability, preventive maintenance enhancements are being introduced into the system. An example of such an enhancement is a camera-based health monitoring system, integrated into the automated alignment system, which provides an opportunity to monitor trends in measurements such as average beam intensity, size of the beam, and pixel saturation. The monitoring system will generate alerts based on observed trends in measurements to allow scheduled pro-active maintenance before routine off-normal detection stops system operations requiring unscheduled intervention.

  1. A real time monitoring system of ringer's solution residual amount for automatic nursing in hopsitals

    NASA Astrophysics Data System (ADS)

    Kwon, Jong-Won; Ha, Kwan-Yong; Nam, Chul; Ayurzana, Odgelral; Kim, Hie-Sik

    2005-12-01

    A real-time embedded system was developed for remote monitoring and checking the residual quantity and changing of Ringer's solution. It is monitored nurses' room. A Load Cell was applied as a sensor to check the residual quantity of Ringer's solution. This Load Cell detects the physical changes of Ringer's solution and transfers electronic signal to the amplifier. Amplified analog signal is converted into digital signal by A/D converter. Developed Embedded system, which computes these data with microprocess (8052) then makes it possible to monitor the residual quantity of Ringer's solution real-time on a server computer. A Checking system on Residual Quantity of Ringer's Solution Using Load cell cut costs using a simple design for a circuit.

  2. Process monitoring using automatic physical measurement based on electrical and physical variability analysis

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan N.; Levi, Shimon; Schwarzband, Ishai; Adan, Ofer; Latinsky, Sergey

    2015-04-01

    A fully automated silicon-based methodology for systematic analysis of electrical features is shown. The system was developed for process monitoring and electrical variability reduction. A mapping step was created by dedicated structures such as static-random-access-memory (SRAM) array or standard cell library, or by using a simple design rule checking run-set. The resulting database was then used as an input for choosing locations for critical dimension scanning electron microscope images and for specific layout parameter extraction then was input to SPICE compact modeling simulation. Based on the experimental data, we identified two items that must be checked and monitored using the method described here: transistor's sensitivity to the distance between the poly end cap and edge of active area (AA) due to AA rounding, and SRAM leakage due to a too close N-well to P-well. Based on this example, for process monitoring and variability analyses, we extensively used this method to analyze transistor gates having different shapes. In addition, analysis for a large area of high density standard cell library was done. Another set of monitoring focused on a high density SRAM array is also presented. These examples provided information on the poly and AA layers, using transistor parameters such as leakage current and drive current. We successfully define "robust" and "less-robust" transistor configurations included in the library and identified unsymmetrical transistors in the SRAM bit-cells. These data were compared to data extracted from the same devices at the end of the line. Another set of analyses was done to samples after Cu M1 etch. Process monitoring information on M1 enclosed contact was extracted based on contact resistance as a feedback. Guidelines for the optimal M1 space for different layout configurations were also extracted. All these data showed the successful in-field implementation of our methodology as a useful process monitoring method.

  3. Automatic semi-continuous accumulation chamber for diffuse gas emissions monitoring in volcanic and non-volcanic areas

    NASA Astrophysics Data System (ADS)

    Lelli, Matteo; Raco, Brunella; Norelli, Francesco; Virgili, Giorgio; Continanza, Davide

    2016-04-01

    Since various decades the accumulation chamber method is intensively used in monitoring activities of diffuse gas emissions in volcanic areas. Although some improvements have been performed in terms of sensitivity and reproducibility of the detectors, the equipment used for measurement of gas emissions temporal variation usually requires expensive and bulky equipment. The unit described in this work is a low cost, easy to install-and-manage instrument that will make possible the creation of low-cost monitoring networks. The Non-Dispersive Infrared detector used has a concentration range of 0-5% CO2, but the substitution with other detector (range 0-5000 ppm) is possible and very easy. Power supply unit has a 12V, 7Ah battery, which is recharged by a 35W solar panel (equipped with charge regulator). The control unit contains a custom programmed CPU and the remote transmission is assured by a GPRS modem. The chamber is activated by DataLogger unit, using a linear actuator between the closed position (sampling) and closed position (idle). A probe for the measure of soil temperature, soil electrical conductivity, soil volumetric water content, air pressure and air temperature is assembled on the device, which is already arranged for the connection of others external sensors, including an automatic weather station. The automatic station has been tested on the field at Lipari island (Sicily, Italy) during a period of three months, performing CO2 flux measurement (and also weather parameters), each 1 hour. The possibility to measure in semi-continuous mode, and at the same time, the gas fluxes from soil and many external parameters, helps the time series analysis aimed to the identification of gas flux anomalies due to variations in deep system (e.g. onset of volcanic crises) from those triggered by external conditions.

  4. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  5. Wireless Subsurface Microsensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Watters, David G.; Pallix, Joan B.; Bahr, Alfred J.; Huestis, David L.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and SRI International to develop 'SensorTags,' radio frequency identification devices coupled with event-recording sensors, that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. Two prototype SensorTag designs containing thermal fuses to indicate a temperature overlimit are presented and discussed.

  6. Wireless subsurface microsensors for health monitoring of thermal protection systems on hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Milos, Frank S.; Watters, David G.; Pallix, Joan B.; Bahr, Alfred J.; Huestis, David L.

    2001-07-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and SRI International to develop SensorTags, radio-frequency identification devices coupled with event-recording sensors, that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. Two prototype SensorTag designs containing thermal fuses to indicate a temperature overlimit are presented and discussed.

  7. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    NASA Astrophysics Data System (ADS)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-12-01

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  8. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    SciTech Connect

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  9. An automatic continuous monitoring station for groundwater geochemistry at an active fault zone in SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Wei; Yang, Tsanyao F.; Fu, Ching-Chou; Hilton, David R.; Liu, Tsung-Kwei; Walia, Vivek; Lai, Tzu-Hua

    2015-04-01

    Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan where many hot springs and mud volcanoes are distributed along tectonic sutures show significant variation prior to and after some disaster seismic events. Such variations, including radon activity, CH4/CO2, CO2/3He and 3He/4He ratios of gas compositions, are considered to be precursors of earthquakes in this area. To validate the relationship between fluid compositions and local earthquakes, a continuous monitoring station has been established at Yun-Shui, which is an artesian well located at an active fault zone in SW Taiwan. It is equipped with a radon detector and a quadrupole mass spectrometer (QMS) for in-situ measurement of the dissolved gas composition. Data is telemetered to Taipei so we are able to monitor variations of gas composition in real time. Furthermore, we also installed a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) at this station. From the SPARTAH samples, we can obtain detailed time series records of H-O isotopic compositions, DIC concentration and δ13C isotopic ratios, and anion concentration of the water samples at this station. After continuous monitoring for about one year, some anomalies occurred prior to some local earthquakes. It demonstrates that this automated system is feasible for long-term continuous seismo-geochemical research in this area. Keywords: monitoring; geochemistry; isotope; dissolved gases; pre-seismic signal.

  10. An automatic collector to monitor insoluble atmospheric deposition: an application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-03-01

    Deposition is one of the key processes controlling the mass budget of the atmospheric mineral dust concentration. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims at presenting an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programed sampling time step (1 day and 2 weeks sampling time steps, respectively). This collector is used to sample atmospheric deposition on Frioul Island which is located in the Gulf of Lions in the Western Mediterranean Basin over which Saharan dust can be transported and deposited. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Two years of continuous deposition measurements performed on a weekly time step sampling on Frioul Island are presented and discussed with in-situ measurements, air mass trajectories and satellite observations of dust.

  11. An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-07-01

    Deposition is one of the key terms of the mineral dust cycle. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims to present an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programmed sampling frequency (from 1 day to 2 weeks respectively). This collector is used to sample atmospheric deposition of Saharan dust on the Frioul islands in the Gulf of Lions in the Western Mediterranean. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Almost 2 years of continuous deposition measurements performed on a weekly sampling basis on Frioul Island are presented and discussed with air mass trajectories and satellite observations of dust. Insoluble mineral deposition measured on Frioul Island was 2.45 g m-2 for February to December 2011 and 3.16 g m-2 for January to October 2012. Nine major mineral deposition events, measured during periods with significant MODIS aerosol optical depths, were associated with air masses coming from the southern Mediterranean Basin and North Africa.

  12. [The development of the multifunctional automatic rotating bed with process-monitoring].

    PubMed

    Geng, Hongzhu; Hu, Monong; Cheng, Ping; Dong, Kejiang; Zhang, Jiaxia; Sun, Juefei

    2013-04-01

    We have developed a new rotating bed for the old and the paralised people. This rotating bed is composed of two bed heads at front and at end, bed boards, guardrails, an electric motor, a reducer, an induction locator and a set of electronic controls. With the preestablished program, the angle between the left/right bed board and the middle board is changed by rotating the left/right board around the rotation axis, and the gravity direction between the human body and the ground is changed by the rotation of the middle board as a whole, so that the middle bed board and the left and right ones will act respectively as supporters of weight of the person who is lying on his back or on his side. In this way, a person can turn over automatically, comfortably and naturally when he/she is asleep. This rotating bed meets the physiological needs of a sleeping person, and people with turning over problems can turn over in a comfortable and natural way by means of biotechnology. It can also improve the quality of sleep and help avoid decubitus. In addition, it can be used to promote the rehabilitation of those who are paralysed by reason of its passive exercising function. PMID:23858752

  13. Using automatic particle counting to monitor aluminum cold mill coolant{copyright}

    SciTech Connect

    Adkins, D.L.

    1995-08-01

    A comprehensive program of testing and evaluation of aluminum cold rolling coolant conditions has been conducted using an automatic particle counting instrument. The project had three objectives. First, there was a need to know at what level of coolant particle contamination is surface cleanliness of an aluminum sheet affected during the rolling process. Secondly, is application of particle counting technology a reliable tool for troubleshooting coolant filtration systems and finally, what are the advantages of analyzing rolling coolants for contamination levels? A testing program was designed and performed over a two-year period. The test results revealed that mineral seal and synthetic-type coolants can begin to affect aluminum sheet surface cleanliness levels when particle sizes greater than five microns are in excess of 10,000 particles power 100 milliliters of rolling coolant. After performing over 3,000 separate tests, it was very clean that particle count levels are direct indicators of how well a filtration facility is performing. Through the application of particle counting, a number of conditions in coolant filtration facilities can be readily detected. Such items as defective filter valving, torn or fractured filter cloth, damaged filter parts, improper equipment operation and many other factors will directly impact the operation of aluminum cold rolling coolant filters. 11 figs.

  14. Practical issues in automatic 3D reconstruction and navigation applications using man-portable or vehicle-mounted sensors

    NASA Astrophysics Data System (ADS)

    Harris, Chris; Stennett, Carl

    2012-09-01

    The navigation of an autonomous robot vehicle and person localisation in the absence of GPS both rely on using local sensors to build a model of the 3D environment. Accomplishing such capabilities is not straightforward - there are many choices to be made of sensor and processing algorithms. Roke Manor Research has broad experience in this field, gained from building and characterising real-time systems that operate in the real world. This includes developing localization for planetary and indoor rovers, model building of indoor and outdoor environments, and most recently, the building of texture-mapped 3D surface models.

  15. Automatic underwater radiotelemetry system to monitor temperature responses of fish in a freshwater environment

    SciTech Connect

    Prepejchal, W.; Thommes, M.M.; Spigarelli, S.A.; Haumann, J.R.; Hess, P.E.

    1980-11-01

    An automated radiotelemetry system developed to monitor body and water temperature of free-swimming fish is described. The receiving and data acquisition unit can be programmed to monitor as many as 16 transmitters (fish); each transmitter can time-multiply data from up to 9 resistive transducers. A typical transmitter with saddle-type attachment, suitable for fish weighing 1 to over 10 kg, has a submerged weight of less than 10 g. The typical range is 2700 m for fish 1 m below the surface. Complete schematics and operational logic are provided for the receiver and data processing printed circuit boards, for 3 types of fish transmitters, and for an environmental parameter monitor. Construction methods, calibration and tagging procedures, and the required computer programs are detailed. This system was in operation for 3 years at the Point Beach Nuclear Power Plant, Two Creeks, Wisconsin. Of the 89 fish tagged, 77 fish provided useable body and water temperature information with tracking times ranging from 0.5 to 505 hours. Modifications which would further improve the system's reliability are discussed.

  16. Determination of molecular weight and other characteristics of co- and terpolymers using automatic continuous online monitoring of polymerization reactions (ACOMP)

    NASA Astrophysics Data System (ADS)

    Enohnyaket, Pascal E. A.

    The Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP), is a technique developed by the Reed Research Group at Tulane University. By simultaneously monitoring and combining signals from a continuously dilute reactor stream, detectors such as a multi-angle light scattering detector, near infra-red spectrometer, viscometer, differential refractive index, and a full wavelength UV/Visible detector were used in a model-independent fashion to follow the weight-average molecular weight, intrinsic viscosity, the concentrations of each comonomer, and hence the evolution of the average instantaneous and cumulative compositions along the chains as comonomers are consumed. The goal of this dissertation is to make the ACOMP system more useful in very complex polymerization situations by improving it with additional detectors and formalisms (such as a new expression for computing the molecular weight a copolymer of nth degree) and to exploit its robustness in situations where traditional routes fail or are of limited value. By providing a continuum of data, ACOMP allows polymer scientists to better understand and control new reaction schemes. At the pilot plant, it can be used to optimize reaction conditions. Because the ACOMP system is relatively cheap, user friendly, can be environmentally friendly, less bulky and very efficient, it is my desire to use ACOMP to solve some of the problems in the petroleum, plastic and drug manufacturing industries in Cameroon (and Africa).

  17. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34.75 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION...

  18. A suite of tools for monitoring and assessing impacts of road networks and off-road vehicle activity on rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite increasing amounts of transportation related activities on rangelands globally, few tools exist for assessing and monitoring impacts of roads, road networks and off-road vehicle traffic. This is in part due to an historical emphasis on grazing issues in rangelands and the complexity of monit...

  19. Monitoring agricultural crops using a light-weight hyperspectral mapping system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Suomalainen, Juha; Franke, Jappe; Bartholomeus, Harm; Mücher, Sander; Becker, Rolf

    2014-05-01

    Remote sensing has been identified as a key technology to allow near real-time detection and diagnosis of crop status at the field level. Although satellite based remote sensing techniques have already proven to be relevant for many requirements of crop inventory and monitoring, they might lack flexibility to support anomaly detection at specific moments over the growing season. Imagery taken from unmanned aerial vehicles (UAV) are shown to be an effective alternative platform for crop monitoring, given their potential of high spatial and temporal resolution, and their high flexibility in image acquisition programming. In addition, several studies have shown that an increased spectral resolution as available from hyperspectral systems provide the opportunity to estimate biophysical properties like leaf-area-index (LAI), chlorophyll and leaf water content with improved accuracies. To investigate the opportunities of unmanned aerial vehicles (UAV) in operational crop monitoring, we have developed a light-weight hyperspectral mapping system (< 2 kg) suitable to be mounted on small UAVs. Its composed of an octocopter UAV-platform with a pushbroom spectrometer consisting of a spectrograph, an industrial camera functioning as frame grabber, storage device, and computer, a separate INS and finally a photogrammetric camera. The system is able to produce georeferenced and georectified hyperspectral data cubes in the 400-1000 nm spectral range at 10-50 cm resolution. The system is tested in a fertilization experiment for a potato crop on a 12 ha experimental field in the South of the Netherlands. In the experiment UAV-based hyperspectral images were acquired on a weekly basis together with field data on chlorophyll as indicator for the nitrogen situation of the crop and leaf area index (LAI) as indicator for biomass status. Initially, the quality aspects of the developed light-weight hyperspectral mapping system will presented with regard to its radiometric and geometric

  20. Fully automatic flow-based device for monitoring of drug permeation across a cell monolayer.

    PubMed

    Zelená, Lucie; Marques, Sara S; Segundo, Marcela A; Miró, Manuel; Pávek, Petr; Sklenářová, Hana; Solich, Petr

    2016-01-01

    A novel flow-programming setup based on the sequential injection principle is herein proposed for on-line monitoring of temporal events in cell permeation studies. The permeation unit consists of a Franz cell with its basolateral compartment mixed under mechanical agitation and thermostated at 37 °C. The apical compartment is replaced by commercially available Transwell inserts with a precultivated cell monolayer. The transport of drug substances across epithelial cells genetically modified with the P-glycoprotein membrane transporter (MDCKII-MDR1) is monitored on-line using rhodamine 123 as a fluorescent marker. The permeation kinetics of the marker is obtained in a fully automated mode by sampling minute volumes of solution from the basolateral compartment in short intervals (10 min) up to 4 h. The effect of a P-glycoprotein transporter inhibitor, verapamil as a model drug, on the efficiency of the marker transport across the cell monolayer is thoroughly investigated. The analytical features of the proposed flow method for cell permeation studies in real time are critically compared against conventional batch-wise procedures and microfluidic devices. PMID:26615589

  1. The Interplay between Uncertainty Monitoring and Working Memory: Can Metacognition Become Automatic?

    PubMed Central

    Coutinho, Mariana V. C.; Redford, Joshua S.; Church, Barbara A.; Zakrzewski, Alexandria C.; Couchman, Justin J.; Smith, J. David

    2016-01-01

    The uncertainty response has grounded the study of metacognition in nonhuman animals. Recent research has explored the processes supporting uncertainty monitoring in monkeys. It revealed that uncertainty responding in contrast to perceptual responding depends on significant working memory resources. The aim of the present study was to expand this research by examining whether uncertainty monitoring is also working memory demanding in humans. To explore this issue, human participants were tested with or without a cognitive load on a psychophysical discrimination task including either an uncertainty response (allowing the decline of difficult trials) or a middle-perceptual response (labeling the same intermediate trial levels). The results demonstrated that cognitive load reduced uncertainty responding, but increased middle responding. However, this dissociation between uncertainty and middle responding was only observed when participants either lacked training or had very little training with the uncertainty response. If more training was provided, the effect of load was small. These results suggest that uncertainty responding is resource demanding, but with sufficient training, human participants can respond to uncertainty either by using minimal working memory resources or effectively sharing resources. These results are discussed in relation to the literature on animal and human metacognition. PMID:25971878

  2. The interplay between uncertainty monitoring and working memory: Can metacognition become automatic?

    PubMed

    Coutinho, Mariana V C; Redford, Joshua S; Church, Barbara A; Zakrzewski, Alexandria C; Couchman, Justin J; Smith, J David

    2015-10-01

    The uncertainty response has grounded the study of metacognition in nonhuman animals. Recent research has explored the processes supporting uncertainty monitoring in monkeys. It has revealed that uncertainty responding, in contrast to perceptual responding, depends on significant working memory resources. The aim of the present study was to expand this research by examining whether uncertainty monitoring is also working memory demanding in humans. To explore this issue, human participants were tested with or without a cognitive load on a psychophysical discrimination task that included either an uncertainty response (allowing the participant to decline difficult trials) or a middle-perceptual response (labeling the same intermediate trial levels). The results demonstrated that cognitive load reduced uncertainty responding, but increased middle responding. However, this dissociation between uncertainty and middle responding was only observed when participants either lacked training or had very little training with the uncertainty response. If more training was provided, the effect of load was small. These results suggest that uncertainty responding is resource demanding, but with sufficient training, human participants can respond to uncertainty either by using minimal working memory resources or by effectively sharing resources. These results are discussed in relation to the literature on animal and human metacognition. PMID:25971878

  3. Annual low-cost monitoring of a coastal site in Greece by an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Dirk; Bareth, Georg

    2016-04-01

    Coastal areas are under permanent change and are also the result of past processes. These processes are for example sediment transport, accumulation and erosion by normal and extreme waves (storms or tsunamis). As about 23% of the Worl&dacute;s population lives within a 100 km distance of coasts, knowledge about coastal processes is important, in particular for possible changes in the nearby future. The past devastating tsunami events demonstrated profoundly the high vulnerability of coastal areas. In order to estimate the different effects, coastal monitoring approaches are of interest. Several different methods exist in order to determine changes in the sedimentary budget and coastline configuration. In order to estimate constant annual changes, we have applied terrestrial laser scanning (TLS) in an annual monitoring approach (2009-2011). In 2014, we changed to an approach based on dense imaging and structure-from-motion, applying an unmanned aerial vehicle (UAV) in order to conduct an annual monitoring of a coastal site in western Greece. Therefore, a GoPro Hero 3+ and a Canon PowerShot S110 mounted on a DJI-Phantom 2 were used. All surveys were conducted in a manually structured image acquisition with a huge overlap. Ground control points (GCP) were measured by tachymetric surveying. This successful approach was repeated again in 2015 with the Canon camera. The measurements of 2014 were controlled by an additional TLS survey, which revealed the high accuracy and more suitable coverage for the UAV-based data. Likewise, the large picture datasets were artificially reduced in order to estimate the most efficient number of images for dense point cloud processing. In addition, also the number of GCPs was decreased for one dataset. Overall, high-resolution digital elevation models with a ground resolution of 10 mm and an equal accuracy were achieved with this low-cost equipment. The data reveals the slight changes on this selected site.

  4. Stream Restoration Monitoring Utilizing an Unmanned Aerial Vehicle, Teton Creek, Idaho

    NASA Astrophysics Data System (ADS)

    Stegman, T.

    2014-12-01

    Stream restoration is a growing field in fluvial geomorphology. As demands on water resources increase the need for sustainable and healthy waterways becomes even more essential. This research investigates how an unmanned aerial vehicle (UAV) can be utilized for data collection necessary in stream restoration design and evaluation. UAV's offer an inexpensive method to collect information on channel geometry and map grain size distributions of the bed material. This data is critical in hydraulic flow modeling and engineering plans needed to create a restoration design, as well as evaluate if an implemented project has met its goals. This research utilized a UAV and structure-from-motion photogrammetry to monitor a recent stream restoration project designed to reduce erosion on a 1.9 km reach of Teton Creek in Eastern Idaho. A digital elevation model of difference was created from an as-built field survey and a UAV derived terrain model to identify areas of erosion and deposition in the restoration reach. The data has shown relatively small areas of channel instability in the restoration reach, and has also identified sections which may require additional restoration activities in Teton Creek. The grain size distribution of Teton Creek was also mapped utilizing a UAV and digital photosieving techniques, for use in sediment transport equations in the restoration reach. Data collected quickly and inexpensively from a UAV is valuable to river managers to monitor restoration work. This research identifies the methods and materials needed for river managers to conduct UAV surveys of streams for use in restoration design and monitoring.

  5. Annual low-cost monitoring of a coastal site in Greece by an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Dirk; Bareth, Georg

    2016-04-01

    Coastal areas are under permanent change and are also the result of past processes. These processes are for example sediment transport, accumulation and erosion by normal and extreme waves (storms or tsunamis). As about 23% of the World's population lives within a 100 km distance of coasts, knowledge about coastal processes is important, in particular for possible changes in the nearby future. The past devastating tsunami events demonstrated profoundly the high vulnerability of coastal areas. In order to estimate the different effects, coastal monitoring approaches are of interest. Several different methods exist in order to determine changes in the sedimentary budget and coastline configuration. In order to estimate constant annual changes, we have applied terrestrial laser scanning (TLS) in an annual monitoring approach (2009-2011). In 2014, we changed to an approach based on dense imaging and structure-from-motion, applying an unmanned aerial vehicle (UAV) in order to conduct an annual monitoring of a coastal site in western Greece. Therefore, a GoPro Hero 3+ and a Canon PowerShot S110 mounted on a DJI-Phantom 2 were used. All surveys were conducted in a manually structured image acquisition with a huge overlap. Ground control points (GCP) were measured by tachymetric surveying. This successful approach was repeated again in 2015 with the Canon camera. The measurements of 2014 were controlled by an additional TLS survey, which revealed the high accuracy and more suitable coverage for the UAV-based data. Likewise, the large picture datasets were artificially reduced in order to estimate the most efficient number of images for dense point cloud processing. In addition, also the number of GCPs was decreased for one dataset. Overall, high-resolution digital elevation models with a ground resolution of 10 mm and an equal accuracy were achieved with this low-cost equipment. The data reveals the slight changes on this selected site.

  6. [The implications of the automatic blood pressure monitoring (ABPM) in the type I diabetes].

    PubMed

    Cobuz, C

    2009-01-01

    The connection between hypertension and diabetes emerges, in medical practice, from the current belief imposed by the European Society of Cardiology adding to the notion of total cardiovascular risk. An increse in the systolic blood pressure at night time is the first detectable manifestation of the regulation disorders of the blood pressure in type I diabetes. An early increase of the nocturnal blood pressure can play a key role in the detection of the evolution towards diabetic nephropathy. This modification can be a valuable potential marker for the diabetic nephropathy and could provide a reason for treating the high risk patients before the onset of microalbuminuria. The evaluation of the nefropathy risk in the early stages of type I diabetes using Ambulatory Blood Pressure Monitoring (ABPM) method offers the best premisses for preventing the progression of the disease towards microalbuminuria and hypertension. PMID:21495340

  7. Prevention of inappropriate ICD shocks due to lead insulation failure by continuous monitoring and automatic alert.

    PubMed

    Gelder, Robert N; Gunderson, Bruce D

    2012-06-01

    Patients with implantable cardioverter defibrillator lead insulation failures may present with oversensing and/or abnormal impedance. The Lead Integrity Alert (LIA) monitors right ventricular pace/sense leads using both continuous oversensing and daily impedance measurementd. Oversensing consists of isolated short R-R intervals and nonsustained runs of short R-R intervals. The LIA algorithm has been studied for Sprint Fidelis conductor fractures, but not for lead insulation failures. We report on a patient with a failed St. Jude Riata™ ST lead (St. Jude Medical, St. Paul, MN, USA) connected to a Medtronic Virtuoso DR (Medtronic Inc., Minneapolis, MN, USA) with the LIA. Oversensing triggered the LIA, while the impedance trend was normal. PMID:22309317

  8. Automatic circuit interrupter

    NASA Technical Reports Server (NTRS)

    Dwinell, W. S.

    1979-01-01

    In technique, voice circuits connecting crew's cabin to launch station through umbilical connector disconnect automatically unused, or deadened portion of circuits immediately after vehicle is launched, eliminating possibility that unused wiring interferes with voice communications inside vehicle or need for manual cutoff switch and its associated wiring. Technique is applied to other types of electrical actuation circuits, also launch of mapped vehicles, such as balloons, submarines, test sleds, and test chambers-all requiring assistance of ground crew.

  9. The continuous automatic monitoring network installed in Tuscany (Italy) since late 2002, to study earthquake precursory phenomena

    NASA Astrophysics Data System (ADS)

    Pierotti, Lisa; Cioni, Roberto

    2010-05-01

    Since late 2002, a continuous automatic monitoring network (CAMN) was designed, built and installed in Tuscany (Italy), in order to investigate and define the geochemical response of the aquifers to the local seismic activity. The purpose of the investigation was to identify eventual earthquake precursors. The CAMN is constituted by two groups of five measurement stations each. A first group has been installed in the Serchio and Magra graben (Garfagnana and Lunigiana Valleys, Northern Tuscany), while the second one, in the area of Mt. Amiata (Southern Tuscany), an extinct volcano. Garfagnana, Lunigiana and Mt. Amiata regions belong to the inner zone of the Northern Apennine fold-and-thrust belt. This zone has been involved in the post-collision extensional tectonics since the Upper Miocene-Pliocene. Such tectonic activity has produced horst and graben structures oriented from N-S to NW-SE that are transferred by NE-SW system. Both Garfagnana (Serchio graben) and Lunigiana (Magra graben) belong to the most inner sector of the belt where the seismic sources, responsible for the strongest earthquakes of the northern Apennine, are located (e.g. the M=6.5 earthquake of September 1920). The extensional processes in southern Tuscany have been accompanied by magmatic activity since the Upper Miocene, developing effusive and intrusive products traditionally attributed to the so-called Tuscan Magmatic Province. Mt. Amiata, whose magmatic activity ceased about 0.3 M.y. ago, belongs to the extensive Tyrrhenian sector that is characterized by high heat flow and crustal thinning. The whole zone is characterized by wide-spread but moderate seismicity (the maximum recorded magnitude has been 5.1 with epicentre in Piancastagnaio, 1919). The extensional regime in both the Garfagnana-Lunigiana and Mt. Amiata area is confirmed by the focal mechanisms of recent earthquakes. An essential phase of the monitoring activities has been the selection of suitable sites for the installation of

  10. Automatic Detection of Swallowing Events by Acoustical Means for Applications of Monitoring of Ingestive Behavior

    PubMed Central

    Sazonov, Edward S.; Makeyev, Oleksandr; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Edward L.; Neuman, Michael R.

    2010-01-01

    Our understanding of etiology of obesity and overweight is incomplete due to lack of objective and accurate methods for Monitoring of Ingestive Behavior (MIB) in the free living population. Our research has shown that frequency of swallowing may serve as a predictor for detecting food intake, differentiating liquids and solids, and estimating ingested mass. This paper proposes and compares two methods of acoustical swallowing detection from sounds contaminated by motion artifacts, speech and external noise. Methods based on mel-scale Fourier spectrum, wavelet packets, and support vector machines are studied considering the effects of epoch size, level of decomposition and lagging on classification accuracy. The methodology was tested on a large dataset (64.5 hours with a total of 9,966 swallows) collected from 20 human subjects with various degrees of adiposity. Average weighted epoch recognition accuracy for intra-visit individual models was 96.8% which resulted in 84.7% average weighted accuracy in detection of swallowing events. These results suggest high efficiency of the proposed methodology in separation of swallowing sounds from artifacts that originate from respiration, intrinsic speech, head movements, food ingestion, and ambient noise. The recognition accuracy was not related to body mass index, suggesting that the methodology is suitable for obese individuals. PMID:19789095

  11. Economic comparison of two types of automatic water-quality monitors

    USGS Publications Warehouse

    Katzenbach, Max

    1988-01-01

    A comparison of the U.S. Geological Survey's minimonitor system with a self-contained, 'package-sensor' system indicates that the package-sensor system requires less servicing time. The U.S. Geological Survey minimonitor is powered by an external battery and is housed in a weatherproof shelter. This instrument measures temperature, specific conductance, dissolved oxygen, and pH by means of sensors with extension cables having underewater connectors; data are recorder in binary coded decimal form on a 16-channel punched-paper-tape recorder that is housed in a shelter. The packaged-sensor system also measures temperature, specific conductanoe,dissolved oxygen, and pH by means of sensors housed in a package that is submerged in the stream. It has an internal power supply, no moving parts, anf does not require a weatherproof shelter; data are stored in solid-state memory. Minimonitors were installed at four sites in Ohio where U.S. Geological Survey flowthrough monitors already were in opertion. Two package-sensor systems also assigned to each site and alternated every 2 weeks. Detailed records were kept of (1) time involved in operation and maintenace of the systems, and (2) equipment problems during the test period, which lasted from October 1985 through September 1986. Equipment costs were not considered in the economic evaluation. Results of the comparisons show that the packaged-sensor system required less time to install, operate, and maintain than the minimonitor system.

  12. High-Resolution, Semi-Automatic Fault Mapping Using Umanned Aerial Vehicles and Computer Vision: Mapping from an Armchair

    NASA Astrophysics Data System (ADS)

    Micklethwaite, S.; Vasuki, Y.; Turner, D.; Kovesi, P.; Holden, E.; Lucieer, A.

    2012-12-01

    Our ability to characterise fractures depends upon the accuracy and precision of field techniques, as well as the quantity of data that can be collected. Unmanned Aerial Vehicles (UAVs; otherwise known as "drones") and photogrammetry, provide exciting new opportunities for the accurate mapping of fracture networks, over large surface areas. We use a highly stable, 8 rotor, UAV platform (Oktokopter) with a digital SLR camera and the Structure-from-Motion computer vision technique, to generate point clouds, wireframes, digital elevation models and orthorectified photo mosaics. Furthermore, new image analysis methods such as phase congruency are applied to the data to semiautomatically map fault networks. A case study is provided of intersecting fault networks and associated damage, from Piccaninny Point in Tasmania, Australia. Outcrops >1 km in length can be surveyed in a single 5-10 minute flight, with pixel resolution ~1 cm. Centimetre scale precision can be achieved when selected ground control points are measured using a total station. These techniques have the potential to provide rapid, ultra-high resolution mapping of fracture networks, from many different lithologies; enabling us to more accurately assess the "fit" of observed data relative to model predictions, over a wide range of boundary conditions.igh resolution DEM of faulted outcrop (Piccaninny Point, Tasmania) generated using the Oktokopter UAV (inset) and photogrammetric techniques.

  13. Automatic imitation in rhythmical actions: kinematic fidelity and the effects of compatibility, delay, and visual monitoring.

    PubMed

    Eaves, Daniel L; Turgeon, Martine; Vogt, Stefan

    2012-01-01

    We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping), or when the dominant plane of movement was different (horizontal vs. vertical). In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane) the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action's impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams. PMID:23071623

  14. Employing a communication payload on an unmanned underwater vehicle (UUV) for harbor monitoring and homeland defense

    NASA Astrophysics Data System (ADS)

    Wells, Jeffrey S.; Wurth, Timothy J.; Manning, Mark C.

    2004-09-01

    The Homeland Defense community is increasing its focus on port security and harbor protection. Rising to the challenge, the U.S. Coast Guard is tasked with monitoring and protecting our harbors where commercial container ships enter. Tracking of the onboard containers is of great concern to the protectors of the waterfront. A system capable of identifying the number of containers onboard the vessel, when the containers are added or removed, contents of the containers, etc., will significantly reduce the potential for a security problem by providing essential information to the Coast Guard or other port security so that they can decide whether or not pre-boarding is necessary. That is, boarding the ship and inspecting the cargo while still at a safe distance from the harbor. A conceptual pictorial of this concept is shown in Figure 1. This paper presents a system that utilizes transmitters embedded on the containers which incorporate unique ID codes identifying the container, its history, and other information. A Communication/Navigation Aid (C/NA) type vehicle/buoy concept, presently being developed by Sippican (under contract to the Office of Naval Research (ONR) as part of the Autonomous Operations -- Future Naval Capabilities (AO-FNC) program, positioned at sea, would include a payload of NuWaves" communication transceivers able to receive the cargo container"s transmitted ID and forward this information by RF link to a ground station. The Port Authority and/or the Coast Guard would then utilize the information to make an assessment of the vessel prior to port entry. Although, this paper illustrates a scenario applicable to the cargo shipping industry, it is also applicable to other homeland defense areas such as unattended open ocean force protection, drug and law enforcement, and environmental monitoring.

  15. Design and study of ultrasound-based automatic patient movement monitoring device for quantifying the intrafraction motion during teletherapy treatment.

    PubMed

    Senthilkumar, S; Vinothraj, R

    2012-01-01

    The aim of the present study is to fabricate indigenously ultrasonic-based automatic patient's movement monitoring device (UPMMD) that immediately halts teletherapy treatment if a patient moves, claiming accurate field treatment. The device consists of circuit board, magnetic attachment device, LED indicator, speaker, and ultrasonic emitter and receiver, which are placed on either side of the treatment table. The ultrasonic emitter produces the ultrasound waves and the receiver accepts the signal from the patient. When the patient moves, the receiver activates the circuit, an audible warning sound will be produced in the treatment console room alerting the technologist to stop treatment. Simultaneously, the electrical circuit to the teletherapy machine will be interrupted and radiation will be halted. The device and alarm system can detect patient movements with a sensitivity of about 1 mm. Our results indicate that, in spite of its low-cost, low-power, high-precision, nonintrusive, light weight, reusable and simplicity features, UPMMD is highly sensitive and offers accurate measurements. Furthermore, UPMMD is patient-friendly and requires minimal user training. This study revealed that the device can prevent the patient's normal tissues from unnecessary radiation exposure, and also it is helpful to deliver the radiation to the correct tumor location. Using this alarming system the patient can be repositioned after interrupting the treatment machine manually. It also enables the technologists to do their work more efficiently. PMID:23149769

  16. Automatic recognition of fin and blue whale calls for real-time monitoring in the St. Lawrence.

    PubMed

    Mouy, Xavier; Bahoura, Mohammed; Simard, Yvan

    2009-12-01

    Monitoring blue and fin whales summering in the St. Lawrence Estuary with passive acoustics requires call recognition algorithms that can cope with the heavy shipping noise of the St. Lawrence Seaway and with multipath propagation characteristics that generate overlapping copies of the calls. In this paper, the performance of three time-frequency methods aiming at such automatic detection and classification is tested on more than 2000 calls and compared at several levels of signal-to-noise ratio using typical recordings collected in this area. For all methods, image processing techniques are used to reduce the noise in the spectrogram. The first approach consists in matching the spectrogram with binary time-frequency templates of the calls (coincidence of spectrograms). The second approach is based on the extraction of the frequency contours of the calls and their classification using dynamic time warping (DTW) and the vector quantization (VQ) algorithms. The coincidence of spectrograms was the fastest method and performed better for blue whale A and B calls. VQ detected more 20 Hz fin whale calls but with a higher false alarm rate. DTW and VQ outperformed for the more variable blue whale D calls. PMID:20000904

  17. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    PubMed Central

    Gonzalez, Luis F.; Montes, Glen A.; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J.

    2016-01-01

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification. PMID:26784196

  18. Construction of an unmanned aerial vehicle remote sensing system for crop monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seungtaek; Ko, Jonghan; Kim, Mijeong; Kim, Jongkwon

    2016-04-01

    We constructed a lightweight unmanned aerial vehicle (UAV) remote sensing system and determined the ideal method for equipment setup, image acquisition, and image processing. Fields of rice paddy (Oryza sativa cv. Unkwang) grown under three different nitrogen (N) treatments of 0, 50, or 115 kg/ha were monitored at Chonnam National University, Gwangju, Republic of Korea, in 2013. A multispectral camera was used to acquire UAV images from the study site. Atmospheric correction of these images was completed using the empirical line method, and three-point (black, gray, and white) calibration boards were used as pseudo references. Evaluation of our corrected UAV-based remote sensing data revealed that correction efficiency and root mean square errors ranged from 0.77 to 0.95 and 0.01 to 0.05, respectively. The time series maps of simulated normalized difference vegetation index (NDVI) produced using the UAV images reproduced field variations of NDVI reasonably well, both within and between the different N treatments. We concluded that the UAV-based remote sensing technology utilized in this study is potentially an easy and simple way to quantitatively obtain reliable two-dimensional remote sensing information on crop growth.

  19. Real-Time Monitoring System Using Unmanned Aerial Vehicle Integrated with Sensor Observation Service

    NASA Astrophysics Data System (ADS)

    Witayangkurn, A.; Nagai, M.; Honda, K.; Dailey, M.; Shibasaki, R.

    2011-09-01

    The Unmanned Aerial Vehicle (UAV) is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service) makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS) and Sensor Service Grid (SSG) to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  20. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.

    PubMed

    Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J

    2015-01-01

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification. PMID:26784196

  1. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots

    PubMed Central

    Lelong, Camille C. D.; Burger, Philippe; Jubelin, Guillaume; Roux, Bruno; Labbé, Sylvain; Baret, Frédéric

    2008-01-01

    This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships.

  2. Wireless Subsurface Sensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and industry partners to develop "wireless" devices that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. These devices are sensors integrated with radio-frequency identification (RFID) microchips to enable non-contact communication of sensor data to an external reader that may be a hand-held scanner or a large portal. Both passive and active prototype devices have been developed. The passive device uses a thermal fuse to indicate the occurrence of excessive temperature. This device has a diameter under 0.13 cm. (suitable for placement in gaps between ceramic TPS tiles on an RLV) and can withstand 370 C for 15 minutes. The active device contains a small battery to provide power to a thermocouple for recording a temperature history during flight. The bulk of the device must be placed beneath the TPS for protection from high temperature, but the thermocouple can be placed in a hot location such as near the external surface.

  3. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility

    NASA Astrophysics Data System (ADS)

    Rezvanizaniani, Seyed Mohammad; Liu, Zongchang; Chen, Yan; Lee, Jay

    2014-06-01

    As hybrid and electric vehicle technologies continue to advance, car manufacturers have begun to employ lithium ion batteries as the electrical energy storage device of choice for use in existing and future vehicles. However, to ensure batteries are reliable, efficient, and capable of delivering power and energy when required, an accurate determination of battery performance, health, and life prediction is necessary. This paper provides a review of battery prognostics and health management (PHM) techniques, with a focus on major unmet needs in this area for battery manufacturers, car designers, and electric vehicle drivers. A number of approaches are presented that have been developed to monitor battery health status and performance, as well as the evolution of prognostics modeling methods. The goal of this review is to render feasible and cost effective solutions for dealing with battery life issues under dynamic operating conditions.

  4. A Modern Automatic Chamber Technique as a Powerful Tool for CH4 and CO2 Flux Monitoring

    NASA Astrophysics Data System (ADS)

    Mastepanov, M.; Christensen, T. R.; Lund, M.; Pirk, N.

    2014-12-01

    A number of similar systems were used for monitoring of CH4 and CO2 exchange by the automatic chamber method in a range of different ecosystems. The measurements were carried out in northern Sweden (mountain birch forest near Abisko, 68°N, 2004-2010), southern Sweden (forest bog near Hässleholm, 56°N, 2007-2014), northeastern Greenland (arctic fen in Zackenberg valley, 74°N, 2005-2014), southwestern Greenland (fen near Nuuk, 64°N, 2007-2014), central Svalbard (arctic fen near Longyearbyen, 78°N, 2011-2014). Those in total 37 seasons of measurements delivered not only a large amount of valuable flux data, including a few novel findings (Mastepanov et al., Nature, 2008; Mastepanov et al., Biogeosciences, 2013), but also valuable experience with implementation of the automatic chamber technique using modern analytical instruments and computer technologies. A range of high resolution CH4 analysers (DLT-100, FMA, FGGA - Los Gatos Research), CO2 analyzers (EGM-4, SBA-4 - PP Systems; Li-820 - Li-Cor Biosciences), as well as Methane Carbon Isotope Analyzer (Los Gatos Research) has shown to be suitable for precise measurements of fluxes, from as low as 0.1 mg CH4 m-1 d-1 (wintertime measurements at Zackenberg, unpublished) to as high as 2.4 g CH4 m-1 d-1 (autumn burst 2007 at Zackenberg, Mastepanov et al., Nature, 2008). Some of these instruments had to be customized to accommodate 24/7 operation in harsh arctic conditions. In this presentation we will explain some of these customizations. High frequency of concentration measurements (1 Hz in most cases) provides a unique opportunity for quality control of flux calculations; on the other hand, this enormous amount of data can be analyzed only using highly automated algorithms. A specialized software package was developed and improved through the years of measurements and data processing. This software automates the data flow from raw concentration data of different instruments and sensors and various status records

  5. Drones at the Beach - Surf Zone Monitoring Using Rotary Wing Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rynne, P.; Brouwer, R.; de Schipper, M. A.; Graham, F.; Reniers, A.; MacMahan, J. H.

    2014-12-01

    We investigate the potential of rotary wing Unmanned Aerial Vehicles (UAVs) to monitor the surf zone. In recent years, the arrival of lightweight, high-capacity batteries, low-power electronics and compact high-definition cameras has driven the development of commercially available UAVs for hobbyists. Moreover, the low operation costs have increased their potential for scientific research as these UAVs are extremely flexible surveying platforms. The UAVs can fly for ~12 min with a mean loiter radius of 1 - 3.5 m and a mean loiter error of 0.75 - 4.5 m, depending on the environmental conditions, flying style, battery type and vehicle type. Our experiments using multiple, alternating UAVs show that it is possible to have near continuous imagery data with similar Fields Of View. The images obtained from the UAVs (Fig. 1a), and in combination with surveyed Ground Control Points (GCPs) (Fig. 1b, red squares and white circles), can be geo-rectified (Fig. 1c) to pixel resolution between 0.01 - 1 m and a reprojection error, i.e. the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the geo-rectified image, of O(1 m). These geo-rectified images provide data on a variety of coastal aspects, such as beach width (Wb(x,t)), surf zone width (Wsf(x,t)), wave breaking location (rectangle B), beach usage (circle C) and location of dune vegegation (rectangle D), amongst others. Additionally, the possibility to have consecutive, high frequency (up to 2 Hz) rectified images makes the UAVs a great data instrument for spatially and temporally variable systems, such as the surf zone. Our first observations with the UAVs reveal the potential to quickly obtain surf zone and beach characteristics in response to storms or for day to day beach information, as well as the scientific pursuits of surf zone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants/dye. A selection of findings from

  6. Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks.

    PubMed

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-01-01

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079

  7. Distributed Multi-Level Supervision to Effectively Monitor the Operations of a Fleet of Autonomous Vehicles in Agricultural Tasks

    PubMed Central

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-01-01

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079

  8. Fluorescent microscope system to monitor real-time interactions between focused ultrasound, echogenic drug delivery vehicles, and live cell membranes.

    PubMed

    Ibsen, Stuart; Benchimol, Michael; Esener, Sadik

    2013-01-01

    Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5MPa the membranes were shown to completely fragment while at intensities below 1MPa the membranes pop open and slowly unfold. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. PMID:22749476

  9. Google Earth Visualizations of the Marine Automatic Identification System (AIS): Monitoring Ship Traffic in National Marine Sanctuaries

    NASA Astrophysics Data System (ADS)

    Schwehr, K.; Hatch, L.; Thompson, M.; Wiley, D.

    2007-12-01

    The Automatic Identification System (AIS) is a new technology that provides ship position reports with location, time, and identity information without human intervention from ships carrying the transponders to any receiver listening to the broadcasts. In collaboration with the USCG's Research and Development Center, NOAA's Stellwagen Bank National Marine Sanctuary (SBNMS) has installed 3 AIS receivers around Massachusetts Bay to monitor ship traffic transiting the sanctuary and surrounding waters. The SBNMS and the USCG also worked together propose the shifting the shipping lanes (termed the traffic separation scheme; TSS) that transit the sanctuary slightly to the north to reduce the probability of ship strikes of whales that frequent the sanctuary. Following approval by the United Nation's International Maritime Organization, AIS provided a means for NOAA to assess changes in the distribution of shipping traffic caused by formal change in the TSS effective July 1, 2007. However, there was no easy way to visualize this type of time series data. We have created a software package called noaadata-py to process the AIS ship reports and produce KML files for viewing in Google Earth. Ship tracks can be shown changing over time to allow the viewer to feel the motion of traffic through the sanctuary. The ship tracks can also be gridded to create ship traffic density reports for specified periods of time. The density is displayed as map draped on the sea surface or as vertical histogram columns. Additional visualizations such as bathymetry images, S57 nautical charts, and USCG Marine Information for Safety and Law Enforcement (MISLE) can be combined with the ship traffic visualizations to give a more complete picture of the maritime environment. AIS traffic analyses have the potential to give managers throughout NOAA's National Marine Sanctuaries an improved ability to assess the impacts of ship traffic on the marine resources they seek to protect. Viewing ship traffic

  10. Monitoring and assessing global impacts of roads and off-road vehicle traffic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid increases in the number of vehicles, urban sprawl, exurban development and infrastructure development for energy and water have led to dramatic increases in both the size and extent of the global road network. Anecdotal evidence suggests that off-road vehicle traffic has also increased in many...

  11. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... System, the responsible official shall monitor the effects of motor vehicle use on designated roads and..., Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TRAVEL MANAGEMENT Designation of... applicable land management plan, as appropriate and feasible....

  12. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... System, the responsible official shall monitor the effects of motor vehicle use on designated roads and..., Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TRAVEL MANAGEMENT Designation of... applicable land management plan, as appropriate and feasible....

  13. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... System, the responsible official shall monitor the effects of motor vehicle use on designated roads and..., Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TRAVEL MANAGEMENT Designation of... applicable land management plan, as appropriate and feasible....

  14. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... System, the responsible official shall monitor the effects of motor vehicle use on designated roads and..., Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TRAVEL MANAGEMENT Designation of... applicable land management plan, as appropriate and feasible....

  15. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... System, the responsible official shall monitor the effects of motor vehicle use on designated roads and..., Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TRAVEL MANAGEMENT Designation of... applicable land management plan, as appropriate and feasible....

  16. Determination of fleet hourly emission and on-road vehicle emission factor using integrated monitoring and modeling approach

    NASA Astrophysics Data System (ADS)

    Kim Oanh, N. T.; Martel, M.; Pongkiatkul, P.; Berkowicz, R.

    Roadside air quality and vehicle emission are important and challenging issues in urban air quality management which need to be adequately characterized. This study involves designing a monitoring program that produces suitable data to determine the on-road hourly fleet emission and emission factors of individual vehicles in a street canyon. Simultaneous hourly monitoring of roadside gaseous pollutants (both windward and leeward sides), traffic volume and speed, and wind in a busy street of Bangkok was conducted in the rainy season when traffic emission was predominant in the city. Higher pollutant concentrations often occurred at midday (11:00 to 14:00h) when higher traffic density (3700-3800vehicles h - 1, weekdays) was observed. The levels of toluene and xylenes found in this study are higher than the roadside levels reported in other Asian cities. Hourly maximum concentrations reached 258ppb for toluene, 51ppb for m, p-xylenes, 15ppb for o-xylene, 526ppb for NO x, and 10.5ppm for CO. Hourly monitoring data during the periods when the street canyon effects were pronounced were selected for determination of the fleet hourly emission and vehicle emission factors by back calculation using a street canyon model (Operational Street Pollution Model). The average fleet hourly emission at daytime of NO x (6.2kg km - 1 h - 1), CO (54kg km - 1 h - 1), toluene (2.1kg km - 1 h - 1), m, p-xylenes (0.73kg km - 1 h - 1) and o-xylene (0.27kg km - 1 h - 1) did not vary much. However, the emission rates were substantially reduced at nighttime following the traffic pattern. The obtained pollutant emission factors varied within each group of vehicles with the average values agreed reasonably with the chassis dynamometer results for NO x but somewhat higher for CO and TX. The model estimated results are, however, considered to better represent the real driving conditions in the street at the average vehicle travel speed of around 20km h - 1. A statistical sampling design is proposed

  17. Utilization of Unmanned Aerial Vehicles for Rangeland Resources Monitoring in a Changing Regulatory Environment (Invited)

    NASA Astrophysics Data System (ADS)

    Rango, A.; Vivoni, E. R.; Browning, D. M.; Anderson, C.; Laliberte, A. S.

    2013-12-01

    It is taking longer than expected to realize the immense potential of Unmanned Aerial Vehicles (UAVs)for civil applications due to the complexity of regulations being developed by the Federal Aviation Authority (FAA) that can be applied to both manned and unmanned flight in the National Airspace System (NAS). As a result, FAA has required that for all UAV flights in the NAS, an external pilot must maintain line-of-sight contact with the UAV. Properly trained observers must also be present to assist the external pilot in collision avoidance. Additionally, in order to fly in the NAS, formal approval must be requested from FAA through application for a Certificate of Authorization (COA for government applicants or a Special Airworthiness Certificate (SAC) in the experimental category for non-government applicants. Flight crews of UAVs must pass exams also required for manned airplane pilots. Although flight crews for UAVs are not required to become manned airplane pilots, UAV flight missions are much more efficient if one or two of the UAV flight crew are also manned aircraft pilots so they can serve as the UAV mission commander. Our group has performed numerous UAV flights within the Jornada Experimental Range in southern New Mexico. Two developments with Jornada UAVs can be recommended to other UAV operators that would increase flight time experience and study areas covered by UAV images. First, do not overlook the possibility of obtaining permission to fly in Restricted Military Airspace (RMA). At the Jornada, our airspace is approximately 50% NAS and 50% RMA. With experiments ongoing in both types of airspace, we can fly in both areas and continue to increase UAV flights. Second, we have developed an air- and-ground vehicle approach for long distance, continuous pilot transport that always maintains line-of-sight requirements. This allows flying several target areas on a single mission and increasing the number of acquired UAV images - over 90,000 UAV images have

  18. Vehicle electric power systems are under change!. Implications for design, monitoring and management of automotive batteries

    NASA Astrophysics Data System (ADS)

    Meissner, Eberhard; Richter, Gerolf

    New technical features, the demand for fuel economy, and the potential to reduce production and operational cost are leading to additional and more powerful electrical consumers and making the overall electrical demand in vehicles increase. Vehicle electrical architecture is performing an evolutionary change to improve the efficiency of production, distribution, control and storage of electrical energy in the vehicle. New battery designs with performance patterns designed for the new architectures are needed, and some of the new demands may even exceed the capability of lead/acid batteries. Single and dual battery systems offer a wide variety of applications when combined with intelligent means to keep the batteries in an appropriate operational window. Detection of state-of-charge (SOC) and state-of-health (SOH) is essential to help the battery to fulfil its role as a key element for vehicle functionality and safety.

  19. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  20. Automatic identification of the number of food items in a meal using clustering techniques based on the monitoring of swallowing and chewing

    PubMed Central

    Lopez-Meyer, Paulo; Schuckers, Stephanie; Makeyev, Oleksandr; Fontana, Juan M.; Sazonov, Edward

    2012-01-01

    The number of distinct foods consumed in a meal is of significant clinical concern in the study of obesity and other eating disorders. This paper proposes the use of information contained in chewing and swallowing sequences for meal segmentation by food types. Data collected from experiments of 17 volunteers were analyzed using two different clustering techniques. First, an unsupervised clustering technique, Affinity Propagation (AP), was used to automatically identify the number of segments within a meal. Second, performance of the unsupervised AP method was compared to a supervised learning approach based on Agglomerative Hierarchical Clustering (AHC). While the AP method was able to obtain 90% accuracy in predicting the number of food items, the AHC achieved an accuracy >95%. Experimental results suggest that the proposed models of automatic meal segmentation may be utilized as part of an integral application for objective Monitoring of Ingestive Behavior in free living conditions. PMID:23125872

  1. Definition of a near real time microbiological monitor for space vehicles

    NASA Technical Reports Server (NTRS)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.

    1989-01-01

    Efforts to identify the ideal candidate to serve as the biological monitor on the space station Freedom are discussed. The literature review, the evaluation scheme, descriptions of candidate monitors, experimental studies, test beds, and culture techniques are discussed. Particular attention is given to descriptions of five candidate monitors or monitoring techniques: laser light scattering, primary fluorescence, secondary fluorescence, the volatile product detector, and the surface acoustic wave detector.

  2. Operating safety of automatic objects

    NASA Astrophysics Data System (ADS)

    Maiorov, Anatolii Vladimirovich; Moskatov, Genrikh Karlovich; Shibanov, Georgii Petrovich

    Operating-safety assurance for automatic objects (aircraft, spacecraft, and underwater vehicles) is considered in the framework of safety-automata theory and automatic-control considerations. The interaction between the operator and the safety-assurance facilities is considered. Methodological recommendations are presented on the specification of reliability requirements for the vehicles considered, as well as on automata synthesis and analysis considerations, test planning, and the analysis of test results.

  3. A one-wire battery monitoring system with applications to on-board charging for electric vehicles

    NASA Astrophysics Data System (ADS)

    Nowak, Dieter

    1990-10-01

    A on-board charge system which utilizes a one-wire system for voltage monitoring is discussed and test results obtained using the system are presented. The system consists of the following: (1) a 20 kHz high frequency charger; (2) a charge algorithm for lead-acid batteries with gelled electrolyte, such that gassing is avoided; (3) the control system to implement this charge algorithm; and (4) a one-wire battery monitoring system to provide cell/module voltage information to the battery charge controller. Prototype elements of the system have been tested and the system was installed into an EVA Pacer electric vehicle. Charge tests are performed and data taken with the system installed. All elements of the system functioned properly under user conditions. In particular, the charger demonstrated good efficiency, near unity power factor and full programmability. The charge controller functioned reliably and without flaw. The one-wire monitoring system which permits monitoring of cell/module voltages in a battery pack without an extensive conventional wire harness has proven effective and voltage measurements were taken fast enough for control of charging. It was found that for the purpose of voltage monitoring under driving conditions, the system in its present form is too slow.

  4. A one-wire'' battery monitoring system with applications to on-board charging for electric vehicles

    SciTech Connect

    Nowak, D. . Kenneth E. Johnson Research Center)

    1990-10-08

    A novel on-board charge system which utilizes a One-Wire'' system for voltage monitoring is discussed and test results obtained using the system are presented. The system consists of a 20 kHz high frequency charger, an algorithm for charging lead-acid batteries with gelled electrolyte, such that gassing is avoided, the control system to implement this charge algorithm and a one-wire battery monitoring system to provide cell/module voltage information to the battery charge controller. Prototype elements of the system have been tested and the system was installed into an EVA Pacer electric vehicle. Charge tests are performed and data taken with the system installed. All elements of the system functioned properly under user conditions. In particular, the charger demonstrated good efficiency, near unity power factor and full programmability. The charge controller functioned reliably and without flaw. The one-wire monitoring system which permits monitoring of cell/module voltages in a battery pack without an extensive conventional wire harness has proven effective and voltage measurements have taken fast enough for control of charging. It was found that for the purpose of voltage monitoring under driving conditions, the system in its present form is too slow.

  5. Automatic rapid attachable warhead section

    DOEpatents

    Trennel, Anthony J.

    1994-05-10

    Disclosed are a method and apparatus for (1) automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, (2) automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, (3) manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and (4) automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly.

  6. Automatic rapid attachable warhead section

    DOEpatents

    Trennel, A.J.

    1994-05-10

    Disclosed are a method and apparatus for automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly. 10 figures.

  7. A PC-based bus monitor program for use with the transport systems research vehicle RS-232 communication interfaces

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.

    1991-01-01

    Experiment critical use of RS-232 data busses in the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has recently increased. Each application utilizes a number of nonidentical computer and peripheral configurations and requires task specific software development. To aid these development tasks, an IBM PC-based RS-232 bus monitoring system was produced. It can simultaneously monitor two communication ports of a PC or clone, including the nonstandard bus expansion of the TSRV Grid laptop computers. Display occurs in a separate window for each port's input with binary display being selectable. A number of other features including binary log files, screen capture to files, and a full range of communication parameters are provided.

  8. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Waag, Wladislaw; Fleischer, Christian; Sauer, Dirk Uwe

    2014-07-01

    Lithium-ion battery packs in hybrid and pure electric vehicles are always equipped with a battery management system (BMS). The BMS consists of hardware and software for battery management including, among others, algorithms determining battery states. The continuous determination of battery states during operation is called battery monitoring. In this paper, the methods for monitoring of the battery state of charge, capacity, impedance parameters, available power, state of health, and remaining useful life are reviewed with the focus on elaboration of their strengths and weaknesses for the use in on-line BMS applications. To this end, more than 350 sources including scientific and technical literature are studied and the respective approaches are classified in various groups.

  9. Traffic-Light-Preemption Vehicle-Transponder Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    A prototype wireless data-communication and control system automatically modifies the switching of traffic lights to give priority to emergency vehicles. The system, which was reported in several NASA Tech Briefs articles at earlier stages of development, includes a transponder on each emergency vehicle, a monitoring and control unit (an intersection controller) at each intersection equipped with traffic lights, and a central monitoring subsystem. An essential component of the system is a software module executed by a microcontroller in each transponder. This module integrates and broadcasts data on the position, velocity, acceleration, and emergency status of the vehicle. The position, velocity, and acceleration data are derived partly from the Global Positioning System, partly from deductive reckoning, and partly from a diagnostic computer aboard the vehicle. The software module also monitors similar broadcasts from other vehicles and from intersection controllers, informs the driver of which intersections it controls, and generates visible and audible alerts to inform the driver of any other emergency vehicles that are close enough to create a potential hazard. The execution of the software module can be monitored remotely and the module can be upgraded remotely and, hence, automatically

  10. Rangeland resource assessment, monitoring, and management using unmanned aerial vehicle-based remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Civilian applications of Unmanned Aerial Vehicles (UAV) have rapidly been expanding recently. Thanks to military development many civil UAVs come via the defense sector. Although numerous UAVs can perform civilian tasks, the regulations imposed by FAA in the national airspace system and military e...

  11. Unmanned aerial vehicles for rangeland mapping and monitoring: a comparison of two systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial photography from unmanned aerial vehicles (UAVs) bridges the gap between ground-based observations and remotely sensed imagery from aerial and satellite platforms. UAVs can be deployed quickly and repeatedly, are less costly and safer than piloted aircraft, and can obtain very high-resolution...

  12. Monitoring fugitive dust emissions from off-highway vehicles traveling on unpaved roads and trails using passive samplers.

    PubMed

    Padgett, Pamela E; Meadows, Dexter; Eubanks, Ellen; Ryan, William E

    2008-09-01

    Vehicles traveling on dry, unpaved roads generate copious quantities fugitive dust that contributes to soil erosion, and potentially threatens human health and ecosystems. The purpose of this study was to develop a low-cost technique for monitoring road dust that would enable land managers to estimate soil loss. The "sticky-trap" collectors developed were evaluated at the Turkey Bay off-highway vehicle (OHV) riding area on the Land Between the Lakes National Recreation Area, in western Kentucky. The results showed that the dust plume created by vehicle traffic was heterogeneous: larger particles were in the lower part of the plume and deposited closer to the source, smaller particles were carried higher in the plume and traveled at least 100 m away from the source. Collection of particles parallel to the source was also heterogeneous, suggesting that measurements taken at a single point may not be appropriate for estimating erosion losses. Measurements taken along two trails indicate that when large numbers of riders are present, dust concentrations may reach unhealthful conditions for riders, but that it is unlikely that fugitive dust is harming native vegetation, given frequent rainfall. The study demonstrated that OHV traffic contributes to substantial erosion of roadbeds because of aeolian transport. PMID:17902032

  13. Sentinel-1 automatic processing chain for volcanic and seismic areas monitoring within the Geohazards Exploitation Platform (GEP)

    NASA Astrophysics Data System (ADS)

    De Luca, Claudio; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Casu, Francesco

    2016-04-01

    The microwave remote sensing scenario is rapidly evolving through development of new sensor technology for Earth Observation (EO). In particular, Sentinel-1A (S1A) is the first of a sensors' constellation designed to provide a satellite data stream for the Copernicus European program. Sentinel-1A has been specifically designed to provide, over land, Differential Interferometric Synthetic Aperture Radar (DInSAR) products to analyze and investigate Earth's surface displacements. S1A peculiarities include wide ground coverage (250 km of swath), C-band operational frequency and short revisit time (that will reduce from 12 to 6 days when the twin system Sentinel-1B will be placed in orbit during 2016). Such characteristics, together with the global coverage acquisition policy, make the Sentinel-1 constellation to be extremely suitable for volcanic and seismic areas studying and monitoring worldwide, thus allowing the generation of both ground displacement information with increasing rapidity and new geological understanding. The main acquisition mode over land is the so called Interferometric Wide Swath (IWS) that is based on the Terrain Observation by Progressive Scans (TOPS) technique and that guarantees the mentioned S1A large coverage characteristics at expense of a not trivial interferometric processing. Moreover, the satellite spatial coverage and the reduced revisit time will lead to an exponential increase of the data archives that, after the launch of Sentine-1B, will reach about 3TB per day. Therefore, the EO scientific community needs from the one hand automated and effective DInSAR tools able to address the S1A processing complexity, and from the other hand the computing and storage capacities to face out the expected large amount of data. Then, it is becoming more crucial to move processors and tools close to the satellite archives, being not efficient anymore the approach of downloading and processing data with in-house computing facilities. To address

  14. Monitoring Wildlife-Vehicle Collisions in the Information Age: How Smartphones Can Improve Data Collection

    PubMed Central

    Olson, Daniel D.; Bissonette, John A.; Cramer, Patricia C.; Green, Ashley D.; Davis, Scott T.; Jackson, Patrick J.; Coster, Daniel C.

    2014-01-01

    Background Currently there is a critical need for accurate and standardized wildlife-vehicle collision data, because it is the underpinning of mitigation projects that protect both drivers and wildlife. Gathering data can be challenging because wildlife-vehicle collisions occur over broad areas, during all seasons of the year, and in large numbers. Collecting data of this magnitude requires an efficient data collection system. Presently there is no widely adopted system that is both efficient and accurate. Methodology/Principal Findings Our objective was to develop and test an integrated smartphone-based system for reporting wildlife-vehicle collision data. The WVC Reporter system we developed consisted of a mobile web application for data collection, a database for centralized storage of data, and a desktop web application for viewing data. The smartphones that we tested for use with the application produced accurate locations (median error = 4.6–5.2 m), and reduced location error 99% versus reporting only the highway/marker. Additionally, mean times for data entry using the mobile web application (22.0–26.5 s) were substantially shorter than using the pen/paper method (52 s). We also found the pen/paper method had a data entry error rate of 10% and those errors were virtually eliminated using the mobile web application. During the first year of use, 6,822 animal carcasses were reported using WVC Reporter. The desktop web application improved access to WVC data and allowed users to easily visualize wildlife-vehicle collision patterns at multiple scales. Conclusions/Significance The WVC Reporter integrated several modern technologies into a seamless method for collecting, managing, and using WVC data. As a result, the system increased efficiency in reporting, improved accuracy, and enhanced visualization of data. The development costs for the system were minor relative to the potential benefits of having spatially accurate and temporally current wildlife-vehicle

  15. Automatic Web-Based, Radio-Network System To Monitor And Control Equipment For Investigating Gas Flux At Water - Air Interfaces

    NASA Astrophysics Data System (ADS)

    Duc, N. T.; Silverstein, S.; Wik, M.; Beckman, P.; Crill, P. M.; Bastviken, D.; Varner, R. K.

    2015-12-01

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks on natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. To capture the high temporal variability of these fluxes in a well-defined footprint, we designed and built an inexpensive automatic device that includes an easily mobile diffusive flux chamber and a bubble counter, all in one. Besides a function of automatically collecting gas samples for subsequent various analyses in the laboratory, this device utilizes low cost CO2 sensor (SenseAir, Sweden) and CH4 sensor (Figaro, Japan) to measure GHG fluxes. To measure the spatial variability of emissions, each of the devices is equipped with an XBee module to enable a local radio communication DigiMesh network for time synchronization and data readout at a server-controller station on the lakeshore. Software of this server-controller is operated on a low cost Raspberry Pi computer which has a 3G connection for remote monitoring - controlling functions from anywhere in the world. From field studies in Abisko, Sweden in summer 2014 and 2015, the system has resulted in measurements of GHG fluxes comparable to manual methods. In addition, the deployments have shown the advantage of a low cost automatic network system to study GHG fluxes on lakes in remote locations.

  16. Monitoring targeted therapy using dual-energy CT: semi-automatic RECIST plus supplementary functional information by quantifying iodine uptake of melanoma metastases

    PubMed Central

    Sedlmair, M.; Schlemmer, H.P.; Hassel, J.C.; Ganten, M.

    2013-01-01

    Abstract Aim: Supplementary functional information can contribute to assess response in targeted therapies. The aim of this study was to evaluate semi-automatic RECIST plus iodine uptake (IU) determination in melanoma metastases under BRAF inhibitor (vemurafenib) therapy using dual-energy computed tomography (DECT). Methods: Nine patients with stage IV melanoma treated with a BRAF inhibitor were included. Contrast-enhanced DECT was performed before and twice after treatment onset. Changes in tumor size were assessed according to RECIST. Quantification of IU (absolute value for total IU (mg) and volume-normalized IU (mg/ml)) was based on semi-automatic tumor volume segmentation. The decrease compared with baseline was calculated. Results: The mean change of RECIST diameter sum per patient was −47% at the first follow-up (FU), −56% at the second FU (P < 0.01). The mean normalized IU per patient was −21% at the first FU (P < 0.2) and −45% at the second FU (P < 0.01). Total IU per patient, combining both normalized IU and volume, showed the most pronounced decrease: −89% at the first FU and −90% at the second FU (P < 0.01). Conclusion: Semi-automatic RECIST plus IU quantification in DECT enables objective, easy and fast parameterization of tumor size and contrast medium uptake, thus providing 2 complementary pieces of information for response monitoring applicable in daily routine. PMID:23876444

  17. Sensor architecture and task classification for agricultural vehicles and environments.

    PubMed

    Rovira-Más, Francisco

    2010-01-01

    The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way. PMID:22163522

  18. Sensor Architecture and Task Classification for Agricultural Vehicles and Environments

    PubMed Central

    Rovira-Más, Francisco

    2010-01-01

    The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way. PMID:22163522

  19. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    PubMed

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  20. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    PubMed Central

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks. PMID:26076404

  1. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications.

    PubMed

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs' route planning for small and medium-scale networks. PMID:26076404

  2. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    PubMed Central

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  3. Microgravity monitoring instrument development and application to vernier guidance, navigation, and vehicle control

    NASA Technical Reports Server (NTRS)

    Howell, Joseph J.

    1992-01-01

    The fact that a spacecraft traveling through the 'vacuum' of space conforms to the classical Keplerian ellipse has recently been disproven. It is now well known that such a vehicle is acted on by many external forces such as drag in the rarefied particle atmosphere, solar wind and particle impact. This paper discusses the development of sensors and sensor systems to measure these minute forces of acceleration/deceleration. Four systems will be discussed: a 10 exp -4 g system, a 10 exp -6 g system, a 10 exp -(6-8) g system and a 10 exp -9 g system. The design of each system will be explained along with the advantages/disadvantages of each. Various applications unique to each system will be discussed. Configurations, design schemes, test plans and calibration procedures, both in the ground laboratory and inflight, will be presented. The current design/development/operational status of each system will be examined and future plans discussed. Application to aerodynamic studies and vernier guidance, navigation, and vehicle control will also be examined.

  4. Automatic Imitation

    ERIC Educational Resources Information Center

    Heyes, Cecilia

    2011-01-01

    "Automatic imitation" is a type of stimulus-response compatibility effect in which the topographical features of task-irrelevant action stimuli facilitate similar, and interfere with dissimilar, responses. This article reviews behavioral, neurophysiological, and neuroimaging research on automatic imitation, asking in what sense it is "automatic"…

  5. Monitoring Obstructive Sleep Apnea by means of a real-time mobile system based on the automatic extraction of sets of rules through Differential Evolution.

    PubMed

    Sannino, Giovanna; De Falco, Ivanoe; De Pietro, Giuseppe

    2014-06-01

    Real-time Obstructive Sleep Apnea (OSA) episode detection and monitoring are important for society in terms of an improvement in the health of the general population and of a reduction in mortality and healthcare costs. Currently, to diagnose OSA patients undergo PolySomnoGraphy (PSG), a complicated and invasive test to be performed in a specialized center involving many sensors and wires. Accordingly, each patient is required to stay in the same position throughout the duration of one night, thus restricting their movements. This paper proposes an easy, cheap, and portable approach for the monitoring of patients with OSA, which collects single-channel ElectroCardioGram (ECG) data only. It is easy to perform from the patient's point of view because only one wearable sensor is required, so the patient is not restricted to keeping the same position all night long, and the detection and monitoring can be carried out in any place through the use of a mobile device. Our approach is based on the automatic extraction, from a database containing information about the monitored patient, of explicit knowledge in the form of a set of IF…THEN rules containing typical parameters derived from Heart Rate Variability (HRV) analysis. The extraction is carried out off-line by means of a Differential Evolution algorithm. This set of rules can then be exploited in the real-time mobile monitoring system developed at our Laboratory: the ECG data is gathered by a wearable sensor and sent to a mobile device, where it is processed in real time. Subsequently, HRV-related parameters are computed from this data, and, if their values activate some of the rules describing the occurrence of OSA, an alarm is automatically produced. This approach has been tested on a well-known literature database of OSA patients. The numerical results show its effectiveness in terms of accuracy, sensitivity, and specificity, and the achieved sets of rules evidence the user-friendliness of the approach

  6. Micro-aerial vehicle type wall-climbing robot mechanism for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shin, Jae-Uk; Kim, Donghoon; Kim, Jong-Heon; Myung, Hyun

    2013-04-01

    Currently, the maintenance or inspection of large structures is labor-intensive, so it has a problem of the large cost due to the staffing professionals and the risk for hard to reach areas. To solve the problem, the needs of wall-climbing robot are emerged. Infra-based wall-climbing robots to maintain an outer wall of building have high payload and safety. However, the infrastructure for the robot must be equipped on the target structure and the infrastructure isn't preferred by the architects since it can injure the exterior of the structure. These are the reasons of why the infra-based wall-climbing robot is avoided. In case of the non-infra-based wall-climbing robot, it is researched to overcome the aforementioned problems. However, most of the technologies are in the laboratory level since the payload, safety and maneuverability are not satisfactory. For this reason, aerial vehicle type wall-climbing robot is researched. It is a flying possible wallclimbing robot based on a quadrotor. It is a famous aerial vehicle robot using four rotors to make a thrust for flying. This wall-climbing robot can stick to a vertical wall using the thrust. After sticking to the wall, it can move with four wheels installed on the robot. As a result, it has high maneuverability and safety since it can restore the position to the wall even if it is detached from the wall by unexpected disturbance while climbing the wall. The feasibility of the main concept was verified through simulations and experiments using a prototype.

  7. An optimal solution for enhancing ambulance safety: implementing a driver performance feedback and monitoring device in ground emergency medical service vehicles.

    PubMed

    Levick, Nadine R; Swanson, Jon

    2005-01-01

    A prospective study was conducted to determine if emergency vehicle driver risk behavior could be improved with an onboard computer-monitoring device, with real time auditory feedback. Data were collected over 18 months from 36 vehicles in a metropolitan EMS group, with >250 drivers. In >1.9 million recorded miles, performance improved from a baseline low of 0.018 miles between penalty counts to a high of 15.8 miles between counts. Seatbelt violations dropped from 13,500 to 4. There was a 20% saving in vehicle maintenance costs within 6 months. This technology demonstrated sustained cost savings in regards to vehicle maintenance as well as minimal retraining of drivers. PMID:16179138

  8. SU-E-I-10: Automatic Monitoring of Accumulated Dose Indices From DICOM RDSR to Improve Radiation Safety in X-Ray Angiography

    SciTech Connect

    Omar, A; Bujila, R; Nowik, P; Karambatsakidou, A

    2014-06-01

    Purpose: To investigate the potential benefits of automatic monitoring of accumulated patient and staff dose indicators, i.e., CAK and KAP, from DICOM Radiation Dose Structured Reports (RDSR) in x-ray angiography (XA). Methods: Recently RDSR has enabled the convenient aggregation of dose indices and technique parameters for XA procedures. The information contained in RDSR objects for three XA systems, dedicated to different types of clinical procedures, has been collected and aggregated in a database for over one year using a system developed with open-source software at the Karolinska University Hospital. Patient weight was complemented to the RDSR data via an interface with the Hospital Information System (HIS). Results: The linearly approximated trend in KAP over a time period of a year for cerebrovascular, pelvic/peripheral vascular, and cardiovascular procedures showed a decrease of 12%, 20%, and 14%, respectively. The decrease was mainly due to hardware/software upgrades and new low-dose imaging protocols, and partially due to ongoing systematic radiation safety education of the clinical staff. The CAK was in excess of 3 Gy for 15 procedures, and exceeded 5 Gy for 3 procedures. The dose indices have also shown a significant dependence on patient weight for cardiovascular and pelvic/peripheral vascular procedures; a 10 kg shift in mean patient weight can result in a dose index increase of 25%. Conclusion: Automatic monitoring of accumulated dose indices can be utilized to notify the clinical staff and medical physicists when the dose index has exceeded a predetermined action level. This allows for convenient and systematic follow-up of patients in risk of developing deterministic skin injuries. Furthermore, trend analyses of dose indices over time is a valuable resource for the identification of potential positive or negative effects (dose increase/decrease) from changes in hardware, software, and clinical work habits.

  9. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  10. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  11. Development of a nuclear technique for monitoring water levels in pressurized vehicles

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1983-01-01

    A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.

  12. Online vehicle and atmospheric pollution monitoring using GIS and wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Cordova-Lopez, L. E.; Mason, A.; Cullen, J. D.; Shaw, A.; Al-Shamma'a, A. I.

    2007-07-01

    A Geographical Information System (GIS) is a computer system designed to integrate, store, edit, analyse, share and display geographically referenced data. A wireless sensor network (WSN) is a wireless network of spatially distributed autonomous devices using sensors to monitor physical or environmental conditions. This paper presents the integration of these two technologies to create a system able to detect measure and transmit information regarding the presence and quantities of internal combustion derived pollution and the geographical location in real time with the aim of creating pollution maps in urban environments.

  13. Automatic Mechetronic Wheel Light Device

    DOEpatents

    Khan, Mohammed John Fitzgerald

    2004-09-14

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  14. High-Resolution Monitoring of Coastal Dune Erosion and Growth Using an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Ruessink, G.; Markies, H.; Van Maarseveen, M.

    2014-12-01

    Coastal foredunes lose and gain sand through marine and aeolian processes, but coastal-evolution models that can accurately predict both wave-driven dune erosion and wind-blown dune growth are non-existing. This is, together with a limited understanding of coastal aeolian process dynamics, due to the lack of adequate field data sets from which erosion and supply volumes can be studied simultaneously. Here, we quantify coastal foredune dynamics using nine topographic surveys performed near Egmond aan Zee, The Netherlands, between September 2011 and March 2014 using an unmanned aerial vehicle (UAV). The approximately 0.75-km long study site comprises a 30-100 m wide sandy beach and a 20-25 m high foredune, of which the higher parts are densely vegetated with European marram grass. Using a structure-from-motion workflow, the 200-500 photographs taken during each UAV flight were processed into a point cloud, from which a geo-referenced digital surface model with a 0.25 x 0.25 m resolution was subsequently computed. Our data set contains two dune-erosion events, including that due to storm Xaver (December 2013), which caused one of the highest surge levels in the southern North Sea region for the last decades. Dune erosion during both events varied alongshore from the destruction of embryonic dunes on the upper beach to the slumping of the entire dune face. During the first storm (January 2012), erosion volumes ranged from 5 m3/m in the (former) embryonic dune field to over 40 m3/m elsewhere. During the subsequent 11 (spring - autumn) months, the foredune accreted by (on average) 8 m3/m, again with substantial alongshore variability (0 - 20 m3/m). Intriguingly, volume changes during the 2012-2013 winter were minimal. We will compare the observed aeolian supply rates with model predictions and discuss reasons for their temporal variability. Funded by the Dutch Organisation for Scientific Research NWO.

  15. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.

    2014-12-01

    Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.

  16. Comparison of accuracy and completeness of data obtained from three types of automatic water-quality monitors

    USGS Publications Warehouse

    Katzenbach, Max

    1990-01-01

    A comparison of data (specific conductance, dissolved-oxygen concentration, temperature, and pH) collected by the U.S. Geological Survey flowthrough monitor, the U.S. Geological Survey minimonitor, and a self-contained commercial 'packaged-sensor' system indicates that the data obtained by means of the most complete of the three systems. The U.S. Geological Survey flowthrough monitor is powered by 120-volt alternating current and in a heated weather-proof shelter. A pumping system brings water from the stream to sensors clustered in a sample clustered in a sample chamber located in the shelter. This instrument measures output from the senors; data are recorded in binary-coded decimal form on a 16-channel punched-paper tape recorder tape recorder housed in the shelter. The U.S. Geological Survey's minimonitor is powered by an external battery and is housed in a weatherproof shelter. This instrument measures output of instream sensors with extension cables having underwater connectors; data are recorded in binary-coded decimal form on a 16-channel punched-paper tape recorder housed in the shelter. The packaged-sensor system also measures output of senors housed in a packages that is submerged in the stream. It has internal power supply, no moving parts, and does not requires a weatherproof shelter; data are stored are stored in solid-state memory. Minimonitors were installed at four sites in Ohio where U.S. Geological survey flowthrough were in operation. Two package-sensor systems also were assigned to each site and were alternated every two weeks. Detailed records were kept of (1) field measurements, for comparison with monitor-system data from each instrument, and (2) equipment problems that resulted in loss of data. Results of the comparisons shows that the flow-through monitor gave the most accurate and the most complete data.

  17. Automatic classification of Google Earth images for a larger scale monitoring of bush encroachment in South Africa

    NASA Astrophysics Data System (ADS)

    Ludwig, Annika; Meyer, Hanna; Nauss, Thomas

    2016-08-01

    Bush encroachment of savannas and grasslands is a common form of land degradation in the rangelands of South Africa. To assess the carrying capacity of the land and to understand underlaying processes of bush encroachment, continuous monitoring of this phenomenon is needed. The aim of this study is to provide training sites for satellite-based monitoring of bush encroachment in South Africa on a medium spatial resolution satellite sensor (e.g. MODIS or Landsat) scale. Since field surveys are time consuming and of limited spatial extent, the satellite based creation of training sites using Google Earth images is intended. Training pixels for woody vegetation and non-woody land cover were manually digitized from 50 sample Google Earth images. A Random Forests model was trained to delineate woody from non-woody pixels. The results indicate a high performance of the model (AUC = 0.97). The model was applied to a further 500 Google Earth images with a spatial extent of 250 m × 250 m. The classified images form the database of training sites which can be used for larger scale monitoring of bush encroachment in South Africa.

  18. A vehicle health monitoring system for the Space Shuttle Reaction Control System during reentry. M.S. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Rosello, Anthony David

    1995-01-01

    A general two tier framework for vehicle health monitoring of Guidance Navigation and Control (GN&C) system actuators, effectors, and propulsion devices is presented. In this context, a top level monitor that estimates jet thrust is designed for the Space Shuttle Reaction Control System (RCS) during the reentry phase of flight. Issues of importance for the use of estimation technologies in vehicle health monitoring are investigated and quantified for the Shuttle RCS demonstration application. These issues include rate of convergence, robustness to unmodeled dynamics, sensor quality, sensor data rates, and information recording objectives. Closed loop simulations indicate that a Kalman filter design is sensitive to modeling error and robust estimators may reduce this sensitivity. Jet plume interaction with the aerodynamic flowfield is shown to be a significant effect adversely impacting the ability to accurately estimate thrust.

  19. Possibilities for Using LIDAR and Photogrammetric Data Obtained with AN Unmanned Aerial Vehicle for Levee Monitoring

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Ostrowski, W.; Szender, M.; Plutecki, W.; Salach, A.; Górski, K.

    2016-06-01

    This paper presents the possibilities for using an unmanned aerial system for evaluation of the condition of levees. The unmanned aerial system is equipped with two types of sensor. One is an ultra-light laser scanner, integrated with a GNSS receiver and an INS system; the other sensor is a digital camera that acquires data with stereoscopic coverage. Sensors have been mounted on the multirotor, unmanned platform the Hawk Moth, constructed by MSP company. LiDAR data and images of levees the length of several hundred metres were acquired during testing of the platform. Flights were performed in several variants. Control points measured with the use of the GNSS technique were considered as reference data. The obtained results are presented in this paper; the methodology of processing the acquired LiDAR data, which increase in accuracy when low accuracy of the navigation systems occurs as a result of systematic errors, is also discussed. The Iterative Closest Point (ICP) algorithm, as well as measurements of control points, were used to georeference the LiDAR data. Final accuracy in the order of centimetres was obtained for generation of the digital terrain model. The final products of the proposed UAV data processing are digital elevation models, an orthophotomap and colour point clouds. The authors conclude that such a platform offers wide possibilities for low-budget flights to deliver the data, which may compete with typical direct surveying measurements performed during monitoring of such objects. However, the biggest advantage is the density and continuity of data, which allows for detection of changes in objects being monitored.

  20. Automatic real-time monitoring and assessment of tremor parameters in the upper limb from orientation data

    PubMed Central

    Lambrecht, Stefan; Gallego, Juan A.; Rocon, Eduardo; Pons, Jose L.

    2014-01-01

    Upper limb tremor is the most prevalent movement disorder and, unfortunately, it is not effectively managed in a large proportion of the patients. Neuroprostheses that stimulate the sensorimotor pathways are one of the most promising alternatives although they are still under development. To enrich the interpretation of data recorded during long-term tremor monitoring and to increase the intelligence of tremor suppression neuroprostheses we need to be aware of the context. Context awareness is a major challenge for neuroprostheses and would allow these devices to react more quickly and appropriately to the changing demands of the user and/or task. Traditionally kinematic features are used to extract context information, with most recently the use of joint angles as highly potential features. In this paper we present two algorithms that enable the robust extraction of joint angle and related features to enable long-term continuous monitoring of tremor with context awareness. First, we describe a novel relative sensor placement identification technique based on orientation data. We focus on relative rather than absolute sensor location, because in many medical applications magnetic and inertial measurement units (MIMU) are used in a chain stretching over adjacent segments, or are always placed on a fixed set of locations. Subsequently we demonstrate how tremor parameters can be extracted from orientation data using an adaptive estimation algorithm. Relative sensor location was detected with an accuracy of 94.12% for the 4 MIMU configuration, and 100% for the 3 MIMU configurations. Kinematic tracking error values with an average deviation of 8% demonstrate our ability to estimate tremor from orientation data. The methods presented in this study constitute an important step toward more user-friendly and context-aware neuroprostheses for tremor suppression and monitoring. PMID:25120424

  1. Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.

    2010-02-01

    A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.

  2. Helicopter, Unmanned Aerial Vehicle (UAV) and Ground Based Photogrammetric Monitoring of Mass Movements in Deglaciating Landscapes

    NASA Astrophysics Data System (ADS)

    Dunning, S.; Allan, M. S.; Lim, M.; Rosser, N. J.

    2014-12-01

    When valley glaciers retreat and/or thin, they expose stores of sediment prone to failure and rapid reworking through a range of mass movement processes. The newly exposed bedrock slopes are also thought to undergo a period of more intense, or more frequent, failure before returning to the background norm. However, the magnitude-frequency of failures above and in front of ice is poorly constrained, as are their spatial relationship to previous ice extents. Here we show the results from a combination of repeat helicopter, UAV and ground based photogrammetry that has been processed using Structure from Motion (SfM) techniques to produce high-resolution elevation and change models. These data require few ground control and so lend themselves to deployment in remote, or difficult to access high-mountain regions where our understanding of failure patterns has been limited by a lack of high-quality monitoring data. Our initial data cover the valley walls of Glacier d'Argentiere, Mer De Glace, Glacier des Bossons and the Bionnassay Glacier on the French side of the Mt Blanc massif at the start and end of the summer 2014 season. These glaciers have a rich documented history of ice retreat, thinning, and permafrost locations to link to the spatial patterns of failure.

  3. Application of a Novel Automatic Erosion and Deposition Monitoring System at a Channel Bank Site on the Tidal River Trent, U.K.

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.; West, J. R.; Couperthwaite, J. S.; Mitchell, S. B.

    2001-08-01

    There is a well-defined need to improve understanding of the dynamics of sediment erosion and deposition on intertidal channel banks, given their importance to channel stability, sediment budgets, depth maintenance, pollutant and nutrient transport, and ecological processes in estuarine systems. Conventional, manual methods for field monitoring of erosion and deposition, however, normally deliver information of low temporal resolution conditioned by infrequent field resurveys. To address this problem, this paper discusses a recently developed and improved automatic erosion and deposition monitoring technique, the Photo-Electronic Erosion Pin (PEEP) system, and its application to a tidal channel bank site at Burringham on the River Trent, U.K. The PEEP system allows the magnitude, frequency and timing of individual erosion and deposition events to be monitored much more precisely than with conventional manual methods. PEEP sensors also monitor light intensity and sediment temperature, variables which can influence bank stabilizing and destabilizing processes. Example results at both the event and spring-neap timescales are presented from a short PEEP system deployment between March and May 1997 at Burringham. These establish that discrete erosion events of >60 mm and 100 mm can occur in response to individual tidal cycles, events which are readily monitored automatically and quasicontinuously by the PEEP system. The capability of the PEEP approach to enhance temporal resolution of monitoring is demonstrated by the determination of the timing of the 100-mm bank erosion incident to an ' event window ' of 2·75 h: this converts to mean bank erosion rate of 36 mm h -1over the period of inundation. In addition, the PEEP system defines the magnitude and date of two example deposition events of 47 and 92 mm on the lower bank during a sequence of rising spring tides. These represent mean deposition rates of 4·5 and 8·4 mm h -1respectively over the periods of inundation

  4. Ecological Assessment of Autonomy in Instrumental Activities of Daily Living in Dementia Patients by the Means of an Automatic Video Monitoring System

    PubMed Central

    König, Alexandra; Crispim-Junior, Carlos Fernando; Covella, Alvaro Gomez Uria; Bremond, Francois; Derreumaux, Alexandre; Bensadoun, Gregory; David, Renaud; Verhey, Frans; Aalten, Pauline; Robert, Philippe

    2015-01-01

    Currently, the assessment of autonomy and functional ability involves clinical rating scales. However, scales are often limited in their ability to provide objective and sensitive information. By contrast, information and communication technologies may overcome these limitations by capturing more fully functional as well as cognitive disturbances associated with Alzheimer disease (AD). We investigated the quantitative assessment of autonomy in dementia patients based not only on gait analysis but also on the participant performance on instrumental activities of daily living (IADL) automatically recognized by a video event monitoring system (EMS). Three groups of participants (healthy controls, mild cognitive impairment, and AD patients) had to carry out a standardized scenario consisting of physical tasks (single and dual task) and several IADL such as preparing a pillbox or making a phone call while being recorded. After, video sensor data were processed by an EMS that automatically extracts kinematic parameters of the participants’ gait and recognizes their carried out activities. These parameters were then used for the assessment of the participants’ performance levels, here referred as autonomy. Autonomy assessment was approached as classification task using artificial intelligence methods that takes as input the parameters extracted by the EMS, here referred as behavioral profile. Activities were accurately recognized by the EMS with high precision. The most accurately recognized activities were “prepare medication” with 93% and “using phone” with 89% precision. The diagnostic group classifier obtained a precision of 73.46% when combining the analyses of physical tasks with IADL. In a further analysis, the created autonomy group classifier which obtained a precision of 83.67% when combining physical tasks and IADL. Results suggest that it is possible to quantitatively assess IADL functioning supported by an EMS and that even based on the extracted

  5. Flow injection analysis-based methodology for automatic on-line monitoring and quality control for biodiesel production.

    PubMed

    Pinzi, S; Priego Capote, F; Ruiz Jiménez, J; Dorado, M P; Luque de Castro, M D

    2009-01-01

    An automated on-line approach based on determination of free and bound glycerol was here proposed to monitor biodiesel production. The method was based on liquid-liquid extraction of glycerol from the biodiesel to an aqueous ethanolic phase in which glycerol is oxidized to formaldehyde with meta periodate with subsequent reaction with acetylacetone. The reaction product was photometrically measured at 410 nm. Free and bound glycerol were differentiated by glycerides hydrolysis with potassium ethylate. The experimental set-up consisted of a flow-injection manifold for liquid-liquid extraction without phase separation and iterative change of the flow direction that enabled: (a) filling the flow manifold with a meta periodate-acetylacetone acceptor phase; (b) sampling of small amounts (microl) from the reactor; (c) determination of free glycerol by extraction from biodiesel to the aqueous phase with simultaneous oxidation-reaction with acetylacetone in the acceptor phase; (d) continuous monitoring of the aqueous phase by passage through a photometric detector; (e) filling the flow manifold with a potassium ethylate-meta periodate-acetylacetone new acceptor phase; (d) repetition of steps b-to-d to determine total glycerol after saponification of the bound glycerol by potassium ethylate; and (f) determination of bound glycerol by difference between the second and first analyses. The results showed that the proposed automated on-line method is a suitable option in routine analysis during biodiesel production. PMID:18614358

  6. Automatic sweep circuit

    DOEpatents

    Keefe, Donald J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.

  7. Development and implementation of an automatic integration system for fibre optic sensors in the braiding process with the objective of online-monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin

    2014-04-01

    Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic

  8. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOEpatents

    Muhs, Jeffrey D.; Scudiere, Matthew B.; Jordan, John K.

    2002-01-01

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  9. Long-term monitoring of a large landslide by using an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Lindner, Gerald; Schraml, Klaus; Mansberger, Reinfried; Hübl, Johannes

    2015-04-01

    Currently UAVs become more and more important in various scientific areas, including forestry, precision farming, archaeology and hydrology. Using these drones in natural hazards research enables a completely new level of data acquisition being flexible of site, invariant in time, cost-efficient and enabling arbitrary spatial resolution. In this study, a rotary-wing Mini-UAV carrying a DSLR camera was used to acquire time series of overlapping aerial images. These photographs were taken as input to extract Digital Surface Models (DSM) as well as orthophotos in the area of interest. The "Pechgraben" area in Upper Austria has a catchment area of approximately 2 km². Geology is mainly dominated by limestone and sandstone. Caused by heavy rainfalls in the late spring of 2013, an area of about 70 ha began to move towards the village in the valley. In addition to the urgent measures, the slow-moving landslide was monitored approximately every month over a time period of more than 18 months. A detailed documentation of the change process was the result. Moving velocities and height differences were quantified and validated using a dense network of Ground Control Points (GCP). For further analysis, 14 image flights with a total amount of 10.000 photographs were performed to create multi-temporal geodata in in sub-decimeter-resolution for two depicted areas of the landslide. Using a UAV for this application proved to be an excellent choice, as it allows short repetition times, low flying heights and high spatial resolution. Furthermore, the UAV acts almost weather independently as well as highly autonomously. High-quality results can be expected within a few hours after the photo flight. The UAV system performs very well in an alpine environment. Time series of the assessed geodata detect changes in topography and provide a long-term documentation of the measures taken in order to stop the landslide and to prevent infrastructure from damage.

  10. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    NASA Technical Reports Server (NTRS)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  11. A guided-wave system for monitoring the wing skin-to-spar bond in unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco; Marzani, Alessandro; Coccia, Stefano; Oliver, Joseph; Kosmatka, John; Rizzo, Piervincenzo; Restivo, Gaetano

    2005-05-01

    Unmanned Aerial Vehicles (UAVs) are being increasingly used in military as well as civil applications. A critical part of the structure is the adhesive bond between the wing skin and the supporting spar. If not detected early, bond defects originating during manufacturing or in service flight can lead to inefficient flight performance and eventual global failure. This paper will present results from a bond inspection system based on attached piezoelectric disks probing the skin-to-spar bondline with ultrasonic guided waves in the hundreds of kilohertz range. The test components were CFRP composite panels of two different fiber layups bonded to a CFRP composite tube using epoxy adhesive. Three types of bond conditions were simulated, namely regions of poor cohesive strength, regions with localized disbonds and well bonded regions. The root mean square and variance of the received time-domain signals and their discrete wavelet decompositions were computed for the dominant modes propagating through the various bond regions in two different inspection configurations. Semi-analytical finite element analysis of the bonded multilayer joint was also carried out to identify and predict the sensitivity of the predominant carrier modes to the different bond defects. Emphasis of this research is based upon designing a built-in system for monitoring the structural integrity of bonded joints in UAVs and other aerospace structures.

  12. On the derivation of the pre-lockup feature based condition monitoring method for automatic transmission clutches

    NASA Astrophysics Data System (ADS)

    Ompusunggu, Agusmian Partogi

    2014-05-01

    This paper discusses how a qualitative understanding on the physics of failure can lead to a theoretical derivation of effective features that are useful for condition monitoring of wet friction clutches. The physical relationships between the features and the mean coefficient of friction (COF) which can be seen as the representation of the degradation level of a wet friction clutch are theoretically derived. In order to assess the accuracy of the theoretical relationships, Pearson's correlation coefficient is applied to experimental data obtained from accelerated life tests on some commercial paper-based wet friction clutches using a fully instrumented SAE#2 setup. The analyses on the experimental data reveal that the theoretical predictions are plausible.

  13. Using Unmanned Aerial Vehicle (UAV) for spatio-temporal monitoring of soil erosion and roughness in Chania, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios; Seiradakis, Kostas; Tsanis, Ioannis

    2016-04-01

    This article presents a remote sensing approach for spatio-temporal monitoring of both soil erosion and roughness using an Unmanned Aerial Vehicle (UAV). Soil erosion by water is commonly known as one of the main reasons for land degradation. Gully erosion causes considerable soil loss and soil degradation. Furthermore, quantification of soil roughness (irregularities of the soil surface due to soil texture) is important and affects surface storage and infiltration. Soil roughness is one of the most susceptible to variation in time and space characteristics and depends on different parameters such as cultivation practices and soil aggregation. A UAV equipped with a digital camera was employed to monitor soil in terms of erosion and roughness in two different study areas in Chania, Crete, Greece. The UAV followed predicted flight paths computed by the relevant flight planning software. The photogrammetric image processing enabled the development of sophisticated Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimeter level. The DTMs were developed using photogrammetric processing of more than 500 images acquired with the UAV from different heights above the ground level. As the geomorphic formations can be observed from above using UAVs, shadowing effects do not generally occur and the generated point clouds have very homogeneous and high point densities. The DTMs generated from UAV were compared in terms of vertical absolute accuracies with a Global Navigation Satellite System (GNSS) survey. The developed data products were used for quantifying gully erosion and soil roughness in 3D as well as for the analysis of the surrounding areas. The significant elevation changes from multi-temporal UAV elevation data were used for estimating diachronically soil loss and sediment delivery without installing sediment traps. Concerning roughness, statistical indicators of surface elevation point measurements were estimated and various

  14. Use of a digital camera onboard an unmanned aerial vehicle to monitor spring phenology at individual tree level

    NASA Astrophysics Data System (ADS)

    Berra, Elias; Gaulton, Rachel; Barr, Stuart

    2016-04-01

    The monitoring of forest phenology, in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear as a potential new option for forest phenology monitoring. The aim of this study is to assess the potential of imagery acquired from a UAV to track seasonal changes in leaf canopy at individual tree level. UAV flights, deploying consumer-grade standard and near-infrared modified cameras, were carried out over a deciduous woodland during the spring season of 2015, from which a temporal series of calibrated and georeferenced 5 cm spatial resolution orthophotos was generated. Initial results from a subset of trees are presented in this paper. Four trees with different observed Start of Season (SOS) dates were selected to monitor UAV-derived Green Chromatic Coordinate (GCC), as a measure of canopy greenness. Mean GCC values were extracted from within the four individual tree crowns and were plotted against the day of year (DOY) when the data were acquired. The temporal GCC trajectory of each tree was associated with the visual observations of leaf canopy phenology (SOS) and also with the development of understory vegetation. The chronological order when sudden increases of GCC values occurred matched with the chronological order of observed SOS: the first sudden increase in GCC was detected in the tree which first reached SOS; 18.5 days later (on average) the last sudden increase of GCC was detected in the tree which last reached SOS (18 days later than the first one). Trees with later observed SOS presented GCC values increasing slowly over time, which were associated with development of understory vegetation. Ongoing work is dealing with: 1) testing different indices; 2) radiometric calibration (retrieving of spectral reflectance); 3) expanding the analysis to more tree individuals, more tree species and over larger forest areas, and; 4) deriving

  15. A Novel Vehicle Classification Using Embedded Strain Gauge Sensors

    PubMed Central

    Zhang, Wenbin; Wang, Qi; Suo, Chunguang

    2008-01-01

    This paper presents a new vehicle classification and develops a traffic monitoring detector to provide reliable vehicle classification to aid traffic management systems. The basic principle of this approach is based on measuring the dynamic strain caused by vehicles across pavement to obtain the corresponding vehicle parameters – wheelbase and number of axles – to then accurately classify the vehicle. A system prototype with five embedded strain sensors was developed to validate the accuracy and effectiveness of the classification method. According to the special arrangement of the sensors and the different time a vehicle arrived at the sensors one can estimate the vehicle's speed accurately, corresponding to the estimated vehicle wheelbase and number of axles. Because of measurement errors and vehicle characteristics, there is a lot of overlap between vehicle wheelbase patterns. Therefore, directly setting up a fixed threshold for vehicle classification often leads to low-accuracy results. Using the machine learning pattern recognition method to deal with this problem is believed as one of the most effective tools. In this study, support vector machines (SVMs) were used to integrate the classification features extracted from the strain sensors to automatically classify vehicles into five types, ranging from small vehicles to combination trucks, along the lines of the Federal Highway Administration vehicle classification guide. Test bench and field experiments will be introduced in this paper. Two support vector machines classification algorithms (one-against-all, one-against-one) are used to classify single sensor data and multiple sensor combination data. Comparison of the two classification method results shows that the classification accuracy is very close using single data or multiple data. Our results indicate that using multiclass SVM-based fusion multiple sensor data significantly improves the results of a single sensor data, which is trained on the

  16. Automatic identification approach for high-performance liquid chromatography-multiple reaction monitoring fatty acid global profiling.

    PubMed

    Tie, Cai; Hu, Ting; Jia, Zhi-Xin; Zhang, Jin-Lan

    2015-08-18

    Fatty acids (FAs) are a group of lipid molecules that are essential to organisms. As potential biomarkers for different diseases, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. A sensitive and accurate method for globally profiling and identifying FAs is required for biomarker discovery. The high selectivity and sensitivity of high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) gives it great potential to fulfill the need to identify FAs from complicated matrices. This paper developed a new approach for global FA profiling and identification for HPLC-MRM FA data mining. Mathematical models for identifying FAs were simulated using the isotope-induced retention time (RT) shift (IRS) and peak area ratios between parallel isotope peaks for a series of FA standards. The FA structures were predicated using another model based on the RT and molecular weight. Fully automated FA identification software was coded using the Qt platform based on these mathematical models. Different samples were used to verify the software. A high identification efficiency (greater than 75%) was observed when 96 FA species were identified in plasma. This FAs identification strategy promises to accelerate FA research and applications. PMID:26189701

  17. Automatic monitoring of weather and climate in mountain areas. The case of Peñalara Meteorological Network (RMPNP)

    NASA Astrophysics Data System (ADS)

    Durán, Luis; Rodríguez-Muñoz, Irene

    2016-05-01

    Mountains have a very peculiar climate, are an essential factor in the climate system and are excellent areas for monitoring weather and climate. Nevertheless there is still a lack of long term observations at these areas, mainly due to their harsh conditions for instruments and humans. This work describes the results obtained in the design, installation and operation during more than a decade of a mountain meteorological network located in Sierra de Guadarrama (Iberian Central System, Spain). This work includes information about the measuring strategy, objectives and performance of the network with some technical and operational conlussions that might be useful for the mountain meteorology observation community. Discussions about the representativeness of the data are shown. These are important for future users of this data base. Also some basic statistics of the available data is shown as a framework for further and deeper analysis. Finally some recommendations are made about mountain meteorology observation which could be taken into account for future improvements of this network or for other mountain meteorological networks.

  18. System operation: Continuous volatile organic compound air monitoring of 56 ozone precursors with the Perkin-Elmer 8700 GC and automatic thermal desorption system

    SciTech Connect

    Radenheimer, P.; Gibich, J.; Ogle, L.

    1994-12-31

    As part of the Coastal Oxidant Assessment for Southeast Texas (COAST) program, two sites were chosen by the Texas Natural Resource Conservation Commission (TRNCC) and equipped with a Perkin-Elmer VOC system composed of the 8700 Gas Chromatograph, ATD-400 Automatic Thermal Desorption and Turbochrom III Data system on DEC computers. The systems were equipped with a dual capillary column application capable of resolving 56 distinct target ozone precursors. These components were separated and quantified on an hourly basis 24 hours each day. Each system generated 96 data files and approximately 30 documentation files each day totaling nearly 3 megabytes of information. The system was fully automated and monitored rigorously via high-speed modem communication. The modem communication proved to be essential in the handling of the large volume of data generated each day. A fully automated data transfer system was developed to allow unattended file archiving thus eliminating many problems associated with manual handling of files and facilitating the rapid evaluation of the data. This paper will identify the major issues in operation and maintenance of these systems (not including the chromatographic application). Problems which were encountered can be subdivided into 2 categories, (a) hardware system problems such as power failures, equipment malfunction and temperature/humidity fluctuations, and (b) software issues: capability/incompatibility, bugs, communication problems and a plethora of computer or computer-related issues (confusion).

  19. Towards falls prevention: a wearable wireless and battery-less sensing and automatic identification tag for real time monitoring of human movements.

    PubMed

    Ranasinghe, Damith C; Shinmoto Torres, Roberto L; Sample, Alanson P; Smith, Joshua R; Hill, Keith; Visvanathan, Renuka

    2012-01-01

    Falls related injuries among elderly patients in hospitals or residents in residential care facilities is a significant problem that causes emotional and physical trauma to those involved while presenting a rising healthcare expense in countries such as Australia where the population is ageing. Novel approaches using low cost and privacy preserving sensor enabled Radio Frequency Identification (RFID) technology may have the potential to provide a low cost and effective technological intervention to prevent falls in hospitals. We outline the details of a wearable sensor enabled RFID tag that is battery free, low cost, lightweight, maintenance free and can be worn continuously for automatic and unsupervised remote monitoring of activities of frail patients at acute hospitals or residents in residential care. The technological developments outlined in the paper forms part of an overall technological intervention developed to reduce falls at acute hospitals or in residential care facilities. This paper outlines the details of the technology, underlying algorithms and the results (where an accuracy of 94-100% was achieved) of a successful pilot trial. PMID:23367394

  20. SU-E-J-238: Monitoring Lymph Node Volumes During Radiotherapy Using Semi-Automatic Segmentation of MRI Images

    SciTech Connect

    Veeraraghavan, H; Tyagi, N; Riaz, N; McBride, S; Lee, N; Deasy, J

    2014-06-01

    Purpose: Identification and image-based monitoring of lymph nodes growing due to disease, could be an attractive alternative to prophylactic head and neck irradiation. We evaluated the accuracy of the user-interactive Grow Cut algorithm for volumetric segmentation of radiotherapy relevant lymph nodes from MRI taken weekly during radiotherapy. Method: The algorithm employs user drawn strokes in the image to volumetrically segment multiple structures of interest. We used a 3D T2-wturbo spin echo images with an isotropic resolution of 1 mm3 and FOV of 492×492×300 mm3 of head and neck cancer patients who underwent weekly MR imaging during the course of radiotherapy. Various lymph node (LN) levels (N2, N3, N4'5) were individually contoured on the weekly MR images by an expert physician and used as ground truth in our study. The segmentation results were compared with the physician drawn lymph nodes based on DICE similarity score. Results: Three head and neck patients with 6 weekly MR images were evaluated. Two patients had level 2 LN drawn and one patient had level N2, N3 and N4'5 drawn on each MR image. The algorithm took an average of a minute to segment the entire volume (512×512×300 mm3). The algorithm achieved an overall DICE similarity score of 0.78. The time taken for initializing and obtaining the volumetric mask was about 5 mins for cases with only N2 LN and about 15 mins for the case with N2,N3 and N4'5 level nodes. The longer initialization time for the latter case was due to the need for accurate user inputs to separate overlapping portions of the different LN. The standard deviation in segmentation accuracy at different time points was utmost 0.05. Conclusions: Our initial evaluation of the grow cut segmentation shows reasonably accurate and consistent volumetric segmentations of LN with minimal user effort and time.

  1. Automatic data editing: a brief introduction

    SciTech Connect

    Liepins, G.E.

    1982-01-01

    This paper briefly discusses the automatic data editing process: (1) check the data records for consistency, (2) analyze the inconsistent records to determine the inconsistent variables. It is stated that the application of automatic data editing is broad, and two specific examples are cited. One example, that of a vehicle maintenance data base is used to illustrate the process.

  2. Monitoring of harmful gaseous emissions from land transport vehicles using a mid-infrared optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Mulrooney, Jim; Clifford, John; Fitzpatrick, Colin; Lewis, Elfed

    2006-04-01

    This paper discusses the development of an optical fibre sensor suitable for the detection of gas emissions from motor vehicles based on mid-infrared spectroscopy. Initial measurements are presented for carbon dioxide emissions from a petrol engine using low-cost mid-infrared components, and a practical detection system, which could be fitted to a vehicle, is outlined.

  3. Optical guidance system for industrial vehicles

    DOEpatents

    Dyer, Robert D.; Eschbach, Eugene A.; Griffin, Jeffrey W.; Lind, Michael A.; Buck, Erville C.; Buck, Roger L.

    1990-01-01

    An automatically guided vehicle system for steering a vehicle. Optical sensing detects an image of a segment of track mounted above the path of the vehicle. Electrical signals corresponding to the position of the track are generated. A control circuit then converts these signals into movements for the steering of the vehicle.

  4. Design and manufacture of wheels for a dual-mode (manned - automatic) lunar surface roving vehicle. Volume 1: Detailed technical report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The concept development, testing, evaluation, and the selection of a final wheel design concept for a dual-mode lunar surface vehicle (DLRV) is detailed. Four wheel configurations were fabricated (one open wheel and three closed wheel) (and subjected to a series of soft soil, mechanical, and endurance tests. Results show that the open wheel has lower draw-bar pull (slope climbing) capability in loose soil due to its higher ground pressure and tendency to dig in at high wheel slip. Endurance tests indicate that a double mesh, fully enclosed wheel can be developed to meet DLRV life requirements. There is, however, a 1.0 to 1.8 lb/wheel weight penalty associated with the wheel enclosure. Also the button cleats used as grousers for the closed-type wheels result in local stress concentration and early fatigue failure of the wire mesh. Load deflection tests indicate that the stiffness of the covered wheel increased by up to 50% after soil bin testing, due to increased friction between the fabric and the wire mesh caused by the sand. No change in stiffness was found for the open wheel. The single woven mesh open wheel design with a chevron tread is recommended for continued development

  5. Automatic inspection of road surfaces

    NASA Astrophysics Data System (ADS)

    Rughooputh, Harry C. S.; Rughooputh, Soonil D. D. V.; Kinser, Jason M.

    2000-03-01

    Traditional inspections of road surfaces for the condition assessment and for locating cracks are time-consuming, expensive and can prove to be dangerous. What is ideally required would be a fully equipped automated inspecting vehicle capable of high precision location and characterization of road surface cracks over the width of the road (single pass). We propose an automatic crack monitoring system (akin to HARRIS - UK) with the video-based subsystem substituted by Global Positioning Systems for more accurate positioning. Besides, our technique avoids the storage of large volumes of scanned images of 'acceptable' road surface conditions. A pulse coupled neural network (PCNN) is used as a preprocessor for each scanned image to detect cracks while another PCNN segments this image to characterize identified defects. The latter image is then stored as binary image along with the GPS data. The type of cracks is later identified (offline) from the recorded binary images. This mode of data collection leads to a more accurate, less costly and faster automated system. Our results for road surface (concrete and bituminous) images reveal the suitability of this novel technique for a fully automated road inspection system for crack identification and characterization.

  6. The Planning Execution Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Ly, Bebe; Crocker, Alan; Schreckenghost, Debra; Mueller, Stephen; Phillips, Robert; Wadsworth, David; Sorensen, Charles

    2011-01-01

    The Planning Execution Monitoring (PEM) architecture is a design concept for developing autonomous cockpit command and control software. The PEM architecture is designed to reduce the operations costs in the space transportation system through the use of automation while improving safety and operability of the system. Specifically, the PEM autonomous framework enables automatic performance of many vehicle operations that would typically be performed by a human. Also, this framework supports varying levels of autonomous control, ranging from fully automatic to fully manual control. The PEM autonomous framework interfaces with the core flight software to perform flight procedures. It can either assist human operators in performing procedures or autonomously execute routine cockpit procedures based on the operational context. Most importantly, the PEM autonomous framework promotes and simplifies the capture, verification, and validation of the flight operations knowledge. Through a hierarchical decomposition of the domain knowledge, the vehicle command and control capabilities are divided into manageable functional "chunks" that can be captured and verified separately. These functional units, each of which has the responsibility to manage part of the vehicle command and control, are modular, re-usable, and extensible. Also, the functional units are self-contained and have the ability to plan and execute the necessary steps for accomplishing a task based upon the current mission state and available resources. The PEM architecture has potential for application outside the realm of spaceflight, including management of complex industrial processes, nuclear control, and control of complex vehicles such as submarines or unmanned air vehicles.

  7. Monitoring radiation belt particle precipitation - automatic detection of enhanced transient ionisation in the lower plasmasphere using subionospheric narrow band VLF signals

    NASA Astrophysics Data System (ADS)

    Steinbach, P.; Lichtenberger, J.; Ferencz, Cs.

    2009-04-01

    Signals of naval VLF transmitters, propagating long distances along the Earth-ionosphere waveguide (EIWG) have been widely applied as effective tools for monitoring transient ionization at mesospheric altitudes. Perturbations in recorded amplitude and/or phase data series of stable frequency signals may refer to the effect of transient enhanced ionization in the EIWG, due to e.g. loss-cone precipitation of trapped energetic electrons (Carpenter et al., 1984, Dowden and Adams, 1990), burst of solar plasma particles (Clilverd et al., 2001). The contribution of precipitating particles are thought to be substantial in certain Sun-to-Earth energy flow processes in the upper atmosphere (Rodger et al., 2005). Narrow band VLF measuring network has been set up, developed and operated in Hungary, running in the last decade almost continuously, dedicated to monitor ionization enhancement regions along numerous transmitter-receiver paths. This setup is based on Omnipal and Ultra-MSK equipment, logging amplitude and phase data of received signals, sampled at frequencies of selected VLF transmitters. Signal trajectories, selected for recording represent proper configuration to survey transient ionization caused by energetic particles in the sub-polar region, such as effect of scattered particles of the inner radiation belt. Reprocessing of the mass archived recordings has been started using a newly developed signal processing code, detecting and classifying different sort of perturbations automatically on narrow band VLF series. Occurrence rates, daily and seasonal variation, statistics of transient ionization enhancements, their geographic distribution within the surveyed range and time period, and correlation with intense geomagnetic and/or Solar event is yielded by this analysis. References: Carpenter, D.L., Inan, U.S., Trimpi, M.L., Helliwell, R.A., and Katsufrakis, J.P.: Perturbations of subionospheric LF and MF signals due to whistler-induced electron precipitation burst

  8. The relationship between activity clusters detected by an automatic activity monitor and endocrine changes during the periestrous period in lactating dairy cows.

    PubMed

    Aungier, S P M; Roche, J F; Duffy, P; Scully, S; Crowe, M A

    2015-03-01

    The aim of this study was to determine the relationship between observed estrous-related behavior, activity clusters (AC; detected by automatic activity monitor), endocrine profiles, and ovulation time. Twenty-one cows in estrus (after 2 cloprostenol treatments, 11 d apart) and 12 nonsynchronized cows, to establish Heatime (SCR Engineers Ltd., Netanya, Israel) herd baseline activity, were enrolled. Cows had Heatime monitors applied 3 wk before the trial to establish their own baseline activity level. Cows in standing estrus had ultrasonography and phlebotomy carried out every 4 h to determine dominant follicle size, endocrine profiles, and ovulation time. After ovulation, these procedures were repeated once on d 3 to 6. Heatime alerted estrus in 90% of cows, and incorrectly alerted 17% of AC. The mean±SEM duration for standing estrus was 9±1 and 13±1 h for estrous-related behavior. Estrous-related behavior began after the start of the proestrous estradiol-17β (E2) increase (59±6.5 h). Cows with longer durations of raised proestrous E2 had longer intervals from its onset to the start of standing estrus and AC. The AC duration increased with longer durations of estrous-related behavior. Higher peak E2 occurred with longer standing estrus and estrous-related behavior. As E2 concentration decreased after the peak, 90% of cows still had estrous-related behavior. Duration of estrous-related behavior increased with higher average E2 concentration during the last 8 h before the start of the LH surge. During this surge 90% of cows had all of their standing estrus. As yields increased, so did the magnitude of the preovulatory FSH surges. Higher surges occurred with shorter standing estrus and estrous-related behavior. Cows with shorter LH surges had longer standing estrus. Peak LH preceded the AC peak (6.6±0.8 h). Duration of overlap between the AC start and the LH surge end ranged between 0 and 14 h; 1 cow had none. No association was found between the AC

  9. Automatic Stabilization

    NASA Technical Reports Server (NTRS)

    Haus, FR

    1936-01-01

    This report lays more stress on the principles underlying automatic piloting than on the means of applications. Mechanical details of servomotors and the mechanical release device necessary to assure instantaneous return of the controls to the pilot in case of malfunction are not included. Descriptions are provided of various commercial systems.

  10. Automatic warranties.

    PubMed

    Decker, R

    1987-10-01

    In addition to express warranties (those specifically made by the supplier in the contract) and implied warranties (those resulting from circumstances of the sale), there is one other classification of warranties that needs to be understood by hospital materials managers. These are sometimes known as automatic warranties. In the following dialogue, Doctor Decker develops these legal concepts. PMID:10284977

  11. 40 CFR 205.57-2 - Test vehicle sample selection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transmission and standard transmission vehicles, the test vehicle shall be a standard transmission vehicle unless the manufacturer has reason to believe that the automatic transmission vehicle emits a greater... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Test vehicle sample selection....

  12. 40 CFR 205.57-2 - Test vehicle sample selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transmission and standard transmission vehicles, the test vehicle shall be a standard transmission vehicle unless the manufacturer has reason to believe that the automatic transmission vehicle emits a greater... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Test vehicle sample selection....

  13. 40 CFR 205.57-2 - Test vehicle sample selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transmission and standard transmission vehicles, the test vehicle shall be a standard transmission vehicle unless the manufacturer has reason to believe that the automatic transmission vehicle emits a greater... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Test vehicle sample selection....

  14. 40 CFR 205.57-2 - Test vehicle sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transmission and standard transmission vehicles, the test vehicle shall be a standard transmission vehicle unless the manufacturer has reason to believe that the automatic transmission vehicle emits a greater... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Test vehicle sample selection....

  15. Vehicle Tracking for an Evasive Manoeuvres Assistant Using Low-Cost Ultrasonic Sensors

    PubMed Central

    Jiménez, Felipe; Naranjo, José E.; Gómez, Oscar; Anaya, José J.

    2014-01-01

    Many driver assistance systems require knowledge of the vehicle environment. As these systems are increasing in complexity and performance, this knowledge of the environment needs to be more complete and reliable, so sensor fusion combining long, medium and short range sensors is now being used. This paper analyzes the feasibility of using ultrasonic sensors for low cost vehicle-positioning and tracking in the lane adjacent to the host vehicle in order to identify free areas around the vehicle and provide information to an automatic avoidance collision system that can perform autonomous braking and lane change manoeuvres. A laser scanner is used for the early detection of obstacles in the direction of travel while two ultrasonic sensors monitor the blind spot of the host vehicle. The results of tests on a test track demonstrate the ability of these sensors to accurately determine the kinematic variables of the obstacles encountered, despite a clear limitation in range. PMID:25460817

  16. Vehicle tracking for an evasive manoeuvres assistant using low-cost ultrasonic sensors.

    PubMed

    Jiménez, Felipe; Naranjo, José E; Gómez, Oscar; Anaya, José J

    2014-01-01

    Many driver assistance systems require knowledge of the vehicle environment. As these systems are increasing in complexity and performance, this knowledge of the environment needs to be more complete and reliable, so sensor fusion combining long, medium and short range sensors is now being used. This paper analyzes the feasibility of using ultrasonic sensors for low cost vehicle-positioning and tracking in the lane adjacent to the host vehicle in order to identify free areas around the vehicle and provide information to an automatic avoidance collision system that can perform autonomous braking and lane change manoeuvres. A laser scanner is used for the early detection of obstacles in the direction of travel while two ultrasonic sensors monitor the blind spot of the host vehicle. The results of tests on a test track demonstrate the ability of these sensors to accurately determine the kinematic variables of the obstacles encountered, despite a clear limitation in range. PMID:25460817

  17. Development of a DC propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  18. The use of visual cues for vehicle control and navigation

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.; Battiste, Vernol

    1991-01-01

    At least three levels of control are required to operate most vehicles: (1) inner-loop control to counteract the momentary effects of disturbances on vehicle position; (2) intermittent maneuvers to avoid obstacles, and (3) outer-loop control to maintain a planned route. Operators monitor dynamic optical relationships in their immediate surroundings to estimate momentary changes in forward, lateral, and vertical position, rates of change in speed and direction of motion, and distance from obstacles. The process of searching the external scene to find landmarks (for navigation) is intermittent and deliberate, while monitoring and responding to subtle changes in the visual scene (for vehicle control) is relatively continuous and 'automatic'. However, since operators may perform both tasks simultaneously, the dynamic optical cues available for a vehicle control task may be determined by the operator's direction of gaze for wayfinding. An attempt to relate the visual processes involved in vehicle control and wayfinding is presented. The frames of reference and information used by different operators (e.g., automobile drivers, airline pilots, and helicopter pilots) are reviewed with particular emphasis on the special problems encountered by helicopter pilots flying nap of the earth (NOE). The goal of this overview is to describe the context within which different vehicle control tasks are performed and to suggest ways in which the use of visual cues for geographical orientation might influence visually guided control activities.

  19. Vehicle detection from high-resolution aerial images based on superpixel and color name features

    NASA Astrophysics Data System (ADS)

    Chen, Ziyi; Cao, Liujuan; Yu, Zang; Chen, Yiping; Wang, Cheng; Li, Jonathan

    2016-03-01

    Automatic vehicle detection from aerial images is emerging due to the strong demand of large-area traffic monitoring. In this paper, we present a novel framework for automatic vehicle detection from the aerial images. Through superpixel segmentation, we first segment the aerial images into homogeneous patches, which consist of the basic units during the detection to improve efficiency. By introducing the sparse representation into our method, powerful classification ability is achieved after the dictionary training. To effectively describe a patch, the Histogram of Oriented Gradient (HOG) is used. We further propose to integrate color information to enrich the feature representation by using the color name feature. The final feature consists of both HOG and color name based histogram, by which we get a strong descriptor of a patch. Experimental results demonstrate the effectiveness and robust performance of the proposed algorithm for vehicle detection from aerial images.

  20. AUTOMATIC COUNTER

    DOEpatents

    Robinson, H.P.

    1960-06-01

    An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.

  1. Fiber Bragg Grating Sensor/Systems for In-Flight Wing Shape Monitoring of Unmanned Aerial Vehicles (UAVs)

    NASA Technical Reports Server (NTRS)

    Parker, Allen; Richards, Lance; Ko, William; Piazza, Anthony; Tran, Van

    2006-01-01

    A viewgraph presentation describing an in-flight wing shape measurement system based on fiber bragg grating sensors for use in Unmanned Aerial Vehicles (UAV) is shown. The topics include: 1) MOtivation; 2) Objective; 3) Background; 4) System Design; 5) Ground Testing; 6) Future Work; and 7) Conclusions

  2. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....75 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Who is responsible...

  3. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....75 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who is responsible...

  4. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....75 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Who is responsible...

  5. Flight study of a vehicle operational status and monitoring system. [applied to systems on YF-12 aircraft

    NASA Technical Reports Server (NTRS)

    Love, J. E.; Fox, W. J.; Wicklund, E. J.

    1964-01-01

    An analog onboard monitoring system was installed on a YF-12 airplane as the first phase of a program to monitor the engine inlet and portions of the airplane's electrical and fuel management subsystems in flight. The system provided data which were considered to form a suitable base for diagnostic test logic and decision criteria for the rest of the program. The data were also adequate for the purpose of maintaining the engine inlet and identifying malfunctions within it. The investigation showed that the requirements of an onboard monitoring system should be considered during the original design of the system to be monitored.

  6. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  7. AUTOMATIC HAND COUNTER

    DOEpatents

    Mann J.R.; Wainwright, A.E.

    1963-06-11

    An automatic, personnel-operated, alpha-particle hand monitor is described which functions as a qualitative instrument to indicate to the person using it whether his hands are cold'' or hot.'' The monitor is activated by a push button and includes several capacitor-triggered thyratron tubes. Upon release of the push button, the monitor starts the counting of the radiation present on the hands of the person. If the count of the radiation exceeds a predetermined level within a predetermined time, then a capacitor will trigger a first thyratron tube to light a hot'' lamp. If, however, the count is below such level during this time period, another capacitor will fire a second thyratron to light a safe'' lamp. (AEC)

  8. Evaluation of an open-path fourier-transform infrared spectrometer for monitoring vehicle emissions over a suburban roadway intersection

    SciTech Connect

    Einfield, W.

    1997-05-01

    The ability of an open-path, fourier-transform infrared spectrometer to detect vehicle exhaust emissions approximately 3 meters above the roadway surface at a busy Albuquerque suburban intersection was evaluated in this study. Multiple measurements of carbon monoxide and carbon dioxide were carried out over pathlengths up to 100 meters during the morning commute period on multiple days in the summer of 1993. The carbon monoxide to fuel carbon ratio was computed from all spectral data in order to derive a vehicle fleet average ratio. The data were determined to be normally distributed with an overall carbon monoxide-fuel carbon ratio of 0.15. The 95% confidence interval about the mean was {+-} 0.009. Day-to-day variation of the mean ratio was determined to be on the order of 3%. The results indicate that anticipated reductions in carbon monoxide emissions following the implementation of a winter-season oxygenated fuel program could be reliably detected with an open-path fourier transform spectrometer. The periodic use of such an instrument may offer a cost-effective means of generating a city-wide carbon monoxide emission budget for vehicles sources.

  9. Monitoring intensity and patterns of off-highway vehicle (OHV) use in remote areas of the western USA

    USGS Publications Warehouse

    Ouren, Douglas S.; Coffin, Alisa W.

    2013-01-01

    The continued growth of off-highway vehicle (OHV) activities – demonstrated by the dramatic increase in OHV sales, number of users, and areas experiencing OHV use – has elevated concerns about their ecological effects, the impacts on wildlife, and the sustainability of OHV use on secondary and tertiary road networks. Conflicts between visitors and wildlife are raising concerns about system resiliency and sustainable management. In order to quantify the spatial and temporal impacts of OHV use it is imperative to know about the timing and patterns of vehicle use. This study tested and used multiple vehicle-counter types to study vehicular OHV use patterns and volume throughout a mountainous road network in western Colorado. OHV counts were analyzed by time of day, day of week, season, and year. While daily use peaked within a two to three hour range for all sites, the overall volume of use varied among sites on an annual basis. The data also showed that there are at least two distinct patterns of OHV use: one dominated by a majority of use on weekends, and the other with continuous use throughout the week. This project provided important, but rarely captured, metrics about patterns of OHV use in a remote, mountainous region of Colorado. The techniques described here can provide land managers with a quantitative evaluation of OHV use across the landscape, an essential foundation for travel management planning. They also provide researchers with robust tools to further investigate the impacts of OHV use.

  10. Automatic stabilization

    NASA Technical Reports Server (NTRS)

    Haus, FR

    1936-01-01

    This report concerns the study of automatic stabilizers and extends it to include the control of the three-control system of the airplane instead of just altitude control. Some of the topics discussed include lateral disturbed motion, static stability, the mathematical theory of lateral motion, and large angles of incidence. Various mechanisms and stabilizers are also discussed. The feeding of Diesel engines by injection pumps actuated by engine compression, achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  11. Automatic exposure control for space sequential camera

    NASA Technical Reports Server (NTRS)

    Mcatee, G. E., Jr.; Stoap, L. J.; Solheim, C. D.; Sharpsteen, J. T.

    1975-01-01

    The final report for the automatic exposure control study for space sequential cameras, for the NASA Johnson Space Center is presented. The material is shown in the same sequence that the work was performed. The purpose of the automatic exposure control is to automatically control the lens iris as well as the camera shutter so that the subject is properly exposed on the film. A study of design approaches is presented. Analysis of the light range of the spectrum covered indicates that the practical range would be from approximately 20 to 6,000 foot-lamberts, or about nine f-stops. Observation of film available from space flights shows that optimum scene illumination is apparently not present in vehicle interior photography as well as in vehicle-to-vehicle situations. The evaluation test procedure for a breadboard, and the results, which provided information for the design of a brassboard are given.

  12. Snow-cover dynamics monitored by automatic digital photography at the rooting zone of an active rock glacier in the Hinteres Lantal Cirque, Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Rieckh, Matthias; Avian, Michael

    2010-05-01

    Knowledge regarding snow-cover dynamics and climatic conditions in the rooting zone of active rock glaciers is still limited. The number of meteorological stations on the surface of or close to active rock glaciers is increasing. However, areal information on snow-cover distribution and its spatial dynamics caused by different processes on rock glaciers surfaces with a high temporal resolution from such remote alpine areas are mostly difficult to obtain. To face this problem an automatic remote digital camera (RDC) system was proprietary developed. The core parts of the RDC system are a standard hand-held digital camera, a remote control, a water proof casing with a transparent opening, a 12V/25Ah battery and solar panels with a charge controller. Three such devices were constructed and installed at different sites in the Central Alps of Austria. One RDC system is used to monitor the rooting zone of the highly active rock glacier in the Hinteres Langtal Cirque (46°59'N, 12°47'E), Central Schober Mountains, Austria. The 0.15 km² large NW-facing rock glaciers is tongue-shaped with a fast moving lower part (>1m/a) and a substantially slower upper part, ranging in elevation between 2455-2700 m a.s.l. The RDC system was set up in September 2006 and is located since than at 2770 m a.s.l. on a pronounced ridge crest that confines the Hinteres Langtal Cirque to the SW. The water proof casing was attached to a 1.5 m high metal pole which itself was fixed to the bedrock by screws and concrete glue. The viewing direction of the camera is NE. Hence, the image section of the RDC focuses on the rooting zone of the rock glacier and its headwalls up to c. 3000 m a.s.l. Photographs were taken daily at 3 pm providing the optimal lighting conditions in the relevant part of the cirque. 720 photographs were taken continuously in the period 12.09.2006 to 31.08.2008. These optical data were analysed by applying GIS and remote sensing techniques regarding snow-cover distribution

  13. Automatic routing module

    NASA Technical Reports Server (NTRS)

    Malin, Janice A.

    1987-01-01

    Automatic Routing Module (ARM) is a tool to partially automate Air Launched Cruise Missile (ALCM) routing. For any accessible launch point or target pair, ARM creates flyable routes that, within the fidelity of the models, are optimal in terms of threat avoidance, clobber avoidance, and adherence to vehicle and planning constraints. Although highly algorithmic, ARM is an expert system. Because of the heuristics applied, ARM generated routes closely resemble manually generated routes in routine cases. In more complex cases, ARM's ability to accumulate and assess threat danger in three dimensions and trade that danger off with the probability of ground clobber results in the safest path around or through difficult areas. The tools available prior to ARM did not provide the planner with enough information or present it in such a way that ensured he would select the safest path.

  14. Variable load automatically tests dc power supplies

    NASA Technical Reports Server (NTRS)

    Burke, H. C., Jr.; Sullivan, R. M.

    1965-01-01

    Continuously variable load automatically tests dc power supplies over an extended current range. External meters monitor current and voltage, and multipliers at the outputs facilitate plotting the power curve of the unit.

  15. Automatic localization of backscattering events due to particulate in urban areas

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Malizia, Andrea; Parracino, Stefano; Richetta, M.; Murari, A.; Vega, J.

    2014-10-01

    Particulate matter (PM), emitted by vehicles in urban traffic, can greatly affect environment air quality and have direct implications on both human health and infrastructure integrity. The consequences for society are relevant and can impact also on national health. Limits and thresholds of pollutants emitted by vehicles are typically regulated by government agencies. In the last few years, the interest in PM emissions has grown substantially due to both air quality issues and global warming. Lidar-Dial techniques are widely recognized as a costeffective alternative to monitor large regions of the atmosphere. To maximize the effectiveness of the measurements and to guarantee reliable, automatic monitoring of large areas, new data analysis techniques are required. In this paper, an original tool, the Universal Multi-Event Locator (UMEL), is applied to the problem of automatically indentifying the time location of peaks in Lidar measurements for the detection of particulate matter emitted by anthropogenic sources like vehicles. The method developed is based on Support Vector Regression and presents various advantages with respect to more traditional techniques. In particular, UMEL is based on the morphological properties of the signals and therefore the method is insensitive to the details of the noise present in the detection system. The approach is also fully general, purely software and can therefore be applied to a large variety of problems without any additional cost. The potential of the proposed technique is exemplified with the help of data acquired during an experimental campaign in the field in Rome.

  16. Protocols for vegetation and habitat monitoring with unmanned aerial vehicles: linking research to management on US public lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods: Monitoring of the condition and trend of natural resources is critical for determining effectiveness of management actions and understanding ecosystem responses to broad-scale processes like climate change. While broad-scale remote sensing has generally improved the abi...

  17. [The assessment of radiation hazards in the "MIR" and ISS orbits from the data of vehicle and personal dosimetric monitoring].

    PubMed

    Shafirkin, A V; Akatov, Iu A; Arkhangel'skiĭ, V V; Bondarenko, V A; Kolomenskiĭ, A V; Mitrikas, V G; Petrov, V M; Tsetlin, V V

    2002-01-01

    The paper describes the procedure of estimating total radiation risk to crewmembers during lifetime and possible lifetime reduction in consequence of participation in the Mir and ISS missions in different periods of the solar activity. The procedure includes analysis of data of vehicle and personal dosimetry, and calculations of radiation doses in various Mir compartments and accumulated by body tissues of cosmonauts. Calculated doses showed good consistency with the doses measured with R-16 on board Mir and personal dosimeters. To a first approximation, estimation of doses to cosmonauts and radiation risk as a result of participation in ISS missions took into account similarity of the Mir and ISS basal modules (geometry, dimensions and mass values) and was performed with the use of the space station shielding model that had been described elsewhere. The model of ISS radiation shielding will be updated as data of dosimetry of ISS compartments and phantom studies are available. PMID:11987426

  18. Vehicle speed control device

    SciTech Connect

    Thornton-Trump, W.E.

    1987-03-10

    An apparatus is described for automatically limiting the speed of a vehicle powered by an internal combustion engine having a spark ignition system with an ignition coil, comprising: sensor means for generating a speed signal directly representative of the speed of the vehicle comprising a series of speed signal pulses having a pulse repetition frequency proportional to the speed of the vehicle; control means for converting speed signal pulses into a DC voltage proportional to the vehicle speed; means for comparing the DC voltage to a predetermined DC voltage having substantially zero AC components representative of a predetermined maximum speed and for generating a difference signal in response thereto; and means for generating a pulse-width modulated control signal responsive to the difference signal; power means responsive to the control signal for intermittently interrupting the ignition system.

  19. Karst show caves - how DTN technology as used in space assists automatic environmental monitoring and tourist protection - experiment in Postojna cave

    NASA Astrophysics Data System (ADS)

    Gabrovšek, F.; Grašič, B.; Božnar, M. Z.; Mlakar, P.; Udén, M.; Davies, E.

    2013-10-01

    The paper presents an experiment demonstrating a novel and successful application of Delay- and Disruption-Tolerant Networking (DTN) technology for automatic data transfer in a karst cave Early Warning and Measuring System. The experiment took place inside the Postojna Cave in Slovenia, which is open to tourists. Several automatic meteorological measuring stations are set up inside the cave, as an adjunct to the surveillance infrastructure; the regular data transfer provided by the DTN technology allows the surveillance system to take on the role of an Early Warning System (EWS). One of the stations is set up alongside the railway tracks, which allows the tourist to travel inside the cave by train. The experiment was carried out by placing a DTN "data mule" (a DTN-enabled computer with WiFi connection) on the train and by upgrading the meteorological station with a DTN-enabled WiFi transmission system. When the data mule is in the wireless drive-by mode, it collects measurement data from the station over a period of several seconds as the train passes the stationary equipment, and delivers data at the final train station by the cave entrance. This paper describes an overview of the experimental equipment and organisation allowing the use of a DTN system for data collection and an EWS inside karst caves where there is a regular traffic of tourists and researchers.

  20. Karst show caves - how DTN technology as used in space assists automatic environmental monitoring and tourist protection - experiment in Postojna Cave

    NASA Astrophysics Data System (ADS)

    Gabrovšek, F.; Grašič, B.; Božnar, M. Z.; Mlakar, P.; Udén, M.; Davies, E.

    2014-02-01

    The paper presents an experiment demonstrating a novel and successful application of delay- and disruption-tolerant networking (DTN) technology for automatic data transfer in a karst cave early warning and measuring system. The experiment took place inside the Postojna Cave in Slovenia, which is open to tourists. Several automatic meteorological measuring stations are set up inside the cave, as an adjunct to the surveillance infrastructure; the regular data transfer provided by the DTN technology allows the surveillance system to take on the role of an early warning system (EWS). One of the stations is set up alongside the railway tracks, which allows the tourist to travel inside the cave by train. The experiment was carried out by placing a DTN "data mule" (a DTN-enabled computer with WiFi connection) on the train and by upgrading the meteorological station with a DTN-enabled WiFi transmission system. When the data mule is in the wireless drive-by mode, it collects measurement data from the station over a period of several seconds as the train without stopping passes the stationary equipment, and delivers data at the final train station by the cave entrance. This paper describes an overview of the experimental equipment and organization allowing the use of a DTN system for data collection and an EWS inside karst caves where there is regular traffic of tourists and researchers.

  1. Monitoring the invasion of Spartina alterniflora using very high resolution unmanned aerial vehicle imagery in Beihai, Guangxi (China).

    PubMed

    Wan, Huawei; Wang, Qiao; Jiang, Dong; Fu, Jingying; Yang, Yipeng; Liu, Xiaoman

    2014-01-01

    Spartina alterniflora was introduced to Beihai, Guangxi (China), for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR) imagery from the unmanned aerial vehicle (UAV). The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS) detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population. PMID:24892066

  2. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  3. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  4. Rapid, Repeat-sample Monitoring of Crustal Deformations and Environmental Phenomena with the Uninhabited Aerial Vehicle Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Smith, Robert C.

    2006-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.

  5. Monitoring the Invasion of Spartina alterniflora Using Very High Resolution Unmanned Aerial Vehicle Imagery in Beihai, Guangxi (China)

    PubMed Central

    Wan, Huawei; Wang, Qiao; Jiang, Dong; Yang, Yipeng; Liu, Xiaoman

    2014-01-01

    Spartina alterniflora was introduced to Beihai, Guangxi (China), for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR) imagery from the unmanned aerial vehicle (UAV). The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS) detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population. PMID:24892066

  6. Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  7. Automatic transmission

    SciTech Connect

    Miura, M.; Inuzuka, T.

    1986-08-26

    1. An automatic transmission with four forward speeds and one reverse position, is described which consists of: an input shaft; an output member; first and second planetary gear sets each having a sun gear, a ring gear and a carrier supporting a pinion in mesh with the sun gear and ring gear; the carrier of the first gear set, the ring gear of the second gear set and the output member all being connected; the ring gear of the first gear set connected to the carrier of the second gear set; a first clutch means for selectively connecting the input shaft to the sun gear of the first gear set, including friction elements, a piston selectively engaging the friction elements and a fluid servo in which hydraulic fluid is selectively supplied to the piston; a second clutch means for selectively connecting the input shaft to the sun gear of the second gear set a third clutch means for selectively connecting the input shaft to the carrier of the second gear set including friction elements, a piston selectively engaging the friction elements and a fluid servo in which hydraulic fluid is selectively supplied to the piston; a first drive-establishing means for selectively preventing rotation of the ring gear of the first gear set and the carrier of the second gear set in only one direction and, alternatively, in any direction; a second drive-establishing means for selectively preventing rotation of the sun gear of the second gear set; and a drum being open to the first planetary gear set, with a cylindrical intermediate wall, an inner peripheral wall and outer peripheral wall and forming the hydraulic servos of the first and third clutch means between the intermediate wall and the inner peripheral wall and between the intermediate wall and the outer peripheral wall respectively.

  8. Laser tracking system with automatic reacquisition capability.

    PubMed

    Johnson, R E; Weiss, P F

    1968-06-01

    A laser based tracking system is described that has the capability of automatically performing an acquisition search to locate the target. This work is intended for precision launch phase tracking of the Saturn V launch vehicle. System tracking accuracies limited only by the atmosphere have been demonstrated, as has acquisition over a 1 degrees x 1 degrees field of view. PMID:20068746

  9. Computer systems for automatic earthquake detection

    USGS Publications Warehouse

    Stewart, S.W.

    1974-01-01

    U.S Geological Survey seismologists in Menlo park, California, are utilizing the speed, reliability, and efficiency of minicomputers to monitor seismograph stations and to automatically detect earthquakes. An earthquake detection computer system, believed to be the only one of its kind in operation, automatically reports about 90 percent of all local earthquakes recorded by a network of over 100 central California seismograph stations. The system also monitors the stations for signs of malfunction or abnormal operation. Before the automatic system was put in operation, all of the earthquakes recorded had to be detected by manually searching the records, a time-consuming process. With the automatic detection system, the stations are efficiently monitored continuously. 

  10. Intelligent behaviors through vehicle-to-vehicle and vehicle-to-infrastructure communication

    NASA Astrophysics Data System (ADS)

    Garcia, Richard D.; Sturgeon, Purser; Brown, Mike

    2012-06-01

    The last decade has seen a significant increase in intelligent safety devices on private automobiles. These devices have both increased and augmented the situational awareness of the driver and in some cases provided automated vehicle responses. To date almost all intelligent safety devices have relied on data directly perceived by the vehicle. This constraint has a direct impact on the types of solutions available to the vehicle. In an effort to improve the safety options available to a vehicle, numerous research laboratories and government agencies are investing time and resources into connecting vehicles to each other and to infrastructure-based devices. This work details several efforts in both the commercial vehicle and the private auto industries to increase vehicle safety and driver situational awareness through vehicle-to-vehicle and vehicle-to-infrastructure communication. It will specifically discuss intelligent behaviors being designed to automatically disable non-compliant vehicles, warn tractor trailer vehicles of unsafe lane maneuvers such as lane changes, passing, and merging, and alert drivers to non-line-of-sight emergencies.

  11. Automatic transmission for electric wheelchairs.

    PubMed

    Reswick, J B

    1985-07-01

    A new infinitely variable automatic transmission called the RESATRAN that automatically changes its speed ratio in response to load torque being transmitted is presented. A prototype has been built and tested on a conventional three-wheeled electric motor propelled wheelchair. It is shown theoretically that more than 50 percent reduction in power during hill climbing may be expected when a transmission-equipped wheelchair is compared to a direct-drive vehicle operating at the same voltage. It is suggested that with such a transmission, wheelchairs can use much smaller motors and associated electronic controls, while at the same time gaining in efficiency that results in longer operating distances for the same battery charge. Design details of the transmission and test results are presented. These results show a substantial reduction in operating current and increased distance of operation over a test course. PMID:3835264

  12. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.

    2015-12-01

    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out <200 m from Pahoa Village road. Over 150,000 m3of lava were added to the study site during our period of observations, with maximum vertical inflation >4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and

  13. Reliable compact electrical power source systems for space launch vehicles

    SciTech Connect

    Young, A.R.

    1996-12-31

    Described herein are several key technologies utilized in the design of a family of direct-drive turboalternator systems for space launch vehicles. These systems automatically provide conditioned and regulated electrical power at various voltages, powering actuators, valves, and avionics throughout the vehicle. The simple and robust ring-wound two-pole toothless alternator operates at peripheral speeds, making it suitable to be driven directly by a turbine, thereby eliminating the weight, reliability, zero ``g`` lubrication, and cooling issues of a speed-reducing gearbox, while allowing the turbine to operate at reasonable efficiency. Additionally, the use of self-aligning foil bearing and catalytic combustors or cold gas propellants enhance the reliability. The power conditioner and electronic controller provide hands-off regulated ac or dc power on demand, maintaining critical parameters within established limits and performance while reporting on built-in health-monitoring tests.

  14. Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2016-05-01

    In a mini-review Kerner (2013) it has been shown that classical traffic flow theories and models failed to explain empirical traffic breakdown - a phase transition from metastable free flow to synchronized flow at highway bottlenecks. The main objective of this mini-review is to study the consequence of this failure of classical traffic-flow theories for an analysis of empirical stochastic highway capacity as well as for the effect of automatic driving vehicles and cooperative driving on traffic flow. To reach this goal, we show a deep connection between the understanding of empirical stochastic highway capacity and a reliable analysis of automatic driving vehicles in traffic flow. With the use of simulations in the framework of three-phase traffic theory, a probabilistic analysis of the effect of automatic driving vehicles on a mixture traffic flow consisting of a random distribution of automatic driving and manual driving vehicles has been made. We have found that the parameters of automatic driving vehicles can either decrease or increase the probability of the breakdown. The increase in the probability of traffic breakdown, i.e., the deterioration of the performance of the traffic system can occur already at a small percentage (about 5%) of automatic driving vehicles. The increase in the probability of traffic breakdown through automatic driving vehicles can be realized, even if any platoon of automatic driving vehicles satisfies condition for string stability.

  15. AN AUTOMATIC CHLORINATION SYSTEM FOR ELIMINATING BIOLOGICAL GROWTH IN PUMPING SYSTEMS FOR AUTOMATIC INSTRUMENTATION

    EPA Science Inventory

    Automatic chlorination was determined to be satisfactory for elimination of microbial growth (slime) in monitor pumping systems. With chlorination, changes in dissolved oxygen levels through the sampling system were minimized. Optimum chlorine concentration and frequency of chlor...

  16. Vehicle monitoring under Vehicular Ad-Hoc Networks (VANET) parameters employing illumination invariant correlation filters for the Pakistan motorway police

    NASA Astrophysics Data System (ADS)

    Gardezi, A.; Umer, T.; Butt, F.; Young, R. C. D.; Chatwin, C. R.

    2016-04-01

    A spatial domain optimal trade-off Maximum Average Correlation Height (SPOT-MACH) filter has been previously developed and shown to have advantages over frequency domain implementations in that it can be made locally adaptive to spatial variations in the input image background clutter and normalised for local intensity changes. The main concern for using the SPOT-MACH is its computationally intensive nature. However in the past enhancements techniques were proposed for the SPOT-MACH to make its execution time comparable to its frequency domain counterpart. In this paper a novel approach is discussed which uses VANET parameters coupled with the SPOT-MACH in order to minimise the extensive processing of the large video dataset acquired from the Pakistan motorways surveillance system. The use of VANET parameters gives us an estimation criterion of the flow of traffic on the Pakistan motorway network and acts as a precursor to the training algorithm. The use of VANET in this scenario would contribute heavily towards the computational complexity minimization of the proposed monitoring system.

  17. A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China

    NASA Astrophysics Data System (ADS)

    Peng, Zhong-Ren; Wang, Dongsheng; Wang, Zhanyong; Gao, Ya; Lu, Sijia

    2015-12-01

    Measurements of the vertical distribution of air pollutant concentrations can provide essential information for accurate estimates of the dispersion mechanism of local pollutants between boundary layer and troposphere. This paper reports unique measurements using an unmanned aerial vehicle (UAV) with mobile sensors to collect three-dimensional fine particulate matter (PM2.5) mass concentration data on sixteen flights within 1000 m altitude from August, 2014 to December, 2014 in Hangzhou, China. The study demonstrates the feasibility of UAV with mobile monitoring devices as an effective and flexible means to collect three-dimensional air pollutant concentration data, particularly for monitoring the vertical profile of air pollutants. The experimental results show that in general, the PM2.5 concentrations decrease as height increases, with an exception when the air temperature inversion layer appears, and the decrease rate of PM2.5 concentrations is larger in the morning than in the afternoon flights. This is a result of the accumulated pollutant emission of human activities during the day and the varied meteorological conditions. At the same horizontal layer, there are fluctuations in PM2.5 concentrations during different time periods of the day. The vertical fluctuations of PM2.5 concentrations become nearly uniform in two afternoon flights, which is directly related with the extent of atmospheric mixture. Seen from the multiple regression models, the distribution of relative PM2.5 concentrations between vertical and ground observations is well characterized and the regression coefficients of four measured factors (i.e., air temperature, relative humidity, air pressure and height) effectively explain their impacts on the vertical distribution patterns. Air temperature and relative humidity are the most influential factors that affect the vertical distribution of PM2.5 concentrations.

  18. Guidance and control of flight vehicles

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.; Bryson, A. E., Jr.; Franklin, G. F.

    1971-01-01

    Progress reports on guidance and attitude control mechanisms of different flight vehicles are presented. The vehicles considered include orbiting spacecraft, supersonic aircraft, and general aviation aircraft. Data also cover orbital transfer using low thrust, automatic landing logic for aircraft, optimal and three dimensional turns for supersonic aircraft, and orbital rendezvous.

  19. Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers

    NASA Astrophysics Data System (ADS)

    Seale, Anthony; Christoffersen, Poul; Mugford, Ruth I.; O'Leary, Martin

    2011-09-01

    We have developed an automatic method to identify changes in the position of calving glacier margins using daily MODIS imagery. Application of the method to 32 ocean-terminating glaciers in East Greenland produced 26,802 margin positions for a 10 year long period (2000-2009). We report these high-resolution data and show that the glaciers exhibit seasonal cycles with magnitudes of advance and retreat proportional to glacier width. Despite similar seasonality there is a distinct difference between the interannual trends of calving front positions north and south of 69°N. All glaciers above this latitude showed very limited or no change when seasonality was excluded, while glaciers south of 69°N retreated significantly between 2001 and 2005 (˜2.3 km on average). Approximately 26% of the retreat of southern glaciers was regained by readvance from 2005 to 2009. To explain the latitudinal boundary of glacier dynamics, we review basic climatic factors, including summer and winter atmospheric forcing, sea ice conditions, and ocean temperature. We conclude that the southern retreats were strongly influenced by warm oceanic conditions associated with increased transport of subtropical waters to the Irminger Sea and to fjords and coastal regions south of 69°N. Northern glaciers remained stable despite significant increase in runoff in this region because fjords at latitudes higher than 69°N are less exposed to subtropical waters. The southern retreats illustrate sensitive behavior of calving glaciers, and we hypothesize that the calving fronts retreated because they were exposed to rapid ice-front melting.

  20. Intelligent Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  1. Vision systems for manned and robotic ground vehicles

    NASA Astrophysics Data System (ADS)

    Sanders-Reed, John N.; Koon, Phillip L.

    2010-04-01

    A Distributed Aperture Vision System for ground vehicles is described. An overview of the hardware including sensor pod, processor, video compression, and displays is provided. This includes a discussion of the choice between an integrated sensor pod and individually mounted sensors, open architecture design, and latency issues as well as flat panel versus head mounted displays. This technology is applied to various ground vehicle scenarios, including closed-hatch operations (operator in the vehicle), remote operator tele-operation, and supervised autonomy for multi-vehicle unmanned convoys. In addition, remote vision for automatic perimeter surveillance using autonomous vehicles and automatic detection algorithms is demonstrated.

  2. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  3. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): status and perspectives

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel-Eduard; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2014-05-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a recently developed instrument dedicated to trace gas measurements from Unmanned Aerial Vehicles (UAVs). The payload is based on a compact ultra-violet visible spectrometer and a scanning mirror. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built UAV is an electrically powered flying wing and can reach an altitude of 3 km at a mean airspeed of 100 km/h. The whole flight can be preprogrammed and controlled by an autopilot. The spectra are analyzed using Differential Optical Absorption Spectroscopy (DOAS). One major objective is the mapping of NO2 columns at high spatial resolution allowing to subsample satellite measurements within the extent of a typical ground pixel. We present the preliminary results of two test flights of the SWING-UAV observation system in the vicinity of Galati, Romania (45.45°N, 28.05°E), performed on 11 May 2013 and 20 September 2013. Several atmospheric species are identified in the spectral range covered by the spectrometer (300-600 nm): NO2, water vapor, O4, and O3. From the measurements, the detection limit for NO2 is estimated to lie around 2 ppb. We investigate: (1) the georeferencing issues and the effective spatial resolution achievable with SWING-UAV from the instantaneous field of view and the plane dynamics (2) the main parameters influencing the air mass factors, and (3) the reproducibility of NO2 measurements over the same area during the second flight which included repeated transects. We also present the near-future (2014-2015) campaigns planned for the SWING-UAV observation system.

  4. Master-Slave Control Scheme in Electric Vehicle Smart Charging Infrastructure

    PubMed Central

    Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit

    2014-01-01

    WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging. PMID:24982956

  5. Master-slave control scheme in electric vehicle smart charging infrastructure.

    PubMed

    Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit

    2014-01-01

    WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging. PMID:24982956

  6. Ultrafine-Particle Emission Factors as a Function of Vehicle Mode of Operation for LDVs Based on Near-Roadway Monitoring.

    PubMed

    Zhai, Wenjuan; Wen, Dongqi; Xiang, Sheng; Hu, Zhice; Noll, Kenneth E

    2016-01-19

    This paper presents ultrafine-particle (UFP) emission factors (EFs) as a function of vehicle mode of operation (free flow and congestion) using (1) concurrent 5 min measurements of UFPs and carbon monoxide (CO) concentration, wind speed and direction, traffic volume and speed near a roadway that is restricted to light-duty vehicles (LDVs) and (2) inverse dispersion model calculations. Short-term measurements are required to characterize the highly variable and rapidly changing UFP concentration generated by vehicles. Under congestion conditions, the UFP vehicle EFs increased from 0.5 × 10(13) to 2 × 10(13) (particles km(-1) vehicle(-1)) when vehicle flow increased from 5500 to 7500 vehicles/h. For free-flow conditions, the EF is constant at 1.5 × 10(13) (particles km(-1) vehicle(-1)). The analysis is based on the assumption that air-quality models adequately describe the dilution process due to both traffic and atmospheric turbulence. The approach used to verify this assumption was to use an emission factor model to determine EFs for CO and then estimate dilution factors using measured CO concentrations. This procedure eliminates the need to rely only on air quality models to generate dilution factors. The EFs are suitable for fleet emissions under real-world traffic conditions. PMID:26674658

  7. Remotely piloted LTA vehicle for surveillance

    NASA Technical Reports Server (NTRS)

    Seemann, G. R.; Harris, G. L.; Brown, G. J.

    1975-01-01

    Various aspects of a remotely piloted mini-LTA vehicle for surveillance, monitoring and measurement for civilian and military applications are considered. Applications, operations and economics are discussed.

  8. Evaluation of a Blood Glucose Monitoring System with Automatic High- and Low-Pattern Recognition Software in Insulin-Using Patients: Pattern Detection and Patient-Reported Insights

    PubMed Central

    Grady, Mike; Campbell, Denise; MacLeod, Kirsty; Srinivasan, Aparna

    2013-01-01

    Background This study aimed to evaluate the performance of a glucose pattern recognition tool incorporated in a blood glucose monitoring system (BGMS) and its association with clinical measures, and to assess user perception and understanding of the pattern messages they receive. Methods Participants had type 1 or type 2 diabetes mellitus and were self-adjusting insulin doses for ≥1 year. During a 4-week home testing period, participants performed ≥6 daily self-tests, adjusted their insulin regimen based on BGMS results, and recorded pattern messages in the logbook. Participants reflected on usability of the pattern tool in a questionnaire. Results Study participants (n = 101) received a mean ± standard deviation of 4.5 ± 1.9 pattern messages per week (3.6 ± 1.8 high glucose patterns and 0.9 ± 1.3 low glucose patterns). Most received ≥1 high (96.5%) and/or ≥1 low (46.0%) pattern message per week. The average number of high- and low-pattern messages per week was associated with higher and lower, respectively, baseline hemoglobin A1c (p < .01) and fasting plasma glucose (p < .05). Participants found high- and low-pattern messages clear and easy to understand (84.2% and 83.2%, respectively) and considered the frequency of low (82.0%) and high (63.4%) pattern messages about right. Overall, 71.3% of participants indicated they preferred to use a meter with pattern messages. Conclusions The on-device Pattern tool identified meaningful blood glucose patterns, highlighting potential opportunities for improving glycemic control in patients who self-adjust their insulin. PMID:23911178

  9. Vehicle Technologies Program Results

    SciTech Connect

    2009-06-19

    The Vehicle Technologies Program's progress is closely monitored by both internal and external organizations. The Program's results are detailed in a wide range of documents and tools that can be accessed through the PIR website. Descriptions of these materials are provided on this program results page.

  10. An anatomy of automatism.

    PubMed

    Mackay, R D

    2015-07-01

    The automatism defence has been described as a quagmire of law and as presenting an intractable problem. Why is this so? This paper will analyse and explore the current legal position on automatism. In so doing, it will identify the problems which the case law has created, including the distinction between sane and insane automatism and the status of the 'external factor doctrine', and comment briefly on recent reform proposals. PMID:26378105

  11. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  12. Automatic differentiation bibliography

    SciTech Connect

    Corliss, G.F.

    1992-07-01

    This is a bibliography of work related to automatic differentiation. Automatic differentiation is a technique for the fast, accurate propagation of derivative values using the chain rule. It is neither symbolic nor numeric. Automatic differentiation is a fundamental tool for scientific computation, with applications in optimization, nonlinear equations, nonlinear least squares approximation, stiff ordinary differential equation, partial differential equations, continuation methods, and sensitivity analysis. This report is an updated version of the bibliography which originally appeared in Automatic Differentiation of Algorithms: Theory, Implementation, and Application.

  13. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  14. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  15. Automatic Extraction of Metadata from Scientific Publications for CRIS Systems

    ERIC Educational Resources Information Center

    Kovacevic, Aleksandar; Ivanovic, Dragan; Milosavljevic, Branko; Konjovic, Zora; Surla, Dusan

    2011-01-01

    Purpose: The aim of this paper is to develop a system for automatic extraction of metadata from scientific papers in PDF format for the information system for monitoring the scientific research activity of the University of Novi Sad (CRIS UNS). Design/methodology/approach: The system is based on machine learning and performs automatic extraction…

  16. 19 CFR 360.103 - Automatic issuance of import licenses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Automatic issuance of import licenses. 360.103 Section 360.103 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.103 Automatic issuance of import licenses. (a) In general. Steel...

  17. 19 CFR 360.103 - Automatic issuance of import licenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Automatic issuance of import licenses. 360.103 Section 360.103 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.103 Automatic issuance of import licenses. (a) In general. Steel...

  18. Operational efficiency: Automatic ascent flight design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Major objectives, milestones, key contacts, major accomplishments, technology issues, and candidate programs of the automatic ascent flight design are outlined. Topics discussed include: advanced avionics concepts; advanced training concepts; telerobotics/telepresence; integrated command and control; advanced software integration; atmospheric adaptive guidance; and health status and monitoring concept. This presentation is represented by viewgraphs only.

  19. Automatic optometer operates with infrared test pattern

    NASA Technical Reports Server (NTRS)

    Cornsweet, T. N.; Crane, H. D.

    1970-01-01

    Refractive strength of human eye is monitored by optometer that automatically and continuously images infrared test pattern onto the retina. Condition of focus of the eye at any instant is determined from optometer settings needed to maintain focus of the pattern on the retina.

  20. Practical automatic Arabic license plate recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Since 1970's, the need of an automatic license plate recognition system, sometimes referred as Automatic License Plate Recognition system, has been increasing. A license plate recognition system is an automatic system that is able to recognize a license plate number, extracted from image sensors. In specific, Automatic License Plate Recognition systems are being used in conjunction with various transportation systems in application areas such as law enforcement (e.g. speed limit enforcement) and commercial usages such as parking enforcement and automatic toll payment private and public entrances, border control, theft and vandalism control. Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. [License plate detection using cluster run length smoothing algorithm ].Generally, an automatic license plate localization and recognition system is made up of three modules; license plate localization, character segmentation and optical character recognition modules. This paper presents an Arabic license plate recognition system that is insensitive to character size, font, shape and orientation with extremely high accuracy rate. The proposed system is based on a combination of enhancement, license plate localization, morphological processing, and feature vector extraction using the Haar transform. The performance of the system is fast due to classification of alphabet and numerals based on the license plate organization. Experimental results for license plates of two different Arab countries show an average of 99 % successful license plate localization and recognition in a total of more than 20 different images captured from a complex outdoor environment. The results run times takes less time compared to conventional and many states of art methods.

  1. Digital automatic gain control

    NASA Technical Reports Server (NTRS)

    Uzdy, Z.

    1980-01-01

    Performance analysis, used to evaluated fitness of several circuits to digital automatic gain control (AGC), indicates that digital integrator employing coherent amplitude detector (CAD) is best device suited for application. Circuit reduces gain error to half that of conventional analog AGC while making it possible to automatically modify response of receiver to match incoming signal conditions.

  2. Automatic Differentiation Package

    Energy Science and Technology Software Center (ESTSC)

    2007-03-01

    Sacado is an automatic differentiation package for C++ codes using operator overloading and C++ templating. Sacado provide forward, reverse, and Taylor polynomial automatic differentiation classes and utilities for incorporating these classes into C++ codes. Users can compute derivatives of computations arising in engineering and scientific applications, including nonlinear equation solving, time integration, sensitivity analysis, stability analysis, optimization and uncertainity quantification.

  3. Descent vehicles

    NASA Technical Reports Server (NTRS)

    Popov, Y. I.

    1985-01-01

    The creation of descent vehicles marked a new stage in the development of cosmonautics, involving the beginning of manned space flight and substantial progress in space research on the distant bodies of the Solar System. This booklet describes these vehicles and their structures, systems, and purposes. It is intended for the general public interested in modern problems of space technology.

  4. Vehicle systems

    NASA Technical Reports Server (NTRS)

    Bales, Tom; Modlin, Tom; Suddreth, Jack; Wheeler, Tom; Tenney, Darrel R.; Bayless, Ernest O.; Lisagor, W. Barry; Bolstad, Donald A.; Croop, Harold; Dyer, J.

    1993-01-01

    Perspectives of the subpanel on expendable launch vehicle structures and cryotanks are: (1) new materials which provide the primary weight savings effect on vehicle mass/size; (2) today's investment; (3) typically 10-20 years to mature and fully characterize new materials.

  5. Smart Vehicle System

    NASA Astrophysics Data System (ADS)

    Pahadiya, Pallavi; Gupta, Rajni

    2010-11-01

    An approach to overcome the accidental problem happens in the night, while the driver is drunk or feels sleepy. This system controls the speed of the vehicle at steep turns. It is designed, to provide the information to the driver, whether the next turn is right/left, is there any traffic jam or land sliding in the coming way. It also assists during heavy rains and mist conditions. It may be implemented by using computer or by using a dedicated microcontroller. If we have a group of vehicles connected with the system then we can locate them by using the cameras, at different places. Information regarding any vehicle can be transmitted anywhere using Internet provided at the monitoring system, so as to prevent accidents or provide information during any calamity.

  6. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  7. Image-Based Vehicle Identification Technology for Homeland Security Applications

    SciTech Connect

    Clark, G A

    2002-10-08

    The threat of terrorist attacks against US civilian populations is a very real, near-term problem that must be addressed, especially in response to possible use of Weapons of Mass Destruction. Several programs are now being funded by the US Government to put into place means by which the effects of a terrorist attack could be averted or limited through the use of sensors and monitoring technology. Specialized systems that detect certain threat materials, while effective within certain performance limits, cannot generally be used efficiently to track a mobile threat such as a vehicle over a large urban area. The key elements of an effective system are an image feature-based vehicle identification technique and a networked sensor system. We have briefly examined current uses of image and feature recognition techniques to the urban tracking problem and set forth the outlines of a proposal for application of LLNL technologies to this critical problem. The primary contributions of the proposed work lie in filling important needs not addressed by the current program: (1) The ability to create vehicle ''fingerprints,'' or feature information from images to allow automatic identification of vehicles. Currently, the analysis task is done entirely by humans. The goal is to aid the analyst by reducing the amount of data he/she must analyze and reduce errors caused by inattention or lack of training. This capability has broad application to problems associated with extraction of useful features from large data sets. (2) Improvements in the effectiveness of LLNL's WATS (Wide Area Tracking System) by providing it accurate threat vehicle location and velocity. Model predictability is likely to be enhanced by use of more information related to different data sets. We believe that the LLNL can accomplish the proposed tasks and enhance the effectiveness of the system now under development.

  8. Space vehicle

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1975-01-01

    A space vehicle having an improved ascent configuration for use in traveling in space is presented. Components of the vehicle are: (1) a winged orbiter having an elongater fuselage and rearwardly directed main engines fixed to the fuselage; (2) an elongated tank assembly of an improved configuration disposed forwardly of the fuselage and connected with the main engines of the vehicle for supplying liquid propellants; and (3) a booster stage comprising a pair of integrated solid rocket boosters connected with the orbiter immediately beneath the fuselage and extended in substantial parallelism.

  9. Automatic amino acid analyzer

    NASA Technical Reports Server (NTRS)

    Berdahl, B. J.; Carle, G. C.; Oyama, V. I.

    1971-01-01

    Analyzer operates unattended or up to 15 hours. It has an automatic sample injection system and can be programmed. All fluid-flow valve switching is accomplished pneumatically from miniature three-way solenoid pilot valves.

  10. Automatic Payroll Deposit System.

    ERIC Educational Resources Information Center

    Davidson, D. B.

    1979-01-01

    The Automatic Payroll Deposit System in Yakima, Washington's Public School District No. 7, directly transmits each employee's salary amount for each pay period to a bank or other financial institution. (Author/MLF)

  11. Automatic Transmissions and Transaxles. Auto Mechanics Curriculum Guide. Module 8. Instructor's Guide.

    ERIC Educational Resources Information Center

    Hevel, David; Tannehill, Dana, Ed.

    This module is the eighth of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: introduction to automatic transmission/transaxle; hydraulic control systems; transmission/transaxle diagnosis; automatic transmission/transaxle maintenance and adjustment; in-vehicle transmission repair; and off-car…

  12. Visiting Vehicle Ground Trajectory Tool

    NASA Technical Reports Server (NTRS)

    Hamm, Dustin

    2013-01-01

    The International Space Station (ISS) Visiting Vehicle Group needed a targeting tool for vehicles that rendezvous with the ISS. The Visiting Vehicle Ground Trajectory targeting tool provides the ability to perform both realtime and planning operations for the Visiting Vehicle Group. This tool provides a highly reconfigurable base, which allows the Visiting Vehicle Group to perform their work. The application is composed of a telemetry processing function, a relative motion function, a targeting function, a vector view, and 2D/3D world map type graphics. The software tool provides the ability to plan a rendezvous trajectory for vehicles that visit the ISS. It models these relative trajectories using planned and realtime data from the vehicle. The tool monitors ongoing rendezvous trajectory relative motion, and ensures visiting vehicles stay within agreed corridors. The software provides the ability to update or re-plan a rendezvous to support contingency operations. Adding new parameters and incorporating them into the system was previously not available on-the-fly. If an unanticipated capability wasn't discovered until the vehicle was flying, there was no way to update things.

  13. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  14. Control of multiple robotic sentry vehicles

    NASA Astrophysics Data System (ADS)

    Feddema, John T.; Lewis, Christopher L.; Klarer, Paul

    1999-07-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight 'Roving All Terrain Lunar Explorer Rover' (RATLERTM) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, expect additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  15. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  16. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  17. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  18. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  19. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  20. Automatic gisting systems for voice communications

    NASA Astrophysics Data System (ADS)

    Maksymowicz, A. T.

    It is pointed out that the detection of a limited number of key words in voice communications, combined with nonlinguistic cues and situation knowledge, holds out the promise for automatic extraction of the general content or gist of the transmitted messages. A systems-level description of an end-to-end automatic gisting system for screening voice communications is presented. The emphasis is on identifying information which can usefully supplement the detected key words in the gisting process. Principal subsystems are identified, and their functions are discussed in the context of an overall system architecture. The example of automatic determination of aircraft takeoffs and landings at an airport, based on monitoring conversations between pilots and air traffic controllers, is used for illustrative purposes.

  1. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    NASA Technical Reports Server (NTRS)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  2. Integrated G and C Implementation within IDOS: A Simulink Based Reusable Launch Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Fisher, Joseph E.; Bevacqua, Tim; Lawrence, Douglas A.; Zhu, J. Jim; Mahoney, Michael

    2003-01-01

    The implementation of multiple Integrated Guidance and Control (IG&C) algorithms per flight phase within a vehicle simulation poses a daunting task to coordinate algorithm interactions with the other G&C components and with vehicle subsystems. Currently being developed by Universal Space Lines LLC (USL) under contract from NASA, the Integrated Development and Operations System (IDOS) contains a high fidelity Simulink vehicle simulation, which provides a means to test cutting edge G&C technologies. Combining the modularity of this vehicle simulation and Simulink s built-in primitive blocks provide a quick way to implement algorithms. To add discrete-event functionality to the unfinished IDOS simulation, Vehicle Event Manager (VEM) and Integrated Vehicle Health Monitoring (IVHM) subsystems were created to provide discrete-event and pseudo-health monitoring processing capabilities. Matlab's Stateflow is used to create the IVHM and Event Manager subsystems and to implement a supervisory logic controller referred to as the Auto-commander as part of the IG&C to coordinate the control system adaptation and reconfiguration and to select the control and guidance algorithms for a given flight phase. Manual creation of the Stateflow charts for all of these subsystems is a tedious and time-consuming process. The Stateflow Auto-builder was developed as a Matlab based software tool for the automatic generation of a Stateflow chart from information contained in a database. This paper describes the IG&C, VEM and IVHM implementations in IDOS. In addition, this paper describes the Stateflow Auto-builder.

  3. 41 CFR 102-34.60 - How do we calculate the average fuel economy for Government motor vehicles?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.60... average fuel economy for Government motor vehicles as follows: (a) Because there are so many motor vehicle... cylinder automatic transmission pick-up trucks, EPA rating: 24.3 mpg, plus (B) 150 Six cylinder...

  4. Vehicle health management technology needs

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Jones, W. G.

    1992-01-01

    Background material on vehicle health management (VHM) and health monitoring/control is presented. VHM benefits are described and a list of VHM technology needs that should be pursued is presented. The NASA funding process as it impacts VHM technology funding is touched upon, and the VHM architecture guidelines for generic launch vehicles are described. An example of a good VHM architecture, design, and operational philosophy as it was conceptualized for the National Launch System program is presented. Consideration is given to the Strategic Avionics Technology Working Group's role in VHM, earth-to-orbit, and space vehicle avionics technology development considerations, and some actual examples of VHM benefits for checkout are given.

  5. Tracking Vehicles in traffic Surveillance Video

    SciTech Connect

    Maire, M; Kamath, C

    2005-08-12

    We present a system for detecting and tracking vehicles in surveillance video. Our algorithm uses a simple motion model to determine salient regions in a sequence of video frames. Similar regions are associated between frames and clustered to yield coherent final tracks. The entire process is automatic and uses computation time that scales according to the size of the input video sequence.

  6. Automated mixed traffic vehicle control and scheduling study

    NASA Technical Reports Server (NTRS)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  7. Line matching for automatic change detection algorithm

    NASA Astrophysics Data System (ADS)

    Dhollande, Jérôme; Monnin, David; Gond, Laetitia; Cudel, Christophe; Kohler, Sophie; Dieterlen, Alain

    2012-06-01

    During foreign operations, Improvised Explosive Devices (IEDs) are one of major threats that soldiers may unfortunately encounter along itineraries. Based on a vehicle-mounted camera, we propose an original approach by image comparison to detect signicant changes on these roads. The classic 2D-image registration techniques do not take into account parallax phenomena. The consequence is that the misregistration errors could be detected as changes. According to stereovision principles, our automatic method compares intensity proles along corresponding epipolar lines by extrema matching. An adaptive space warping compensates scale dierence in 3D-scene. When the signals are matched, the signal dierence highlights changes which are marked in current video.

  8. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  9. ANPS - AUTOMATIC NETWORK PROGRAMMING SYSTEM

    NASA Technical Reports Server (NTRS)

    Schroer, B. J.

    1994-01-01

    Development of some of the space program's large simulation projects -- like the project which involves simulating the countdown sequence prior to spacecraft liftoff -- requires the support of automated tools and techniques. The number of preconditions which must be met for a successful spacecraft launch and the complexity of their interrelationship account for the difficulty of creating an accurate model of the countdown sequence. Researchers developed ANPS for the Nasa Marshall Space Flight Center to assist programmers attempting to model the pre-launch countdown sequence. Incorporating the elements of automatic programming as its foundation, ANPS aids the user in defining the problem and then automatically writes the appropriate simulation program in GPSS/PC code. The program's interactive user dialogue interface creates an internal problem specification file from user responses which includes the time line for the countdown sequence, the attributes for the individual activities which are part of a launch, and the dependent relationships between the activities. The program's automatic simulation code generator receives the file as input and selects appropriate macros from the library of software modules to generate the simulation code in the target language GPSS/PC. The user can recall the problem specification file for modification to effect any desired changes in the source code. ANPS is designed to write simulations for problems concerning the pre-launch activities of space vehicles and the operation of ground support equipment and has potential for use in developing network reliability models for hardware systems and subsystems. ANPS was developed in 1988 for use on IBM PC or compatible machines. The program requires at least 640 KB memory and one 360 KB disk drive, PC DOS Version 2.0 or above, and GPSS/PC System Version 2.0 from Minuteman Software. The program is written in Turbo Prolog Version 2.0. GPSS/PC is a trademark of Minuteman Software. Turbo Prolog

  10. Automatic electronic fish tracking system

    NASA Technical Reports Server (NTRS)

    Osborne, P. W.; Hoffman, E.; Merriner, J. V.; Richards, C. E.; Lovelady, R. W.

    1976-01-01

    A newly developed electronic fish tracking system to automatically monitor the movements and migratory habits of fish is reported. The system is aimed particularly at studies of effects on fish life of industrial facilities which use rivers or lakes to dump their effluents. Location of fish is acquired by means of acoustic links from the fish to underwater Listening Stations, and by radio links which relay tracking information to a shore-based Data Base. Fish over 4 inches long may be tracked over a 5 x 5 mile area. The electronic fish tracking system provides the marine scientist with electronics which permit studies that were not practical in the past and which are cost-effective compared to manual methods.

  11. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Jeong, C.-H.; Zimmerman, N.; Healy, R. M.; Wang, D. K.; Ke, F.; Evans, G. J.

    2015-03-01

    An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013-2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg-1 and 7.7 × 1014 kg-1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25%) contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by considering the co

  12. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Jeong, C.-H.; Zimmerman, N.; Healy, R. M.; Wang, D. K.; Ke, F.; Evans, G. J.

    2015-08-01

    An automated identification and integration method has been developed for in-use vehicle emissions under real-world conditions. This technique was applied to high-time-resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada, during four seasons, through month-long campaigns in 2013-2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number; black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline-dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg fuel-1 and 7.5 × 1014 # kg fuel-1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25 %) contributed significantly to total fleet emissions: 100, 100, 81, and 77 % for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter; however, regulatory strategies to more efficiently target multi-pollutant mixtures may be better developed by considering the co

  13. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  14. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    NASA Technical Reports Server (NTRS)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  15. All-optical automatic pollen identification: Towards an operational system

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Stella, Michelle; Konzelmann, Thomas; Calpini, Bertrand; Clot, Bernard

    2016-09-01

    We present results from the development and validation campaign of an optical pollen monitoring method based on time-resolved scattering and fluorescence. Focus is first set on supervised learning algorithms for pollen-taxa identification and on the determination of aerosol properties (particle size and shape). The identification capability provides a basis for a pre-operational automatic pollen season monitoring performed in parallel to manual reference measurements (Hirst-type volumetric samplers). Airborne concentrations obtained from the automatic system are compatible with those from the manual method regarding total pollen and the automatic device provides real-time data reliably (one week interruption over five months). In addition, although the calibration dataset still needs to be completed, we are able to follow the grass pollen season. The high sampling from the automatic device allows to go beyond the commonly-presented daily values and we obtain statistically significant hourly concentrations. Finally, we discuss remaining challenges for obtaining an operational automatic monitoring system and how the generic validation environment developed for the present campaign could be used for further tests of automatic pollen monitoring devices.

  16. Automatic targeting of plasma spray gun

    DOEpatents

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  17. Experience of the ARGO autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Bertozzi, Massimo; Broggi, Alberto; Conte, Gianni; Fascioli, Alessandra

    1998-07-01

    This paper presents and discusses the first results obtained by the GOLD (Generic Obstacle and Lane Detection) system as an automatic driver of ARGO. ARGO is a Lancia Thema passenger car equipped with a vision-based system that allows to extract road and environmental information from the acquired scene. By means of stereo vision, obstacles on the road are detected and localized, while the processing of a single monocular image allows to extract the road geometry in front of the vehicle. The generality of the underlying approach allows to detect generic obstacles (without constraints on shape, color, or symmetry) and to detect lane markings even in dark and in strong shadow conditions. The hardware system consists of a PC Pentium 200 Mhz with MMX technology and a frame-grabber board able to acquire 3 b/w images simultaneously; the result of the processing (position of obstacles and geometry of the road) is used to drive an actuator on the steering wheel, while debug information are presented to the user on an on-board monitor and a led-based control panel.

  18. A new automatic synchronizer

    SciTech Connect

    Malm, C.F.

    1995-12-31

    A phase lock loop automatic synchronizer, PLLS, matches generator speed starting from dead stop to bus frequency, and then locks the phase difference at zero, thereby maintaining zero slip frequency while the generator breaker is being closed to the bus. The significant difference between the PLLS and a conventional automatic synchronizer is that there is no slip frequency difference between generator and bus. The PLL synchronizer is most advantageous when the penstock pressure fluctuates the grid frequency fluctuates, or both. The PLL synchronizer is relatively inexpensive. Hydroplants with multiple units can economically be equipped with a synchronizer for each unit.

  19. Automatic removal of outliers in hydrologic time series and quality control of rainfall data: processing a real-time database of the Local System for Flood Monitoring in Klodzko County, Poland

    NASA Astrophysics Data System (ADS)

    Mizinski, Bartlomiej; Niedzielski, Tomasz; Kryza, Maciej; Szymanowski, Mariusz

    2013-04-01

    Real-time hydrological forecasting requires the highest quality of both hydrologic and meteorological data collected in a given river basin. Large outliers may lead to inaccurate predictions, with substantial departures between observations and prognoses considered even in short term. Although we need the correctness of both riverflow and rainfall data, they cannot be processed in the same way to produce a filtered output. Indeed, hydrologic time series at a given gauge can be interpolated in time domain after having detected suspicious values, however if no outlier has been detected at the upstream sites. In the case of rainfall data, interpolation is not suitable as we cannot verify the potential outliers at a given site against data from other sites especially in the complex terrain. This is due to the fact that very local convective events may occur, leading to large rainfall peaks at a limited space. Hence, instead of interpolating data, we rather perform a flagging procedure that only ranks outliers according to the likelihood of occurrence. Following the aforementioned assumptions, we have developed a few modules that serve a purpose of a fully automated correction of a database that is updated in real-time every 15 minutes, and the main objective of the work was to produce a high-quality database for a purpose of hydrologic rainfall-runoff modeling and ensemble prediction. The database in question is available courtesy of the County Office in Kłodzko (SW Poland), the institution which owns and maintains the Local System for Flood Monitoring in Kłodzko County. The dedicated prediction system, known as HydroProg, is now being built at the University of Wrocław (Poland). As the entire prediction system, the correction modules work automatically in real time and are developed in R language. They are plugged in to a larger IT infrastructure. Hydrologic time series, which are water levels recorded every 15 minutes at 22 gauges located in Kłodzko County, are

  20. Automatic guided wave PPM communication system for potential SHM of flooding members in sub-sea oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, Rito; Gaydecki, Patrick

    2013-05-01

    An automatic guided wave pulse position modulation system, using steel tubes as the communication channel, for detecting flooding in the hollow sub-sea structures of newly built offshore oilrigs is presented. Underwater close visual inspections (CVI) are normally conducted during swim-round surveys in pre-selected areas or areas suspected of damage. An acceptable alternative to CVI is a non-destructive testing (NDT) technique called flood member detection (FMD). Usually, this NDT technique employs ultrasound or x-rays to detect the presence of seawater in the tubular structures, requiring divers or remote operating vehicles (ROVs). The field-proven FMD technique, integrated within the concept of structural health monitoring, offers an alternative to these traditional inspection methods. The system employs two smart sensors and modulators, which transmit 40 kHz guided wave pulses, and a digital signal processing demodulator, which performs automatic detection of guided wave energy packets. Experiments were performed in dry conditions, inside and outside the laboratory; in the former using a steel tube 1.5 m×0.27 m×2 mm, and in the latter using a tubular steel heliport structure approximately 15 m×15 m in area and the base deck of an oilrig under construction. Results confirm that, although there was significant dispersion of the transmitted pulses, the system successfully distinguished automatically guided wave encoded information that could potentially be used in sub-sea oilrigs.

  1. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (ESTSC)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  2. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  3. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  4. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  5. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  6. Validation of Vehicle Candidate Areas in Aerial Images Using Color Co-Occurrence Histograms

    NASA Astrophysics Data System (ADS)

    Leister, W.; Tuermer, S.; Reinartz, P.; Hoffmann, K. H.; Stilla, U.

    2013-10-01

    Traffic monitoring plays an important role in transportation management. In addition, airborne acquisition enables a flexible and realtime mapping for special traffic situations e.g. mass events and disasters. Also the automatic extraction of vehicles from aerial imagery is a common application. However, many approaches focus on the target object only. As an extension to previously developed car detection techniques, a validation scheme is presented. The focus is on exploiting the background of the vehicle candidates as well as their color properties in the HSV color space. Therefore, texture of the vehicle background is described by color co-occurrence histograms. From all resulting histograms a likelihood function is calculated giving a quantity value to indicate whether the vehicle candidate is correctly classified. Only a few robust parameters have to be determined. Finally, the strategy is tested with a dataset of dense urban areas from the inner city of Munich, Germany. First results show that certain regions which are often responsible for false positive detections, such as vegetation or road markings, can be excluded successfully.

  7. Automatic Program Synthesis Reports.

    ERIC Educational Resources Information Center

    Biermann, A. W.; And Others

    Some of the major results of future goals of an automatic program synthesis project are described in the two papers that comprise this document. The first paper gives a detailed algorithm for synthesizing a computer program from a trace of its behavior. Since the algorithm involves a search, the length of time required to do the synthesis of…

  8. Automaticity of Conceptual Magnitude.

    PubMed

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object's conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  9. Automaticity of Conceptual Magnitude

    PubMed Central

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object’s conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  10. AUTOmatic Message PACKing Facility

    Energy Science and Technology Software Center (ESTSC)

    2004-07-01

    AUTOPACK is a library that provides several useful features for programs using the Message Passing Interface (MPI). Features included are: 1. automatic message packing facility 2. management of send and receive requests. 3. management of message buffer memory. 4. determination of the number of anticipated messages from a set of arbitrary sends, and 5. deterministic message delivery for testing purposes.

  11. Automatic finite element generators

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1984-01-01

    The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.

  12. Principles of Automatic Lemmatisation

    ERIC Educational Resources Information Center

    Hann, M. L.

    1974-01-01

    Introduces some algorithmic methods, for which no pre-editing is necessary, for automatically "lemmatising" raw text (changing raw text to an equivalent version in which all inflected words are artificially transformed to their dictionary look-up form). The results of a study of these methods, which used a German Text, are also given. (KM)

  13. Reactor component automatic grapple

    SciTech Connect

    Greenaway, P.R.

    1982-12-07

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  14. Reactor component automatic grapple

    DOEpatents

    Greenaway, Paul R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  15. Automatic Data Processing Glossary.

    ERIC Educational Resources Information Center

    Bureau of the Budget, Washington, DC.

    The technology of the automatic information processing field has progressed dramatically in the past few years and has created a problem in common term usage. As a solution, "Datamation" Magazine offers this glossary which was compiled by the U.S. Bureau of the Budget as an official reference. The terms appear in a single alphabetic sequence,…

  16. Automatic Dance Lesson Generation

    ERIC Educational Resources Information Center

    Yang, Yang; Leung, H.; Yue, Lihua; Deng, LiQun

    2012-01-01

    In this paper, an automatic lesson generation system is presented which is suitable in a learning-by-mimicking scenario where the learning objects can be represented as multiattribute time series data. The dance is used as an example in this paper to illustrate the idea. Given a dance motion sequence as the input, the proposed lesson generation…

  17. Automatic multiple applicator electrophoresis

    NASA Technical Reports Server (NTRS)

    Grunbaum, B. W.

    1977-01-01

    Easy-to-use, economical device permits electrophoresis on all known supporting media. System includes automatic multiple-sample applicator, sample holder, and electrophoresis apparatus. System has potential applicability to fields of taxonomy, immunology, and genetics. Apparatus is also used for electrofocusing.

  18. Semi-automatic knee cartilage segmentation

    NASA Astrophysics Data System (ADS)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  19. Network Infrastructure for Electric Vehicle Charging

    NASA Astrophysics Data System (ADS)

    Lim, Yujin; Park, Jaesung; Ahn, Sanghyun

    Controlled charging of electric vehicles can take care of fluctuating electricity supply. In this paper, we design network infrastructure to collect and deliver data of charging data of electric vehicles to remote monitoring center. In our network infrastructure, we analyze and compare the existing routing mechanisms for multi-hop wireless networks from aspect of the control overhead for the path establishment.

  20. Effect of acceleration rate on automatic transmission shift-speeds for two 1979 Novas. Technical report

    SciTech Connect

    Jones, R.

    1980-01-01

    Variations in acceleration rates will result in variations in vehicle fuel economy. If typical vehicle acceleration rates are distributed in the same manner as the accelerations are distributed on the EPA test cycles, or if the vehicle operational characteristics do not significantly change with acceleration rate, then results from the EPA cycles should be representative of average vehicle use. However, if vehicle operational characteristics change with changing acceleration rates, and if vehicle accelerations in consumer use are not distributed in the same manner as the accelerations of the EPA test cycle, then significant differences between EPA estimated fuel economy and actual vehicle fuel consumption may result. One vehicle characteristic which often changes with acceleration rate is the transmission shift speed for vehicles with automatic transmissions. To determine the effects of acceleration rates on transmission shift speeds, EPA recently conducted a short test sequence on two vehicles with automatic transmissions. These tests determined the relation between vehicle acceleration rate and transmission shift speed for acceleration rates from 1 to 6 mph/sec.

  1. Automatic Classification of Marine Mammals with Speaker Classification Methods.

    PubMed

    Kreimeyer, Roman; Ludwig, Stefan

    2016-01-01

    We present an automatic acoustic classifier for marine mammals based on human speaker classification methods as an element of a passive acoustic monitoring (PAM) tool. This work is part of the Protection of Marine Mammals (PoMM) project under the framework of the European Defense Agency (EDA) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and Kiel University. The automatic classification should support sonar operators in the risk mitigation process before and during sonar exercises with a reliable automatic classification result. PMID:26611006

  2. Fully automatic telemetry data processor

    NASA Technical Reports Server (NTRS)

    Cox, F. B.; Keipert, F. A.; Lee, R. C.

    1968-01-01

    Satellite Telemetry Automatic Reduction System /STARS 2/, a fully automatic computer-controlled telemetry data processor, maximizes data recovery, reduces turnaround time, increases flexibility, and improves operational efficiency. The system incorporates a CDC 3200 computer as its central element.

  3. Feasibility study of an automatic vehicle for planetary exploration

    NASA Astrophysics Data System (ADS)

    Gerli, C.; Murolo, A.; Mugnuolo, R.; Gallo, E.; Cantatore, F.; Giardino, L.

    1993-01-01

    A study with the following objectives is reported: definition of the scientific objectives of a planetary exploration using a rover; definition of the planetary rover requirements; identification and characterization of the main subsystems of the rover; definition and critical areas and technological risks; and verification of the possibility on international cooperation on a planetary mission. The use of such a rover to investigate the Moon and Mars is focused upon.

  4. Automatic carrier acquisition system

    NASA Technical Reports Server (NTRS)

    Bunce, R. C. (Inventor)

    1973-01-01

    An automatic carrier acquisition system for a phase locked loop (PLL) receiver is disclosed. It includes a local oscillator, which sweeps the receiver to tune across the carrier frequency uncertainty range until the carrier crosses the receiver IF reference. Such crossing is detected by an automatic acquisition detector. It receives the IF signal from the receiver as well as the IF reference. It includes a pair of multipliers which multiply the IF signal with the IF reference in phase and in quadrature. The outputs of the multipliers are filtered through bandpass filters and power detected. The output of the power detector has a signal dc component which is optimized with respect to the noise dc level by the selection of the time constants of the filters as a function of the sweep rate of the local oscillator.

  5. Automatism and driving offences.

    PubMed

    Rumbold, John

    2013-10-01

    Automatism is a rarely used defence, but it is particularly used for driving offences because many are strict liability offences. Medical evidence is almost always crucial to argue the defence, and it is important to understand the bars that limit the use of automatism so that the important medical issues can be identified. The issue of prior fault is an important public safeguard to ensure that reasonable precautions are taken to prevent accidents. The total loss of control definition is more problematic, especially with disorders of more gradual onset like hypoglycaemic episodes. In these cases the alternative of 'effective loss of control' would be fairer. This article explores several cases, how the criteria were applied to each, and the types of medical assessment required. PMID:24112330

  6. Automatic Abstraction in Planning

    NASA Technical Reports Server (NTRS)

    Christensen, J.

    1991-01-01

    Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.

  7. Automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Espy-Wilson, Carol

    2005-04-01

    Great strides have been made in the development of automatic speech recognition (ASR) technology over the past thirty years. Most of this effort has been centered around the extension and improvement of Hidden Markov Model (HMM) approaches to ASR. Current commercially-available and industry systems based on HMMs can perform well for certain situational tasks that restrict variability such as phone dialing or limited voice commands. However, the holy grail of ASR systems is performance comparable to humans-in other words, the ability to automatically transcribe unrestricted conversational speech spoken by an infinite number of speakers under varying acoustic environments. This goal is far from being reached. Key to the success of ASR is effective modeling of variability in the speech signal. This tutorial will review the basics of ASR and the various ways in which our current knowledge of speech production, speech perception and prosody can be exploited to improve robustness at every level of the system.

  8. Adaptation is automatic.

    PubMed

    Samuel, A G; Kat, D

    1998-04-01

    Two experiments were used to test whether selective adaptation for speech occurs automatically or instead requires attentional resources. A control condition demonstrated the usual large identification shifts caused by repeatedly presenting an adapting sound (/wa/, with listeners identifying members of a /ba/-/wa/ test series). Two types of distractor tasks were used: (1) Subjects did a rapid series of arithmetic problems during the adaptation periods (Experiments 1 and 2), or (2) they made a series of rhyming judgments, requiring phonetic coding (Experiment 2). A control experiment (Experiment 3) demonstrated that these tasks normally impose a heavy attentional cost on phonetic processing. Despite this, for both experimental conditions, the observed adaptation effect was just as large as in the control condition. This result indicates that adaptation is automatic, operating at an early, preattentive level. The implications of these results for current models of speech perception are discussed. PMID:9599999

  9. Automatic digital image registration

    NASA Technical Reports Server (NTRS)

    Goshtasby, A.; Jain, A. K.; Enslin, W. R.

    1982-01-01

    This paper introduces a general procedure for automatic registration of two images which may have translational, rotational, and scaling differences. This procedure involves (1) segmentation of the images, (2) isolation of dominant objects from the images, (3) determination of corresponding objects in the two images, and (4) estimation of transformation parameters using the center of gravities of objects as control points. An example is given which uses this technique to register two images which have translational, rotational, and scaling differences.

  10. 14 CFR 431.83 - Compliance monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Post-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.83 Compliance monitoring....

  11. 14 CFR 431.83 - Compliance monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Post-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.83 Compliance monitoring....

  12. 14 CFR 431.83 - Compliance monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Post-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.83 Compliance monitoring....

  13. 14 CFR 431.83 - Compliance monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Post-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.83 Compliance monitoring....

  14. Design of Scale Intelligent Vehicle System

    NASA Astrophysics Data System (ADS)

    Wang, Junliang; Zhang, Zufeng; Jia, Peng; Luo, Shaohua; Zhang, Zufeng

    Nowadays, intelligent vehicle is widely studied all over the world. On considering cost and safety of test on real vehicle, it takes scale intelligent vehicle as a carrier platform, which uses visual sensors to capture the environmental information in a Wi-Fi wireless communication network environment, and creates a system including video surveillance system, monitoring command terminal, data server and three-dimensional simulating test traffic environment. The core algorithms, such as road recognition perception, image data processing, path planning and the implementation of motion control, have been completely designed and applying on the vehicle platform. The experimental results verified its good effects and the robustness and stability of the algorithm.

  15. Exploiting vibration-based spectral signatures for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Crider, Lauren; Kangas, Scott

    2014-06-01

    Feature extraction algorithms for vehicle classification techniques represent a large branch of Automatic Target Recognition (ATR) efforts. Traditionally, vehicle ATR techniques have assumed time series vibration data collected from multiple accelerometers are a function of direct path, engine driven signal energy. If data, however, is highly dependent on measurement location these pre-established feature extraction algorithms are ineffective. In this paper, we examine the consequences of analyzing vibration data potentially contingent upon transfer path effects by exploring the sensitivity of sensor location. We summarize our analysis of spectral signatures from each accelerometer and investigate similarities within the data.

  16. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 6 - Development and Demonstration of a Self-Organizing Diagnostic System for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Batten, Adam; Edwards, Graeme; Gerasimov, Vadim; Hoschke, Nigel; Isaacs, Peter; Lewis, Chris; Moore, Richard; Oppolzer, Florien; Price, Don; Prokopenko, Mikhail; Scott, Andrew; Wang, Peter

    2010-01-01

    This report describes a significant advance in the capability of the CSIRO/NASA structural health monitoring Concept Demonstrator (CD). The main thrust of the work has been the development of a mobile robotic agent, and the hardware and software modifications and developments required to enable the demonstrator to operate as a single, self-organizing, multi-agent system. This single-robot system is seen as the forerunner of a system in which larger numbers of small robots perform inspection and repair tasks cooperatively, by self-organization. While the goal of demonstrating self-organized damage diagnosis was not fully achieved in the time available, much of the work required for the final element that enables the robot to point the video camera and transmit an image has been completed. A demonstration video of the CD and robotic systems operating will be made and forwarded to NASA.

  17. Emergency vehicle traffic signal preemption system

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  18. Automatic Recognition of Road Signs

    NASA Astrophysics Data System (ADS)

    Inoue, Yasuo; Kohashi, Yuuichirou; Ishikawa, Naoto; Nakajima, Masato

    2002-11-01

    The increase in traffic accidents is becoming a serious social problem with the recent rapid traffic increase. In many cases, the driver"s carelessness is the primary factor of traffic accidents, and the driver assistance system is demanded for supporting driver"s safety. In this research, we propose the new method of automatic detection and recognition of road signs by image processing. The purpose of this research is to prevent accidents caused by driver"s carelessness, and call attention to a driver when the driver violates traffic a regulation. In this research, high accuracy and the efficient sign detecting method are realized by removing unnecessary information except for a road sign from an image, and detect a road sign using shape features. At first, the color information that is not used in road signs is removed from an image. Next, edges except for circular and triangle ones are removed to choose sign shape. In the recognition process, normalized cross correlation operation is carried out to the two-dimensional differentiation pattern of a sign, and the accurate and efficient method for detecting the road sign is realized. Moreover, the real-time operation in a software base was realized by holding down calculation cost, maintaining highly precise sign detection and recognition. Specifically, it becomes specifically possible to process by 0.1 sec(s)/frame using a general-purpose PC (CPU: Pentium4 1.7GHz). As a result of in-vehicle experimentation, our system could process on real time and has confirmed that detection and recognition of a sign could be performed correctly.

  19. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.

    PubMed

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-01-01

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle. PMID:27110793

  20. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles

    PubMed Central

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-01-01

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional–integral–derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle. PMID:27110793

  1. Vehicle barrier

    DOEpatents

    Hirsh, Robert A.

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  2. Cosmeceutical vehicles.

    PubMed

    Epstein, Howard

    2009-01-01

    Consumers will pay a premium for high-performance skin and hair care products. The demand exists, and in return for the high cost, consumers expect the product to perform as claimed and to meet aesthetic standards beyond many products found in the mass market. To be successful in this highly competitive market, products must function as claimed or consumers will not repurchase. Effective contemporary high-end products must be properly formulated in nonirritating vehicles that consumers will perceive as elegant. PMID:19695476

  3. Automatic Searching Radioactive Sources by Airborne Radioactive Survey Using Multicopter

    NASA Astrophysics Data System (ADS)

    Rim, H.; Eun, S. B.; Kim, K.; Park, S.; Jung, H. K.

    2015-12-01

    In order to prepare emergency situation lost a dangerous radioelement source in advance and to search a radioactive source automatically, we develop airborne radioelement survey system by multicopter. This multicopter radioelement survey system consists of a small portable customized BGO (Bismuth Germanate Oxide) detector, video recording part, wireless connecting part to ground pilot, GPS, and several equipments for automatic flight. This system is possible to search flight by preprogramed lines. This radioactive detecting system are tested to find intentional hidden source, The performance of detecting a source is well proved with very low flight altitude in spite of depending on the magnitude of radioelement sources. The advantage of multicopter system, one of UAV (Unmanned Aerial Vehicle), is to avoid the potential of close access to a dangerous radioactive source by using fully automatic searching capability. In this paper, we introduce our multicopter system for detecting radioactive source and synthetic case history for demonstrating this system.

  4. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  5. Automatic range selector

    DOEpatents

    McNeilly, Clyde E.

    1977-01-04

    A device is provided for automatically selecting from a plurality of ranges of a scale of values to which a meter may be made responsive, that range which encompasses the value of an unknown parameter. A meter relay indicates whether the unknown is of greater or lesser value than the range to which the meter is then responsive. The rotatable part of a stepping relay is rotated in one direction or the other in response to the indication from the meter relay. Various positions of the rotatable part are associated with particular scales. Switching means are sensitive to the position of the rotatable part to couple the associated range to the meter.

  6. Automatic clutch control system

    SciTech Connect

    Kasai, H.; Ogawa, N.; Hattori, T.; Ishihara, M.; Uriuhara, M.

    1986-12-16

    This patent describes an automatic clutch control system, comprising: a clutch having a full clutch engagement point and a clutch contact point; a clutch actuator for controlling a clutch stroke; a plurality of solenoid valves for controlling the clutch actuator; clutch stroke sensor means for measuring the clutch stroke and for detecting the full clutch engagement point and the clutch contact point in the clutch stroke; control means, for feeding back a stroke signal detected by the clutch stroke sensor and for controlling the solenoid valves to control clutch engagement and disengagement.

  7. Automatic speaker recognition system

    NASA Astrophysics Data System (ADS)

    Higgins, Alan; Naylor, Joe

    1984-07-01

    The Defense Communications Division of ITT (ITTDCD) has developed an automatic speaker recognition (ASR) system that meets the functional requirements defined in NRL's Statement of Work. This report is organized as follows. Chapter 2 is a short history of the development of the ASR system, both the algorithm and the implementation. Chapter 3 describes the methodology of system testing, and Chapter 4 summarizes test results. In Chapter 5, some additional testing performed using GFM test material is discussed. Conclusions derived from the contract work are given in Chapter 6.

  8. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  9. Optimization of entry-vehicle shapes during conceptual design

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Mooij, E.

    2014-01-01

    During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.

  10. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  11. Topological characterization of safe coordinated vehicle motions

    SciTech Connect

    MILGRAM.R. JAMES; KAUFMAN,STEPHEN G.

    2000-04-03

    This paper characterizes the homotopy properties and the global topology of the space of positions of vehicles which are constrained to travel without intersecting on a network of paths. The space is determined by the number of vehicles and the network. Paths in the space correspond to simultaneous non-intersecting motions of all vehicles. The authors therefore focus on computing the homotopy type of the space, and show how to do so in the general case. Understanding the homotopy type of the space is the central issue in controlling the vehicles, as it gives a complete description of the distinct ways that vehicles may move safely on the network. The authors exhibit graphs, products of graphs, and amalgamations of products of graphs that are homotopy equivalent to the full configuration space, and are far simpler than might be expected. The results indicate how a control system for such a network of vehicles (such as a fleet of automatically guided vehicles guided by wires buried in a factory floor) may be implemented.

  12. Automatic readout micrometer

    SciTech Connect

    Lauritzen, T.

    1982-03-23

    A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  13. Automatic engine control system

    SciTech Connect

    Geary, W.C.; Mirsaiidi, M.V.; Redfern, T.; Wolfe, D.W.

    1986-01-14

    This patent describes an automatic control circuit for an internal combustion engine and clutch assembly. One component of this circuit is a timer for determining the time the engine is allowed to run and the clutch is engaged and a second period of time when the clutch is automatically disengaged. Associated with the timer is a starter means to start the engine during the first time period and a clutch actuating mechanism for engaging the clutch near the first time period initiation after the starter starts the engine. An engine shut down and clutch disengagement mechanism is also responsive to the first timer. The patent then goes on to describe a supplemental timer mechanism for determining a third and fourth period of time within the second time period such that the third period being when the engine is shut off and the fourth period being when the engine runs with clutch disengaged. The starter mechanism is responsive to the supplemental timer to start the engine at the beginning of the fourth period. A shut down means stops the engine at the beginning of the third period in response to the timer.

  14. Automatic readout micrometer

    DOEpatents

    Lauritzen, T.

    A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  15. Automatic readout micrometer

    DOEpatents

    Lauritzen, Ted

    1982-01-01

    A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  16. Automatic system for corneal ulcer diagnostic

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; de Sousa, Sidney J. F.

    1997-05-01

    Corneal Ulcer is a very common disease in agricultural countries and it is responsible for 10% of the blindness causes. One of the main aspects to be observed in these cases is the increasing or decreasing of the affected area. We have been developing an automatic optical system in order to evaluate the affected area (the ulcer) to be implemented in a public hospital (400 patients per week are analyzed). The optical system is implemented in a Slit Lamp and connected to a CCD detector. The image is displayed in a PC monitor by a commercial frame grabber and a dedicated software for determining the area of the ulcer has been developed.

  17. Automatic gas burner block for thermal units

    SciTech Connect

    Kryzhanovskii, K.S.; Senatov, V.I.

    1987-01-01

    The authors describe a new computerized control system and gas burner configuration for natural gas furnaces used for the heat treatment of ceramics and porcelain which is designed to control and monitor combustion and temperature regimes in the furnace and optimize fuel efficiency. The system permits simultaneous operation and thermal load control of up to 12 burners, automatic maintenance of the desired fuel-air ratio over the entire temperature range, and protection of the furnace against overload by the use of a fuel cutoff switch. Specifications on productivity and efficiency and results of performance evaluations are listed.

  18. Forestry Vehicle

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Power Pack II provides an economical means of moving a power source into remote roadless forest areas. It was developed by Prof. Miles and his associates, working in cooperation with the University of California's Department of Forestry. The team combined its own design of an all-terrain vehicle with a suspension system based on the NASA load equalization technology. Result is an intermediate-sized unit which carries a power source and the powered tools to perform a variety of forest management tasks which cannot be done economically with current equipment. Power Pack II can traverse very rough terrain and climb a 60 degree slope; any one of the wheels can move easily over an obstacle larger than itself. Work is being done on a more advanced Power Pack III.

  19. Comparison of automatic control systems

    NASA Technical Reports Server (NTRS)

    Oppelt, W

    1941-01-01

    This report deals with a reciprocal comparison of an automatic pressure control, an automatic rpm control, an automatic temperature control, and an automatic directional control. It shows the difference between the "faultproof" regulator and the actual regulator which is subject to faults, and develops this difference as far as possible in a parallel manner with regard to the control systems under consideration. Such as analysis affords, particularly in its extension to the faults of the actual regulator, a deep insight into the mechanism of the regulator process.

  20. Traffic Monitor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mestech's X-15 "Eye in the Sky," a traffic monitoring system, incorporates NASA imaging and robotic vision technology. A camera or "sensor box" is mounted in a housing. The sensor detects vehicles approaching an intersection and sends the information to a computer, which controls the traffic light according to the traffic rate. Jet Propulsion Laboratory technical support packages aided in the company's development of the system. The X-15's "smart highway" can also be used to count vehicles on a highway and compute the number in each lane and their speeds, important information for freeway control engineers. Additional applications are in airport and railroad operations. The system is intended to replace loop-type traffic detectors.