Science.gov

Sample records for automotive diesel exhaust

  1. Fast automotive diesel exhaust measurement using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  2. Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.

    PubMed

    Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung

    2015-03-17

    NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution. PMID:25719390

  3. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  4. Studies on health effects of automotive exhaust emissions. How dangerous are diesel emissions?

    PubMed

    Klingenberg, H; Winneke, H

    1990-04-01

    The following paper indicates that current results of research conducted on the effects of intentionally increased concentrations of diesel engine exhaust emissions, particularly the results of animal experiments, do not lead scientifically to final conclusions. According to the current level of knowledge, we must continue to assume that the risk of cancer, possibly due to diesel particles, is negligible, particularly under real environmental conditions. The preventive measures taken by governments are of course supported by the automotive industry, an additional research outlay, however, is necessary not only to clear up contradictions and answer new questions arising from current test results, but also to take positive, and not merely precautionary, action in the future. Due to its links to other influences on humans and plants, research conducted on the effects of motor vehicle emissions is a task that lies very much in the public interest. At the same time, the overview of concluded and ongoing research objectives presented in this paper indicates that the automotive industry is greatly committed to this issue and will meet well-justified expectations. PMID:1694306

  5. Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects

    PubMed Central

    Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.

    1999-01-01

    OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle

  6. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  7. AUTOMOTIVE DIESEL MAINTENANCE. PROGRAM OUTLINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    INFORMATIONAL TOPICS COVERED IN THE TEXT MATERIALS AND SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILMS FOR A 2-YEAR, 55 MODULE PROGRAM IN AUTOMOTIVE DIESEL MAINTENANCE ARE GIVEN. THE 30 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 - VT 005 684, AND THE 25 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 2" ARE AVAILABLE…

  8. Diesel engine exhaust oxidizer

    SciTech Connect

    Kammel, R.A.

    1992-06-16

    This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.

  9. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  10. BIOMARKERS OF DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    The objective of this project is to examine the detectability of some chemical components of diesel exhaust particles (DEP) in human urine following controlled human diesel exposures (IRB-approved). Ultimately, and upon validation, we propose to apply these components as biomarke...

  11. Advanced automotive diesel engine system study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  12. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  13. Controlled human exposures to diesel exhaust

    EPA Science Inventory

    Diesel exhaust (DE) is a complex mixture of gaseous and particulate compounds resulting from an incomplete combustion of diesel fuel. Controlled human exposures to DE and diesel exhaust particles (DEP) have contributed to understanding health effects. Such exposure studies of h...

  14. Diesel exhaust filter-incinerator

    SciTech Connect

    Martyniuk, E.T.

    1981-08-11

    A diesel engine exhaust particulate filter-incinerator comprising an enclosed filter panel having particulate deposition surfaces bordered by electrodes of a high voltage power supply. Periodic incineration is accomplished by the collection on the surfaces of particulates in amounts sufficient to conduct sufficient electric current along paths through the particulates to heat them to incineration temperature. Ignition and burn off of particulates may be automatically accomplished by maintaining a suitable voltage across the electrodes at the edges of the collection surfaces to initiate arc-like current flow before the collected particulates reach a level that would plug the filter. Specific embodiments of exemplary filter constructions are disclosed.

  15. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the construction, operation, malfunction, diagnosis, maintenance, and repair of the fuel and exhaust systems used in automobiles. The course contains five study units covering fundamentals of gasoline engine fuel…

  16. STUDIES OF PARTICULATE REMOVAL FROM DIESEL EXHAUST

    EPA Science Inventory

    The report gives results of a characterization of the collection of particulate emissions from diesel exhaust by several different methods, using 5.7 liter GM diesel engines (as sources) and such controls as fiber and gravel bed filters, trap/cyclones, and ESPs. Overall and fract...

  17. EXHAUST EMISSIONS FROM A DIESEL ENGINE

    EPA Science Inventory

    Studies were performed using (1) Diesel particles collected from the undiluted exhaust of a single-cylinder engine, operated at constant speed and load, using a binary pure hydrocarbon fuel with air or gas mixture oxidizers, and (2) Diesel particles collected from the diluted exh...

  18. Diesel exhaust exposures in port workers.

    PubMed

    Debia, Maximilien; Neesham-Grenon, Eve; Mudaheranwa, Oliver C; Ragettli, Martina S

    2016-07-01

    Exposure to diesel engine exhaust has been linked to increased cancer risk and cardiopulmonary diseases. Diesel exhaust is a complex mixture of chemical substances, including a particulate fraction mainly composed of ultrafine particles, resulting from the incomplete combustion of fuel. Diesel trucks are known to be an important source of diesel-related air pollution, and areas with heavy truck traffic are associated with higher air pollution levels and increased public health problems. Several indicators have been proposed as surrogates for estimating exposures to diesel exhaust but very few studies have focused specifically on monitoring the ultrafine fraction through the measurement of particle number concentrations. The aim of this study is to assess occupational exposures of gate controllers at the port of Montreal, Canada, to diesel engine emissions from container trucks by measuring several surrogates through a multimetric approach which includes the assessment of both mass and number concentrations and the use of direct reading devices. A 10-day measurement campaign was carried out at two terminal checkpoints at the port of Montreal. Respirable elemental and organic carbon, PM1, PM2.5, PMresp (PM4), PM10, PMtot (inhalable fraction), particle number concentrations, particle size distributions, and gas concentrations (NO2, NO, CO) were monitored. Gate controllers were exposed to concentrations of contaminants associated with diesel engine exhaust (elemental carbon GM = 1.6 µg/m(3); GSD = 1.6) well below recommended occupational exposure limits. Average daily particle number concentrations ranged from 16,544-67,314 particles/cm³ (GM = 32,710 particles/cm³; GSD = 1.6). Significant Pearson correlation coefficients were found between daily elemental carbon, PM fractions and particle number concentrations, as well as between total carbon, PM fractions and particle number concentrations. Significant correlation coefficients were found between particle number

  19. Localized corrosion resistance of automotive exhaust alloys

    SciTech Connect

    Sabata, A.; Brossia, C.S.; Behling, M.

    1998-12-31

    Corrosion in automotive exhaust systems can be broadly classified as (a) cold end corrosion and (b) hot end corrosion. For the cold end, the requirements include inside-out perforation corrosion resistance and cosmetic corrosion resistance. Perforation corrosion causes noticeable degradation in noise quality and may even affect the back pressure. For the hot end, the key concern has been perforation corrosion resistance. With the use of oxygen sensors in catalytic converters, the failure criteria will become more stringent. Numerous accelerated corrosion tests have been used to rank materials for the Hot End and the Cold End. These include (a) Continuous Test, (b) Cyclic Tests -- Hot End, (c) Cyclic Tests -- Cold End, (d) Electrochemical Ranking. In this paper the authors evaluate some of the commonly used exhaust materials in these accelerated tests. These accelerated tests are easy to use, inexpensive to run as compared to proving ground testing or trailer testing and can provide information in a relatively short time. Here they report lab work to date on some of the accelerated corrosion testing for perforation corrosion resistance. Note that these tests are useful for ranking materials only. Life expectancy of the material can be given only after a correlation is established between the accelerated tests and field performance. The electrochemical tests were designed to gain insight into pit growth kinetics in the accelerated tests.

  20. BEHAVIORAL ALTERATIONS DUE TO DIESEL EXHAUST EXPOSURE

    EPA Science Inventory

    Several experiments examining the effects of diesel exhaust on the behavior of rats are reported. Animals were exposed either as adults or neonates. The spontaneous locomotor activity (SLA), measured in standard running wheel cages, of adult rats exposed for 8 h/day, 7 days/week ...

  1. Measuring soot particles from automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  2. Advanced Automotive Diesel Assessment Program, executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).

  3. No Breathing in the Aisles: Diesel Exhaust inside School Buses.

    ERIC Educational Resources Information Center

    Solomon, Gina M.; Campbell, Todd R.; Feuer, Gail Ruderman; Masters, Julie; Samkian, Artineh; Paul, Kavita Ann

    There is evidence that diesel exhaust causes cancer and premature death, and also exacerbates asthma and other respiratory illness. Noting that the vast majority of the nation's school buses run on diesel fuel, this report details a study examining the level of diesel exhaust to which children are typically exposed as they travel to and from…

  4. Oxidant generation and toxicity enhancement of aged-diesel exhaust

    NASA Astrophysics Data System (ADS)

    Li, Qianfeng; Wyatt, Anna; Kamens, Richard M.

    Diesel exhaust related airborne Particulate Matter (PM) has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease. The underlying toxicological mechanisms are of great scientific interest. A hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. In this study, the main objective was to determine whether aged-diesel exhaust PM has a higher oxidant generation and toxicity than fresh diesel exhaust PM. The diesel exhaust PM was generated from a 1980 Mercedes-Benz model 300SD, and a dual 270 m 3 Teflon film chamber was utilized to generate two test atmospheres. One side of the chamber is used to produce ozone-diesel exhaust PM system, and another side of the chamber was used to produce diesel exhaust PM only system. A newly optimized dithiothreitol (DTT) method was used to assess their oxidant generation and toxicity. The results of this study showed: (1) both fresh and aged-diesel exhaust PM had high oxidant generation and toxicity; (2) ozone-diesel exhaust PM had a higher toxicity response than diesel exhaust PM only; (3) the diesel exhaust PM toxicity increased with time; (4) the optimized DTT method could be used as a good quantitative chemical assay for oxidant generation and toxicity measurement.

  5. Diesel exhaust cleaner with burner vortex chamber

    SciTech Connect

    Riddel, J.W.

    1983-05-17

    A diesel engine exhaust cleaner and burner system includes at least one exhaust cleaner member with a filter positioned therein to effect removal of particulates from a stream of exhaust gas delivered thereto via an inlet manifold. A fuel burner supplied with fuel by a fuel nozzle is operatively associated with the inlet manifold to supply the necessary heat to effect incineration of particulates collected on the filter. A cyclone duct providing a vortex chamber therein is operatively positioned downstream of the fuel nozzle and is supplied with sufficient air so as to effect both the complete combustion of the fuel and the controlled incineration of the particulates by increasing the residence time of the fuel in the reaction region within the vortex chamber and also effecting a more uniform distribution of the heat of combustion across the inlet face of the filter for the uniform heating of the particulates thereon to their combustion temperature.

  6. Microwave-Regenerated Diesel Exhaust Particulate Filter

    SciTech Connect

    Nixdorf, Richard D.; Green, Johney Boyd; Story, John M.; Wagner, Robert M.

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  7. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts on SENCAR mouse skin

    SciTech Connect

    Nesnow, S; Triplett, L L; Slaga, T J

    1980-01-01

    The tumorigenicity of diesel exhaust particulate emissions was examined using a sensitive mouse skin tumorigenesis model (SENCAR). The tumorigenic potency of particulate emissions from diesel, gasoline, and related emission sources was compared.

  8. Diesel engine exhaust and lung cancer: An unproven association

    SciTech Connect

    Muscat, J.E.; Wynder, E.L.

    1995-09-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant association. It can be concluded that short-term exposure to diesel engine exhaust (<20 years) does not have a causative role in human lung cancer. There is statistical but no causal evidence that long-term exposure to diesel exhaust (>20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. 77 refs., 1 tab.

  9. NEUROGENIC RESPONSES OF RAT LUNG TO DIESEL EXHAUST

    EPA Science Inventory

    The investigators are among the first researchers to investigate neurogenic inflammation in the lungs of rats exposed to whole diesel exhaust. After exposure to both concentrations of diesel exhaust, consistently higher levels of plasma leakage and lower activity of the enz...

  10. Diesel Exhaust in Miners Study: Q&A

    Cancer.gov

    The Diesel Exhaust in Miners Study was designed to evaluate the risk of death associated with diesel exhaust exposure, particularly as it may relate to lung cancer. The researchers observed increased risk for lung cancer death with increasing levels of ex

  11. Exposure to diesel exhaust linked to lung cancer in miners

    Cancer.gov

    In a study of non-metal miners in the United States, federal government scientists reported that heavy exposure to diesel exhaust increased risk of death from lung cancer. The research, all part of the Diesel Exhaust in Miners Study, was designed to evalu

  12. Fumigation of Alcohol in a Light Duty Automotive Diesel Engine

    NASA Technical Reports Server (NTRS)

    Broukhiyan, E. M. H.; Lestz, S. S.

    1981-01-01

    A light-duty automotive Diesel engine was fumigated with methanol in amounts up to 35% and 50% of the total fuel energy respectively in order to determine the effect of alcohol fumigation on engine performance at various operating conditons. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific nitrogen oxide concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears that ethanol fumigation, like methanol fumigation, while lowering the mass of particulated emitted, does enhance the biological activity of that particulate.

  13. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. PMID:22561182

  14. Mercaptans emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio Machado; Arbilla, Graciela

    Biodiesel and ethanol are fuels in clear growth and evidence, basically due to its relation with the greenhouse effect reduction. There are several works regarding regulated pollutants emissions, but there is a lack of reports in non-regulated emissions. In a previous paper (Corrêa and Arbilla, 2006) the emissions of aromatic hydrocarbons were reported and in 2007 another paper was published in 2008 focusing carbonyls emissions (Corrêa and Arbilla, 2008). In this work four mercaptans (methyl, ethyl, n-propyl and n-butyl mercaptans) were evaluated for a heavy-duty diesel engine, fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were carried using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, during a real use across the city. The exhaust gases were diluted near 20 times and the mercaptans were sampled with glass fiber filters impregnated with mercuric acetate. The chemical analyses were performed by gas chromatography with mass spectrometry detection. The results indicated that the mercaptans emissions exhibit a reduction with the increase of biodiesel content, but this reduction is lower as the mercaptan molar mass increases. For B20 results the emission reduction was 18.4% for methyl mercaptan, 18.1% for ethyl mercaptan, 16.3% for n-propyl mercaptan, and 9.6% for n-butyl mercaptan.

  15. The toxicity of diesel exhaust: implications for primary care.

    PubMed

    Krivoshto, Irina N; Richards, John R; Albertson, Timothy E; Derlet, Robert W

    2008-01-01

    Diesel fuel and the products of its combustion represent one of the toxins most commonly encountered by people living in both urban and rural areas of the world. As nations become more heavily populated, there will be increasing reliance on diesel fuel to power mass transportation and commercial vehicles, as well as heavy machinery involved in construction, farming, and mining. The majority of patients who present to urban primary care clinics and emergency departments will have had significant chronic exposure to diesel exhaust because most use and/or live near busy streets and highways. Furthermore, those who operate or work or live near diesel-powered machinery will have even more toxic exposure. Primary care physicians should be aware of the acute and chronic deleterious clinical effects of diesel exhaust. In this article we review the toxicity and myriad health problems associated with diesel exhaust. PMID:18178703

  16. Carbonyl emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Machado Corrêa, Sérgio; Arbilla, Graciela

    With the use of biodiesel in clear growth, it is important to quantify any potential emission benefits or liabilities of this fuel. Several researches are available concerning the regulated emissions of biodiesel/diesel blends, but there is a lack of information about non-regulated emissions. In a previous paper [Corrêa, S.M., Arbilla, G., 2006. Emissões de formaldeído e acetaldeído de misturas biodiesel/diesel. Periódico Tchê Química, 3, 54-68], the emissions of aromatic hydrocarbons were reported. In this work, seven carbonyl emissions (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, butyraldehyde, and benzaldehyde) were evaluated by a heavy-duty diesel engine fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were conducted using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, in a steady-state condition under 1000, 1500, and 2000 rpm. The exhaust gases were diluted nearly 20 times and the carbonyls were sampled with SiO 2-C18 cartridges, impregnated with acid solution of 2,4-dinitrophenylhydrazine. The chemical analyses were performed by high performance liquid chromatography using UV detection. Using average values for the three modes of operation (1000, 1500, and 2000 rpm) benzaldehyde showed a reduction on the emission (-3.4% for B2, -5.3% for B5, -5.7% for B10, and -6.9% for B20) and all other carbonyls showed a significative increase: 2.6, 7.3, 17.6, and 35.5% for formaldehyde; 1.4, 2.5, 5.4, and 15.8% for acetaldehyde; 2.1, 5.4, 11.1, and 22.0% for acrolein+acetone; 0.8, 2.7, 4.6, and 10.0% for propionaldehyde; 3.3, 7.8, 16.0, and 26.0% for butyraldehyde.

  17. Controlling automotive exhaust emissions: successes and underlying science.

    PubMed

    Twigg, Martyn V

    2005-04-15

    Photochemical reactions of vehicle exhaust pollutants were responsible for photochemical smog in many cities during the 1960s and 1970s. Engine improvements helped, but additional measures were needed to achieve legislated emissions levels. First oxidation catalysts lowered hydrocarbon and carbon monoxide, and later nitrogen oxides were reduced to nitrogen in a two-stage process. By the 1980s, exhaust gas could be kept stoichiometric and hydrocarbons, carbon monoxide and nitrogen oxides were simultaneously converted over a single 'three-way catalyst'. Today, advanced three-way catalyst systems emissions are exceptionally low. NOx control from lean-burn engines demands an additional approach because NO cannot be dissociated under lean conditions. Current lean-burn gasoline engine NOx control involves forming a nitrate phase and periodically enriching the exhaust to reduce it to nitrogen, and this is being modified for use on diesel engines. Selective catalytic reduction with ammonia is an alternative that can be very efficient, but it requires ammonia or a compound from which it can be obtained. Diesel engines produce particulate matter, and, because of health concerns, filtration processes are being introduced to control these emissions. On heavy duty diesel engines the exhaust gas temperature is high enough for NO in the exhaust to be oxidised over a catalyst to NO2 that smoothly oxidises particulate material (PM) in the filter. Passenger cars operate at lower temperatures, and it is necessary to periodically burn the PM in air at high temperatures. PMID:15901550

  18. Method and means for diesel exhaust particulate emission control

    SciTech Connect

    Ludecke, O.A.

    1983-04-19

    A method and means for controlling diesel particulate emissions involves providing an exhaust trap filter to collect exhaust particulates at a point near the engine exhaust ports and providing means to periodically vent burning combustion chamber gases to the exhaust filter to initiate combustion and incineration of the collected particulates. Various means for conducting burning mixture to ignite the particulates in the filter are disclosed.

  19. Urinary mutagenic activity in workers exposed to diesel exhaust

    SciTech Connect

    Schenker, M.B.; Samuels, S.J.; Kado, N.Y. ); Hammond, S.K.; Woskie, S.R.; Smith, T.J. )

    1992-04-01

    The authors measured postshift urinary mutagenicity on a population of railroad workers with a range of diesel exhaust exposures. Postshift urinary mutagenicity was determined by a sensitive microsuspension procedure using Salmonella strain TA 98 {plus minus} S9. Number of cigarettes smoked on the study day and urinary cotinine were highly correlated with postshift urinary mutagenicity. Diesel exhaust exposure was measured over the work shift by constant-flow personal sampling pumps. The relative ranking of jobs by this adjusted respirable particle concentration (ARP) was correlated with relative contact the job groups have with operating diesel locomotives. After adjustment for cigarette smoking in multiple regressions, there was no independent association of diesel exhaust exposure, as estimated by ARP, with postshift urinary mutagenicity among smokers or nonsmokers. An important finding is the detection of baseline mutagenicity in most of the nonsmoking workers. Despite the use of individual measurements of diesel exhaust exposure, the absence of a significant association in this study may be due to the low levels of diesel exposure, the lack of a specific marker for diesel exhaust exposure, and/or urinary mutagenicity levels from diesel exposure below the limit of sensitivity for the mutagenicity assay.

  20. Photochemical Reaction Altered Cardiac Toxicity of Diesel Exhaust Inhalation

    EPA Science Inventory

    Rationale: Epidemiological studies have indicated an association between urban air pollution exposure and cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of inhaled diesel exhaust and compared with photochemically altered d...

  1. INCREASED SUSCEPTIBILITY TO INFLUENZA INFECTION AFTER DIESEL EXHAUST EXPOSURE

    EPA Science Inventory

    Inhaled environmental pollutants have a possible role in modulating the susceptibility of humans to respiratory infections. Diesel exhaust (DE) is a major component of urban air pollution and their effects on pulmonary infections is of great concern. Influenza infections cause ...

  2. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  3. INCREASED SUSCEPTIBILITY TO INFLUENZA INFECTION AFTER DIESEL EXHAUST EXPOSURE.

    EPA Science Inventory

    Inhaled environmental pollutants have a possible role in modulating the susceptibility of humans to respiratory infections. Diesel exhaust (DE) is a major component of urban air pollution and their effects on pulmonary infections is of great concern. Influenza infections cause ...

  4. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  5. Catalysts as sensors--a promising novel approach in automotive exhaust gas aftertreatment.

    PubMed

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NO(x) traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NO(x)-loading of lean NO(x) traps, and the soot loading of Diesel particulate filters. PMID:22163575

  6. Recent advances in investigations of toxicity of automotive exhaust

    PubMed Central

    Stupfel, Maurice

    1976-01-01

    The influence of auto exhaust on man's health is difficult to gauge considering the intricacy of human environmental urban stresses and particularly of other air polluting (industrial, domestic) emissions. Epidemiological surveys made in road tunnel employees and in traffic officers have not demonstrated specific effects and have often been complicated by cigarette smoking as a factor. Long-term animal experiments run mostly on small rodents give evidence of little effect of the pathological actions of dilutions such as those encountered in high polluted cities. However the acute toxicity of gasoline exhaust emission is well known and mostly due to carbon monoxide. Considering the different types of cycles and operating conditions of vehicles (gasoline and diesel), auto exhaust gases constitute no more a chemical entity than they show, a definite toxicity. A great number of substances that they contain (nitrogen oxides, aldehydes, antiknock additives, heavy metals, possible catalysts are highly toxic as shown by in vivo and in vitro (mutagenic) tests. Interactions of the components are for the moment ignored or poorly understood. Besides, the evolution of the physicochemical properties and natures of the auto exhaust emission in the gaseous biotope of man under determined conditions of ultraviolet irradiation, temperature, and hygrometry provoke the formation of secondary products such as oxidants and ozone. Several experiments show clearly that irradiation increases the toxicity of auto exhaust significantly. For these reasons, geographical, meteorological, and chronological (circadian and seasonal) factors should be taken into consideration, especially with regard to emission standards. PMID:67944

  7. Diesel engine dual path exhaust cleaner and burner system

    SciTech Connect

    Stark, T.L.

    1983-02-15

    A dual filter element exhaust cleaner and burner system for diesel engines provides for the trapping of particulates in the engine exhaust gases by their passage through filter elements, as selectively controlled by means of a four-way valve. Collected particulates in a non-active particulate filter element are incinerated by means of a heater, with this filter element, during incineration, being supplied with exhaust gases through a constant flow exhaust gas regulator whereby incineration of the particulates will occur at a controlled rate independent of engine speed.

  8. Speed control of automotive diesel engines

    NASA Astrophysics Data System (ADS)

    Outbib, Rachid; Graton, Guillaume; Dovifaaz, Xavier; Younes, Rafic

    2014-04-01

    This paper deals with Diesel engine control. More precisely, a model-based approach is considered to stabilise engine speed around a defined value. The model taken into account is nonlinear and contains explicitly the expression of fuel conversion efficiency. In general in the literature, this experimentally obtained quantity is modelled with either a polynomial or an exponential form (see for instance Younes, R. (1993). Elaboration d'un modèle de connaissance du moteur diesel avec turbocompresseur à géométrie variable en vue de l'optimisation de ses émissions. Ecole Centrale de Lyon; Omran, R., Younes, R., Champoussin, J., & Outbib, R. (2011). New indicated mean effective pressure (IMEP) model for predicting crankshaft movement. Energy Conversion and Management, 52, 3376-3382). This paper focuses on engine speed feedback stabilisation when fuel conversion efficiency is modelled with an exponential form, which is more suitable for automative applications. Simulation results are proposed to highlight the closed-loop control performances.

  9. ROLE OF NEPRILYSIN IN AIRWAY INFLAMMATION INDUCED BY DIESEL EXHAUST EMISSIONS

    EPA Science Inventory

    The investigators intend to evaluate airway inflammatory responses and expression of the enzyme neprilysin in response to diesel exhaust particle exposure. Dr. Wong and colleagues anticipate that their research will reveal that components of diesel exhaust decrease neprilys...

  10. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  11. Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

    EPA Science Inventory

    Rationale: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown. Objective: Test whether acute exposure to diesel modif...

  12. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles.

    PubMed

    Takeda, Ken; Tsukue, Naomi; Yoshida, Seiichi

    2004-01-01

    Diesel exhaust (DE) is known as the main cause of air pollution. DE is a complex mixture of particulate and vapor-phase compounds. The soluble organic fraction of the particulate materials in DE contains thousands of compounds including a variety of polycyclic aromatic hydrocarbons and heavy metals. To clarify the endocrine-disrupting activities of DE, we have reviewed the reports about the effects of DE on the reproductive and brain-nervous systems, and the endocrine-disrupting action of diesel exhaust particles (DEP). In utero exposure to low levels (0.1 mg DEP/m3) of DE from day 2 postcoitum (p.c.) until day 13 p.c. reduced the expression level of Ad4BP/SF-1 mRNA and thereby might affect the development of gonads. Low levels of DE also reduced the expression of several genes known to play key roles in gonadal development, including an enzyme necessary for testosterone synthesis. Mature male rats exposed to DE during the fetal period showed an irreversible decrease in daily sperm production due to an insufficient number of Sertoli cells. DE exposure during the fetal period influenced the brain tissue in newborn mice. In the 3 mg DEP/m3 exposure group at 10 weeks of age, a significant reduction in performance was observed in the passive avoidance learning test in both male and female mice. In addition, the fetal exposure of mice to DE affected the emotional behaviors associated with the serotonergic and dopaminergic systems in the mouse brain. In toluidine blue-stained specimens from the DE-exposed group, edema around the vessels where fluorescent granular perithelial (FGP) cells exist and degenerated granules within the FGP cytoplasm were observed; similar findings were obtained by electron microscopic examination. DEP contain many substances that stimulate Ah receptors, such as the polycyclic aromatic hydrocarbon containing benzo[a]pyrene. DEP also contain substances with estrogenic, antiestrogenic and antiandrogenic activities. The neutral substance fraction of

  13. Biological activity of particle exhaust emissions from light-duty diesel engines.

    PubMed

    Carraro, E; Locatelli, A L; Ferrero, C; Fea, E; Gilli, G

    1997-01-01

    assays were available, exhaust emission generation by biodiesel fuel seemed to yield a smaller environmental impact than that of the referenced diesel fuel. The results point out the usefulness of mutagenicity testing in the research of both newer, more efficient automotive aftertreatment devices and less polluting fuels. PMID:9275990

  14. EFFECT OF OZONE ON DIESEL EXHAUST PARTICLE TOXICITY

    EPA Science Inventory

    Ambient particulate matter (PM) concentrations have been associated with mortality and morbidity. Diesel exhaust particles (DEP) are present in ambient urban air PM. Coexisting with DEP (and PM) is ozone (O(3)), which has the potential to react with some components of DEP. Some r...

  15. DIESEL EXHAUST EXPOSURE INCREASES SEVERITY OF AN ONGOING INFLUENZA INFECTION

    EPA Science Inventory

    Numerous studies have shown that air pollutants including diesel exhaust (DE) alter host defense responses, resulting in decreased resistance to respiratory infection. The purpose of this study was to evaluate the effects of DE exposure on the severity of an ongoing influenza in...

  16. Exposure to Diesel Exhaust Enhances the Generation of Vascular Microparticles

    EPA Science Inventory

    Introduction: In the study of the health impacts of traffic-related air pollution, diesel exhaust is a pollutant of particular interest, since it is a major source of particulate matter (PM). Epidemiological studies associate exposure to ambient levels of PM with cardiovascular m...

  17. MULTIDISCIPLINARY SCIENTIFIC AND ENGINEERING APPROACHES TO ASSESSING DIESEL EXHAUST TOXICITY

    EPA Science Inventory

    Based on epidemiology reports, diesel exhaust (DE) containing particulate matter (PM) may play a role in increasing cardiopulmonary mortality and morbidity, such as lung infection and asthma symptoms. DE gas-phase components may modify the PM effects. DE components vary depending...

  18. Are Urinary PAHs Biomarkers of Controlled Exposure to Diesel Exhaust?

    EPA Science Inventory

    Urinary polycyclic aromatic hydrocarbons (PAHs) were evaluated as possible biomarkers of exposure to diesel exhaust (DE) in two controlled-chamber studies. We report levels of 14 PAHs from 28 subjects in urine that were collected before, immediately after and the morning after ex...

  19. Mutagenicity of Diesel and Soy Biodiesel Exhaust Particles

    EPA Science Inventory

    Mutagenicity Of Diesel And Soy Biodiesel Exhaust Particles E Mutlua,b' SH Warrenb, PP Matthewsb, CJ Kingb, B Prestonc, MD Haysb, DG Nashb,ct, WP Linakb, MI Gilmourb, and DM DeMarinib aUniversity of North Carolina, Chapel Hill, NC bU.S. Environmental Agency, Research Triangle Pa...

  20. Effects of diesel exhaust on influenza-induced nasal inflammation

    EPA Science Inventory

    Title: Effects of Diesel Exhaust on Influenza-Induced Nasal Inflammation T L Noah, MD1,2, K Horvath, BS3, C Robinette, RN2, 0 Diaz Sanchez, PhD4 and I Jaspers, PhD1,2. 1UNC Dept. of Pediatrics, United States; 2UNC Center for Environmental Medicine, Asthma and Lung Biology, ...

  1. EFFECTS OF DIESEL EXHAUST ON TLR3 EXPRESSION IN MICE

    EPA Science Inventory

    There are a variety of intrinsic as well as extrinsic factors, such as exposure to air pollution that can affect the pathogenesis of respiratory infections. Exposure to diesel exhaust (DE) emissions can alter host defense and immune responses and we have previously demonstrated t...

  2. The Differential Oxidative Properties of Diesel Exhaust Particles

    EPA Science Inventory

    Diesel exhaust particles (DEP) accounts for a significant percentage of particulate matter (PM) released into the atmosphere and are associated with adverse pulmonary effects. Due to their extremely small size and high surface area, DEP can adsorb toxic substances, thus potentia...

  3. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  4. Diesel exhaust exposure and lung cancer: a case-control study

    SciTech Connect

    Hall, N.E.L.; Wynder, E.L.

    1984-06-01

    The presence of polyaromatic hydrocarbons in the particulate phase of diesel engine exhaust has raised questions concerning potential carcinogenicity of diesel exhaust exposure. A case-control study was conducted of 502 male lung cancer cases and 502 controls without tobacco-related diseases to investigate the association of occupational diesel exhaust exposure and lung cancer. Diesel exhaust exposure was appraised by job title. The results show no association between diesel exhaust exposure and risk of lung cancer. They do, however, show the strong association between smoking and lung cancer and as such highlight the importance of smoking information in studies of occupational effect on lung cancer risk.

  5. Diesel engine exhaust particulate filter with intake throttling incineration control

    SciTech Connect

    Ludecke, O.; Rosebrock, T.

    1980-07-08

    A description is given of a diesel engine exhaust filter and particulate incineration system in combination with a diesel engine having a normally unthrottled air induction system for admitting combustion air to the engine and an exhaust system for carrying off spent combustion products exhausted from the engine, said filter and incineration system comprising: a combustion resistant filter disposed in the exhaust system and operative to collect and retain portions of the largely carbonaceous particulate matter contained in the engine exhaust products, said fiber being capable of withstanding without substantial damage internal temperatures sufficient to burn the collected particulate matter, a throttle in the indication system and operable to restrict air flow into the engine to reduce the admittance of excess combustion air and thereby increase engine exhaust gas temperature, and means to actuate said throttle periodically during engine operation to an air flow restricting burn mode capable of raising the particulates in said filter to their combustion temperature under certain engine operating conditions and to maintain said throttle mode for an interval adequate to burn retained particulates in the filter.

  6. Diesel exhaust and asthma: hypotheses and molecular mechanisms of action.

    PubMed Central

    Pandya, Robert J; Solomon, Gina; Kinner, Amy; Balmes, John R

    2002-01-01

    Several components of air pollution have been linked to asthma. In addition to the well-studied critera air pollutants, such as nitrogen dioxide, sulfur dioxide, and ozone, diesel exhaust and diesel exhaust particles (DEPs) also appear to play a role in respiratory and allergic diseases. Diesel exhaust is composed of vapors, gases, and fine particles emitted by diesel-fueled compression-ignition engines. DEPs can act as nonspecific airway irritants at relatively high levels. At lower levels, DEPs promote release of specific cytokines, chemokines, immunoglobulins, and oxidants in the upper and lower airway. Release of these mediators of the allergic and inflammatory response initiates a cascade that can culminate in airway inflammation, mucus secretion, serum leakage into the airways, and bronchial smooth muscle contraction. DEPs also may promote expression of the T(subscript)H(/subscript)2 immunologic response phenotype that has been associated with asthma and allergic disease. DEPs appear to have greater immunologic effects in the presence of environmental allergens than they do alone. This immunologic evidence may help explain the epidemiologic studies indicating that children living along major trucking thoroughfares are at increased risk for asthmatic and allergic symptoms and are more likely to have objective evidence of respiratory dysfunction. PMID:11834468

  7. Diesel exhaust and asthma: hypotheses and molecular mechanisms of action.

    PubMed

    Pandya, Robert J; Solomon, Gina; Kinner, Amy; Balmes, John R

    2002-02-01

    Several components of air pollution have been linked to asthma. In addition to the well-studied critera air pollutants, such as nitrogen dioxide, sulfur dioxide, and ozone, diesel exhaust and diesel exhaust particles (DEPs) also appear to play a role in respiratory and allergic diseases. Diesel exhaust is composed of vapors, gases, and fine particles emitted by diesel-fueled compression-ignition engines. DEPs can act as nonspecific airway irritants at relatively high levels. At lower levels, DEPs promote release of specific cytokines, chemokines, immunoglobulins, and oxidants in the upper and lower airway. Release of these mediators of the allergic and inflammatory response initiates a cascade that can culminate in airway inflammation, mucus secretion, serum leakage into the airways, and bronchial smooth muscle contraction. DEPs also may promote expression of the T(subscript)H(/subscript)2 immunologic response phenotype that has been associated with asthma and allergic disease. DEPs appear to have greater immunologic effects in the presence of environmental allergens than they do alone. This immunologic evidence may help explain the epidemiologic studies indicating that children living along major trucking thoroughfares are at increased risk for asthmatic and allergic symptoms and are more likely to have objective evidence of respiratory dysfunction. PMID:11834468

  8. Diesel exhaust is a pulmonary carcinogen in rats exposed chronically by inhalation.

    PubMed

    Mauderly, J L; Jones, R K; Griffith, W C; Henderson, R F; McClellan, R O

    1987-08-01

    Male and female F344 rats were exposed 7 hr/day, 5 day/week for up to 30 months to automotive diesel engine exhaust at soot concentrations of 0.35, 3.5, or 7.0 mg/m3 or were sham-exposed to clean air. Rats were terminated at 6-month intervals to measure lung burdens of diesel soot and for histopathology. Other rats either died or were terminated after 30 months of exposure. Lungs were fixed, sectioned into 3-mm slices, and examined by a dissecting microscope to detect tumors. Lesions were stained and examined by light microscopy. Survival and body weight were unaffected by exposure. Focal fibrotic and proliferative lung disease accompanied a progressive accumulation of soot in the lung. The prevalence of lung tumors was significantly increased at the high (13%) and medium (4%) dose levels above the control prevalence (1%). Four tumor types, all of epithelial origin, were observed: adenoma, adenocarcinoma, squamous cyst, and squamous cell carcinoma. Logistic regression modeling demonstrated a significant relationship between tumor prevalence and both exposure concentration and soot lung burden. These results demonstrate that diesel exhaust, inhaled chronically at a high concentration, is a pulmonary carcinogen in the rat. PMID:2443412

  9. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  10. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. )

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance.

  11. Diesel emission reduction using internal exhaust gas recirculation

    DOEpatents

    He, Xin; Durrett, Russell P.

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  12. Monolith diesel exhaust filter with self-regeneration

    SciTech Connect

    Bly, K.B.; Gutwald, M.J.; Ludecke, O.A.

    1981-06-30

    A self-regenerating diesel engine exhaust particulate filter is disclosed that is comprised of, in a preferred embodiment, porous ceramic walls defining filter surfaces between adjacent inlet and outlet passages and having electric heating wires in the inlet passages to periodically initiate incineration of collected particulates therein. A movable shield is preferably provided to restrict gas flow through the various passages during their respective periods of incineration so as to provide periodic regeneration with a minimum expenditure of external energy.

  13. Diesel exhaust exposure in the Canadian railroad work environment.

    PubMed

    Verma, Dave K; Finkelstein, Murray M; Kurtz, Lawrence; Smolynec, Kathy; Eyre, Susan

    2003-01-01

    An investigation of occupational exposure to diesel exhaust, in terms of elemental carbon, was conducted as part of a feasibility study in the Canadian railroad industry. Both personal and area samples were collected from three major operating divisions of the railways: mechanical service, transportation, and engineering. A total of 255 elemental carbon samples have been described. The results show that all but six elemental carbon concentrations, expressed as size-selective respirable air samples taken using a 10 mm nylon cyclone, are well below the 2001 proposed American Conference of Governmental Industrial Hygienists' (ACGIH) threshold limit value (TLV) of 20 microg/m3. The concentration of diesel exhaust, expressed as elemental carbon, in the railroad industry is much lower than that in some other major industries such as mining and forklift truck operations. If the TLV is to be applicable to a broad range of workplace settings such as railroad, construction, and mining, the use of a TLV that is based on an elemental carbon measurement of size selective respirable samples, as recommended in the 2001 ACGIH proposal, would appear to be the most valid strategy for control of exposure to diesel exhaust. PMID:12650546

  14. CARBONYL CONTENT OF DIESEL EXHAUST FROM TWO SOURCES AND POSSIBLE IMPLICATIONS FOR CELL RESPONSES

    EPA Science Inventory

    Diesel exhaust is known to cause health effects including increases in lung inflammation and altered immunological parameters. The diesel exhausts used in our studies were collected into ice-cooled PBS from a diesel engine running at idle speed (DE2A) or at full load (DE5A). P...

  15. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  16. Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.

    PubMed

    Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B

    2010-01-01

    This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler. PMID:20711933

  17. Diesel engine exhaust trap particulate distribution and incineration balancing system

    SciTech Connect

    Mann, G. S.; Parker, W. J.; Tendulkar, D. V.

    1981-09-22

    A diesel particulate trapping and incineration system is disclosed that includes a porous wall monolithic ceramic filter element having dual openended inlet passages separated from adjacent exhaust passages by particulate filtering porous walls. A balancing system for the distribution and incineration of particulates is provided including dual inlet ducts feeding exhaust gases to both ends of the inlet passages and valve means for controlling the amount of inlet gas flow entering the open opposite ends of the inlet ducts. In this way control is obtained of distribution of particulates over the length of the inlet duct walls as well as of the incineration of particulates upon heating of the exhaust gases to incineration temperature.

  18. AUTOMOTIVE EXHAUST AND MOUSE ACTIVITY: RELATIONSHIPS BETWEEN POLLUTANT CONCENTRATIONS AND DECREASES IN WHEEL RUNNING

    EPA Science Inventory

    Groups of male and female mice inhaled either clean air, 100 ppm carbon monoxide, or light-irradiated and nonirridiated automotive exhaust containing nominally 25, 50, 75, or 100 ppm carbon monoxide in three tests with exposure lasting from 4 to 7 days. Exhaust from a factory or ...

  19. RISK ASSESSMENT OF THE INFLAMMOGENIC AND MUTAGENIC EFFECTS OF DIESEL EXHAUST PARTICLES: A SYSTEMS BIOLOGY APPROACH

    EPA Science Inventory

    Diesel exhaust particulate matter (DEP) is a ubiquitous ambient air contaminant derived from mobile and stationary diesel fuel combustion. Exposure to DEP is associated with carcinogenic and immunotoxic effects in humans and experimental animals. At the cellular level, these heal...

  20. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    SciTech Connect

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  1. Hydrocarbon emissions speciation in diesel and biodiesel exhausts

    NASA Astrophysics Data System (ADS)

    Payri, Francisco; Bermúdez, Vicente R.; Tormos, Bernardo; Linares, Waldemar G.

    Diesel engine emissions are composed of a long list of organic compounds, ranging from C 2 to C 12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic. The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed. Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed. The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum

  2. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  3. Are urinary PAHs biomarkers of controlled exposure to diesel exhaust?

    PubMed Central

    Lu, Sixin S.; Sobus, Jon R.; Sallsten, Gerd; Albin, Maria; Pleil, Joachim D.; Gudmundsson, Anders; Madden, Michael C.; Strandberg, Bo; Wierzbicka, Aneta; Rappaport, Stephen M.

    2016-01-01

    Urinary polycyclic aromatic hydrocarbons (PAHs) were evaluated as possible biomarkers of exposure to diesel exhaust (DE) in two controlled-chamber studies. We report levels of 14 PAHs from 28 subjects in urine that were collected before, immediately after and the morning after exposure. Using linear mixed-effects models, we tested for effects of DE exposure and several covariates (time, age, gender and urinary creatinine) on urinary PAH levels. DE exposures did not significantly alter urinary PAH levels. We conclude that urinary PAHs are not promising biomarkers of short-term exposures to DE in the range of 106–276 μg/m3. PMID:24754404

  4. Reduction in adverse effect on pulmonary function after exposure to filtered diesel exhaust

    SciTech Connect

    Ulfvarson, U.; Alexandersson, R. )

    1990-01-01

    A statistically significant temporary reduction on pulmonary function was measured with spirometry in stevedores on a roll-on-roll-off ro-ro ship who were exposed to diesel exhausts from trucks during a work shift. When all trucks were equipped with specially designed microfilters mounted on the exhaust pipes, this impairment in pulmonary function was reduced. Removal of the particulate fraction of the exhausts by filtering is an important factor in reducing the adverse effect of diesel exhaust on pulmonary function. The particle fraction should be considered when designing an indicator of the biological effects of diesel exhausts.

  5. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms.

    PubMed

    Steiner, Sandro; Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-07-01

    Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters. PMID:27165416

  6. Spatial Modeling of Diesel Exhaust Markers in South Seattle

    NASA Astrophysics Data System (ADS)

    Schulte, Jill Katherine

    Background: South Park and Georgetown, two of Seattle's most diverse and affordable neighborhoods, contain the primary commercial traffic corridors from the Port of Seattle to interstates and state highways. Residents of these communities have expressed concern about exposure to diesel exhaust emitted by the large number of commercial trucks that pass through their neighborhoods. The aim of this project was to model the spatial distribution of diesel exhaust markers at a fine scale across these neighborhoods using measurements from a high-density air sampling campaign. Methods: Two-week average concentrations of two markers of diesel exhaust, 1-nitropyrene (1-NP) and light-absorbing carbon (LAC), were measured in summer and winter at 24 sites. Land-use regression models were built using spatial characteristics of sampling sites, including land use and road density. Mobile source emissions predictions from the CAL3QHCR dispersion model were included in spatial models. Light-scattering particle concentrations measured by a mobile monitoring platform that drove through the neighborhoods were also included as model covariates. Model predictions were generated using land-use regression equations for a grid of points 50m apart across the study area. Universal kriging was applied to these grid points to generate a raster surface of the gradient of predictions. Results: 1-NP concentrations ranged from 0.263 pg/m 3 to 2.51 pg/m3 in summer and 1.11 pg/m3 to 5.71 pg/m3 in winter. LAC concentrations, measured as the absorption coefficient of collected fine particles, ranged from 4.31E-06 m -1 to 7.84E-06 m-1 in summer and 6.30E-06 m -1 to 9.42E-06 m-1 in winter. The summer 1-NP model had an R2 of 0.87 and a leave-one-out cross-validated R 2 of 0.73. No prediction model of winter 1-NP was identified. The LAC models had R2 values of 0.78 and 0.79 and leave-one-out-cross-validated R2 values of 0.66 and 0.70 for August and December, respectively. Conclusions: Spatial modeling was

  7. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A

    2011-09-01

    Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health

  8. Proinflammatory Effects of Diesel Exhaust Nanoparticles on Scleroderma Skin Cells

    PubMed Central

    Mastrofrancesco, A.; Alfè, M.; Rosato, E.; Gargiulo, V.; Beatrice, C.; Di Blasio, G.; Zhang, B.; Su, D. S.; Picardo, M.; Fiorito, S.

    2014-01-01

    Autoimmune diseases are complex disorders of unknown etiology thought to result from interactions between genetic and environmental factors. We aimed to verify whether environmental pollution from diesel engine exhaust nanoparticulate (DEP) of actually operating vehicles could play a role in the development of a rare immune-mediated disease, systemic sclerosis (SSc), in which the pathogenetic role of environment has been highlighted. The effects of carbon-based nanoparticulate collected at the exhaust of newer (Euro 5) and older (Euro 4) diesel engines on SSc skin keratinocytes and fibroblasts were evaluated in vitro by assessing the mRNA expression of inflammatory cytokines (IL-1α, IL-6, IL-8, and TNF-α) and fibroblast chemical mediators (metalloproteases 2, 3, 7, 9, and 12; collagen types I and III; VEGF). DEP was shown to stimulate cytokine gene expression at a higher extent in SSc keratinocytes versus normal cells. Moreover, the mRNA gene expression of all MMPs, collagen types, and VEGF genes was significantly higher in untreated SSc fibroblasts versus controls. Euro 5 particle exposure increased the mRNA expression of MMP-2, -7, and -9 in SSc fibroblasts in a dose dependent manner and only at the highest concentration in normal cells. We suggest that environmental DEP could trigger the development of SSc acting on genetically hyperreactive cell systems. PMID:24982919

  9. The Diesel Exhaust in Miners Study: A Nested Case–Control Study of Lung Cancer and Diesel Exhaust

    PubMed Central

    Samanic, Claudine M.; Lubin, Jay H.; Blair, Aaron E.; Stewart, Patricia A.; Vermeulen, Roel; Coble, Joseph B.; Rothman, Nathaniel; Schleiff, Patricia L.; Travis, William D.; Ziegler, Regina G.; Wacholder, Sholom; Attfield, Michael D.

    2012-01-01

    Background Most studies of the association between diesel exhaust exposure and lung cancer suggest a modest, but consistent, increased risk. However, to our knowledge, no study to date has had quantitative data on historical diesel exposure coupled with adequate sample size to evaluate the exposure–response relationship between diesel exhaust and lung cancer. Our purpose was to evaluate the relationship between quantitative estimates of exposure to diesel exhaust and lung cancer mortality after adjustment for smoking and other potential confounders. Methods We conducted a nested case–control study in a cohort of 12 315 workers in eight non-metal mining facilities, which included 198 lung cancer deaths and 562 incidence density–sampled control subjects. For each case subject, we selected up to four control subjects, individually matched on mining facility, sex, race/ethnicity, and birth year (within 5 years), from all workers who were alive before the day the case subject died. We estimated diesel exhaust exposure, represented by respirable elemental carbon (REC), by job and year, for each subject, based on an extensive retrospective exposure assessment at each mining facility. We conducted both categorical and continuous regression analyses adjusted for cigarette smoking and other potential confounding variables (eg, history of employment in high-risk occupations for lung cancer and a history of respiratory disease) to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Analyses were both unlagged and lagged to exclude recent exposure such as that occurring in the 15 years directly before the date of death (case subjects)/reference date (control subjects). All statistical tests were two-sided. Results We observed statistically significant increasing trends in lung cancer risk with increasing cumulative REC and average REC intensity. Cumulative REC, lagged 15 years, yielded a statistically significant positive gradient in lung cancer risk overall

  10. Respiratory effects of diesel exhaust in salt miners

    SciTech Connect

    Gamble, J.F.; Jones, W.G.

    1983-09-01

    The respiratory health of 259 white males working at 5 salt (NaCl) mines was assessed by questionnaire, chest radiographs, and air and He-O/sup 2/ spirometry. Response variables were symptoms, pneumoconiosis, and spirometry. Predictor variables included age, height, smoking, mine, and tenure in diesel-exposed jobs. The purpose was to assess the association of response measures of respiratory health with exposure to diesel exhaust. There were only 2 cases of Grade 1 pneumoconiosis, so no further analysis was done. Comparisons within the study population showed a statistically significant dose-related association of phlegm and diesel exposure. There was a nonsignificant trend for cough and dyspnea, and no association with spirometry. Age- and smoking-adjusted rates of cough, phlegm, and dyspnea were 145, 159, and 93% of an external comparison population. Percent predicted flow rates showed statistically significant reductions, but the reductions were small and there were no dose-response relations. Percent predicted FEV1 and FVC were about 96% of predicted.

  11. Ecotoxicity and genotoxicity assessment of exhaust particulates from diesel-powered buses.

    PubMed

    Kováts, Nora; Acs, András; Ferincz, Arpád; Kovács, Anikó; Horváth, Eszter; Kakasi, Balázs; Jancsek-Turóczi, Beatrix; Gelencsér, András

    2013-10-01

    Diesel exhaust is one of the major sources of fine and ultra-fine particulate matter in urban air. Toxicity of diesel-powered engine emissions has been quite widely assessed; however, much less information is available on their ecotoxicity. In our study, the kinetic version of the Vibrio fischeri bioluminescence inhibition bioassay based on the ISO 21338:2010 standard was used to characterise the ecotoxicity of diesel-powered buses. It is a direct contact test in which solid samples are tested in suspension and test organisms are in direct contact with toxic particles. The age of the selected buses fell into a wide range; the oldest one was produced in 1987. Diesel engines of different emission standards (Euro0-Euro4) were included. Measured EC50 values of Euro0-Euro1 engine emissions fell into the same range, 1.24-0.96 μg ml(-1), respectively. On the contrary, emission of Euro4 vehicle proved to be non-toxic. Genotoxic potential of the samples was also estimated, using the colorimetric SOS-chromotest™. Genotoxicity was detected also for Euro0 and Euro1 buses, showing correlation with the ecotoxic potential. The fact that the particulates from Euro4 vehicles did not show ecotoxic/genotoxic effect implies that replacing old Euro1 and Euro2 buses can be a highly effective solution for reducing environmental hazard of automotive emissions. The whole-aerosol testing method is a cheap alternative that can be used in engine developments and emission control. PMID:23609923

  12. BIOLOGIC EFFECTS OF INHALED DIESEL EXHAUST IN YOUNG AND OLD MICE: A PILOT PROJECT

    EPA Science Inventory

    The investigators hypothesis is that TNF-a production will be shown to be impaired in old animals exposed to diesel exhaust. The investigators extend  their hypothesis to suggest that exposure to diesel exhaust may differentially affect molecules involved in i...

  13. PHYSIOLOGICAL, CELLULAR, AND BIOCHEMICAL EFFECTS OF DIESEL EXHAUST IN HEALTHY YOUNG ADULTS

    EPA Science Inventory

    Diesel exhaust is a major source of pollution especially in urban areas. The contribution of the diesel exhaust particles and gases to increases in deaths, asthma symptoms, lung infections, and other health effects is unclear. This study will examine the lung, blood, heart, and o...

  14. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    NASA Technical Reports Server (NTRS)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  15. DIESEL EXHAUST RESEARCH: WHAT HAS IT TOLD US ABOUT AMBIENT ORGANIC PM TOXICITY.

    EPA Science Inventory

    Diesel exhaust is a complex mixture of components which includes organic gaseous and particulate material. Sources of the exhaust are derived from both on road and off road engines. Use of diesel fuel continues to increase in the US and globally, though the development and use o...

  16. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    NASA Astrophysics Data System (ADS)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  17. Determination of aldehydes and ketones with high atmospheric reactivity on diesel exhaust using a biofuel from animal fats

    NASA Astrophysics Data System (ADS)

    Ballesteros, R.; Monedero, E.; Guillén-Flores, J.

    2011-05-01

    Biodiesel from animal fats appears as an alternative for conventional diesel in automotive consumption. Animal fats are classified into three categories, although only one of them can be used for biodiesel production, according to regulation. Due to its novelty, researchers testing animal-fat biodiesel on diesel engines focus only on regulated emissions. In this paper, the experiments carried out analyze carbonyl compounds emissions, due to its highly atmospheric reactivity, to complete the characterization of the total emissions in this kind of biofuel. Two fuels, a reference petro-diesel and a pure animal-fat biodiesel, were tested in a 4-cylinder, direct injection, diesel engine Nissan Euro 5 M1D-Bk. Samples were collected in 4 different operating modes and 3 points along the exhaust line. The analyses of samples were made in a high performance liquid chromatography, following the method recommended by the CARB to analyze air quality. Results show, on the one hand, a significant rise in carbonyl emissions, almost three times at the mode with highest hydrocarbon emissions, when biodiesel is used. On the other hand, on average, a reduction of 90% of carbonyl emissions when exhaust gases go through the different post-treatment systems installed. Despite this reduction, specific reactivity does not decrease substantially.

  18. Generation and characterization of diesel exhaust in a facility for controlled human exposures

    EPA Science Inventory

    An idling medium-duty diesel truck operated on ultralow sulfur diesel fuel was used as an emission source to generate diesel exhaust for controlled human exposure. Repeat tests were conducted on the Federal Test Procedure using a chassis dynamometer to demonstrate the reproducibi...

  19. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust.

    PubMed

    Mauderly, J L; Bice, D E; Cheng, Y S; Gillett, N A; Henderson, R F; Pickrell, J A; Wolff, R K

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance. The elastase treatment resulted in pulmonary emphysema that was manifested by enlarged alveoli and alveolar ducts, and by ruptured alveolar septa. There was no accompanying inflammation and no

  20. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    PubMed Central

    2010-01-01

    Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust

  1. Acoustic Optimization of Automotive Exhaust Heat Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Ye, B. Q.; Guo, X.; Hui, P.

    2012-06-01

    The potential for thermoelectric exhaust heat recovery in vehicles has been increasing with recent advances in the efficiency of thermoelectric generators (TEGs). This study analyzes the acoustic attenuation performance of exhaust-based TEGs. The acoustic characteristics of two different thermal designs of exhaust gas heat exchanger in TEGs are discussed in terms of transmission loss and acoustic insertion loss. GT-Power simulations and bench tests on a dynamometer with a high-performance production engine are carried out. Results indicate that the acoustic attenuation of TEGs could be determined and optimized. In addition, the feasibility of integration of exhaust-based TEGs and engine mufflers into the exhaust line is tested, which can help to reduce space and improve vehicle integration.

  2. Corrosion of muffler materials in automotive exhaust gas condensates

    SciTech Connect

    Ujiro, Takumi; Kitazawa, Makoto; Togashi, Fusao . Iron and Steel Research Lab.)

    1994-12-01

    The corrosion of automotive mufflers collected in North America was investigated. Aluminum (Al)-plated steels corroded severely in the substrate under the Al plating. Type 409 (UNS S40900) stainless steels sustained a large number of pits. The effects of ions in the condensate and activated carbon on the corrosion resistance of muffler materials were studied with a newly developed condensate corrosion test.

  3. Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Popovicheva, Olga; Kireeva, Elena; Müller, Loretta; Heeb, Norbert; Mayer, Andreas; Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air-liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that - at least RME - can be considered a valuable alternative to pure fossil diesel.

  4. Occupational exposure to diesel engine exhaust: a literature review.

    PubMed

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A

    2009-07-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC<50 microg/m(3)). Lowest levels were reported for enclosed areas separated from the source, such as drivers and train crew, or outside, such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 microg/m(3)). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population

  5. Occupational exposure to diesel engine exhaust: A literature review

    PubMed Central

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia

    2010-01-01

    Background Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Methods Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO2). Information on determinants of exposure was abstracted. Results In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO2 measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles, and 68% from off-road vehicles (30% mining, 15% railroad, and 22% other). Highest levels were reported for enclosed underground work sites where heavy equipment is used: mining, mine maintenance, and construction, (EC: 27-658 μg/m3). Intermediate exposure levels were generally reported for above ground (semi-)enclosed areas where smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC< 50 μg/m3). Lowest levels were reported for enclosed areas separated from the source such as drivers and train crew, or outside such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 μg/m3). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Conclusions Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above ground (semi-)enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population

  6. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  7. The Diesel Exhaust in Miners Study: IV. Estimating Historical Exposures to Diesel Exhaust in Underground Non-metal Mining Facilities

    PubMed Central

    Vermeulen, Roel; Coble, Joseph B.; Lubin, Jay H.; Portengen, Lützen; Blair, Aaron; Attfield, Michael D.; Silverman, Debra T.

    2010-01-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998–2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m3 min−1), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP1990+) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947–1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP1990+). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC estimates) generated from

  8. The Diesel Exhaust in Miners Study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    PubMed

    Vermeulen, Roel; Coble, Joseph B; Lubin, Jay H; Portengen, Lützen; Blair, Aaron; Attfield, Michael D; Silverman, Debra T; Stewart, Patricia A

    2010-10-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998-2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m³ min⁻¹), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP₁₉₉₀(+)) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947-1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP₁₉₉₀(+)). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC

  9. Tracking personal exposure to particulate diesel exhaust in a diesel freight terminal using organic tracer analysis

    PubMed Central

    SHEESLEY, REBECCA J.; SCHAUER, JAMES J.; GARSHICK, ERIC; LADEN, FRANCINE; SMITH, THOMAS J.; BLICHARZ, ANDREW P.; DEMINTER, JEFFREY T.

    2008-01-01

    Personal exposure to particle-phase molecular markers was measured at a trucking terminal in St Louis, MO, as part of a larger epidemiologic project aimed at assessing carbonaceous fine particulate matter (PM) exposure in this occupational setting. The integration of parallel personal exposure, ambient worksite area and ambient urban background (St Louis Supersite) measurements provided a unique opportunity to track the work-related exposure to carbonaceous fine PM in a freight terminal. The data were used to test the proposed personal exposure model in this occupational setting: Personal exposure=urban background+work site background+personal activity To accurately assess the impact of PM emission sources, particularly motor vehicle exhaust, and organic elemental carbon (OCEC) analysis and nonpolar organic molecular marker analysis by thermal desorption-gas chromatography/mass spectrometry (TD-GCMS) were conducted on all of the PM samples. EC has been used as a tracer for diesel exhaust in urban areas, however, the emission profile for diesel exhaust is dependent upon the operating conditions of the vehicle and can vary considerably within a fleet. Hopanes, steranes, polycyclic aromatic hydrocarbons and alkanes were measured by TD-GCMS. Hopanes are source-specific organic molecular markers for lubricating oil present in motor vehicle exhaust. The concentrations of OC, EC and the organic tracers were averaged to obtain average profiles to assess differences in the personal, worksite area and urban background samples, and were also correlated individually by sample time to evaluate the exposure model presented above. Finally, a chemical mass balance model was used to apportion the motor vehicle and cigarette-smoke components of the measured OC and EC for the average personal exposure, worksite area and urban background samples. PMID:18322451

  10. Tracking personal exposure to particulate diesel exhaust in a diesel freight terminal using organic tracer analysis.

    PubMed

    Sheesley, Rebecca J; Schauer, James J; Garshick, Eric; Laden, Francine; Smith, Thomas J; Blicharz, Andrew P; Deminter, Jeffrey T

    2009-02-01

    Personal exposure to particle-phase molecular markers was measured at a trucking terminal in St Louis, MO, as part of a larger epidemiologic project aimed at assessing carbonaceous fine particulate matter (PM) exposure in this occupational setting. The integration of parallel personal exposure, ambient worksite area and ambient urban background (St Louis Supersite) measurements provided a unique opportunity to track the work-related exposure to carbonaceous fine PM in a freight terminal. The data were used to test the proposed personal exposure model in this occupational setting: To accurately assess the impact of PM emission sources, particularly motor vehicle exhaust, and organic elemental carbon (OCEC) analysis and nonpolar organic molecular marker analysis by thermal desorption-gas chromatography/mass spectrometry (TD-GCMS) were conducted on all of the PM samples. EC has been used as a tracer for diesel exhaust in urban areas, however, the emission profile for diesel exhaust is dependent upon the operating conditions of the vehicle and can vary considerably within a fleet. Hopanes, steranes, polycyclic aromatic hydrocarbons and alkanes were measured by TD-GCMS. Hopanes are source-specific organic molecular markers for lubricating oil present in motor vehicle exhaust. The concentrations of OC, EC and the organic tracers were averaged to obtain average profiles to assess differences in the personal, worksite area and urban background samples, and were also correlated individually by sample time to evaluate the exposure model presented above. Finally, a chemical mass balance model was used to apportion the motor vehicle and cigarette-smoke components of the measured OC and EC for the average personal exposure, worksite area and urban background samples. PMID:18322451

  11. Short-term exposure of rodents to diesel exhausts: usefulness for studies of genotoxic and immunotoxic effects.

    PubMed

    Nilsen, A; Trønnes, T; Westerholm, R; Rannug, U; Nilsen, O G; Helleberg, H; Kautiainen, A; Hedenskog, M; Törnqvist, M

    1999-03-01

    An exposure facility was tested with regard to the information obtainable from short-term animal experiments for the assessment of health hazards from automotive engine exhausts. Indicators of immunotoxicity and genotoxicity were studied in guinea pigs and mice, respectively, exposed for 2 weeks, 8 h/day, to ten times diluted exhausts from a one-cylinder research diesel engine running at constant load. Regulated and non-regulated pollutants were determined. Besides increased number of lavageable cells in the airways, exposed guinea pigs exhibited, after immunization and challenge to ovalbumin, reduced leukotrienes B4 and C4 in lavage fluid and reduced anti-ovalbumin IgG in serum. Absence of increased CYP1A activity indicated that the exposure was below the threshold for induction of these enzymes. Instead a certain reduction of this activity indicated interaction with active enzyme sites. In vivo doses of some reactive metabolites of low molecular mass were measured by adducts to hemoglobin. Doses from aliphatic epoxides were low, in accordance with low hydrocarbon levels in the exhaust. The levels of hemoglobin adducts from aldehydes showed no clearcut influences of exposure. Genetic effects determined by DNA fingerprint analysis were indicated. It is concluded that repeated dose inhalation exposure of small numbers of animals is a useful mode of exposure for studying parameters that may elucidate toxic effects of air pollutants emitted from automotive engines, with a possibility to evaluate engine and fuel with regard to health hazards. PMID:10227576

  12. Automotive exhaust and mouse activity: relationships between pollutant concentrations and decreases in wheel running.

    PubMed

    Gage, M I

    1979-01-01

    Groups of male and female mice inhaled either clean air, 100 ppm carbon monoxide, or light-irradiated and nonirradiated automotive exhaust containing nominally 25, 50, 75, or 100 ppm carbon monoxide in three tests with exposure lasting from 4 to 7 days. Exhaust from a factory or lean-tuned engine in the first and third tests reversibly suppressed activity wheel running during exposure in mice of both sexes by as much as 78.3 and 83.1%, respectively. Light-irradiated exhaust suppressed running more than nonirradiated exhaust. For the second test, when the engine was tuned to be low in pollutants other than carbon monoxide, exhaust did not suppress running. Exposure to carbon monoxide alone only slightly decreased running in male mice, but increased running in female mice. PMID:88208

  13. Conductometric soot sensor for automotive exhausts: initial studies.

    PubMed

    Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf

    2010-01-01

    In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction. PMID:22294888

  14. Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.

    PubMed Central

    Castranova, V; Ma, J Y; Yang, H M; Antonini, J M; Butterworth, L; Barger, M W; Roberts, J; Ma, J K

    2001-01-01

    There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposure to diesel exhaust particles on these alveolar macrophage functions and the role of adsorbed organic chemicals compared to the carbonaceous core in the toxicity of diesel particles. In vitro exposure of rat alveolar macrophages to diesel exhaust particles decreased the ability of lipopolysaccharide (LPS), a bacterial product] to stimulate the production of inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). Methanol extract exhibited this potential but methanol-washed diesel particles did not. Exposure of rats to diesel exhaust particles by intratracheal instillation also decreased LPS-induced TNF-alpha and IL-1 production from alveolar macrophages. In contrast, carbon black did not exhibit this inhibitory effect. Exposure of rats to diesel exhaust particles by inhalation decreased the ability of alveolar macrophages to produce antimicrobial reactive oxidant species in response to zymosan (a fungal component). In contrast, exposure to coal dust increased zymosan-stimulated oxidant production. In vivo exposure to diesel exhaust particles but not to carbon black decreased the ability of the lungs to clear bacteria. Inhalation exposure of mice to diesel exhaust particles but not to coal dust depressed the ability of the lung to produce the antiviral agent interferon and increased viral multiplication in the lung. These results support the hypothesis that exposure to diesel exhaust particles increases the susceptibility of the lung to infection by depressing the antimicrobial potential of alveolar macrophages. This inhibitory effect appears

  15. *GAS-PHASE AND PARTICULATE COMPONENTS OF DIESEL EXHAUST PRODUCE DIFFERENTIAL CARDIOPHYSIOLOGICAL IMPAIRMENTS IN HEALTHY RATS

    EPA Science Inventory

    We recently showed that inhalation exposure of normotensive Wistar Kyoto (WKY) rats to whole diesel exhaust (DE) elicited changes in cardiac gene expression pattern that broadly mimicked gene expression in non-exposed spontaneously hypertensive rats. We hypothesized that healthy ...

  16. One-Month Diesel Exhaust Inhalation Produces Hypertensive Gene Expression Phenotype in Healthy Rats

    EPA Science Inventory

    Exposure to diesel exhaust (DE) is linked to vasoconstriction, endothelial 26 dysfunction, and myocardial ischemia in compromised individuals. We hypothesized that DE 27 inhalation would cause greater inflammation, hematological alterations, and cardiac molecular 28 impairment ...

  17. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection.

    EPA Science Inventory

    Background: Viral infections and exposure to oxidant air pollutants are two ofthe most important inducers ofasthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial ce...

  18. Inhalation of diesel exhaust induces acute arterial vasocontruction in healthy volunteers

    EPA Science Inventory

    Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Diesel exhaust particles (DE) are a major contributor to PM in urban areas. Advanced age and certain polymorphisms are among...

  19. Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles

    EPA Science Inventory

    Background -Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown. Objective -We hypothesized that episodic exposure of rats to ozone or diesel exhaust particles (DEP) will cause differential cardiovascular impairments, which will b...

  20. DIESEL EXHAUST PARTICLES INDUCE ABERRANT ALVEOLAR EPITHELIAL DIRECTED CELL MOVEMENT BY DISRUPTION OF POLARITY MECHANISMS

    EPA Science Inventory

    Disruption of the respiratory epithelium contributes to the progression of a variety of respiratory diseases that are aggravated by exposure to air pollutants, specifically traffic-based pollutants such as diesel exhaust particles (DEP). Recognizing that lung repair following inj...

  1. Identification of Surrogate Measures of Diesel Exhaust Exposure in a Controlled Chamber Study

    EPA Science Inventory

    Exposure to diesel exhaust (DE) has been associated with acute cardiopulmonary and vascular responses, chronic noncancer health effects, and respiratory cancers in humans. To better understand DE exposures and eventually their related health effects, we established a controlled c...

  2. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    SciTech Connect

    Ibrahim, Essam; Szybist, James P; Parks, II, James E

    2010-01-01

    In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

  3. Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats.

    PubMed Central

    Watanabe, N; Oonuki, Y

    1999-01-01

    We conducted experiments to determine whether diesel engine exhaust affects reproductive endocrine function in growing rats. The rats were assigned to three groups: a group exposed to total diesel engine exhaust containing 5.63 mg/m3 particulate matter, 4.10 ppm nitrogen dioxide, and 8.10 ppm nitrogen oxide; a group exposed to filtered exhaust without particulate matter; and a group exposed to clean air. Dosing experiments were performed for 3 months beginning at birth (6 hr/day for 5 days/week). Serum levels of testosterone and estradiol were significantly higher in animals exposed to total diesel exhaust and filtered exhaust (p < 0.05 for each group) as compared to the controls. Follicle-stimulating hormone was significantly decreased in the two groups exposed to diesel exhaust as compared to the control group (p < 0.05). Luteinizing hormone was significantly decreased in the total exhaust-exposed group as compared to the control and filtered groups (p < 0.05). Although testis weight did not show any significant difference among the groups, sperm production and activity of testicular hyaluronidase were significantly reduced in both exhaust-exposed groups as compared to the control group. Histological examination showed decreased numbers of step 18 and 19 spermatids in stage VI, VII, and VIII tubules in the testes of both diesel exhaust-exposed groups. This study suggests that diesel exhaust stimulates hormonal secretion of the adrenal cortex, depresses gonadotropin-releasing-hormone, and inhibits spermatogenesis in rats. Because these effects were not inhibited by filtration, the gaseous phase of the exhaust appears to be more responsible than particulate matter for disrupting the endocrine system. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10379000

  4. Effects on symptoms and lung function in humans experimentally exposed to diesel exhaust.

    PubMed Central

    Rudell, B; Ledin, M C; Hammarström, U; Stjernberg, N; Lundbäck, B; Sandström, T

    1996-01-01

    OBJECTIVES: Diesel exhaust is a common air pollutant made up of several gases, hydrocarbons, and particles. An experimental study was carried out which was designed to evaluate if a particle trap on the tail pipe of an idling diesel engine would reduce effects on symptoms and lung function caused by the diesel exhaust, compared with exposure to unfiltered exhaust. METHODS: Twelve healthy non-smoking volunteers (aged 20-37) were investigated in an exposure chamber for one hour during light work on a bicycle ergometer at 75 W. Each subject underwent three separate double blind exposures in a randomised sequence: to air and to diesel exhaust with the particle trap at the tail pipe and to unfiltered diesel exhaust. Symptoms were recorded according to the Borg scale before, every 10 minutes during, and 30 minutes after the exposure. Lung function was measured with a computerised whole body plethysmograph. RESULTS: The ceramic wall flow particle trap reduced the number of particles by 46%, whereas other compounds were relatively constant. It was shown that the most prominent symptoms during exposure to diesel exhaust were irritation of the eyes and nose and an unpleasant smell increasing during exposure. Both airway resistance (R(aw)) and specific airway resistance (SR(aw)) increased significantly during the exposures to diesel exhaust. Despite the 46% reduction in particle numbers by the trap effects on symptoms and lung function were not significantly attenuated. CONCLUSION: Exposure to diesel exhaust caused symptoms and bronchoconstriction which were not significantly reduced by a particle trap. PMID:8943829

  5. Inhibition of catalase activity in vitro by diesel exhaust particles

    SciTech Connect

    Mori, Yoki; Murakami, Sumika; Sagae, Toshiyuki

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular anti-oxidant, was investigated because H{sub 2}O{sub 2} is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl{sup {minus}}, Br{sup {minus}}, or thiocyanate. Other anions, such as CH{sub 3}COO{sup {minus}} or SO{sub 4}{sup {minus}}, and cations such as K{sup +}, Na{sup +}, Mg{sup 2+}, or Fe{sup 2+}, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H{sub 2}O{sub 2} generated from cells in addition to that of O{sub 2}{sup {minus}} generated by the chemical reaction of DEP with oxygen. 10 refs., 6 figs.

  6. Lab-scale Lidar Sensing of Diesel Engines Exhausts

    NASA Technical Reports Server (NTRS)

    Borghese, A.

    1992-01-01

    Combustion technology and its environmental concerns are being considered with increasing attention, not only for global-scale effects, but also for toxicological implications, particularly in the lift conditions of traffic-congested areas and industrial sites. Majority combustion by-products (CO, NO(sub x)) and unburned hydrocarbons (HC), are already subject to increasingly severe regulations; however other, non-regulated minority species, mainly soot and heavy aromatic molecules, involve higher health risks, as they are suspected to be agents of serious pathologies and even mutagenic effects. This is but one of the reasons why much research work is being carried out worldwide on the physical properties of these substances. Correspondingly, the need arises to detect their presence in urban environments, with as high a sensitivity as is required by their low concentrations, proper time- and space-resolutions, and 'real-time' capabilities. Lidar techniques are excellent candidates to this purpose, although severe constraints limit their applicability, eye-safety problems and aerosol Mie scattering uncertainties above all. At CNR's Istituto Motori in Napels, a Lidar-like diagnostic system is being developed, aimed primarily at monitoring the dynamic behavior of internal combustion engines, particularly diesel exhausts, and at exploring the feasibility of a so-called 'Downtown Lidar'.

  7. Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure.

    PubMed

    Steiner, Sandro; Mueller, Loretta; Popovicheva, Olga B; Raemy, David O; Czerwinski, Jan; Comte, Pierre; Mayer, Andreas; Gehr, Peter; Rothen-Rutishauser, Barbara; Clift, Martin J D

    2012-10-17

    The aim of this study was to compare the biological response of a sophisticated in vitro 3D co-culture model of the epithelial airway barrier to a co-exposure of CeO(2) NPs and diesel exhaust using a realistic air-liquid exposure system. Independent of the individual effects of either diesel exhaust or CeO(2) NPs investigation observed that a combined exposure of CeO(2) NPs and diesel exhaust did not cause a significant cytotoxic effect or alter cellular morphology after exposure to diesel exhaust for 2h at 20μg/ml (low dose) or for 6h at 60μg/ml (high dose), and a subsequent 6h exposure to an aerosolized solution of CeO(2) NPs at the same doses. A significant loss in the reduced intracellular glutathione level was recorded, although a significant increase in the oxidative marker HMOX-1 was found after exposure to a low and high dose respectively. Both the gene expression and protein release of tumour necrosis factor-α were significantly elevated after a high dose exposure only. In conclusion, CeO(2) NPs, in combination with diesel exhaust, can significantly interfere with the cell machinery, indicating a specific, potentially adverse role of CeO(2) NPs in regards to the biological response of diesel exhaust exposure. PMID:22960666

  8. DNA adducts induced by in vitro activation of diesel and biodiesel exhaust extracts

    EPA Science Inventory

    The abstract reports the results of studies assessing the relative DNA damage potential of extracts of exhaust particles resulting from the combustion of petroleum diesel, biodiesel, and petroleum diesel-biodiesel blends. Results indicate that the commercially available B20 petr...

  9. REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I

    EPA Science Inventory

    Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...

  10. Influence of MTBE addition into gasoline on automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Poulopoulos, S.; Philippopoulos, C.

    The effect of methyl-t-butyl ether (MTBE) addition into gasoline on the exhaust emissions from internal combustion engines was studied. A four-cylinder OPEL 1.6 l engine equipped with a hydraulic brake dynamometer was used in all the experiments. Fuels containing 0.0-11.0% MTBE were used in a wide range of engine operations, and the exhaust gases were analyzed for CO, HC (total unburned hydrocarbons, methane, ethylene) and MTBE, before and after their catalytic treatment by a three-way catalytic converter. The addition of MTBE into gasoline resulted in a decrease in CO and HC emissions only at high engine loading. During cold-start up of the engine, MTBE, HC, CO emissions were significant and increased with MTBE addition into fuel. At the catalytic converter outlet MTBE was detected when its concentration in fuels was greater than 8% and only as long as the catalytic converter operates at low temperatures. Methane and ethylene emissions were comparable for all fuels tested at engine outlet, but methane emissions remained almost at the same level while ethylene emissions were significantly decreased by the catalytic converter.

  11. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  12. Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-α and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that DPFs may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.

  13. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    SciTech Connect

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSD 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.

  14. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation

    PubMed Central

    Mills, Nicholas L.; Miller, Mark R.; Lucking, Andrew J.; Beveridge, Jon; Flint, Laura; Boere, A. John F.; Fokkens, Paul H.; Boon, Nicholas A.; Sandstrom, Thomas; Blomberg, Anders; Duffin, Rodger; Donaldson, Ken; Hadoke, Patrick W.F.; Cassee, Flemming R.; Newby, David E.

    2011-01-01

    Aim Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. Methods and results To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 ± 4 vs. 133 ± 3 mmHg, P< 0.05) and attenuated vasodilatation to bradykinin (P= 0.005), acetylcholine (P= 0.008), and sodium nitroprusside (P< 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n= 6–9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P< 0.001) and sodium-nitroprusside (P= 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate. Conclusion Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions. PMID:21753226

  15. ALTERED FUNCTION AND HISTOLOGY IN GUINEA PIGS AFTER INHALATION OF DIESEL EXHAUST

    EPA Science Inventory

    Health effects of inhaled diesel engine exhaust were evaluated in infant guinea pigs following 4 and 8 weeks of exposure. Animals were exposed to 1 part exhaust diluted by 13 parts clean air for 20 hr/day, 7 days/week. Lung function, electrocardiogram, growth rate, and histopatho...

  16. Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions

    PubMed Central

    Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.

    2015-01-01

    Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5

  17. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    PubMed

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions. PMID:24471707

  18. Neighborhood-Scale Spatial Models of Diesel Exhaust Concentration Profile Using 1-Nitropyrene and Other Nitroarenes.

    PubMed

    Schulte, Jill K; Fox, Julie R; Oron, Assaf P; Larson, Timothy V; Simpson, Christopher D; Paulsen, Michael; Beaudet, Nancy; Kaufman, Joel D; Magzamen, Sheryl

    2015-11-17

    With emerging evidence that diesel exhaust exposure poses distinct risks to human health, the need for fine-scale models of diesel exhaust pollutants is growing. We modeled the spatial distribution of several nitrated polycyclic aromatic hydrocarbons (NPAHs) to identify fine-scale gradients in diesel exhaust pollution in two Seattle, WA neighborhoods. Our modeling approach fused land-use regression, meteorological dispersion modeling, and pollutant monitoring from both fixed and mobile platforms. We applied these modeling techniques to concentrations of 1-nitropyrene (1-NP), a highly specific diesel exhaust marker, at the neighborhood scale. We developed models of two additional nitroarenes present in secondary organic aerosol: 2-nitropyrene and 2-nitrofluoranthene. Summer predictors of 1-NP, including distance to railroad, truck emissions, and mobile black carbon measurements, showed a greater specificity to diesel sources than predictors of other NPAHs. Winter sampling results did not yield stable models, likely due to regional mixing of pollutants in turbulent weather conditions. The model of summer 1-NP had an R(2) of 0.87 and cross-validated R(2) of 0.73. The synthesis of high-density sampling and hybrid modeling was successful in predicting diesel exhaust pollution at a very fine scale and identifying clear gradients in NPAH concentrations within urban neighborhoods. PMID:26501773

  19. Peribronchiolar fibrosis in lungs of cats chronically exposed to diesel exhaust

    SciTech Connect

    Hyde, D.M.; Plopper, C.G.; Weir, A.J.; Murnane, R.D.; Warren, D.L.; Last, J.A.; Pepelko, W.E.

    1985-02-01

    This study reports the quantitative changes in the pulmonary proximal acinar region following chronic exposure to diesel exhaust and following an additional 6 months in clean air. Cats (13 months of age) from a minimum disease colony were exposed to clean air (eight cats for 27 months and nine cats for 33 months), diesel exhaust for 8 hours/day, 7 days/week (nine cats for 27 months), or diesel exhaust for 27 months followed by 6 months in clean air (10 cats). Morphologic and morphometric evaluation using light microscopy and scanning and transmission electron microscopy revealed two major exposure-related lesions in proximal acinar regions of lungs of cats: peribronchiolar fibrosis associated with significant increases in lymphocytes, fibroblasts, and interstitial macrophages containing diesel particulate-like inclusions and bronchiolar epithelial metaplasia associated with the presence of ciliated and basal cells and alveolar macrophages containing diesel particulate-like inclusions. Peribronchiolar fibrosis was greater at the end of the 6 months in clean air following exposure, whereas the bronchiolar epithelial metaplasia was most severe at the end of exposure. Following an additional 6 months in clean air the epithelium more closely resembled the control epithelial cell population. The labeling index of terminal bronchiolar epithelium was significantly increased at the end of exposure but was not significantly different from controls or exposed cats following an additional 6 months in clean air. The ultrastructural appearance of epithelial cells remained relatively unchanged following diesel exhaust exposure with the exception of diesel particulate-like inclusions.

  20. Generation and characterization of diesel exhaust in a facility for controlled human exposures.

    PubMed

    Sawant, Aniket A; Cocker, David R; Miller, J Wayne; Taliaferro, Tony; Diaz-Sanchez, David; Linn, William S; Clark, Kenneth W; Gong, Henry

    2008-06-01

    An idling medium-duty diesel truck operated on ultralow sulfur diesel fuel was used as an emission source to generate diesel exhaust for controlled human exposure. Repeat tests were conducted on the Federal Test Procedure using a chassis dynamometer to demonstrate the reproducibility of this vehicle as a source of diesel emissions. Exhaust was supplied to a specially constructed exposure chamber at a target concentration of 100 microg x m(-3) diesel particulate matter (DPM). Spatial variability within the chamber was negligible, whereas emission concentrations were stable, reproducible, and similar to concentrations observed on the dynamometer. Measurements of nitric oxide, nitrogen dioxide, carbon monoxide, particulate matter (PM), elemental and organic carbon, carbonyls, trace elements, and polycyclic aromatic hydrocarbons were made during exposures of both healthy and asthmatic volunteers to DPM and control conditions. The effect of the so-called "personal cloud" on total PM mass concentrations was also observed and accounted for. Conventional lung function tests in 11 volunteer subjects (7 stable asthmatic) did not demonstrate a significant change after 2-hr exposures to diesel exhaust. In summary, we demonstrated that this facility can be effectively and safely used to evaluate acute responses to diesel exhaust exposure in human volunteers. PMID:18581813

  1. Factors and Trends Affecting the Identification of a Reliable Biomarker for Diesel Exhaust Exposure.

    PubMed

    Morgott, David A

    2014-08-01

    The monitoring of human exposures to diesel exhaust continues to be a vexing problem for specialists seeking information on the potential health effects of this ubiquitous combustion product. Exposure biomarkers have yielded a potential solution to this problem by providing a direct measure of an individual's contact with key components in the exhaust stream. Spurred by the advent of new, highly sensitive, analytical methods capable of detecting substances at very low levels, there have been numerous attempts at identifying a stable and specific biomarker. Despite these new techniques, there is currently no foolproof method for unambiguously separating diesel exhaust exposures from those arising from other combustion sources. Diesel exhaust is a highly complex mixture of solid, liquid, and gaseous components whose exact composition can be affected by many variables, including engine technology, fuel composition, operating conditions, and photochemical aging. These factors together with those related to exposure methodology, epidemiological necessity, and regulatory reform can have a decided impact on the success or failure of future research aimed at identifying a suitable biomarker of exposure. The objective of this review is to examine existing information on exposure biomarkers for diesel exhaust and to identify those factors and trends that have had an impact on the successful identification of metrics for both occupational and community settings. The information will provide interested parties with a template for more thoroughly understanding those factors affecting diesel exhaust emissions and for identifying those substances and research approaches holding the greatest promise for future success. PMID:25170242

  2. Factors and Trends Affecting the Identification of a Reliable Biomarker for Diesel Exhaust Exposure

    PubMed Central

    2014-01-01

    The monitoring of human exposures to diesel exhaust continues to be a vexing problem for specialists seeking information on the potential health effects of this ubiquitous combustion product. Exposure biomarkers have yielded a potential solution to this problem by providing a direct measure of an individual's contact with key components in the exhaust stream. Spurred by the advent of new, highly sensitive, analytical methods capable of detecting substances at very low levels, there have been numerous attempts at identifying a stable and specific biomarker. Despite these new techniques, there is currently no foolproof method for unambiguously separating diesel exhaust exposures from those arising from other combustion sources. Diesel exhaust is a highly complex mixture of solid, liquid, and gaseous components whose exact composition can be affected by many variables, including engine technology, fuel composition, operating conditions, and photochemical aging. These factors together with those related to exposure methodology, epidemiological necessity, and regulatory reform can have a decided impact on the success or failure of future research aimed at identifying a suitable biomarker of exposure. The objective of this review is to examine existing information on exposure biomarkers for diesel exhaust and to identify those factors and trends that have had an impact on the successful identification of metrics for both occupational and community settings. The information will provide interested parties with a template for more thoroughly understanding those factors affecting diesel exhaust emissions and for identifying those substances and research approaches holding the greatest promise for future success. PMID:25170242

  3. Measurement of Organic Compounds in Diesel and Gasoline Engine Exhaust using Thermal Desorption PTR-MS

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Gueneron, M.; Erickson, M. H.; Vanderschelden, G. S.

    2013-12-01

    A proton transfer reaction mass spectrometer modified with a thermal desorption sampler was used to measure organic compounds in diesel and gasoline engine exhaust in a laboratory setting. The drift tube was operated at 80 Td, providing an M+1 and M-1 mass spectrum for the most abundant constituents of the exhaust including alkenes, cycloalkanes, bicycloalkanes, monoaromatics, and naphthenic monoaromatic compounds. Alkanes were observed to fragment to a common set of ions. Use of the thermal desorption sampler enabled the total concentration of C10-C17 alkanes to be determined. The abundance of higher molecular weight cycloalkanes, bicycloalkanes, napthenic monoaromatics, and larger C10-C17 alkanes was much greater in diesel exhaust, allowing for a distinct source fingerprint pattern to distinguish diesel from gasoline exhaust. Use of the finger print source profiles allowed us to quantify the relative amounts of diesel and gasoline exhaust in mixtures, suggesting its utility to determine the relative contributions of gasoline and diesel engine exhaust to hydrocarbon concentrations in urban areas.

  4. RESPONSES OF CULTURED HUMAN AIRWAY EPITHELIAL CELLS TREATED WITH DIESEL EXHAUST EXTRACTS WILL VARY WITH THE ENGINE

    EPA Science Inventory

    Epidemiologic evidence suggests that increased morbidity and mortality are associated with the concentrations of ambient air particulate matter (PM). Many sources contribute to the particulate fraction of ambient pollution, including diesel exhaust particulates (DEP). Diesel ex...

  5. Effects of diesel engine exhaust on pulmonary alveolar macrophages

    SciTech Connect

    Chen, S.; Weller, M.A.; Barnhart, M.I.

    1980-01-01

    The in vivo effects of inhalation of diesel engine exhaust (DEE) on pulmonary alveolar macrophages (PAM) was studied in 73 guinea pigs and 48 rats. Animals were exposed in individual cages in special chambers to 3 different dose levels of DEE expressed in terms of the concentration of soot or carbon particles (-P); 250, 1500, 6000 micrograms DEE-P/M3. Exposure durations for guinea pigs were 1 and 3 days, 1 and 2 weeks, 2, 4, 8 and 12 months while rats were exposed 1, 2, 4, 8 and 12 months. Age matched controls were similarly exposed concurrently to clean air. PAM obtained by bronchopulmonary lavage from exposed animals had viabilities comparable to controls. PAM diameters and relative surface areas increased 2 to 3 fold over controls and in relation to both the dose of DEE-P given and the exposure duration. Most of the in vivo exposed PAM had phagocytized DEE-P which did not appear to be cytotoxic and remained confined in phagosomes as discrete particles with diameters of 0.014 to 0.072 micrometer. Ability of PAM to adhere and spread on test surfaces was greater in the DEE-P sets than in controls. DEE-P containing PAM were still able to phagocytize latex particles when fed in vitro. However, such PAM had defective phagocytosis ability, and did not in the same time interval take up as much fluorescent latex as controls when studied by flow system technology. Absolute numbers of PAM in guinea pig lavages from exposures to 250 and 1500 microgram DEE-P/M3 for 2 months were not significantly changed over concurrent controls. Exudative leukocytes (eosinophils in guinea pigs and neutrophils in rats) appeared in the lavage in greater numbers as dose and duration of exposure increased. Another species difference was the appearance in DEE-P exposed guinea pig lavages of reactive monocytes.

  6. Pulmonary effects of inhaled diesel exhaust in aged mice

    SciTech Connect

    Sunil, Vasanthi R.; Patel, Kinal J.; Mainelis, Gediminas; Turpin, Barbara J.; Ridgely, Sherritta; Laumbach, Robert J.; Kipen, Howard M.; Nazarenko, Yevgen; Veleeparambil, Manoj; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2009-12-15

    Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 mug/m{sup 3}) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFalpha) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE.

  7. Changes in atherosclerotic plaques induced by inhalation of diesel exhaust

    PubMed Central

    Bai, Ni; Kido, Takashi; Suzuki, Hisashi; Yang, Grace; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; van Breemen, Cornelis; van Eeden, Stephan F.

    2015-01-01

    Objective Exposure to particulate matter air pollution may be an independent risk factor for cardiovascular morbidity and mortality; however, the biological mechanisms are unclear. We hypothesize that exposure to diesel exhaust (DE), an important source of traffic-related particulate air pollution, promotes changes of atherosclerotic plaque component that may lead to plaque vulnerability. Methods and results 30-week old ApoE knockout mice fed with regular chow inhaled DE (at 200 μg/m3 of particulate) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week) (12 mice/group). Total number of alveolar macrophages (p < 0.01) and alveolar macrophages positive for particles (p < 0.0001) were more than 8-fold higher after DE inhalation than the control. DE inhalation caused 1.5 to 3-fold increases in plaque lipid content (p<0.02), cellularity (p<0.02), foam cell formation (p<0.04), and smooth muscle cell content (p<0.05). The expression of oxidative stress markers, iNOS, CD36, and nitrotyrosine was significantly increased by 1.5 to 2-fold in plaques, with enhanced systemic lipid and DNA oxidation (p<0.02). Increased foam cells and the expression of iNOS (R2 = 0.72, p = 0.0081) and CD36 (R2 = 0.49, p = 0.015) in plaques were positively correlated with the magnitude of DE exposure. Conclusions Exposure to DE promotes changes in atherosclerotic plaques characteristic of unstable vulnerable plaques. Increased systemic and plaque oxidative stress markers suggest that these changes in plaques could be due to DE-induced oxidative stress. PMID:21435644

  8. Pulmonary effects of inhaled diesel exhaust in aged mice

    PubMed Central

    Sunil, Vasanthi R.; Patel, Kinal J.; Mainelis, Gediminas; Turpin, Barbara J.; Ridgely, Sherritta; Laumbach, Robert J.; Kipen, Howard M.; Nazarenko, Yevgen; Veleeparambil, Manoj; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-01-01

    Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 μg/m3) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFα) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE. PMID:19729031

  9. Predictive models for deposition of inhaled diesel exhaust particles in humans and laboratory species

    SciTech Connect

    Yu, C.P.; Xu, G.B. )

    1987-01-01

    Mathematical and computer models of the respiratory tracts of human beings and of laboratory animals (rats, hamsters, guinea pigs) were used to estimate the deposition patterns of inhaled diesel exhaust particles from automobile emissions. Our goal was to be able to predict the relation between exposure to diesel exhaust particles and the deposition of these particles in the lungs of humans of various ages. Diesel exhaust particles are aggregates with a mass median aerodynamic diameter of approximately 0.2 micron. Their actual size depends on the conditions under which they are generated. Using an appropriate particle model, we derived mathematical expressions that describe the effects of diffusion, sedimentation, impaction, and interception on the deposition of these particles. Because of their small size, we found that most diesel exhaust particles deposited through diffusion, and that the role of the other mechanisms was minor. Anatomical models of the human lung from birth to adulthood, as well as models of the lungs of laboratory species were formulated mathematically using available morphometric data. We used these lung models, together with the corresponding ventilation conditions of each species, to calculate deposition of diesel exhaust particles in the lungs. Under normal breathing conditions, we calculated that 7 to 13 percent (depending on particle size) of inhaled diesel exhaust particles deposit in the alveolar region of the adult human lung. Although the breathing mode (nose or mouth breathing) did not appear to affect alveolar deposition, increasing the minute ventilation increased alveolar deposition significantly. The calculated deposition patterns for diesel exhaust particles in younger humans (under age 25) were similar.

  10. Influence of preexisting pulmonary emphysema on susceptibility of rats to inhaled diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Griffith, W.C.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. )

    1990-05-01

    The susceptibilities of normal rats and rats with preexisting pulmonary emphysema to chronically inhaled diesel exhaust were compared. Rats were exposed 7 h/day, 5 days/wk for 24 months to diesel exhaust at 3.5 mg soot/m3, or to clean air as controls. Emphysema was induced in one-half of the rats by intratracheal instillation of elastase 6 wk before exhaust exposure. Measurements included lung burdens of diesel soot, respiratory function, bronchoalveolar lavage, clearance of radiolabeled particles, pulmonary immune responses, lung collagen, excised lung weight and volume, histopathology, and mean linear intercept of terminal air spaces. Parameters indicated by analysis of variance to exhibit significant interactions between the influences of emphysema and exhaust were examined to determine if the effects were more than additive (indicating increased susceptibility). Although 14 of 63 parameters demonstrated emphysema-exhaust interactions, none indicated increased susceptibility. Less soot accumulated in lungs of emphysematous rats than in those of nonemphysematous rats, and the reduced accumulation had a sparing effect in the emphysematous rats. The results did not support the hypothesis that emphysematous lungs are more susceptible than are normal lungs to chronic exposure to high levels of diesel exhaust. The superimposition of effects of emphysema and exhaust, however, might still warrant special concern for heavy exposures of emphysematous subjects.

  11. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT II, MECHANICAL TRANSMISSIONS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) PURPOSE OF TRANSMISSIONS, (2) RATIO DIFFERENCE, (3) CONSTANT MESH TRANSMISSIONS, (4) FOUR-SPEED TRUCK TRANSMISSION POWER FLOW, AND (5) TRANSMISSION TROUBLESHOOTING.…

  12. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIX, LEARNING ABOUT CRANKING MOTORS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF CRANKING MOTORS USED ON DIESEL POWERED EQUIPMENT, TOPICS ARE (1) CRANKING MOTORS. (2) MOTOR PINCIPLES, (3) CRANKING MOTOR CIRCUITS, (4) TYPES OF CRANKING MOTOR DRIVES, AND (5) CRANKING MOTOR SOLENOID CIRCUITS. THE MODULE CONSISTS OF A…

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IX, ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, FUNCTION, AND MAINTENANCE OF DIESEL ENGINE CRANKSHAFTS, CAMSHAFTS, AND ASSOCIATED BEARINGS. TOPICS ARE SHAFTS AND BEARINGS, CAMSHAFTS, BEARINGS AND THEIR MAINTENANCE, AND DETECTING FAILURE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED…

  14. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT I, UNDERSTANDING MECHANICAL CLUTCHES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    ONE OF A 25-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINENANCE MECHANICS THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO DEVELOP AN UNDERSTANDING OF COMPONENTS, OPERATION, AND ADJUSTMENTS…

  15. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIV, UNDERSTANDING DC GENERATOR PRINCIPLES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF DIRECT CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) WHAT IS A GENERATOR AND ITS USE, (2) SHUNT GENERATOR PRINCIPLES, (3) POWER AND RATINGS OF A GENERATOR, (4) ARMATURE REACTION, (5) WHAT IS POLARITY, (6) TWO GENERATOR…

  16. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XX, TROUBLESHOOTING ELECTRICAL SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO ACQUAINT THE TRAINEE WITH TROUBLESHOOTING PROCEDURES FOR DIESEL ENGINE ELECTRICAL SYSTEMS. TOPICS ARE (1) TROUBLESHOOTING ELECTRICAL SYSTEMS (INTRODUCTION), (2) TOOLS AND INSTRUMENTS FOR TROUBLESHOOTING, (3) THE BATTERY, (4) PERIODIC BATTERY SERVICING, (5) THE DC CHARGING SYSTEM, (6) PERIODIC…

  17. X-Ray Absorption Characterization of Diesel Exhaust Particulates

    SciTech Connect

    Nelson, A J; Ferreira, J L; Reynolds, J G; Roos, J W

    1999-11-18

    We have characterized particulates from a 1993 11.1 Detroit Diesel Series 60 engine with electronic unit injectors operated using fuels with and without methylcyclopentadienyl manganese tricarbonyl (MMT) and overbased calcium sulfonate added. X-ray photoabsorption (XAS) spectroscopy was used to characterize the diesel particulates. Results reveal a mixture of primarily Mn-phosphate with some Mn-oxide, and Ca-sulfate on the surface of the filtered particulates from the diesel engine.

  18. Exhaust emissions of DI diesel engine using unconventional fuels

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  19. Validation of the dynamic direct exposure method for toxicity testing of diesel exhaust in vitro.

    PubMed

    Joeng, Lucky; Hayes, Amanda; Bakand, Shahnaz

    2013-01-01

    Diesel exhaust emission is a major health concern because of the complex nature of its gaseous content (e.g., NO2, NO, CO, and CO2) and high concentration of particulate matter (PM) less than 2.5  μ m which allows for deeper penetration into the human pulmonary system upon inhalation. The aim of this research was to elucidate the potential toxic effects of diesel exhaust on a human pulmonary-based cellular system. Validation of a dynamic direct exposure method for both laboratory (230 hp Volvo truck engine) and field (Volkswagen Passat passenger car) diesel engines, at idle mode, was implemented. Human pulmonary type II epithelial cells (A549) grown on porous membranes were exposed to unmodified diesel exhaust at a low flow rate (37.5 mL/min). In parallel, diesel emission sampling was also conducted using real-time air monitoring techniques. Induced cellular effects were assessed using a range of in vitro cytotoxicity assays (MTS, ATP, and NRU). Reduction of cell viability was observed in a time-dependent manner following 30-60 mins of exposure with NRU as the most sensitive assay. The results suggest that the dynamic direct exposure method has the potential to be implemented for both laboratory- and field-based in vitro toxicity studies of diesel exhaust emissions. PMID:23986878

  20. Validation of the Dynamic Direct Exposure Method for Toxicity Testing of Diesel Exhaust In Vitro

    PubMed Central

    Hayes, Amanda; Bakand, Shahnaz

    2013-01-01

    Diesel exhaust emission is a major health concern because of the complex nature of its gaseous content (e.g., NO2, NO, CO, and CO2) and high concentration of particulate matter (PM) less than 2.5 μm which allows for deeper penetration into the human pulmonary system upon inhalation. The aim of this research was to elucidate the potential toxic effects of diesel exhaust on a human pulmonary-based cellular system. Validation of a dynamic direct exposure method for both laboratory (230 hp Volvo truck engine) and field (Volkswagen Passat passenger car) diesel engines, at idle mode, was implemented. Human pulmonary type II epithelial cells (A549) grown on porous membranes were exposed to unmodified diesel exhaust at a low flow rate (37.5 mL/min). In parallel, diesel emission sampling was also conducted using real-time air monitoring techniques. Induced cellular effects were assessed using a range of in vitro cytotoxicity assays (MTS, ATP, and NRU). Reduction of cell viability was observed in a time-dependent manner following 30–60 mins of exposure with NRU as the most sensitive assay. The results suggest that the dynamic direct exposure method has the potential to be implemented for both laboratory- and field-based in vitro toxicity studies of diesel exhaust emissions. PMID:23986878

  1. Retrospective cohort study of lung cancer and diesel exhaust exposure in railroad workers

    SciTech Connect

    Garshick, E.; Schenker, M.B.; Munoz, A.; Segal, M.; Smith, T.J.; Woskie, S.R.; Hammond, S.K.; Speizer, F.E.

    1988-04-01

    The risk of lung cancer as a result of exposure to diesel exhaust from railroad locomotives was assessed in a cohort of 55,407 white male railroad workers 40 to 64 yr of age in 1959 who had started railroad service 10 to 20 years earlier. The cohort was traced until the end of 1980, and death certificates were obtained for 88% of 19,396 deaths; 1694 lung cancer cases were identified. Yearly railroad job from 1959 to death or retirement was available from the Railroad Retirement Board, and served as an index of diesel exhaust exposure. Directly standardized rates and a proportional hazards model were used to calculate the relative risk of lung cancer based on work in a job with diesel exhaust exposure beginning in 1959. A relative risk of 1.45 (95% CI = 1.11, 1.89) for lung cancer was obtained in the group of workers 40 to 44 yr of age in 1959, the group with the longest possible duration of diesel exposure. The cohort was selected to minimize the effect of past railroad asbestos exposure, and analysis with workers with possible asbestos exposure excluded resulted in a similarly elevated risk. Workers with 20 yr or more elapsed since 1959, the effective start of diesel exposure for the cohort, had the highest relative risk. These results taken in conjunction with other reported results support the hypothesis that occupational exposure to diesel exhaust results in a small but significantly elevated risk for lung cancer.

  2. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    SciTech Connect

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

  3. The Effects of Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee Olfaction.

    PubMed

    Lusebrink, Inka; Girling, Robbie D; Farthing, Emily; Newman, Tracey A; Jackson, Chris W; Poppy, Guy M

    2015-10-01

    There is growing evidence of a substantial decline in pollinators within Europe and North America, most likely caused by multiple factors such as diseases, poor nutrition, habitat loss, insecticides, and environmental pollution. Diesel exhaust could be a contributing factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, which honey bees require for flower recognition. In this study, we exposed eight of the most common floral volatiles to diesel exhaust in order to investigate whether it can affect volatile mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common flower volatiles significantly: myrcene was considerably reduced, β-ocimene became undetectable, and β-caryophyllene was transformed into its cis-isomer isocaryophyllene. Proboscis extension response (PER) assays showed that the alterations of the blend reduced the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of diesel exhaust gas was identified as capable of causing degradation of floral volatiles. PMID:26424685

  4. Lung cancer and diesel exhaust: an updated critical review of the occupational epidemiology literature

    PubMed Central

    Gamble, John F.; Nicolich, Mark J.; Boffetta, Paolo

    2012-01-01

    A recent review concluded that the evidence from epidemiology studies was indeterminate and that additional studies were required to support the diesel exhaust-lung cancer hypothesis. This updated review includes seven recent studies. Two population-based studies concluded that significant exposure-response (E-R) trends between cumulative diesel exhaust and lung cancer were unlikely to be entirely explained by bias or confounding. Those studies have quality data on life-style risk factors, but do not allow definitive conclusions because of inconsistent E-R trends, qualitative exposure estimates and exposure misclassification (insufficient latency based on job title), and selection bias from low participation rates. Non-definitive results are consistent with the larger body of population studies. An NCI/NIOSH cohort mortality and nested case-control study of non-metal miners have some surrogate-based quantitative diesel exposure estimates (including highest exposure measured as respirable elemental carbon (REC) in the workplace) and smoking histories. The authors concluded that diesel exhaust may cause lung cancer. Nonetheless, the results are non-definitive because the conclusions are based on E-R patterns where high exposures were deleted to achieve significant results, where a posteriori adjustments were made to augment results, and where inappropriate adjustments were made for the “negative confounding” effects of smoking even though current smoking was not associated with diesel exposure and therefore could not be a confounder. Three cohort studies of bus drivers and truck drivers are in effect air pollution studies without estimates of diesel exhaust exposure and so are not sufficient for assessing the lung cancer-diesel exhaust hypothesis. Results from all occupational cohort studies with quantitative estimates of exposure have limitations, including weak and inconsistent E-R associations that could be explained by bias, confounding or chance, exposure

  5. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  6. The impact of using biodiesel/marine gas oil blends on exhaust emissions from a stationary diesel engine.

    PubMed

    Karavalakis, G; Tzirakis, E; Mattheou, L; Stournas, S; Zannikos, F; Karonis, D

    2008-12-01

    The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO(2) emissions was observed. Emissions of NO(x) were also lower with respect to MGO. This reduction in NO(x) may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter. PMID:18988104

  7. Research Approach for Aging and Evaluating Diesel Exhaust catalysts

    SciTech Connect

    Wayne, Scott

    2000-08-20

    To determine the impact of diesel fuel sulfur levels on emissions control devices that could lower emissions of oxides of nitrogen (NOX) and particulate matter (PM) from on-highway trucks and buses in the 2002-2004 model years. West Virginia University is evaluating: - Diesel Oxidation Catalysts - Lean NOX Catalysts

  8. Pulmonary function in workers exposed to diesel exhausts: The effect of control measures

    SciTech Connect

    Ulfvarson, U.; Alexandersson, R.; Dahlqvist, M.; Ekholm, U.; Bergstroem, B. )

    1991-01-01

    To assess the protective effect of exhausts pipe filters or respirators on pulmonary function, 15 workers in a tunnel construction site, truck and loading machine drivers, rock workers, and others were studied. The total and respirable dust, combustible matter in respirable dust, carbon monoxide, nitrogen monoxide and nitrogen dioxide were measured for each subject during entire work shifts. The effect of the exposure on the lung function variables was measured by dynamic spirometry, carbon monoxide single breath technique, and nitrogen single breath wash-out. The exhaust pipe filtering had a protective effect, directly discernible in the drivers on vital capacity and FEV1.0 and for the whole group on FEV% and TLco. The dust respirators had no effect, probably because of the difficulties in correctly using personal protection under the circumstances in the tunnel. In the absence of a true exposure assessment, control measures for diesel exhausts can be tested by medical effect studies. Catalytic particle filters of diesel exhausts are one method of rendering the emissions less irritant, although they will not remove irritant gases. An indicator of diesel exhaust exposure should include the particle fraction of the diesel exhausts, but a discrimination between different sources of organic dust must be possible.

  9. Removal of Nitrogen Oxides in Diesel Engine Exhaust by Plasma Assisted Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Rajanikanth, B. S.; Ravi, V.

    2002-08-01

    This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200 °C. The studies were conducted at different temperatures and the results were discussed.

  10. Estimation of the diesel exhaust exposures of railroad workers. II. National and historical exposures

    SciTech Connect

    Woskie, S.R.; Smith, T.J.; Hammond, S.K.; Schenker, M.B.; Garshick, E.; Speizer, F.E.

    1988-01-01

    The diesel exhaust exposures of railroad workers in thirteen job groups from four railroads in the United States were used to estimate U.S. national average exposures with a linear statistical model which accounts for the significant variability in exposure caused by climate, the differences among railroads and the uneven distribution of railroad workers across climatic regions. Personal measurements of respirable particulate matter, adjusted to remove the contribution of cigarette smoke particles, were used as a marker for diesel exhaust. The estimated national means of adjusted respirable particulate matter (ARP) averaged 10 micrograms/m3 lower than the simple means for each job group, reflecting the climatic differences between the northern railroads studied and the distribution of railroad workers nationally. Limited historical records, including some industrial hygiene data, were used to evaluate past diesel exhaust exposures, which were estimated to be approximately constant from the 1950's to 1983.

  11. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants.

    PubMed

    Ryu, Kyunghyun

    2010-01-01

    The aim of this study is to investigate the effects of antioxidants on the oxidation stability of biodiesel fuel, the engine performance and the exhaust emissions of a diesel engine. Biodiesel fuel used in the study was derived from soybean oil. The results show that the efficiency of antioxidants is in the order TBHQ>PrG>BHA>BHT>alpha-tocopherol. The oxidative stability of biodiesel fuel attained the 6-h quality standard with 100 ppm TBHQ and with 300 ppm PrG in biodiesel fuel. Combustion characteristics and exhaust emissions in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. The BSFC of biodiesel fuel with antioxidants decreased more than that of biodiesel fuel without antioxidants, but no trends were observed according to the type or amount of antioxidant. Antioxidants had few effects on the exhaust emissions of a diesel engine running on biodiesel. PMID:19525107

  12. The masculinization of the fetus during pregnancy due to inhalation of diesel exhaust.

    PubMed Central

    Watanabe, N; Kurita, M

    2001-01-01

    This study was conducted to determine the impact of diesel exhaust inhalation on the fetus. Seventy-two pregnant rats and 18 nonpregnant rats were divided into three groups: a group exposed to total diesel engine exhaust containing 5.63 mg/m(3) particulate matter, 4.10 ppm nitrogen dioxide, and 8.10 ppm nitrogen oxide; a group exposed to filtered exhaust without particulate matter; and a group exposed to clean air. The exposure period was from day 7 until day 20 of pregnancy. In addition, 15 pregnant rats were treated with aromatase inhibitors or testosterone to clarify the process by which diesel exhaust exerts its toxicity. The anogenital distance was significantly longer in male and female fetuses from both exhaust-exposed groups than in those of the control. Differentiation of the testis, ovary, and thymus was delayed and disturbed. Maternal testosterone and progesterone levels, which increased due to pregnancy whether or not the rats were exposed, were significantly higher and lower, respectively, in the pregnant rats exposed to total exhaust and filtered exhaust. The serum adrenocorticotropic hormone (ACTH) level and urinary excretion of 17-hydroxycorticosteroids (OHCS) did not differ among the pregnant groups. These results indicate that elevated testosterone did not result from elevated maternal adrenal function. The feto-placental-ovarian unit and inhibition of aromatase activity and synthesis caused by diesel exhaust inhalation might have played an essential role in the accumulation of testosterone. Since both exhaust-exposed groups showed almost the same reactions toward the inhalation, the gaseous phase must have included the relevant toxicants. PMID:11266319

  13. HEALTH EFFECTS OF DIESEL EXHAUST: AN HEI PERSPECTIVE

    SciTech Connect

    Warren, Jane

    2000-08-20

    Diesel engines have many advantages, including good fuel economy, power, durability, lower emissions of some pollutants (such as carbon monoxide) and of carbon dioxide (a greenhouse gas). However, there are a number of concerns that need to be addressed: (1) emissions of nitrogen oxides (which contribute to ozone formation) and of particulate matter (PM); (2) questions about cancer and other health effects from exposure to diesel PM; and (3) as efforts to decrease emissions progress, a need to understand whether the nature and toxicity of the PM emitted has changed. This paper focuses on (1) carcinogenicity data, (2) noncancer effects, and (3) diesel as part of the complex ambient mixture of PM.

  14. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  15. Intergranular corrosion of Type 409 stainless steel used in automotive exhaust applications

    SciTech Connect

    Brossia, C.S.; Martin, K.L.

    1998-12-31

    Automotive exhaust systems must meet increasingly stringent lifetime requirements, and thus the incorporation of stainless steels (primarily ferritic) has increased. One of the failure mechanisms that is rarely encountered, but does occur, is intergranular corrosion. Intergranular corrosion of ferritic stainless steels is believed to occur via a similar mechanism as is observed in austenitic stainless, namely precipitation of chromium-carbon nitride (Cr-C/N) particles at the grain boundaries leading to Cr-depleted regions. In the present study, the effect of thermal history (including heat treatment, welding and post-weld heat treatment) and alloy chemistry on the level of sensitization of Type 409SS were examined.

  16. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  19. A comparison of genotoxicity of automotive exhaust particles from laboratory and environmental sources.

    PubMed

    Brooks, A L; Li, A P; Dutcher, J S; Clark, C R; Rothenberg, S J; Kiyoura, R; Bechtold, W E; McClellan, R O

    1984-01-01

    This research (1) ranked the genotoxicity of methylene chloride extracts of laboratory and environmentally collected particles and (2) evaluated the role of collection location and sample composition on genotoxic potency. Samples of exhaust from a spark-ignition automobile, light-duty diesel automobile, and a heavy-duty diesel engine operated in a laboratory on a dynamometer were studied, as well as samples taken in a highway tunnel and outside the same tunnel. The tunnel samples were collected 30 m inside or 56 m outside the exit portal at times when between 70%-95% of the traffic consisted of diesel trucks. In the Ames Salmonella mutagenicity assay, each extract produced a dose-dependent increase in mutagenicity in strain TA-98 without addition of liver S-9 fraction. Extracts from two tunnel samples collected 1 yr apart, and extracts of particles collected outside the tunnel had similar mutagenic activity. The order of mutagenic activity per microgram of extract in TA-98 without S-9 from the lowest to the highest was environmental sample less than or equal to tunnel less than heavy-duty diesel less than light-duty diesel less than spark ignition. Addition of S-9 or testing in Salmonella strains resistant to the mutagenicity of nitroaromatic compounds (TA-98 NR and TA-98 1,8-DNP6) decreased the mutagenic response. With cell killing, sister chromatid exchanges, and mutations as endpoints in Chinese hamster ovary cells (CHO), the order of potency was tunnel less than light-duty less than spark-ignition samples. All three extracts induced a similar amount of mitotic delay per microgram with or without S-9. Enhanced chromosome aberration frequency was detected only in cells exposed to extracts from spark-ignition exhaust. The data indicated that genotoxic activity was detected in each particle extract, that the potency ranking was similar using different genetic endpoints, and that the magnitude of the genotoxic potency was similar. PMID:6207015

  20. [Exposure to nanoparticle-rich diesel exhaust affects hippocampal functions in mice].

    PubMed

    Win-Shwe, Tin Tin; Fujitani, Yuji; Hirano, Seishiro; Fujimaki, Hidekazu

    2011-09-01

    Epidemiological studies have indicated associations between day-to-day particulate air pollution and increased risks of various adverse health outcomes. Although an association between exposure to diesel exhaust particles (DEPs) and the development of pulmonary inflammation has been reported, there are limited reports on the neurotoxic effects of DEPs, particularly those of nanoparticle-rich diesel exhaust (NRDE). In this minireview, we highlighted the effects of NRDE which was generated in the National Institute for Environmental Studies, on hippocampus-dependent spatial learning ability and the expression of memory-function-related genes, neurotrophins, and proinflammatory cytokines in a mouse model. PMID:21996758

  1. Pulmonary Effects of Inhaled Diesel Exhaust in Young and Old Mice: A Pilot Project

    PubMed Central

    Laskin, Debra L.; Mainelis, Gedi; Turpin, Barbara; Patel, Kinal J.; Sunil, Vasanthi R.

    2015-01-01

    It is well established that exposure to ambient fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality and that elderly individuals are particularly susceptible to these effects. We speculated that increased susceptibility of the elderly to PM is due to altered production of inflammatory mediators and antioxidants in the lung and pilot studies were performed to test this hypothesis. For these studies we used diesel exhaust, a major component of urban PM as a model. Animals (CB6F1 male mice; 2 m and 18 m) were exposed to air or diesel exhaust at 300 or 1000 µg/m3 for 3 h one time (single) or 3 h/day for 3 consecutive days (repeated). Bronchoalveolar lavage (BAL) fluid, serum and lung tissue were collected 0 and 24 h later. Following single or repeated diesel exhaust exposure, persistent structural alterations and inflammation were observed in the lungs of older mice. This consisted of patchy thickening of alveolar septa and an increase in the number of neutrophils and macrophages in alveolar spaces. In contrast, no major alterations in lung histology were noted in younger mice. In older, but not younger mice, significant increases in expression of the oxidative stress marker, lipocalin 24p3 were also observed. In both younger and older mice, exposure to diesel exhaust was associated with increased expression of TNFα in the lung. However, this response was attenuated in older mice. Exposure to high dose diesel exhaust resulted in significant increases in IL-6 and IL-8 mRNA expression in lungs of older animals which persisted for 24 h. Whereas IL-6 was also upregulated in younger mice after diesel exhaust exposure, no major effects were evident on expression of IL-8 mRNA. Expression of the antioxidant manganese superoxide dismutase (MnSOD) was decreased in lung tissue from younger animals after exposure to DE (single or repeated). In contrast, constitutive expression of MnSOD was not evident in lungs of older mice, and

  2. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust.

    PubMed

    Zarcone, Maria C; Duistermaat, Evert; van Schadewijk, Annemarie; Jedynska, Aleksandra; Hiemstra, Pieter S; Kooter, Ingeborg M

    2016-07-01

    Diesel emissions are the main source of air pollution in urban areas, and diesel exposure is linked with substantial adverse health effects. In vitro diesel exposure models are considered a suitable tool for understanding these effects. Here we aimed to use a controlled in vitro exposure system to whole diesel exhaust to study the effect of whole diesel exhaust concentration and exposure duration on mucociliary differentiated human primary bronchial epithelial cells (PBEC). PBEC cultured at the air-liquid interface were exposed for 60 to 375 min to three different dilutions of diesel exhaust (DE). The DE mixture was generated by an engine at 47% load, and characterized for particulate matter size and distribution and chemical and gas composition. Cytotoxicity and epithelial barrier function was assessed, as well as mRNA expression and protein release analysis. DE caused a significant dose-dependent increase in expression of oxidative stress markers (HMOX1 and NQO1; n = 4) at 6 h after 150 min exposure. Furthermore, DE significantly increased the expression of the markers of the integrated stress response CHOP and GADD34 and of the proinflammatory chemokine CXCL8, as well as release of CXCL8 protein. Cytotoxic effects or effects on epithelial barrier function were observed only after prolonged exposures to the highest DE dose. These results demonstrate the suitability of our model and that exposure dose and duration and time of analysis postexposure are main determinants for the effects of DE on differentiated primary human airway epithelial cells. PMID:27190060

  3. Reducing Children's Exposure to School Bus Diesel Exhaust in One School District in North Carolina

    ERIC Educational Resources Information Center

    Mazer, Mary E.; Jacobson Vann, Julie C.; Lamanna, Beth F.; Davison, Jean

    2014-01-01

    Children who are exposed to diesel exhaust from idling school buses are at increased risk of asthma exacerbation, decreased lung function, immunologic reactions, leukemia, and increased susceptibility to infections. Policies and initiatives that aim to protect school children from the harmful effects of exposure to diesel exhaust range from…

  4. MUTAGENICITY OF DIESEL-EXHAUST PARTICLE EXTRACTS COLLECTED UNDER SMOG-CHAMBER CONDITIONS USING THE 'SALMONELLA TYPHIMURIUM' TEST SYSTEM

    EPA Science Inventory

    The study was designed to detect the effect that different environmental conditions have upon diesel-exhaust organics. In this study, diesel-exhaust was injected into the Calspan smog chamber under different conditions, and the resulting particles were collected upon Pallflex gla...

  5. Mutagenicity of diesel exhaust particle extracts: influence of driving cycle and environmental temperature.

    PubMed

    Clark, C R; Dutcher, J S; Brooks, A L; McClellan, R O; Marshall, W F; Naman, T M

    1982-01-01

    General Motors and Volkswagen diesel passenger cars (1980 and 1981 model year) were operated on a climate controlled chassis dynomometer and the particulate portion of the exhaust was collected on high volume filters. Dichloromethane extracts of the exhaust particles (soot) collected while the cars were operated under simulated highway, urban and congested urban driving cycles were assayed for mutagenicity in Salmonella strains TA-98 and TA-100. Driving pattern did not significantly influence the mutagenic potency of the exhaust particle extracts or estimates of the amount of mutagenicity emitted from the exhaust despite large differences in particle emission rates and extractable fraction of the particles. Mutagenicity of extracts of exhaust particles collected while the vehicles were operated at test chamber temperatures of 25, 50, 75 and 100 degrees F were also very similar. The results suggest that driving pattern and environmental temperature do not significantly alter the emission of genotoxic combustion products from the exhaust. PMID:6193022

  6. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    SciTech Connect

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.; Arslan, E.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  7. Safety evaluation of disposable diesel exhaust filters for permissible mining equipment

    SciTech Connect

    Ambs, J.L.; Setren, R.S. |

    1995-12-31

    The disposable diesel exhaust filter (DDEF) system developed by the U.S. Bureau of Mines and Industry cooperators for heavy-duty permissible, diesel-powered haulage vehicles, effectively reduces in-mine diesel particulate matter concentrations up to 95%. However, there are concerns about the hazards that exist when the filter is used in situations for which it was not designed. This work investigates the exhaust gas temperature limits to which the filter elements can be exposed without posing a safety or health hazard, such as fire or off-gassing toxic compounds. A filter approved by the Mine Safety and Health administration and after-market filters were evaluated under varying engine exhaust conditions to determine if after-market filters pose an unacceptable hazard when used in a DDEF system. Filters were laboratory tested at engine exhaust temperatures ranging from 77{degrees}C to 290{degrees}C. Of the seven filter types tested, six appeared suitable for use on water scrubber-based cooling systems and two appeared suitable for use on dry heat exchanger type exhaust cooling systems with exhaust temperatures up to 150{degrees}C. Any filter elements used as exhaust filters on permissible diesel machines must be approved by MSHA for that application Mine operators who wish to use an after-market filter element should request an MSHA field modification. MSHA will work with the mine and filter manufacturer to ensure its use in this exhaust system application does not pose a health or safety hazard.

  8. Effect of short-term exposure to diesel exhaust particles and carboxylic acids on mitochondrial membrane disruption in airway epithelial cells

    EPA Science Inventory

    Rationale: Diesel exhaust has been shown to induce adverse pulmonary health effects; however, the underlying mechanisms for these effects are still unclear. Previous studies have imlplicated mitochondrial dysfunction in the toxicity of diesel exhaust particles (DEP). DEP contain...

  9. Diesel Exhaust Particle-Exposed Human Bronchial Epithelial Cells Induce Dendritic Cell Maturation and Polarization via Thymic Stromal Lymphopoietin

    PubMed Central

    Bleck, Bertram; Tse, Doris B.; Curotto de Lafaille, Maria A.; Zhang, Feijie

    2009-01-01

    Human exposure to air pollutants, including ambient particulate matter, has been proposed as a mechanism for the rise in allergic disorders. Diesel exhaust particles, a major component of ambient particulate matter, induce sensitization to neoallergens, but the mechanisms by which sensitization occur remain unclear. We show that diesel exhaust particles upregulate thymic stromal lymphopoietin in human bronchial epithelial cells in an oxidant-dependent manner. Thymic stromal lymphopoietin induced by diesel exhaust particles was associated with maturation of myeloid dendritic cells, which was blocked by anti-thymic stromal lymphopoietin antibodies or silencing epithelial cell-derived thymic stromal lymphopoietin. Dendritic cells exposed to diesel exhaust particle-treated human bronchial epithelial cells induced Th2 polarization in a thymic stromal lymphopoietin-dependent manner. These findings provide new insight into the mechanisms by which diesel exhaust particles modify human lung mucosal immunity. PMID:18049884

  10. Comparison of genotoxicity of automotive exhaust particles from laboratory and environmental sources

    SciTech Connect

    Brooks, A.L.; Li, A.P.; Dutcher, J.S.; Clark, C.R.; Rothenberg, S.J.; Kiyoura, R.; Bechtold, W.E.; McClellan, R.O.

    1984-01-01

    This research (1) ranked the genotoxicity of methylene chloride extracts of laboratory and environmentally collected particles and (2) evaluated the role of collection location and sample composition on genotoxic potency. Samples of exhaust from a spark-ignition automobile, light-duty diesel automobile, and a heavy-duty diesel engine operated in a laboratory on a dynamometer were studied, as well as samples taken in a highway tunnel and outside the same tunnel. In the Ames Salmonella mutagenicity assay, each extract produced a dose-dependent increase in mutagenicity in strain TA-98 without addition of liver S-9 fraction. The order of mutagenic activity per ..mu..g of extract in TA-98 without S-9 from the lowest to the highest was environmental sample less than or equal to tunnel < heavy-duty diesel < light-duty diesel < spark ignition. With cell killing, sister chromatid exchanges, and mutations as endpoints in Chinese hamster ovary cells (CHO), the order of potency was tunnel < light-duty < spark-ignition samples. The data indicated that genotoxic activity was detected in each particle extract, that the potency ranking was similar using different genetic endpoints, and that the magnitude of the genotoxic potency was similar.

  11. Bithermal Low-Cycle Fatigue Evaluation of Automotive Exhaust System Alloy SS409

    NASA Technical Reports Server (NTRS)

    Lu, Gui-Ying; Behling, Mike B.; Halford, Gary R.

    2000-01-01

    This investigation provides, for the first time, cyclic strainrange-controlled, thermomechanical fatigue results for the ferritic stainless steel alloy SS409. The alloy has seen extensive application for automotive exhaust system components. The data were generated to calibrate the Total Strain Version of the Strainrange Partitioning (TS-SRP) method for eventual application to the design and durability assessment of automotive exhaust systems. The thermomechanical cyclic lifetime and cyclic stress-strain constitutive behavior for alloy SS409 were measured using bithermal tests cycling between isothermal extremes of 400 and 800 C. Lives ranged up to 10,000 cycles to failure with hold-times of 0.33 to 2.0 minutes. The bithermal fatigue behavior is compared to isothermal, strain-controlled fatigue behavior at both 400 and 800 C. Thermomechanical cycling was found to have a profound detrimental influence on the fatigue failure resistance of SS409 compared to isothermal cycling. Supplementary bithermal cyclic stress-strain constitutive tests with hold-times ranging from 40 seconds up to 1.5 hours were conducted to calibrate the TS-SRP equation for extrapolation to longer lifetime predictions. Observed thermomechanical (bithermal) fatigue lives correlated well with lives calculated using the calibrated TS-SRP equations: 70% of the bithermal fatigue data fall within a factor of 1.2 of calculated life; 85% within a factor of 1.4; and 100% within a factor of 1.8.

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  13. Total diesel exhaust particulate length measurements using a modified household smoke alarm ionization chamber.

    PubMed

    Vojtisek-Lom, Michal

    2011-02-01

    To evaluate the effectiveness of various means to combat the negative health effects of ultrafine particles emitted by internal combustion engines, a reliable, low-cost instrument for dynamic measurements of the exhaust emissions of ultrafine particulate matter (PM) is needed. In this study, an ordinary ionization-type building smoke detector was modified to serve as a measuring ionization chamber and utilized for dynamic measurements of PM emissions from diesel engines. When used with diluted exhaust, the readings show an excellent correlation with total particulate length. The instrument worked well with raw and diluted exhaust and with varying emission levels and is well suitable for on-board use. PMID:21387930

  14. Anti-androgenic activity of 3-methyl-4-nitrophenol in diesel exhaust particles.

    PubMed

    Li, ChunMei; Taneda, Shinji; Suzuki, Akira K; Furuta, Chie; Watanabe, Gen; Taya, Kazuyoshi

    2006-08-14

    In our continuing studies on nitrophenol derivatives as vasodilators in diesel exhaust particles, we have reported that nitrophenols in diesel exhaust particles possess not only vasodilatory activity but also estrogenic activity in vitro and in vivo, as well as anti-androgenic activity in vitro. Our efforts here were focused on the in vitro and in vivo anti-androgenic activity of 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC), known a degradation product of the insecticide fenitrothion, in diesel exhaust particles. We investigated its anti-androgenic activity using an in vitro recombinant yeast screen and in vivo Hershberger assays. Recombinant yeast screen assay showed that PNMC possesses anti-androgenic activity at low concentrations. Furthermore, castrated 28-day-old immature male rats each implanted with a 5-mm-long silastic tube containing crystalline testosterone and injected with PNMC subcutaneously at doses from as low as 0.01 and 0.1 mg/kg up to 1 mg/kg for 5 consecutive days showed significantly decreased weights of the seminal vesicles, ventral prostate, and glans penis. Plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were significantly increased in the 0.1 mg/kg PNMC treatment group. Our results demonstrate that PNMC in diesel exhaust particles clearly has anti-androgenic activity both in vitro and in vivo and can therefore be considered as an endocrine-disrupting chemical. PMID:16822498

  15. NASAL RESPONSES IN ASTHMATIC AND NONASTHMATIC SUBJECTS FOLLOWING EXPOSURE TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Asthma rates have been increasing world-wide, and exposure to diesel exhaust particles may be implicated in this increase. Additionally DEP may also play a role in the increased morbidity and mortality associated with ambient airborne PM exposure. Two types of nasal responses hav...

  16. A NOVEL TECHNIQUE FOR QUANTITATIVE ESTIMATION OF UPTAKE OF DIESEL EXHAUST PARTICLES BY LUNG CELLS

    EPA Science Inventory

    While airborne particulates like diesel exhaust particulates (DEP) exert significant toxicological effects on lungs, quantitative estimation of accumulation of DEP inside lung cells has not been reported due to a lack of an accurate and quantitative technique for this purpose. I...

  17. EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN ALVEOLAR MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Effects of diesel exhaust particles on human alveolar macrophage responsiveness to lipopolysaccharide
    S. Mundandhara1 , S. Becker2 and M. Madden2, 1UNC Center for Environmental Medicine, Asthma, and Lung Biology, 2US EPA, NHEERL, HSD, Chapel Hill, NC, US

    Epidemiological...

  18. DIESEL EXHAUST PARTICLE INDUCED GENE EXPRESSION CHANGES IN A MURINE MUCOSAL SENSITIZATION MODEL

    EPA Science Inventory

    Studies in humans and animals have shown diesel exhaust particles (DEP) can act as an immunological adjuvant to enhance the development of allergic lung disease and this effect is influenced by the chemical composition of the DEP. The adjuvancy of NIST SRM 2975 (NDEP) generated...

  19. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  20. EFFECT OF DIESEL EXHAUST EXPOSURE ON MUCOSAL SENSITIZATION TO OVALBUMIN ANTIGEN.

    EPA Science Inventory

    Several studies in humans and animals have shown that diesel exhaust (DE) can act as an immunological adjuvant to increase the severity of Type I hypersensitivity immune responses. The mechanism by which DE causes these effects is unknown but thought to be associated with lung in...

  1. CARDIOVASCULAR AND THERMOREGULATORY RESPONSES OF UNRESTRAINED RATS EXPOSED TO FILTERED OR UNFILTERED DIESEL EXHAUST

    EPA Science Inventory

    Diesel exhaust (DE) has been associated with adverse cardiovascular and pulmonary health effects. The relative contributions of the gas-phase and particulate (PM) components of DE are less well understood. We exposed WKY rats with or without implanted radiotransmitters to air or ...

  2. Effects Of Combinations of Ozone and Diesel Exhaust Exposures On Blood, Cardiac, And Lung Endpoints

    EPA Science Inventory

    Human subjects were exposed to combinations of 300 ppb ozone (03) and 300 ug/m3 diesel exhaust (DE) to examine if synergistic effects were observed. Subjects received either filtered air (FA), 03, DE, or DE+03 on Day 1, followed by only 03 exposures on Day 2, and a follow-up on D...

  3. DECREASED PRODUCTION OF SURFACTANT PROTEINS AFTER DIESEL EXHAUST EXPOSURE INCREASES SUSCEPTIBILITY TO INFLUENZA INFECTION

    EPA Science Inventory

    Pulmonary surfactant proteins A and D (SP-A and SP-D), termed collectins, enhance the opsonization of foreign particles and pathogens by phagocytic cells. Inhaled pollutants such as diesel exhaust (DE) have a possible role in suppressing the production of surfactant proteins whic...

  4. Modulation of pulmonary inflammatory responses and anti-microbial defenses in mice exposed to diesel exhaust

    EPA Science Inventory

    Abstract: Diesel exhaust (DE) is a major component of urban air pollution and has been shown to increase the severity of infectious and allergic lung disease. The purpose of this study was to evaluate the effects of DE exposure on pulmonary inflammation, mediator production and ...

  5. COMPARISON OF ON AND OFF ROAD DIESEL EXHAUST SOURCES ON THE SUSCEPTIBILITY TO AN INFLUENZA INFECTION.

    EPA Science Inventory

    Diesel exhaust (DE), a major component of urban air pollution, and its modulatory role in human susceptibility to respiratory infections is of great concern. The purpose of this study was to evaluate the effects of on- and off-road sources of DE exposure on the severity of an ...

  6. Diesel Exhaust Activates & Primes Microglia: Air Pollution, Neuroinflammation, & Regulation of Dopaminergic Neurotoxicity

    EPA Science Inventory

    Air pollution is linked to central nervous system (CNS) disease, but the mechanisms responsible are poorly understood. Rats exposed to Diesel Exhaust (DE, 2.0,0.5, and 0 mg/m3) by inhalation over 4 weeks demonstrated elevated levels of whole brain IL-6 protein, nitrated proteins,...

  7. SAMPLE CHARACTERIZATION OF AUTOMOBILE AND FORKLIFT DIESEL EXHAUST PARTICLES AND COMPARATIVE PULMONARY TOXICITY IN MICE

    EPA Science Inventory


    Abstract

    Two samples of diesel exhaust particles (DEP) predominate in DEP health effects research: an automobile-source DEP (A-DEP) sample and the National Institute of Standards Technology (NIST) standard reference material (SRM 2975) generated from a forklift engine...

  8. EFFECTS OF CONTROLLED EXPOSURE TO DIESEL EXHAUST IN ALLERGIC ASTHMATIC INDIVIDUALS

    EPA Science Inventory

    After completing a study evaluating the effects of exposure to diesel exhaust (DE) and nitrogen dioxide (NO2) on the lower airways and blood of allergic asthmatic participants, investigators will have measured multiple physiologic and pulmonary function endpoints...

  9. Diesel Exhaust-Induced Pulmonary and Cardiovascular Impairment: The Role of Hypertension Intervention

    EPA Science Inventory

    Background–Exposure to diesel exhaust (DE) particles and associated gases is linked to cardiovascular impairments; however the susceptibility of hypertensive individuals is less well understood. Objective–1) To determine cardiopulmonary effects of gas-phase versus whole-DE, and 2...

  10. FACTORS THAT INFLUENCE THE RELATIVE POTENCY OF DIESEL EXHAUST PARTICLES AS ADJUVANTS IN ALLERGIC AIRWAY DISEASE

    EPA Science Inventory

    Description: Studies have shown that diesel exhaust particles (DEP) worsen respiratory diseases including allergic asthma. The adjuvant effects of DEP in the airways have been widely reported; however, the precise determinants and mechanisms of these effects are ill-defined. S...

  11. DIESEL EXHAUST PARTICLE-INDUCED EPITHELIAL TOXICITY IS MODULATED BY UV-IRRADIATION -- NCSU

    EPA Science Inventory

    Asthma is a chronic inflammatory disorder of the airways affecting nearly 20 million individuals in the U.S alone. Asthmatic symptoms can be exacerbated by environmental insults like exposure to particulate matter (PM). Diesel exhaust particles (DEP) account for a portion of PM...

  12. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles

    EPA Science Inventory

    AbstractContext: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. Objectives: We compared the formation of covalent DNA adducts by the in vitro metabol...

  13. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.

    2016-05-01

    Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.

  14. Diesel Exhaust Modulates Ozone-induced Lung Function Decrements in Healthy Human Volunteers

    EPA Science Inventory

    The potential effects of combinations of dilute whole diesel exhaust (DE) and ozone (03), each a common component of ambient airborne pollutant mixtures, on lung function were examined. Healthy young human volunteers were exposed for 2 hr to pollutants while exercising (~50 L/min...

  15. DIFFERENTIAL CARDIAC SUSCEPTIBILITY OF WISTAR KYOTO (WKY) AND SPONTANEOUSLY HYPERTENSIVE RATS (SHR) TO DIESEL EXHAUST EXPOSURE

    EPA Science Inventory

    Exposure to diesel exhaust particles (DEP) is linked to increases in cardiovascular effects. This is enhanced in individuals with pre-existing disease. Animal models of cardiovascular disease are used to study this susceptibility. The heart is rich in mitochondria, which produce ...

  16. Markers of exposure to diesel exhaust in railroad workers. Research report

    SciTech Connect

    Schenker, M.B.; Samuels, S.J.; Kado, N.Y.; Hammond, S.K.; Smith, T.J.

    1990-01-01

    The study measured the exposure of railroad workers to diesel exhaust and environmental tobacco smoke by using personal air samples taken over two consecutive work shifts. Urine samples were collected from 87 subjects at the end of the study work shifts and were analyzed for markers of cigarette smoking (nicotine, cotinine) and for mutagenicity, using a sensitive microsuspension assay (Salmonella strain TA98 with or without S9 enzyme). Among smokers, a dose-response relationship was observed between urinary mutagenicity and the number of cigarettes smoked on the study day. After cigarette smoking was controlled for, no association was present between diesel exhaust exposure and urinary mutagenicity. Among nonsmokers, detectable concentrations of mutagens were present in the urine, but no association could be found between markers of diesel exhaust or environmental tobacco smoke and urinary mutagenicity. It was concluded that the mutagens associated with the levels of exposure to diesel exhaust or environmental tobacco smoke in the study were undetectable in the urine.

  17. Divergent Electrocardiographic Responses to Whole and Particle-Free Diesel Exhaust Inhalation in Spontaneously Hypertensive Rats

    EPA Science Inventory

    Diesel exhaust (DE) is a major contributor to traffic-related fine PM2.5. While inroads have been made in understanding the mechanisms of PM related health effects, DE’s complex mixture of PM, gases and volatile organics makes it difficult to determine how the constituents contri...

  18. NASAL RESPONSES OF ASTHMATIC AND NON-ASTHMATIC VOLUNTEERS TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Asthma rates have been increasing world-wide, and exposure to diesel exhaust particles (DEP) may be implicated in this increase. Additionally DEP may also play a role in the increased morbidity and mortality associated with ambient airborne PM exposure. Two types of nasal respons...

  19. EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE

    EPA Science Inventory

    EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE
    S. Mundandhara1 and M.C. Madden2, 1UNC Center for Environmental Medicine, Asthma, and Lung Biology, 2US EPA, NHEERL, Human Studies Division, Chapel Hill, NC, USA

    Epidemiologica...

  20. Cardiovascular effects of diesel exhaust and ozone in a multi-pollutant context

    EPA Science Inventory

    The cardiovascular effects of two common pollutants, diesel exhaust (DE) and ozone (O3), were examined alone and in combination. Healthy subjects (n=15) were exposed for 2 hrs with intermittent, moderate exercise on Day 1 to 0.3 ppm O3, 300 µg/m3 DE, both O3 and DE, or fil...

  1. NEUROPHYSIOLOGICAL ALTERATIONS DUE TO DIESEL EXHAUST EXPOSURE DURING THE NEONATAL LIFE OF THE RAT

    EPA Science Inventory

    This study was designed to assess the effects of diesel exhaust on the development of the nervous system in rats as measurably somatosensory and visual evoked potentials (SEPs an VEPs, respectively). SEPs, elicited by 1 mamp, 0.5 msec pulses delivered to the tibial nerve at the t...

  2. DIESEL EXHAUST PARTICLE COMPOSITION AND THE METHOD OF SONICATION INFLUENCE THE ADJUVANCY EFFECT AND TARC PRODUCTION

    EPA Science Inventory

    Numerous reports have shown diesel exhaust particles (DEP) can act as an immunological adjuvant in asthma. Recent interest has focused on thymus and activation-regulated chemokine (TARC) as an important modulator of this effect. This study evaluated the adjuvancy effects of thr...

  3. EFFECT OF DIESEL EXHAUST PARTICLES ON HUMAN NASAL LAVAGE CELLS AND DNA ADDUCTS

    EPA Science Inventory

    The overall aim of this study is to determine (using a nasal challenge model) the effect of diesel exhaust particles (DEP) on nasal responses including induction of inflammation, immune changes and DNA damage. We are also examining how treatment of DEP with ozone (oz-DEP)modify ...

  4. EFFECT OF SHORT TERM DIESEL EXHAUST EXPOSURE ON NASAL RESPONSES TO INFLUENZA IN ALLERGIC RHINITICS.

    EPA Science Inventory

    Introduction: Recently published data suggest that diesel exhaust (DE) has special impact on allergic inflammation, suppressing Th1 and augmenting Th2 responses to allergen via oxidant stress effects on airway cells. Exposures to particulate air pollutants including DE are also a...

  5. SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I

    EPA Science Inventory

    Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...

  6. 40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; diesel vehicles. 86.110-90 Section 86.110-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later...

  7. Increased Transcription of Immune and Metabolic Pathways in Naive and Allergic Mice Exposed to Diesel Exhaust

    EPA Science Inventory

    Diesel exhaust (DE) has been shown to enhance allergic sensitization in animals following high dose instillation or chronic inhalation exposure scenarios. The purpose of this study was to determine if short term exposures to diluted DE enhance allergic immune responses to antigen...

  8. Estimation of the diesel exhaust exposures of railroad workers. I. Current exposures

    SciTech Connect

    Woskie, S.R.; Smith, T.J.; Hammond, S.K.; Schenker, M.B.; Garshick, E.; Speizer, F.E.

    1988-01-01

    As a part of a series of epidemiological studies of railroad workers, measurements were made to characterize workers' exposures to diesel exhaust. Since diesel exhaust is not a single compound, an exposure marker was sought. The personal exposures to respirable particulate matter (RPM) of over 530 workers in 39 common jobs were measured in four U.S. railroads over a three-year period. Significant amounts of cigarette smoke (20-90%) were found in many of these samples. Therefore, the respirable particulate concentration, adjusted to remove the fraction of cigarette smoke (ARP), was chosen as a marker of diesel exhaust exposures. The geometric mean exposures to ARP ranged from 17 micrograms/m3 for clerks to 134 micrograms/m3 for locomotive shop workers. Significant interrailroad variations were observed in some job groups indicating that the different facilities, equipment, and work practices found among the railroads can affect a worker's exposure to diesel exhaust. Climate was also found to have a significant effect on exposure in some job groups.

  9. EFFECTS OF DIESEL EXHAUST ON TLR3 SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    There are a variety of intrinsic as well as extrinsic factors, such as exposure to air pollution that can affect the pathogenesis of respiratory infections. Diesel exhaust (DE) emissions can significantly contribute to air pollution levels and exposure to DE can alter host defens...

  10. EFFECTS OF DIESEL EXHAUST ON TLR3 EXPRESSION AND SIGNALING IN MICE

    EPA Science Inventory

    There are a variety of intrinsic as well as extrinsic factors, such as exposure to air pollution that can affect the pathogenesis of respiratory infections. Exposure to diesel exhaust (DE) emissions can alter host defense and immune responses and we have previously demonstrated t...

  11. PRE-TREATMENT WITH DIESEL EXHAUST EXTRACT ALTERS INFLUENZA VIRUS REPLICATION IN LUNG EPITHELIAL CELLS

    EPA Science Inventory

    Diesel Exhaust (DE) has been demonstrated to generate inflammatory responses in the lung and modify immune responses to allergens. However, little is known about the effects of DE on common respiratory viral infections. We examined whether exposure to DE extracts (DEE) modifies i...

  12. EXPOSURE TO DIESEL EXHAUST ENHANCES THE SEVERITY OF AN ONGOING INFLUENZA INFECTION.

    EPA Science Inventory

    Numerous studies have shown that air pollutants including diesel exhaust (DE), alter host defense responses to decrease resistance to respiratory infection. The purpose of this study was to evaluate the effects of DE exposure on the severity of an ongoing influenza infection in ...

  13. BIOASSAY-DIRECTED FRACTIONAL AND SALMONELLA MUTAGENICITY OF AUTOMOBILE AND FORKLIFT DIESEL EXHAUST PARTICLES

    EPA Science Inventory



    Abstract

    Many pulmonary toxicity studies of diesel exhaust particles (DEP) have used an
    automobile-generated sample (A-DEP) whose mutagenicity has not been reported. In contrast,
    rnany inutagenicity studies of DEP have used a forklift-generated sample (SRM ...

  14. The Involvement of Superoxide and Nitric Oxide in Inflammation-Enhanced Diesel Exhaust Particle Cytotoxicity

    EPA Science Inventory

    Thirty-four million Americans have asthma, a chronic inflammatory lung disease. Although the mechanisms are unclear, epidemiologic studies show that exposure of asthmatics to air pollutants, like diesel exhaust particles (DEP), is more likely to result in adverse health effects....

  15. DIESEL EXHAUST PARTICLE-INDUCED EPITHELIAL TOXICITY IS MODULATED BY UV-IRRADIATION

    EPA Science Inventory

    Asthma is a chronic inflammatory disorder of the airways affecting nearly 20 million individuals in the U.S alone. Asthmatic symptoms can be exacerbated by environmental insults like exposure to particulate matter (PM). Diesel exhaust particles (DEP) account for a significant por...

  16. DIESEL EXHAUST ACTIVATES REDOX-SENSITIVE TRANSCRIPTION FACTORS AND KINASES IN HUMAN AIRWAYS

    EPA Science Inventory

    Diesel exhaust (DE) is a major component of airborne particulate matter. In previous studies we have described the acute inflammatory response of the human airway to inhaled DE. This was characterized by neutrophil, mast cell, and lymphocyte infiltration into the bronchial mucosa...

  17. PULMONARY FUNCTION AND PATHOLOGY IN CATS EXPOSED 28 DAYS TO DIESEL EXHAUST

    EPA Science Inventory

    Young adult male cats were exposed 28 days, 20 hours per day, to a 1:14 dilution of diesel exhaust emissions. Following termination of exposure, the following pulmonary function measurements were carried out: lung volumes, maximum expiratory flow rates (MEF), MEF at 50%, 25% and ...

  18. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  19. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Casal, Carina S.; Arbilla, Graciela; Corrêa, Sergio M.

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely studied in environmental matrices, such as air, water, soil and sediment, because of their toxicity, mutagenicity and carcinogenicity. Because of these properties, the environmental agencies of developed countries have listed sixteen PAHs as priority pollutants. Few countries have limits for these compounds for ambient air, but they only limit emissions from stationary and mobile sources and occupational areas. There are several studies to specifically address the 16 priority PAHs and very little for the alkyl PAHs. These compounds are more abundant, more persistent and frequently more toxic than the non-alkylated PAHs, and the toxicity increases with the number of alkyl substitutions on the aromatic ring. In this study, a method was developed for the analysis of PAHs and alkyl PAHs by using a GC-MS and large injection volume injection coupled with program temperature vaporisation, which allows for limits of detection below 1.0 ng μL-1. Several variables were tested, such as the injection volume, injection velocity, injector initial temperature, duration of the solvent split and others. This method was evaluated in samples from particulate matter from the emissions of engines employing standard diesel, commercial diesel and biodiesel B20. Samples were collected on a dynamometer bench for a diesel engine cycle and the results ranged from 0.5 to 96.9 ng mL-1, indicating that diesel/biodiesel makes a significant contribution to the formation of PAHs and alkyl PAHs.

  20. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  1. Blood pressure response to controlled diesel exhaust exposure in human subjects.

    PubMed

    Cosselman, Kristen E; Krishnan, Ranjini M; Oron, Assaf P; Jansen, Karen; Peretz, Alon; Sullivan, Jeffrey H; Larson, Timothy V; Kaufman, Joel D

    2012-05-01

    Exposure to traffic-related air pollution is associated with risk of cardiovascular disease and mortality. We examined whether exposure to diesel exhaust increased blood pressure (BP) in human subjects. We analyzed data from 45 nonsmoking subjects, 18 to 49 years of age in double-blinded, crossover exposure studies, randomized to order. Each subject was exposed to diesel exhaust, maintained at 200 μg/m(3) of fine particulate matter, and filtered air for 120 minutes on days separated by ≥2 weeks. We measured BP pre-exposure, at 30-minute intervals during exposure, and 3, 5, 7, and 24 hours from exposure initiation and analyzed changes from pre-exposure values. Compared with filtered air, systolic BP increased at all of the points measured during and after diesel exhaust exposure; the mean effect peaked between 30 and 60 minutes after exposure initiation (3.8 mm Hg [95% CI: -0.4 to 8.0 mm Hg] and 5.1 mm Hg [95% CI: 0.7-9.5 mm Hg], respectively). Sex and metabolic syndrome did not modify this effect. Combining readings between 30 and 90 minutes, diesel exhaust exposure resulted in a 4.4-mm Hg increase in systolic BP, adjusted for participant characteristics and exposure perception (95% CI: 1.1-7.7 mm Hg; P=0.0009). There was no significant effect on heart rate or diastolic pressure. Diesel exhaust inhalation was associated with a rapid, measurable increase in systolic but not diastolic BP in young nonsmokers, independent of perception of exposure. This controlled trial in humans confirms findings from observational studies. The effect may be important on a population basis given the worldwide prevalence of exposure to traffic-related air pollution. PMID:22431582

  2. Control method for turbocharged diesel engines having exhaust gas recirculation

    DOEpatents

    Kolmanovsky, Ilya V.; Jankovic, Mrdjan J; Jankovic, Miroslava

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  3. Influence of sampling filter type on the mutagenicity of diesel exhaust particulate extracts

    NASA Astrophysics Data System (ADS)

    Clark, Charles R.; Truex, Timothy J.; Lee, Frank S. C.; Salmeen, Irving T.

    The effects of filter types on the mutagenicity and chemical characteristics of organic extracts of diesel engine particulate exhaust were studied by collecting exhaust particles in a dilution tube simultaneously on three different types of filters: Teflon membrane (Zefluor), Teflon impregnated glass fiber (Pallflex T60A20), and a quartz fiber (Pallflex 2500QAO). The particles were extracted with dichloromethane and subsequently with acetonitrile. The dichloromethane extracts were evaluated in the Salmonella reversion (Ames) assay using strains TA 98, TA 100 and TA 1538 and analyzed by high performance liquid chromatography (HPLC) with fluorescence detection. The filter loadings ranged from 0.3 to 0.7 mg cm -2, typical of loadings in studies of diesel engine particulate exhaust. No major differences in relative concentrations were observed in the polycyclic aromatic hydrocarbon, oxygenated or transition fractions for the three filter types. Furthermore, no differences in the mutagenicity of the samples could be detected.

  4. Treatment of diesel exhaust using novel oxidation catalysts

    SciTech Connect

    Voss, K.E.; Lamper, J.K.; Farrauto, R.J.; Heck, R.M.; Rice, G.W.

    1993-12-31

    The authors have developed a flow through Diesel Oxidation Catalyst that removes 60-80% of the soluble organic fraction (SOF) from diesel truck engine particulate emissions. This unique catalyst exhibits high reduction in total particulate matter (TPM) emissions and low sulfate formation using a novel proprietary washcoat formulation with low platinum levels. This paper describes performance results from engine emissions tests for TPM, SOF, and gas phase HC and CO reduction for fresh and aged catalysts under steady state an transient operating conditions. Using a novel laboratory technique, the authors simulate adsorption and subsequent catalytic combustion of the SOF. The technique allows for the analysis of all the liquid and gaseous products produced and the overall selectivity of the catalytic reactions.

  5. Eugenol attenuates pulmonary damage induced by diesel exhaust particles.

    PubMed

    Zin, Walter A; Silva, Ana G L S; Magalhães, Clarissa B; Carvalho, Giovanna M C; Riva, Douglas R; Lima, Crystianne C; Leal-Cardoso, Jose H; Takiya, Christina M; Valença, Samuel S; Saldiva, Paulo H N; Faffe, Débora S

    2012-03-01

    Environmentally relevant doses of inhaled diesel particles elicit pulmonary inflammation and impair lung mechanics. Eugenol, a methoxyphenol component of clove oil, presents in vitro and in vivo anti-inflammatory and antioxidant properties. Our aim was to examine a possible protective role of eugenol against lung injuries induced by diesel particles. Male BALB/c mice were divided into four groups. Mice received saline (10 μl in; CTRL group) or 15 μg of diesel particles DEP (15 μg in; DIE and DEUG groups). After 1 h, mice received saline (10 μl; CTRL and DIE groups) or eugenol (164 mg/kg; EUG and DEUG group) by gavage. Twenty-four hours after gavage, pulmonary resistive (ΔP1), viscoelastic (ΔP2) and total (ΔPtot) pressures, static elastance (Est), and viscoelastic component of elastance (ΔE) were measured. We also determined the fraction areas of normal and collapsed alveoli, amounts of polymorpho- (PMN) and mononuclear cells in lung parenchyma, apoptosis, and oxidative stress. Est, ΔP2, ΔPtot, and ΔE were significantly higher in the DIE than in the other groups. DIE also showed significantly more PMN, airspace collapse, and apoptosis than the other groups. However, no beneficial effect on lipid peroxidation was observed in DEUG group. In conclusion, eugenol avoided changes in lung mechanics, pulmonary inflammation, and alveolar collapse elicited by diesel particles. It attenuated the activation signal of caspase-3 by DEP, but apoptosis evaluated by TUNEL was avoided. Finally, it could not avoid oxidative stress as indicated by malondialdehyde. PMID:22194320

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT X, USE OF MEASURING TOOLS IN DIESEL MAINTENANCE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE PRECISION MEASURING TOOLS USED IN DIESEL ENGINE MAINTENANCE. TOPICS ARE (1) LINEAR MEASURE, (2) MEASURING WITH RULES AND TAPES, (3) GETTING PRECISION WITH MICROMETERS, (4) DIAL INDICATORS, (5) TACHOMETERS, (6) TORQUE WRENCH, (7) THICKNESS (TECHER) GAGE, AND (8) VALVE…

  7. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  9. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VI, MAINTAINING MECHANICAL GOVERNORS--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL GOVERNORS USED ON DIESEL ENGINES. TOPICS ARE (1) TYPES OF GOVERNORS AND ENGINE LOCATION, (2) GOVERNOR APPLICATIONS, (3) LIMITING SPEED MECHANICAL GOVERNOR, (4) VARIABLE SPEED MECHANICAL GOVERNOR, AND (5) CONSTANT SPEED…