Science.gov

Sample records for automotive diesel exhaust

  1. Fast automotive diesel exhaust measurement using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  2. Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.

    PubMed

    Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung

    2015-03-17

    NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution. PMID:25719390

  3. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  4. Studies on health effects of automotive exhaust emissions. How dangerous are diesel emissions?

    PubMed

    Klingenberg, H; Winneke, H

    1990-04-01

    The following paper indicates that current results of research conducted on the effects of intentionally increased concentrations of diesel engine exhaust emissions, particularly the results of animal experiments, do not lead scientifically to final conclusions. According to the current level of knowledge, we must continue to assume that the risk of cancer, possibly due to diesel particles, is negligible, particularly under real environmental conditions. The preventive measures taken by governments are of course supported by the automotive industry, an additional research outlay, however, is necessary not only to clear up contradictions and answer new questions arising from current test results, but also to take positive, and not merely precautionary, action in the future. Due to its links to other influences on humans and plants, research conducted on the effects of motor vehicle emissions is a task that lies very much in the public interest. At the same time, the overview of concluded and ongoing research objectives presented in this paper indicates that the automotive industry is greatly committed to this issue and will meet well-justified expectations. PMID:1694306

  5. Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects

    PubMed Central

    Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.

    1999-01-01

    OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle

  6. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  7. AUTOMOTIVE DIESEL MAINTENANCE. PROGRAM OUTLINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    INFORMATIONAL TOPICS COVERED IN THE TEXT MATERIALS AND SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILMS FOR A 2-YEAR, 55 MODULE PROGRAM IN AUTOMOTIVE DIESEL MAINTENANCE ARE GIVEN. THE 30 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 - VT 005 684, AND THE 25 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 2" ARE AVAILABLE…

  8. Diesel engine exhaust oxidizer

    SciTech Connect

    Kammel, R.A.

    1992-06-16

    This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.

  9. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  10. BIOMARKERS OF DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    The objective of this project is to examine the detectability of some chemical components of diesel exhaust particles (DEP) in human urine following controlled human diesel exposures (IRB-approved). Ultimately, and upon validation, we propose to apply these components as biomarke...

  11. Advanced automotive diesel engine system study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  12. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  13. Controlled human exposures to diesel exhaust

    EPA Science Inventory

    Diesel exhaust (DE) is a complex mixture of gaseous and particulate compounds resulting from an incomplete combustion of diesel fuel. Controlled human exposures to DE and diesel exhaust particles (DEP) have contributed to understanding health effects. Such exposure studies of h...

  14. Diesel exhaust filter-incinerator

    SciTech Connect

    Martyniuk, E.T.

    1981-08-11

    A diesel engine exhaust particulate filter-incinerator comprising an enclosed filter panel having particulate deposition surfaces bordered by electrodes of a high voltage power supply. Periodic incineration is accomplished by the collection on the surfaces of particulates in amounts sufficient to conduct sufficient electric current along paths through the particulates to heat them to incineration temperature. Ignition and burn off of particulates may be automatically accomplished by maintaining a suitable voltage across the electrodes at the edges of the collection surfaces to initiate arc-like current flow before the collected particulates reach a level that would plug the filter. Specific embodiments of exemplary filter constructions are disclosed.

  15. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the construction, operation, malfunction, diagnosis, maintenance, and repair of the fuel and exhaust systems used in automobiles. The course contains five study units covering fundamentals of gasoline engine fuel…

  16. STUDIES OF PARTICULATE REMOVAL FROM DIESEL EXHAUST

    EPA Science Inventory

    The report gives results of a characterization of the collection of particulate emissions from diesel exhaust by several different methods, using 5.7 liter GM diesel engines (as sources) and such controls as fiber and gravel bed filters, trap/cyclones, and ESPs. Overall and fract...

  17. EXHAUST EMISSIONS FROM A DIESEL ENGINE

    EPA Science Inventory

    Studies were performed using (1) Diesel particles collected from the undiluted exhaust of a single-cylinder engine, operated at constant speed and load, using a binary pure hydrocarbon fuel with air or gas mixture oxidizers, and (2) Diesel particles collected from the diluted exh...

  18. Diesel exhaust exposures in port workers.

    PubMed

    Debia, Maximilien; Neesham-Grenon, Eve; Mudaheranwa, Oliver C; Ragettli, Martina S

    2016-07-01

    Exposure to diesel engine exhaust has been linked to increased cancer risk and cardiopulmonary diseases. Diesel exhaust is a complex mixture of chemical substances, including a particulate fraction mainly composed of ultrafine particles, resulting from the incomplete combustion of fuel. Diesel trucks are known to be an important source of diesel-related air pollution, and areas with heavy truck traffic are associated with higher air pollution levels and increased public health problems. Several indicators have been proposed as surrogates for estimating exposures to diesel exhaust but very few studies have focused specifically on monitoring the ultrafine fraction through the measurement of particle number concentrations. The aim of this study is to assess occupational exposures of gate controllers at the port of Montreal, Canada, to diesel engine emissions from container trucks by measuring several surrogates through a multimetric approach which includes the assessment of both mass and number concentrations and the use of direct reading devices. A 10-day measurement campaign was carried out at two terminal checkpoints at the port of Montreal. Respirable elemental and organic carbon, PM1, PM2.5, PMresp (PM4), PM10, PMtot (inhalable fraction), particle number concentrations, particle size distributions, and gas concentrations (NO2, NO, CO) were monitored. Gate controllers were exposed to concentrations of contaminants associated with diesel engine exhaust (elemental carbon GM = 1.6 µg/m(3); GSD = 1.6) well below recommended occupational exposure limits. Average daily particle number concentrations ranged from 16,544-67,314 particles/cm³ (GM = 32,710 particles/cm³; GSD = 1.6). Significant Pearson correlation coefficients were found between daily elemental carbon, PM fractions and particle number concentrations, as well as between total carbon, PM fractions and particle number concentrations. Significant correlation coefficients were found between particle number

  19. Localized corrosion resistance of automotive exhaust alloys

    SciTech Connect

    Sabata, A.; Brossia, C.S.; Behling, M.

    1998-12-31

    Corrosion in automotive exhaust systems can be broadly classified as (a) cold end corrosion and (b) hot end corrosion. For the cold end, the requirements include inside-out perforation corrosion resistance and cosmetic corrosion resistance. Perforation corrosion causes noticeable degradation in noise quality and may even affect the back pressure. For the hot end, the key concern has been perforation corrosion resistance. With the use of oxygen sensors in catalytic converters, the failure criteria will become more stringent. Numerous accelerated corrosion tests have been used to rank materials for the Hot End and the Cold End. These include (a) Continuous Test, (b) Cyclic Tests -- Hot End, (c) Cyclic Tests -- Cold End, (d) Electrochemical Ranking. In this paper the authors evaluate some of the commonly used exhaust materials in these accelerated tests. These accelerated tests are easy to use, inexpensive to run as compared to proving ground testing or trailer testing and can provide information in a relatively short time. Here they report lab work to date on some of the accelerated corrosion testing for perforation corrosion resistance. Note that these tests are useful for ranking materials only. Life expectancy of the material can be given only after a correlation is established between the accelerated tests and field performance. The electrochemical tests were designed to gain insight into pit growth kinetics in the accelerated tests.

  20. BEHAVIORAL ALTERATIONS DUE TO DIESEL EXHAUST EXPOSURE

    EPA Science Inventory

    Several experiments examining the effects of diesel exhaust on the behavior of rats are reported. Animals were exposed either as adults or neonates. The spontaneous locomotor activity (SLA), measured in standard running wheel cages, of adult rats exposed for 8 h/day, 7 days/week ...

  1. Measuring soot particles from automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  2. Advanced Automotive Diesel Assessment Program, executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).

  3. No Breathing in the Aisles: Diesel Exhaust inside School Buses.

    ERIC Educational Resources Information Center

    Solomon, Gina M.; Campbell, Todd R.; Feuer, Gail Ruderman; Masters, Julie; Samkian, Artineh; Paul, Kavita Ann

    There is evidence that diesel exhaust causes cancer and premature death, and also exacerbates asthma and other respiratory illness. Noting that the vast majority of the nation's school buses run on diesel fuel, this report details a study examining the level of diesel exhaust to which children are typically exposed as they travel to and from…

  4. Oxidant generation and toxicity enhancement of aged-diesel exhaust

    NASA Astrophysics Data System (ADS)

    Li, Qianfeng; Wyatt, Anna; Kamens, Richard M.

    Diesel exhaust related airborne Particulate Matter (PM) has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease. The underlying toxicological mechanisms are of great scientific interest. A hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. In this study, the main objective was to determine whether aged-diesel exhaust PM has a higher oxidant generation and toxicity than fresh diesel exhaust PM. The diesel exhaust PM was generated from a 1980 Mercedes-Benz model 300SD, and a dual 270 m 3 Teflon film chamber was utilized to generate two test atmospheres. One side of the chamber is used to produce ozone-diesel exhaust PM system, and another side of the chamber was used to produce diesel exhaust PM only system. A newly optimized dithiothreitol (DTT) method was used to assess their oxidant generation and toxicity. The results of this study showed: (1) both fresh and aged-diesel exhaust PM had high oxidant generation and toxicity; (2) ozone-diesel exhaust PM had a higher toxicity response than diesel exhaust PM only; (3) the diesel exhaust PM toxicity increased with time; (4) the optimized DTT method could be used as a good quantitative chemical assay for oxidant generation and toxicity measurement.

  5. Diesel exhaust cleaner with burner vortex chamber

    SciTech Connect

    Riddel, J.W.

    1983-05-17

    A diesel engine exhaust cleaner and burner system includes at least one exhaust cleaner member with a filter positioned therein to effect removal of particulates from a stream of exhaust gas delivered thereto via an inlet manifold. A fuel burner supplied with fuel by a fuel nozzle is operatively associated with the inlet manifold to supply the necessary heat to effect incineration of particulates collected on the filter. A cyclone duct providing a vortex chamber therein is operatively positioned downstream of the fuel nozzle and is supplied with sufficient air so as to effect both the complete combustion of the fuel and the controlled incineration of the particulates by increasing the residence time of the fuel in the reaction region within the vortex chamber and also effecting a more uniform distribution of the heat of combustion across the inlet face of the filter for the uniform heating of the particulates thereon to their combustion temperature.

  6. Microwave-Regenerated Diesel Exhaust Particulate Filter

    SciTech Connect

    Nixdorf, Richard D.; Green, Johney Boyd; Story, John M.; Wagner, Robert M.

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  7. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts on SENCAR mouse skin

    SciTech Connect

    Nesnow, S; Triplett, L L; Slaga, T J

    1980-01-01

    The tumorigenicity of diesel exhaust particulate emissions was examined using a sensitive mouse skin tumorigenesis model (SENCAR). The tumorigenic potency of particulate emissions from diesel, gasoline, and related emission sources was compared.

  8. Diesel engine exhaust and lung cancer: An unproven association

    SciTech Connect

    Muscat, J.E.; Wynder, E.L.

    1995-09-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant association. It can be concluded that short-term exposure to diesel engine exhaust (<20 years) does not have a causative role in human lung cancer. There is statistical but no causal evidence that long-term exposure to diesel exhaust (>20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. 77 refs., 1 tab.

  9. Diesel Exhaust in Miners Study: Q&A

    Cancer.gov

    The Diesel Exhaust in Miners Study was designed to evaluate the risk of death associated with diesel exhaust exposure, particularly as it may relate to lung cancer. The researchers observed increased risk for lung cancer death with increasing levels of ex

  10. NEUROGENIC RESPONSES OF RAT LUNG TO DIESEL EXHAUST

    EPA Science Inventory

    The investigators are among the first researchers to investigate neurogenic inflammation in the lungs of rats exposed to whole diesel exhaust. After exposure to both concentrations of diesel exhaust, consistently higher levels of plasma leakage and lower activity of the enz...

  11. Exposure to diesel exhaust linked to lung cancer in miners

    Cancer.gov

    In a study of non-metal miners in the United States, federal government scientists reported that heavy exposure to diesel exhaust increased risk of death from lung cancer. The research, all part of the Diesel Exhaust in Miners Study, was designed to evalu

  12. Fumigation of Alcohol in a Light Duty Automotive Diesel Engine

    NASA Technical Reports Server (NTRS)

    Broukhiyan, E. M. H.; Lestz, S. S.

    1981-01-01

    A light-duty automotive Diesel engine was fumigated with methanol in amounts up to 35% and 50% of the total fuel energy respectively in order to determine the effect of alcohol fumigation on engine performance at various operating conditons. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific nitrogen oxide concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears that ethanol fumigation, like methanol fumigation, while lowering the mass of particulated emitted, does enhance the biological activity of that particulate.

  13. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. PMID:22561182

  14. Mercaptans emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio Machado; Arbilla, Graciela

    Biodiesel and ethanol are fuels in clear growth and evidence, basically due to its relation with the greenhouse effect reduction. There are several works regarding regulated pollutants emissions, but there is a lack of reports in non-regulated emissions. In a previous paper (Corrêa and Arbilla, 2006) the emissions of aromatic hydrocarbons were reported and in 2007 another paper was published in 2008 focusing carbonyls emissions (Corrêa and Arbilla, 2008). In this work four mercaptans (methyl, ethyl, n-propyl and n-butyl mercaptans) were evaluated for a heavy-duty diesel engine, fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were carried using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, during a real use across the city. The exhaust gases were diluted near 20 times and the mercaptans were sampled with glass fiber filters impregnated with mercuric acetate. The chemical analyses were performed by gas chromatography with mass spectrometry detection. The results indicated that the mercaptans emissions exhibit a reduction with the increase of biodiesel content, but this reduction is lower as the mercaptan molar mass increases. For B20 results the emission reduction was 18.4% for methyl mercaptan, 18.1% for ethyl mercaptan, 16.3% for n-propyl mercaptan, and 9.6% for n-butyl mercaptan.

  15. The toxicity of diesel exhaust: implications for primary care.

    PubMed

    Krivoshto, Irina N; Richards, John R; Albertson, Timothy E; Derlet, Robert W

    2008-01-01

    Diesel fuel and the products of its combustion represent one of the toxins most commonly encountered by people living in both urban and rural areas of the world. As nations become more heavily populated, there will be increasing reliance on diesel fuel to power mass transportation and commercial vehicles, as well as heavy machinery involved in construction, farming, and mining. The majority of patients who present to urban primary care clinics and emergency departments will have had significant chronic exposure to diesel exhaust because most use and/or live near busy streets and highways. Furthermore, those who operate or work or live near diesel-powered machinery will have even more toxic exposure. Primary care physicians should be aware of the acute and chronic deleterious clinical effects of diesel exhaust. In this article we review the toxicity and myriad health problems associated with diesel exhaust. PMID:18178703

  16. Carbonyl emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Machado Corrêa, Sérgio; Arbilla, Graciela

    With the use of biodiesel in clear growth, it is important to quantify any potential emission benefits or liabilities of this fuel. Several researches are available concerning the regulated emissions of biodiesel/diesel blends, but there is a lack of information about non-regulated emissions. In a previous paper [Corrêa, S.M., Arbilla, G., 2006. Emissões de formaldeído e acetaldeído de misturas biodiesel/diesel. Periódico Tchê Química, 3, 54-68], the emissions of aromatic hydrocarbons were reported. In this work, seven carbonyl emissions (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, butyraldehyde, and benzaldehyde) were evaluated by a heavy-duty diesel engine fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were conducted using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, in a steady-state condition under 1000, 1500, and 2000 rpm. The exhaust gases were diluted nearly 20 times and the carbonyls were sampled with SiO 2-C18 cartridges, impregnated with acid solution of 2,4-dinitrophenylhydrazine. The chemical analyses were performed by high performance liquid chromatography using UV detection. Using average values for the three modes of operation (1000, 1500, and 2000 rpm) benzaldehyde showed a reduction on the emission (-3.4% for B2, -5.3% for B5, -5.7% for B10, and -6.9% for B20) and all other carbonyls showed a significative increase: 2.6, 7.3, 17.6, and 35.5% for formaldehyde; 1.4, 2.5, 5.4, and 15.8% for acetaldehyde; 2.1, 5.4, 11.1, and 22.0% for acrolein+acetone; 0.8, 2.7, 4.6, and 10.0% for propionaldehyde; 3.3, 7.8, 16.0, and 26.0% for butyraldehyde.

  17. Controlling automotive exhaust emissions: successes and underlying science.

    PubMed

    Twigg, Martyn V

    2005-04-15

    Photochemical reactions of vehicle exhaust pollutants were responsible for photochemical smog in many cities during the 1960s and 1970s. Engine improvements helped, but additional measures were needed to achieve legislated emissions levels. First oxidation catalysts lowered hydrocarbon and carbon monoxide, and later nitrogen oxides were reduced to nitrogen in a two-stage process. By the 1980s, exhaust gas could be kept stoichiometric and hydrocarbons, carbon monoxide and nitrogen oxides were simultaneously converted over a single 'three-way catalyst'. Today, advanced three-way catalyst systems emissions are exceptionally low. NOx control from lean-burn engines demands an additional approach because NO cannot be dissociated under lean conditions. Current lean-burn gasoline engine NOx control involves forming a nitrate phase and periodically enriching the exhaust to reduce it to nitrogen, and this is being modified for use on diesel engines. Selective catalytic reduction with ammonia is an alternative that can be very efficient, but it requires ammonia or a compound from which it can be obtained. Diesel engines produce particulate matter, and, because of health concerns, filtration processes are being introduced to control these emissions. On heavy duty diesel engines the exhaust gas temperature is high enough for NO in the exhaust to be oxidised over a catalyst to NO2 that smoothly oxidises particulate material (PM) in the filter. Passenger cars operate at lower temperatures, and it is necessary to periodically burn the PM in air at high temperatures. PMID:15901550

  18. Method and means for diesel exhaust particulate emission control

    SciTech Connect

    Ludecke, O.A.

    1983-04-19

    A method and means for controlling diesel particulate emissions involves providing an exhaust trap filter to collect exhaust particulates at a point near the engine exhaust ports and providing means to periodically vent burning combustion chamber gases to the exhaust filter to initiate combustion and incineration of the collected particulates. Various means for conducting burning mixture to ignite the particulates in the filter are disclosed.

  19. Urinary mutagenic activity in workers exposed to diesel exhaust

    SciTech Connect

    Schenker, M.B.; Samuels, S.J.; Kado, N.Y. ); Hammond, S.K.; Woskie, S.R.; Smith, T.J. )

    1992-04-01

    The authors measured postshift urinary mutagenicity on a population of railroad workers with a range of diesel exhaust exposures. Postshift urinary mutagenicity was determined by a sensitive microsuspension procedure using Salmonella strain TA 98 {plus minus} S9. Number of cigarettes smoked on the study day and urinary cotinine were highly correlated with postshift urinary mutagenicity. Diesel exhaust exposure was measured over the work shift by constant-flow personal sampling pumps. The relative ranking of jobs by this adjusted respirable particle concentration (ARP) was correlated with relative contact the job groups have with operating diesel locomotives. After adjustment for cigarette smoking in multiple regressions, there was no independent association of diesel exhaust exposure, as estimated by ARP, with postshift urinary mutagenicity among smokers or nonsmokers. An important finding is the detection of baseline mutagenicity in most of the nonsmoking workers. Despite the use of individual measurements of diesel exhaust exposure, the absence of a significant association in this study may be due to the low levels of diesel exposure, the lack of a specific marker for diesel exhaust exposure, and/or urinary mutagenicity levels from diesel exposure below the limit of sensitivity for the mutagenicity assay.

  20. Photochemical Reaction Altered Cardiac Toxicity of Diesel Exhaust Inhalation

    EPA Science Inventory

    Rationale: Epidemiological studies have indicated an association between urban air pollution exposure and cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of inhaled diesel exhaust and compared with photochemically altered d...

  1. INCREASED SUSCEPTIBILITY TO INFLUENZA INFECTION AFTER DIESEL EXHAUST EXPOSURE

    EPA Science Inventory

    Inhaled environmental pollutants have a possible role in modulating the susceptibility of humans to respiratory infections. Diesel exhaust (DE) is a major component of urban air pollution and their effects on pulmonary infections is of great concern. Influenza infections cause ...

  2. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  3. INCREASED SUSCEPTIBILITY TO INFLUENZA INFECTION AFTER DIESEL EXHAUST EXPOSURE.

    EPA Science Inventory

    Inhaled environmental pollutants have a possible role in modulating the susceptibility of humans to respiratory infections. Diesel exhaust (DE) is a major component of urban air pollution and their effects on pulmonary infections is of great concern. Influenza infections cause ...

  4. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  5. Catalysts as sensors--a promising novel approach in automotive exhaust gas aftertreatment.

    PubMed

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NO(x) traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NO(x)-loading of lean NO(x) traps, and the soot loading of Diesel particulate filters. PMID:22163575

  6. Diesel engine dual path exhaust cleaner and burner system

    SciTech Connect

    Stark, T.L.

    1983-02-15

    A dual filter element exhaust cleaner and burner system for diesel engines provides for the trapping of particulates in the engine exhaust gases by their passage through filter elements, as selectively controlled by means of a four-way valve. Collected particulates in a non-active particulate filter element are incinerated by means of a heater, with this filter element, during incineration, being supplied with exhaust gases through a constant flow exhaust gas regulator whereby incineration of the particulates will occur at a controlled rate independent of engine speed.

  7. Speed control of automotive diesel engines

    NASA Astrophysics Data System (ADS)

    Outbib, Rachid; Graton, Guillaume; Dovifaaz, Xavier; Younes, Rafic

    2014-04-01

    This paper deals with Diesel engine control. More precisely, a model-based approach is considered to stabilise engine speed around a defined value. The model taken into account is nonlinear and contains explicitly the expression of fuel conversion efficiency. In general in the literature, this experimentally obtained quantity is modelled with either a polynomial or an exponential form (see for instance Younes, R. (1993). Elaboration d'un modèle de connaissance du moteur diesel avec turbocompresseur à géométrie variable en vue de l'optimisation de ses émissions. Ecole Centrale de Lyon; Omran, R., Younes, R., Champoussin, J., & Outbib, R. (2011). New indicated mean effective pressure (IMEP) model for predicting crankshaft movement. Energy Conversion and Management, 52, 3376-3382). This paper focuses on engine speed feedback stabilisation when fuel conversion efficiency is modelled with an exponential form, which is more suitable for automative applications. Simulation results are proposed to highlight the closed-loop control performances.

  8. Recent advances in investigations of toxicity of automotive exhaust

    PubMed Central

    Stupfel, Maurice

    1976-01-01

    The influence of auto exhaust on man's health is difficult to gauge considering the intricacy of human environmental urban stresses and particularly of other air polluting (industrial, domestic) emissions. Epidemiological surveys made in road tunnel employees and in traffic officers have not demonstrated specific effects and have often been complicated by cigarette smoking as a factor. Long-term animal experiments run mostly on small rodents give evidence of little effect of the pathological actions of dilutions such as those encountered in high polluted cities. However the acute toxicity of gasoline exhaust emission is well known and mostly due to carbon monoxide. Considering the different types of cycles and operating conditions of vehicles (gasoline and diesel), auto exhaust gases constitute no more a chemical entity than they show, a definite toxicity. A great number of substances that they contain (nitrogen oxides, aldehydes, antiknock additives, heavy metals, possible catalysts are highly toxic as shown by in vivo and in vitro (mutagenic) tests. Interactions of the components are for the moment ignored or poorly understood. Besides, the evolution of the physicochemical properties and natures of the auto exhaust emission in the gaseous biotope of man under determined conditions of ultraviolet irradiation, temperature, and hygrometry provoke the formation of secondary products such as oxidants and ozone. Several experiments show clearly that irradiation increases the toxicity of auto exhaust significantly. For these reasons, geographical, meteorological, and chronological (circadian and seasonal) factors should be taken into consideration, especially with regard to emission standards. PMID:67944

  9. ROLE OF NEPRILYSIN IN AIRWAY INFLAMMATION INDUCED BY DIESEL EXHAUST EMISSIONS

    EPA Science Inventory

    The investigators intend to evaluate airway inflammatory responses and expression of the enzyme neprilysin in response to diesel exhaust particle exposure. Dr. Wong and colleagues anticipate that their research will reveal that components of diesel exhaust decrease neprilys...

  10. Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

    EPA Science Inventory

    Rationale: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown. Objective: Test whether acute exposure to diesel modif...

  11. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  12. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles.

    PubMed

    Takeda, Ken; Tsukue, Naomi; Yoshida, Seiichi

    2004-01-01

    Diesel exhaust (DE) is known as the main cause of air pollution. DE is a complex mixture of particulate and vapor-phase compounds. The soluble organic fraction of the particulate materials in DE contains thousands of compounds including a variety of polycyclic aromatic hydrocarbons and heavy metals. To clarify the endocrine-disrupting activities of DE, we have reviewed the reports about the effects of DE on the reproductive and brain-nervous systems, and the endocrine-disrupting action of diesel exhaust particles (DEP). In utero exposure to low levels (0.1 mg DEP/m3) of DE from day 2 postcoitum (p.c.) until day 13 p.c. reduced the expression level of Ad4BP/SF-1 mRNA and thereby might affect the development of gonads. Low levels of DE also reduced the expression of several genes known to play key roles in gonadal development, including an enzyme necessary for testosterone synthesis. Mature male rats exposed to DE during the fetal period showed an irreversible decrease in daily sperm production due to an insufficient number of Sertoli cells. DE exposure during the fetal period influenced the brain tissue in newborn mice. In the 3 mg DEP/m3 exposure group at 10 weeks of age, a significant reduction in performance was observed in the passive avoidance learning test in both male and female mice. In addition, the fetal exposure of mice to DE affected the emotional behaviors associated with the serotonergic and dopaminergic systems in the mouse brain. In toluidine blue-stained specimens from the DE-exposed group, edema around the vessels where fluorescent granular perithelial (FGP) cells exist and degenerated granules within the FGP cytoplasm were observed; similar findings were obtained by electron microscopic examination. DEP contain many substances that stimulate Ah receptors, such as the polycyclic aromatic hydrocarbon containing benzo[a]pyrene. DEP also contain substances with estrogenic, antiestrogenic and antiandrogenic activities. The neutral substance fraction of

  13. Biological activity of particle exhaust emissions from light-duty diesel engines.

    PubMed

    Carraro, E; Locatelli, A L; Ferrero, C; Fea, E; Gilli, G

    1997-01-01

    assays were available, exhaust emission generation by biodiesel fuel seemed to yield a smaller environmental impact than that of the referenced diesel fuel. The results point out the usefulness of mutagenicity testing in the research of both newer, more efficient automotive aftertreatment devices and less polluting fuels. PMID:9275990

  14. Are Urinary PAHs Biomarkers of Controlled Exposure to Diesel Exhaust?

    EPA Science Inventory

    Urinary polycyclic aromatic hydrocarbons (PAHs) were evaluated as possible biomarkers of exposure to diesel exhaust (DE) in two controlled-chamber studies. We report levels of 14 PAHs from 28 subjects in urine that were collected before, immediately after and the morning after ex...

  15. Mutagenicity of Diesel and Soy Biodiesel Exhaust Particles

    EPA Science Inventory

    Mutagenicity Of Diesel And Soy Biodiesel Exhaust Particles E Mutlua,b' SH Warrenb, PP Matthewsb, CJ Kingb, B Prestonc, MD Haysb, DG Nashb,ct, WP Linakb, MI Gilmourb, and DM DeMarinib aUniversity of North Carolina, Chapel Hill, NC bU.S. Environmental Agency, Research Triangle Pa...

  16. EFFECT OF OZONE ON DIESEL EXHAUST PARTICLE TOXICITY

    EPA Science Inventory

    Ambient particulate matter (PM) concentrations have been associated with mortality and morbidity. Diesel exhaust particles (DEP) are present in ambient urban air PM. Coexisting with DEP (and PM) is ozone (O(3)), which has the potential to react with some components of DEP. Some r...

  17. DIESEL EXHAUST EXPOSURE INCREASES SEVERITY OF AN ONGOING INFLUENZA INFECTION

    EPA Science Inventory

    Numerous studies have shown that air pollutants including diesel exhaust (DE) alter host defense responses, resulting in decreased resistance to respiratory infection. The purpose of this study was to evaluate the effects of DE exposure on the severity of an ongoing influenza in...

  18. Exposure to Diesel Exhaust Enhances the Generation of Vascular Microparticles

    EPA Science Inventory

    Introduction: In the study of the health impacts of traffic-related air pollution, diesel exhaust is a pollutant of particular interest, since it is a major source of particulate matter (PM). Epidemiological studies associate exposure to ambient levels of PM with cardiovascular m...

  19. MULTIDISCIPLINARY SCIENTIFIC AND ENGINEERING APPROACHES TO ASSESSING DIESEL EXHAUST TOXICITY

    EPA Science Inventory

    Based on epidemiology reports, diesel exhaust (DE) containing particulate matter (PM) may play a role in increasing cardiopulmonary mortality and morbidity, such as lung infection and asthma symptoms. DE gas-phase components may modify the PM effects. DE components vary depending...

  20. EFFECTS OF DIESEL EXHAUST ON TLR3 EXPRESSION IN MICE

    EPA Science Inventory

    There are a variety of intrinsic as well as extrinsic factors, such as exposure to air pollution that can affect the pathogenesis of respiratory infections. Exposure to diesel exhaust (DE) emissions can alter host defense and immune responses and we have previously demonstrated t...

  1. The Differential Oxidative Properties of Diesel Exhaust Particles

    EPA Science Inventory

    Diesel exhaust particles (DEP) accounts for a significant percentage of particulate matter (PM) released into the atmosphere and are associated with adverse pulmonary effects. Due to their extremely small size and high surface area, DEP can adsorb toxic substances, thus potentia...

  2. Effects of diesel exhaust on influenza-induced nasal inflammation

    EPA Science Inventory

    Title: Effects of Diesel Exhaust on Influenza-Induced Nasal Inflammation T L Noah, MD1,2, K Horvath, BS3, C Robinette, RN2, 0 Diaz Sanchez, PhD4 and I Jaspers, PhD1,2. 1UNC Dept. of Pediatrics, United States; 2UNC Center for Environmental Medicine, Asthma and Lung Biology, ...

  3. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  4. Diesel exhaust exposure and lung cancer: a case-control study

    SciTech Connect

    Hall, N.E.L.; Wynder, E.L.

    1984-06-01

    The presence of polyaromatic hydrocarbons in the particulate phase of diesel engine exhaust has raised questions concerning potential carcinogenicity of diesel exhaust exposure. A case-control study was conducted of 502 male lung cancer cases and 502 controls without tobacco-related diseases to investigate the association of occupational diesel exhaust exposure and lung cancer. Diesel exhaust exposure was appraised by job title. The results show no association between diesel exhaust exposure and risk of lung cancer. They do, however, show the strong association between smoking and lung cancer and as such highlight the importance of smoking information in studies of occupational effect on lung cancer risk.

  5. Diesel engine exhaust particulate filter with intake throttling incineration control

    SciTech Connect

    Ludecke, O.; Rosebrock, T.

    1980-07-08

    A description is given of a diesel engine exhaust filter and particulate incineration system in combination with a diesel engine having a normally unthrottled air induction system for admitting combustion air to the engine and an exhaust system for carrying off spent combustion products exhausted from the engine, said filter and incineration system comprising: a combustion resistant filter disposed in the exhaust system and operative to collect and retain portions of the largely carbonaceous particulate matter contained in the engine exhaust products, said fiber being capable of withstanding without substantial damage internal temperatures sufficient to burn the collected particulate matter, a throttle in the indication system and operable to restrict air flow into the engine to reduce the admittance of excess combustion air and thereby increase engine exhaust gas temperature, and means to actuate said throttle periodically during engine operation to an air flow restricting burn mode capable of raising the particulates in said filter to their combustion temperature under certain engine operating conditions and to maintain said throttle mode for an interval adequate to burn retained particulates in the filter.

  6. Diesel exhaust and asthma: hypotheses and molecular mechanisms of action.

    PubMed Central

    Pandya, Robert J; Solomon, Gina; Kinner, Amy; Balmes, John R

    2002-01-01

    Several components of air pollution have been linked to asthma. In addition to the well-studied critera air pollutants, such as nitrogen dioxide, sulfur dioxide, and ozone, diesel exhaust and diesel exhaust particles (DEPs) also appear to play a role in respiratory and allergic diseases. Diesel exhaust is composed of vapors, gases, and fine particles emitted by diesel-fueled compression-ignition engines. DEPs can act as nonspecific airway irritants at relatively high levels. At lower levels, DEPs promote release of specific cytokines, chemokines, immunoglobulins, and oxidants in the upper and lower airway. Release of these mediators of the allergic and inflammatory response initiates a cascade that can culminate in airway inflammation, mucus secretion, serum leakage into the airways, and bronchial smooth muscle contraction. DEPs also may promote expression of the T(subscript)H(/subscript)2 immunologic response phenotype that has been associated with asthma and allergic disease. DEPs appear to have greater immunologic effects in the presence of environmental allergens than they do alone. This immunologic evidence may help explain the epidemiologic studies indicating that children living along major trucking thoroughfares are at increased risk for asthmatic and allergic symptoms and are more likely to have objective evidence of respiratory dysfunction. PMID:11834468

  7. Diesel exhaust and asthma: hypotheses and molecular mechanisms of action.

    PubMed

    Pandya, Robert J; Solomon, Gina; Kinner, Amy; Balmes, John R

    2002-02-01

    Several components of air pollution have been linked to asthma. In addition to the well-studied critera air pollutants, such as nitrogen dioxide, sulfur dioxide, and ozone, diesel exhaust and diesel exhaust particles (DEPs) also appear to play a role in respiratory and allergic diseases. Diesel exhaust is composed of vapors, gases, and fine particles emitted by diesel-fueled compression-ignition engines. DEPs can act as nonspecific airway irritants at relatively high levels. At lower levels, DEPs promote release of specific cytokines, chemokines, immunoglobulins, and oxidants in the upper and lower airway. Release of these mediators of the allergic and inflammatory response initiates a cascade that can culminate in airway inflammation, mucus secretion, serum leakage into the airways, and bronchial smooth muscle contraction. DEPs also may promote expression of the T(subscript)H(/subscript)2 immunologic response phenotype that has been associated with asthma and allergic disease. DEPs appear to have greater immunologic effects in the presence of environmental allergens than they do alone. This immunologic evidence may help explain the epidemiologic studies indicating that children living along major trucking thoroughfares are at increased risk for asthmatic and allergic symptoms and are more likely to have objective evidence of respiratory dysfunction. PMID:11834468

  8. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  9. Diesel exhaust is a pulmonary carcinogen in rats exposed chronically by inhalation.

    PubMed

    Mauderly, J L; Jones, R K; Griffith, W C; Henderson, R F; McClellan, R O

    1987-08-01

    Male and female F344 rats were exposed 7 hr/day, 5 day/week for up to 30 months to automotive diesel engine exhaust at soot concentrations of 0.35, 3.5, or 7.0 mg/m3 or were sham-exposed to clean air. Rats were terminated at 6-month intervals to measure lung burdens of diesel soot and for histopathology. Other rats either died or were terminated after 30 months of exposure. Lungs were fixed, sectioned into 3-mm slices, and examined by a dissecting microscope to detect tumors. Lesions were stained and examined by light microscopy. Survival and body weight were unaffected by exposure. Focal fibrotic and proliferative lung disease accompanied a progressive accumulation of soot in the lung. The prevalence of lung tumors was significantly increased at the high (13%) and medium (4%) dose levels above the control prevalence (1%). Four tumor types, all of epithelial origin, were observed: adenoma, adenocarcinoma, squamous cyst, and squamous cell carcinoma. Logistic regression modeling demonstrated a significant relationship between tumor prevalence and both exposure concentration and soot lung burden. These results demonstrate that diesel exhaust, inhaled chronically at a high concentration, is a pulmonary carcinogen in the rat. PMID:2443412

  10. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. )

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance.

  11. Diesel emission reduction using internal exhaust gas recirculation

    DOEpatents

    He, Xin; Durrett, Russell P.

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  12. Monolith diesel exhaust filter with self-regeneration

    SciTech Connect

    Bly, K.B.; Gutwald, M.J.; Ludecke, O.A.

    1981-06-30

    A self-regenerating diesel engine exhaust particulate filter is disclosed that is comprised of, in a preferred embodiment, porous ceramic walls defining filter surfaces between adjacent inlet and outlet passages and having electric heating wires in the inlet passages to periodically initiate incineration of collected particulates therein. A movable shield is preferably provided to restrict gas flow through the various passages during their respective periods of incineration so as to provide periodic regeneration with a minimum expenditure of external energy.

  13. Diesel exhaust exposure in the Canadian railroad work environment.

    PubMed

    Verma, Dave K; Finkelstein, Murray M; Kurtz, Lawrence; Smolynec, Kathy; Eyre, Susan

    2003-01-01

    An investigation of occupational exposure to diesel exhaust, in terms of elemental carbon, was conducted as part of a feasibility study in the Canadian railroad industry. Both personal and area samples were collected from three major operating divisions of the railways: mechanical service, transportation, and engineering. A total of 255 elemental carbon samples have been described. The results show that all but six elemental carbon concentrations, expressed as size-selective respirable air samples taken using a 10 mm nylon cyclone, are well below the 2001 proposed American Conference of Governmental Industrial Hygienists' (ACGIH) threshold limit value (TLV) of 20 microg/m3. The concentration of diesel exhaust, expressed as elemental carbon, in the railroad industry is much lower than that in some other major industries such as mining and forklift truck operations. If the TLV is to be applicable to a broad range of workplace settings such as railroad, construction, and mining, the use of a TLV that is based on an elemental carbon measurement of size selective respirable samples, as recommended in the 2001 ACGIH proposal, would appear to be the most valid strategy for control of exposure to diesel exhaust. PMID:12650546

  14. CARBONYL CONTENT OF DIESEL EXHAUST FROM TWO SOURCES AND POSSIBLE IMPLICATIONS FOR CELL RESPONSES

    EPA Science Inventory

    Diesel exhaust is known to cause health effects including increases in lung inflammation and altered immunological parameters. The diesel exhausts used in our studies were collected into ice-cooled PBS from a diesel engine running at idle speed (DE2A) or at full load (DE5A). P...

  15. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  16. Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.

    PubMed

    Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B

    2010-01-01

    This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler. PMID:20711933

  17. Diesel engine exhaust trap particulate distribution and incineration balancing system

    SciTech Connect

    Mann, G. S.; Parker, W. J.; Tendulkar, D. V.

    1981-09-22

    A diesel particulate trapping and incineration system is disclosed that includes a porous wall monolithic ceramic filter element having dual openended inlet passages separated from adjacent exhaust passages by particulate filtering porous walls. A balancing system for the distribution and incineration of particulates is provided including dual inlet ducts feeding exhaust gases to both ends of the inlet passages and valve means for controlling the amount of inlet gas flow entering the open opposite ends of the inlet ducts. In this way control is obtained of distribution of particulates over the length of the inlet duct walls as well as of the incineration of particulates upon heating of the exhaust gases to incineration temperature.

  18. RISK ASSESSMENT OF THE INFLAMMOGENIC AND MUTAGENIC EFFECTS OF DIESEL EXHAUST PARTICLES: A SYSTEMS BIOLOGY APPROACH

    EPA Science Inventory

    Diesel exhaust particulate matter (DEP) is a ubiquitous ambient air contaminant derived from mobile and stationary diesel fuel combustion. Exposure to DEP is associated with carcinogenic and immunotoxic effects in humans and experimental animals. At the cellular level, these heal...

  19. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    SciTech Connect

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  20. Hydrocarbon emissions speciation in diesel and biodiesel exhausts

    NASA Astrophysics Data System (ADS)

    Payri, Francisco; Bermúdez, Vicente R.; Tormos, Bernardo; Linares, Waldemar G.

    Diesel engine emissions are composed of a long list of organic compounds, ranging from C 2 to C 12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic. The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed. Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed. The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum

  1. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  2. AUTOMOTIVE EXHAUST AND MOUSE ACTIVITY: RELATIONSHIPS BETWEEN POLLUTANT CONCENTRATIONS AND DECREASES IN WHEEL RUNNING

    EPA Science Inventory

    Groups of male and female mice inhaled either clean air, 100 ppm carbon monoxide, or light-irradiated and nonirridiated automotive exhaust containing nominally 25, 50, 75, or 100 ppm carbon monoxide in three tests with exposure lasting from 4 to 7 days. Exhaust from a factory or ...

  3. Are urinary PAHs biomarkers of controlled exposure to diesel exhaust?

    PubMed Central

    Lu, Sixin S.; Sobus, Jon R.; Sallsten, Gerd; Albin, Maria; Pleil, Joachim D.; Gudmundsson, Anders; Madden, Michael C.; Strandberg, Bo; Wierzbicka, Aneta; Rappaport, Stephen M.

    2016-01-01

    Urinary polycyclic aromatic hydrocarbons (PAHs) were evaluated as possible biomarkers of exposure to diesel exhaust (DE) in two controlled-chamber studies. We report levels of 14 PAHs from 28 subjects in urine that were collected before, immediately after and the morning after exposure. Using linear mixed-effects models, we tested for effects of DE exposure and several covariates (time, age, gender and urinary creatinine) on urinary PAH levels. DE exposures did not significantly alter urinary PAH levels. We conclude that urinary PAHs are not promising biomarkers of short-term exposures to DE in the range of 106–276 μg/m3. PMID:24754404

  4. Reduction in adverse effect on pulmonary function after exposure to filtered diesel exhaust

    SciTech Connect

    Ulfvarson, U.; Alexandersson, R. )

    1990-01-01

    A statistically significant temporary reduction on pulmonary function was measured with spirometry in stevedores on a roll-on-roll-off ro-ro ship who were exposed to diesel exhausts from trucks during a work shift. When all trucks were equipped with specially designed microfilters mounted on the exhaust pipes, this impairment in pulmonary function was reduced. Removal of the particulate fraction of the exhausts by filtering is an important factor in reducing the adverse effect of diesel exhaust on pulmonary function. The particle fraction should be considered when designing an indicator of the biological effects of diesel exhausts.

  5. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms.

    PubMed

    Steiner, Sandro; Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-07-01

    Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters. PMID:27165416

  6. Spatial Modeling of Diesel Exhaust Markers in South Seattle

    NASA Astrophysics Data System (ADS)

    Schulte, Jill Katherine

    Background: South Park and Georgetown, two of Seattle's most diverse and affordable neighborhoods, contain the primary commercial traffic corridors from the Port of Seattle to interstates and state highways. Residents of these communities have expressed concern about exposure to diesel exhaust emitted by the large number of commercial trucks that pass through their neighborhoods. The aim of this project was to model the spatial distribution of diesel exhaust markers at a fine scale across these neighborhoods using measurements from a high-density air sampling campaign. Methods: Two-week average concentrations of two markers of diesel exhaust, 1-nitropyrene (1-NP) and light-absorbing carbon (LAC), were measured in summer and winter at 24 sites. Land-use regression models were built using spatial characteristics of sampling sites, including land use and road density. Mobile source emissions predictions from the CAL3QHCR dispersion model were included in spatial models. Light-scattering particle concentrations measured by a mobile monitoring platform that drove through the neighborhoods were also included as model covariates. Model predictions were generated using land-use regression equations for a grid of points 50m apart across the study area. Universal kriging was applied to these grid points to generate a raster surface of the gradient of predictions. Results: 1-NP concentrations ranged from 0.263 pg/m 3 to 2.51 pg/m3 in summer and 1.11 pg/m3 to 5.71 pg/m3 in winter. LAC concentrations, measured as the absorption coefficient of collected fine particles, ranged from 4.31E-06 m -1 to 7.84E-06 m-1 in summer and 6.30E-06 m -1 to 9.42E-06 m-1 in winter. The summer 1-NP model had an R2 of 0.87 and a leave-one-out cross-validated R 2 of 0.73. No prediction model of winter 1-NP was identified. The LAC models had R2 values of 0.78 and 0.79 and leave-one-out-cross-validated R2 values of 0.66 and 0.70 for August and December, respectively. Conclusions: Spatial modeling was

  7. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A

    2011-09-01

    Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health

  8. Proinflammatory Effects of Diesel Exhaust Nanoparticles on Scleroderma Skin Cells

    PubMed Central

    Mastrofrancesco, A.; Alfè, M.; Rosato, E.; Gargiulo, V.; Beatrice, C.; Di Blasio, G.; Zhang, B.; Su, D. S.; Picardo, M.; Fiorito, S.

    2014-01-01

    Autoimmune diseases are complex disorders of unknown etiology thought to result from interactions between genetic and environmental factors. We aimed to verify whether environmental pollution from diesel engine exhaust nanoparticulate (DEP) of actually operating vehicles could play a role in the development of a rare immune-mediated disease, systemic sclerosis (SSc), in which the pathogenetic role of environment has been highlighted. The effects of carbon-based nanoparticulate collected at the exhaust of newer (Euro 5) and older (Euro 4) diesel engines on SSc skin keratinocytes and fibroblasts were evaluated in vitro by assessing the mRNA expression of inflammatory cytokines (IL-1α, IL-6, IL-8, and TNF-α) and fibroblast chemical mediators (metalloproteases 2, 3, 7, 9, and 12; collagen types I and III; VEGF). DEP was shown to stimulate cytokine gene expression at a higher extent in SSc keratinocytes versus normal cells. Moreover, the mRNA gene expression of all MMPs, collagen types, and VEGF genes was significantly higher in untreated SSc fibroblasts versus controls. Euro 5 particle exposure increased the mRNA expression of MMP-2, -7, and -9 in SSc fibroblasts in a dose dependent manner and only at the highest concentration in normal cells. We suggest that environmental DEP could trigger the development of SSc acting on genetically hyperreactive cell systems. PMID:24982919

  9. The Diesel Exhaust in Miners Study: A Nested Case–Control Study of Lung Cancer and Diesel Exhaust

    PubMed Central

    Samanic, Claudine M.; Lubin, Jay H.; Blair, Aaron E.; Stewart, Patricia A.; Vermeulen, Roel; Coble, Joseph B.; Rothman, Nathaniel; Schleiff, Patricia L.; Travis, William D.; Ziegler, Regina G.; Wacholder, Sholom; Attfield, Michael D.

    2012-01-01

    Background Most studies of the association between diesel exhaust exposure and lung cancer suggest a modest, but consistent, increased risk. However, to our knowledge, no study to date has had quantitative data on historical diesel exposure coupled with adequate sample size to evaluate the exposure–response relationship between diesel exhaust and lung cancer. Our purpose was to evaluate the relationship between quantitative estimates of exposure to diesel exhaust and lung cancer mortality after adjustment for smoking and other potential confounders. Methods We conducted a nested case–control study in a cohort of 12 315 workers in eight non-metal mining facilities, which included 198 lung cancer deaths and 562 incidence density–sampled control subjects. For each case subject, we selected up to four control subjects, individually matched on mining facility, sex, race/ethnicity, and birth year (within 5 years), from all workers who were alive before the day the case subject died. We estimated diesel exhaust exposure, represented by respirable elemental carbon (REC), by job and year, for each subject, based on an extensive retrospective exposure assessment at each mining facility. We conducted both categorical and continuous regression analyses adjusted for cigarette smoking and other potential confounding variables (eg, history of employment in high-risk occupations for lung cancer and a history of respiratory disease) to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Analyses were both unlagged and lagged to exclude recent exposure such as that occurring in the 15 years directly before the date of death (case subjects)/reference date (control subjects). All statistical tests were two-sided. Results We observed statistically significant increasing trends in lung cancer risk with increasing cumulative REC and average REC intensity. Cumulative REC, lagged 15 years, yielded a statistically significant positive gradient in lung cancer risk overall

  10. Respiratory effects of diesel exhaust in salt miners

    SciTech Connect

    Gamble, J.F.; Jones, W.G.

    1983-09-01

    The respiratory health of 259 white males working at 5 salt (NaCl) mines was assessed by questionnaire, chest radiographs, and air and He-O/sup 2/ spirometry. Response variables were symptoms, pneumoconiosis, and spirometry. Predictor variables included age, height, smoking, mine, and tenure in diesel-exposed jobs. The purpose was to assess the association of response measures of respiratory health with exposure to diesel exhaust. There were only 2 cases of Grade 1 pneumoconiosis, so no further analysis was done. Comparisons within the study population showed a statistically significant dose-related association of phlegm and diesel exposure. There was a nonsignificant trend for cough and dyspnea, and no association with spirometry. Age- and smoking-adjusted rates of cough, phlegm, and dyspnea were 145, 159, and 93% of an external comparison population. Percent predicted flow rates showed statistically significant reductions, but the reductions were small and there were no dose-response relations. Percent predicted FEV1 and FVC were about 96% of predicted.

  11. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    NASA Astrophysics Data System (ADS)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  12. Ecotoxicity and genotoxicity assessment of exhaust particulates from diesel-powered buses.

    PubMed

    Kováts, Nora; Acs, András; Ferincz, Arpád; Kovács, Anikó; Horváth, Eszter; Kakasi, Balázs; Jancsek-Turóczi, Beatrix; Gelencsér, András

    2013-10-01

    Diesel exhaust is one of the major sources of fine and ultra-fine particulate matter in urban air. Toxicity of diesel-powered engine emissions has been quite widely assessed; however, much less information is available on their ecotoxicity. In our study, the kinetic version of the Vibrio fischeri bioluminescence inhibition bioassay based on the ISO 21338:2010 standard was used to characterise the ecotoxicity of diesel-powered buses. It is a direct contact test in which solid samples are tested in suspension and test organisms are in direct contact with toxic particles. The age of the selected buses fell into a wide range; the oldest one was produced in 1987. Diesel engines of different emission standards (Euro0-Euro4) were included. Measured EC50 values of Euro0-Euro1 engine emissions fell into the same range, 1.24-0.96 μg ml(-1), respectively. On the contrary, emission of Euro4 vehicle proved to be non-toxic. Genotoxic potential of the samples was also estimated, using the colorimetric SOS-chromotest™. Genotoxicity was detected also for Euro0 and Euro1 buses, showing correlation with the ecotoxic potential. The fact that the particulates from Euro4 vehicles did not show ecotoxic/genotoxic effect implies that replacing old Euro1 and Euro2 buses can be a highly effective solution for reducing environmental hazard of automotive emissions. The whole-aerosol testing method is a cheap alternative that can be used in engine developments and emission control. PMID:23609923

  13. PHYSIOLOGICAL, CELLULAR, AND BIOCHEMICAL EFFECTS OF DIESEL EXHAUST IN HEALTHY YOUNG ADULTS

    EPA Science Inventory

    Diesel exhaust is a major source of pollution especially in urban areas. The contribution of the diesel exhaust particles and gases to increases in deaths, asthma symptoms, lung infections, and other health effects is unclear. This study will examine the lung, blood, heart, and o...

  14. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    NASA Technical Reports Server (NTRS)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  15. BIOLOGIC EFFECTS OF INHALED DIESEL EXHAUST IN YOUNG AND OLD MICE: A PILOT PROJECT

    EPA Science Inventory

    The investigators hypothesis is that TNF-a production will be shown to be impaired in old animals exposed to diesel exhaust. The investigators extend  their hypothesis to suggest that exposure to diesel exhaust may differentially affect molecules involved in i...

  16. DIESEL EXHAUST RESEARCH: WHAT HAS IT TOLD US ABOUT AMBIENT ORGANIC PM TOXICITY.

    EPA Science Inventory

    Diesel exhaust is a complex mixture of components which includes organic gaseous and particulate material. Sources of the exhaust are derived from both on road and off road engines. Use of diesel fuel continues to increase in the US and globally, though the development and use o...

  17. Determination of aldehydes and ketones with high atmospheric reactivity on diesel exhaust using a biofuel from animal fats

    NASA Astrophysics Data System (ADS)

    Ballesteros, R.; Monedero, E.; Guillén-Flores, J.

    2011-05-01

    Biodiesel from animal fats appears as an alternative for conventional diesel in automotive consumption. Animal fats are classified into three categories, although only one of them can be used for biodiesel production, according to regulation. Due to its novelty, researchers testing animal-fat biodiesel on diesel engines focus only on regulated emissions. In this paper, the experiments carried out analyze carbonyl compounds emissions, due to its highly atmospheric reactivity, to complete the characterization of the total emissions in this kind of biofuel. Two fuels, a reference petro-diesel and a pure animal-fat biodiesel, were tested in a 4-cylinder, direct injection, diesel engine Nissan Euro 5 M1D-Bk. Samples were collected in 4 different operating modes and 3 points along the exhaust line. The analyses of samples were made in a high performance liquid chromatography, following the method recommended by the CARB to analyze air quality. Results show, on the one hand, a significant rise in carbonyl emissions, almost three times at the mode with highest hydrocarbon emissions, when biodiesel is used. On the other hand, on average, a reduction of 90% of carbonyl emissions when exhaust gases go through the different post-treatment systems installed. Despite this reduction, specific reactivity does not decrease substantially.

  18. Generation and characterization of diesel exhaust in a facility for controlled human exposures

    EPA Science Inventory

    An idling medium-duty diesel truck operated on ultralow sulfur diesel fuel was used as an emission source to generate diesel exhaust for controlled human exposure. Repeat tests were conducted on the Federal Test Procedure using a chassis dynamometer to demonstrate the reproducibi...

  19. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust.

    PubMed

    Mauderly, J L; Bice, D E; Cheng, Y S; Gillett, N A; Henderson, R F; Pickrell, J A; Wolff, R K

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance. The elastase treatment resulted in pulmonary emphysema that was manifested by enlarged alveoli and alveolar ducts, and by ruptured alveolar septa. There was no accompanying inflammation and no

  20. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    PubMed Central

    2010-01-01

    Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust

  1. Acoustic Optimization of Automotive Exhaust Heat Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Ye, B. Q.; Guo, X.; Hui, P.

    2012-06-01

    The potential for thermoelectric exhaust heat recovery in vehicles has been increasing with recent advances in the efficiency of thermoelectric generators (TEGs). This study analyzes the acoustic attenuation performance of exhaust-based TEGs. The acoustic characteristics of two different thermal designs of exhaust gas heat exchanger in TEGs are discussed in terms of transmission loss and acoustic insertion loss. GT-Power simulations and bench tests on a dynamometer with a high-performance production engine are carried out. Results indicate that the acoustic attenuation of TEGs could be determined and optimized. In addition, the feasibility of integration of exhaust-based TEGs and engine mufflers into the exhaust line is tested, which can help to reduce space and improve vehicle integration.

  2. Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Popovicheva, Olga; Kireeva, Elena; Müller, Loretta; Heeb, Norbert; Mayer, Andreas; Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air-liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that - at least RME - can be considered a valuable alternative to pure fossil diesel.

  3. Occupational exposure to diesel engine exhaust: A literature review

    PubMed Central

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia

    2010-01-01

    Background Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Methods Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO2). Information on determinants of exposure was abstracted. Results In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO2 measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles, and 68% from off-road vehicles (30% mining, 15% railroad, and 22% other). Highest levels were reported for enclosed underground work sites where heavy equipment is used: mining, mine maintenance, and construction, (EC: 27-658 μg/m3). Intermediate exposure levels were generally reported for above ground (semi-)enclosed areas where smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC< 50 μg/m3). Lowest levels were reported for enclosed areas separated from the source such as drivers and train crew, or outside such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 μg/m3). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Conclusions Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above ground (semi-)enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population

  4. Occupational exposure to diesel engine exhaust: a literature review.

    PubMed

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A

    2009-07-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC<50 microg/m(3)). Lowest levels were reported for enclosed areas separated from the source, such as drivers and train crew, or outside, such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 microg/m(3)). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population

  5. Corrosion of muffler materials in automotive exhaust gas condensates

    SciTech Connect

    Ujiro, Takumi; Kitazawa, Makoto; Togashi, Fusao . Iron and Steel Research Lab.)

    1994-12-01

    The corrosion of automotive mufflers collected in North America was investigated. Aluminum (Al)-plated steels corroded severely in the substrate under the Al plating. Type 409 (UNS S40900) stainless steels sustained a large number of pits. The effects of ions in the condensate and activated carbon on the corrosion resistance of muffler materials were studied with a newly developed condensate corrosion test.

  6. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  7. The Diesel Exhaust in Miners Study: IV. Estimating Historical Exposures to Diesel Exhaust in Underground Non-metal Mining Facilities

    PubMed Central

    Vermeulen, Roel; Coble, Joseph B.; Lubin, Jay H.; Portengen, Lützen; Blair, Aaron; Attfield, Michael D.; Silverman, Debra T.

    2010-01-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998–2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m3 min−1), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP1990+) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947–1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP1990+). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC estimates) generated from

  8. The Diesel Exhaust in Miners Study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    PubMed

    Vermeulen, Roel; Coble, Joseph B; Lubin, Jay H; Portengen, Lützen; Blair, Aaron; Attfield, Michael D; Silverman, Debra T; Stewart, Patricia A

    2010-10-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998-2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m³ min⁻¹), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP₁₉₉₀(+)) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947-1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP₁₉₉₀(+)). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC

  9. Tracking personal exposure to particulate diesel exhaust in a diesel freight terminal using organic tracer analysis

    PubMed Central

    SHEESLEY, REBECCA J.; SCHAUER, JAMES J.; GARSHICK, ERIC; LADEN, FRANCINE; SMITH, THOMAS J.; BLICHARZ, ANDREW P.; DEMINTER, JEFFREY T.

    2008-01-01

    Personal exposure to particle-phase molecular markers was measured at a trucking terminal in St Louis, MO, as part of a larger epidemiologic project aimed at assessing carbonaceous fine particulate matter (PM) exposure in this occupational setting. The integration of parallel personal exposure, ambient worksite area and ambient urban background (St Louis Supersite) measurements provided a unique opportunity to track the work-related exposure to carbonaceous fine PM in a freight terminal. The data were used to test the proposed personal exposure model in this occupational setting: Personal exposure=urban background+work site background+personal activity To accurately assess the impact of PM emission sources, particularly motor vehicle exhaust, and organic elemental carbon (OCEC) analysis and nonpolar organic molecular marker analysis by thermal desorption-gas chromatography/mass spectrometry (TD-GCMS) were conducted on all of the PM samples. EC has been used as a tracer for diesel exhaust in urban areas, however, the emission profile for diesel exhaust is dependent upon the operating conditions of the vehicle and can vary considerably within a fleet. Hopanes, steranes, polycyclic aromatic hydrocarbons and alkanes were measured by TD-GCMS. Hopanes are source-specific organic molecular markers for lubricating oil present in motor vehicle exhaust. The concentrations of OC, EC and the organic tracers were averaged to obtain average profiles to assess differences in the personal, worksite area and urban background samples, and were also correlated individually by sample time to evaluate the exposure model presented above. Finally, a chemical mass balance model was used to apportion the motor vehicle and cigarette-smoke components of the measured OC and EC for the average personal exposure, worksite area and urban background samples. PMID:18322451

  10. Tracking personal exposure to particulate diesel exhaust in a diesel freight terminal using organic tracer analysis.

    PubMed

    Sheesley, Rebecca J; Schauer, James J; Garshick, Eric; Laden, Francine; Smith, Thomas J; Blicharz, Andrew P; Deminter, Jeffrey T

    2009-02-01

    Personal exposure to particle-phase molecular markers was measured at a trucking terminal in St Louis, MO, as part of a larger epidemiologic project aimed at assessing carbonaceous fine particulate matter (PM) exposure in this occupational setting. The integration of parallel personal exposure, ambient worksite area and ambient urban background (St Louis Supersite) measurements provided a unique opportunity to track the work-related exposure to carbonaceous fine PM in a freight terminal. The data were used to test the proposed personal exposure model in this occupational setting: To accurately assess the impact of PM emission sources, particularly motor vehicle exhaust, and organic elemental carbon (OCEC) analysis and nonpolar organic molecular marker analysis by thermal desorption-gas chromatography/mass spectrometry (TD-GCMS) were conducted on all of the PM samples. EC has been used as a tracer for diesel exhaust in urban areas, however, the emission profile for diesel exhaust is dependent upon the operating conditions of the vehicle and can vary considerably within a fleet. Hopanes, steranes, polycyclic aromatic hydrocarbons and alkanes were measured by TD-GCMS. Hopanes are source-specific organic molecular markers for lubricating oil present in motor vehicle exhaust. The concentrations of OC, EC and the organic tracers were averaged to obtain average profiles to assess differences in the personal, worksite area and urban background samples, and were also correlated individually by sample time to evaluate the exposure model presented above. Finally, a chemical mass balance model was used to apportion the motor vehicle and cigarette-smoke components of the measured OC and EC for the average personal exposure, worksite area and urban background samples. PMID:18322451

  11. Short-term exposure of rodents to diesel exhausts: usefulness for studies of genotoxic and immunotoxic effects.

    PubMed

    Nilsen, A; Trønnes, T; Westerholm, R; Rannug, U; Nilsen, O G; Helleberg, H; Kautiainen, A; Hedenskog, M; Törnqvist, M

    1999-03-01

    An exposure facility was tested with regard to the information obtainable from short-term animal experiments for the assessment of health hazards from automotive engine exhausts. Indicators of immunotoxicity and genotoxicity were studied in guinea pigs and mice, respectively, exposed for 2 weeks, 8 h/day, to ten times diluted exhausts from a one-cylinder research diesel engine running at constant load. Regulated and non-regulated pollutants were determined. Besides increased number of lavageable cells in the airways, exposed guinea pigs exhibited, after immunization and challenge to ovalbumin, reduced leukotrienes B4 and C4 in lavage fluid and reduced anti-ovalbumin IgG in serum. Absence of increased CYP1A activity indicated that the exposure was below the threshold for induction of these enzymes. Instead a certain reduction of this activity indicated interaction with active enzyme sites. In vivo doses of some reactive metabolites of low molecular mass were measured by adducts to hemoglobin. Doses from aliphatic epoxides were low, in accordance with low hydrocarbon levels in the exhaust. The levels of hemoglobin adducts from aldehydes showed no clearcut influences of exposure. Genetic effects determined by DNA fingerprint analysis were indicated. It is concluded that repeated dose inhalation exposure of small numbers of animals is a useful mode of exposure for studying parameters that may elucidate toxic effects of air pollutants emitted from automotive engines, with a possibility to evaluate engine and fuel with regard to health hazards. PMID:10227576

  12. Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.

    PubMed Central

    Castranova, V; Ma, J Y; Yang, H M; Antonini, J M; Butterworth, L; Barger, M W; Roberts, J; Ma, J K

    2001-01-01

    There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposure to diesel exhaust particles on these alveolar macrophage functions and the role of adsorbed organic chemicals compared to the carbonaceous core in the toxicity of diesel particles. In vitro exposure of rat alveolar macrophages to diesel exhaust particles decreased the ability of lipopolysaccharide (LPS), a bacterial product] to stimulate the production of inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). Methanol extract exhibited this potential but methanol-washed diesel particles did not. Exposure of rats to diesel exhaust particles by intratracheal instillation also decreased LPS-induced TNF-alpha and IL-1 production from alveolar macrophages. In contrast, carbon black did not exhibit this inhibitory effect. Exposure of rats to diesel exhaust particles by inhalation decreased the ability of alveolar macrophages to produce antimicrobial reactive oxidant species in response to zymosan (a fungal component). In contrast, exposure to coal dust increased zymosan-stimulated oxidant production. In vivo exposure to diesel exhaust particles but not to carbon black decreased the ability of the lungs to clear bacteria. Inhalation exposure of mice to diesel exhaust particles but not to coal dust depressed the ability of the lung to produce the antiviral agent interferon and increased viral multiplication in the lung. These results support the hypothesis that exposure to diesel exhaust particles increases the susceptibility of the lung to infection by depressing the antimicrobial potential of alveolar macrophages. This inhibitory effect appears

  13. Automotive exhaust and mouse activity: relationships between pollutant concentrations and decreases in wheel running.

    PubMed

    Gage, M I

    1979-01-01

    Groups of male and female mice inhaled either clean air, 100 ppm carbon monoxide, or light-irradiated and nonirradiated automotive exhaust containing nominally 25, 50, 75, or 100 ppm carbon monoxide in three tests with exposure lasting from 4 to 7 days. Exhaust from a factory or lean-tuned engine in the first and third tests reversibly suppressed activity wheel running during exposure in mice of both sexes by as much as 78.3 and 83.1%, respectively. Light-irradiated exhaust suppressed running more than nonirradiated exhaust. For the second test, when the engine was tuned to be low in pollutants other than carbon monoxide, exhaust did not suppress running. Exposure to carbon monoxide alone only slightly decreased running in male mice, but increased running in female mice. PMID:88208

  14. Conductometric soot sensor for automotive exhausts: initial studies.

    PubMed

    Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf

    2010-01-01

    In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction. PMID:22294888

  15. Inhalation of diesel exhaust induces acute arterial vasocontruction in healthy volunteers

    EPA Science Inventory

    Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Diesel exhaust particles (DE) are a major contributor to PM in urban areas. Advanced age and certain polymorphisms are among...

  16. Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles

    EPA Science Inventory

    Background -Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown. Objective -We hypothesized that episodic exposure of rats to ozone or diesel exhaust particles (DEP) will cause differential cardiovascular impairments, which will b...

  17. *GAS-PHASE AND PARTICULATE COMPONENTS OF DIESEL EXHAUST PRODUCE DIFFERENTIAL CARDIOPHYSIOLOGICAL IMPAIRMENTS IN HEALTHY RATS

    EPA Science Inventory

    We recently showed that inhalation exposure of normotensive Wistar Kyoto (WKY) rats to whole diesel exhaust (DE) elicited changes in cardiac gene expression pattern that broadly mimicked gene expression in non-exposed spontaneously hypertensive rats. We hypothesized that healthy ...

  18. One-Month Diesel Exhaust Inhalation Produces Hypertensive Gene Expression Phenotype in Healthy Rats

    EPA Science Inventory

    Exposure to diesel exhaust (DE) is linked to vasoconstriction, endothelial 26 dysfunction, and myocardial ischemia in compromised individuals. We hypothesized that DE 27 inhalation would cause greater inflammation, hematological alterations, and cardiac molecular 28 impairment ...

  19. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection.

    EPA Science Inventory

    Background: Viral infections and exposure to oxidant air pollutants are two ofthe most important inducers ofasthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial ce...

  20. DIESEL EXHAUST PARTICLES INDUCE ABERRANT ALVEOLAR EPITHELIAL DIRECTED CELL MOVEMENT BY DISRUPTION OF POLARITY MECHANISMS

    EPA Science Inventory

    Disruption of the respiratory epithelium contributes to the progression of a variety of respiratory diseases that are aggravated by exposure to air pollutants, specifically traffic-based pollutants such as diesel exhaust particles (DEP). Recognizing that lung repair following inj...

  1. Identification of Surrogate Measures of Diesel Exhaust Exposure in a Controlled Chamber Study

    EPA Science Inventory

    Exposure to diesel exhaust (DE) has been associated with acute cardiopulmonary and vascular responses, chronic noncancer health effects, and respiratory cancers in humans. To better understand DE exposures and eventually their related health effects, we established a controlled c...

  2. Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats.

    PubMed Central

    Watanabe, N; Oonuki, Y

    1999-01-01

    We conducted experiments to determine whether diesel engine exhaust affects reproductive endocrine function in growing rats. The rats were assigned to three groups: a group exposed to total diesel engine exhaust containing 5.63 mg/m3 particulate matter, 4.10 ppm nitrogen dioxide, and 8.10 ppm nitrogen oxide; a group exposed to filtered exhaust without particulate matter; and a group exposed to clean air. Dosing experiments were performed for 3 months beginning at birth (6 hr/day for 5 days/week). Serum levels of testosterone and estradiol were significantly higher in animals exposed to total diesel exhaust and filtered exhaust (p < 0.05 for each group) as compared to the controls. Follicle-stimulating hormone was significantly decreased in the two groups exposed to diesel exhaust as compared to the control group (p < 0.05). Luteinizing hormone was significantly decreased in the total exhaust-exposed group as compared to the control and filtered groups (p < 0.05). Although testis weight did not show any significant difference among the groups, sperm production and activity of testicular hyaluronidase were significantly reduced in both exhaust-exposed groups as compared to the control group. Histological examination showed decreased numbers of step 18 and 19 spermatids in stage VI, VII, and VIII tubules in the testes of both diesel exhaust-exposed groups. This study suggests that diesel exhaust stimulates hormonal secretion of the adrenal cortex, depresses gonadotropin-releasing-hormone, and inhibits spermatogenesis in rats. Because these effects were not inhibited by filtration, the gaseous phase of the exhaust appears to be more responsible than particulate matter for disrupting the endocrine system. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10379000

  3. Effects on symptoms and lung function in humans experimentally exposed to diesel exhaust.

    PubMed Central

    Rudell, B; Ledin, M C; Hammarström, U; Stjernberg, N; Lundbäck, B; Sandström, T

    1996-01-01

    OBJECTIVES: Diesel exhaust is a common air pollutant made up of several gases, hydrocarbons, and particles. An experimental study was carried out which was designed to evaluate if a particle trap on the tail pipe of an idling diesel engine would reduce effects on symptoms and lung function caused by the diesel exhaust, compared with exposure to unfiltered exhaust. METHODS: Twelve healthy non-smoking volunteers (aged 20-37) were investigated in an exposure chamber for one hour during light work on a bicycle ergometer at 75 W. Each subject underwent three separate double blind exposures in a randomised sequence: to air and to diesel exhaust with the particle trap at the tail pipe and to unfiltered diesel exhaust. Symptoms were recorded according to the Borg scale before, every 10 minutes during, and 30 minutes after the exposure. Lung function was measured with a computerised whole body plethysmograph. RESULTS: The ceramic wall flow particle trap reduced the number of particles by 46%, whereas other compounds were relatively constant. It was shown that the most prominent symptoms during exposure to diesel exhaust were irritation of the eyes and nose and an unpleasant smell increasing during exposure. Both airway resistance (R(aw)) and specific airway resistance (SR(aw)) increased significantly during the exposures to diesel exhaust. Despite the 46% reduction in particle numbers by the trap effects on symptoms and lung function were not significantly attenuated. CONCLUSION: Exposure to diesel exhaust caused symptoms and bronchoconstriction which were not significantly reduced by a particle trap. PMID:8943829

  4. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    SciTech Connect

    Ibrahim, Essam; Szybist, James P; Parks, II, James E

    2010-01-01

    In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

  5. Lab-scale Lidar Sensing of Diesel Engines Exhausts

    NASA Technical Reports Server (NTRS)

    Borghese, A.

    1992-01-01

    Combustion technology and its environmental concerns are being considered with increasing attention, not only for global-scale effects, but also for toxicological implications, particularly in the lift conditions of traffic-congested areas and industrial sites. Majority combustion by-products (CO, NO(sub x)) and unburned hydrocarbons (HC), are already subject to increasingly severe regulations; however other, non-regulated minority species, mainly soot and heavy aromatic molecules, involve higher health risks, as they are suspected to be agents of serious pathologies and even mutagenic effects. This is but one of the reasons why much research work is being carried out worldwide on the physical properties of these substances. Correspondingly, the need arises to detect their presence in urban environments, with as high a sensitivity as is required by their low concentrations, proper time- and space-resolutions, and 'real-time' capabilities. Lidar techniques are excellent candidates to this purpose, although severe constraints limit their applicability, eye-safety problems and aerosol Mie scattering uncertainties above all. At CNR's Istituto Motori in Napels, a Lidar-like diagnostic system is being developed, aimed primarily at monitoring the dynamic behavior of internal combustion engines, particularly diesel exhausts, and at exploring the feasibility of a so-called 'Downtown Lidar'.

  6. Inhibition of catalase activity in vitro by diesel exhaust particles

    SciTech Connect

    Mori, Yoki; Murakami, Sumika; Sagae, Toshiyuki

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular anti-oxidant, was investigated because H{sub 2}O{sub 2} is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl{sup {minus}}, Br{sup {minus}}, or thiocyanate. Other anions, such as CH{sub 3}COO{sup {minus}} or SO{sub 4}{sup {minus}}, and cations such as K{sup +}, Na{sup +}, Mg{sup 2+}, or Fe{sup 2+}, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H{sub 2}O{sub 2} generated from cells in addition to that of O{sub 2}{sup {minus}} generated by the chemical reaction of DEP with oxygen. 10 refs., 6 figs.

  7. Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure.

    PubMed

    Steiner, Sandro; Mueller, Loretta; Popovicheva, Olga B; Raemy, David O; Czerwinski, Jan; Comte, Pierre; Mayer, Andreas; Gehr, Peter; Rothen-Rutishauser, Barbara; Clift, Martin J D

    2012-10-17

    The aim of this study was to compare the biological response of a sophisticated in vitro 3D co-culture model of the epithelial airway barrier to a co-exposure of CeO(2) NPs and diesel exhaust using a realistic air-liquid exposure system. Independent of the individual effects of either diesel exhaust or CeO(2) NPs investigation observed that a combined exposure of CeO(2) NPs and diesel exhaust did not cause a significant cytotoxic effect or alter cellular morphology after exposure to diesel exhaust for 2h at 20μg/ml (low dose) or for 6h at 60μg/ml (high dose), and a subsequent 6h exposure to an aerosolized solution of CeO(2) NPs at the same doses. A significant loss in the reduced intracellular glutathione level was recorded, although a significant increase in the oxidative marker HMOX-1 was found after exposure to a low and high dose respectively. Both the gene expression and protein release of tumour necrosis factor-α were significantly elevated after a high dose exposure only. In conclusion, CeO(2) NPs, in combination with diesel exhaust, can significantly interfere with the cell machinery, indicating a specific, potentially adverse role of CeO(2) NPs in regards to the biological response of diesel exhaust exposure. PMID:22960666

  8. DNA adducts induced by in vitro activation of diesel and biodiesel exhaust extracts

    EPA Science Inventory

    The abstract reports the results of studies assessing the relative DNA damage potential of extracts of exhaust particles resulting from the combustion of petroleum diesel, biodiesel, and petroleum diesel-biodiesel blends. Results indicate that the commercially available B20 petr...

  9. REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I

    EPA Science Inventory

    Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...

  10. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  11. Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-α and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that DPFs may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.

  12. Influence of MTBE addition into gasoline on automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Poulopoulos, S.; Philippopoulos, C.

    The effect of methyl-t-butyl ether (MTBE) addition into gasoline on the exhaust emissions from internal combustion engines was studied. A four-cylinder OPEL 1.6 l engine equipped with a hydraulic brake dynamometer was used in all the experiments. Fuels containing 0.0-11.0% MTBE were used in a wide range of engine operations, and the exhaust gases were analyzed for CO, HC (total unburned hydrocarbons, methane, ethylene) and MTBE, before and after their catalytic treatment by a three-way catalytic converter. The addition of MTBE into gasoline resulted in a decrease in CO and HC emissions only at high engine loading. During cold-start up of the engine, MTBE, HC, CO emissions were significant and increased with MTBE addition into fuel. At the catalytic converter outlet MTBE was detected when its concentration in fuels was greater than 8% and only as long as the catalytic converter operates at low temperatures. Methane and ethylene emissions were comparable for all fuels tested at engine outlet, but methane emissions remained almost at the same level while ethylene emissions were significantly decreased by the catalytic converter.

  13. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation

    PubMed Central

    Mills, Nicholas L.; Miller, Mark R.; Lucking, Andrew J.; Beveridge, Jon; Flint, Laura; Boere, A. John F.; Fokkens, Paul H.; Boon, Nicholas A.; Sandstrom, Thomas; Blomberg, Anders; Duffin, Rodger; Donaldson, Ken; Hadoke, Patrick W.F.; Cassee, Flemming R.; Newby, David E.

    2011-01-01

    Aim Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. Methods and results To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 ± 4 vs. 133 ± 3 mmHg, P< 0.05) and attenuated vasodilatation to bradykinin (P= 0.005), acetylcholine (P= 0.008), and sodium nitroprusside (P< 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n= 6–9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P< 0.001) and sodium-nitroprusside (P= 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate. Conclusion Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions. PMID:21753226

  14. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    SciTech Connect

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSD 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.

  15. ALTERED FUNCTION AND HISTOLOGY IN GUINEA PIGS AFTER INHALATION OF DIESEL EXHAUST

    EPA Science Inventory

    Health effects of inhaled diesel engine exhaust were evaluated in infant guinea pigs following 4 and 8 weeks of exposure. Animals were exposed to 1 part exhaust diluted by 13 parts clean air for 20 hr/day, 7 days/week. Lung function, electrocardiogram, growth rate, and histopatho...

  16. Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions

    PubMed Central

    Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.

    2015-01-01

    Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5

  17. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    PubMed

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions. PMID:24471707

  18. Neighborhood-Scale Spatial Models of Diesel Exhaust Concentration Profile Using 1-Nitropyrene and Other Nitroarenes.

    PubMed

    Schulte, Jill K; Fox, Julie R; Oron, Assaf P; Larson, Timothy V; Simpson, Christopher D; Paulsen, Michael; Beaudet, Nancy; Kaufman, Joel D; Magzamen, Sheryl

    2015-11-17

    With emerging evidence that diesel exhaust exposure poses distinct risks to human health, the need for fine-scale models of diesel exhaust pollutants is growing. We modeled the spatial distribution of several nitrated polycyclic aromatic hydrocarbons (NPAHs) to identify fine-scale gradients in diesel exhaust pollution in two Seattle, WA neighborhoods. Our modeling approach fused land-use regression, meteorological dispersion modeling, and pollutant monitoring from both fixed and mobile platforms. We applied these modeling techniques to concentrations of 1-nitropyrene (1-NP), a highly specific diesel exhaust marker, at the neighborhood scale. We developed models of two additional nitroarenes present in secondary organic aerosol: 2-nitropyrene and 2-nitrofluoranthene. Summer predictors of 1-NP, including distance to railroad, truck emissions, and mobile black carbon measurements, showed a greater specificity to diesel sources than predictors of other NPAHs. Winter sampling results did not yield stable models, likely due to regional mixing of pollutants in turbulent weather conditions. The model of summer 1-NP had an R(2) of 0.87 and cross-validated R(2) of 0.73. The synthesis of high-density sampling and hybrid modeling was successful in predicting diesel exhaust pollution at a very fine scale and identifying clear gradients in NPAH concentrations within urban neighborhoods. PMID:26501773

  19. Generation and characterization of diesel exhaust in a facility for controlled human exposures.

    PubMed

    Sawant, Aniket A; Cocker, David R; Miller, J Wayne; Taliaferro, Tony; Diaz-Sanchez, David; Linn, William S; Clark, Kenneth W; Gong, Henry

    2008-06-01

    An idling medium-duty diesel truck operated on ultralow sulfur diesel fuel was used as an emission source to generate diesel exhaust for controlled human exposure. Repeat tests were conducted on the Federal Test Procedure using a chassis dynamometer to demonstrate the reproducibility of this vehicle as a source of diesel emissions. Exhaust was supplied to a specially constructed exposure chamber at a target concentration of 100 microg x m(-3) diesel particulate matter (DPM). Spatial variability within the chamber was negligible, whereas emission concentrations were stable, reproducible, and similar to concentrations observed on the dynamometer. Measurements of nitric oxide, nitrogen dioxide, carbon monoxide, particulate matter (PM), elemental and organic carbon, carbonyls, trace elements, and polycyclic aromatic hydrocarbons were made during exposures of both healthy and asthmatic volunteers to DPM and control conditions. The effect of the so-called "personal cloud" on total PM mass concentrations was also observed and accounted for. Conventional lung function tests in 11 volunteer subjects (7 stable asthmatic) did not demonstrate a significant change after 2-hr exposures to diesel exhaust. In summary, we demonstrated that this facility can be effectively and safely used to evaluate acute responses to diesel exhaust exposure in human volunteers. PMID:18581813

  20. Peribronchiolar fibrosis in lungs of cats chronically exposed to diesel exhaust

    SciTech Connect

    Hyde, D.M.; Plopper, C.G.; Weir, A.J.; Murnane, R.D.; Warren, D.L.; Last, J.A.; Pepelko, W.E.

    1985-02-01

    This study reports the quantitative changes in the pulmonary proximal acinar region following chronic exposure to diesel exhaust and following an additional 6 months in clean air. Cats (13 months of age) from a minimum disease colony were exposed to clean air (eight cats for 27 months and nine cats for 33 months), diesel exhaust for 8 hours/day, 7 days/week (nine cats for 27 months), or diesel exhaust for 27 months followed by 6 months in clean air (10 cats). Morphologic and morphometric evaluation using light microscopy and scanning and transmission electron microscopy revealed two major exposure-related lesions in proximal acinar regions of lungs of cats: peribronchiolar fibrosis associated with significant increases in lymphocytes, fibroblasts, and interstitial macrophages containing diesel particulate-like inclusions and bronchiolar epithelial metaplasia associated with the presence of ciliated and basal cells and alveolar macrophages containing diesel particulate-like inclusions. Peribronchiolar fibrosis was greater at the end of the 6 months in clean air following exposure, whereas the bronchiolar epithelial metaplasia was most severe at the end of exposure. Following an additional 6 months in clean air the epithelium more closely resembled the control epithelial cell population. The labeling index of terminal bronchiolar epithelium was significantly increased at the end of exposure but was not significantly different from controls or exposed cats following an additional 6 months in clean air. The ultrastructural appearance of epithelial cells remained relatively unchanged following diesel exhaust exposure with the exception of diesel particulate-like inclusions.

  1. Factors and Trends Affecting the Identification of a Reliable Biomarker for Diesel Exhaust Exposure

    PubMed Central

    2014-01-01

    The monitoring of human exposures to diesel exhaust continues to be a vexing problem for specialists seeking information on the potential health effects of this ubiquitous combustion product. Exposure biomarkers have yielded a potential solution to this problem by providing a direct measure of an individual's contact with key components in the exhaust stream. Spurred by the advent of new, highly sensitive, analytical methods capable of detecting substances at very low levels, there have been numerous attempts at identifying a stable and specific biomarker. Despite these new techniques, there is currently no foolproof method for unambiguously separating diesel exhaust exposures from those arising from other combustion sources. Diesel exhaust is a highly complex mixture of solid, liquid, and gaseous components whose exact composition can be affected by many variables, including engine technology, fuel composition, operating conditions, and photochemical aging. These factors together with those related to exposure methodology, epidemiological necessity, and regulatory reform can have a decided impact on the success or failure of future research aimed at identifying a suitable biomarker of exposure. The objective of this review is to examine existing information on exposure biomarkers for diesel exhaust and to identify those factors and trends that have had an impact on the successful identification of metrics for both occupational and community settings. The information will provide interested parties with a template for more thoroughly understanding those factors affecting diesel exhaust emissions and for identifying those substances and research approaches holding the greatest promise for future success. PMID:25170242

  2. Measurement of Organic Compounds in Diesel and Gasoline Engine Exhaust using Thermal Desorption PTR-MS

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Gueneron, M.; Erickson, M. H.; Vanderschelden, G. S.

    2013-12-01

    A proton transfer reaction mass spectrometer modified with a thermal desorption sampler was used to measure organic compounds in diesel and gasoline engine exhaust in a laboratory setting. The drift tube was operated at 80 Td, providing an M+1 and M-1 mass spectrum for the most abundant constituents of the exhaust including alkenes, cycloalkanes, bicycloalkanes, monoaromatics, and naphthenic monoaromatic compounds. Alkanes were observed to fragment to a common set of ions. Use of the thermal desorption sampler enabled the total concentration of C10-C17 alkanes to be determined. The abundance of higher molecular weight cycloalkanes, bicycloalkanes, napthenic monoaromatics, and larger C10-C17 alkanes was much greater in diesel exhaust, allowing for a distinct source fingerprint pattern to distinguish diesel from gasoline exhaust. Use of the finger print source profiles allowed us to quantify the relative amounts of diesel and gasoline exhaust in mixtures, suggesting its utility to determine the relative contributions of gasoline and diesel engine exhaust to hydrocarbon concentrations in urban areas.

  3. Factors and Trends Affecting the Identification of a Reliable Biomarker for Diesel Exhaust Exposure.

    PubMed

    Morgott, David A

    2014-08-01

    The monitoring of human exposures to diesel exhaust continues to be a vexing problem for specialists seeking information on the potential health effects of this ubiquitous combustion product. Exposure biomarkers have yielded a potential solution to this problem by providing a direct measure of an individual's contact with key components in the exhaust stream. Spurred by the advent of new, highly sensitive, analytical methods capable of detecting substances at very low levels, there have been numerous attempts at identifying a stable and specific biomarker. Despite these new techniques, there is currently no foolproof method for unambiguously separating diesel exhaust exposures from those arising from other combustion sources. Diesel exhaust is a highly complex mixture of solid, liquid, and gaseous components whose exact composition can be affected by many variables, including engine technology, fuel composition, operating conditions, and photochemical aging. These factors together with those related to exposure methodology, epidemiological necessity, and regulatory reform can have a decided impact on the success or failure of future research aimed at identifying a suitable biomarker of exposure. The objective of this review is to examine existing information on exposure biomarkers for diesel exhaust and to identify those factors and trends that have had an impact on the successful identification of metrics for both occupational and community settings. The information will provide interested parties with a template for more thoroughly understanding those factors affecting diesel exhaust emissions and for identifying those substances and research approaches holding the greatest promise for future success. PMID:25170242

  4. RESPONSES OF CULTURED HUMAN AIRWAY EPITHELIAL CELLS TREATED WITH DIESEL EXHAUST EXTRACTS WILL VARY WITH THE ENGINE

    EPA Science Inventory

    Epidemiologic evidence suggests that increased morbidity and mortality are associated with the concentrations of ambient air particulate matter (PM). Many sources contribute to the particulate fraction of ambient pollution, including diesel exhaust particulates (DEP). Diesel ex...

  5. Pulmonary effects of inhaled diesel exhaust in aged mice

    SciTech Connect

    Sunil, Vasanthi R.; Patel, Kinal J.; Mainelis, Gediminas; Turpin, Barbara J.; Ridgely, Sherritta; Laumbach, Robert J.; Kipen, Howard M.; Nazarenko, Yevgen; Veleeparambil, Manoj; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2009-12-15

    Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 mug/m{sup 3}) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFalpha) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE.

  6. Pulmonary effects of inhaled diesel exhaust in aged mice

    PubMed Central

    Sunil, Vasanthi R.; Patel, Kinal J.; Mainelis, Gediminas; Turpin, Barbara J.; Ridgely, Sherritta; Laumbach, Robert J.; Kipen, Howard M.; Nazarenko, Yevgen; Veleeparambil, Manoj; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-01-01

    Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 μg/m3) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFα) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE. PMID:19729031

  7. Effects of diesel engine exhaust on pulmonary alveolar macrophages

    SciTech Connect

    Chen, S.; Weller, M.A.; Barnhart, M.I.

    1980-01-01

    The in vivo effects of inhalation of diesel engine exhaust (DEE) on pulmonary alveolar macrophages (PAM) was studied in 73 guinea pigs and 48 rats. Animals were exposed in individual cages in special chambers to 3 different dose levels of DEE expressed in terms of the concentration of soot or carbon particles (-P); 250, 1500, 6000 micrograms DEE-P/M3. Exposure durations for guinea pigs were 1 and 3 days, 1 and 2 weeks, 2, 4, 8 and 12 months while rats were exposed 1, 2, 4, 8 and 12 months. Age matched controls were similarly exposed concurrently to clean air. PAM obtained by bronchopulmonary lavage from exposed animals had viabilities comparable to controls. PAM diameters and relative surface areas increased 2 to 3 fold over controls and in relation to both the dose of DEE-P given and the exposure duration. Most of the in vivo exposed PAM had phagocytized DEE-P which did not appear to be cytotoxic and remained confined in phagosomes as discrete particles with diameters of 0.014 to 0.072 micrometer. Ability of PAM to adhere and spread on test surfaces was greater in the DEE-P sets than in controls. DEE-P containing PAM were still able to phagocytize latex particles when fed in vitro. However, such PAM had defective phagocytosis ability, and did not in the same time interval take up as much fluorescent latex as controls when studied by flow system technology. Absolute numbers of PAM in guinea pig lavages from exposures to 250 and 1500 microgram DEE-P/M3 for 2 months were not significantly changed over concurrent controls. Exudative leukocytes (eosinophils in guinea pigs and neutrophils in rats) appeared in the lavage in greater numbers as dose and duration of exposure increased. Another species difference was the appearance in DEE-P exposed guinea pig lavages of reactive monocytes.

  8. Changes in atherosclerotic plaques induced by inhalation of diesel exhaust

    PubMed Central

    Bai, Ni; Kido, Takashi; Suzuki, Hisashi; Yang, Grace; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; van Breemen, Cornelis; van Eeden, Stephan F.

    2015-01-01

    Objective Exposure to particulate matter air pollution may be an independent risk factor for cardiovascular morbidity and mortality; however, the biological mechanisms are unclear. We hypothesize that exposure to diesel exhaust (DE), an important source of traffic-related particulate air pollution, promotes changes of atherosclerotic plaque component that may lead to plaque vulnerability. Methods and results 30-week old ApoE knockout mice fed with regular chow inhaled DE (at 200 μg/m3 of particulate) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week) (12 mice/group). Total number of alveolar macrophages (p < 0.01) and alveolar macrophages positive for particles (p < 0.0001) were more than 8-fold higher after DE inhalation than the control. DE inhalation caused 1.5 to 3-fold increases in plaque lipid content (p<0.02), cellularity (p<0.02), foam cell formation (p<0.04), and smooth muscle cell content (p<0.05). The expression of oxidative stress markers, iNOS, CD36, and nitrotyrosine was significantly increased by 1.5 to 2-fold in plaques, with enhanced systemic lipid and DNA oxidation (p<0.02). Increased foam cells and the expression of iNOS (R2 = 0.72, p = 0.0081) and CD36 (R2 = 0.49, p = 0.015) in plaques were positively correlated with the magnitude of DE exposure. Conclusions Exposure to DE promotes changes in atherosclerotic plaques characteristic of unstable vulnerable plaques. Increased systemic and plaque oxidative stress markers suggest that these changes in plaques could be due to DE-induced oxidative stress. PMID:21435644

  9. Predictive models for deposition of inhaled diesel exhaust particles in humans and laboratory species

    SciTech Connect

    Yu, C.P.; Xu, G.B. )

    1987-01-01

    Mathematical and computer models of the respiratory tracts of human beings and of laboratory animals (rats, hamsters, guinea pigs) were used to estimate the deposition patterns of inhaled diesel exhaust particles from automobile emissions. Our goal was to be able to predict the relation between exposure to diesel exhaust particles and the deposition of these particles in the lungs of humans of various ages. Diesel exhaust particles are aggregates with a mass median aerodynamic diameter of approximately 0.2 micron. Their actual size depends on the conditions under which they are generated. Using an appropriate particle model, we derived mathematical expressions that describe the effects of diffusion, sedimentation, impaction, and interception on the deposition of these particles. Because of their small size, we found that most diesel exhaust particles deposited through diffusion, and that the role of the other mechanisms was minor. Anatomical models of the human lung from birth to adulthood, as well as models of the lungs of laboratory species were formulated mathematically using available morphometric data. We used these lung models, together with the corresponding ventilation conditions of each species, to calculate deposition of diesel exhaust particles in the lungs. Under normal breathing conditions, we calculated that 7 to 13 percent (depending on particle size) of inhaled diesel exhaust particles deposit in the alveolar region of the adult human lung. Although the breathing mode (nose or mouth breathing) did not appear to affect alveolar deposition, increasing the minute ventilation increased alveolar deposition significantly. The calculated deposition patterns for diesel exhaust particles in younger humans (under age 25) were similar.

  10. Influence of preexisting pulmonary emphysema on susceptibility of rats to inhaled diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Griffith, W.C.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. )

    1990-05-01

    The susceptibilities of normal rats and rats with preexisting pulmonary emphysema to chronically inhaled diesel exhaust were compared. Rats were exposed 7 h/day, 5 days/wk for 24 months to diesel exhaust at 3.5 mg soot/m3, or to clean air as controls. Emphysema was induced in one-half of the rats by intratracheal instillation of elastase 6 wk before exhaust exposure. Measurements included lung burdens of diesel soot, respiratory function, bronchoalveolar lavage, clearance of radiolabeled particles, pulmonary immune responses, lung collagen, excised lung weight and volume, histopathology, and mean linear intercept of terminal air spaces. Parameters indicated by analysis of variance to exhibit significant interactions between the influences of emphysema and exhaust were examined to determine if the effects were more than additive (indicating increased susceptibility). Although 14 of 63 parameters demonstrated emphysema-exhaust interactions, none indicated increased susceptibility. Less soot accumulated in lungs of emphysematous rats than in those of nonemphysematous rats, and the reduced accumulation had a sparing effect in the emphysematous rats. The results did not support the hypothesis that emphysematous lungs are more susceptible than are normal lungs to chronic exposure to high levels of diesel exhaust. The superimposition of effects of emphysema and exhaust, however, might still warrant special concern for heavy exposures of emphysematous subjects.

  11. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT II, MECHANICAL TRANSMISSIONS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) PURPOSE OF TRANSMISSIONS, (2) RATIO DIFFERENCE, (3) CONSTANT MESH TRANSMISSIONS, (4) FOUR-SPEED TRUCK TRANSMISSION POWER FLOW, AND (5) TRANSMISSION TROUBLESHOOTING.…

  12. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIX, LEARNING ABOUT CRANKING MOTORS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF CRANKING MOTORS USED ON DIESEL POWERED EQUIPMENT, TOPICS ARE (1) CRANKING MOTORS. (2) MOTOR PINCIPLES, (3) CRANKING MOTOR CIRCUITS, (4) TYPES OF CRANKING MOTOR DRIVES, AND (5) CRANKING MOTOR SOLENOID CIRCUITS. THE MODULE CONSISTS OF A…

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IX, ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, FUNCTION, AND MAINTENANCE OF DIESEL ENGINE CRANKSHAFTS, CAMSHAFTS, AND ASSOCIATED BEARINGS. TOPICS ARE SHAFTS AND BEARINGS, CAMSHAFTS, BEARINGS AND THEIR MAINTENANCE, AND DETECTING FAILURE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED…

  14. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT I, UNDERSTANDING MECHANICAL CLUTCHES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    ONE OF A 25-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINENANCE MECHANICS THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO DEVELOP AN UNDERSTANDING OF COMPONENTS, OPERATION, AND ADJUSTMENTS…

  15. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIV, UNDERSTANDING DC GENERATOR PRINCIPLES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF DIRECT CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) WHAT IS A GENERATOR AND ITS USE, (2) SHUNT GENERATOR PRINCIPLES, (3) POWER AND RATINGS OF A GENERATOR, (4) ARMATURE REACTION, (5) WHAT IS POLARITY, (6) TWO GENERATOR…

  16. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XX, TROUBLESHOOTING ELECTRICAL SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO ACQUAINT THE TRAINEE WITH TROUBLESHOOTING PROCEDURES FOR DIESEL ENGINE ELECTRICAL SYSTEMS. TOPICS ARE (1) TROUBLESHOOTING ELECTRICAL SYSTEMS (INTRODUCTION), (2) TOOLS AND INSTRUMENTS FOR TROUBLESHOOTING, (3) THE BATTERY, (4) PERIODIC BATTERY SERVICING, (5) THE DC CHARGING SYSTEM, (6) PERIODIC…

  17. X-Ray Absorption Characterization of Diesel Exhaust Particulates

    SciTech Connect

    Nelson, A J; Ferreira, J L; Reynolds, J G; Roos, J W

    1999-11-18

    We have characterized particulates from a 1993 11.1 Detroit Diesel Series 60 engine with electronic unit injectors operated using fuels with and without methylcyclopentadienyl manganese tricarbonyl (MMT) and overbased calcium sulfonate added. X-ray photoabsorption (XAS) spectroscopy was used to characterize the diesel particulates. Results reveal a mixture of primarily Mn-phosphate with some Mn-oxide, and Ca-sulfate on the surface of the filtered particulates from the diesel engine.

  18. Exhaust emissions of DI diesel engine using unconventional fuels

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  19. Validation of the dynamic direct exposure method for toxicity testing of diesel exhaust in vitro.

    PubMed

    Joeng, Lucky; Hayes, Amanda; Bakand, Shahnaz

    2013-01-01

    Diesel exhaust emission is a major health concern because of the complex nature of its gaseous content (e.g., NO2, NO, CO, and CO2) and high concentration of particulate matter (PM) less than 2.5  μ m which allows for deeper penetration into the human pulmonary system upon inhalation. The aim of this research was to elucidate the potential toxic effects of diesel exhaust on a human pulmonary-based cellular system. Validation of a dynamic direct exposure method for both laboratory (230 hp Volvo truck engine) and field (Volkswagen Passat passenger car) diesel engines, at idle mode, was implemented. Human pulmonary type II epithelial cells (A549) grown on porous membranes were exposed to unmodified diesel exhaust at a low flow rate (37.5 mL/min). In parallel, diesel emission sampling was also conducted using real-time air monitoring techniques. Induced cellular effects were assessed using a range of in vitro cytotoxicity assays (MTS, ATP, and NRU). Reduction of cell viability was observed in a time-dependent manner following 30-60 mins of exposure with NRU as the most sensitive assay. The results suggest that the dynamic direct exposure method has the potential to be implemented for both laboratory- and field-based in vitro toxicity studies of diesel exhaust emissions. PMID:23986878

  20. Validation of the Dynamic Direct Exposure Method for Toxicity Testing of Diesel Exhaust In Vitro

    PubMed Central

    Hayes, Amanda; Bakand, Shahnaz

    2013-01-01

    Diesel exhaust emission is a major health concern because of the complex nature of its gaseous content (e.g., NO2, NO, CO, and CO2) and high concentration of particulate matter (PM) less than 2.5 μm which allows for deeper penetration into the human pulmonary system upon inhalation. The aim of this research was to elucidate the potential toxic effects of diesel exhaust on a human pulmonary-based cellular system. Validation of a dynamic direct exposure method for both laboratory (230 hp Volvo truck engine) and field (Volkswagen Passat passenger car) diesel engines, at idle mode, was implemented. Human pulmonary type II epithelial cells (A549) grown on porous membranes were exposed to unmodified diesel exhaust at a low flow rate (37.5 mL/min). In parallel, diesel emission sampling was also conducted using real-time air monitoring techniques. Induced cellular effects were assessed using a range of in vitro cytotoxicity assays (MTS, ATP, and NRU). Reduction of cell viability was observed in a time-dependent manner following 30–60 mins of exposure with NRU as the most sensitive assay. The results suggest that the dynamic direct exposure method has the potential to be implemented for both laboratory- and field-based in vitro toxicity studies of diesel exhaust emissions. PMID:23986878

  1. Retrospective cohort study of lung cancer and diesel exhaust exposure in railroad workers

    SciTech Connect

    Garshick, E.; Schenker, M.B.; Munoz, A.; Segal, M.; Smith, T.J.; Woskie, S.R.; Hammond, S.K.; Speizer, F.E.

    1988-04-01

    The risk of lung cancer as a result of exposure to diesel exhaust from railroad locomotives was assessed in a cohort of 55,407 white male railroad workers 40 to 64 yr of age in 1959 who had started railroad service 10 to 20 years earlier. The cohort was traced until the end of 1980, and death certificates were obtained for 88% of 19,396 deaths; 1694 lung cancer cases were identified. Yearly railroad job from 1959 to death or retirement was available from the Railroad Retirement Board, and served as an index of diesel exhaust exposure. Directly standardized rates and a proportional hazards model were used to calculate the relative risk of lung cancer based on work in a job with diesel exhaust exposure beginning in 1959. A relative risk of 1.45 (95% CI = 1.11, 1.89) for lung cancer was obtained in the group of workers 40 to 44 yr of age in 1959, the group with the longest possible duration of diesel exposure. The cohort was selected to minimize the effect of past railroad asbestos exposure, and analysis with workers with possible asbestos exposure excluded resulted in a similarly elevated risk. Workers with 20 yr or more elapsed since 1959, the effective start of diesel exposure for the cohort, had the highest relative risk. These results taken in conjunction with other reported results support the hypothesis that occupational exposure to diesel exhaust results in a small but significantly elevated risk for lung cancer.

  2. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    SciTech Connect

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

  3. The Effects of Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee Olfaction.

    PubMed

    Lusebrink, Inka; Girling, Robbie D; Farthing, Emily; Newman, Tracey A; Jackson, Chris W; Poppy, Guy M

    2015-10-01

    There is growing evidence of a substantial decline in pollinators within Europe and North America, most likely caused by multiple factors such as diseases, poor nutrition, habitat loss, insecticides, and environmental pollution. Diesel exhaust could be a contributing factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, which honey bees require for flower recognition. In this study, we exposed eight of the most common floral volatiles to diesel exhaust in order to investigate whether it can affect volatile mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common flower volatiles significantly: myrcene was considerably reduced, β-ocimene became undetectable, and β-caryophyllene was transformed into its cis-isomer isocaryophyllene. Proboscis extension response (PER) assays showed that the alterations of the blend reduced the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of diesel exhaust gas was identified as capable of causing degradation of floral volatiles. PMID:26424685

  4. Lung cancer and diesel exhaust: an updated critical review of the occupational epidemiology literature

    PubMed Central

    Gamble, John F.; Nicolich, Mark J.; Boffetta, Paolo

    2012-01-01

    A recent review concluded that the evidence from epidemiology studies was indeterminate and that additional studies were required to support the diesel exhaust-lung cancer hypothesis. This updated review includes seven recent studies. Two population-based studies concluded that significant exposure-response (E-R) trends between cumulative diesel exhaust and lung cancer were unlikely to be entirely explained by bias or confounding. Those studies have quality data on life-style risk factors, but do not allow definitive conclusions because of inconsistent E-R trends, qualitative exposure estimates and exposure misclassification (insufficient latency based on job title), and selection bias from low participation rates. Non-definitive results are consistent with the larger body of population studies. An NCI/NIOSH cohort mortality and nested case-control study of non-metal miners have some surrogate-based quantitative diesel exposure estimates (including highest exposure measured as respirable elemental carbon (REC) in the workplace) and smoking histories. The authors concluded that diesel exhaust may cause lung cancer. Nonetheless, the results are non-definitive because the conclusions are based on E-R patterns where high exposures were deleted to achieve significant results, where a posteriori adjustments were made to augment results, and where inappropriate adjustments were made for the “negative confounding” effects of smoking even though current smoking was not associated with diesel exposure and therefore could not be a confounder. Three cohort studies of bus drivers and truck drivers are in effect air pollution studies without estimates of diesel exhaust exposure and so are not sufficient for assessing the lung cancer-diesel exhaust hypothesis. Results from all occupational cohort studies with quantitative estimates of exposure have limitations, including weak and inconsistent E-R associations that could be explained by bias, confounding or chance, exposure

  5. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  6. Research Approach for Aging and Evaluating Diesel Exhaust catalysts

    SciTech Connect

    Wayne, Scott

    2000-08-20

    To determine the impact of diesel fuel sulfur levels on emissions control devices that could lower emissions of oxides of nitrogen (NOX) and particulate matter (PM) from on-highway trucks and buses in the 2002-2004 model years. West Virginia University is evaluating: - Diesel Oxidation Catalysts - Lean NOX Catalysts

  7. The impact of using biodiesel/marine gas oil blends on exhaust emissions from a stationary diesel engine.

    PubMed

    Karavalakis, G; Tzirakis, E; Mattheou, L; Stournas, S; Zannikos, F; Karonis, D

    2008-12-01

    The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO(2) emissions was observed. Emissions of NO(x) were also lower with respect to MGO. This reduction in NO(x) may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter. PMID:18988104

  8. Pulmonary function in workers exposed to diesel exhausts: The effect of control measures

    SciTech Connect

    Ulfvarson, U.; Alexandersson, R.; Dahlqvist, M.; Ekholm, U.; Bergstroem, B. )

    1991-01-01

    To assess the protective effect of exhausts pipe filters or respirators on pulmonary function, 15 workers in a tunnel construction site, truck and loading machine drivers, rock workers, and others were studied. The total and respirable dust, combustible matter in respirable dust, carbon monoxide, nitrogen monoxide and nitrogen dioxide were measured for each subject during entire work shifts. The effect of the exposure on the lung function variables was measured by dynamic spirometry, carbon monoxide single breath technique, and nitrogen single breath wash-out. The exhaust pipe filtering had a protective effect, directly discernible in the drivers on vital capacity and FEV1.0 and for the whole group on FEV% and TLco. The dust respirators had no effect, probably because of the difficulties in correctly using personal protection under the circumstances in the tunnel. In the absence of a true exposure assessment, control measures for diesel exhausts can be tested by medical effect studies. Catalytic particle filters of diesel exhausts are one method of rendering the emissions less irritant, although they will not remove irritant gases. An indicator of diesel exhaust exposure should include the particle fraction of the diesel exhausts, but a discrimination between different sources of organic dust must be possible.

  9. Estimation of the diesel exhaust exposures of railroad workers. II. National and historical exposures

    SciTech Connect

    Woskie, S.R.; Smith, T.J.; Hammond, S.K.; Schenker, M.B.; Garshick, E.; Speizer, F.E.

    1988-01-01

    The diesel exhaust exposures of railroad workers in thirteen job groups from four railroads in the United States were used to estimate U.S. national average exposures with a linear statistical model which accounts for the significant variability in exposure caused by climate, the differences among railroads and the uneven distribution of railroad workers across climatic regions. Personal measurements of respirable particulate matter, adjusted to remove the contribution of cigarette smoke particles, were used as a marker for diesel exhaust. The estimated national means of adjusted respirable particulate matter (ARP) averaged 10 micrograms/m3 lower than the simple means for each job group, reflecting the climatic differences between the northern railroads studied and the distribution of railroad workers nationally. Limited historical records, including some industrial hygiene data, were used to evaluate past diesel exhaust exposures, which were estimated to be approximately constant from the 1950's to 1983.

  10. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants.

    PubMed

    Ryu, Kyunghyun

    2010-01-01

    The aim of this study is to investigate the effects of antioxidants on the oxidation stability of biodiesel fuel, the engine performance and the exhaust emissions of a diesel engine. Biodiesel fuel used in the study was derived from soybean oil. The results show that the efficiency of antioxidants is in the order TBHQ>PrG>BHA>BHT>alpha-tocopherol. The oxidative stability of biodiesel fuel attained the 6-h quality standard with 100 ppm TBHQ and with 300 ppm PrG in biodiesel fuel. Combustion characteristics and exhaust emissions in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. The BSFC of biodiesel fuel with antioxidants decreased more than that of biodiesel fuel without antioxidants, but no trends were observed according to the type or amount of antioxidant. Antioxidants had few effects on the exhaust emissions of a diesel engine running on biodiesel. PMID:19525107

  11. Removal of Nitrogen Oxides in Diesel Engine Exhaust by Plasma Assisted Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Rajanikanth, B. S.; Ravi, V.

    2002-08-01

    This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200 °C. The studies were conducted at different temperatures and the results were discussed.

  12. The masculinization of the fetus during pregnancy due to inhalation of diesel exhaust.

    PubMed Central

    Watanabe, N; Kurita, M

    2001-01-01

    This study was conducted to determine the impact of diesel exhaust inhalation on the fetus. Seventy-two pregnant rats and 18 nonpregnant rats were divided into three groups: a group exposed to total diesel engine exhaust containing 5.63 mg/m(3) particulate matter, 4.10 ppm nitrogen dioxide, and 8.10 ppm nitrogen oxide; a group exposed to filtered exhaust without particulate matter; and a group exposed to clean air. The exposure period was from day 7 until day 20 of pregnancy. In addition, 15 pregnant rats were treated with aromatase inhibitors or testosterone to clarify the process by which diesel exhaust exerts its toxicity. The anogenital distance was significantly longer in male and female fetuses from both exhaust-exposed groups than in those of the control. Differentiation of the testis, ovary, and thymus was delayed and disturbed. Maternal testosterone and progesterone levels, which increased due to pregnancy whether or not the rats were exposed, were significantly higher and lower, respectively, in the pregnant rats exposed to total exhaust and filtered exhaust. The serum adrenocorticotropic hormone (ACTH) level and urinary excretion of 17-hydroxycorticosteroids (OHCS) did not differ among the pregnant groups. These results indicate that elevated testosterone did not result from elevated maternal adrenal function. The feto-placental-ovarian unit and inhibition of aromatase activity and synthesis caused by diesel exhaust inhalation might have played an essential role in the accumulation of testosterone. Since both exhaust-exposed groups showed almost the same reactions toward the inhalation, the gaseous phase must have included the relevant toxicants. PMID:11266319

  13. HEALTH EFFECTS OF DIESEL EXHAUST: AN HEI PERSPECTIVE

    SciTech Connect

    Warren, Jane

    2000-08-20

    Diesel engines have many advantages, including good fuel economy, power, durability, lower emissions of some pollutants (such as carbon monoxide) and of carbon dioxide (a greenhouse gas). However, there are a number of concerns that need to be addressed: (1) emissions of nitrogen oxides (which contribute to ozone formation) and of particulate matter (PM); (2) questions about cancer and other health effects from exposure to diesel PM; and (3) as efforts to decrease emissions progress, a need to understand whether the nature and toxicity of the PM emitted has changed. This paper focuses on (1) carcinogenicity data, (2) noncancer effects, and (3) diesel as part of the complex ambient mixture of PM.

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  16. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  17. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  18. [Exposure to nanoparticle-rich diesel exhaust affects hippocampal functions in mice].

    PubMed

    Win-Shwe, Tin Tin; Fujitani, Yuji; Hirano, Seishiro; Fujimaki, Hidekazu

    2011-09-01

    Epidemiological studies have indicated associations between day-to-day particulate air pollution and increased risks of various adverse health outcomes. Although an association between exposure to diesel exhaust particles (DEPs) and the development of pulmonary inflammation has been reported, there are limited reports on the neurotoxic effects of DEPs, particularly those of nanoparticle-rich diesel exhaust (NRDE). In this minireview, we highlighted the effects of NRDE which was generated in the National Institute for Environmental Studies, on hippocampus-dependent spatial learning ability and the expression of memory-function-related genes, neurotrophins, and proinflammatory cytokines in a mouse model. PMID:21996758

  19. Pulmonary Effects of Inhaled Diesel Exhaust in Young and Old Mice: A Pilot Project

    PubMed Central

    Laskin, Debra L.; Mainelis, Gedi; Turpin, Barbara; Patel, Kinal J.; Sunil, Vasanthi R.

    2015-01-01

    It is well established that exposure to ambient fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality and that elderly individuals are particularly susceptible to these effects. We speculated that increased susceptibility of the elderly to PM is due to altered production of inflammatory mediators and antioxidants in the lung and pilot studies were performed to test this hypothesis. For these studies we used diesel exhaust, a major component of urban PM as a model. Animals (CB6F1 male mice; 2 m and 18 m) were exposed to air or diesel exhaust at 300 or 1000 µg/m3 for 3 h one time (single) or 3 h/day for 3 consecutive days (repeated). Bronchoalveolar lavage (BAL) fluid, serum and lung tissue were collected 0 and 24 h later. Following single or repeated diesel exhaust exposure, persistent structural alterations and inflammation were observed in the lungs of older mice. This consisted of patchy thickening of alveolar septa and an increase in the number of neutrophils and macrophages in alveolar spaces. In contrast, no major alterations in lung histology were noted in younger mice. In older, but not younger mice, significant increases in expression of the oxidative stress marker, lipocalin 24p3 were also observed. In both younger and older mice, exposure to diesel exhaust was associated with increased expression of TNFα in the lung. However, this response was attenuated in older mice. Exposure to high dose diesel exhaust resulted in significant increases in IL-6 and IL-8 mRNA expression in lungs of older animals which persisted for 24 h. Whereas IL-6 was also upregulated in younger mice after diesel exhaust exposure, no major effects were evident on expression of IL-8 mRNA. Expression of the antioxidant manganese superoxide dismutase (MnSOD) was decreased in lung tissue from younger animals after exposure to DE (single or repeated). In contrast, constitutive expression of MnSOD was not evident in lungs of older mice, and

  20. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust.

    PubMed

    Zarcone, Maria C; Duistermaat, Evert; van Schadewijk, Annemarie; Jedynska, Aleksandra; Hiemstra, Pieter S; Kooter, Ingeborg M

    2016-07-01

    Diesel emissions are the main source of air pollution in urban areas, and diesel exposure is linked with substantial adverse health effects. In vitro diesel exposure models are considered a suitable tool for understanding these effects. Here we aimed to use a controlled in vitro exposure system to whole diesel exhaust to study the effect of whole diesel exhaust concentration and exposure duration on mucociliary differentiated human primary bronchial epithelial cells (PBEC). PBEC cultured at the air-liquid interface were exposed for 60 to 375 min to three different dilutions of diesel exhaust (DE). The DE mixture was generated by an engine at 47% load, and characterized for particulate matter size and distribution and chemical and gas composition. Cytotoxicity and epithelial barrier function was assessed, as well as mRNA expression and protein release analysis. DE caused a significant dose-dependent increase in expression of oxidative stress markers (HMOX1 and NQO1; n = 4) at 6 h after 150 min exposure. Furthermore, DE significantly increased the expression of the markers of the integrated stress response CHOP and GADD34 and of the proinflammatory chemokine CXCL8, as well as release of CXCL8 protein. Cytotoxic effects or effects on epithelial barrier function were observed only after prolonged exposures to the highest DE dose. These results demonstrate the suitability of our model and that exposure dose and duration and time of analysis postexposure are main determinants for the effects of DE on differentiated primary human airway epithelial cells. PMID:27190060

  1. A comparison of genotoxicity of automotive exhaust particles from laboratory and environmental sources.

    PubMed

    Brooks, A L; Li, A P; Dutcher, J S; Clark, C R; Rothenberg, S J; Kiyoura, R; Bechtold, W E; McClellan, R O

    1984-01-01

    This research (1) ranked the genotoxicity of methylene chloride extracts of laboratory and environmentally collected particles and (2) evaluated the role of collection location and sample composition on genotoxic potency. Samples of exhaust from a spark-ignition automobile, light-duty diesel automobile, and a heavy-duty diesel engine operated in a laboratory on a dynamometer were studied, as well as samples taken in a highway tunnel and outside the same tunnel. The tunnel samples were collected 30 m inside or 56 m outside the exit portal at times when between 70%-95% of the traffic consisted of diesel trucks. In the Ames Salmonella mutagenicity assay, each extract produced a dose-dependent increase in mutagenicity in strain TA-98 without addition of liver S-9 fraction. Extracts from two tunnel samples collected 1 yr apart, and extracts of particles collected outside the tunnel had similar mutagenic activity. The order of mutagenic activity per microgram of extract in TA-98 without S-9 from the lowest to the highest was environmental sample less than or equal to tunnel less than heavy-duty diesel less than light-duty diesel less than spark ignition. Addition of S-9 or testing in Salmonella strains resistant to the mutagenicity of nitroaromatic compounds (TA-98 NR and TA-98 1,8-DNP6) decreased the mutagenic response. With cell killing, sister chromatid exchanges, and mutations as endpoints in Chinese hamster ovary cells (CHO), the order of potency was tunnel less than light-duty less than spark-ignition samples. All three extracts induced a similar amount of mitotic delay per microgram with or without S-9. Enhanced chromosome aberration frequency was detected only in cells exposed to extracts from spark-ignition exhaust. The data indicated that genotoxic activity was detected in each particle extract, that the potency ranking was similar using different genetic endpoints, and that the magnitude of the genotoxic potency was similar. PMID:6207015

  2. Intergranular corrosion of Type 409 stainless steel used in automotive exhaust applications

    SciTech Connect

    Brossia, C.S.; Martin, K.L.

    1998-12-31

    Automotive exhaust systems must meet increasingly stringent lifetime requirements, and thus the incorporation of stainless steels (primarily ferritic) has increased. One of the failure mechanisms that is rarely encountered, but does occur, is intergranular corrosion. Intergranular corrosion of ferritic stainless steels is believed to occur via a similar mechanism as is observed in austenitic stainless, namely precipitation of chromium-carbon nitride (Cr-C/N) particles at the grain boundaries leading to Cr-depleted regions. In the present study, the effect of thermal history (including heat treatment, welding and post-weld heat treatment) and alloy chemistry on the level of sensitization of Type 409SS were examined.

  3. Reducing Children's Exposure to School Bus Diesel Exhaust in One School District in North Carolina

    ERIC Educational Resources Information Center

    Mazer, Mary E.; Jacobson Vann, Julie C.; Lamanna, Beth F.; Davison, Jean

    2014-01-01

    Children who are exposed to diesel exhaust from idling school buses are at increased risk of asthma exacerbation, decreased lung function, immunologic reactions, leukemia, and increased susceptibility to infections. Policies and initiatives that aim to protect school children from the harmful effects of exposure to diesel exhaust range from…

  4. MUTAGENICITY OF DIESEL-EXHAUST PARTICLE EXTRACTS COLLECTED UNDER SMOG-CHAMBER CONDITIONS USING THE 'SALMONELLA TYPHIMURIUM' TEST SYSTEM

    EPA Science Inventory

    The study was designed to detect the effect that different environmental conditions have upon diesel-exhaust organics. In this study, diesel-exhaust was injected into the Calspan smog chamber under different conditions, and the resulting particles were collected upon Pallflex gla...

  5. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    SciTech Connect

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.; Arslan, E.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  6. Mutagenicity of diesel exhaust particle extracts: influence of driving cycle and environmental temperature.

    PubMed

    Clark, C R; Dutcher, J S; Brooks, A L; McClellan, R O; Marshall, W F; Naman, T M

    1982-01-01

    General Motors and Volkswagen diesel passenger cars (1980 and 1981 model year) were operated on a climate controlled chassis dynomometer and the particulate portion of the exhaust was collected on high volume filters. Dichloromethane extracts of the exhaust particles (soot) collected while the cars were operated under simulated highway, urban and congested urban driving cycles were assayed for mutagenicity in Salmonella strains TA-98 and TA-100. Driving pattern did not significantly influence the mutagenic potency of the exhaust particle extracts or estimates of the amount of mutagenicity emitted from the exhaust despite large differences in particle emission rates and extractable fraction of the particles. Mutagenicity of extracts of exhaust particles collected while the vehicles were operated at test chamber temperatures of 25, 50, 75 and 100 degrees F were also very similar. The results suggest that driving pattern and environmental temperature do not significantly alter the emission of genotoxic combustion products from the exhaust. PMID:6193022

  7. Safety evaluation of disposable diesel exhaust filters for permissible mining equipment

    SciTech Connect

    Ambs, J.L.; Setren, R.S. |

    1995-12-31

    The disposable diesel exhaust filter (DDEF) system developed by the U.S. Bureau of Mines and Industry cooperators for heavy-duty permissible, diesel-powered haulage vehicles, effectively reduces in-mine diesel particulate matter concentrations up to 95%. However, there are concerns about the hazards that exist when the filter is used in situations for which it was not designed. This work investigates the exhaust gas temperature limits to which the filter elements can be exposed without posing a safety or health hazard, such as fire or off-gassing toxic compounds. A filter approved by the Mine Safety and Health administration and after-market filters were evaluated under varying engine exhaust conditions to determine if after-market filters pose an unacceptable hazard when used in a DDEF system. Filters were laboratory tested at engine exhaust temperatures ranging from 77{degrees}C to 290{degrees}C. Of the seven filter types tested, six appeared suitable for use on water scrubber-based cooling systems and two appeared suitable for use on dry heat exchanger type exhaust cooling systems with exhaust temperatures up to 150{degrees}C. Any filter elements used as exhaust filters on permissible diesel machines must be approved by MSHA for that application Mine operators who wish to use an after-market filter element should request an MSHA field modification. MSHA will work with the mine and filter manufacturer to ensure its use in this exhaust system application does not pose a health or safety hazard.

  8. Effect of short-term exposure to diesel exhaust particles and carboxylic acids on mitochondrial membrane disruption in airway epithelial cells

    EPA Science Inventory

    Rationale: Diesel exhaust has been shown to induce adverse pulmonary health effects; however, the underlying mechanisms for these effects are still unclear. Previous studies have imlplicated mitochondrial dysfunction in the toxicity of diesel exhaust particles (DEP). DEP contain...

  9. Diesel Exhaust Particle-Exposed Human Bronchial Epithelial Cells Induce Dendritic Cell Maturation and Polarization via Thymic Stromal Lymphopoietin

    PubMed Central

    Bleck, Bertram; Tse, Doris B.; Curotto de Lafaille, Maria A.; Zhang, Feijie

    2009-01-01

    Human exposure to air pollutants, including ambient particulate matter, has been proposed as a mechanism for the rise in allergic disorders. Diesel exhaust particles, a major component of ambient particulate matter, induce sensitization to neoallergens, but the mechanisms by which sensitization occur remain unclear. We show that diesel exhaust particles upregulate thymic stromal lymphopoietin in human bronchial epithelial cells in an oxidant-dependent manner. Thymic stromal lymphopoietin induced by diesel exhaust particles was associated with maturation of myeloid dendritic cells, which was blocked by anti-thymic stromal lymphopoietin antibodies or silencing epithelial cell-derived thymic stromal lymphopoietin. Dendritic cells exposed to diesel exhaust particle-treated human bronchial epithelial cells induced Th2 polarization in a thymic stromal lymphopoietin-dependent manner. These findings provide new insight into the mechanisms by which diesel exhaust particles modify human lung mucosal immunity. PMID:18049884

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  11. Comparison of genotoxicity of automotive exhaust particles from laboratory and environmental sources

    SciTech Connect

    Brooks, A.L.; Li, A.P.; Dutcher, J.S.; Clark, C.R.; Rothenberg, S.J.; Kiyoura, R.; Bechtold, W.E.; McClellan, R.O.

    1984-01-01

    This research (1) ranked the genotoxicity of methylene chloride extracts of laboratory and environmentally collected particles and (2) evaluated the role of collection location and sample composition on genotoxic potency. Samples of exhaust from a spark-ignition automobile, light-duty diesel automobile, and a heavy-duty diesel engine operated in a laboratory on a dynamometer were studied, as well as samples taken in a highway tunnel and outside the same tunnel. In the Ames Salmonella mutagenicity assay, each extract produced a dose-dependent increase in mutagenicity in strain TA-98 without addition of liver S-9 fraction. The order of mutagenic activity per ..mu..g of extract in TA-98 without S-9 from the lowest to the highest was environmental sample less than or equal to tunnel < heavy-duty diesel < light-duty diesel < spark ignition. With cell killing, sister chromatid exchanges, and mutations as endpoints in Chinese hamster ovary cells (CHO), the order of potency was tunnel < light-duty < spark-ignition samples. The data indicated that genotoxic activity was detected in each particle extract, that the potency ranking was similar using different genetic endpoints, and that the magnitude of the genotoxic potency was similar.

  12. Bithermal Low-Cycle Fatigue Evaluation of Automotive Exhaust System Alloy SS409

    NASA Technical Reports Server (NTRS)

    Lu, Gui-Ying; Behling, Mike B.; Halford, Gary R.

    2000-01-01

    This investigation provides, for the first time, cyclic strainrange-controlled, thermomechanical fatigue results for the ferritic stainless steel alloy SS409. The alloy has seen extensive application for automotive exhaust system components. The data were generated to calibrate the Total Strain Version of the Strainrange Partitioning (TS-SRP) method for eventual application to the design and durability assessment of automotive exhaust systems. The thermomechanical cyclic lifetime and cyclic stress-strain constitutive behavior for alloy SS409 were measured using bithermal tests cycling between isothermal extremes of 400 and 800 C. Lives ranged up to 10,000 cycles to failure with hold-times of 0.33 to 2.0 minutes. The bithermal fatigue behavior is compared to isothermal, strain-controlled fatigue behavior at both 400 and 800 C. Thermomechanical cycling was found to have a profound detrimental influence on the fatigue failure resistance of SS409 compared to isothermal cycling. Supplementary bithermal cyclic stress-strain constitutive tests with hold-times ranging from 40 seconds up to 1.5 hours were conducted to calibrate the TS-SRP equation for extrapolation to longer lifetime predictions. Observed thermomechanical (bithermal) fatigue lives correlated well with lives calculated using the calibrated TS-SRP equations: 70% of the bithermal fatigue data fall within a factor of 1.2 of calculated life; 85% within a factor of 1.4; and 100% within a factor of 1.8.

  13. Total diesel exhaust particulate length measurements using a modified household smoke alarm ionization chamber.

    PubMed

    Vojtisek-Lom, Michal

    2011-02-01

    To evaluate the effectiveness of various means to combat the negative health effects of ultrafine particles emitted by internal combustion engines, a reliable, low-cost instrument for dynamic measurements of the exhaust emissions of ultrafine particulate matter (PM) is needed. In this study, an ordinary ionization-type building smoke detector was modified to serve as a measuring ionization chamber and utilized for dynamic measurements of PM emissions from diesel engines. When used with diluted exhaust, the readings show an excellent correlation with total particulate length. The instrument worked well with raw and diluted exhaust and with varying emission levels and is well suitable for on-board use. PMID:21387930

  14. Diesel Exhaust-Induced Pulmonary and Cardiovascular Impairment: The Role of Hypertension Intervention

    EPA Science Inventory

    Background–Exposure to diesel exhaust (DE) particles and associated gases is linked to cardiovascular impairments; however the susceptibility of hypertensive individuals is less well understood. Objective–1) To determine cardiopulmonary effects of gas-phase versus whole-DE, and 2...

  15. FACTORS THAT INFLUENCE THE RELATIVE POTENCY OF DIESEL EXHAUST PARTICLES AS ADJUVANTS IN ALLERGIC AIRWAY DISEASE

    EPA Science Inventory

    Description: Studies have shown that diesel exhaust particles (DEP) worsen respiratory diseases including allergic asthma. The adjuvant effects of DEP in the airways have been widely reported; however, the precise determinants and mechanisms of these effects are ill-defined. S...

  16. DIESEL EXHAUST PARTICLE-INDUCED EPITHELIAL TOXICITY IS MODULATED BY UV-IRRADIATION -- NCSU

    EPA Science Inventory

    Asthma is a chronic inflammatory disorder of the airways affecting nearly 20 million individuals in the U.S alone. Asthmatic symptoms can be exacerbated by environmental insults like exposure to particulate matter (PM). Diesel exhaust particles (DEP) account for a portion of PM...

  17. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles

    EPA Science Inventory

    AbstractContext: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. Objectives: We compared the formation of covalent DNA adducts by the in vitro metabol...

  18. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.

    2016-05-01

    Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.

  19. Diesel Exhaust Modulates Ozone-induced Lung Function Decrements in Healthy Human Volunteers

    EPA Science Inventory

    The potential effects of combinations of dilute whole diesel exhaust (DE) and ozone (03), each a common component of ambient airborne pollutant mixtures, on lung function were examined. Healthy young human volunteers were exposed for 2 hr to pollutants while exercising (~50 L/min...

  20. DIFFERENTIAL CARDIAC SUSCEPTIBILITY OF WISTAR KYOTO (WKY) AND SPONTANEOUSLY HYPERTENSIVE RATS (SHR) TO DIESEL EXHAUST EXPOSURE

    EPA Science Inventory

    Exposure to diesel exhaust particles (DEP) is linked to increases in cardiovascular effects. This is enhanced in individuals with pre-existing disease. Animal models of cardiovascular disease are used to study this susceptibility. The heart is rich in mitochondria, which produce ...

  1. Markers of exposure to diesel exhaust in railroad workers. Research report

    SciTech Connect

    Schenker, M.B.; Samuels, S.J.; Kado, N.Y.; Hammond, S.K.; Smith, T.J.

    1990-01-01

    The study measured the exposure of railroad workers to diesel exhaust and environmental tobacco smoke by using personal air samples taken over two consecutive work shifts. Urine samples were collected from 87 subjects at the end of the study work shifts and were analyzed for markers of cigarette smoking (nicotine, cotinine) and for mutagenicity, using a sensitive microsuspension assay (Salmonella strain TA98 with or without S9 enzyme). Among smokers, a dose-response relationship was observed between urinary mutagenicity and the number of cigarettes smoked on the study day. After cigarette smoking was controlled for, no association was present between diesel exhaust exposure and urinary mutagenicity. Among nonsmokers, detectable concentrations of mutagens were present in the urine, but no association could be found between markers of diesel exhaust or environmental tobacco smoke and urinary mutagenicity. It was concluded that the mutagens associated with the levels of exposure to diesel exhaust or environmental tobacco smoke in the study were undetectable in the urine.

  2. Divergent Electrocardiographic Responses to Whole and Particle-Free Diesel Exhaust Inhalation in Spontaneously Hypertensive Rats

    EPA Science Inventory

    Diesel exhaust (DE) is a major contributor to traffic-related fine PM2.5. While inroads have been made in understanding the mechanisms of PM related health effects, DE’s complex mixture of PM, gases and volatile organics makes it difficult to determine how the constituents contri...

  3. NASAL RESPONSES OF ASTHMATIC AND NON-ASTHMATIC VOLUNTEERS TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Asthma rates have been increasing world-wide, and exposure to diesel exhaust particles (DEP) may be implicated in this increase. Additionally DEP may also play a role in the increased morbidity and mortality associated with ambient airborne PM exposure. Two types of nasal respons...

  4. EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE

    EPA Science Inventory

    EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE
    S. Mundandhara1 and M.C. Madden2, 1UNC Center for Environmental Medicine, Asthma, and Lung Biology, 2US EPA, NHEERL, Human Studies Division, Chapel Hill, NC, USA

    Epidemiologica...

  5. Cardiovascular effects of diesel exhaust and ozone in a multi-pollutant context

    EPA Science Inventory

    The cardiovascular effects of two common pollutants, diesel exhaust (DE) and ozone (O3), were examined alone and in combination. Healthy subjects (n=15) were exposed for 2 hrs with intermittent, moderate exercise on Day 1 to 0.3 ppm O3, 300 µg/m3 DE, both O3 and DE, or fil...

  6. NEUROPHYSIOLOGICAL ALTERATIONS DUE TO DIESEL EXHAUST EXPOSURE DURING THE NEONATAL LIFE OF THE RAT

    EPA Science Inventory

    This study was designed to assess the effects of diesel exhaust on the development of the nervous system in rats as measurably somatosensory and visual evoked potentials (SEPs an VEPs, respectively). SEPs, elicited by 1 mamp, 0.5 msec pulses delivered to the tibial nerve at the t...

  7. A NOVEL TECHNIQUE FOR QUANTITATIVE ESTIMATION OF UPTAKE OF DIESEL EXHAUST PARTICLES BY LUNG CELLS

    EPA Science Inventory

    While airborne particulates like diesel exhaust particulates (DEP) exert significant toxicological effects on lungs, quantitative estimation of accumulation of DEP inside lung cells has not been reported due to a lack of an accurate and quantitative technique for this purpose. I...

  8. EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN ALVEOLAR MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Effects of diesel exhaust particles on human alveolar macrophage responsiveness to lipopolysaccharide
    S. Mundandhara1 , S. Becker2 and M. Madden2, 1UNC Center for Environmental Medicine, Asthma, and Lung Biology, 2US EPA, NHEERL, HSD, Chapel Hill, NC, US

    Epidemiological...

  9. DIESEL EXHAUST PARTICLE INDUCED GENE EXPRESSION CHANGES IN A MURINE MUCOSAL SENSITIZATION MODEL

    EPA Science Inventory

    Studies in humans and animals have shown diesel exhaust particles (DEP) can act as an immunological adjuvant to enhance the development of allergic lung disease and this effect is influenced by the chemical composition of the DEP. The adjuvancy of NIST SRM 2975 (NDEP) generated...

  10. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  11. EFFECT OF DIESEL EXHAUST EXPOSURE ON MUCOSAL SENSITIZATION TO OVALBUMIN ANTIGEN.

    EPA Science Inventory

    Several studies in humans and animals have shown that diesel exhaust (DE) can act as an immunological adjuvant to increase the severity of Type I hypersensitivity immune responses. The mechanism by which DE causes these effects is unknown but thought to be associated with lung in...

  12. CARDIOVASCULAR AND THERMOREGULATORY RESPONSES OF UNRESTRAINED RATS EXPOSED TO FILTERED OR UNFILTERED DIESEL EXHAUST

    EPA Science Inventory

    Diesel exhaust (DE) has been associated with adverse cardiovascular and pulmonary health effects. The relative contributions of the gas-phase and particulate (PM) components of DE are less well understood. We exposed WKY rats with or without implanted radiotransmitters to air or ...

  13. Effects Of Combinations of Ozone and Diesel Exhaust Exposures On Blood, Cardiac, And Lung Endpoints

    EPA Science Inventory

    Human subjects were exposed to combinations of 300 ppb ozone (03) and 300 ug/m3 diesel exhaust (DE) to examine if synergistic effects were observed. Subjects received either filtered air (FA), 03, DE, or DE+03 on Day 1, followed by only 03 exposures on Day 2, and a follow-up on D...

  14. DECREASED PRODUCTION OF SURFACTANT PROTEINS AFTER DIESEL EXHAUST EXPOSURE INCREASES SUSCEPTIBILITY TO INFLUENZA INFECTION

    EPA Science Inventory

    Pulmonary surfactant proteins A and D (SP-A and SP-D), termed collectins, enhance the opsonization of foreign particles and pathogens by phagocytic cells. Inhaled pollutants such as diesel exhaust (DE) have a possible role in suppressing the production of surfactant proteins whic...

  15. Modulation of pulmonary inflammatory responses and anti-microbial defenses in mice exposed to diesel exhaust

    EPA Science Inventory

    Abstract: Diesel exhaust (DE) is a major component of urban air pollution and has been shown to increase the severity of infectious and allergic lung disease. The purpose of this study was to evaluate the effects of DE exposure on pulmonary inflammation, mediator production and ...

  16. COMPARISON OF ON AND OFF ROAD DIESEL EXHAUST SOURCES ON THE SUSCEPTIBILITY TO AN INFLUENZA INFECTION.

    EPA Science Inventory

    Diesel exhaust (DE), a major component of urban air pollution, and its modulatory role in human susceptibility to respiratory infections is of great concern. The purpose of this study was to evaluate the effects of on- and off-road sources of DE exposure on the severity of an ...

  17. Diesel Exhaust Activates & Primes Microglia: Air Pollution, Neuroinflammation, & Regulation of Dopaminergic Neurotoxicity

    EPA Science Inventory

    Air pollution is linked to central nervous system (CNS) disease, but the mechanisms responsible are poorly understood. Rats exposed to Diesel Exhaust (DE, 2.0,0.5, and 0 mg/m3) by inhalation over 4 weeks demonstrated elevated levels of whole brain IL-6 protein, nitrated proteins,...

  18. SAMPLE CHARACTERIZATION OF AUTOMOBILE AND FORKLIFT DIESEL EXHAUST PARTICLES AND COMPARATIVE PULMONARY TOXICITY IN MICE

    EPA Science Inventory


    Abstract

    Two samples of diesel exhaust particles (DEP) predominate in DEP health effects research: an automobile-source DEP (A-DEP) sample and the National Institute of Standards Technology (NIST) standard reference material (SRM 2975) generated from a forklift engine...

  19. Estimation of the diesel exhaust exposures of railroad workers. I. Current exposures

    SciTech Connect

    Woskie, S.R.; Smith, T.J.; Hammond, S.K.; Schenker, M.B.; Garshick, E.; Speizer, F.E.

    1988-01-01

    As a part of a series of epidemiological studies of railroad workers, measurements were made to characterize workers' exposures to diesel exhaust. Since diesel exhaust is not a single compound, an exposure marker was sought. The personal exposures to respirable particulate matter (RPM) of over 530 workers in 39 common jobs were measured in four U.S. railroads over a three-year period. Significant amounts of cigarette smoke (20-90%) were found in many of these samples. Therefore, the respirable particulate concentration, adjusted to remove the fraction of cigarette smoke (ARP), was chosen as a marker of diesel exhaust exposures. The geometric mean exposures to ARP ranged from 17 micrograms/m3 for clerks to 134 micrograms/m3 for locomotive shop workers. Significant interrailroad variations were observed in some job groups indicating that the different facilities, equipment, and work practices found among the railroads can affect a worker's exposure to diesel exhaust. Climate was also found to have a significant effect on exposure in some job groups.

  20. EFFECTS OF DIESEL EXHAUST ON TLR3 SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    There are a variety of intrinsic as well as extrinsic factors, such as exposure to air pollution that can affect the pathogenesis of respiratory infections. Diesel exhaust (DE) emissions can significantly contribute to air pollution levels and exposure to DE can alter host defens...

  1. EFFECTS OF DIESEL EXHAUST ON TLR3 EXPRESSION AND SIGNALING IN MICE

    EPA Science Inventory

    There are a variety of intrinsic as well as extrinsic factors, such as exposure to air pollution that can affect the pathogenesis of respiratory infections. Exposure to diesel exhaust (DE) emissions can alter host defense and immune responses and we have previously demonstrated t...

  2. PRE-TREATMENT WITH DIESEL EXHAUST EXTRACT ALTERS INFLUENZA VIRUS REPLICATION IN LUNG EPITHELIAL CELLS

    EPA Science Inventory

    Diesel Exhaust (DE) has been demonstrated to generate inflammatory responses in the lung and modify immune responses to allergens. However, little is known about the effects of DE on common respiratory viral infections. We examined whether exposure to DE extracts (DEE) modifies i...

  3. EXPOSURE TO DIESEL EXHAUST ENHANCES THE SEVERITY OF AN ONGOING INFLUENZA INFECTION.

    EPA Science Inventory

    Numerous studies have shown that air pollutants including diesel exhaust (DE), alter host defense responses to decrease resistance to respiratory infection. The purpose of this study was to evaluate the effects of DE exposure on the severity of an ongoing influenza infection in ...

  4. BIOASSAY-DIRECTED FRACTIONAL AND SALMONELLA MUTAGENICITY OF AUTOMOBILE AND FORKLIFT DIESEL EXHAUST PARTICLES

    EPA Science Inventory



    Abstract

    Many pulmonary toxicity studies of diesel exhaust particles (DEP) have used an
    automobile-generated sample (A-DEP) whose mutagenicity has not been reported. In contrast,
    rnany inutagenicity studies of DEP have used a forklift-generated sample (SRM ...

  5. The Involvement of Superoxide and Nitric Oxide in Inflammation-Enhanced Diesel Exhaust Particle Cytotoxicity

    EPA Science Inventory

    Thirty-four million Americans have asthma, a chronic inflammatory lung disease. Although the mechanisms are unclear, epidemiologic studies show that exposure of asthmatics to air pollutants, like diesel exhaust particles (DEP), is more likely to result in adverse health effects....

  6. DIESEL EXHAUST PARTICLE-INDUCED EPITHELIAL TOXICITY IS MODULATED BY UV-IRRADIATION

    EPA Science Inventory

    Asthma is a chronic inflammatory disorder of the airways affecting nearly 20 million individuals in the U.S alone. Asthmatic symptoms can be exacerbated by environmental insults like exposure to particulate matter (PM). Diesel exhaust particles (DEP) account for a significant por...

  7. DIESEL EXHAUST ACTIVATES REDOX-SENSITIVE TRANSCRIPTION FACTORS AND KINASES IN HUMAN AIRWAYS

    EPA Science Inventory

    Diesel exhaust (DE) is a major component of airborne particulate matter. In previous studies we have described the acute inflammatory response of the human airway to inhaled DE. This was characterized by neutrophil, mast cell, and lymphocyte infiltration into the bronchial mucosa...

  8. PULMONARY FUNCTION AND PATHOLOGY IN CATS EXPOSED 28 DAYS TO DIESEL EXHAUST

    EPA Science Inventory

    Young adult male cats were exposed 28 days, 20 hours per day, to a 1:14 dilution of diesel exhaust emissions. Following termination of exposure, the following pulmonary function measurements were carried out: lung volumes, maximum expiratory flow rates (MEF), MEF at 50%, 25% and ...

  9. SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I

    EPA Science Inventory

    Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...

  10. 40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; diesel vehicles. 86.110-90 Section 86.110-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later...

  11. EFFECT OF DIESEL EXHAUST PARTICLES ON HUMAN NASAL LAVAGE CELLS AND DNA ADDUCTS

    EPA Science Inventory

    The overall aim of this study is to determine (using a nasal challenge model) the effect of diesel exhaust particles (DEP) on nasal responses including induction of inflammation, immune changes and DNA damage. We are also examining how treatment of DEP with ozone (oz-DEP)modify ...

  12. NASAL RESPONSES IN ASTHMATIC AND NONASTHMATIC SUBJECTS FOLLOWING EXPOSURE TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Asthma rates have been increasing world-wide, and exposure to diesel exhaust particles may be implicated in this increase. Additionally DEP may also play a role in the increased morbidity and mortality associated with ambient airborne PM exposure. Two types of nasal responses hav...

  13. DIESEL EXHAUST PARTICLE COMPOSITION AND THE METHOD OF SONICATION INFLUENCE THE ADJUVANCY EFFECT AND TARC PRODUCTION

    EPA Science Inventory

    Numerous reports have shown diesel exhaust particles (DEP) can act as an immunological adjuvant in asthma. Recent interest has focused on thymus and activation-regulated chemokine (TARC) as an important modulator of this effect. This study evaluated the adjuvancy effects of thr...

  14. Anti-androgenic activity of 3-methyl-4-nitrophenol in diesel exhaust particles.

    PubMed

    Li, ChunMei; Taneda, Shinji; Suzuki, Akira K; Furuta, Chie; Watanabe, Gen; Taya, Kazuyoshi

    2006-08-14

    In our continuing studies on nitrophenol derivatives as vasodilators in diesel exhaust particles, we have reported that nitrophenols in diesel exhaust particles possess not only vasodilatory activity but also estrogenic activity in vitro and in vivo, as well as anti-androgenic activity in vitro. Our efforts here were focused on the in vitro and in vivo anti-androgenic activity of 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC), known a degradation product of the insecticide fenitrothion, in diesel exhaust particles. We investigated its anti-androgenic activity using an in vitro recombinant yeast screen and in vivo Hershberger assays. Recombinant yeast screen assay showed that PNMC possesses anti-androgenic activity at low concentrations. Furthermore, castrated 28-day-old immature male rats each implanted with a 5-mm-long silastic tube containing crystalline testosterone and injected with PNMC subcutaneously at doses from as low as 0.01 and 0.1 mg/kg up to 1 mg/kg for 5 consecutive days showed significantly decreased weights of the seminal vesicles, ventral prostate, and glans penis. Plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were significantly increased in the 0.1 mg/kg PNMC treatment group. Our results demonstrate that PNMC in diesel exhaust particles clearly has anti-androgenic activity both in vitro and in vivo and can therefore be considered as an endocrine-disrupting chemical. PMID:16822498

  15. EFFECTS OF CONTROLLED EXPOSURE TO DIESEL EXHAUST IN ALLERGIC ASTHMATIC INDIVIDUALS

    EPA Science Inventory

    After completing a study evaluating the effects of exposure to diesel exhaust (DE) and nitrogen dioxide (NO2) on the lower airways and blood of allergic asthmatic participants, investigators will have measured multiple physiologic and pulmonary function endpoints...

  16. Increased Transcription of Immune and Metabolic Pathways in Naive and Allergic Mice Exposed to Diesel Exhaust

    EPA Science Inventory

    Diesel exhaust (DE) has been shown to enhance allergic sensitization in animals following high dose instillation or chronic inhalation exposure scenarios. The purpose of this study was to determine if short term exposures to diluted DE enhance allergic immune responses to antigen...

  17. EFFECT OF SHORT TERM DIESEL EXHAUST EXPOSURE ON NASAL RESPONSES TO INFLUENZA IN ALLERGIC RHINITICS.

    EPA Science Inventory

    Introduction: Recently published data suggest that diesel exhaust (DE) has special impact on allergic inflammation, suppressing Th1 and augmenting Th2 responses to allergen via oxidant stress effects on airway cells. Exposures to particulate air pollutants including DE are also a...

  18. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Casal, Carina S.; Arbilla, Graciela; Corrêa, Sergio M.

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely studied in environmental matrices, such as air, water, soil and sediment, because of their toxicity, mutagenicity and carcinogenicity. Because of these properties, the environmental agencies of developed countries have listed sixteen PAHs as priority pollutants. Few countries have limits for these compounds for ambient air, but they only limit emissions from stationary and mobile sources and occupational areas. There are several studies to specifically address the 16 priority PAHs and very little for the alkyl PAHs. These compounds are more abundant, more persistent and frequently more toxic than the non-alkylated PAHs, and the toxicity increases with the number of alkyl substitutions on the aromatic ring. In this study, a method was developed for the analysis of PAHs and alkyl PAHs by using a GC-MS and large injection volume injection coupled with program temperature vaporisation, which allows for limits of detection below 1.0 ng μL-1. Several variables were tested, such as the injection volume, injection velocity, injector initial temperature, duration of the solvent split and others. This method was evaluated in samples from particulate matter from the emissions of engines employing standard diesel, commercial diesel and biodiesel B20. Samples were collected on a dynamometer bench for a diesel engine cycle and the results ranged from 0.5 to 96.9 ng mL-1, indicating that diesel/biodiesel makes a significant contribution to the formation of PAHs and alkyl PAHs.

  19. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  20. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  1. Blood pressure response to controlled diesel exhaust exposure in human subjects.

    PubMed

    Cosselman, Kristen E; Krishnan, Ranjini M; Oron, Assaf P; Jansen, Karen; Peretz, Alon; Sullivan, Jeffrey H; Larson, Timothy V; Kaufman, Joel D

    2012-05-01

    Exposure to traffic-related air pollution is associated with risk of cardiovascular disease and mortality. We examined whether exposure to diesel exhaust increased blood pressure (BP) in human subjects. We analyzed data from 45 nonsmoking subjects, 18 to 49 years of age in double-blinded, crossover exposure studies, randomized to order. Each subject was exposed to diesel exhaust, maintained at 200 μg/m(3) of fine particulate matter, and filtered air for 120 minutes on days separated by ≥2 weeks. We measured BP pre-exposure, at 30-minute intervals during exposure, and 3, 5, 7, and 24 hours from exposure initiation and analyzed changes from pre-exposure values. Compared with filtered air, systolic BP increased at all of the points measured during and after diesel exhaust exposure; the mean effect peaked between 30 and 60 minutes after exposure initiation (3.8 mm Hg [95% CI: -0.4 to 8.0 mm Hg] and 5.1 mm Hg [95% CI: 0.7-9.5 mm Hg], respectively). Sex and metabolic syndrome did not modify this effect. Combining readings between 30 and 90 minutes, diesel exhaust exposure resulted in a 4.4-mm Hg increase in systolic BP, adjusted for participant characteristics and exposure perception (95% CI: 1.1-7.7 mm Hg; P=0.0009). There was no significant effect on heart rate or diastolic pressure. Diesel exhaust inhalation was associated with a rapid, measurable increase in systolic but not diastolic BP in young nonsmokers, independent of perception of exposure. This controlled trial in humans confirms findings from observational studies. The effect may be important on a population basis given the worldwide prevalence of exposure to traffic-related air pollution. PMID:22431582

  2. Control method for turbocharged diesel engines having exhaust gas recirculation

    DOEpatents

    Kolmanovsky, Ilya V.; Jankovic, Mrdjan J; Jankovic, Miroslava

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  3. Influence of sampling filter type on the mutagenicity of diesel exhaust particulate extracts

    NASA Astrophysics Data System (ADS)

    Clark, Charles R.; Truex, Timothy J.; Lee, Frank S. C.; Salmeen, Irving T.

    The effects of filter types on the mutagenicity and chemical characteristics of organic extracts of diesel engine particulate exhaust were studied by collecting exhaust particles in a dilution tube simultaneously on three different types of filters: Teflon membrane (Zefluor), Teflon impregnated glass fiber (Pallflex T60A20), and a quartz fiber (Pallflex 2500QAO). The particles were extracted with dichloromethane and subsequently with acetonitrile. The dichloromethane extracts were evaluated in the Salmonella reversion (Ames) assay using strains TA 98, TA 100 and TA 1538 and analyzed by high performance liquid chromatography (HPLC) with fluorescence detection. The filter loadings ranged from 0.3 to 0.7 mg cm -2, typical of loadings in studies of diesel engine particulate exhaust. No major differences in relative concentrations were observed in the polycyclic aromatic hydrocarbon, oxygenated or transition fractions for the three filter types. Furthermore, no differences in the mutagenicity of the samples could be detected.

  4. Treatment of diesel exhaust using novel oxidation catalysts

    SciTech Connect

    Voss, K.E.; Lamper, J.K.; Farrauto, R.J.; Heck, R.M.; Rice, G.W.

    1993-12-31

    The authors have developed a flow through Diesel Oxidation Catalyst that removes 60-80% of the soluble organic fraction (SOF) from diesel truck engine particulate emissions. This unique catalyst exhibits high reduction in total particulate matter (TPM) emissions and low sulfate formation using a novel proprietary washcoat formulation with low platinum levels. This paper describes performance results from engine emissions tests for TPM, SOF, and gas phase HC and CO reduction for fresh and aged catalysts under steady state an transient operating conditions. Using a novel laboratory technique, the authors simulate adsorption and subsequent catalytic combustion of the SOF. The technique allows for the analysis of all the liquid and gaseous products produced and the overall selectivity of the catalytic reactions.

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT X, USE OF MEASURING TOOLS IN DIESEL MAINTENANCE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE PRECISION MEASURING TOOLS USED IN DIESEL ENGINE MAINTENANCE. TOPICS ARE (1) LINEAR MEASURE, (2) MEASURING WITH RULES AND TAPES, (3) GETTING PRECISION WITH MICROMETERS, (4) DIAL INDICATORS, (5) TACHOMETERS, (6) TORQUE WRENCH, (7) THICKNESS (TECHER) GAGE, AND (8) VALVE…

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  7. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  8. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VI, MAINTAINING MECHANICAL GOVERNORS--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL GOVERNORS USED ON DIESEL ENGINES. TOPICS ARE (1) TYPES OF GOVERNORS AND ENGINE LOCATION, (2) GOVERNOR APPLICATIONS, (3) LIMITING SPEED MECHANICAL GOVERNOR, (4) VARIABLE SPEED MECHANICAL GOVERNOR, AND (5) CONSTANT SPEED…

  10. Eugenol attenuates pulmonary damage induced by diesel exhaust particles.

    PubMed

    Zin, Walter A; Silva, Ana G L S; Magalhães, Clarissa B; Carvalho, Giovanna M C; Riva, Douglas R; Lima, Crystianne C; Leal-Cardoso, Jose H; Takiya, Christina M; Valença, Samuel S; Saldiva, Paulo H N; Faffe, Débora S

    2012-03-01

    Environmentally relevant doses of inhaled diesel particles elicit pulmonary inflammation and impair lung mechanics. Eugenol, a methoxyphenol component of clove oil, presents in vitro and in vivo anti-inflammatory and antioxidant properties. Our aim was to examine a possible protective role of eugenol against lung injuries induced by diesel particles. Male BALB/c mice were divided into four groups. Mice received saline (10 μl in; CTRL group) or 15 μg of diesel particles DEP (15 μg in; DIE and DEUG groups). After 1 h, mice received saline (10 μl; CTRL and DIE groups) or eugenol (164 mg/kg; EUG and DEUG group) by gavage. Twenty-four hours after gavage, pulmonary resistive (ΔP1), viscoelastic (ΔP2) and total (ΔPtot) pressures, static elastance (Est), and viscoelastic component of elastance (ΔE) were measured. We also determined the fraction areas of normal and collapsed alveoli, amounts of polymorpho- (PMN) and mononuclear cells in lung parenchyma, apoptosis, and oxidative stress. Est, ΔP2, ΔPtot, and ΔE were significantly higher in the DIE than in the other groups. DIE also showed significantly more PMN, airspace collapse, and apoptosis than the other groups. However, no beneficial effect on lipid peroxidation was observed in DEUG group. In conclusion, eugenol avoided changes in lung mechanics, pulmonary inflammation, and alveolar collapse elicited by diesel particles. It attenuated the activation signal of caspase-3 by DEP, but apoptosis evaluated by TUNEL was avoided. Finally, it could not avoid oxidative stress as indicated by malondialdehyde. PMID:22194320

  11. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    SciTech Connect

    Kodavanti, Urmila P.; Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly; Nyska, Abraham; Richards, Judy E.; Andrews, Debora; Gilmour, M. Ian

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  12. Measuring long chain alkanes in diesel engine exhaust by thermal desorption PTR-MS

    NASA Astrophysics Data System (ADS)

    Erickson, M. H.; Gueneron, M.; Jobson, B. T.

    2014-01-01

    A method using thermal desorption sampling and analysis by proton transfer reaction mass spectrometry (PTR-MS) to measure long chain alkanes (C12-C18) and other larger organics associated with diesel engine exhaust emissions is described. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Fragment ion distribution and sensitivity is a function of drift conditions. At 80 Td the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The mass spectrum of gasoline and diesel fuel at 80 Td displayed ion group patterns that can be related to known fuel constituents, such as alkanes, alkylbenzenes and cycloalkanes, and other compound groups that are inferred from molecular weight distributions such as dihydronapthalenes and naphthenic monoaromatics. It is shown that thermal desorption sampling of gasoline and diesel engine exhausts at 80 Td allows for discrimination against volatile organic compounds, allowing for quantification of long chain alkanes from the abundance of CnH2n+1 fragment ions. The total abundance of long chain alkanes in diesel engine exhaust was measured to be similar to the total abundance of C1-C4 alkylbenzene compounds. The abundance patterns of compounds determined by thermal desorption sampling may allow for emission profiles to be developed to better quantify the relative contributions of diesel and gasoline exhaust emissions on organic compounds concentrations in urban air.

  13. Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions

    NASA Astrophysics Data System (ADS)

    Borrás, Esther; Tortajada-Genaro, Luis A.; Vázquez, Monica; Zielinska, Barbara

    2009-12-01

    The study of light-duty diesel engine exhaust emissions is important due to their impact on atmospheric chemistry and air pollution. In this study, both the gas and the particulate phase of fuel exhaust were analyzed to investigate the effects of diesel reformulation and engine operating parameters. The research was focused on polycyclic aromatic hydrocarbon (PAH) compounds on particulate phase due to their high toxicity. These were analyzed using a gas chromatography-mass spectrometry (GC-MS) methodology. Although PAH profiles changed for diesel fuels with low-sulfur content and different percentages of aromatic hydrocarbons (5-25%), no significant differences for total PAH concentrations were detected. However, rape oil methyl ester biodiesel showed a greater number of PAH compounds, but in lower concentrations (close to 50%) than the reformulated diesel fuels. In addition, four engine operating conditions were evaluated, and the results showed that, during cold start, higher concentrations were observed for high molecular weight PAHs than during idling cycle and that the acceleration cycles provided higher concentrations than the steady-state conditions. Correlations between particulate PAHs and gas phase products were also observed. The emission of PAH compounds from the incomplete combustion of diesel fuel depended greatly on the source of the fuel and the driving patterns.

  14. A critical assessment of studies on the carcinogenic potential of diesel exhaust.

    PubMed

    Hesterberg, Thomas W; Bunn, William B; Chase, Gerald R; Valberg, Peter A; Slavin, Thomas J; Lapin, Charles A; Hart, Georgia A

    2006-10-01

    After decades of research involving numerous epidemiologic studies and extensive investigations in laboratory animals, a causal relationship between diesel exhaust (DE) exposure and lung cancer has not been conclusively demonstrated. Epidemiologic studies of the transportation industry (trucking, busing, and railroad) show a small elevation in lung cancer incidence (relative risks [RRs] generally below 1.5), but a dose response for DE is lacking. The studies are also limited by a lack of quantitative concurrent exposure data and inadequate or lack of controls for potential confounders, particularly tobacco smoking. Furthermore, prior to dieselization, similar elevations in lung cancer incidence have been reported for truck drivers, and in-cab diesel particulate matter (DPM) exposures of truck drivers were comparable to ambient highway exposures. Taken together, these findings suggest that an unidentified occupational agent or lifestyle factor might be responsible for the low elevations in lung cancer reported in the transportation studies. In contrast, underground miners, many of whom experience the highest occupational DPM exposures, generally do not show elevations in lung cancer. Laboratory studies must be interpreted with caution with respect to predicting the carcinogenic potential of DE in humans. Tumors observed in rats following lifetime chronic inhalation of very high levels of DPM may be attributed to species-specific overload mechanisms that lack relevance to humans. Increased tumor incidence was not observed in other species (hamsters or mice) exposed to DPM at very high levels or in rats exposed at lower levels (

  15. Altered Nitric Oxide Bioavailability Contributes to Diesel Exhaust Inhalation‐Induced Cardiovascular Dysfunction in Man

    PubMed Central

    Langrish, Jeremy P.; Unosson, Jon; Bosson, Jenny; Barath, Stefan; Muala, Ala; Blackwell, Scott; Söderberg, Stefan; Pourazar, Jamshid; Megson, Ian L.; Treweeke, Andrew; Sandström, Thomas; Newby, David E.; Blomberg, Anders; Mills, Nicholas L.

    2013-01-01

    Background Diesel exhaust inhalation causes cardiovascular dysfunction including impaired vascular reactivity, increased blood pressure, and arterial stiffness. We investigated the role of nitric oxide (NO) bioavailability in mediating these effects. Methods and Results In 2 randomized double‐blind crossover studies, healthy nonsmokers were exposed to diesel exhaust or filtered air. Study 1: Bilateral forearm blood flow was measured during intrabrachial infusions of acetylcholine (ACh; 5 to 20 μg/min) and sodium nitroprusside (SNP; 2 to 8 μg/min) in the presence of the NO clamp (NO synthase inhibitor NG‐monomethyl‐l‐arginine (l‐NMMA) 8 μg/min coinfused with the NO donor SNP at 90 to 540 ng/min to restore basal blood flow). Study 2: Blood pressure, arterial stiffness, and cardiac output were measured during systemic NO synthase inhibition with intravenous l‐NMMA (3 mg/kg). Following diesel exhaust inhalation, plasma nitrite concentrations were increased (68±48 versus 41±32 nmol/L; P=0.006) despite similar l‐NMMA–induced reductions in basal blood flow (−20.6±14.7% versus −21.1±14.6%; P=0.559) compared to air. In the presence of the NO clamp, ACh and SNP caused dose‐dependent vasodilatation that was not affected by diesel exhaust inhalation (P>0.05 for both). Following exposure to diesel exhaust, l‐NMMA caused a greater increase in blood pressure (P=0.048) and central arterial stiffness (P=0.007), but reductions in cardiac output and increases in systemic vascular resistance (P>0.05 for both) were similar to those seen with filtered air. Conclusions Diesel exhaust inhalation disturbs normal vascular homeostasis with enhanced NO generation unable to compensate for excess consumption. We suggest the adverse cardiovascular effects of air pollution are, in part, mediated through reduced NO bioavailability. Clinical Trial Registration URL: http://www.ClinicalTrials.gov. Unique identifiers: NCT00845767 and NCT01060930. PMID:23525434

  16. Strength and fatigue of NT551 silicon nitride and NT551 diesel exhaust valves

    SciTech Connect

    Andrews, M.J.; Werezczak, A.A.; Kirkland, T.P.; Breder, K.

    2000-02-01

    The content of this report is excerpted from Mark Andrew's Ph.D. Thesis (Andrews, 1999), which was funded by a DOE/OTT High Temperature Materials Laboratory Graduate Fellowship. It involves the characterization of NT551 and valves fabricated with it. The motivations behind using silicon nitride (Si{sub 3}N{sub 4}) as an exhaust valve for a diesel engine are presented in this section. There are several economic factors that have encouraged the design and implementation of ceramic components for internal combustion (IC) engines. The reasons for selecting the diesel engine valve for this are also presented.

  17. Exposure of mobile chipper operators to diesel exhaust.

    PubMed

    Magagnotti, Natascia; Picchi, Gianni; Sciarra, Gianfranco; Spinelli, Raffaele

    2014-03-01

    The current boom of forest biomass is making mobile chippers increasingly popular among forest operators. This motivates concern about the potential exposure of chipper operators to noxious chemicals derived from diesel fuel combustion. The objective of this study was to determine operator exposure to BTEX (benzene, toluene, ethylbenzene, and xylenes) and polycyclic aromatic hydrocarbons (PAHs) generated from diesel combustion. This study sampled 28 mobile chipping operations in the Italian mountains, in order to determine professional exposure to BTEX and PAHs among chipper operators. IOM, Radiello®, and XAD2 samplers were used for the purpose. Operations were divided into industrial and small scale, the former based on powerful chippers with enclosed cabs and the latter on smaller machines without enclosed cabs. We could not detect any measurable exposure to BTEX, while exposure levels for PAHs were very low, especially for what concerned recognized cancer agents. That is likely related to work environment and organization because mobile chippers work in the open-air forest environment and in the presence of very few other machines. PAH concentration was significantly higher inside cabs than outside. None of the operators involved in this research was exposed to BTEX or PAHs above occupational exposure limits. PMID:24163210

  18. Characterizations of organic compounds in diesel exhaust particulates.

    PubMed

    Lim, Jaehyun; Lim, Cheolsoo; Kim, Sangkyun; Hong, Jihyung

    2015-08-01

    To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter (PM) below 1 μm, four driving conditions were examined. At all four driving conditions, concentration of identifiable organic compounds in PM ultrafine (34-94 nm) and accumulation (94-1000 nm) modes ranged from 2.9 to 5.7 μg/m(3) and 9.5 to 16.4 μg/m(3), respectively. As a function of driving conditions, the non-oxygen-containing organics exhibited a reversed concentration trend to the oxygen-containing organics. The identified organic compounds were classified into eleven classes: alkanes, alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers, nitrogen-containing compounds, and sulfur-containing compounds. At all driving conditions, alkane class consistently showed the highest concentration (8.3 to 18.0 μg/m(3)) followed by carboxylic acid, esters, ketones and alcohols. Twelve polycyclic aromatic hydrocarbons (PAHs) were identified with a total concentration ranging from 37.9 to 174.8 ng/m(3). In addition, nine nitrogen-containing polycyclic aromatic compounds (NPACs) were identified with a total concentration ranging from 7.0 to 10.3 ng/m(3). The most abundant PAH (phenanthrene) and NPACs (7,8-benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular (3 aromatic-ring) structure under the highest engine speed and engine load. PMID:26257360

  19. Comparative Toxicity of Biodiesel Exhaust and Petroleum Diesel Exhaust Particulate Matter Using WKY Rat Alveolar Machrophages

    EPA Science Inventory

    Exposure to fine ambient particulate matter <2.5um (PM2.5) can induce airway inflammation, cardiopulmonary morbidity and mortality. Combustion of petroleum diesel and biodiesel contributes to PM2.5. Possible toxicity caused by inhalation of biodiesel emission particles (BioDEP) h...

  20. Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel-biodiesel blends

    NASA Astrophysics Data System (ADS)

    Ashraful, A. M.; Masjuki, H. H.; Kalam, M. A.

    2015-11-01

    A comparative morphological analysis was performed on the exhaust particles emitted from a CI engine using different blending ratios of palm biodiesel at several operating conditions. It was observed from this experiment; peak particle concentration for PB10 at 1200 rpm is 1.85E + 02 and at 1500 rpm is 2.12E + 02. A slightly smaller amount of volatile material has found from the biodiesel samples compared to the diesel fuel sample. Thermogravimetric analysis (TGA) showed that the amount of volatile material in the soot from biodiesel fuels was slightly lower than that of diesel fuel. PB20 biodiesel blends reduced maximum 11.26% of volatile matter from the engine exhaust, while PB10 biodiesel blend reduced minimum 5.53% of volatile matter. On the other hand, the amount of fixed carbon from the biodiesel samples was slightly higher than diesel fuel. Analysis of carbon emissions, palm biodiesel (PB10) reduced elemental carbon (EC) was varies 0.75%-18%, respectively. Similarly, the emission reduction rate for PB20 was varies 11.36%-23.46% respectively. While, organic carbon (OC) emission rates reduced for PB20 was varied 13.7-49% respectively. Among the biodiesel blends, PB20 exhibited highest oxygen (O), sulfur (S) concentration and lowest silicon (Si) and iron (Fe) concentration. Scanning electron microscope (SEM) images for PB20 showed granular structure particulates with bigger grain sizes compared to diesel. Particle diameter increased under the 2100-2400 rpm speed condition and it was 8.70% higher compared to the low speed conditions. Finally, the results indicated that the composition and degree of unsaturation of the methyl ester present in biodiesel, play an important role in the chemical composition of particulate matter emissions.

  1. Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics.

    PubMed

    Rönkkö, Topi; Lähde, Tero; Heikkilä, Juha; Pirjola, Liisa; Bauschke, Ulrike; Arnold, Frank; Schlager, Hans; Rothe, Dieter; Yli-Ojanperä, Jaakko; Keskinen, Jorma

    2013-10-15

    Diesel exhaust gaseous sulphuric acid (GSA) concentrations and particle size distributions, concentrations, and volatility were studied at four driving conditions with a heavy duty diesel engine equipped with oxidative exhaust after-treatment. Low sulfur fuel and lubricant oil were used in the study. The concentration of the exhaust GSA was observed to vary depending on the engine driving history and load. The GSA affected the volatile particle fraction at high engine loads; higher GSA mole fraction was followed by an increase in volatile nucleation particle concentration and size as well as increase of size of particles possessing nonvolatile core. The GSA did not affect the number of nonvolatile particles. At low and medium loads, the exhaust GSA concentration was low and any GSA driven changes in particle population were not observed. Results show that during the exhaust cooling and dilution processes, besides critical in volatile nucleation particle formation, GSA can change the characteristics of all nucleation mode particles. Results show the dual nature of the nucleation mode particles so that the nucleation mode can include simultaneously volatile and nonvolatile particles, and fulfill the previous results for the nucleation mode formation, especially related to the role of GSA in formation processes. PMID:24044459

  2. Diesel Engine Services. An Instructor's Guide for a Program in Trade and Technical Education. Automotive Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Designed to prepare students to be engine mechanics working on automotive and large stationary diesel engines, this instructor's guide contains eight units arranged from simple to complex to facilitate student learning. Each contains behavioral objectives, a content outline, understandings and teaching approaches necessary to develop the content,…

  3. Materials Issues Related to Catalysts for Treatment of Diesel Exhaust

    SciTech Connect

    Narula, Chaitanya Kumar; Daw, C Stuart; Hoard, John W.; Hammer, T.

    2005-01-01

    The driver for lean NO{sub x} treatment is the need to meet regulatory standards for diesel engines and gasoline direct injection spark-ignited engines that offer better fuel economy. Efforts over the last decade have been focused toward finding an active lean NO{sub x} catalyst that can reduce NO{sub x} under oxidizing conditions or strategies such as selective catalytic reduction (SCR), plasma-catalysis, plasma catalyst SCR, and lean NO{sub x} traps with varying degrees of success. At present, it appears that SCR with urea and lean NO{sub x} traps are the leading contender technologies for commercial deployment. Key issues that remain to be resolved for these two technologies include byproduct formation, dosing control, and durability. In this review, we summarize material-related issues that are unique to each of these technologies, and point out the improvements necessary to facilitate their deployment.

  4. Application of pulsed plasma NO{sub x} reduction to diesel engine exhaust

    SciTech Connect

    Wallman, P.H.; Penetrante, B.M.; Vogtlin, G.E.; Hsiao, M.C.

    1993-10-11

    We have studied the effect of pulsed plasma discharges on gas mixtures simulating diesel engine exhaust by modeling and by experiment. Our modeling results have shown that the pulsed plasma can convert NO{sub x} to N{sub 2} using the nitrogen itself as a reductant. However, this process is energetically unfavorable for the plasma regime of our measurements. In our experiments we found that addition of hydrocarbons improves substantially the energy efficiency of pulsed plasma NO{sub x} reduction. Real exhaust gas contains some gaseous hydrocarbons and carbon monoxide that may prove sufficient for improving the energy efficiency of the ``right`` pulsed plasma reduction process.

  5. Sources of interference in field studies of diesel exhaust emissions.

    PubMed

    Sirianni, G; Chemerynski, S; Cohen, H J; Wheeler, R; Borak, J

    2003-08-01

    This article describes interferences encountered in a variety of occupational settings during industrial hygiene surveys of diesel particulate material (DPM) using the NIOSH 5040 Method. The method yields time-weighted-average measurements of elemental carbon (EC), organic carbon (OC), and total carbon (TC = EC + OC). NIOSH recommends EC as proxy for DPM, but other agencies (e.g., MSHA) regulate exposure as TC. Surveys were conducted in an engine factory and a wood treatment plant where diesel equipment was used, and in a foundry where its use was being considered. Full shift samples were collected using open-faced cassettes and cyclones fitted with 37-mm quartz fiber filters analyzed by the NIOSH 5040 Method. Non-DPM-related interferences were noted for both the OC and EC. In the engine factory and wood treatment facility, OC measurements were very high (range of 10.0-1600 microg/m(3)), while EC levels were mostly below the LOD. These findings almost certainly reflect interferences by cutting oil mists and airborne creosote respectively. In the foundry, EC levels were high and comprised mainly of larger (>4 microm) particles (open face samples: arithmetic mean = 136 microg/m(3), geometric mean = 74.0 microg/m(3); cyclone samples: arithmetic mean = 30.2 microg/m(3), geometric mean = 14.7 microg/m(3)). These findings suggest that OC interferences should be suspected if the EC:TC ratio is <0.35 and, if DPM surveys are performed with open-faced samplers, at least a small number of size-selective samplers should be employed to assure that results do not reflect EC interference by larger (i.e., >1-4 microm) particles. They also support the ACGIH decision to modify its proposed DPM TLV to specifically consider elemental carbon, rather than total carbon. PMID:12851009

  6. Examination of cytokines and metals in exhaled breath condensate and lung lavage fluids after diesel exhaust exposure

    EPA Science Inventory

    Epidemiology studies link human exposure to ambient air pollution with the development and exacerbation of cardiopulmonary disease. Diesel exhaust (DE) is a significant source of ambient air pollution, and thus may contribute to adverse pulmonary health effects. Previous human re...

  7. Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures

    EPA Science Inventory

    Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in envi...

  8. INHIBITION OF TYROSINE PHOSPHATASE ACTIVITY INITIATES RECEPTOR SIGNALING IN AIRWAY EPITHELIAL CELLS EXPOSED TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Exposure to particulate matter is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of PM in urban areas and may contribute to PM toxicity through a mechanism involving pulmonary inflammation. Expression of inf...

  9. Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure-Prone Rats

    EPA Science Inventory

    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance...

  10. Concordance in Genomic Changes Between Mouse Lungs and Human Airway Epithelial Cells Exposed to Diesel Exhaust Particles

    EPA Science Inventory

    Human and animal toxicity studies have shown that exposure to diesel exhaust particles (DEP) or their constituents affect multiple biological processes including immune and inflammatory pathways, mutagenesis and in some cases carcinogenesis. This study compared genomic changes by...

  11. Inhalation of Whole Diesel Exhaust but not Gas-Phase Components Affects In Vitro Platelet Aggregation in Hypertensive Rats

    EPA Science Inventory

    Rationale: Intravascular thrombosis and platelet aggregation are enhanced following exposure to diesel exhaust (DE) and other respirable particulate matter; however, the roles of endothelial and circulating mediators on platelet aggregation remain unclear. We hypothesized that ad...

  12. Blood Pressure Interventions Affect Acute and Four-Week Diesel Exhaust Induced Pulmonary Injury in Healthy and Hypertensive Rats

    EPA Science Inventory

    Rationale: We recently showed that inhalation exposure of normotensive Wistar Kyoto (WKY) rats to whole diesel exhaust (DE) elicits changes in cardiac gene expression that broadly mimics expression in spontaneously hypertensive (SH) rats without DE. We hypothesized that pharmacol...

  13. Thermoelectric Generators for the Integration into Automotive Exhaust Systems for Passenger Cars and Commercial Vehicles

    NASA Astrophysics Data System (ADS)

    Frobenius, Fabian; Gaiser, Gerd; Rusche, Ulrich; Weller, Bernd

    2016-03-01

    A special thermoelectric generator system design and the setup of a thermoelectric generator for the integration into the exhaust line of combustion engine-driven vehicles are described. A prototype setup for passenger cars and the effects on the measured power output are shown. Measurement results using this setup show the potential and the limitations of a setup based on thermoelectric modules commercially available today. In a second step, a short outline of the detailed mathematical modeling of the thermoelectric generator and simulation studies based on this model are presented. By this means, it can be shown by which measures an improvement of the system power output can be achieved—even if today's modules are used. Furthermore, simulation studies show how the exhaust gas conditions of diesel- and Otto-engines significantly affect the requirements on thermoelectric materials as well as the potential and the design of the thermoelectric generator. In a further step, the design and the setup of a thermoelectric generator for an application in a commercial vehicle are presented. This thermoelectric generator is designed to be integrated into the exhaust aftertreatment box of the vehicle. Experimental results with this setup are performed and presented. The results show that thermoelectric generators can become an interesting technology for exhaust waste heat recovery due to the fact that they comprise non-moving parts. However, the efficiency of the modules commercially available today is still far from what is required. Hence, modules made of new materials known from laboratory samples are urgently required. With regard to future CO2 regulations, a large market opportunity for modules with a high efficiency can be expected.

  14. Case-control study of diesel exhaust exposure and bladder cancer

    SciTech Connect

    Wynder, E.L.; Dieck, G.S.; Hall, N.E.L.; Lahti, H.

    1985-08-01

    The relationship between bladder cancer and employment in occupations involving exposure to diesel exhaust was examined using data from a hospital-based case-control study of men aged 20 to 80 years in 18 hospitals in six US cities, from January 1981 to May 1983. In this analysis, 194 cases and 582 controls were compared according to occupation, smoking history, alcohol and coffee consumption, and various demographic variables. No difference was found in the proportion of bladder cancer cases employed in occupations with exposure to diesel exhaust compared to controls. This relationship did not change after taking smoking habits into account. Bladder cancer cases were significantly more likely to be current smokers of cigarettes than were controls.

  15. Effect of Thermoelectric Modules' Topological Connection on Automotive Exhaust Heat Recovery System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zheng, S. J.; Su, C. Q.; Yuan, X. H.; Yu, C. G.; Wang, Y. P.

    2016-03-01

    In automotive exhaust-based thermoelectric generators (AETEGs), a certain number of thermoelectric modules are connected in series and/or parallel to recover energy from exhaust gas, which provides a way to improve fuel efficiency of the vehicle. Because of the temperature distribution on the surfaces of heat exchanger, several types of modules are planned for use in an AETEG; however, property disparities among modules exist and wire resistance cannot be neglected in practical application, so experiments have been carried out to research effects of the two factors on the maximum output power of series and parallel connection. The performance of series and parallel connections have been characterized, and mathematic models have been built to analyze and predict the performance of each connection. Experiments and theoretical analysis reveal that parallel connection shows a better performance than series connection when large differences of Seebeck coefficient and resistivity exist. However, wire resistance will cause more significant power dissipation in parallel connection. The authors believe the research presented in this paper is the first to carry out an examination of the impact of module property disparity and wire resistance on the output power of an array of thermoelectric modules connected in series and parallel, which provides a reference for choosing module connection in AETEGs.

  16. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  17. On-Road Measurement of Exhaust Emission Factors for Individual Diesel Trucks

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; DeMartini, S.; Harley, R. A.; Kirchstetter, T. W.; Wood, E. C.; Onasch, T. B.; Herndon, S. C.

    2011-12-01

    Diesel trucks are an important source of primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. More stringent exhaust emission standards for new engines, effective starting in 2007, considerably reduce allowable emissions and have led to use of after-treatment control devices such as diesel particle filters. The state of California is also implementing programs to accelerate replacement or retrofit of older trucks. In light of these changes, measurements of emissions from in-use heavy-duty diesel trucks are timely and needed to understand the impact of new control technologies on emissions. PM2.5, BC mass, particle light absorption, and particle light extinction emission factors for hundreds of individual diesel trucks were measured in this study. Emissions were measured in July 2010 from trucks driving through the Caldecott tunnel in the San Francisco Bay area. Gas-phase emissions including nitric oxide, nitrogen dioxide, carbon monoxide, and carbon dioxide (CO2) were also measured. Pollutants were measured using air sampling inlets located directly above the vertical exhaust stacks of heavy-duty trucks driving by on the roadway below. All of these measurements were made using fast time response (1 Hz) sensors. Particle optical properties were simultaneously characterized with direct measurements of absorption (babs) and extinction (bext) coefficients. Emission factors for individual trucks were calculated using a carbon balance method in which emissions of PM2.5, BC, babs, and bext in each exhaust plume were normalized to emissions of CO2. Emission factor distributions and fleet-average values are quantified. Absorption and extinction emission factors are used to calculate the aerosol single scattering albedo and BC mass absorption efficiency for individual truck exhaust plumes.

  18. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  19. Characterization and control of exhaust gas from diesel engine firing coal-water mixture

    SciTech Connect

    Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

    1990-03-01

    Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO[sub x] concentrations are also understood in terms of known reaction mechanisms.

  20. Characterization and control of exhaust gas from diesel engine firing coal-water mixture

    SciTech Connect

    Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

    1990-03-01

    Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO{sub x} concentrations are also understood in terms of known reaction mechanisms.

  1. Volatile nanoparticle formation and growth within a diluting diesel car exhaust.

    PubMed

    Uhrner, Ulrich; Zallinger, Michael; von Löwis, Sibylle; Vehkamäki, Hanna; Wehner, Birgit; Stratmann, Frank; Wiedensohler, Alfred

    2011-04-01

    A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric

  2. Symptoms in Response to Controlled Diesel Exhaust More Closely Reflect Exposure Perception Than True Exposure

    PubMed Central

    Carlsten, Chris; Oron, Assaf P.; Curtiss, Heidi; Jarvis, Sara; Daniell, William; Kaufman, Joel D.

    2013-01-01

    Background Diesel exhaust (DE) exposures are very common, yet exposure-related symptoms haven’t been rigorously examined. Objective Describe symptomatic responses to freshly generated and diluted DE and filtered air (FA) in a controlled human exposure setting; assess whether such responses are altered by perception of exposure. Methods 43 subjects participated within three double-blind crossover experiments to order-randomized DE exposure levels (FA and DE calibrated at 100 and/or 200 micrograms/m3 particulate matter of diameter less than 2.5 microns), and completed questionnaires regarding symptoms and dose perception. Results For a given symptom cluster, the majority of those exposed to moderate concentrations of diesel exhaust do not report such symptoms. The most commonly reported symptom cluster was of the nose (29%). Blinding to exposure is generally effective. Perceived exposure, rather than true exposure, is the dominant modifier of symptom reporting. Conclusion Controlled human exposure to moderate-dose diesel exhaust is associated with a range of mild symptoms, though the majority of individuals will not experience any given symptom. Blinding to DE exposure is generally effective. Perceived DE exposure, rather than true DE exposure, is the dominant modifier of symptom reporting. PMID:24358296

  3. Exhaust emissions from a diesel power generator fuelled by waste cooking oil biodiesel.

    PubMed

    Valente, Osmano Souza; Pasa, Vanya Márcia Duarte; Belchior, Carlos Rodrigues Pereira; Sodré, José Ricardo

    2012-08-01

    The exhaust emissions from a diesel power generator operating with waste cooking oil biodiesel blends have been studied. Fuel blends with 25%, 50% and 75% of biodiesel concentration in diesel oil were tested, varying engine load from 0 to 25 kW. The original engine settings for diesel oil operation were kept the same during the experiments with the biodiesel blends. The main physical-chemical characteristics of the fuel blends used were measured to help with the analysis of the emission results. The results show that the addition of biodiesel to the fuel increases oxides of nitrogen (NO(X)), carbon monoxide (CO) and hydrocarbon (HC) emissions. Carbon dioxide (CO(2)) and exhaust gas opacity were also increased with the use of biodiesel. Major increase of NO(X) was observed at low loads, while CO and HC were mainly increased at high loads. Using 50% of biodiesel in diesel oil, the average increase of CO(2), CO, HC and NO(X) throughout the load range investigated was 8.5%, 20.1%, 23.5% and 4.8%, respectively. PMID:22664538

  4. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine. PMID:24350455

  5. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  6. Model studies of volatile diesel exhaust particle formation: are organic vapours involved in nucleation and growth?

    NASA Astrophysics Data System (ADS)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-09-01

    A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1-2) × 1012 cm-3. The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 1010 cm-3, which was the case when biofuel was used.

  7. The Diesel Exhaust in Miners Study: A Cohort Mortality Study With Emphasis on Lung Cancer

    PubMed Central

    Schleiff, Patricia L.; Lubin, Jay H.; Blair, Aaron; Stewart, Patricia A.; Vermeulen, Roel; Coble, Joseph B.; Silverman, Debra T.

    2012-01-01

    Background Current information points to an association between diesel exhaust exposure and lung cancer and other mortality outcomes, but uncertainties remain. Methods We undertook a cohort mortality study of 12 315 workers exposed to diesel exhaust at eight US non-metal mining facilities. Historical measurements and surrogate exposure data, along with study industrial hygiene measurements, were used to derive retrospective quantitative estimates of respirable elemental carbon (REC) exposure for each worker. Standardized mortality ratios and internally adjusted Cox proportional hazard models were used to evaluate REC exposure–associated risk. Analyses were both unlagged and lagged to exclude recent exposure such as that occurring in the 15 years directly before the date of death. Results Standardized mortality ratios for lung cancer (1.26, 95% confidence interval [CI] = 1.09 to 1.44), esophageal cancer (1.83, 95% CI = 1.16 to 2.75), and pneumoconiosis (12.20, 95% CI = 6.82 to 20.12) were elevated in the complete cohort compared with state-based mortality rates, but all-cause, bladder cancer, heart disease, and chronic obstructive pulmonary disease mortality were not. Differences in risk by worker location (ever-underground vs surface only) initially obscured a positive diesel exhaust exposure–response relationship with lung cancer in the complete cohort, although it became apparent after adjustment for worker location. The hazard ratios (HRs) for lung cancer mortality increased with increasing 15-year lagged cumulative REC exposure for ever-underground workers with 5 or more years of tenure to a maximum in the 640 to less than 1280 μg/m3-y category compared with the reference category (0 to <20 μg/m3-y; 30 deaths compared with eight deaths of the total of 93; HR = 5.01, 95% CI = 1.97 to 12.76) but declined at higher exposures. Average REC intensity hazard ratios rose to a plateau around 32 μg/m3. Elevated hazard ratios and evidence of exposure

  8. Epidemiological-environmental study of diesel bus garage workers: chronic effects of diesel exhaust on the respiratory system

    SciTech Connect

    Gamble, J.; Jones, W.; Minshall, S.

    1987-10-01

    Two hundred and eighty-three (283) male diesel bus garage workers from four garages in two cities were examined to determine if there was excess chronic respiratory morbidity related to diesel exposure. The dependent variables were respiratory symptoms, radiographic interpretation for pneumoconiosis, and pulmonary function (FVC, FEV1, and flow rates). Independent variables included race, age, smoking, drinking, height, and tenure (as surrogate measure of exposure). Exposure-effect relationships within the study population showed no detectable associations of symptoms with tenure. There was an apparent association of pulmonary function and tenure. Seven workers (2.5%) had category 1 pneumoconiosis (three rounded opacities, two irregular opacities, and one with both rounded and irregular). The study population was also compared to a nonexposed blue-collar population. After indirect adjustment for age, race, and smoking, the study population had elevated prevalences of cough, phlegm, and wheezing, but there was no association with tenure. Dyspnea showed a dose-response trend but no apparent increase in prevalence. Mean percent predicted pulmonary function of the study population was greater than 100%, i.e., elevated above the comparison population. These data show there is an apparent effect of diesel exhaust on pulmonary function but not chest radiographs. Respiratory symptoms are high compared to blue-collar workers, but there is no relationship with tenure.

  9. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  10. [Direct-action mutagens in exhausts of vehicles with diesel engines].

    PubMed

    Makhover, M S; Khitrovo, I A; Khesina, A Ia; Belitskiĭ, G A

    1990-01-01

    The genotoxic activity of exhausts from one-shaft gas-turbine GTE-5 engine (30 kW) and a standard D-54A diesel (40 kW) have been studied. Thus, the extracts of soot from GTE-5 and D-54A induced reversions in Salmonella typhimurium both with and without metabolic activation: furthermore, extracts of soot from GTE-5 demonstrated a higher mutagenic activity. The direct mutagenic effect of the exhausts depended neither on the presence of BP nor on the other polycyclic aromatic hydrocarbons (PAHs). Most probably, it was connected with the presence of nitro-PAHs. The need for studying the PAH content in vehicle engines' exhausts and for taking into account their effect in the control and standardization is established. PMID:1696198

  11. Penetration of diesel exhaust particles through commercially available dust half masks.

    PubMed

    Penconek, Agata; Drążyk, Paulina; Moskal, Arkadiusz

    2013-04-01

    Half masks are certified by the competent, national institutions--National Institute for Occupational Safety and Health (NIOSH) in the USA and the respective European national institutions applying common European regulations. However, certification testing is conducted with particles of NaCl, paraffin oil, or dioctyl phthalate (DOP) and at the constant flow rate, whereas particles commonly found in workplaces may differ in size, shape, and morphology from these particles. Therefore, the aim of this study was to investigate filtration efficiency of commercially available filtering facepiece half masks under the condition of exposure to diesel fumes. In this study, we focused on the particulate phase [diesel exhaust particles (DEP)] of three (petroleum diesel, ecodiesel, and biodiesel) diesel fuel combustion types. Two types of European standard-certified half masks, FFP2 and FFP - Filtering Facepiece, and three types of popular diesel fuels were tested. The study showed that the filtration efficiencies for each examined half mask and for each of diesel exhaust fumes were lower than the minimum filtration efficiency required for the standard test aerosols by the European standards. For FFP2 and FFP3 particulate half masks, standard minimum filtration efficiency is 94 and 99%, respectively, whereas 84-89% of mass of DEP from various fuels were filtered by the tested FFP2 and only 75-86% by the FFP3. The study indicated that DEP is more penetrating for these filters than the standard salt or paraffin oil test aerosols. The study also showed that the most penetrating DEP are probably in the 30- to 300-nm size range, regardless of the fuel type and the half-mask model. Finally, the pressure drops across both half masks during the 80-min tests remained below an acceptable maximum of breathing resistance-regardless of the fuel types. The respiratory system, during 40-min test exposures, may be exposed to 12-16mg of DEP if a FFP2 or FFP3 particulate half mask is used. To

  12. Differential Responses upon Inhalation Exposure to Biodiesel versus Diesel Exhaust on Oxidative Stress, Inflammatory and Immune Outcomes

    EPA Science Inventory

    Biodiesel (BD) exhaust may have reduced adverse health effects due to lower mass emissions and reduced production of hazardous compounds compared to diesel exhaust. To investigate this possibility, we compared adverse effects in lungs and liver of BALB/cJ mice after inhalation ex...

  13. Particulate control for coal-fueled diesel engine exhaust

    SciTech Connect

    Smolensky, L.A.; Easom, B.H.

    1993-11-01

    The Core Separator is a cylindrical vessel having one tangential inlet and two outlets at the opposite end of the vessel. It contains an outlet for the clean flow and a second outlet for the recirculating flow. The solids-laden flue gas is introduced through a fan to the inlet of the Core Separator. Due to the swirling motion of the flow, solids move to the periphery as the central jet leaving the system through the central outlet is cleaned of particulates. The peripheral flow with most of the particles is exhausted to the cyclone and then recirculates back to the Core Separator by means of the fan. The processes of separation and solids collection are accomplished separately and in different components. The Core Separator cleans the flow discharged from the system and detains solids within the system If the Core Separator efficiency is high enough, particles cannot leave the system. They recirculate again and again until the cyclone finally collects them for removal. An analytical formula can be derived that defines the system performance. E = E{sub c}E{sub s}/1{minus}E{sub s}(1{minus}E{sub c}), where E, E{sub c}, and E{sub s} are the system, collector, and Core Separator partial separation efficiencies respectively. Examination of this equation shows that the system efficiency remains high even with poor performance in the collector, as long as the efficiency of the Core Separator is high. For example, if E{sub s} is 99% and E{sub c} is 30%, the system efficiency is 96.7%.

  14. A method for the speciation of diesel fuel and the semi-volatile hydrocarbon fraction of diesel-fueled vehicle exhaust emissions

    SciTech Connect

    Hammerle, R.H.; Siegl, W.O.; Herrmann, H.M.; Wenclawiak, B.W.

    1995-12-31

    Although much has been learned in recent years about the atmospheric reactivity of the hydrocarbon (HC) emissions from gasoline-fueled vehicles, there is only a limited database of corresponding information for exhaust emissions from diesel-fueled vehicles. An assessment of exhaust reactivity requires speciation, or measurement of the individual species of the HC fraction. The HC exhaust emissions are a complex mixture of unburned and partially burned fuel components. Because diesel fuel contains a much higher molecular weight range (typically C{sub 9}-C{sub 26}) than gasoline (typically C{sub 5}-C{sub 12}), new methodology was required to accommodate the collection and analysis of the >C{sub 12} fraction of the HC exhaust. As part of a study of the effects of fuel and other factors on the chemical nature of diesel emissions, the authors have developed a method for the collection and analysis of the semi-volatile or heavy HC (>C{sub 12}) fraction of the exhaust. The method has a sensitivity for individual HC species of 0.2 ng/L of dilute exhaust. In this report they describe the method and its application to fuel and exhaust analysis. Speciation results are presented for two fuels and for the heavy hydrocarbon fraction of the exhaust from selected vehicle tests.

  15. Centriacinar alterations in lungs of cats chronically exposed to diesel exhaust

    SciTech Connect

    Plopper, C.G.; Hyde, D.M.; Weir, A.J.

    1983-10-01

    This study describes the morphologic changes in the centriacinar regions of lungs following long-term exposure of cats to diesel exhaust. Nine male cats (13 months of age) from a minimal disease colony were exposed to diesel exhaust for 8 hours/day, 7 days/week for 27 months. Eight cats were exposed to filtered air. Following exposure, the animals were killed by exsanguination and the lungs and trachea removed from the chest by thoracotomy, weighed, and fixed via tracheal cannula with glutaraldehyde/paraformaldehyde (550 mOsmoles, pH 7.4) at 30 cm of pressure. Centriacinar regions were selected from fixed tissue, the airways bisected, and complementary tissue halves processed by a large block method for high resolution light microscopy and for scanning electron microscopy. Compared with controls, diesel-exposed cats had lower fresh lung and kidney weights and lower fixed volumes of the right cranial lobe. The volume fractions of pulmonary parenchyma and nonparenchyma were unchanged. Epithelium of terminal and respiratory bronchioles in exposed cats consisted of three types of cells (ciliated, basal, and Clara cells), compared with only one type (Clara cells) in controls. Carbon-laden macrophages were found filling alveolar and interstitial spaces in exposed animals. Type 2 pneumocyte hyperplasia was present in proximal interalveolar septa. More distal alveolar ducts and the majority of the rest of the parenchyma were unchanged from controls. We concluded that exposure to diesel exhaust produces changes in both epithelial and interstitial tissue compartments and that the focus of these lesions in peripheral lung is the centriacinar region where alveolar ducts join terminal conducting airways.

  16. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    SciTech Connect

    COROLLER, P; PLASSAT, G

    2003-08-24

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

  17. Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer risk.

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Bunn, William B; Lapin, Charles A; McClellan, Roger O; Valberg, Peter A

    2012-06-01

    The mutagenicity of organic solvent extracts from diesel exhaust particulate (DEP), first noted more than 55 years ago, initiated an avalanche of diesel exhaust (DE) health effects research that now totals more than 6000 published studies. Despite an extensive body of results, scientific debate continues regarding the nature of the lung cancer risk posed by inhalation of occupational and environmental DE, with much of the debate focused on DEP. Decades of scientific scrutiny and increasingly stringent regulation have resulted in major advances in diesel engine technologies. The changed particulate matter (PM) emissions in "New Technology Diesel Exhaust (NTDE)" from today's modern low-emission, advanced-technology on-road heavy-duty diesel engines now resemble the PM emissions in contemporary gasoline engine exhaust (GEE) and compressed natural gas engine exhaust more than those in the "traditional diesel exhaust" (TDE) characteristic of older diesel engines. Even with the continued publication of epidemiologic analyses of TDE-exposed populations, this database remains characterized by findings of small increased lung cancer risks and inconsistent evidence of exposure-response trends, both within occupational cohorts and across occupational groups considered to have markedly different exposures (e.g. truckers versus railroad shopworkers versus underground miners). The recently published National Institute for Occupational Safety and Health (NIOSH)-National Cancer Institute (NCI) epidemiologic studies of miners provide some of the strongest findings to date regarding a DE-lung cancer association, but some inconsistent exposure-response findings and possible effects of bias and exposure misclassification raise questions regarding their interpretation. Laboratory animal studies are negative for lung tumors in all species, except for rats under lifetime TDE-exposure conditions with durations and concentrations that lead to "lung overload." The species specificity of the

  18. Genotoxic damage in mine workers exposed to diesel exhaust, and the effects of glutathione transferase genotypes.

    PubMed

    Knudsen, L E; Gaskell, M; Martin, E A; Poole, J; Scheepers, P T J; Jensen, A; Autrup, H; Farmer, P B

    2005-06-01

    This study was performed in an Estonian shale-oil mine with the purpose to develop and apply a number of biomarkers for occupational diesel-exhaust exposure monitoring. Increased breathing-zone exposures to exhaust from operators of diesel-powered trucks in the mine was confirmed in the environmental monitoring part of the study, showing a 7.5-fold higher exposure to particle-associated 1-nitropyrene (1-NP) in 50 underground workers compared with 42 surface workers [P.T.J. Scheepers, D. Coggon, L.E. Knudsen, R. Anzion, H. Autrup, S. Bogovski, R.P. Bos, D. Dahmann, P. Farmer, E.A. Martin, V. Micka, V. Muzyka, H.-G. Neumann, J. Poole, A. Schmidt-Ott, F. Seiler, J. Volf, I. Zwirner-Baier, Biomarkers for occupational diesel exhaust exposure monitoring (BIOMODEM)-a study in underground mining, Toxicol. Lett. 134 (2002) 305-317; P.T.J. Scheepers, V. Micka, V. Muzyka, R. Anzion, D. Dahmann, J. Poole, R.P. Bos, Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining, Ann. Occp. Hyg. 47 (2003) 379-388]. Analysis of DNA damage by the Comet assay on frozen blood samples was performed on the total study group and showed significantly higher levels (p=0.003) in underground workers (smokers) driving diesel-powered excavation machines (median 155 on a scale from 0 to 400, among 47 persons), compared with surface workers who smoked (median of 90, among 46 persons). The level of DNA damage in underground smokers was significantly higher (p=0.04) than in non-smokers. Samples from 2 of the 3 sampling weeks had significantly lower DNA damage compared with the third week, probably due to timely processing and freezing. These samples also showed significant differences (p<0.001) between underground workers (median 145, among 41 persons) and surface workers (median 60, among 30 persons). An HPLC method was developed for the analysis of (32)P-postlabelled 1-NP-DNA-adducts, and was applied to a sub-sample of 20 workers. No

  19. Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies Deposit Properties and Microstructure

    SciTech Connect

    Storey, John Morse; Sluder, Scott; Lance, Michael J; Styles, Dan; Simko, Steve

    2013-01-01

    This paper reports on the results of experimental efforts aimed at improving the understanding of the mechanisms and conditions at play in the fouling of EGR coolers. An experimental apparatus was constructed to utilize simplified surrogate heat exchanger tubes in lieu of full-size heat exchangers. The use of these surrogate tubes allowed removal of the tubes after exposure to engine exhaust for study of the deposit layer and its properties. The exhaust used for fouling the surrogate tubes was produced using a modern medium-duty diesel engine fueled with both ultra-low sulfur diesel and biodiesel blends. At long exposure times, no significant difference in the fouling rate was observed between fuel types and HC levels. Surface coatings for the tubes were also evaluated to determine their impact on deposit growth. No surface treatment or coating produced a reduction in the fouling rate or any evidence of deposit removal. In addition, microstructural analysis of the fouling layers was performed using optical and electron microscopy in order to better understand the deposition mechanism. The experimental results are consistent with thermophoretic deposition for deposit formation, and van der Waals attraction between the deposit surface and exhaust-borne particulate.

  20. Effects of diesel exhaust on the microbiota within a tuffaceous tunnel system

    SciTech Connect

    Haldeman, D.L.; Lagadinos, T.; Amy, P.S.; Hersman, L.; Meike, A.

    1996-08-01

    The abundance and distribution of microbiota that may be impacted by diesel and diesel exhaust were investigated from three depths into the walls and invert (floor) of U12n tunnel at Rainier Mesa, Nevada Test Site, a potential geological analog of Yucca Mountain. Enumerations included total cell counts, and numbers of aerobic heterotrophic, sulfate-reducing, nitrate-reducing, and diesel-degrading bacteria. Additionally, the disappearance of total petroleum hydrocarbons was determined in microcosms containing subsurface materials that were amended with diesel fuel. Results revealed that microbes capable of utilizing diesel and diesel combustion products were present in the subsurface in both the walls and the invert of the tunnel. The abundance of specific bacterial types in the tunnel invert, a perturbed environment, was greater than that observed in the tunnel wall. Few trends of microbial distribution either into the tunnel wall or the invert were noted with the exception of aerobic heterotrophic abundance which increased with depth into the wall and decreased with depth into the invert. No correlation between microbiota and a specific introduced chemical species have yet been determined. The potential for microbial contamination of the tunnel wall during sampling was determined to be negligible by the use of fluorescently labeled latex spheres (1{mu}m in dia.) as tracers. Results indicate that additional investigations might be needed to examine the microbiota and their possible impacts on the geology and geochemistry of the subsurface, both indigenous microbiota and those microorganisms that will likely be introduced by anthropogenic activity associated with the construction of a high-level waste repository.

  1. Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer risk

    PubMed Central

    Hesterberg, Thomas W.; Long, Christopher M.; Bunn, William B.; Lapin, Charles A.; McClellan, Roger O.; Valberg, Peter A.

    2012-01-01

    The mutagenicity of organic solvent extracts from diesel exhaust particulate (DEP), first noted more than 55 years ago, initiated an avalanche of diesel exhaust (DE) health effects research that now totals more than 6000 published studies. Despite an extensive body of results, scientific debate continues regarding the nature of the lung cancer risk posed by inhalation of occupational and environmental DE, with much of the debate focused on DEP. Decades of scientific scrutiny and increasingly stringent regulation have resulted in major advances in diesel engine technologies. The changed particulate matter (PM) emissions in “New Technology Diesel Exhaust (NTDE)” from today's modern low-emission, advanced-technology on-road heavy-duty diesel engines now resemble the PM emissions in contemporary gasoline engine exhaust (GEE) and compressed natural gas engine exhaust more than those in the “traditional diesel exhaust” (TDE) characteristic of older diesel engines. Even with the continued publication of epidemiologic analyses of TDE-exposed populations, this database remains characterized by findings of small increased lung cancer risks and inconsistent evidence of exposure-response trends, both within occupational cohorts and across occupational groups considered to have markedly different exposures (e.g. truckers versus railroad shopworkers versus underground miners). The recently published National Institute for Occupational Safety and Health (NIOSH)-National Cancer Institute (NCI) epidemiologic studies of miners provide some of the strongest findings to date regarding a DE-lung cancer association, but some inconsistent exposure-response findings and possible effects of bias and exposure misclassification raise questions regarding their interpretation. Laboratory animal studies are negative for lung tumors in all species, except for rats under lifetime TDE-exposure conditions with durations and concentrations that lead to'lung overload."The species specificity

  2. Controlled Exposure to Diesel Exhaust Causes Increased Nitrite in Exhaled Breath Condensate among Subjects with Asthma

    PubMed Central

    Hussain, Sabiha; Laumbach, Robert; Coleman, Jakemia; Youseff, Hatim; Kelly-McNeil, Kathie; Ohman-Strickland, Pamela; Zhang, Junfeng; Kipen, Howard

    2015-01-01

    Objective We aimed to determine if oxidative/nitrosative stress plays a role in the acute effects of diesel exhaust (DE) on asthmatics. Methods Crossover study design, 16 subjects with mild to moderate asthma were exposed to clean filtered air (CA) or diluted DE (300µg/m3 as PM2.5) for 1 hour with intermittent exercise. Results Airway hyperreactivity increased 24 hrs after exposure to DE as compared to CA (PC20 14.9 mg/ml vs. 19.7 mg/ml, p=0.012). Nitrite in EBC was elevated immediately after diesel exposure (p=0.052), and remained elevated 4 and 24 hrs after exposure. Conclusions After exposure to DE, subjects with asthma demonstrated increased airway hyperreactivity and obstruction. Increased nitrite in EBC, in the absence of increased eNO, suggests a non-inflammatory oxidative stress mechanism by which DE affects the lung. PMID:23001278

  3. Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot

    SciTech Connect

    Al-Qurashi, Khalid; Boehman, Andre L.

    2008-12-15

    This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR. (author)

  4. Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008

    SciTech Connect

    Dane, J.; Voorhees, K. J.

    2010-06-01

    The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

  5. Different Occupations Associated with Amyotrophic Lateral Sclerosis: Is Diesel Exhaust the Link?

    PubMed Central

    Pamphlett, Roger; Rikard-Bell, Anna

    2013-01-01

    The cause of sporadic amyotrophic lateral sclerosis (SALS) remains unknown. We attempted to find out if occupational exposure to toxicants plays a part in the pathogenesis of this disease. In an Australia-wide case-control study we compared the lifetime occupations of 611 SALS and 775 control individuals. Occupations were coded using country-specific as well as international classifications. The risk of SALS for each occupation was calculated with odds ratios using logistic regression. In addition, the literature was searched for possible toxicant links between our findings and previously-reported occupational associations with SALS. Male occupations in our study that required lower skills and tasks tended to have increased risks of SALS, and conversely, those occupations that required higher skills and tasks had decreased risks of SALS. Of all the occupations, only truck drivers, where exposure to diesel exhaust is common, maintained an increased risk of SALS throughout all occupational groups. Another large case-control study has also found truck drivers to be at risk of SALS, and almost two-thirds of occupations, as well as military duties, that have previously been associated with SALS have potential exposure to diesel exhaust. In conclusion, two of the largest case-control studies of SALS have now found that truck drivers have an increased risk of SALS. Since exposure to diesel exhaust is common in truck drivers, as well as in other occupations that have been linked to SALS, exposure to this toxicant may underlie some of the occupations that are associated with SALS. PMID:24244728

  6. Fast and quantitative measurement of benzene, toluene and C 2-benzenes in automotive exhaust during transient engine operation with and without catalytic exhaust gas treatment

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Forss, Anna-Maria; Bach, Christian

    Time-Resolved Chemical Ionization Mass Spectrometry (CIMS) has been used to investigate the emission profiles of benzene, toluene and the C 2-benzenes (xylenes and ethyl benzene) in automotive exhaust during transient engine operation. On-line emission measurements with a frequency of 1-5 Hz clearly identified the critical driving conditions that are mainly responsible for the overall aromatic hydrocarbon emissions. The passenger car, equipped with a catalytic converter showed significant BTXE-emissions only in the first part of the New European Driving Cycle (NEDC) due to sub-optimal catalyst temperature. On the same car without a catalytic converter, emissions of aromatic hydrocarbons were detected over the entire test run and the benzene-toluene mixing ratios of the exhaust gas were rather constant. With catalytic exhaust gas treatment the observed benzene-toluene mixing ratios varied to a greater extent reflecting predominantly different catalytic converter conditions. The average molar ratio of benzene over toluene rose from 0.33 to 0.53 upon exhaust gas treatment. With catalytic converter the emissions during extra urban (EUDC) driving repeatedly showed benzene-toluene mixing ratios >1 and an average molar benzene/toluene ratio of 0.74 was detected during the EUDC part of the driving cycle. Whereas the total hydrocarbon (T.HC) emissions were decreased by 83% upon exhaust gas treatment the overall reduction of the benzene emissions was only 70%.

  7. Mutagenicity of biodiesel or diesel exhaust particles and the effect of engine operating conditions

    PubMed Central

    Kisin, Elena R; Shi, X.C; Keane, Michael J; Bugarski, Aleksandar B; Shvedova, Anna A

    2015-01-01

    Background Changing the fuel supply from petroleum based ultra-low sulfur diesel (ULSD) to biodiesel and its blends is considered by many to be a viable option for controlling exposures to particulate material (PM). This is critical in the mining industry where approximately 28,000 underground miners are potentially exposed to relatively high concentrations of diesel particulate matter (DPM). This study was conducted to investigate the mutagenic potential of diesel engine emissions (DEE) from neat (B100) and blended (B50) soy-based fatty acid methyl ester (FAME) biodiesel in comparison with ULSD PM using different engine operating conditions and exhaust aftertreatment configurations. Methods The DPM samples were collected for engine equipped with either a standard muffler or a combination of the muffler and diesel oxidation catalytic converter (DOC) that was operated at four different steady-state modes. Bacterial gene mutation activity of DPM was tested on the organic solvent extracts using the Ames Salmonella assay. Results The results indicate that mutagenic activity of DPM was strongly affected by fuels, engine operating conditions, and exhaust aftertreatment systems. The mutagenicity was increased with the fraction of biodiesel in the fuel. While the mutagenic activity was observed in B50 and B100 samples collected from both light-and heavy-load operating conditions, the ULSD samples were mutagenic only at light-load conditions. The presence of DOC in the exhaust system resulted in the decreased mutagenicity when engine was fueled with B100 and B50 and operated at light-load conditions. This was not the case when engine was fueled with ULSD. Heavy-load operating condition in the presence of DOC resulted in a decrease of mutagenicity only when engine was fueled with B50, but not B100 or ULSD. Conclusions Therefore, the results indicate that DPM from neat or blended biodiesel has a higher mutagenic potency than that one of ULSD. Further research is needed to

  8. Characteristics of trans, trans-2,4-decadienal and polycyclic aromatic hydrocarbons in exhaust of diesel engine fueled with biodiesel

    NASA Astrophysics Data System (ADS)

    Yang, Hsi-Hsien; Lo, Mei-Yu; Chi-Wei Lan, John; Wang, Jenn-Shye; Hsieh, Dennis P. H.

    The use of biodiesel fuel as a substitute for fossil fuel in diesel engines has received increasing attention in recent years. This study is the first to investigate and compare the characteristics of mutagenic species, trans, trans-2,4-decadienal ( tt-DDE), and polycyclic aromatic hydrocarbons (PAHs) in the diluted exhaust of diesel engines operated with diesel and biodiesel blend fuels. An engine of current design was operated on a dynamometer consistent with the US federal test procedure transient-cycle specifications. Petroleum diesel and a blend of petroleum diesel and biodiesel (B20) were tested. Exhaust sampling was carried out on diluted exhaust in a dilution tunnel with a constant-volume sampling system. Concentrations of tt-DDE and PAHs were analyzed by GC/MS. Although average PAH emission factors decreased from 1403 to 1051 μg bhp-h -1, the results show that tt-DDE is evidently generated (1.28 μg bhp-h -1) in the exhaust of diesel engine using B20 as fuel. This finding suggests that tt-DDE emission from the use of biodiesel should be taken into account in characterization and health-risk assessment. The results also show that tt-DDE is depleted in the diesel engine combustion process and the existence of tt-DDE in biodiesel is the major source of tt-DDE emission. The distribution of tt-DDE in the particulate phase is 55.3% under this study's sampling conditions. For diesel and B20, PAH phase distributions have similar trends. Lower molecular weight PAHs predominate in gaseous phase for both diesel and B20. Cold-start driving has higher tt-DDE and PAH emission factors, as well as a higher percentage of tt-DDE in particulate phase, than for warm-start driving.

  9. A novel four-way combining catalysts for simultaneous removal of exhaust pollutants from diesel engine.

    PubMed

    Liu, Jian; Xu, Jie; Zhao, Zhen; Duan, Aijun; Jiang, Guiyuan; Jing, Yanni

    2010-01-01

    A novel four-way combining catalysts containing double layers was applied to simultaneously remove four kinds of exhaust pollutants (NOx, CO, HC and PM) emitted from diesel engine. The four-way catalysts were characterized using scanning electron microscope (SEM) and Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS). Their catalytic performances were evaluated by temperature-programmed reaction technology. The double layer catalysts could effectively remove the four main pollutants. The highest catalytic activity was given by the two-layered catalysts of La0.6K0.4CoO3/Al2O3 and W/HZSM-5. Under the simulated exhaust gases conditions, the peak temperature of the soot combustion was 421 degrees C, the maximal conversion of NO to N2 was 74%, the temperature of the HC total conversion was 357 degrees C, and the maximum conversion ratio of CO was 99%. PMID:21175003

  10. Diesel emissions and ventilation exhaust sampling in the North Ramp of the Yucca Mountain Project Exploratory Studies Facility

    SciTech Connect

    George, J.T.

    1995-11-01

    A series of ventilation experiments have been performed to assess the potential retention of diesel exhaust constituents in the North Ramp of the Yucca Mountain Site Characterization Project`s Exploratory Studies Facility (ESF). Measurements were taken to help evaluate the potential impact of retained diesel exhaust constituents on future in-situ experiments and long-term waste isolation. Assessment of the diesel exhaust retention in the ESF North Ramp required the measurement of air velocities, meteorological measurements, quantification of exhaust constituents within the ventilation air stream, multiple gas sample collections, and on-line diesel exhaust measurements. In order to assess variability within specific measurements, the experiment was divided into three separate sampling events. Although somewhat variable from event to event, collected data appear to support pre-test assumptions of high retention rates for exhaust constituents within the tunnel. The results also show that complete air exchange in the ESF does not occur within the estimated 16 to 20 minutes derived from the ventilation flowrate measurements. Because the scope of work for these activities covered only measurement and acquisition of data, no judgment is offered by the author as to the implications of this work. Final analyses and decisions based upon the entire compendium of data associated with this investigation is being undertaken by the Repository and ESF Ventilation Design Groups of the Yucca Mountain Site Characterization Project.

  11. Effects of injection pressure and injection timing to exhaust gas opacity for a conventional indirect diesel engine

    NASA Astrophysics Data System (ADS)

    Budiman, Agus; Majid, Akmal Irfan; Pambayun, Nirmala Adhi Yoga; Yuswono, Lilik Chaerul; Sukoco

    2016-06-01

    In relation to pollution control and environmental friendliness, the quality of exhaust gas from diesel engine needs to be considered. The influences of injection pressure and timing to exhaust gas opacity were investigated. A series of experiments were conducted in a one-cylinder conventional diesel engine with a naturally aspirated system and indirect injection. The default specification of injection pressure was 120 kg/cm2. To investigate the injection pressure, the engine speed was retained on 1000 rpm with pressure variations from 80 to 215 kg/cm2. On the other hand, the various injection timing (8, 10, 12, 16 degrees before TDC point and exact 18 degrees before TDC point) were used to determine their effects to exhaust gas opacity. In this case, the engine speed was varied from 1000 to 2400 rpm. The injector tester was used to measure injection pressure whereas the exhaust gas opacity was determined by the smoke meter. Those data were also statistically analyzed by product moment correlation. As the results, the injection pressure of diesel engine had a non-significant positive correlation to the exhaust gas opacity with r = 0.113 and p > 5 %. Injection pressure should be adjusted to the specification listed on the diesel engine as if it was too high or too low will lead to the higher opacity. Moreover, there was a significant positive correlation between injection timing and the exhaust gas opacity in all engine speeds.

  12. A reevaluation of the literature regarding the health assessment of diesel engine exhaust.

    PubMed

    Bunn, William B; Hesterberg, Thomas W; Valberg, Peter A; Slavin, Thomas J; Hart, Georgia; Lapin, Charles A

    2004-12-15

    While the International Agency for Research on Cancer (IARC) classified diesel exhaust (DE) as a"probable"carcinogen in 1989 based primarily on"sufficient"animal data, other investigators have since concluded that the lung tumors found in the rat studies were a result of particle overloading. Subsequent health risk assessments of DE have not used the rat cancer data. The U.S. Environmental Protection Agency (EPA), in developing its 2002 Health Assessment Document (HAD) for DE, primarily considered the epidemiology studies of railroad workers and truck drivers to develop health risk assessments of DE. However, both sets of epidemiology studies have serious weaknesses that make them unsuitable for cancer risk assessment. Major shortcomings were the lack of contemporaneous measurements of exposures to DE, difficulties with exposure history reconstruction, and adequately accounting for other exposures such as gasoline exhaust and cigarette smoke. To compound these problems, there was not, and there is still not, a specific exposure marker for DE. Interestingly, in the underground mining industry, where diesel exposures are much higher than observed in railroad workers and truck drivers, there was no increase in lung cancer. These problems and concerns led the U.S. EPA to conclude that while DE was a"likely"carcinogen, a unit risk value or range of risk cannot be calculated from existing data and that the risk could be zero. In addition, the DE emissions have changed and continue to change with the implementation of new emission control technologies. The HAD recognized this fact and noted that further studies are needed to assess new diesel engine emissions. Recent chemical characterization studies on low-emitting diesel engines with catalyzed particulate filters have shown emissions rates for several chemicals of concern that are even lower than comparable compressed natural gas (CNG)-fueled engines. With lower emissions, better fire safety, and improved cost

  13. Volatile organic compounds from the exhaust of light-duty diesel vehicles

    NASA Astrophysics Data System (ADS)

    Tsai, Jiun-Horng; Chang, Sheng-You; Chiang, Hung-Lung

    2012-12-01

    The exhaust gas constituents of light-duty diesel vehicles (LDDVs), including total hydrocarbon (THC), non-methane hydrocarbon (NMHC), carbon monoxide (CO), nitrogen oxide (NOx), and volatile organic compounds (VOCs) were measured by a dynamometer study following federal test procedure-75 (FTP-75) and highway fuel economy cycle. The average fuel consumption of these LDDVs was 0.126 L km-1 for FTP-75, with about 10% fuel consumption savings for highway driving. The average emission factors of NMHC, CO and NOx for light-duty vehicles were 0.158/0.132 (90% of THC), 1.395/1.138, and 1.735/1.907 g km-1 for FTP-75/Highway, respectively. Styrene, n-propylbenzene, n-undecane, o-ethyltoluene, 1,2,4-trimethylbenzene, toluene, o-xylene, isopropylbenzene, m,p-xylene, and ethylbenzene were the dominant VOCs of LDDV exhaust, and the emission factors were about 10-60 mg kg-1. In addition, formaldehyde, acetaldehyde, acetone, butyraldehyde, and m-tolualdehyde were the major carbonyl species from LDDV exhaust, and the emission factors ranged from 1 to 10 mg km-1. The ozone formation potentials of m,p-xylene, o-ethyltoluene, 1,2,4-trimethylbenzene, o-xylene, n-propylbenzene, styrene, and isoprene were >50 mg-O3 km-1. In addition, formaldehyde, acetaldehyde, and butyraldehyde revealed high ozone formation potential of carbonyl species, with values ranging from 10 to 95 mg-O3 km-1. Based on the exhaust constituents and ozone formation potential observed, diesel vehicles could be an important air pollution source for urban and industrial areas.

  14. Diesel and biodiesel exhaust particle effects on rat alveolar macrophages with in vitro exposure

    PubMed Central

    Bhavaraju, Laya; Shannahan, Jonathan; William, Aaron; McCormick, Robert; McGee, John; Kodavanti, Urmila; Madden, Michael

    2014-01-01

    Combustion emissions from diesel engines emit particulate matter which deposits within the lungs. Alveolar macrophages (AM) encounter the particles and attempt to engulf the particles. Emissions particles from diesel combustion engines have been found to contain diverse biologically active components including metals and polyaromatic hydrocarbons which cause adverse health effects. However little is known about AM response to particles from the incorporation of biodiesel. The objective of this study was to examine the toxicity in Wistar Kyoto rat AM of biodiesel blend (B20) and low sulfur petroleum diesel (PDEP) exhaust particles. Particles were independently suspended in media at a range of 1–500µg/mL. Results indicated B20 and PDEP initiated a dose dependent increase of inflammatory signals from AM after exposure. After 24hr exposure to B20 and PDEP gene expression of cyclooxygenase-2 (COX-2) and macrophage inflammatory protein 2 (MIP-2) increased. B20 exposure resulted in elevated prostaglandin E2 (PGE2) release at lower particle concentrations compared to PDEP. B20 and PDEP demonstrated similar affinity for sequesteration of PGE2 at high concentrations, suggesting detection is not imparied. Our data suggests PGE2 release from AM is dependent on the chemical composition of the particles. Particle analysis including measurments of metals and ions indicate B20 contains more of select metals than PDEP. Other particle components generally reduced by 20% with 20% incoporation of biodiesel into original diesel. This study shows AM exposure to B20 results in increased production of PGE2 in vitro relative to diesel. PMID:24268344

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  16. Using GC×GC-ToF-MS to characterise SVOC from diesel exhaust emissions

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ramadhas, A. S.; Stark, C. P.; Liu, D.; Xu, H.; Harrison, R. M.

    2014-12-01

    Despite intensive research over the last 20 years, a number of major research questions remain concerning the sources and properties of road traffic-generated particulate matter. There are major knowledge gaps concerning the composition of primary vehicle exhaust aerosol, and its contribution to secondary organic aerosol (SOA) formation. These uncertainties relate especially to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOC) are compounds which partition directly between the gas and aerosol phases under ambient conditions, and include compounds with saturation concentrations roughly between 0.1 and 104 μg m-3. The SVOC in engine exhaust are typically hydrocarbons in the C15-C35 range. They are largely uncharacterised, other than the n-alkanes, because they are unresolved by traditional gas chromatography and form a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, samples were collected from the exhaust of a diesel engine with and without abatement devices fitted. Engine exhaust was diluted with air and collected using both filter and impaction (MOUDI), to resolve total mass and size resolved mass respectively. Particle size distribution was evaluated by sampling simultaneously with a Scanning Mobility Particle Sizer (SMPS). 2D Gas-Chromatography Time-of-Flight Mass-Spectrometry (GC×GC-ToF-MS) was exploited to characterise and quantify the composition of SVOC from the exhaust emission. The SVOC was observed to contain predominantly n-alkanes, alkyl-cyclohexanes and aromatics; similar to both fresh lubricating oil and fuel. Preliminary results indicate that the contribution of diesel fuel to the exhaust SVOC composition is dominant at high speeds, and a more pronounced contribution from lubricating oil is observed at low speeds. Differences were also observed in the SVOC composition when using different fuel types, engine lubricants, starting temperatures and collecting samples with

  17. Qualification of diesel generator exhaust carbon steel piping to intermitted elevated temperatures

    SciTech Connect

    Ratiu, M.D.; Moisidis, N.T.

    1996-02-01

    The diesel generator exhaust piping, usually made up of carbon steel piping (e.g., ASME SA-106, SA-53), is subjected to successive short time exposures at elevated temperatures up to 1,000 F (538 C). A typical design of this piping, without consideration for creep-fatigue cumulative damage, is at least incomplete, if not inappropriate. Also, a design for creep-fatigue, usually employed for long-term exposure to elevated temperatures, would be too conservative and will impose replacement of the carbon steel piping with heat-resistant CrMo alloy piping. The existing ASME standard procedures do not explicitly provide acceptance criteria for the design qualification to withstand these intermittent exposures to elevated temperatures. The serviceability qualification proposed is based on the evaluation of equivalent full temperature cycles which are presumed/expected to be experienced by the exhaust piping during the design operating life of the diesel engine. The proposed serviceability analysis consists of: (a) determination of the permissible stress at elevated temperatures, and (b) estimation of creep-fatigue damage for the total expected cycles of elevated temperature exposures following the procedure provided in ASME Code Cases N-253-6 and N-47-28.

  18. Estrogenic and anti-androgenic activities of 4-nitrophenol in diesel exhaust particles

    SciTech Connect

    Li Chunmei; Taneda, Shinji; Suzuki, Akira K. . E-mail: suzukiak@nies.go.jp; Furuta, Chie; Watanabe, Gen; Taya, Kazuyoshi

    2006-11-15

    A 4-nitrophenol (PNP) isolated from diesel exhaust particles (DEP) has been identified as a vasodilator. PNP is also a known degradation product of the insecticide parathion. We used uterotrophic and Hershberger assays to study the estrogenic and anti-androgenic activities of PNP in-vivo. In ovariectomized immature female rats injected subcutaneously with 1, 10, or 100 mg/kg PNP daily for 7 days, significant (P < 0.05) increases in uterine weight were seen in only those receiving 10 or 100 mg/kg PNP. Furthermore, in castrated immature male rats implanted with a silastic tube (length, 5 mm) containing crystalline testosterone and injected subcutaneously with 0.01, 0.1, or 1 mg/kg PNP daily for 5 days, those receiving the doses of 0.1 mg/kg showed significant (P < 0.05) weight decreases in seminal vesicles, ventral prostate, levator ani plus bulbocavernosus muscles, and glans penis. Plasma FSH and LH levels did not change in female rats but were significantly (P < 0.05) increased in male rats treated with 0.1 mg/kg PNP. These results clearly demonstrated that PNP has estrogenic and anti-androgenic activities in-vivo. Our results therefore suggest that diesel exhaust emissions and the degradation of parathion can lead to accumulation of PNP in air, water, and soil and thus could have serious deleterious effects on wildlife and human health.

  19. Fuel Properties Improvement of Jatropha Oil using Exhaust Heat of Diesel Engine

    NASA Astrophysics Data System (ADS)

    Raheman, H.; Pradhan, P.

    2012-12-01

    The aim of the present work is to design a helical coil heat exchanger to extract waste heat from exhaust gas of a diesel engine to improve the fuel properties of high viscous crude Jatropha oil (CJO). A detailed designed procedure of helical coil heat exchanger was reported in this paper. The results showed that the fuel properties like density and viscosity reduced by 2.13 and 48.76 % respectively by gaining temperature from exhaust gas. Finally preheated Jatropha oil (PJO) fueled to the 5.5 kW diesel engine and it operated smoothly with a maximum brake thermal efficiency of 29.15 % as compared to 29.88 and 28.33 % for HSD and CJO, respectively. The brake specific energy consumption of CJO and PJO was found to be only 2.84 and 5.47 % higher than that of HSD, respectively. Efficiency of the heat exchanger was found to be varying between 19 and 26 % with engine load.

  20. [Determination of soluble organic fraction in diesel exhaust particulates by gas chromatography/mass spectrometry].

    PubMed

    Wang, Guihua; Wang, Junxiao; Huang, Xuezheng; Lu, Jiaxiang; Liu, Na

    2004-07-01

    The soluble organic fractions (SOF) in diesel exhaust particulates have been extracted with ultrasonic separator and analyzed by gas chromatography/mass spectrometry (GC/ MS). The GC/MS conditions were as follows: an HP SE-50 capillary column (30 m x 0.2 mm i. d. x 0.2 microm); temperature programming started at 100 degrees C, holding for 2.0 min, then increased to 160 degrees C at a rate of 4.0 degrees C /min, then to 250 degrees C at 8 degrees C/min, finally, kept at 250 degrees C for 31.75 min; boiling chamber temperature 260 degrees C; helium gas as carrier; chapiter pressure 45 kPa; sample size 1 microL; electron impact energy of mass spectrometer 70 eV; multiplier voltage 1 800 V; mass range 300 - 500 u. The results showed that under exhaust temperature, about 80% of SOF in particulates were normal or isomeric alkanes with carbon numbers from 9 to 28. The rest of the fractions of SOF were polycyclic aromatic hydrocarbons (homologs of indene, fluorene, phenanthrene, naphthalene etc.) and other organic substances. It is demonstrated that most of SOF were from unburned diesel and engine oils. The testing conclusion should be useful in designing and evaluating particulate filters. PMID:15709431

  1. NOx diesel exhaust treatment using a pulsed corona discharge: the pulse repetition rate effect

    NASA Astrophysics Data System (ADS)

    Yankelevich, Y.; Wolf, M.; Baksht, R.; Pokryvailo, A.; Vinogradov, J.; Rivin, B.; Sher, E.

    2007-05-01

    The pulsed corona offers real promise for degradation of pollutants in gas and water streams. This paper presents a study of NOx removal from diesel exhaust. Special emphasis is laid on the investigation of the dependence of the NO removal rate and efficiency on the pulse repetition rate (PRR). A nanosecond solid state power supply (45 kV, 60 ns, up to 1 kHz) was used for driving the corona reactor. A Mitsubishi 10 kW 3-cylinder diesel-generator engine with a total volume of 1300 cm3 was used as a source of exhaust gas. At an NO removal rate of 35% the NO removal efficiency was 53 g kW-1h-1 for PRR = 500 Hz and the initial NO concentration was 375 ppm. A semi-empirical expression for the corona reactor removal efficiency related both to PRR and to the residence time is presented. The removal efficiency decreases with increasing PRR at constant flow rate or constant residence time. This expression demonstrates reasonable agreement between the calculation results and the experimental data.

  2. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    PubMed

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (<0.5-5 μm) are abundant upstream of the DPF and are ash-free or contain notably little attached ash. Post-DPF soot agglomerates are very few, typically large (>1-5 μm, exceptionally 13 μm), rarely <0.5 μm, and contain abundant ash carried mostly from inside the DPF. The ash that reaches the atmosphere also occurs as separate aggregates ca. 0.2-2 μm in size consisting of sintered primary phases, ca. 20-400 nm large. Insoluble particles of these sizes may harm the respiratory and cardiovascular systems. The DPF probably promotes breakout of large soot agglomerates (mostly ash-bearing) by favoring sintering. Noble metals detached from the DOC coating may reach the ambient air. Finally, very few agglomerates of Fe-oxide nanoparticles form newly from engine wear and escape into the atmosphere. PMID:24274188

  3. Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments

    NASA Astrophysics Data System (ADS)

    Liati, Anthi; Pandurangi, Sushant Sunil; Boulouchos, Konstantinos; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira

    2015-01-01

    A wide range of environmental and health effects are linked to combustion-generated pollutants related to traffic. Nanoparticles, in particular, are a major concern for humans since they can be inhaled and have potentially toxic effects. The variability and sources of combustion-related nanoparticle pollutants remain inadequately investigated. Here we report the presence of ca. 5-100 nm large Fe3O4 nanoparticles, in form of agglomerates, in diesel exhaust. The mode of occurrence of these nanoparticles, in combination with their chemical composition matching that of steel indicate that they derive by melting of engine fragments in the combustion chamber and subsequent crystallization during cooling. To evaluate this hypothesis, we applied CFD simulations of material transport in the cylinder of a diesel engine, assuming detachment of steel fragments from various sites of the cylinder. The CFD results show that fragments ≤20 μm in size dislodged from the piston surface or from the fuel nozzle interior can be indeed transported to such hot areas of the combustion chamber where they can melt. The simulation results concur with the experimental observations and point out that metal nanoparticle formation by in-cylinder melting of engine fragments can occur in diesel engines. The present study proposes a hitherto neglected formation mechanism of metal nanoparticle emissions from internal combustion engines raising possible environmental and health concerns, especially in urban areas.

  4. Modulation of pulmonary inflammatory responses and antimicrobial defenses in mice exposed to diesel exhaust.

    PubMed

    Gowdy, Kymberly; Krantz, Quentin T; Daniels, Mary; Linak, William P; Jaspers, Ilona; Gilmour, M Ian

    2008-06-15

    Diesel exhaust (DE) is a major component of urban air pollution and has been shown to increase the severity of infectious and allergic lung disease. The purpose of this study was to evaluate the effects of DE exposure on pulmonary inflammation, mediator production and antimicrobial defenses in an exposure model that had previously been shown to increase susceptibility to influenza. BALB/c mice were exposed to filtered air, or to DE diluted to yield 0.5 or 2 mg/m(3) of diesel exhaust particles (DEP) for 4 h per day for 1 or 5 days. Immediately and 18 h after one or five diesel exposures mice were euthanized to assess both immediate and delayed effects. DE exposure for 5 days at either concentration caused higher neutrophil numbers and lesion scoring compared to air controls. Intracellular adhesion molecule-1 (ICAM-1), which recruits inflammatory cells and is an entry site for rhinoviruses was increased immediately after 1 or 5 days of DE exposure. Several inflammatory and immune cytokines (TNF-alpha, MIP-2, IL-6, IFN-gamma, and IL-13) were also upregulated at various time points and concentrations. In contrast, clara cell secretory protein (CCSP), surfactant protein A (SP-A), and surfactant protein D (SP-D) which are important host defense molecules, were significantly decreased at both the message and protein level with DE exposure. We conclude that exposure to moderate and high occupational levels of DE caused an increase in lung injury and inflammation, and a decrease in host defense molecules, which could result in increased susceptibility to respiratory pathogens. PMID:18343473

  5. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    PubMed Central

    Ma, Jane Y.C.; Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K.; Castranova, Vincent

    2015-01-01

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO2) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO2 on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO2 and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO2 induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO2 and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO2, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO2 were significantly larger than CeO2 or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO2 reflects the combination of DEP-exposure plus CeO2-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO2 induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO2 in the combined exposure. Using CeO2 as diesel fuel catalyst may cause health concerns. PMID:24793434

  6. Autocrine ligands of the epithelial growth factor receptor mediate inflammatory responses to diesel exhaust particles

    PubMed Central

    2014-01-01

    Background Diesel exhaust is associated with cardiovascular and respiratory mortality and morbidity. Acute exposure leads to increased IL-8 expression and airway neutrophilia, however the mechanism of this response is unknown. Objectives: As cigarette smoke-induced IL-8 expression by epithelial cells involves transactivation of the epidermal growth factor receptor (EGFR), we studied the effects of diesel exhaust particles (DEP) on IL-8 release and the role of the EGFR. Methods Primary bronchial epithelial cells (PBEC) were exposed to DEPs or carbon black. IL-8 and EGFR ligand expression (transforming growth factor alpha (TGFα), heparin-binding EGF-like growth factor, and amphiregulin (AR)) were assessed by quantitative RT-PCR and ELISA. Results DEP, but not carbon black, caused a dose-dependent increase in mitogen-activated protein kinase (MAPK) activation and IL-8 expression, however above 50 μg/ml there was an increase in cytotoxicity. At 50 μg/ml, DEPs stimulated transcription and release of IL-8 and EGFR ligands. IL-8 release was blocked by EGFR neutralizing antibodies, an EGFR-selective tyrosine kinase inhibitor and by the metalloprotease inhibitor, GM6001, which blocks EGFR ligand shedding. Neutralizing antibodies to AR, TGFα and heparin-binding (HB)-EGF reduced DEP-induced IL-8 by >50%. Conclusion Expression of IL-8 in response to DEPs is dependent on EGFR activation and that autocrine production of EGFR ligands makes a substantial contribution to this response. Capsule Summary: This study identifies a mechanism whereby diesel particles stimulates IL-8 release from bronchial epithelial cells. This mechanism may help to explain the recruitment of neutrophils into the airways of people exposed to particulate air pollution. PMID:24555532

  7. Response of pulmonary cellular defenses to the inhalation of high concentrations of diesel exhaust. [Rats

    SciTech Connect

    Strom, K.A.

    1984-01-01

    Rats were exposed to three concentrations of diluted diesel exhaust for 6 mo and 1 yr. Bronchopulmonary lavage was used to obtain the pulmonary phagocytes from the animals in order to study the response of the phagocytic defenses to the inhaled particulate. The cell counts of alveolar macrophages (AM) were proportional to the concentration of diesel exhaust particulate (DP) in the chronic exposures. AM increased in the lungs in response to the rate of DP mass entering the lungs, rather than to the total DP burden in the lung. The geometric mean volumes of AM from the exposed and control animals were approximately 1100 ..mu..m/sup 3/ at both 6 and 12 mo of exposure, although exposed cell-volume distributions skewed towards larger sizes. The AM volume distributions extended to 2000 ..mu..m/sup 3/ in both control and 250 /sup +/g DP/m/sup 3/ exposed animals and up to 5000 ..mu..m/sup 3/ in cells from animals exposed to 750 and 1500 ..mu..g DP/m/sup 3/. Polymorphonuclear leukocytes were present in the lavaged cell populations from the animals exposed to 750 and 1500 ..mu..g/m/sup 3/. In addition, at 1 yr of exposure, lymphocytes were also lavaged from animals exposed to 750 and 1500 ..mu..g DP/m/sup 3/. Protein, ..beta..-glucuronidase activity, and acid phosphatase activity were measured in the lavaged cells, and were elevated in the cells from animals exposed to 750 and 1500 ..mu..g/m/sup 3/. The buoyant density of diesel-laden AM was found to be greater than that of control AM, and overlapped with the buoyant density of the polymorphonuclear leukocytes. 42 references, 9 figures, 7 tables.

  8. Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice.

    PubMed Central

    Singh, Pramila; DeMarini, David M; Dick, Colin A J; Tabor, Dennis G; Ryan, Jeff V; Linak, William P; Kobayashi, Takahiro; Gilmour, M Ian

    2004-01-01

    Two samples of diesel exhaust particles (DEPs) predominate in health effects research: an automobile-derived DEP (A-DEP) sample and the National Institute of Standards Technology standard reference material (SRM 2975) generated from a forklift engine. A-DEPs have been tested extensively for their effects on pulmonary inflammation and exacerbation of allergic asthmalike responses. In contrast, SRM 2975 has been tested thoroughly for its genotoxicity. In the present study, we combined physical and chemical analyses of both DEP samples with pulmonary toxicity testing in CD-1 mice to compare the two materials and to make associations between their physicochemical properties and their biologic effects. A-DEPs had more than 10 times the amount of extractable organic material and less than one-sixth the amount of elemental carbon compared with SRM 2975. Aspiration of 100 micro g of either DEP sample in saline produced mild acute lung injury; however, A-DEPs induced macrophage influx and activation, whereas SRM 2975 enhanced polymorphonuclear cell inflammation. A-DEPs stimulated an increase in interleukin-6 (IL-6), tumor necrosis factor alpha, macrophage inhibitory protein-2, and the TH2 cytokine IL-5, whereas SRM 2975 only induced significant levels of IL-6. Fractionated organic extracts of the same quantity of DEPs (100 micro g) did not have a discernable effect on lung responses and will require further study. The disparate results obtained highlight the need for chemical, physical, and source characterization of particle samples under investigation. Multidisciplinary toxicity testing of diesel emissions derived from a variety of generation and collection conditions is required to meaningfully assess the health hazards associated with exposures to DEPs. Key words: automobile, diesel exhaust particles, forklift, mice, pulmonary toxicity, SRM 2975. PMID:15175167

  9. Modulation of pulmonary inflammatory responses and antimicrobial defenses in mice exposed to diesel exhaust

    SciTech Connect

    Gowdy, Kymberly; Krantz, Quentin T.; Daniels, Mary; Linak, William P.; Jaspers, Ilona; Gilmour, M. Ian

    2008-06-15

    Diesel exhaust (DE) is a major component of urban air pollution and has been shown to increase the severity of infectious and allergic lung disease. The purpose of this study was to evaluate the effects of DE exposure on pulmonary inflammation, mediator production and antimicrobial defenses in an exposure model that had previously been shown to increase susceptibility to influenza. BALB/c mice were exposed to filtered air, or to DE diluted to yield 0.5 or 2 mg/m{sup 3} of diesel exhaust particles (DEP) for 4 h per day for 1 or 5 days. Immediately and 18 h after one or five diesel exposures mice were euthanized to assess both immediate and delayed effects. DE exposure for 5 days at either concentration caused higher neutrophil numbers and lesion scoring compared to air controls. Intracellular adhesion molecule-1 (ICAM-1), which recruits inflammatory cells and is an entry site for rhinoviruses was increased immediately after 1 or 5 days of DE exposure. Several inflammatory and immune cytokines (TNF-{alpha}, MIP-2, IL-6, IFN-{gamma}, and IL-13) were also upregulated at various time points and concentrations. In contrast, clara cell secretory protein (CCSP), surfactant protein A (SP-A), and surfactant protein D (SP-D) which are important host defense molecules, were significantly decreased at both the message and protein level with DE exposure. We conclude that exposure to moderate and high occupational levels of DE caused an increase in lung injury and inflammation, and a decrease in host defense molecules, which could result in increased susceptibility to respiratory pathogens.

  10. Mutagenic and cytotoxic effects of exhaust particulate matter of biodiesel compared to fossil diesel fuel.

    PubMed

    Bünger, J; Krahl, J; Franke, H U; Munack, A; Hallier, E

    1998-07-01

    The mutagenic and cytotoxic effects of diesel engine exhaust (DEE) from a modern passenger car using rapeseed oil methyl esters (RME, biodiesel) as fuel were directly compared to DEE of diesel fuel (DF) derived from petroleum. Combustion particulate matter was collected on glass fiber filters coated with polytetrafluoroethylene (PTFE) from an exhaust dilution tunnel using three different engine test cycles on a chassis dynamometer. Filters were extracted with dichloromethane in a soxhlet apparatus for 12 h. The mutagenicity of the extracts was tested in the Salmonella typhimurium/mammalian microsome plate-incorporation assay using strains TA97a, TA98, TA100, and TA102. The toxicity to the established cell line L929 (mouse lung fibroblasts) was investigated in the neutral red assay. In the tester strains TA98 and TA100 a significant increase of mutations resulted for the particle extracts of both fuels, but for DF the revertants were significantly higher compared to RME. The highest levels of revertants were observed in tests including a cold start phase. This was probably due to incomplete combustion in the cold engine and a lower conversion rate of the cold catalytic converter. Testing with activated liver S9 fraction induced a slightly lower increase of revertants in most experiments. TA97a and TA102 showed no significant enhancement of spontaneous mutations. In the FTP-75 test cycle RME extracts showed slightly higher toxic effects to the L929 cells than DF, whereas in the other tests no significant differences were observable. These results indicate a higher mutagenic potency of DEE of DF compared to RME. This is probably due to the lower content of polycyclic aromatic compounds (PAC) in RME exhaust, although the emitted masses of RME were higher in most test procedures applied in this study. PMID:9711258

  11. Composition and Integrity of PAHs, Nitro-PAHs, Hopanes and Steranes In Diesel Exhaust Particulate Matter

    PubMed Central

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2013-01-01

    Diesel exhaust particulate matter contains many semivolatile organic compounds (SVOCs) of environmental and health significance. This study investigates the composition, emission rates, and integrity of 25 SVOCs, including polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and diesel biomarkers hopanes and steranes. Diesel engine particulate matter (PM), generated using an engine test bench, three engine conditions, and ultra-low sulfur diesel (ULSD), was collected on borosilicate glass fiber filters. Under high engine load, the PM emission rate was 0.102 g/kWh, and emission rate of ΣPAHs (10 compounds), ΣNPAHs (6 compounds), Σhopanes (2 compounds), and Σsteranes (2 compounds) were 2.52, 0.351, 0.02 ~ 2 and 1μg/kWh, respectively. Storage losses were evaluated for three cases: conditioning filters in clean air at 25 °C and 33% relative humidity (RH) for 24 h; storing filter samples (without extraction) wrapped in aluminum foil at 4 °C for up to one month; and storing filter extracts in glass vials capped with Teflon crimp seals at 4 °C for up to six months. After conditioning filters for 24 h, 30% of the more volatile PAHs were lost, but lower volatility NPAHs, hopanes and steranes showed negligible changes. Storing wrapped filters and extracts at 4 °C for up to one month did not lead to significant losses, but storing extracts for five months led to significant losses of PAHs and NPAHs; hopanes and steranes demonstrated greater integrity. These results suggest that even relatively brief filter conditioning periods, needed for gravimetric measurements of PM mass, and extended storage of filter extracts can lead to underestimates of SVOC concentrations. Thus, SVOC sampling and analysis protocols should utilize stringent criteria and performance checks to identify and limit possible biases occurring during filter and extract processing. PMID:24363468

  12. The characterisation of diesel exhaust particles - composition, size distribution and partitioning.

    PubMed

    Alam, Mohammed S; Zeraati-Rezaei, Soheil; Stark, Christopher P; Liang, Zhirong; Xu, Hongming; Harrison, Roy M

    2016-07-18

    A number of major research questions remain concerning the sources and properties of road traffic generated particulate matter. A full understanding of the composition of primary vehicle exhaust aerosol and its contribution to secondary organic aerosol (SOA) formation still remains elusive, and many uncertainties exist relating to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOCs) are compounds which partition directly between the gas and aerosol phases under ambient conditions. The SVOCs in engine exhaust are typically hydrocarbons in the C15-C35 range, and are largely uncharacterised because they are unresolved by traditional gas chromatography, forming a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, thermal desorption coupled to comprehensive Two Dimensional Gas-Chromatography Time-of-Flight Mass-Spectrometry (TD-GC × GC-ToF-MS) was exploited to characterise and quantify the composition of SVOCs from the exhaust emission. Samples were collected from the exhaust of a diesel engine, sampling before and after a diesel oxidation catalyst (DOC), while testing at steady state conditions. Engine exhaust was diluted with air and collected using both filter and impaction (nano-MOUDI), to resolve total mass and size resolved mass respectively. Adsorption tubes were utilised to collect SVOCs in the gas phase and they were then analysed using thermal desorption, while particle size distribution was evaluated by sampling with a DMS500. The SVOCs were observed to contain predominantly n-alkanes, branched alkanes, alkyl-cycloalkanes, alkyl-benzenes, PAHs and various cyclic aromatics. Particle phase compounds identified were similar to those observed in engine lubricants, while vapour phase constituents were similar to those measured in fuels. Preliminary results are presented illustrating differences in the particle size distribution and SVOCs composition when collecting samples with and

  13. Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation

    NASA Astrophysics Data System (ADS)

    Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew

    2012-06-01

    The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1

  14. The diesel exhaust in miners study: I. Overview of the exposure assessment process.

    PubMed

    Stewart, Patricia A; Coble, Joseph B; Vermeulen, Roel; Schleiff, Patricia; Blair, Aaron; Lubin, Jay; Attfield, Michael; Silverman, Debra T

    2010-10-01

    This report provides an overview of the exposure assessment process for an epidemiologic study that investigated mortality, with a special focus on lung cancer, associated with diesel exhaust (DE) exposure among miners. Details of several components are provided in four other reports. A major challenge for this study was the development of quantitative estimates of historical exposures to DE. There is no single standard method for assessing the totality of DE, so respirable elemental carbon (REC), a component of DE, was selected as the primary surrogate in this study. Air monitoring surveys at seven of the eight study mining facilities were conducted between 1998 and 2001 and provided reference personal REC exposure levels and measurements for other agents and DE components in the mining environment. (The eighth facility had closed permanently prior to the surveys.) Exposure estimates were developed for mining facility/department/job/year combinations. A hierarchical grouping strategy was developed for assigning exposure levels to underground jobs [based on job titles, on the amount of time spent in various areas of the underground mine, and on similar carbon monoxide (CO, another DE component) concentrations] and to surface jobs (based on the use of, or proximity to, diesel-powered equipment). Time trends in air concentrations for underground jobs were estimated from mining facility-specific prediction models using diesel equipment horsepower, total air flow rates exhausted from the underground mines, and, because there were no historical REC measurements, historical measurements of CO. Exposures to potentially confounding agents, i.e. respirable dust, silica, radon, asbestos, and non-diesel sources of polycyclic aromatic hydrocarbons, also were assessed. Accuracy and reliability of the estimated REC exposures levels were evaluated by comparison with several smaller datasets and by development of alternative time trend models. During 1998-2001, the average

  15. The Diesel Exhaust in Miners Study: I. Overview of the Exposure Assessment Process

    PubMed Central

    Stewart, Patricia A.; Coble, Joseph B.; Vermeulen, Roel; Schleiff, Patricia; Blair, Aaron; Lubin, Jay; Attfield, Michael; Silverman, Debra T.

    2010-01-01

    This report provides an overview of the exposure assessment process for an epidemiologic study that investigated mortality, with a special focus on lung cancer, associated with diesel exhaust (DE) exposure among miners. Details of several components are provided in four other reports. A major challenge for this study was the development of quantitative estimates of historical exposures to DE. There is no single standard method for assessing the totality of DE, so respirable elemental carbon (REC), a component of DE, was selected as the primary surrogate in this study. Air monitoring surveys at seven of the eight study mining facilities were conducted between 1998 and 2001 and provided reference personal REC exposure levels and measurements for other agents and DE components in the mining environment. (The eighth facility had closed permanently prior to the surveys.) Exposure estimates were developed for mining facility/department/job/year combinations. A hierarchical grouping strategy was developed for assigning exposure levels to underground jobs [based on job titles, on the amount of time spent in various areas of the underground mine, and on similar carbon monoxide (CO, another DE component) concentrations] and to surface jobs (based on the use of, or proximity to, diesel-powered equipment). Time trends in air concentrations for underground jobs were estimated from mining facility-specific prediction models using diesel equipment horsepower, total air flow rates exhausted from the underground mines, and, because there were no historical REC measurements, historical measurements of CO. Exposures to potentially confounding agents, i.e. respirable dust, silica, radon, asbestos, and non-diesel sources of polycyclic aromatic hydrocarbons, also were assessed. Accuracy and reliability of the estimated REC exposures levels were evaluated by comparison with several smaller datasets and by development of alternative time trend models. During 1998–2001, the average

  16. Improved design of a tangential entry cyclone separator for separation of particles from exhaust gas of diesel engine.

    PubMed

    Mukhopadhyay, N

    2011-01-01

    An effective design of cyclone separator with tangential inlet is developed applying an equation derived from the correlation of collection efficiency with maximum pressure drop components of the cyclone, which can efficiently remove the particles around 1microm of the exhaust gas of diesel engine. PMID:22324145

  17. Reduction of low temperature engine pollutants by understanding the exhaust species interactions in a diesel oxidation catalyst.

    PubMed

    Lefort, I; Herreros, J M; Tsolakis, A

    2014-02-18

    The interactions between exhaust gas species and their effect (promotion or inhibition) on the light-off and activity of a diesel oxidation catalyst (DOC) for the removal of pollutants are studied, using actual engine exhaust gases from the combustion of diesel, alternative fuels (rapeseed methyl ester and gas-to-liquid fuel) and diesel/propane dual fuel combustion. The activity of the catalyst was recorded during a heating temperature ramp where carbon monoxide (CO) and hydrocarbon (HC) light-off curves were obtained. From the catalyst activity tests, it was found that the presence of species including CO, medium-heavy HC, alkenes, alkanes, and NOx and their concentration influence the catalyst ability to reduce CO and total HC emissions before release to the atmosphere. CO could inhibit itself and other species oxidation (e.g., light and medium-heavy hydrocarbons) while suffering from competitive adsorption with NO. Hydrocarbon species were also found to inhibit their own oxidation as well as CO through adsorption competition. On the other hand, NO2 was found to promote low temperature HC oxidation through its partial reduction, forming NO. The understanding of these exhaust species interactions within the DOC could aid the design of an efficient aftertreatment system for the removal of diesel exhaust pollutants. PMID:24450781

  18. Comparative Cardiopulmonary Toxicity of exhausts from Soy-Based Biofuels and Diesel in Healthy and Hypertensive Rats

    EPA Science Inventory

    Increased use of renewable energy sources raise concerns about health effects of new emissions. We analyzed relative cardiopulmonary health effects of exhausts from (1) 100% soy biofuel (B100), (2) 20% soy biofuel + 80% low sulfur petroleum diesel (B20), and (3) 100% petroleum di...

  19. Susceptibility of inflamed ariway and alveolar epithelial cells to injury induced by diesel exhaust particles of varying organic carbon content

    EPA Science Inventory

    Exposure to traffic-related ambient air pollution, such as diesel exhaust particles (DEP), is associated with adverse health outcomes, especially in individuals with preexisting inflammatory respiratory diseases. Using an analogous in vitro system to model both the healthy and a...

  20. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    EPA Science Inventory

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  1. TRPA1 and Sympathetic Activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust

    EPA Science Inventory

    Background -Diesel exhaust (DE), which is emitted from on-and off-road sources, is a complex mixture of toxic gaseous and particulate components that results in adverse cardiovascular effects. Arrhythmias, which are often triggered in the hours and days following exposure, are on...

  2. EFFECTS OF DIESEL EXHAUST ON PULMONARY RESPONSES DURING ALLERGIC SENSITIZATION TO AEROSOLIZED OVALBUMIN IN BALB/C MICE

    EPA Science Inventory

    Effects of Diesel Exhaust on Pulmonary Responses During Allergic Sensitization to Aerosolized Ovalbumin in BALB/c Mice. P. Singh1, M.J. Daniels1, D. Andrews1, E. Boykin1, W. P. Linak2 and M.I. Gilmour1. 1USEPA, ORD, NHEERL, RTP, NC. 2 USEPA, ORD, NRMRL, RTP, NC.

    Inhala...

  3. Treadmill stress test after diesel exhaust particulate exposure reveals a time-dependent shift from parasympathetic to sympathetic dominance

    EPA Science Inventory

    Epidemiological studies suggest that particulate matter (PM) air pollution is a major trigger of acute cardiac events-including arrhythmia-especially in those with preexisting cardiac disease. Diesel exhaust (DE) contributes the majority of urban fine and ultrafine PM, and is thu...

  4. Bioassay-Directed Fractionation and Sub-fractionation for Mutagenicity and Chemical Analysis of Diesel Exhaust Particles

    EPA Science Inventory

    Several types of diesel exhaust particles (DEPs) have been used for toxicology studies, including a high-organic automobile DEP (A-DEP) from Japan, and a low-organic forklift DEP developed by the National Institute of Standards and Technology (N-DEP). However, these DEPs were no...

  5. *Assessing differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    EPA Science Inventory

    Background: Exposure to Diesel Exhaust Particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-l in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-l activation results in the upregulat...

  6. NANOMETER SIZE DIESEL EXHAUST PARTICLES ARE SELECTIVELY TOXIC TO DOPAMINERGIC NEURONS: THE ROLE OF MICROGLIA, PHAGOCYTOSIS, AND NADPH OXIDASE.

    EPA Science Inventory

    This manuscript describes the neurotoxic response of cultured brain cells to diesel exhaust particles (DEP). DEP produces an early production of free radicals (i.e., oxidative stress) in one CNS cell type (the microglial) and the subsequent degeneration of specific neuronal...

  7. Cardiovascular Effects Caused by Increasing Concentrations of Diesel Exhaust in Middle-Aged Healthy GSTM1 Null Human Volunteers

    EPA Science Inventory

    ABSTRACT Objectives: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Diesel exhaust (DE) is a major contributor to ambient PM in urban areas. This study was designed to e...

  8. Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges.

    PubMed

    Song, Chong-Lin; Bin, Feng; Tao, Ze-Min; Li, Fang-Cheng; Huang, Qi-Fei

    2009-07-15

    The main target of this work is to characterize the abatements of particulate matter (PM), hydrocarbons (HC) and nitrogen oxides (NO(x)) from an actual diesel exhaust using dielectric barrier discharge technology (DBD). The effects of several parameters, such as peak voltage, frequency and engine load, on the contaminant removals have been investigated intensively. The present study shows that for a given frequency, the removals of PM and HC are enhanced with the increase of peak voltage and level off at higher voltage, while in the range of higher voltages a decline of NO(x) removal efficiency is observed. For a given voltage, the maximums of specific energy density (SED) and removal efficiency are attained at resonance point. The increase of peak voltage will result in a significant decrease of energy utilization efficiency of DBD at most engine loads. Alkanes in soluble organic fraction (SOF) are more readily subjected to removals than polycyclic aromatic hydrocarbons (PAHs). PMID:19128874

  9. Characterization of exhaust emissions from trap-equipped light-duty diesels. Final report

    SciTech Connect

    Smith, L.R.

    1989-01-01

    The objective of the project was to thoroughly characterize and quantify the criteria and toxic-pollutant emissions from two different types of trap-equipped light-duty diesel vehicles. These vehicles included a 1986 Mercedes-Benz 300 SDL, which utilizes a catalyzed trap system, and a prototype Volkswagen, which utilizes an additive trap system (organometallic iron additive). Exhaust emissions from the two vehicles were evaluated as to driving cycle, presence of traps, engine condition, trap condition and fuel aromatic content. In addition to the currently regulated emissions (HC, CO, NOx and particulate matter), a number of unregulated emissions were measured, including aldehydes, benzene, PAHs, metals and trace elements, and 1,3-butadiene. Particulate samples were also analyzed for mutagenic activity using the Ames test. In general, the vehicles produced lower hydrocarbon emissions, higher carbon monoxide emissions, and lower fuel economy when the traps were installed in the vehicles.

  10. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro.

    PubMed

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao; Skovmand, Astrid; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2015-07-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A-DEP) for 24h to study lipid droplet formation and possible mechanisms. The results show that A-DEP did not induce cytotoxicity. The production of reactive oxygen species was only significantly increased after exposure for 3h, but not 24h. Intracellular level of reduced glutathione was increased after 24h exposure. These results combined indicate an adaptive response to oxidative stress. Exposure to A-DEP was associated with significantly increased formation of lipid droplets, as well as changes in lysosomal function, assessed as reduced LysoTracker staining. In conclusion, these results indicated that exposure to A-DEP may induce formation of lipid droplets in macrophages in vitro possibly via lysosomal dysfunction. PMID:26122084

  11. Chemical and physical properties of ultrafine diesel exhaust particles sampled downstream of a catalytic trap.

    PubMed

    Grose, Melissa; Sakurai, Hiromu; Savstrom, Jake; Stolzenburg, Mark R; Watts, Winthrop F; Morgan, Christopher G; Murray, Ian P; Twigg, Martyn V; Kittelson, David B; McMurry, Peter H

    2006-09-01

    The chemical and physical properties of exhaust particles produced by a Caterpillar 3176 C-12 heavy duty diesel engine equipped with a catalytic trap (CRT) are reported. The engine was operated at 600 Nm and 1500 rpm, using fuels containing 15 and 49 ppm sulfur. A two-stage dilution tunnel designed to simulate the reactions that occur when hot combustion products mix with cooler atmospheric air was used. Particle size distributions were measured using a scanning mobility particle sizer (SMPS) and nano-scanning mobility particle sizer (nano SMPS); a nanomicro-orifice uniform deposit impactor (nano MOUDI) collected size-resolved samples for gravimetric and chemical analysis. A nanometer tandem differential mobility analyzer (nano TDMA) was used to measure the volatility and hygroscopicity of 4-15 nm particles. These measurements confirm that the particles consisted primarily of sulfates. PMID:16999131

  12. Historical estimation of diesel exhaust exposure in a cohort study of U.S. railroad workers and lung cancer

    PubMed Central

    Laden, Francine; Hart, Jaime E.; Eschenroeder, Alan; Smith, Thomas J; Garshick, Eric

    2006-01-01

    We have previously shown an elevated risk of lung cancer mortality in diesel exhaust exposed railroad workers. To reduce exposure misclassification, we obtained extensive historical information on diesel locomotives used by each railroad. Starting in 1945, we calculated the rate each railroad converted from steam to diesel, creating annual railroad-specific weighting factors for the probability of diesel exposure. We also estimated the average annual exposure intensity based on emission factors. The US Railroad Retirement Board provided railroad assignment and work histories for 52,812 workers hired between 1939–1949, for whom we ascertained mortality 1959–1996. Among workers hired after 1945, as diesel locomotives were introduced, the relative risk of lung cancer for any exposure was 1.77 (95%CI=1.50–2.09), and there was evidence of an exposure response relationship with exposure duration. Exposed workers hired before 1945 had a relative risk of 1.30 (95%CI=1.19–1.43) for any exposure and there was no evidence of a dose response with duration. There was no evidence of increasing risk using estimated measures of intensity although the overall lung cancer risk remained elevated. In conclusion, although precise historical estimates of exposure are not available, weighting factors helped better define the exposure-response relationship of diesel exhaust with lung cancer mortality. PMID:16841258

  13. N-acetylcysteineamide (NACA) prevents inflammation and oxidative stress in animals exposed to diesel engine exhaust.

    PubMed

    Banerjee, Atrayee; Trueblood, Max B; Zhang, Xinsheng; Manda, Kalyan Reddy; Lobo, Prem; Whitefield, Philip D; Hagen, Donald E; Ercal, Nuran

    2009-06-22

    Diesel exhaust particles (DEPs), a by-product of diesel engine exhaust (DEE), are one of the major components of air borne particulate matter (PM) in the urban environment. DEPs are composed of soot, polycyclic aromatic hydrocarbons (PAHs), redox active semi-quinones, and transition metals, which are known to produce pro-oxidative and pro-inflammatory effects, thereby leading to oxidative stress-induced damage in the lungs. The objective of this study was to determine if N-acetylcysteineamide (NACA), a novel thiol antioxidant, confers protection to animals exposed to DEPs from oxidative stress-induced damage to the lung. To study this, male C57BL/6 mice, pretreated with either NACA (250mg/kg body weight) or saline, were exposed to DEPs (15mg/m(3)) or filtered air (1.5-3h/day) for nine consecutive days. The animals were sacrificed 24h after the last exposure. NACA-treated animals exposed to DEP had significant decreases in the number of macrophages and the amount of mucus plug formation in the lungs, as compared to the DEP-only exposed animals. In addition, DEP-exposed animals, pretreated with NACA, also experienced significantly lower oxidative stress than the untreated group, as indicated by the glutathione (GSH), and malondialdehyde (MDA) levels and catalase (CAT) activity. Further, DEP-induced toxicity in the lungs was reversed in NACA-treated animals, as indicated by the lactate dehydrogenase levels. Taken together, these data suggest that the thiol-antioxidant, NACA, can protect the lungs from DEP-induced inflammation and oxidative stress related damage. PMID:19429263

  14. Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses

    PubMed Central

    Campen, Matthew J.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2011-01-01

    Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different

  15. Development and characterization of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas.

    PubMed

    Beck, H A; Niessner, R; Haisch, C

    2003-04-01

    Upcoming regulations for vehicle exhaust emission demand substantial reduction of particle emission in diesel exhaust. To achieve these emission levels, the car manufacturing industry is developing new combustion concepts and exhaust after-treatment techniques such as the use of catalysts and particle filters. Many of the state-of-the-art analytical instruments do not meet the required detection limits, in combination with a high temporal resolution necessary for engine optimization. This paper reports a new detection system and the first results of its application to on-line diesel exhaust soot measurements on a engine test bench (MAN diesel engine facility Nürnberg, Germany). The instrument is based on differential photoacoustic (PA) spectroscopy of black carbon aerosol. It contains two identical PA cells, one for the measurement of the aerosol particles and one which analyses the particle-free gas. Thus, a potential cross-sensitivity to gaseous absorbers in the exhaust gas can be excluded. The PA cells were characterized in a laboratory set-up, with water vapor as reference gas and artificial soot generated by a spark discharge generator. The detection limit was found to be 2 microg m(-3) BC (for diesel soot) with a sampling rate of 3 Hz. The temporal response of the system was found to be in the order of 1 s. After full characterization of the cells, the system was transferred into a mobile 19"-rack. Characterization of the mobile sensor system under real-world conditions was performed during several measurement campaigns at an engine test bench for heavy-duty diesel engines. Results for the limit of detection, the time resolution, accuracy, repeatability, and robustness of the sensor system are very promising with regards to a routine application of the system in engine development. PMID:12733029

  16. Determination of VOC-components in the exhaust of gasoline and diesel passenger cars

    NASA Astrophysics Data System (ADS)

    Schmitz, Thomas; Hassel, Dieter; Weber, Franz-Josef

    The composition of VOC emissions from in-use passenger cars with different engine types, i.e. cars with diesel engines, cars with petrol engines equipped with three-way-catalysts, and cars with petrol engines without catalysts was determined. Five cars of each engine type have been measured on a chassis dynamometer under conditions of the US FTP 75 test procedure and the "Autobahn" test developed by TÜV Rheinland. Measurements of C 2-C 10 hydrocarbons were made with a GC-FID system. In addition, samples on DNPH cartridges were taken and analysed by means of a HPLC-system for the determination of aldehydes and ketones.The influence of cold/warm-conditions on the VOC composition was determined. In the case of cars with diesel engines as well as for the petrol-driven cars without exhaust treatment, the effect caused by the cold start only led to minor changes in the VOC composition. A similar behaviour was observed for these car types at higher speeds. In contrast to the cars without catalysts, the cars with three-way-catalysts showed a great variability of the VOC composition. During the cold start phase the aromatic compounds and the alkenes yielded the main fraction of the VOC. During the warm phase the less reactive alkanes were predominant. With increasing mean velocities the VOC composition changed in favour of the more reactive compounds.

  17. BIOMarkers for occupational diesel exhaust exposure monitoring (BIOMODEM)--a study in underground mining.

    PubMed

    Scheepers, P T J; Coggon, D; Knudsen, L E; Anzion, R; Autrup, H; Bogovski, S; Bos, R P; Dahmann, D; Farmer, P; Martin, E A; Micka, V; Muzyka, V; Neumann, H G; Poole, J; Schmidt-Ott, A; Seiler, F; Volf, J; Zwirner-Baier, I

    2002-08-01

    Methods for the assessment of exposures to diesel exhaust were evaluated, including various biomarkers of internal exposure and early biological effects. The impact of possible biomarkers of susceptibility was also explored. Underground workers (drivers of diesel-powered excavators) at an oil shale mine in Estonia were compared with surface workers. Personal exposures to particle-associated 1-nitropyrene (NP) were some eight times higher underground than on the surface. Underground miners were also occupationally exposed to benzene and polycyclic aromatic hydrocarbons, as indicated by excretion of urinary metabolites of benzene and pyrene. In addition, increased O(6)-alkylguanine DNA adducts were detected in the white blood cells of underground workers, suggesting higher exposure to nitroso-compounds. However, no differences between underground and surface workers were observed in the levels of other bulky DNA adducts determined by 32P-postlabelling, or in DNA damage. The study indicated that smoking, diet and residential indoor air pollution are important non-occupational factors to consider when interpreting biomonitoring results. PMID:12191893

  18. Analysis of petrol and diesel vapour and vehicle engine exhaust gases using selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Cheng, Ping; Spanel, Patrik

    2002-01-01

    We have used selected ion flow tube mass spectrometry (SIFT-MS) to analyse the vapours emitted by petrol and diesel fuels and the exhaust gases from petrol (spark ignition) and diesel (compression ignition) engine vehicles fitted with catalytic converters. Only those components of these media that have significant vapour pressures at ambient temperatures were analysed and thus particulates were obviously not detected. These media have been analysed using the full scope of SIFT-MS, i.e., with the three available precursor ions H3O+, NO+ and O2+. The combination of the H3O+ and NO+ analyses is seen to be essential to distinguish between different product ions at the same mass-to-charge ratio (m/z) especially in identifying aldehydes in the exhaust gases. The O2+ precursor ions are used to detect and quantify the large amount of nitric oxide present in the exhaust gases from both engine types. The petrol and diesel vapours consist almost exclusively of aliphatic alkanes, alkenes and alkynes (and dienes) and aromatic hydrocarbons. Some of these compounds appear in the exhaust gases together with several aldehydes, viz. formaldehyde, acetaldehyde, pentanal, pentenal (acrolein), butenal, and also methanol and ethanol. Acetone, nitric oxide and ammonia are also present, acetone and nitric oxide being much more abundant in the diesel exhaust gas than in the petrol exhaust gas. These data were obtained from samples collected into pre-evacuated stainless steel vessels. Trapping of the volatile compounds from the gas samples is not required and analysis was completed a few minutes later. All the above compounds are detected simultaneously, which demonstrates the value of SIFT-MS in this area of research. PMID:11992517

  19. Oxidative stress and aromatic hydrocarbon response of human bronchial epithelial cells exposed to petro- or biodiesel exhaust treated with a diesel particulate filter.

    PubMed

    Hawley, Brie; L'Orange, Christian; Olsen, Dan B; Marchese, Anthony J; Volckens, John

    2014-10-01

    The composition of diesel exhaust has changed over the past decade due to the increased use of alternative fuels, like biodiesel, and to new regulations on diesel engine emissions. Given the changing nature of diesel fuels and diesel exhaust emissions, a need exists to understand the human health implications of switching to "cleaner" diesel engines run with particulate filters and engines run on alternative fuels like biodiesel. We exposed well-differentiated normal human bronchial epithelial cells to fresh, complete exhaust from a diesel engine run (1) with and without a diesel particulate filter and (2) using either traditional petro- or alternative biodiesel. Despite the lowered emissions in filter-treated exhaust (a 91-96% reduction in mass), significant increases in transcripts associated with oxidative stress and polycyclic aromatic hydrocarbon response were observed in all exposure groups and were not significantly different between exposure groups. Our results suggest that biodiesel and filter-treated diesel exhaust elicits as great, or greater a cellular response as unfiltered, traditional petrodiesel exhaust in a representative model of the bronchial epithelium. PMID:25061111

  20. Oxidative Stress and Aromatic Hydrocarbon Response of Human Bronchial Epithelial Cells Exposed to Petro- or Biodiesel Exhaust Treated with a Diesel Particulate Filter

    PubMed Central

    Hawley, Brie; L'Orange, Christian; Olsen, Dan B.; Marchese, Anthony J.; Volckens, John

    2014-01-01

    The composition of diesel exhaust has changed over the past decade due to the increased use of alternative fuels, like biodiesel, and to new regulations on diesel engine emissions. Given the changing nature of diesel fuels and diesel exhaust emissions, a need exists to understand the human health implications of switching to “cleaner” diesel engines run with particulate filters and engines run on alternative fuels like biodiesel. We exposed well-differentiated normal human bronchial epithelial cells to fresh, complete exhaust from a diesel engine run (1) with and without a diesel particulate filter and (2) using either traditional petro- or alternative biodiesel. Despite the lowered emissions in filter-treated exhaust (a 91–96% reduction in mass), significant increases in transcripts associated with oxidative stress and polycyclic aromatic hydrocarbon response were observed in all exposure groups and were not significantly different between exposure groups. Our results suggest that biodiesel and filter-treated diesel exhaust elicits as great, or greater a cellular response as unfiltered, traditional petrodiesel exhaust in a representative model of the bronchial epithelium. PMID:25061111

  1. Combustor exhaust emissions with air-atomizing splash-groove fuel injectors burning Jet A and Diesel number 2 fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.

  2. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    SciTech Connect

    Ma, Jane Y.C.; Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K.; Castranova, Vincent

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO{sub 2}) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO{sub 2} on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO{sub 2} and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO{sub 2} induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO{sub 2} and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO{sub 2}, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO{sub 2} were significantly larger than CeO{sub 2} or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO{sub 2} reflects the combination of DEP-exposure plus CeO{sub 2}-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO{sub 2} induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO{sub 2} in the combined exposure. Using CeO{sub 2} as diesel fuel catalyst may cause health concerns. - Highlights: • DEP induced acute lung inflammation and switched immune response from Th1 to Th2. • DEP induced lung granulomas were not affected by the presence of CeO{sub 2}. • CeO{sub 2} induced sustained lung

  3. Effects of an iron-based fuel-borne catalyst and a diesel particle filter on exhaust toxicity in lung cells in vitro.

    PubMed

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Heeb, Norbert V; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2015-08-01

    Metal-containing fuel additives catalyzing soot combustion in diesel particle filters are used in a widespread manner, and with the growing popularity of diesel vehicles, their application is expected to increase in the near future. Detailed investigation into how such additives affect exhaust toxicity is therefore necessary and has to be performed before epidemiological evidence points towards adverse effects of their application. The present study investigates how the addition of an iron-based fuel additive (Satacen®3, 40 ppm Fe) to low-sulfur diesel affects the in vitro cytotoxic, oxidative, (pro-)inflammatory, and mutagenic activity of the exhaust of a passenger car operated under constant, low-load conditions by exposing a three-dimensional model of the human airway epithelium to complete exhaust at the air-liquid interface. We could show that the use of the iron catalyst without and with filter technology has positive as well as negative effects on exhaust toxicity compared to exhaust with no additives: it decreases the oxidative and, compared to a non-catalyzed diesel particle filter, the mutagenic potential of diesel exhaust, but increases (pro-)inflammatory effects. The presence of a diesel particle filter also influences the impact of Satacen®3 on exhaust toxicity, and the proper choice of the filter type to be used is of importance with regards to exhaust toxicity. Figure ᅟ. PMID:24880869

  4. The Diesel Exhaust in Miners Study: V. Evaluation of the Exposure Assessment Methods.

    PubMed

    Stewart, Patricia A; Vermeulen, Roel; Coble, Joseph B; Blair, Aaron; Schleiff, Patricia; Lubin, Jay H; Attfield, Mike; Silverman, Debra T

    2012-03-01

    Exposure to respirable elemental carbon (REC), a component of diesel exhaust (DE), was assessed for an epidemiologic study investigating the association between DE and mortality, particularly from lung cancer, among miners at eight mining facilities from the date of dieselization (1947-1967) through 1997. To provide insight into the quality of the estimates for use in the epidemiologic analyses, several approaches were taken to evaluate the exposure assessment process and the quality of the estimates. An analysis of variance was conducted to evaluate the variability of 1998-2001 REC measurements within and between exposure groups of underground jobs. Estimates for the surface exposure groups were evaluated to determine if the arithmetic means (AMs) of the REC measurements increased with increased proximity to, or use of, diesel-powered equipment, which was the basis on which the surface groups were formed. Estimates of carbon monoxide (CO) (another component of DE) air concentrations in 1976-1977, derived from models developed to predict estimated historical exposures, were compared to 1976-1977 CO measurement data that had not been used in the model development. Alternative sets of estimates were developed to investigate the robustness of various model assumptions. These estimates were based on prediction models using: (i) REC medians rather AMs, (ii) a different CO:REC proportionality than a 1:1 relation, and (iii) 5-year averages of historical CO measurements rather than modeled historical CO measurements and DE-related determinants. The analysis of variance found that in three of the facilities, most of the between-group variability in the underground measurements was explained by the use of job titles. There was relatively little between-group variability in the other facilities. The estimated REC AMs for the surface exposure groups rose overall from 1 to 5 μg m(-3) as proximity to, and use of, diesel equipment increased. The alternative estimates overall

  5. Investigation of Variations in Suspended Particulate Matter with Enforcement of Regulations on Diesel Vehicle Exhaust in Suburban Japan

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaowu; Wang, Qingyue; Sekiguchi, Kazuhiko; Sakamoto, Kazuhiko

    In the summers of 2003 and 2004, size-separated suspended particulate matter (SPM) samples were collected with a high-volume Andersen air sampler at a site adjacent to Saitama Prefectural Route 57 in Saitama City. This sampling site is in an atmospherically polluted area that is also one of the “Specified Areas concerning Special Measures for Total Emission Reduction of Nitrogen Oxides and Particulate Matter from Automobiles” established in October 2002. We investigated carbonaceous compounds in the SPM before and after the Regulation on Diesel Vehicle Exhaust came into effect in October 2003 in Tokyo Metropolis and Saitama, Chiba, and Kanagawa prefectures. At the sampling site, elemental carbon (EC) in the fine particles (< 2µm) was derived mainly from diesel vehicle exhaust emissions, and crustal metals such as Al, Fe, and Mg in the coarse particles (> 2µm) were generated as road dust by vehicular traffic and wind. Correlations among chemical components generated by heavy-duty diesel vehicles suggest that the air quality is improving at the sampling site as a result of the enforcement of the Regulations on Diesel Vehicle Exhaust.

  6. The effects of neat biodiesel and biodiesel and HVO blends in diesel fuel on exhaust emissions from a light duty vehicle with a diesel engine.

    PubMed

    Prokopowicz, Adam; Zaciera, Marzena; Sobczak, Andrzej; Bielaczyc, Piotr; Woodburn, Joseph

    2015-06-16

    The influence of fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO) diesel blends on the exhaust emissions from a passenger car was examined. The impact of FAME for the cold urban phase (UDC) was increased CO and HC emissions, probably due to blend physical properties promoting incomplete combustion. The HVO blend caused the lowest CO and HC emissions for the UDC. NOx emissions did not change significantly with the fuel used, however the UDC was characterized by lower NOx emission for FAME blends. Particle emissions were highest with standard diesel. Emissions of carbonyl compounds increased as fuel biodiesel content increased, especially during the UDC. HVO in diesel fuel decreased carbonyl emissions. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds in the exhaust gas. Total particle-bound PAH emissions were variable, the emission of heavier PAHs increased with blend biodiesel content. The HVO blend increased emission of lighter PAHs. Nitro-PAHs were identified only during the UDC and not for all blends; the highest emissions were measured for pure diesel. The results showed that emission of nitro-PAHs may be decreased to a greater extent by using biodiesel than using a HVO blend. PMID:25993509

  7. The effect of fuel processes on heavy duty automotive diesel engine emissions

    SciTech Connect

    Reynolds, E.G.

    1995-12-31

    The effect of fuel quality on exhaust emissions from 2 heavy duty diesel engines has been measured over the ECE R49 test cycle. The engines were selected to represent technologies used to meet Euro 1 and 2 emission standards (1992/93 and 1995/96); engines 1 and 2 respectively. The test fuels were prepared by a combination of processing, blending and additive treatment. When comparing the emissions from engines 1 and 2, using base line data generated on the CEC reference fuel RF73-T-90, engine technology had the major effect on emission levels. Engine 2 reduced both particulate matter (PM) and carbon monoxide levels by approximately 50%, with total hydrocarbon (THC) being approximately 75% lower. Oxides of nitrogen levels were similar for both engines. The variations in test fuel quality had marginal effects on emissions, with the two engines giving directionally opposite responses in some cases. For instance, there was an effect on CO and NOx but where one engine showed a reduction the other gave an increase. There were no significant changes in THC emissions from either engine when operating on any of the test fuels. When the reference fuel was hydrotreated, engine 1 showed a trend towards reduced particulate and NOx but with CO increasing. Engine 2 also showed a trend for reduced particulate levels, with an increase in NOx and no change in CO. Processing to reduce the final boiling point of the reference fuel showed a trend towards reduced particulate emissions with CO increasing on engine 1 but decreasing on engine 2.

  8. Allergic inflammation in the human lower respiratory tract affected by exposure to diesel exhaust.

    PubMed

    Riedl, Marc A; Diaz-Sanchez, David; Linn, William S; Gong, Henry; Clark, Kenneth W; Effros, Richard M; Miller, J Wayne; Cocker, David R; Berhane, Kiros T

    2012-02-01

    To improve understanding of human health risks from exposure to diesel exhaust particles (DEP*), we tested whether immunologic effects previously observed in the human nose also occur in the lower airways. Our overall hypothesis was that cell influx and production of cytokines, chemokines, immunoglobulin E (IgE), and other mediators, which would be measurable in sputum and blood, occur in people with asthma after realistic controlled exposures to diesel exhaust (DE). In Phase 1 we tested for direct effects of DE in subjects with clinically undifferentiated mild asthma. In Phase 2 we tested whether DE exposure would exacerbate response to inhaled cat allergen in subjects with both asthma and cat sensitivity. The exposure facility was a controlled-environment chamber supplied with DE from an idling medium-duty truck with ultra-low-sulfur fuel and no catalytic converter. We exposed volunteers for 2 hours with intermittent exercise to exhaust with DEP mass concentration near 100 microg/m3. Exposures to nitrogen dioxide (NO2) near 0.35 ppm (similar to its concentration in DE) and to filtered air (FA) served as controls. Blood was drawn before exposure on day 1 and again the next morning (day 2). Sputum was induced only on day 2. Bronchial reactivity was measured -1 hour after exposure ended. Supplementary endpoints included measures of blood coagulation status, cardiopulmonary physiology, and symptoms. Each phase employed 15 subjects with asthma; 3 subjects participated in both phases. In Phase 1, airway reactivity was measured with inhaled methacholine; in Phase 2, with inhaled cat allergen. We found little biologic response to DE exposure compared with exposure to control atmospheres. In Phase 1, interleukin 4 (IL-4) in sputum showed an estimated 1.7-fold increase attributable to DE exposure, which was close to statistical significance; airway resistance increased modestly but significantly on day 2 after DE exposure; and nonspecific symptom scores increased

  9. Diesel exhaust particles modulate vascular endothelial cell permeability: Implication of ZO-1 Expression

    PubMed Central

    Li, Rongsong; Ning, Zhi; Cui, Jeffrey; Yu, Fei; Sioutas, Constantinos; Hsiai, Tzung

    2010-01-01

    Exposure to air pollutants increases the incidence of cardiovascular disease. Recent toxicity studies revealed that ultra fine particles (UFP, dp<100–200 nm), the major portion of particulate matter (PM) by numbers in the atmosphere, induced atherosclerosis. In this study, we posited that variations in chemical composition in diesel exhausted particles (DEP) regulated endothelial cell permeability to a different extent. Human aortic endothelial cells (HAEC) were exposed to well-characterized DEP (dp<100 nm) emitted from a diesel engine in either idling mode (DEP1) or in urban dynamometer driving schedule (UDDS) (DEP2). Horse Radish Peroxidase-Streptavidin activity assay showed that DEP2 increased endothelial permeability to a greater extent than DEP1 (Control=0.077± 0.005, DEP1=0.175±0.003, DEP2=0.265±0.006, n=3, p<0.01). DEP2 also down-regulated tight junction protein, Zonular Occludin-1 (ZO-1), to a greater extent compared to DEP1. LDH and caspase-3 activities revealed that DEP-mediated increase in permeability was not due to direct cytotoxicity, and DEP-mediated ZO-1 down-regulation was not due to a decrease in ZO-1 mRNA. Hence, our findings suggest that DEP1 versus DEP2 differentially influenced the extent of endothelial permeability at the post-translational level. This increase in endothelium permeability is implicated in inflammatory cell transmigration into subendothelial layers with relevance to the initiation of atherosclerosis. PMID:20576493

  10. DIESEL EXHAUST PARTICULATE (DEP)-INDUCED ACTIV ATION OF STAT3 REQUIRES ACTIVITIES OF EGFR AND SRC IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    In vivo exposure to diesel exhaust particles (DEP) elicits acute inflammatory responses in the lung characterized by inflammatory cell influx and elevated expression of mediators such as cytokines, and chemokines. Signal transducers and activators of transcription (STAT) protein...

  11. DIESEL EXHAUST PARTICLES SUPRESS LPS-STIMULATED PRODUCTION OF PGE2 IN HUMAN ALVEOLAR MACHROPHAGES: ROLE OF P38 MAPK AND ERK PATHWAYS

    EPA Science Inventory

    Numerous studies have reported association between exposure to ambient levels of particulate matter (PM) and adverse health effects, which include respiratory and cardiovascular effects. Diesel exhaust particles (DEP) compose a significant fraction of PM in some areas. Alveolar m...

  12. Gluthathione-S-transferase M1 regulation of diesel exhaust particle-induced pro-inflammatory mediator expression in normal human bronchial epithelial cells

    EPA Science Inventory

    Diesel exhaust particles (DEP) contribute substantially to ambient particulate matter (PM) air pollution in urban areas. Inhalation of PM has been associated with increased incidence of lung disease in susceptible populations. We have demonstrated that the glutathione-S-transfera...

  13. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Doubutamine Challenges in Heart Failure-Prone Rats

    EPA Science Inventory

    Background: Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) is an ubiquitous air pollutant believed to provoke cardiac events partly through imbalance of the sympathetic and parasympathetic branches of the autonomic nervo...

  14. Whole and particle-free diesel exhausts differentially affect cardiac electrophysiology, blood pressure, and autonomic balance in heart failure-prone rats

    EPA Science Inventory

    Epidemiologic studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular events, especially in those with preexisting cardiovascular disease. Diesel engine exhaust (DE) is a key contributor to urban ambien...

  15. SUPPRESSION OF BASAL AND CYTOKINE INDUCED EXPRESSION OF ANTIGEN PRESENTATION MARKERS ON MOUSE LUNG EPITHELIAL CELLS EXPOSED TO DIESEL EXHAUST PARTICLES.

    EPA Science Inventory

    Diesel exhaust particles (DEP) constitute a significant component of airborne particulates in urban environment. Exposure to DEP is known to enhance susceptibility to viral and bacterial infections. We hypothesized that DEP could partially exert its effect on disease susceptibili...

  16. *Differential injury in healthy and cytokine-treated epithelial cells exposed to diesel exhaust particles involves interaction of superoxide and nitric oxide

    EPA Science Inventory

    RATIONALE: Individuals with chronic pulmonary inflammation due to disease are more susceptible to the adverse health effects associated with exposure to particulate matter (PM) air pollutants, such as diesel exhaust particles (DEP). Increasing evidence suggests that these adverse...

  17. Simply Scan—Optical Methods for Elemental Carbon Measurement in Diesel Exhaust Particulate

    PubMed Central

    Forder, James A.

    2014-01-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. PMID:24939982

  18. Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells

    SciTech Connect

    Furuta, Chie; Suzuki, Akira K.; Watanabe, Gen; Li, ChunMei; Taneda, Shinji; Taya, Kazuyoshi

    2008-08-01

    Diesel exhaust particles (DEPs) cause many adverse health problems, and reports indicate increased risk of breast cancer in men and women through exposure to gasoline and vehicle exhaust. However, DEPs include vast numbers of compounds, and the specific compound(s) responsible for these actions are not clear. We recently isolated two nitrophenols from DEPs-3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) and 4-nitro-3-phenylphenol (PNMPP)-and showed that they had estrogenic and anti-androgenic activities. Here, we tried to clarify the involvement of these two nitrophenols in promoting the growth of the MCF-7 breast cancer cell line. First, comet assay was used to detect the genotoxicity of PNMC and PNMPP in a CHO cell line. At all doses tested, PNMC and PNMPP showed negative genotoxicity, indicating that they had no tumor initiating activity. Next, the estrogen-responsive breast cancer cell line MCF-7 was used to assess cell proliferation. Proliferation of MCF-7 cells was stimulated by PNMC, PNMPP, and estradiol-17{beta} and the anti-estrogens 4-hydroxytamoxifen and ICI 182,780 inhibited the proliferation. To further investigate transcriptional activity through the estrogen receptor, MCF-7 cells were transfected with a receptor gene that allowed expression of luciferase enzyme under the control of the estrogen regulatory element. PNMC and PNMPP induced luciferase activity in a dose-dependent manner at submicromolar concentrations. ICI 182,780 inhibited the luciferase activity induced by PNMC and PNMPP. These results clearly indicate that PNMC and PNMPP do not show genotoxicity but act as tumor promoters in an estrogen receptor {alpha}-predominant breast cancer cell line.

  19. Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.

    PubMed

    Forder, James A

    2014-08-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. PMID:24939982

  20. Polycyclic aromatic hydrocarbons (PAH) and their genotoxicity in exhaust emissions from a diesel engine during extended low-load operation on diesel and biodiesel fuels

    NASA Astrophysics Data System (ADS)

    Vojtisek-Lom, Michal; Pechout, Martin; Dittrich, Luboš; Beránek, Vít; Kotek, Martin; Schwarz, Jaroslav; Vodička, Petr; Milcová, Alena; Rossnerová, Andrea; Ambrož, Antonín; Topinka, Jan

    2015-05-01

    This paper investigates the effects of emissions including carcinogenic polycyclic aromatic hydrocarbons (cPAH) of a conventional diesel engine without a particle filter. Experiments were carried on during extended idle and during a loaded operation immediately following the extended idle. Extended low-load operation of diesel engines due to idling and creep at border crossings, loading areas and in severe congestion has been known to deteriorate the combustion and catalytic device performance and to increase the emissions of particulate matter (PM). A conventional diesel engine was coupled to a dynamometer and operated on diesel fuel and neat biodiesel alternately at idle speed and 2% of rated power and at 30% and 100% load at intermediate speed. Exhaust was sampled on fiber filters, from which the content of elemental and organic carbon and polycyclic aromatic hydrocarbons (PAH), including cPAH and benzo[a]pyrene (B[a]P) have been determined. The emissions of cPAH and B[a]P have increased 4-6 times on diesel fuel and by 4-21% on biodiesel during extended idling relative to a short idle and 8-12 times on diesel fuel and 2-20 times on biodiesel during subsequent operation at full load relative to stabilized operation at full load. The total "excess" cPAH emissions after the transition to full load were on the same order of magnitude as the total "excess" cPAH during extended idling. The absolute levels of PAH, cPAH and B[a]P emissions under all operating conditions were lower on biodiesel compared to diesel fuel. Genotoxicity of organic extracts of particles was analysed by acellular assay with calf thymus DNA (CT-DNA) and was consistently higher for diesel than for biodiesel. The exhaust generated during extended idle and subsequent full load exhibited the highest genotoxicity for both fuels. These two regimes are characterized by significant formation of cPAH as well as other DNA reactive compounds substantially contributing to the total genotoxicity. Oxidative

  1. Effects of diesel exhaust particles on microRNA-21 in human bronchial epithelial cells and potential carcinogenic mechanisms.

    PubMed

    Zhou, Fang; Li, Suli; Jia, Wenliang; Lv, Gang; Song, Chonglin; Kang, Chunsheng; Zhang, Qingyu

    2015-08-01

    Air pollution plays a role in cancer risk, particularly in lung cancer, which is the leading cause of cancer-related mortality worldwide. Diesel exhaust particles (DEPs), a component of diesel exhaust products, is a complex mixture of particle compounds that include a large number of known and suspected human carcinogens. Historically, lung cancer, which is associated with DEPs, has been the focus of attention as a health risk in human and animal studies. However, the mechanism by which DEPs cause lung cancer remains unclear. The present study reports that DEPs increased miR-21 expression and then activated the PTEN/PI3K/AKT pathway in human bronchial epithelial (HBE) cells, which may serve as an important carcinogenic mechanism. However, the data revealed that short-term exposure to a high DEP concentration did not cause evident cell carcinogenesis in HBE cells. PMID:25901472

  2. Health effects of real-world exposure to diesel exhaust in persons with asthma.

    PubMed

    Zhang, Junfeng Jim; McCreanor, James E; Cullinan, Paul; Chung, Kian Fan; Ohman-Strickland, Pamela; Han, In-Kyu; Järup, Lars; Nieuwenhuijsen, Mark J

    2009-02-01

    Many people, including people with asthma, experience short-term exposure to diesel exhaust (DE*) during daily activities. The health effects of such exposures, however, remain poorly understood. The present study utilized a real-world setting to examine whether short-term DE exposure would (1) worsen asthma symptoms, (2) augment airway inflammation, or (3) increase oxidative stress burdens. The study also examined exposure-response relations for several DE components and the contribution of background asthma severity to individuals' respiratory responses to DE exposure. Sixty people participated in the study; 31 had mild asthma and 29 had moderate asthma. Each participant completed an exposure and a control session. During the exposure session, participants walked for 2 hours along a heavily trafficked city street where motor vehicle access was restricted to buses and official taxicabs. These vehicles were powered by diesel engines. During the control session, participants walked for the same duration and at the same speed in a public park where motor vehicle traffic was prohibited. The concentrations of elemental carbon (EC), NO2, ultrafine particles (UFP), and particulate matter less than or equal to 2.5 microm in aerodynamic diameter (PM2.5) during exposure sessions were, on average, 4.8, 4.0, 3.4, and 2.0 times higher, respectively, than during control sessions. Increases in asthma symptom score and in the daily use of asthma reliever medication within the 7-day measurement period after exposure were not significant. Some effects on lung function were statistically significant. Compared with control sessions, forced expiratory volume in the first second (FEV1) was reduced 3.0% to 4.1%, and forced vital capacity (FVC) was reduced 2.8% to 3.7% in the 5 hours immediately after the exposure sessions. Analyses of biomarkers showed that the exposure sessions led to a significant reduction in exhaled breath condensate (EBC) pH and to significant increases in induced

  3. Social Isolation-Induced Territorial Aggression in Male Offspring Is Enhanced by Exposure to Diesel Exhaust during Pregnancy

    PubMed Central

    Yokota, Satoshi; Oshio, Shigeru; Moriya, Nozomu; Takeda, Ken

    2016-01-01

    Diesel exhaust particles are a major component of ambient particulate matter, and concern about the health effects of exposure to ambient particulate matter is growing. Previously, we found that in utero exposure to diesel exhaust affected locomotor activity and motor coordination, but there are also indications that such exposure may contribute to increased aggression in offspring. Therefore, the aim of the present study was to test the effects of prenatal diesel exhaust exposure on social isolation-induced territorial aggression. Pregnant mice were exposed to low concentrations of diesel exhaust (DE; mass concentration of 90 μg/m3: DE group: n = 15) or clean air (control group: n = 15) for 8 h/day during gestation. Basal locomotion of male offspring was measured at 10 weeks of age. Thereafter, male offspring were individually housed for 2 weeks and subsequently assessed for aggression using the resident−intruder test at 12 weeks of age, and blood and brain tissue were collected from the male offspring on the following day for measuring serum testosterone levels and neurochemical analysis. There were no significant differences in locomotion between control and DE-exposed mice. However, DE-exposed mice showed significantly greater social isolation-induced territorial aggressive behavior than control mice. Additionally, socially-isolated DE-exposed mice expressed significantly higher concentrations of serum testosterone levels than control mice. Neurochemical analysis revealed that dopamine levels in the prefrontal cortex and nucleus accumbens were higher in socially isolated DE-exposed mice. Serotonin levels in the nucleus accumbens, amygdala, and hypothalamus were also lower in the socially isolated DE-exposed mice than in control mice. Thus, even at low doses, prenatal exposure to DE increased aggression and serum testosterone levels, and caused neurochemical changes in male socially isolated mice. These results may have serious implications for pregnant women

  4. Response of rodents to inhaled diluted diesel exhaust: biochemical and cytological changes in bronchoalveolar lavage fluid and in lung tissue

    SciTech Connect

    Henderson, R.F.; Pickrell, J.A.; Jones, R.K.; Sun, J.D.; Benson, J.M.; Mauderly, J.L.; McClellan, R.O.

    1988-10-01

    The effect of long-term (24 months) inhalation of diesel exhaust on the bronchoalveolar region of the respiratory tract of rodents was assessed by serial (every 6 months) analysis of bronchoalveolar lavage fluid (BALF) and of lung tissue from F344/Crl rats and CD-1 mice (both sexes) exposed to diesel exhaust diluted to contain 0, 0.35, 3.5, or 7.0 mg soot/m3. The purpose of the study was twofold. One was to assess the potential health effects of inhaling diluted exhaust from light-duty diesel engines. The second was to determine the usefulness of BALF analysis in detecting the early stages in the development of nononcogenic lung disease and differentiating them from the normal repair processes. No biochemical or cytological changes in BALF or in lung tissue were noted in either species exposed to the lowest, and most environmentally relevant, concentration of diesel exhaust. In the two higher levels of exposure, a chronic inflammatory response was measured in both species by dose-dependent increases in inflammatory cells, cytoplasmic and lysosomal enzymes, and protein in BALF. Histologically, after 1 year of exposure, the rats had developed focal areas of fibrosis associated with the deposits of soot, while the mice, despite a higher lung burden of soot than the rats, had only a fine fibrillar thickening of an occasional alveolar septa in the high-level exposure group. Higher increases in BALF beta-glucuronidase activity and in hydroxyproline content accompanied the greater degree of fibrosis in the rat. BALF levels of glutathione (GSH) and glutathione reductase activity increased in a dose-dependent fashion and were higher in mice than in rats. Lung tissue GSH was depleted in a dose-dependent fashion in rats but was slightly increased in mice.

  5. Social Isolation-Induced Territorial Aggression in Male Offspring Is Enhanced by Exposure to Diesel Exhaust during Pregnancy.

    PubMed

    Yokota, Satoshi; Oshio, Shigeru; Moriya, Nozomu; Takeda, Ken

    2016-01-01

    Diesel exhaust particles are a major component of ambient particulate matter, and concern about the health effects of exposure to ambient particulate matter is growing. Previously, we found that in utero exposure to diesel exhaust affected locomotor activity and motor coordination, but there are also indications that such exposure may contribute to increased aggression in offspring. Therefore, the aim of the present study was to test the effects of prenatal diesel exhaust exposure on social isolation-induced territorial aggression. Pregnant mice were exposed to low concentrations of diesel exhaust (DE; mass concentration of 90 μg/m3: DE group: n = 15) or clean air (control group: n = 15) for 8 h/day during gestation. Basal locomotion of male offspring was measured at 10 weeks of age. Thereafter, male offspring were individually housed for 2 weeks and subsequently assessed for aggression using the resident-intruder test at 12 weeks of age, and blood and brain tissue were collected from the male offspring on the following day for measuring serum testosterone levels and neurochemical analysis. There were no significant differences in locomotion between control and DE-exposed mice. However, DE-exposed mice showed significantly greater social isolation-induced territorial aggressive behavior than control mice. Additionally, socially-isolated DE-exposed mice expressed significantly higher concentrations of serum testosterone levels than control mice. Neurochemical analysis revealed that dopamine levels in the prefrontal cortex and nucleus accumbens were higher in socially isolated DE-exposed mice. Serotonin levels in the nucleus accumbens, amygdala, and hypothalamus were also lower in the socially isolated DE-exposed mice than in control mice. Thus, even at low doses, prenatal exposure to DE increased aggression and serum testosterone levels, and caused neurochemical changes in male socially isolated mice. These results may have serious implications for pregnant women

  6. Inflammation-Related Effects of Diesel Engine Exhaust Particles: Studies on Lung Cells In Vitro

    PubMed Central

    Schwarze, P. E.; Totlandsdal, A. I.; Låg, M.; Refsnes, M.; Holme, J. A.; Øvrevik, J.

    2013-01-01

    Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers. PMID:23509760

  7. Studies on regeneration of diesel exhaust particulate filters by microwave energy

    SciTech Connect

    Zhang, C.; Min, J.; Chen, J.; Liang, L.; Liu, J.; Li, C.

    1994-09-01

    It is a new idea and beneficial attempt that the microwave heating technology is applied to regenerate the Diesel Exhaust Particulate Filters (DEPF). In this paper, the microwave regenerating mechanism of DEPF is studied and some laws in the process of microwave regeneration are found by experimental and theoretical analyses. Some basic measurements and calculations of microwave characteristic factors of three kinds of selected DEPF and the pure particulate are presented. A Microwave Regenerating Test System (MRTS) is set and the microwave regeneration of DEPF is tested. A mathematical model of two dimensional axi-symmetrical non-steady temperature field is set up which is suitable for microwave regenerating process of ceramic foam filters. The numerical calculation and practical analyses are stated. It is proved by these studies that the particulate in DEPF is selectively heated by microwave energy and moreover the microwave energy is less absorbed by the pure ceramic filters. The microwave regeneration of DEPF is feasible from the point of economic effects, social benefit and technology. The power of MRTS which makes DEPF safely and effectively regenerated can be controlled under 1000W, even around 600W. 5 refs., 12 figs., 5 tabs.

  8. Effect of fuel properties on mutagenic activity in extracts of heavy-duty diesel exhaust particulate

    SciTech Connect

    Rasmussen, R.E. )

    1990-10-01

    The effect of varying fuel properties on the emission of mutagenic materials was studied in diesel exhaust particles from a heavy duty engine run under transient speed and load conditions while using nine fuels varying in aromatics, sulfur and boiling point. Mutagenic activity of the soluble organic fraction (SOF) of the particulate was determined using the Ames Salmonella test system with strain TA98 with and without S9 activation. Increasing mutagenic activity relative to fuel consumed (mutants/lb fuel) or to engine work output (mutants/hp-h) was correlated with increasing fuel aromatics (p less than 0.05), but not with fuel sulfur. Increased fuel sulfur levels were correlated with increased amounts of SOF but with decreasing mutagenic activity of the SOF (mutants/microgram SOF) (p less than 0.05). As a result, mutants/hp-h were essentially the same for high- and low-sulfur fuels with high aromatics. No association was found between the fuels' boiling points and the mutagenic activity of the SOF. Mutagenic activity with S9 was generally lower than without, but the correlations were not changed.

  9. Cytokine expression in mice exposed to diesel exhaust particles by inhalation. Role of tumor necrosis factor

    PubMed Central

    Saber, Anne T; Jacobsen, Nicklas R; Bornholdt, Jette; Kjær, Sanna L; Dybdahl, Marianne; Risom, Lotte; Loft, Steffen; Vogel, Ulla; Wallin, Håkan

    2006-01-01

    Background Particulate air pollution has been associated with lung and cardiovascular disease, for which lung inflammation may be a driving mechanism. The pro-inflammatory cytokine, tumor necrosis factor (TNF) has been suggested to have a key-role in particle-induced inflammation. We studied the time course of gene expression of inflammatory markers in the lungs of wild type mice and Tnf-/- mice after exposure to diesel exhaust particles (DEPs). Mice were exposed to either a single or multiple doses of DEP by inhalation. We measured the mRNA level of the cytokines Tnf and interleukin-6 (Il-6) and the chemokines, monocyte chemoattractant protein (Mcp-1), macrophage inflammatory protein-2 (Mip-2) and keratinocyte derived chemokine (Kc) in the lung tissue at different time points after exposure. Results Tnf mRNA expression levels increased late after DEP-inhalation, whereas the expression levels of Il-6, Mcp-1 and Kc increased early. The expression of Mip-2 was independent of TNF if the dose was above a certain level. The expression levels of the cytokines Kc, Mcp-1 and Il-6, were increased in the absence of TNF. Conclusion Our data demonstrate that Tnf is not important in early DEP induced inflammation and rather exerts negative influence on Mcp-1 and Kc mRNA levels. This suggests that other signalling pathways are important, a candidate being one involving Mcp-1. PMID:16504008

  10. Measurements of gas phase acids in diesel exhaust: a relevant source of HNCO?

    PubMed

    Wentzell, Jeremy J B; Liggio, John; Li, Shao-Meng; Vlasenko, A; Staebler, Ralf; Lu, Gang; Poitras, Marie-Josée; Chan, Tak; Brook, Jeffrey R

    2013-07-16

    Gas-phase acids in light duty diesel (LDD) vehicle exhaust were measured using chemical ionization mass spectrometry (CIMS). Fuel based emission factors (EF) and NOx ratios for these species were determined under differing steady state engine operating conditions. The derived HONO and HNO3 EFs agree well with literature values, with HONO being the single most important acidic emission. Of particular importance is the quantification of the EF for the toxic species, isocyanic acid (HNCO). The emission factors for HNCO ranged from 0.69 to 3.96 mg kgfuel(-1), and were significantly higher than previous biomass burning emission estimates. Further ambient urban measurements of HNCO demonstrated a clear relationship with the known traffic markers of benzene and toluene, demonstrating for the first time that urban commuter traffic is a source of HNCO. Estimates based upon the HNCO-benzene relationship indicate that upward of 23 tonnes of HNCO are released annually from commuter traffic in the Greater Toronto Area, far exceeding the amount possible from LDD alone. Nationally, 250 to 770 tonnes of HNCO may be emitted annually from on-road vehicles, likely representing the dominant source of exposure in urban areas, and with emissions comparable to that of biomass burning. PMID:23781923

  11. Diesel Exhaust Particle Exposure Causes Redistribution of Endothelial Tube VE-Cadherin

    PubMed Central

    Chao, Ming-Wei; Kozlosky, John; Po, Iris P.; Strickland, Pamela Ohman; Svoboda, Kathy K. H.; Cooper, Keith; Laumbach, Robert; Gordon, Marion K.

    2010-01-01

    Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al., 2008; Venkiteswaran et al., 2002; Villasante et al., 2007). Human umbilical vein endothelial cells (HUVECs) that were pre-formed into capillary-like tube networks in vitro were exposed to DEPs for 24 hr. After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. Since HUVEC tube networks are three-dimensional structures, whether particles entered the endothelial cells or tubular lumens was also examined. The data indicate that translocation of the particles does occur. The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions. PMID:20887764

  12. Dispersion and Filtration of Carbon Nanotubes (CNTs) and Measurement of Nanoparticle Agglomerates in Diesel Exhaust

    PubMed Central

    Wang, Jing; Pui, David Y.H.

    2012-01-01

    Carbon nanotubes (CNTs) tend to form bundles due to their geometry and van der Walls forces, which usually complicates studies of the CNT properties. Dispersion plays a significant role in CNT studies and we summarize dispersion techniques to generate airborne CNTs from suspensions or powders. We describe in detail our technique of CNT aerosolization with controlled degree of agglomeration using an electrospray system. The results of animal inhalation studies using the electrosprayed CNTs are presented. We have performed filtration experiments for CNTs through a screen filter. A numerical model has been established to simulate the CNT filtration experiments. Both the modeling and experimental results show that the CNT penetration is less than the penetration for a sphere with the same mobility diameter, which is mainly due to the larger interception length of the CNTs. There is a need for instruments capable of fast and online measurement of gas-borne nanoparticle agglomerates. We developed an instrument Universal NanoParticle Analyzer (UNPA) and the measurement results for diesel exhaust particulates are presented. The results presented here are pertinent to non-spherical aerosol particles, and illustrate the effects of particle morphology on aerosol behaviors. PMID:23355749

  13. Biophysical Assessment of Single Cell Cytotoxicity: Diesel Exhaust Particle-Treated Human Aortic Endothelial Cells

    PubMed Central

    Wu, Yangzhe; Yu, Tian; Gilbertson, Timothy A.; Zhou, Anhong; Xu, Hao; Nguyen, Kytai Truong

    2012-01-01

    Exposure to diesel exhaust particles (DEPs), a major source of traffic-related air pollution, has become a serious health concern due to its adverse influences on human health including cardiovascular and respiratory disorders. To elucidate the relationship between biophysical properties (cell topography, cytoskeleton organizations, and cell mechanics) and functions of endothelial cells exposed to DEPs, atomic force microscope (AFM) was applied to analyze the toxic effects of DEPs on a model cell line from human aortic endothelial cells (HAECs). Fluorescence microscopy and flow cytometry were also applied to further explore DEP-induced cytotoxicity in HAECs. Results revealed that DEPs could negatively impair cell viability and alter membrane nanostructures and cytoskeleton components in a dosage- and a time-dependent manner; and analyses suggested that DEPs-induced hyperpolarization in HAECs appeared in a time-dependent manner, implying DEP treatment would lead to vasodilation, which could be supported by down-regulation of cell biophysical properties (e.g., cell elasticity). These findings are consistent with the conclusion that DEP exposure triggers important biochemical and biophysical changes that would negatively impact the pathological development of cardiovascular diseases. For example, DEP intervention would be one cause of vasodilation, which will expand understanding of biophysical aspects associated with DEP cytotoxicity in HAECs. PMID:22662129

  14. Removal of NOx from diesel generator exhaust by pulsed electron beams

    SciTech Connect

    Penetrante, B. M., LLNL

    1997-07-03

    The objective of this paper is to determine the effects of electron beam pulse parameters on the utilization of the reactive free radicals for removal of NO{sub x} from diesel generator exhaust. A dose per pulse less than 1 kGy has been determined to be optimum for effective radical utilization. During each post-pulse period, the radicals are utilized in the removal of NO{sub x} in a timescale of around 100 microseconds; thus, with pulse frequencies of around 10 kHz or less, the radical concentrations remain sufficiently low to prevent any significant competition between radical-pollutant and radical-radical reactions. It is shown that a pulsed electron beam reactor, operating with a dose per pulse of less than 1 kGy/pulse and pulse repetition rate of less than 10 kHz, will have the same plasma chemistry efficiency (parts per million of removed NO{sub x} per kGy of electron beam dose) as an electron beam reactor operating with a low dose rate of 50 kGy/s in continuous mode. Ozone accumulation is a limiting factor under high pulse frequency conditions. The total dose requirement determines the optimum combination of dose per pulse and pulse frequency for both radical utilization and prevention of ozone buildup.

  15. Diesel exhaust and coal mine dust: lung cancer risk in occupational settings

    SciTech Connect

    Hoffmann, B.; Jockel, K.H.

    2006-09-15

    Conflicting evidence on the carcinogenicity of diesel exhaust (DE) and coal mine dust in occupational settings exist. Exposure measurement in most studies is inferred on the basis of job classifications and may lead to misclassification. Confounding behavioral factors (i.e., smoking) and occupational risk factors (exposure to asbestos, arsenic, radon) need to be considered. We evaluated the epidemiological evidence and current findings of the carcinogenicity of DE and coal mine dust in occupational settings. Pertaining literature was identified through Medline search and recent review articles. Strengths and limitations of recent approaches are discussed. Many epidemiological studies have addressed the question of carcinogenicity in workers exposed to DE, and most showed a low-to-medium increase in the risk of bronchial carcinoma. The pooled relative risk (RR) estimates lie between 1.33 and 1.47, and a consistent rise in risk across various job categories and study designs point to a causal relationship. Data on the carcinogenicity of coal mine dust are less consistent and the potential for confounding by unmeasured risk factors (arsenic, radon, DE) are higher. While silica as one of its components has been evaluated as carcinogenic, there is inadequate evidence for the carcinogenicity of pure coal dust according to the International Agency for Research on Cancer (IARC). There is sufficient evidence for a causal relationship between DE and lung cancer in occupational settings. The evidence for coal mine dust is less convincing, but individual studies show an increase in risk of lung cancer in exposed workers. 4 refs.

  16. Biological Responses to Diesel Exhaust Particles (DEPs) Depend on the Physicochemical Properties of the DEPs

    PubMed Central

    Park, Eun-Jung; Roh, Jinkyu; Kang, Min-Sung; Kim, Soo Nam; Kim, Younghun; Choi, Sangdun

    2011-01-01

    Diesel exhaust particles (DEPs) are the main components of ambient particulate materials, including polyaromatic hydrocarbons (PAHs), n-PAHs, heavy metals, and gaseous materials. Many epidemiological, clinical, and toxicological studies have shown that ambient particles, including DEPs, are associated with respiratory disorders, such as asthma, allergic rhinitis, and lung cancer. However, the relationship between the biological response to DEPs and their chemical composition remains unclear. In this study, we investigated the physicochemical properties of DEPs before toxicological studies, and then administered a single intratracheal instillation of DEPs to mice. The mice were then killed 1, 7, 14 and 28 days after DEP exposure to observe the biological responses induced by DEPs over time. Our findings suggest that DEPs engulfed into cells induced a Th2-type inflammatory response followed by DNA damage, whereas DEPs not engulfed into cells induced a Th1-type inflammatory response. Further, the physicochemical properties, including surface charge, particle size, and chemical composition, of DEPs play a crucial role in determining the biological responses to DEPs. Consequently, we suggest that the biological response to DEPs depend on cell-particle interaction and the physicochemical properties of the particles. PMID:22039547

  17. Microarray analysis of the effect of diesel exhaust particles on in vitro cultured macrophages.

    PubMed

    Verheyen, Geert R; Nuijten, Jean-Marie; Van Hummelen, Paul; Schoeters, Greet R

    2004-06-01

    Diesel exhaust particles (DEP) have been reported to induce or aggravate pulmonary diseases, including cancer and asthma. Alveolar macrophages are important cellular targets for DEP and have important immunological and inflammatory properties in the response to foreign substances in the lung. In vitro cultures of human THP-1 cells were differentiated to macrophages and were exposed to 1600 ng/ml DEP during 6 and 24 h. Global changes in gene expression were evaluated using cDNA microarrays containing about 13,000 cDNAs. Each gene on the microarray was present in duplicate. A colorflip experiment was also performed, resulting in four ratio measurements for each gene, that were used to evaluate significance of the gene expression findings. Gene expression changes were very modest (<3-fold induction/repression). Less than 1% of all genes were significantly regulated by DEP. Considering the 6 h exposure data, 50 clones were up- and 39 were downregulated. For the 24 h exposure data, there were 54 upregulated and 60 downregulated genes. Nine genes (CYP1B1, THBD, Il1b, ITGB7, SEC6, TNFRSF1B, LPXN, LOC51093 and BTG2) are upregulated and seven (PRDX1, CD36, PRKACB, BBOX1, CLK1, STMN1, and HMGB2) are downregulated at both time-points. Our data indicate the multitude of biological processes potentially influenced by DEP. PMID:15046786

  18. Enhanced Deposition by Electrostatic Field-Assistance Aggravating Diesel Exhaust Aerosol Toxicity for Human Lung Cells.

    PubMed

    Stoehr, Linda C; Madl, Pierre; Boyles, Matthew S P; Zauner, Roland; Wimmer, Monika; Wiegand, Harald; Andosch, Ancuela; Kasper, Gerhard; Pesch, Markus; Lütz-Meindl, Ursula; Himly, Martin; Duschl, Albert

    2015-07-21

    Air pollution is associated with increased risk of cardiovascular and pulmonary diseases, but conventional air quality monitoring gives no information about biological consequences. Exposing human lung cells at the air-liquid interface (ALI) to ambient aerosol could help identify acute biological responses. This study investigated electrode-assisted deposition of diesel exhaust aerosol (DEA) on human lung epithelial cells (A549) in a prototype exposure chamber. A549 cells were exposed to DEA at the ALI and under submerged conditions in different electrostatic fields (EFs) and were assessed for cell viability, membrane integrity, and IL-8 secretion. Qualitative differences of the DEA and its deposition under different EFs were characterized using scanning mobility particle sizer (SMPS) measurements, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Upon exposure to DEA only, cell viability decreased and membrane impairment increased for cells at the ALI; submerged cells were unaffected. These responses were enhanced upon application of an EF, as was DEA deposition. No adverse effects were observed for filtered DEA or air only, confirming particle-induced responses. The prototype exposure chamber proved suitable for testing DEA-induced biological responses of cells at the ALI using electrode-assisted deposition and may be useful for analysis of other air pollutants. PMID:26083946

  19. Scanning electron microscopy of terminal airways of guinea pigs chronically inhaling diesel exhaust

    SciTech Connect

    Kucukcelebi, A.; Mohamed, F.; Barnhart, M.I.

    1983-01-01

    The structural physiology of airways from 80 guinea pigs was examined for changes induced by diesel exhaust (DE) exposure. Acute, subacute and chronic studies contrasted inhalation effects of 250, 750, 1500 and 6000 micrograms DE/m3 with ''clean air'' breathing of age-matched controls. Nonciliated epithelial (Clara) cells, epithelial type 2 cells and alveolar macrophages were increased in a DE dose dependent fashion. Also, eosinophils, were recruited. Epithelial type 1 cells of the distal airways internalized DEP. The relative dustiness (particulate density) of airways was assessed from coded specimens. Some 86% of DE exposed animals were correctly identified. Scanning Electron Microscopy (SEM) resolved surface located DE particulates (DEP). Single particles, loose clusters, low density agglomerates occurred. While SEM visual clues are insufficient for absolute identification of DE particles, there was supporting evidence from transmission electron microscopy (TEM) and from SEM studies comparing vascular with intratracheally fixed specimens. Presumptive DEP were notable on bifurcation bridges in respiratory bronchioles and alveolar ducts while alveolar outpockets had heavy dust burdens. Clumps of macrophages in such alveoli almost occluded the airspace. We conclude that normal guinea pigs appear to adapt to a chronic DE stress environment. But, the ultrastructural basis (cellular protrusions, DEP agglomerates and secretional debris) exists in peripheral airways for airflow instability and increased airflow resistance.

  20. Diesel Exhaust Exposure and the Risk of Lung Cancer—A Review of the Epidemiological Evidence

    PubMed Central

    Sun, Yi; Bochmann, Frank; Nold, Annette; Mattenklott, Markus

    2014-01-01

    To critically evaluate the association between diesel exhaust (DE) exposure and the risk of lung cancer, we conducted a systematic review of published epidemiological evidences. To comprehensively identify original studies on the association between DE exposure and the risk of lung cancer, literature searches were performed in literature databases for the period between 1970 and 2013, including bibliographies and cross-referencing. In total, 42 cohort studies and 32 case-control studies were identified in which the association between DE exposures and lung cancer was examined. In general, previous studies suffer from a series of methodological limitations, including design, exposure assessment methods and statistical analysis used. A lack of objective exposure information appears to be the main problem in interpreting epidemiological evidence. To facilitate the interpretation and comparison of previous studies, a job-exposure matrix (JEM) of DE exposures was created based on around 4,000 historical industrial measurements. The values from the JEM were considered during interpretation and comparison of previous studies. Overall, neither cohort nor case-control studies indicate a clear exposure-response relationship between DE exposure and lung cancer. Epidemiological studies published to date do not allow a valid quantification of the association between DE and lung cancer. PMID:24473109

  1. Health risk assessment for residents exposed to atmospheric diesel exhaust particles in southern region of Taiwan

    NASA Astrophysics Data System (ADS)

    Chio, Chia-Pin; Liao, Chung-Min; Tsai, Ying-I.; Cheng, Man-Ting; Chou, Wei-Chun

    2014-03-01

    Evidence shows a strong association among air pollution, oxidative stress (OS), deoxyribonucleic acid (DNA) damage, and diseases. Recent studies indicated that the aging, human neurodegenerative diseases and cancers resulted from mitochondrial dysfunction and OS. The purpose of this study is to provide a probabilistic risk assessment model to quantify the atmospheric diesel exhaust particles (DEP)-induced pre-cancer biomarker response and cancer incidence risk for residents in south Taiwan. We conducted entirely monthly particulate matter sampling data at five sites in Kaohsiung of south Taiwan in the period 2002-2003. Three findings were found: (i) the DEP dose estimates and cancer risk quantification had heterogeneously spatiotemporal difference in south Taiwan, (ii) the pre-cancer DNA damage biomarker and cancer incidence estimates had a positive yet insignificant association, and (iii) all the estimates of cancer incidence in south Taiwan populations fell within and slight lower than the values from previous cancer epidemiological investigations. In this study, we successfully assessed the tumor incidence for residents posed by DEP exposure in south Taiwan compared with the epidemiological approach. Our approach provides a unique way for assessing human health risk for residences exposed to atmospheric DEP depending on specific combinations of local and regional conditions. Our work implicates the importance of incorporating both environmental and health risk impacts into models of air pollution exposure to guide adaptive mitigation strategies.

  2. Study of heart and blood of rodents inhaling diesel engine exhaust particulates

    SciTech Connect

    Penny, D.G.; Baylerian, M.S.; Fanning, K.E.; Thill, J.E.; Yedavally, S.; Fanning, C.M.

    1981-12-01

    The in vivo effects of inhalation of diesel engine exhaust (DEE) were evaluated in 127 rats and 146 guinea pigs. They were exposed in special chambers to three different dose levels of DEE particulates; 250, 750, and 1500 ..mu..g/m/sup 3/, for 20 hr/day and 5.5 days/week. Rats were sacrificed after 13, 16.7, 25.7, 42, 52, and 78 weeks exposure, while guinea pigs were sacrificed after 6, 13, 17, 26, 42, 52, and 78 weeks exposure. Each group of each species was compared to its own age-matched control group. Morphometric analysis of the heart revealed no significant alterations in mass which could be assigned to inhalation of DEE at any dosage level or duration of exposure in either species. This included an assessment of the relative wet weights of the right ventricle, left ventricle, combined ventricles, combined atria, and ratio of right to left ventricle weights. Likewise, hematology was not changed in either species at any dosage level or duration of exposure by inhalation of DEE.

  3. Impact of Diesel Exhaust Particles on Th2 Response in the Lung in Asthmatic Mice

    PubMed Central

    Inoue, Ken-ichiro; Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa

    2008-01-01

    Although it has been accepted that pulmonary exposure to diesel exhaust particles (DEP), representative constituents in particulate matter of mass median aerodynamic diameter < or 2.5 µm (PM2.5), exacerbates murine allergic asthma, the in vivo effects of DEP on their cellular events in the context of allergen-specific Th response have never been examined. The aim of this study is to elucidate whether in vivo repetitive exposure to DEP combined with allergen (ovalbumin) facilitate allergen-specific Th response in the lung using a simple ex vivo assay system. As a result, repetitive pulmonary exposure to DEP in vivo, if combined with allergen, amplifies ex vivo allergen-specific Th2 response in the lung compared to that to allergen alone, characterized by high levels of interleukin (IL)-4 and IL-5. The result suggests that in asthmatic subjects, DEP promote Th2-prone milieu in the lung, which additively/synergistically augment asthma pathophysiology in vivo. PMID:19015755

  4. Diesel exhaust but not ozone increases fraction of exhaled nitric oxide in a randomized controlled experimental exposure study of healthy human subjects

    PubMed Central

    2013-01-01

    Background Fraction of exhaled nitric oxide (FENO) is a promising non-invasive index of airway inflammation that may be used to assess respiratory effects of air pollution. We evaluated FENO as a measure of airway inflammation after controlled exposure to diesel exhaust or ozone. Methods Healthy volunteers were exposed to either diesel exhaust (particle concentration 300 μg/m3) and filtered air for one hour, or ozone (300 ppb) and filtered air for 75 minutes. FENO was measured in duplicate at expiratory flow rates of 10, 50, 100 and 270 mL/s before, 6 and 24 hours after each exposure. Results Exposure to diesel exhaust increased FENO at 6 hours compared with air at expiratory flow rates of 10 mL/s (p = 0.01) and at 50 mL/s (p = 0.011), but FENO did not differ significantly at higher flow rates. Increases in FENO following diesel exhaust were attenuated at 24 hours. Ozone did not affect FENO at any flow rate or time point. Conclusions Exposure to diesel exhaust, but not ozone, increased FENO concentrations in healthy subjects. Differences in the induction of airway inflammation may explain divergent responses to diesel exhaust and ozone, with implications for the use of FENO as an index of exposure to air pollution. PMID:23602059

  5. Research on Integration of an Automotive Exhaust-Based Thermoelectric Generator and a Three-Way Catalytic Converter

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Chen, Y. L.; Chen, S.; Xianyu, W. D.; Su, C. Q.

    2015-06-01

    A key research topic related to thermoelectric generators (TEGs) for automotive applications is to improve their compatibility with the original vehicle exhaust system, which determines the quality of the exhaust gas treatment and the realization of energy conservation and emission reduction. A new TEG integrated with a three-way catalytic converter (CTEG) by reshaping the converter as the heat exchanger is proposed. A heat-flux coupling simulation model of the integrated TEG is established at the light-off stage of the original three-way catalytic converter (TWC). Temperature distribution maps of the integrated heat exchanger, thermoelectric modules, and cooling-water tank are obtained to present the process of energy flow among the parts of the CTEG. Based on the simulation results, the output power of the CTEG is calculated by a mathematical model. A minimum output power of 31.93 W can be obtained by conversion when the TWC starts working at steady conditions. Theoretically, this case study demonstrates the great potential for use of CTEGs in vehicles.

  6. HEALTH EFFECTS ASSOCIATED WITH DIESEL EXHAUST EMISSIONS, LITERATURE REVIEW AND EVALUATION

    EPA Science Inventory

    Engineering tests have shown a significant improvement in fuel economy in light duty vehicles equipped with diesel engines versus those equipped with gasoline engines. Automobile manufacturers are considering a major program for conversion to diesel engines in the automobile flee...

  7. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    PubMed

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. PMID:22119306

  8. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    PubMed Central

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  9. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-02-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitronaphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.

  10. Comparison of diesel exhaust emissions using JP-8 and low-sulfur diesel fuel. Interim report, March 1994-March 1995

    SciTech Connect

    Yost, D.M.; Montalvo, D.A.

    1995-11-01

    Comparative emission measurements were made in two dynamometer-based diesel engines using protocol specified by the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). A single JP-8 fuel with a sulfur level of 0.06 wt% was adjusted to sulfur levels of 0.11 and 0.26 wt%. The emission characteristics of the three fuels were compared to the 1994 EPA certification low-sulfur diesel fuel (sulfur level equal to 0.035 wt%) in the Detroit Diesel Corporation (DDC) 1991 prototype Series 60 diesel engine and in the General Motors (GM) 6.2L diesel engine. Comparisons were made using the hot-start transient portion of the heavy-duty diesel engine Federal Test Procedure. Results from the Army study show that the gaseous emissions for the DDC Series 60 engine using kerosene-based JP-8 fuel are essentially equal to values obtained with the 0.035 wt% sulfur EPA certification diesel fuel, and that an approximate sulfur level of 0.21 wt% in kerosene-type JP-8 fuel would be equivalent to the 0.035 wt% sulfur reference fuel. Similarly, the regulated gaseous emissions for the GM 6.2L engine using JP-8 fuel are essentially equal to the values obtained with the 0.035 wt% sulfur EPA reference fuel. All sulfur levels of kerosene-type JP-8 fuel up to the 0.30 wt% MIL-T-83133 specification maximum would be equivalent to a 0.035 wt% sulfur EPA reference fuel.

  11. Thermal Optimization of the Heat Exchanger in an Automotive Exhaust-Based Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Liu, X.; Chen, S.; Tong, N. Q.

    2013-07-01

    Recent advances in thermoelectric technologies have made exhaust-based thermoelectric generators (TEGs) promising to recover waste heat. The thermal performance of the heat exchanger in exhaust-based TEGs is studied in this work. In terms of interface temperature and thermal uniformity, the thermal characteristics of heat exchangers with different internal structures, lengths, and materials are discussed. Following computational fluid dynamics simulations, infrared experiments are carried out on a high-performance production engine with a dynamometer. Simulation and experimental results show that a plate-shaped heat exchanger made of brass with fishbone-shaped internal structure and length of 600 mm achieves a relatively ideal thermal performance, which is practically helpful to enhance the thermal performance of the TEG.

  12. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice☆

    PubMed Central

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    2012-01-01

    Background Cerium oxide (CeO2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods Atherosclerosis-prone apolipoprotein E knockout (ApoE−/−) mice were exposed by inhalation to diluted exhaust (1.7 mg/m3, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results Addition of CeO2 to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6–8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions These results imply that addition of CeO2 nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects. PMID:22507957

  13. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    SciTech Connect

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    2012-05-15

    Background: Cerium oxide (CeO{sub 2}) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE{sup -/-}) mice were exposed by inhalation to diluted exhaust (1.7 mg/m{sup 3}, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO{sub 2} to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO{sub 2} nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.

  14. Generation of microwave-induced plasmas in automotive exhaust gas mixtures using pulsed microwave energy.

    PubMed

    Destefani, Carlos A; Siores, Elias; Murphy, Anthony B

    2003-01-01

    Microwave energy at 2.45 GHz was applied to a mixture of exhaust gases from a petrol engine at atmospheric pressure. It was found that by pulsing the microwave energy with a 50% duty cycle, the average power required to sustain a microwave-induced plasma discharge was decreased by about 40%. The ratio of absorbed to incident power was unaffected. These findings were confirmed for pulse frequencies from 10 to 300 Hz. PMID:15007864

  15. Role of Neprilysin in Airway Inflammation Induced by Diesel Exhaust Emissions

    PubMed Central

    Wong, Simon S.; Sun, Nina N.; Fastje, Cynthia D.; Witten, Mark L.; Lantz, R. Clark; Lu, Bao; Sherrill, Duane L.; Gerard, Craig J.; Burgess, Jefferey L.

    2016-01-01

    In this study, we examined the role of neprilysin (NEP*), a key membrane-bound endopeptidase, in the inflammatory response induced by diesel exhaust emissions (DEE) in the airways through a number of approaches: in vitro, animal, and controlled human exposure. Our specific aims were (1) to examine the role of NEP in inflammatory injury induced by diesel exhaust particles (DEP) using Nep-intact (wild-type) and Nep-null mice; (2) to examine which components of DEP are associated with NEP downregulation in vitro; (3) to determine the molecular impact of DEP exposure and decreased NEP expression on airway epithelial cells’ gene expression in vitro, using a combination of RNA interference (RNAi) and microarray approaches; and (4) to evaluate the effects on NEP activity of human exposure to DEE. We report four main results: First, we found that exposure of normal mice to DEP consisting of standard reference material (SRM) 2975 via intratracheal installation can downregulate NEP expression in a concentration-dependent manner. The changes were accompanied by increases in the number of macrophages and epithelial cells, as well as proinflammatory cytokines, examined in bronchoalveolar lavage (BAL) fluid and cells. Nep-null mice displayed increased and/or additional inflammatory responses when compared with wild-type mice, especially in response to exposure to the higher dose of DEP that we used. These in vivo findings suggest that loss of NEP in mice could cause increased susceptibility to injury or exacerbate inflammatory responses after DEP exposure via release of specific cytokines from the lungs. Second, we found evidence, using in vitro studies, that downregulation of NEP by DEP in cultured human epithelial BEAS-2B cells was mostly attributable to DEP-adsorbed organic compounds, whereas the carbonaceous core and transition metal components of DEP had little or no effect on NEP messenger RNA (mRNA) expression. This NEP downregulation was not a specific response to DEP

  16. Certification of Pd and Pt single spikes and application to the quantification of Pt and Pd in automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Vogl, Jochen; Meyer, Christian; Noordmann, Janine; Rienitz, Olaf; Geilert, Sonja

    2014-05-01

    Numerous epidemiological studies show the effect of increased ambient pollution. Therefore measurement networks for air quality have been installed worldwide and legislation requires the monitoring of air pollution. Besides monitoring it is also important to be able to identify, to quantify and finally to regulate the emission of distinct sources in order to improve the quality of life. Automotive vehicles are a major source of environmental pollution especially through contaminants such as CO, NOX, SOX and hydrocarbons which derive from petrol combustion, while for example Platinum Group Elements (PGE) can be present from catalytic converters. The release of PGE into the environment, however, may be damaging in terms of public health, ecological and economic interests. In order to reliably assess the risks from PGEs, traceable and thus comparable data on the release rates of PGE from automotive catalysers are needed. As no Certified Reference Materials (CRM) are available for such samples the development of analytical procedures enabling SI-traceable results will be challenging. Therefore reference procedures for Pd and Pt in automotive exhaust emissions based on isotope dilution mass spectrometry (IDMS) have been developed and applied to specifically sampled automotive exhaust emissions. Due to the commonly known advantages, IDMS often is applied for quantification PGEs, as is the case within this work. The main reasons here are the required accuracy and the low PGE mass fractions in the sample. In order to perform IDMS analysis the analyte element must be available in an isotopically enriched form as so-called spike material or solution thereof, which is mixed with the sample. Unfortunately, no certified PGE spike solutions are available yet. To fill this gap two single PGE spikes, one 106Pd and one 194Pt spike, have been produced and characterized. The selection of the isotopes, the production of the solutions and the ampoulation will be described in this

  17. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    SciTech Connect

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  18. Optimization of Cooling Unit Design for Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Xu, M.; Wang, W. S.; Deng, Y. D.; Liu, X.; Tang, Z. B.

    2015-06-01

    Integrating a thermoelectric cooler (TEC) into the engine cooling system has various advantages including reducing additional mechanical parts, and saving energy and space for automotive applications. Based on performance parameters of the engine and thermoelectric modules, three different TEC configurations called plate-shape, stripe-shape, and diamond-shape are constructed with development of simulations of the different TECs and the performance of the circulating coolant. Based on these simulations, the velocity, pressure, and temperature fields of the coolant are obtained for further research. Besides, the temperature of the TEC and the output power of the thermoelectric generator (TEG) are acquired experimentally. Comparing the working performance of the different TECs, the simulation and experimental results show that the TEG using the diamond-shaped TEC achieves a relatively ideal performance. Finally, some measures are proposed to improve the cooling system, providing guidelines for future research.

  19. Diesel Exhaust Particles Upregulate Interleukins IL-6 and IL-8 in Nasal Fibroblasts

    PubMed Central

    Park, Il-Ho; Shin, Jae-Min; Lee, Seoung-Ae; Lee, Heung-Man

    2016-01-01

    Background Diesel exhaust particles (DEP) are a major source of air pollution. Nasal fibroblasts are known to produce various cytokines and chemokines. The aim of this study was to evaluate DEP-induced cytokines and chemokines in nasal fibroblasts and to identify the signaling pathway involved. Methods A cytokine and chemokine array performed after stimulation of nasal fibroblasts with DEP revealed that levels of IL-6 and IL-8 were increased most significantly among various cytokines and chemokines. RT—PCR and ELISA were used to determine the mRNA and protein expression levels of IL-6 and IL-8. Signaling pathways of p-38, Akt, and NF-κB were analyzed by western blotting, luciferase assay, and ELISA. Organ cultures of nasal interior turbinate were also developed to demonstrate the ex vivo effect of DEP on the expression of IL-6 and IL-8 and the associated signaling pathway. Results DEP increased the expressions of IL-6 and IL-8 in nasal fibroblasts at mRNA and protein levels. DEP induced phosphorylation of p38, Akt, and NF-κB, whereas inhibitors of p38, Akt, and NF-κB blocked these phophorylations and the expressions of IL-6 and IL-8. These findings were also observed in ex vivo organ culture of nasal inferior turbinate. Conclusions DEP induces expression of IL-6 and IL-8 via p38, Akt, and NF-κB signaling pathways in nasal fibroblasts. This finding suggests that air pollution might induce or aggravate allergic rhinitis or chronic rhinosinusitis. PMID:27295300

  20. Diesel exhaust particle induction of IL17A contributes to severe asthma

    PubMed Central

    Brandt, Eric B.; Kovacic, Melinda Butsch; Lee, Gerald B.; Gibson, Aaron M.; Acciani, Thomas H.; Le Cras, Timothy D.; Ryan, Patrick H.; Budelsky, Alison L.; Khurana Hershey, Gurjit K.

    2013-01-01

    Background IL-17A has been implicated in severe forms of asthma. However, the factors that promote IL-17A production during the pathogenesis of severe asthma remain undefined. Diesel exhaust particles (DEP) are a major component of traffic related air pollution and are implicated in asthma pathogenesis and exacerbation. Objective To determine the mechanism by which DEP exposure impacts asthma severity using human and mouse studies. Methods Balb/c mice were challenged with DEP +/− house dust mite extract (HDM). Airway inflammation and function, BALF cytokine levels, and flow cytometry of lung T cells were assessed. The impact of DEP exposure on frequency of asthma symptoms and serum cytokine levels was determined in children with allergic asthma. Results In mice, exposure to DEP alone did not induce asthma. DEP and HDM co-exposure markedly enhanced AHR compared to HDM alone and generated a mixed Th2 and Th17 response, including IL-13+IL-17A+ double producing T-cells. IL-17A neutralization prevented DEP-induced exacerbation of AHR. Among 235 high DEP-exposed children with allergic asthma, 32.2% had more frequent asthma symptoms over a 12 month period, compared to only 14.2% in the low DEP-exposed group (p=0.002). Additionally, high DEP-exposed children with allergic asthma had nearly six times higher serum IL-17A levels compared with low DEP-exposed children. Conclusions Expansion of Th17 cells contributes to DEP-mediated exacerbation of allergic asthma. Neutralization of IL-17A may be a useful potential therapeutic strategy to counteract the asthma promoting effects of traffic related air pollution especially in highly exposed severe allergic asthmatics. PMID:24060272

  1. Protein kinase C-ζ mediates lung injury induced by diesel exhaust particles.

    PubMed

    Caraballo, Juan C; Borcherding, Jennifer; Thorne, Peter S; Comellas, Alejandro P

    2013-03-01

    Recently, we reported that diesel exhaust particles (DEPs) disrupt tight junctions (TJs) in alveolar epithelial cells (AECs) via an increase in reactive oxygen species (ROS). In this study, we investigated the role of protein kinase C (PKC)-ζ activation in DEP-induced lung injury. C57/bl6 mice were instilled intratracheally with 50 μl of saline containing 100 μg of DEPs or titanium dioxide (TiO2). Twenty-four hours later, bronchoalveolar lavage was performed to assess neutrophil counts and protein concentrations. In addition, in vitro experiments were performed in primary rat and human AECs exposed to DEPs (50 μg/cm(2)) for 3 hours. Transepithelial electrical conductance was measured, and TJ protein association was analyzed by immunoprecipitation. To determine whether the overexpression of antioxidants prevented DEP-induced lung injury, AECs and mice were infected with adenoviruses containing catalase and manganese superoxide dismutase (MnSOD) plasmids. In vivo, the overexpression of catalase and MnSOD prevented DEP-induced neutrophil recruitment. The inhibition of PKC-ζ activation also prevented DEP-induced neutrophil recruitment in vivo. In vitro, DEPs activated PKC-ζ in AECs, but not in alveolar macrophages. Using a specific myristolated PKC-ζ pseudosubstrate pepetide (PKC-ζ ps), we showed that PKC-ζ mediated the DEP-induced dissociation of occludin and zonula occludin-1 (ZO1) in rat and human AECs. In addition, the overexpression of constitutively active PKC-ζ induced the dissociation of occludin and ZO1 in AECs. DEP-induced TJ disruption occurs via PKC-ζ. TJ disruption seems to be in part responsible for DEP-induced lung injury. PMID:23221045

  2. Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles.

    PubMed Central

    DeMarini, David M; Brooks, Lance R; Warren, Sarah H; Kobayashi, Takahiro; Gilmour, M Ian; Singh, Pramila

    2004-01-01

    Many pulmonary toxicity studies of diesel exhaust particles (DEPs) have used an automobile-generated sample (A-DEPs) whose mutagenicity has not been reported. In contrast, many mutagenicity studies of DEPs have used a forklift-generated sample (SRM 2975) that has been evaluated in only a few pulmonary toxicity studies. Therefore, we evaluated the mutagenicity of both DEPs in Salmonella coupled to a bioassay-directed fractionation. The percentage of extractable organic material (EOM) was 26.3% for A-DEPs and 2% for SRM 2975. Most of the A-EOM (~55%) eluted in the hexane fraction, reflecting the presence of alkanes and alkenes, typical of uncombusted fuel. In contrast, most of the SRM 2975 EOM (~58%) eluted in the polar methanol fraction, indicative of oxygenated and/or nitrated organics derived from combustion. Most of the direct-acting, base-substitution activity of the A-EOM eluted in the hexane/dichloromethane (DCM) fraction, but this activity eluted in the polar methanol fraction for the SRM 2975 EOM. The direct-acting frameshift mutagenicity eluted across fractions of A-EOM, whereas > 80% eluted only in the DCM fraction of SRM 2975 EOM. The A-DEPs were more mutagenic than SRM 2975 per mass of particle, having 227 times more polycyclic aromatic hydrocarbon-type and 8-45 more nitroarene-type mutagenic activity. These differences were associated with the different conditions under which the two DEP samples were generated and collected. A comprehensive understanding of the mechanisms responsible for the health effects of DEPs requires the evaluation of DEP standards for a variety of end points, and our results highlight the need for multidisciplinary studies on a variety of representative samples of DEPs. PMID:15175166

  3. Suppression of the NF-κB Pathway by Diesel Exhaust Particles Impairs Human Antimycobacterial Immunity

    PubMed Central

    Sarkar, Srijata; Song, Youngmia; Sarkar, Somak; Kipen, Howard M.; Laumbach, Robert J.; Zhang, Junfeng (Jim); Strickland, Pamela A. Ohman; Gardner, Carol R.; Schwander, Stephan

    2012-01-01

    Epidemiological studies suggest that chronic exposure to air pollution increases susceptibility to respiratory infections including tuberculosis in humans. A possible link between particulate air pollutant exposure and antimycobacterial immunity has not been explored in human primary immune cells. We hypothesized that exposure to diesel exhaust particles (DEP), a major component of urban fine particulate matter, suppresses antimycobacterial human immune effector cell functions by modulating TLR-signaling pathways and NF-κB activation. We show that DEP and H37Ra, an avirulent laboratory strain of M.tb, were both taken up by the same peripheral human blood monocytes. To examine the effects of DEP on M.tb-induced production of cytokines, PBMC were stimulated with DEP and M.tb or PPD (purified protein derivative). The production of M.tb and PPD-induced IFN-γ, TNF-α, IL-1β, and IL-6 was reduced in a DEP dose-dependent manner. In contrast, the production of anti-inflammatory IL-10 remained unchanged. Furthermore, DEP stimulation prior to M.tb infection altered the expression of TLR 3, 4, 5, 7 and 10 mRNAs and of a subset of M.tb-induced host genes including inhibition of expression of many NF-κB (e.g. CSF3, IFNG, IFNA, IFNB, IL1A, IL6, NFKBIA) and IRF (e.g. IFNG, IFNA1, IFNB1, CXCL10) pathway target genes. We propose that DEP down-regulate M.tb-induced host gene expression via MyD88-dependent (IL6, IL1A, PTGS2) as well as MyD88-independent (IFNA, IFNB) pathways. Pre-stimulation of PBMC with DEP suppressed the expression of proinflammatory mediators upon M.tb infection inducing a hypo-responsive cellular state. Therefore, DEP alters crucial components of antimycobacterial host immune responses, providing a possible mechanism by which air pollutants alter antimicrobial immunity. PMID:22345648

  4. Exposure to diesel exhaust upregulates COX-2 expression in ApoE knockout mice

    PubMed Central

    Bai, Ni; Tranfield, Erin M.; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; van Eeden, Stephan F.

    2015-01-01

    Introduction We have shown that diesel exhaust (DE) inhalation caused progression of atherosclerosis; however, the mechanisms are not fully understood. We hypothesize that exposure to DE upregulates cyclooxygenase (COX) expression and activity, which could play a role in DE-induced atherosclerosis. Methods ApoE knockout mice (30-week old) fed with regular chow were exposed to DE (at 200 μg/m3 of particulate matter) or filtered air (control) for 7 weeks (6 h/day, 5 days/week). The protein and mRNA expression of COX-1 and COX-2 were evaluated by immunohistochemistry analysis and quantitative real-time PCR, respectively. To examine COX activity, thoracic aortae were mounted in a wire myograph, and phenylephrine (PE)-stimulated vasoconstriction was measured with and without the presence of COX antagonists (indomethacin). COX-2 activity was further assessed by urine 2,3-dinor-6-keto PGF1α level, a major metabolite of prostacyclin I2 (PGI2). Results Immunohistochemistry analysis demonstrates that DE exposure enhanced COX-2 expression in both thoracic aorta (p < 0.01) and aortic root (p < 0.03), with no modification of COX-1 expression. The increased COX-2 expression was positively correlated with smooth muscle cell content in aortic lesions (R2 = 0.4081, p < 0.008). The fractional changes of maximal vasoconstriction in the presence of indomethacin was attenuated by 3-fold after DE exposure (p < 0.02). Urine 2,3-dinor-6-keto PGF1α level was 15-fold higher in DE group than the control (p < 0.007). The mRNA expression of COX-2 (p < 0.006) and PGI synthase (p < 0.02), but not COX-1, was significantly augmented after DE exposure. Conclusion We show that DE inhalation enhanced COX-2 expression, which is also associated with phenotypic changes of aortic lesion. PMID:22746401

  5. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust.

    PubMed

    Win-Shwe, Tin-Tin; Fujimaki, Hidekazu; Fujitani, Yuji; Hirano, Seishiro

    2012-08-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m(3)), high-dose NRDE (H-NRDE, 129 μg/m(3)), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. PMID:22659509

  6. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method.

    PubMed

    Zhao, Zhipeng; Guo, Min; Zhang, Mei

    2015-04-01

    Molybdenum (Mo) and vanadium (V) were effectively extracted from the spent diesel exhaust catalyst (V2O5-MoO3/TiO2) by using an ammonia leaching method. Meanwhile, the structure of the spent catalyst carrier (TiO2) was not destroyed and might be reused. The effects of ammonia (NH3 · H2O) concentration, leaching temperature and time, concentration of hydrogen peroxide (H2O2) and liquid to solid ratio on the extraction of Mo and V were systematically investigated. It is shown that the extraction efficiency of Mo increased from 68.68% to 96.45% while the extraction efficiency of V remained stable at 27% with increasing ammonia concentration from 2.95 to 7.38 mol/L, leaching temperature from 298.15 to 473.15K, and reaction time from 1 to 8h. With the concentration of H2O2 solution increasing from 1.0 to 2.5 mol/L, the extraction efficiency of V increased from 26.87% to 39.73%. Under the optimum conditions (the ammonia concentration of 4.5 mol/L, leaching temperature of 413.15K, reaction time of 2h, the H2O2 solution concentration of 1.0 mol/L and the liquid to solid ratio of 20/1 mL/g), the extraction efficiencies of Mo and V reached 95.13% and 46.25%. Moreover, the catalyst carrier TiO2 with anatase crystal phase was also obtained. PMID:25603289

  7. Diesel exhaust particles induce endothelial dysfunction in apoE{sup -/-} mice

    SciTech Connect

    Hansen, Christian S.; Sheykhzade, Majid; Moller, Peter; Folkmann, Janne Kjaergaard; Amtorp, Ole; Jonassen, Thomas; Loft, Steffen . E-mail: s.loft@pubhealth.ku.dk

    2007-02-15

    Background: Particulate air pollution can aggravate cardiovascular disease by mechanisms suggested to involve translocation of particles to the bloodstream and impairment of endothelial function, possibly dependent on present atherosclerosis. Aim: We investigated the effects of exposure to diesel exhaust particles (DEP) in vivo and ex vivo on vasomotor functions in aorta from apoE{sup -/-} mice with slight atherosclerosis and from normal apoE{sup +/+} mice. Methods: DEP 0, 0.5 or 5 mg/kg bodyweight in saline was administered i.p. The mice were sacrificed 1 h later and aorta ring segments were mounted on wire myographs. Segments from unexposed mice were also incubated ex vivo with 0, 10 and 100 {mu}g DEP/ml before measurement of vasomotor functions. Results: Exposure to 0.5 mg/kg DEP in vivo caused a decrease in the endothelium-dependent acetylcholine elicited vasorelaxation in apoE{sup -/-} mice, whereas the response was enhanced in apoE{sup +/+} mice. No significant change was observed after administration of 5 mg/kg DEP. In vivo DEP exposure did not affect constriction induced by K{sup +} or phenylephrine. In vitro exposure to 100 {mu}g DEP/ml enhanced acetylcholine-induced relaxation and attenuated phenylephrine-induced constriction. Vasodilation induced by sodium nitroprusside was not affected by any DEP exposure. Conclusion: Exposure to DEP has acute effect on vascular functions. Endothelial dysfunction possibly due to decreased NO production as suggested by decreased acetylcholine-induced vasorelaxation and unchanged sodium nitroprusside response can be induced by DEP in vivo only in vessels of mice with some atherosclerosis.

  8. Alterations in tissue glutathione and angiotensin converting enzyme due to inhalation of diesel engine exhaust

    SciTech Connect

    Chaudhari, A.; Dutta, S.

    1982-02-01

    Quantitative changes in reduced glutathione (GSH) and angiotensin converting enzyme (ACE) of lung and extrapulmonary tissues were determined following exposure of laboratory animals to diesel engine exhaust (DEE). Exposure of male rats and guinea pigs to DEE containing 750 ..mu..g particulates per cubic meter for 1 wk did not cause any changes in GSH levels of lung, liver, and heart compared to control values. Rats were then exposed for various time periods to 6 mg/m/sup 3/ DEE. Two weeks of exposure produced statistically significant increases of 21 and 7% in GSH levels of lung and liver, respectively, but no change in the heart. Following 4 wk of exposure, lung showed a 14% increase and heat an 11% increase in GSH level. Furthermore, rats exposed for 4 wk to DEE did not show any particular susceptibility toward the GSH-depleting effect of acetaminophen as compared to controls. A significant depletion (15%) of hepatic GSH was observed after 8 wk of exposure, while lung was still showing an increase of 18% in GSH and heart was unaffected. Time-dependent increases of 18 and 33% in serum ACE activity were noted after 4 and 8 wk of exposure. Pulmonary ACE activity did not decrease until after 8 wk, and then to a small extent (7%). The observed increases in GSH may have been related to the presence of NO/sub 2/ in the DEE. On the other hand, the depletion of hepatic GSH suggests production of electrophillic compounds due to an induction of metabolic activity of liver. The change in serum ACE activity may be due to time-requiring perturbations in the pulmonary endothelial cells.

  9. Diesel exhaust exposure and smoking: A case-referent study of lung cancer among Swedish dock workers

    SciTech Connect

    Emmelin, A.; Nystroem, L.W.; Wall, S. )

    1993-05-01

    We studied 50 lung cancer cases and 154 matched referents, all dock workers, for whom we obtained smoking information and employment histories. We assessed exposures from information on annual diesel fuel consumption from each of the 15 ports included. We used a smoker/nonsmoker term and three exposure variables (machine time, cumulative fuel, and exposed time with fuel consumption above a minimum cutpoint) in the analyses, with three categories for each exposure variable. Odds ratios (ORs) for medium and high exposure groups are consistently higher than reference (low), with an increasing exposure-response trend that is most marked for the exposed time variable (ORs: low = 1.0; medium = 1.6; high = 2.8). When smoking and that exposure variable are simultaneously included in the analyses, odds ratios for the medium (OR = 2.7) and high (OR = 6.8) levels of exposure increase, as does the odds ratio for smoking. Separating smokers and nonsmokers, with the low exposed nonsmokers as the common reference category, the odds ratios are 1.6 (medium) and 2.9 (high) for the nonsmokers, and 10.7 (medium) and 28.9 (high) for smokers. These results indicate an independent effect of diesel exhaust exposure and a strong interaction between smoking and diesel exhaust.

  10. Assessment of the capacity of vehicle cabin air inlet filters to reduce diesel exhaust-induced symptoms in human volunteers

    PubMed Central

    2014-01-01

    Background Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. Methods Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. Results The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the

  11. On-Line Analysis of Organic Compounds in Diesel Exhaust Using Proton-Transfer-Reaction Mass Spectrometry

    SciTech Connect

    White, M.V.; Jobson, B.T.

    2004-01-01

    In this study, diesel exhaust (DE) was measured in real time using a proton-transfer-reaction mass spectrometer (PTR-MS) to determine the effect of an after-treatment catalyst on gas phase volatile organic compounds (VOCs). DE after-treatment catalysts are being designed to reduce the pollutants in exhaust, which contains both particulate matter and gas phase constituents. The PTR-MS can make in-situ real time measurements of hydrocarbons in the air, from concentrations in the parts per million by volume (ppmV) down to the low part per trillion by volume (pptV) range. Spectrum scans were performed at varied engine loads from mass range m/z (mass to charge ratio) = 20 to 200. This showed the relative abundance of gas phase VOCs produced as the engine ran between idle mode and 80% of its maximum load. The mass spectrum was complex and appeared to be composed of aromatic species ionized by PTR (M+1) through the anticipated proton transfer reactions as well as unexpected alkane fragments, evidenced by a strong 14n+1 ion pattern showing intense peaks at m/z = 43, 57, and 71. A number of protonated M+1 masses could be identified. These compounds displayed M+2 peaks consistent with known 13C isotopic abundance. As the engine load increased, the concentrations of over 90% of the species decreased. An attached smoke meter showed that soot concentrations increased over the same conditions. In addition, the decrease in the concentration of compounds with a larger molecular weight (m/z>100) was greater than the rate that the smaller compounds experienced. This appears to be due to the affinity of VOCs, larger masses in particular, to adhere to soot particles. Further PTR-MS measurements of VOCs on soot confirmed this by producing a mass spectrum comprised of masses predominantly over 100 amu. On-line analysis of diesel exhaust by PTR-MS is a practical tool for quantifying selected organic species in diesel exhaust and should prove useful for developing better diesel exhaust

  12. Comparative cardiopulmonary toxicity of exhausts from soy-based biofuels and diesel in healthy and hypertensive rats

    PubMed Central

    Bass, Virginia L.; Schladweiler, Mette C.; Nyska, Abraham; Thomas, Ronald F.; Miller, Desinia B.; Krantz, Todd; King, Charly; Gilmour, M. Ian; Ledbetter, Allen D.; Richards, Judy E.; Kodavanti, Urmila P.

    2016-01-01

    Increased use of renewable energy sources raise concerns about health effects of new emissions. We analyzed relative cardiopulmonary health effects of exhausts from (1) 100% soy biofuel (B100), (2) 20% soy biofuel + 80% low sulfur petroleum diesel (B20), and (3) 100% petroleum diesel (B0) in rats. Normotensive Wistar–Kyoto (WKY) and spontaneously hypertensive rats were exposed to these three exhausts at 0, 50, 150 and 500 μg/m3, 4 h/day for 2 days or 4 weeks (5 days/week). In addition, WKY rats were exposed for 1 day and responses were analyzed 0 h, 1 day or 4 days later for time-course assessment. Hematological parameters, in vitro platelet aggregation, bronchoalveolar lavage fluid (BALF) markers of pulmonary injury and inflammation, ex vivo aortic ring constriction, heart and aorta mRNA markers of vasoconstriction, thrombosis and atherogenesis were analyzed. The presence of pigmented macrophages in the lung alveoli was clearly evident with all three exhausts without apparent pathology. Overall, exposure to all three exhausts produced only modest effects in most endpoints analyzed in both strains. BALF γ-glutamyl transferase (GGT) activity was the most consistent marker and was increased in both strains, primarily with B0 (B0>B100>B20). This increase was associated with only modest increases in BALF neutrophils. Small and very acute increases occurred in aorta mRNA markers of vasoconstriction and thrombosis with B100 but not B0 in WKY rats. Our comparative evaluations show modest cardiovascular and pulmonary effects at low concentrations of all exhausts: B0 causing more pulmonary injury and B100 more acute vascular effects. BALF GGT activity could serve as a sensitive biomarker of inhaled pollutants. PMID:26514782

  13. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  14. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect

    Gao, Zhiming; Curran, Scott; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  15. Precious metal-free catalyst for purification of automotive exhausts: NO dissociation on Cu oxide surfaces

    NASA Astrophysics Data System (ADS)

    Kasai, Hideaki; Padama, Allan Abraham; Moreno, Joaquin Lorenzo

    2014-03-01

    The dissociation of NOx molecule on catalysts is the rate-limiting step for its reduction process and is the subject of recent investigations related to exhaust gas purification. Three-way catalysts which are composed of Rh, Pd and Pt, are known to work well for such purpose; however, their expensive cost hinders their applicability. In this work, Computational Materials Design based on density functional theory was employed to test the efficiency of Cu-based catalysts for NO dissociation. It was found that the dissociation path of NO on Cu-terminated Cu2O(111) and CuO(110) surfaces is comparable with Rh(111). This is attributed to the modified electronic structure of the surface Cu atoms of Cu oxides in comparison with Cu(111). The calculated NO dissociation barriers are lower and the binding energies of co-adsorbed N and O atoms are weaker on Cu oxides than on Rh(111), which is favorable for subsequent reactions. Our experimental collaborator had also verified that Cu oxides can be better catalysts than Rh, Pd and Pt for the purification of exhaust gases. The details of this work and the oxidation of CO in the presence of dissociated NO will be discussed in the meeting.

  16. Adjuvant activity of diesel-exhaust particulates for the production of IgE antibody in mice

    SciTech Connect

    Muranaka, M.; Suzuki, S.; Koizumi, K.; Takafuji, S.; Miyamoto, T.; Ikemori, R.; Tokiwa, H.

    1986-04-01

    The prevalence rate of allergic rhinitis caused by pollen has strikingly increased in Japan in the last three decades. The number of diesel cars in use has also rapidly increased in the country. This fact urged us to study the effects of particulates emitted from diesel cars on the production of IgE antibody. The primary IgE antibody responses in mice immunized with intraperitoneal injection of ovalbumin (OA) mixed with diesel-exhaust particulates (DEP) were higher than those in the animals immunized with OA alone. This effect of DEP on the production of IgE antibody in mice was also demonstrated when mice were immunized with repeated injections of dinitrophenylated-OA. In addition, persistent IgE-antibody response to major allergen of Japanese cedar pollen (JCPA), a most common pollen causing allergic rhinitis in Japan, was observed in mice immunized with JCPA mixed with DEP but not in the animals immunized with JCPA alone. The results do indicate that the adjuvant activity of DEP can not be excluded as a possible cause of the associated change in the number of diesel cars and allergic rhinitis caused by pollen in Japan.

  17. Multi-Objective Optimization Design for Cooling Unit of Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Qiang, J. W.; Yu, C. G.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.; Yuan, X. H.

    2016-03-01

    In order to improve the performance of cooling units for automotive thermoelectric generators, a study is carried out to optimize the cold side and the fin distributions arranged on its inner faces. Based on the experimental measurements and numerical simulations, a response surface model of different internal structures is built to analyze the heat transfer and pressure drop characteristics of fluid flow in the cooling unit. For the fin distributions, five independent variables including height, length, thickness, space and distance from walls are considered. An experimental study design incorporating the central composite design method is used to assess the influence of fin distributions on the temperature field and the pressure drop in the cooling units. The archive-based micro genetic algorithm (AMGA) is used for multi-objective optimization to analyze the sensitivity of the design variables and to build a database from which to construct the surrogate model. Finally, improvement measures are proposed for optimization of the cooling system and guidelines are provided for future research.

  18. Assessing the influence of methanol-containing additive on biological characteristics of diesel exhaust emissions using microtox and mutatox assays.

    PubMed

    Lin, Ta-Chang; Chao, Mu-Rong

    2002-02-01

    Here we investigate the effect of the methanol-containing additive (MCA) on the biological characteristics of diesel exhaust emissions. Microtox and Mutatox assays, respectively, were used to evaluate the acute toxicity and genotoxicity of crude extracts from diesel engine exhaust. The engine was tested on a series of diesel fuels blended with five additive levels (0, 5, 8, 10 and 15% of MCA by volume). Emission tests were performed over the hot start portion of the transient Heavy-Duty-Federal Test Procedure (HD-FTP) and two selected steady-state modes. Microtox results show that MCA additive moderately lowers the toxicity levels of particle-associated (SOF) samples, but generally increase the vapor-phase (XOC) associated toxicity. A strong correlation was found between XOC-associated toxicity and total hydrocarbon (THC) concentrations, while only a slight link was found between SOF-associated toxicity and particulate matter (PM) concentrations. For Mutatox test results, when either 5 or 8% MCA used, XOC and SOF-associated genotoxicity in both steady-state and hot-start transient cycle tests were relatively lower compared to those of the base diesel. The genotoxic potential of XOC samples was significantly increased after treatment with an exogenous metabolic activation system (S9). On the contrary, the genotoxic potential of SOF samples without S9 metabolic activation was generally higher than those with S9. It is noteworthy that the total particle-associated (SOF) PAHs emissions showed trends quite similar to that of the genotoxic potential. As expected, the total particle-associated (SOF) PAHs correlated moderately with direct mutagenicity, and fairly well with indirect mutagenicity. Finally, the genotoxicity data did not parallel the Microtox results in this study, indicating that potentially long-term genotoxic agents may not be revealed by short-term toxicity assays. PMID:11846175

  19. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXII, MICHIGAN/CLARK TRANSMISSION--CONVERTER/TRANSMISSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP A DETAILED UNDERSTANDING OF A SPECIFIC POWER CONVERTER AND TRANSMISSION USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE A CLOSER LOOK AT THE CONVERTER, CONVERTER ASSEMBLY AND INSTALLATION, TRANSMISSION FUNCTION, AND TRANSMISSION SHIFTING. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED…

  20. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XV, UNDERSTANDING DC GENERATOR PRINCIPLES (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF MAINTENANCE PROCEDURES FOR DIRECT CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE SPECIAL GENERATOR CIRCUITS, GENERATOR TESTING, AND GENERATOR POLARITY. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "DC GENERATORS II--GENERATOR…

  1. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIX, REVIEWING THE CONSTRUCTION OF ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A REVIEW OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE COMPONENTS. TOPICS ARE STATIONARY PARTS, ENGINE MOVING PARTS, PISTON RINGS, AND CONNECTING RODS AND PISTON PINS. THE MODULE CONSISTS OF AN INSTRUCTOR'S GUIDE, TRANSPARENCIES, A LIST OF SUGGESTED SUPPLEMENTARY MATERIALS, AND TRAINEE…

  2. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXV, MICHIGAN/CLARK TRANSMISSION--TROUBLESHOOTING.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TROUBLESHOOTING PROCEDURES FOR A SPECIFIC TRANSMISSION USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) PRELIMINARY CHECKS, (2) PRESSURE AND OIL FLOW CHECKS, (3) TROUBLESHOOTING TABLES, (4) TROUBLESHOOTING VEHICLES UNDER FIELD CONDITIONS, AND (5) ANALYZING UNACCEPTABLE…

  3. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XVI, LEARNING ABOUT AC GENERATOR (ALTERNATOR) PRINCIPLES (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF ALTERNATING CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE REVIEWING ELECTRICAL FUNDAMENTALS, AND OPERATING PRINCIPLES OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "AC GENERATORS…

  4. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXI, MICHIGAN/CLARK TRANSMISSION--COMPLETE POWER TRAIN.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MOSULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF A SPECIFIC POWER TRAIN SYSTEM USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE EXAMINING THE POWER FLOW, UNIT OIL FLOW, AND OIL PRESSURE IN THE CONVERTER AND TRANSMISSION SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAM TRAINING FILM "UNDERSTANDING THE…

  5. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XI, INTRODUCTION TO ELECTRICAL MAINTENANCE FOR OFF-HIGHWAY VEHICLES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH THE FUNDAMENTALS OF ELECTRICITY AND MAGNETISM AS THEY RELATE TO DIESEL POWERED EQUIPMENT. TOPICS ARE (1) FUNDAMENTALS OF ELECTRICITY AND MAGNETISM, (2) ELECTROMAGNETIC FIELDS, (3) MAGNETIC FORCE ON A CONDUCTOR, (4) ELECTROMAGNETIC INDUCTION, (5) OHM'S LAW, (6) METER…

  6. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XVII, LEARNING ABOUT AC GENERATOR (ALTERNATOR) PRINCIPLES (PART II).

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND THE SERVICING AND TESTING PROCEDURES FOR ALTERNATING CURRENT (AC) GENERATORS AND REGULATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE REVIEW OF ALTERNATOR PRINCIPLES, ALTERNATOR SERVICING AND TESTING, ALTERNATOR REGULATOR OPERATING…

  7. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XII, LEARNING ABOUT BATTERY SERVICING AND TESTING (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THID MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF LEAD-ACID STORAGE BATTERIES USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) BATTERY COMPONENTS AND CONSTRUCTION, (2) CHEMICAL ACTION IN BATTERIES, (3) THE BATTERY AND THE CHARGING CIRCUIT, (4) BATTERY CHARGING VOLTAGE, (5) EFFECTS OF…

  8. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT VI, AUTOMATIC TRANSMISSIONS--PLANETARY GEARING.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO ACQUAINT THE TRAINEE WITH THE OPERATION OF PLANETARY GEARS IN AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) PURPOSE OF PLANETARY GEARING, (2) POWER TRANSMISSION THROUGH A PLANETARY SYSTEM, (3) HYDRAMATIC TRANSMISSION, (4) HYDRAULIC SYSTEM, AND (5) GEAR FAILURE AND…

  9. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT V, AUTOMATIC TRANSMISSIONS--TORQUE CONVERTER.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF TORQUE CONVERTERS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) FLUID COUPLINGS (LOCATION AND PURPOSE), (2) PRINCIPLES OF OPERATION, (3) TORQUE CONVERRS, (4) TORQMATIC CONVERTER, (5) THREE STAGE, THREE ELEMENT TORQUE CONVERTER, AND (6)…

  10. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXIII, MICHIGAN/CLARK TRANSMISSION--HYDRAULIC SHIFT.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE SHIFTING AND CONTROL FUNCTIONS OF A SPECIFIC TRANSMISSION USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE MECHANICAL AND HYDRAULIC SHIFTING, AND OIL FLOW THROUGH THE CONTROL VALVE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "MICHIGAN/CLARK…

  11. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT X, AUTOMATIC TRANSMISSIONS--HYDRAULIC SYSTEMS (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF MAINTENANCE PROCEDURES FOR AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) CHECKING THE HYDRAULIC SYSTEM, (2) SERVICING THE HYDRAULIC SYSTEM, (3) EXAMINING THE RANGE CONTROL VALVE, (4) EXAMINING THE LOCK-UP AND FLOW VALVE, (5) EXAMINING THE MAIN REGULATOR…

  12. AUTOMOTIVE DIESEL MAINTENANCE 2 UNIT IV, AUTOMATIC TRANSMISSIONS--HYDRAULICS (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF VALVES UTILIZED IN HYDRAULIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) REVIEWING FACTS ABOUT PUMPS, (2) USING VALVES FOR CONTROL, (3) TROUBLESHOOTING PROCEDURES ON RELIEF VALVES, (4) USING DIRECTIONAL CONTROL VALVES,…

  13. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT IX, AUTOMATIC TRANSMISSIONS--HYDRAULIC SYSTEM (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OIL FLOW WITHIN HYDRAULIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE GENERAL DESCRIPTION, HYDRAULIC CIRCUITS, AND BRAKE HYDRAULIC CIRCUIT AND OPERATION. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "LEARNING ABOUT THE ALLISON…

  14. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT III, AUTOMATIC TRANSMISSIONS--HYDRAULICS (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO INTRODUCE BASIC HYDRAULIC PRINCIPLES AND PROVIDE AN UNDERSTANDING OF HYDRAULIC TRANSMISSIONS USED IN DIESEL POWERED VEHICLES. TOPICS ARE WHY USE HYDRAULICS, REVIEWING BASIC PHYSICS LAWS IN RELATION TO HYDRAULICS, UNDERSTANDING THE HYDRAULIC SYSTEM, AND DEVELOPING A BASIC HYDRAULIC SYSTEM. THE MODULE…

  15. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIII, BATTERY SERVICE AND TESTING PROCEDURES--PART II.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH PROCEDURES FOR SERVICING LEAD-ACID STORAGE BATTERIES USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) ELECTROLYTE AND SPECIFIC GRAVITY, (2) BATTERY CHARGING, (3) STORAGE BATTERY TYPES AND DESIGN, (4) BATTERY CAPACITY RATINGS, (5) BATTERY INSTALLATION, SERVICING, AND…

  16. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VIII. ENGINE COMPONENTS--PART I.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF DIESEL ENGINE CYLINDER HEADS AND CYLINDER ASSEMBLIES. TOPICS ARE CYLINDER ASSEMBLY (LINERS), CYLINDER HEADS, VALVES AND VALVE MECHANISMS, AND PISTON AND PISTON RINGS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  17. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition

    SciTech Connect

    Stetter, J; Forster, N; Ghandhi, J; Foster, D

    2003-08-24

    Detailed exhaust emission data have been taken from a Cummins N-14 single cylinder research engine in which the oil consumption was varied by different engine modifications. Low sulfur fuel was used, and oil consumption was varied by modifying the intake valve stem seals, the exhaust valve stem seals, the oil control ring and combinations of these modifications. Detailed measurements of exhaust gas particle size distributions and chemical composition were made for the various oil consumption configurations for a range of engine loads and speeds. The particulate mass was measured with TEOM and traditional gravimetric filter methods. Filter data for EC/OC, sulfates and trace metals have been taken and analyzed. The trace metals in the particulate mass serve as the basis for assessing oil consumption at the different operating conditions. The data indicate that the oil consumption for the steady state testing done here was approximately an order of magnitude below oil consumption values cited in the literature. We did measure changes in the details of the chemical composition of the particulate for the different engine operating conditions, but it did not correlate with changes in the oil consumption. Furthermore, the data indicate that the particle size distribution is not strongly impacted by low level oil consumption variations observed in this work.

  18. The Diesel Exhaust in Miners Study: II. Exposure monitoring surveys and development of exposure groups.

    PubMed

    Coble, Joseph B; Stewart, Patricia A; Vermeulen, Roel; Yereb, Daniel; Stanevich, Rebecca; Blair, Aaron; Silverman, Debra T; Attfield, Michael

    2010-10-01

    Air monitoring surveys were conducted between 1998 and 2001 at seven non-metal mining facilities to assess exposure to respirable elemental carbon (REC), a component of diesel exhaust (DE), for an epidemiologic study of miners exposed to DE. Personal exposure measurements were taken on workers in a cross-section of jobs located underground and on the surface. Air samples taken to measure REC were also analyzed for respirable organic carbon (ROC). Concurrent measurements to assess exposure to nitric oxide (NO) and nitrogen dioxide (NO₂), two gaseous components of DE, were also taken. The REC measurements were used to develop quantitative estimates of average exposure levels by facility, department, and job title for the epidemiologic analysis. Each underground job was assigned to one of three sets of exposure groups from specific to general: (i) standardized job titles, (ii) groups of standardized job titles combined based on the percentage of time in the major underground areas, and (iii) larger groups based on similar area carbon monoxide (CO) air concentrations. Surface jobs were categorized based on their use of diesel equipment and proximity to DE. A total of 779 full-shift personal measurements were taken underground. The average REC exposure levels for underground jobs with five or more measurements ranged from 31 to 58 μg m⁻³ at the facility with the lowest average exposure levels and from 313 to 488 μg m⁻³ at the facility with the highest average exposure levels. The average REC exposure levels for surface workers ranged from 2 to 6 μg m⁻³ across the seven facilities. There was much less contrast in the ROC compared with REC exposure levels measured between surface and underground workers within each facility, as well as across the facilities. The average ROC levels underground ranged from 64 to 195 μg m⁻³, while on the surface, the average ROC levels ranged from 38 to 71 μg m⁻³ by facility, an ∼2- to 3-fold difference. The average

  19. The Diesel Exhaust in Miners Study: II. Exposure Monitoring Surveys and Development of Exposure Groups

    PubMed Central

    Coble, Joseph B.; Stewart, Patricia A.; Vermeulen, Roel; Yereb, Daniel; Stanevich, Rebecca; Blair, Aaron; Silverman, Debra T.; Attfield, Michael

    2010-01-01

    Air monitoring surveys were conducted between 1998 and 2001 at seven non-metal mining facilities to assess exposure to respirable elemental carbon (REC), a component of diesel exhaust (DE), for an epidemiologic study of miners exposed to DE. Personal exposure measurements were taken on workers in a cross-section of jobs located underground and on the surface. Air samples taken to measure REC were also analyzed for respirable organic carbon (ROC). Concurrent measurements to assess exposure to nitric oxide (NO) and nitrogen dioxide (NO2), two gaseous components of DE, were also taken. The REC measurements were used to develop quantitative estimates of average exposure levels by facility, department, and job title for the epidemiologic analysis. Each underground job was assigned to one of three sets of exposure groups from specific to general: (i) standardized job titles, (ii) groups of standardized job titles combined based on the percentage of time in the major underground areas, and (iii) larger groups based on similar area carbon monoxide (CO) air concentrations. Surface jobs were categorized based on their use of diesel equipment and proximity to DE. A total of 779 full-shift personal measurements were taken underground. The average REC exposure levels for underground jobs with five or more measurements ranged from 31 to 58 μg m−3 at the facility with the lowest average exposure levels and from 313 to 488 μg m−3 at the facility with the highest average exposure levels. The average REC exposure levels for surface workers ranged from 2 to 6 μg m−3 across the seven facilities. There was much less contrast in the ROC compared with REC exposure levels measured between surface and underground workers within each facility, as well as across the facilities. The average ROC levels underground ranged from 64 to 195 μg m−3, while on the surface, the average ROC levels ranged from 38 to 71 μg m−3 by facility, an ∼2- to 3-fold difference. The average NO and

  20. The effect of exhaust gas recirculation on the combustion noise level of an indirect injection diesel engine

    SciTech Connect

    Bowen, C.E.; Reader, G.T.; Potter, I.J.

    1997-12-31

    A pollutant that has not yet received as much public or regulatory attention as gaseous or solid particulate emissions is engine generated noise. Excessive levels of noise can, however, be as harmful to human health and the environment as noxious gases. In a well-designed engine, mechanical noise can be kept to a minimum but the combustion process itself still generates noise, combustion noise. Thus, if the combustion process is modified for exhaust emission control it can be expected that the level of noise generated by combustion will also be affected, albeit not necessarily adversely. As exhaust gas recirculation (EGR) is becoming an essential technology for NOx emission control in diesel engines, and, as this technique modifies the combustion process, it is important that the effects of using EGR on noise generation be identified.

  1. Diesel exhaust modulates ozone-induced lung function decrements in healthy human volunteers

    PubMed Central

    2014-01-01

    The potential effects of combinations of dilute whole diesel exhaust (DE) and ozone (O3), each a common component of ambient airborne pollutant mixtures, on lung function were examined. Healthy young human volunteers were exposed for 2 hr to pollutants while exercising (~50 L/min) intermittently on two consecutive days. Day 1 exposures were either to filtered air, DE (300 μg/m3), O3 (0.300 ppm), or the combination of both pollutants. On Day 2 all exposures were to O3 (0.300 ppm), and Day 3 served as a followup observation day. Lung function was assessed by spirometry just prior to, immediately after, and up to 4 hr post-exposure on each exposure day. Functional pulmonary responses to the pollutants were also characterized based on stratification by glutathione S-transferase mu 1 (GSTM1) genotype. On Day 1, exposure to air or DE did not change FEV1 or FVC in the subject population (n = 15). The co-exposure to O3 and DE decreased FEV1 (17.6%) to a greater extent than O3 alone (9.9%). To test for synergistic exposure effects, i.e., in a greater than additive fashion, FEV1 changes post individual O3 and DE exposures were summed together and compared to the combined DE and O3 exposure; the p value was 0.057. On Day 2, subjects who received DE exposure on Day 1 had a larger FEV1 decrement (14.7%) immediately after the O3 exposure than the individuals’ matched response following a Day 1 air exposure (10.9%). GSTM1 genotype did not affect the magnitude of lung function changes in a significant fashion. These data suggest that altered respiratory responses to the combination of O3 and DE exposure can be observed showing a greater than additive manner. In addition, O3-induced lung function decrements are greater with a prior exposure to DE compared to a prior exposure to filtered air. Based on the joint occurrence of these pollutants in the ambient environment, the potential exists for interactions in more than an additive fashion affecting lung physiological

  2. Regulation of Human Hepatic Drug Transporter Activity and Expression by Diesel Exhaust Particle Extract

    PubMed Central

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their

  3. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    PubMed

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their

  4. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust

    SciTech Connect

    Win-Shwe, Tin-Tin; Fujimaki, Hidekazu; Fujitani, Yuji; Hirano, Seishiro

    2012-08-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m{sup 3}), high-dose NRDE (H-NRDE, 129 μg/m{sup 3}), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. -- Highlights: ► The effects of nanoparticle-induced neurotoxicity remain unclear. ► We investigated the effect of exposure to

  5. Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles

    PubMed Central

    Kodavanti, Urmila P.; Thomas, Ronald; Ledbetter, Allen D.; Schladweiler, Mette C.; Shannahan, Jonathan H.; Wallenborn, J. Grace; Lund, Amie K.; Campen, Matthew J.; Butler, Elizabeth O.; Gottipolu, Reddy R.; Nyska, Abraham; Richards, Judy E.; Andrews, Deborah; Jaskot, Richard H.; McKee, John; Kotha, Sainath R.; Patel, Rishi B.; Parinandi, Narasimham L.

    2011-01-01

    Background Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown. Objective We sought to determine whether episodic exposure of rats to ozone or diesel exhaust particles (DEP) causes differential cardiovascular impairments that are exacerbated by ozone plus DEP. Methods and results Male Wistar Kyoto rats (10–12 weeks of age) were exposed to air, ozone (0.4 ppm), DEP (2.1 mg/m3), or ozone (0.38 ppm) + DEP (2.2 mg/m3) for 5 hr/day, 1 day/week for 16 weeks, or to air, ozone (0.51 or 1.0 ppm), or DEP (1.9 mg/m3) for 5 hr/day for 2 days. At the end of each exposure period, we examined pulmonary and cardiovascular biomarkers of injury. In the 16-week study, we observed mild pulmonary pathology in the ozone, DEP, and ozone + DEP exposure groups, a slight decrease in circulating lymphocytes in the ozone and DEP groups, and decreased platelets in the DEP group. After 16 weeks of exposure, mRNA biomarkers of oxidative stress (hemeoxygenase-1), thrombosis (tissue factor, plasminogen activator inhibitor-1, tissue plasminogen activator, and von Willebrand factor), vasoconstriction (endothelin-1, endothelin receptors A and B, endothelial NO synthase) and proteolysis [matrix metalloprotease (MMP)-2, MMP-3, and tissue inhibitor of matrix metalloprotease-2] were increased by DEP and/or ozone in the aorta, but not in the heart. Aortic LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) mRNA and protein increased after ozone exposure, and LOX-1 protein increased after exposure to ozone + DEP. RAGE (receptor for advanced glycation end products) mRNA increased in the ozone + DEP group. Exposure to ozone or DEP depleted cardiac mitochondrial phospholipid fatty acids (DEP > ozone). The combined effect of ozone and DEP exposure was less pronounced than exposure to either pollutant alone. Exposure to ozone or DEP for 2 days (acute) caused mild changes in the aorta. Conclusions In animals exposed to ozone or DEP alone for 16

  6. Variability in Bioreactivity Linked to Changes in Size and Zeta Potential of Diesel Exhaust Particles in Human Immune Cells

    PubMed Central

    Sarkar, Srijata; Zhang, Lin; Subramaniam, Prasad; Lee, Ki-Bum; Garfunkel, Eric; Strickland, Pamela A. Ohman.; Mainelis, Gediminas; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Ryan, Mary; Porter, Alex; Schwander, Stephan

    2014-01-01

    Acting as fuel combustion catalysts to increase fuel economy, cerium dioxide (ceria, CeO2) nanoparticles have been used in Europe as diesel fuel additives (Envirox™). We attempted to examine the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEP) or diesel doped with various concentrations of CeO2 (DEP-Env) on innate immune responses in THP-1 and primary human peripheral blood mononuclear cells (PBMC). Batches of DEP and DEP-Env were obtained on three separate occasions using identical collection and extraction protocols with the aim of determining the reproducibility of particles generated at different times. However, we observed significant differences in size and surface charge (zeta potential) of the DEP and DEP-Env across the three batches. We also observed that exposure of THP-1 cells and PBMC to identical concentrations of DEP and DEP-Env from the three batches resulted in statistically significant differences in bioreactivity as determined by IL-1β, TNF-α, IL-6, IFN-γ, and IL-12p40 mRNA (by qRT-PCR) and protein expression (by ELISPOT assays). Importantly, bioreactivity was noted in very tight ranges of DEP size (60 to 120 nm) and zeta potential (−37 to −41 mV). Thus, these physical properties of DEP and DEP-Env were found to be the primary determinants of the bioreactivity measured in this study. Our findings also point to the potential risk of over- or under- estimation of expected bioreactivity effects (and by inference of public health risks) from bulk DEP use without taking into account potential batch-to-batch variations in physical (and possibly chemical) properties. PMID:24825358

  7. Histological examination of the rat after long-term exposure to subtoxic automotive exhaust gas.

    PubMed

    Roggendorf, W; Neumann, H; Thron, H L; Schneider, H; Sarasa-Corral, J L

    1981-07-01

    Regarding the potential impact of traffic-born air pollutants on public health, in recent years attention has increasingly been focused on the possible effects on the cardiovascular system. In order to investigate this problem further, the influence of long-term exhaust gas exposure on rats has been studied. One hundred Wistar rats of either sex were exposed 5 X 8 h/week up to 28 months to an atmosphere polluted by the emissions of an idling Otto engine, CO concentrations held constant at 90 ppm. A second group (50 rats) was exposed to 250 ppm for 6 months. Blood parameters and body weight were controlled. Specimens of CNS, heart, vessels, kidney etc. were investigated light microscopically. Focal necroses of the myocardium with inflammatory reactions as well as interstitial fibrosis were found in the heart muscle of the 90 ppm group. In the 250 ppm group endothelial proliferations, edema of the intima and deposits of proteoglycanes in the media were observed. We conclude that subtoxic concentrations of CO which only lead to slight morphologic changes may aggravate preexisting lesions caused by high risk conditions, e.g., hypertension or hypercholesteremia. PMID:7271450

  8. Determination of naval medium speed diesel engine air exhaust emissions and validation of a proposed estimation model. Master`s thesis

    SciTech Connect

    Mayeaux, A.M.

    1995-05-01

    Steady state marine diesel engine exhaust emissions are being reviewed by the Environmental Protection Agency for possible regulation. In anticipation of future regulation, the United States Navy is developing appropriate emissions models for naval vessels. A procedure for collecting this data from an U. S. Navy ship with medium speed main propulsion diesels is presented. It is based on similar testing conducted by the U.S. Coast Guard for measuring patrol boat diesel engine emissions and International Standards Organization methodology. The primary challenge of the experiment design was to minimize interference with the engineering plant as the assigned ship was concurrently tasked for other operations. Data gathered allowed calculation of engine rpm, engine load, exhaust gas flow rate, and determination of pollutant amounts. The tests were conducted at a series of predetermined speeds to reflect an 11-Mode duty cycle developed previously for the LSD 41 Class propulsion diesel engines.

  9. A comparison of sampling and analytical methods for assessing occupational exposure to diesel exhaust in a railroad work environment.

    PubMed

    Verma, D K; Shaw, L; Julian, J; Smolynec, K; Wood, C; Shaw, D

    1999-10-01

    Methods of assessing occupational exposure to diesel exhaust were evaluated in a railroad work environment. The American Conference of Governmental Industrial Hygienists (ACGIH)-recommended elemental carbon and respirable combustible dust methods of sampling and analysis for assessing diesel exhaust were included in the study. A total of 215 personal and area samples were collected using both size-selective (nylon cyclone and Marple) and non-size-selective samplers. The results demonstrate that the elemental carbon method is suitable for the railroad environment and the respirable combustible dust method is not. All elemental carbon concentrations measured were below the proposed ACGIH Threshold Limit Value (TLV) of 0.15 mg/m3. The concentrations of oxides of nitrogen (nitric oxide and nitrogen dioxide) were also found to be below their respective TLVs. There is no correlation between elemental carbon or respirable combustible dust and the oxides of nitrogen. The elemental carbon as fraction of total carbon is about 13 percent, except for onboard locomotives where it is about 24 percent. Comparison of elemental carbon and respirable combustible dust measurements showed consistent relationships for most sampling locations, with respirable combustible dust concentrations 12 to 53 times higher than the elemental carbon levels. PMID:10561882

  10. Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice.

    PubMed

    Win-Shwe, Tin-Tin; Yamamoto, Shoji; Fujitani, Yuji; Hirano, Seishiro; Fujimaki, Hidekazu

    2012-08-01

    We investigated the effect of exposure to nanoparticle-rich diesel exhaust (NRDE) on hippocampal-dependent spatial learning and memory function-related gene expressions in female mice. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE), high-dose NRDE (H-NRDE) or filtered diesel exhaust (F-DE) for three months. A Morris water maze apparatus was used to examine spatial learning. The expression levels of the N-methyl-D-aspartate (NMDA) receptor subunit, proinflammatory cytokines and neurotrophin mRNAs in the hippocampus were then investigated using real-time RT-PCR. Mice exposed to H-NRDE required a longer time to reach the hidden platform and showed higher mRNA expression levels of the NMDA receptor subunit NR2A, the proinflammatory cytokine CCL3, and brain-derived neurotrophic factor (BDNF) in the hippocampus, compared with the findings in the control group. These results indicate that three months of exposure to NRDE affected spatial learning and memory function-related gene expressions in the female mouse hippocampus. PMID:21663545

  11. Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel

    SciTech Connect

    Harvey, Scott D.; Wright, Bob W.

    2011-10-30

    The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

  12. Identification of nitroaromatics in diesel exhaust particulate using gas chromatography/negative ion chemical ionization mass spectrometry and other techniques

    SciTech Connect

    Newton, D.L.; Erickson, M.D.; Tomer, K.B.; Pellizzari, E.D.; Gentry, P.

    1982-04-01

    A series of nitroaromatic compounds were identified in diesel exhaust particulate extract. Isomers of nitroanthracene (and/or nitrophenanthrene) and nitropyrene (and/or nitrofluoranthene) were unequivocally identified. Alkyl homologues of nitroanthracene through C/sub 3/-alkyl-nitroanthracene were tentatively identified. In addition, a C/sub 18/H/sub 11/NO/sub 2/ isomer was tentatively identified. The nitro-substituted polynuclear aromatic hydrocarbons (PAHs) were found in two fractions of diesel exhaust particulate extract collected from a low-pressure liquid chromatography (LPLC) column. One of the two fractions containing nitroaromatic constitutents accounted for a large percentage of the mutagenicity of the crude particulate extract. Initial identification were made by using high-resolution gas chromatography/electron impact mass spectrometry/computer (GC/EIMS) and negative ion chemical ionization mass specrometry/computer (GC/NICIMS). These identifications were confirmed by direct probe high-resolution mass spectrometry (HRMS) and gas chromatography/Fourier transform infrared spectrometry (GC/FT IR). The relative merit of each analytical technique for the determination of nitroaromatics is discussed with emphasis on the usefulness of GC/NICIMS as a means of analyzing for nitro-substituted PAHs.

  13. Silica dust, diesel exhaust, and painting work are the significant occupational risk factors for lung cancer in nonsmoking Chinese men

    PubMed Central

    Tse, L A; Yu, IT-s; Au, J S K; Qiu, H; Wang, X-r

    2011-01-01

    Background: Few epidemiological studies have explored the associations between occupational exposures and lung cancer in lifelong nonsmoking men. Methods: We obtained lifetime occupational history and other relevant information for 132 newly diagnosed lung cancer cases among nonsmoking Chinese men and 536 nonsmoking community referents. Unconditional multiple logistic regression analysis was performed to estimate the odds ratio (OR) of lung cancer for specific occupational exposures. Results: Significantly increased lung cancer risk was found for nonsmoking workers occupationally exposed to silica dust (OR=2.58, 95% confidence interval (CI): 1.11, 6.01), diesel exhaust (OR=3.47, 95% CI: 1.08, 11.14), spray painting (OR=2.81, 95% CI: 1.14, 6.93), and nonspray painting work (OR=2.36, 95% CI: 1.04, 5.37). Silica dust exposure was associated with a significantly increased risk of adenocarcinoma (OR=2.91, 95% CI: 1.10, 7.68). We observed a positive gradient of all lung cancers and of adenocarcinoma with duration of employment for workers exposed to silica dust and spray painting. Conclusion: This study found an increased risk of lung cancer among nonsmoking Chinese men occupationally exposed to silica dust, diesel exhaust, and painting work. PMID:21102581

  14. A comparison of sampling and analytical methods for assessing occupational exposure to diesel exhaust in a railroad work environment

    SciTech Connect

    Verma, D.K.; Shaw, L.; Julian, J.; Smolynec, K.; Wood, C.; Shaw, D.

    1999-10-01

    Methods of assessing occupational exposure to diesel exhaust were evaluated in a railroad work environment. The American Conference of Governmental Industrial Hygienists (ACGIH{reg_sign})-recommended elemental carbon and respirable combustible dust methods of sampling and analysis for assessing diesel exhaust were included in the study. A total of 215 personal and area samples were collected using both size-selective and non-size-selective samplers. The results demonstrate that the elemental carbon method is suitable for the railroad environment and the respirable combustible dust method is not. All elemental carbon concentrations measured were below the proposed ACG1H Threshold Limit Value (TLV{reg_sign}) of 0.15 mg/m{sup 3}. The concentrations of oxides of nitrogen (nitric oxide and nitrogen dioxide) were also found to be below their respective TLVs. There is no correlation between elemental carbon or respirable combustible dust and the oxides of nitrogen. The elemental carbon as fraction of total carbon is about 13%, except for onboard locomotives where it is about 24%. Comparison of elemental carbon and respirable combustible dust measurements showed consistent relationships for most sampling locations with respirable combustible dust concentrations 12 to 53 times higher than the elemental carbon levels.

  15. Organic and inorganic fractions of diesel exhaust particles produce changes in mucin profile of mouse trachea explants.

    PubMed

    Seriani, Robson; Junqueira, Mara S; Toledo, Alessandra C; Corrêa, Aristides T; Silva, Luiz F F; Martins, Milton A; Saldiva, Paulo H N; Mauad, Thais; Macchione, Mariângela

    2015-01-01

    Diesel exhaust particles (DEP) contain organic and inorganic elements that produce damage to the respiratory epithelium. The aim of this study was to determine the mucus profile of tracheal explants exposed to either crude diesel exhaust particles (DEP) or DEP treated with nitric acid (DEP/NA), with hexane (DEP/HEX), or with methanol (DEP/MET) at concentrations of 50 and 100 μg/ml for 30 and 60 min. Tracheal explants were subjected to morphometric analyses to study acidic (AB+), neutral (PAS+), and mixed (AB+/PAS+) mucus production and vacuolization (V). Incubation with 50 μg/ml crude DEP resulted in a rise in acid mucus production, an increase in vacuolization at 30 min, and reduction in neutral mucus at 30 and 60 min. Tracheas exposed to DEP/MET at 50 μg/ml for 30 or 60 min resulted in a significant decrease in neutral mucus production and an elevation in acid mucus production. DEP/HEX increased vacuolization at both 50 and 100 μg/ml at 30 and 60 min of exposure. Treatment with 50 μg/ml for 30 or 60 min significantly elevated mixed mucus levels. These results suggest that DEP appear to be more toxic when administered in combination with HEX or MET. DEP/MET modified the mucus profile of the epithelium, while DEP/HEX altered mucus extrusion, and these responses might be due to bioavailability of individual elements in DEP fractions. PMID:25674825

  16. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    SciTech Connect

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  17. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  18. Reduction of regulated and unregulated exhaust gas emission components from diesel engines running with rapeseedmethylester using oxidation catalyst technologies

    SciTech Connect

    May, H.; Huettenberger, P.

    1996-12-31

    Up to now all engine research was based on engines, which are adapted to Diesel fuel but not to vegetableoilmethylester (VME). Caused by the special climate conditions in Europe rapeseed and sunflowers, in the US soya-beans and in the tropical countries palm trees are the favorable plants for vegetable oil production. The physical and chemical properties of Diesel fuel and VME are quite different. Therefore an engine adaption and redesign to VME is a suitable way of further reduction of noxious and climate-influencing emissions. To prove the effectiveness of the emission reduction the European test-cycle ECE/EUDC, the US-FTP 75 test for passenger cars and the European 13-stage-test-cycle for heavy duty-truck-engines has been used with and without an oxidation catalyst in each case. The results of the exhaust gas measurement both concerning regulated and unregulated components are shown. A comparison between engines fueled with fossil diesel fuel and rapeseedmethylester (RME) is given.

  19. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    PubMed

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio. PMID:27066330

  20. 40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.110-90 Exhaust gas sampling system... schematic drawing of the CFV system (methanol-fueled Otto-cycle vehicles may be tested using this test... be sufficient to prevent water condensation. However, the sample zone dilute exhaust...

  1. 40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.110-90 Exhaust gas sampling system... schematic drawing of the CFV system (methanol-fueled Otto-cycle vehicles may be tested using this test... be sufficient to prevent water condensation. However, the sample zone dilute exhaust...

  2. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study.

    PubMed Central

    Kinney, P L; Aggarwal, M; Northridge, M E; Janssen, N A; Shepard, P

    2000-01-01

    Residents of the dense urban core neighborhoods of New York City (NYC) have expressed increasing concern about the potential human health impacts of diesel vehicle emissions. We measured concentrations of particulate matter [less than/equal to] 2.5 micro in aerodynamic diameter (PM(2.5)) and diesel exhaust particles (DEP) on sidewalks in Harlem, NYC, and tested whether spatial variations in concentrations were related to local diesel traffic density. Eight-hour (1000-1800 hr) air samples for PM(2.5 )and elemental carbon (EC) were collected for 5 days in July 1996 on sidewalks adjacent to four geographically distinct Harlem intersections. Samples were taken using portable monitors worn by study staff. Simultaneous traffic counts for diesel trucks, buses, cars, and pedestrians were carried out at each intersection on [Greater/equal to] 2 of the 5 sampling days. Eight-hour diesel vehicle counts ranged from 61 to 2,467 across the four sites. Mean concentrations of PM(2.5) exhibited only modest site-to-site variation (37-47 microg/m(3)), reflecting the importance of broader regional sources of PM(2.5). In contrast, EC concentrations varied 4-fold across sites (from 1.5 to 6 microg/m(3)), and were associated with bus and truck counts on adjacent streets and, at one site, with the presence of a bus depot. A high correlation (r = 0.95) was observed between EC concentrations measured analytically and a blackness measurement based on PM(2.5) filter reflectance, suggesting the utility of the latter as a surrogate measure of DEP in future community-based studies. These results show that local diesel sources in Harlem create spatial variations in sidewalk concentrations of DEP. The study also demonstrates the feasibility of a new paradigm for community-based research involving full and active partnership between academic scientists and community-based organizations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10706526

  3. Investigation of a potential cotumorigenic effect of the dioxides of nitrogen and sulfur, and of diesel-engine exhaust, on the respiratory tract of Syrian golden hamsters

    SciTech Connect

    Heinrich, U.; Mohr, U.; Fuhst, R.; Brockmeyer, C. )

    1989-05-01

    Syrian golden hamsters (480 males and 480 females) allocated into 24 groups were exposed 19 hours per day and 5 days per week for 6, 10.5, 15, or 18 months to total diesel exhaust, diesel exhaust without particles, a mixture of nitrogen dioxide (5 parts per million (ppm)2) and sulfur dioxide (10 ppm), or clean air. Two exposure groups from each test atmosphere were also treated by a single subcutaneous injection of either 3 mg or 6 mg of diethylnitrosamine/kg of body weight to evaluate an enhancing effect of diethylnitrosamine on exposure-related changes. Morphological evaluation was done by histopathology. Minor changes of the larynx and trachea were investigated by scanning electron microscopy, which showed a loss of ciliated cells in all exhaust-exposed groups. After exposure to diesel exhaust with or without particles, focal metaplasia and dysplasia of the respiratory epithelium were seen in the oldest animals by scanning electron microscopy. In the same specimens, attached mucous droplets indicated changes in mucous cells and mucous viscosity. Only the exposure to total diesel exhaust significantly increased the tumor rate in the upper respiratory tract of male hamsters treated with 6 mg of diethylnitrosamine per kg of body weight. At the lower diethylnitrosamine dose, no exposure-related effects on the tumor rates could be observed. The results from this study and from our other inhalation experiments appear to be insufficiently conclusive to demonstrate that diesel-engine exhaust should be classified as a cocarcinogen or enhancer for the test system used.

  4. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase.

    PubMed

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Hallier, Ernst; Brüning, Thomas; Bünger, Jürgen

    2012-06-01

    Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced

  5. Evaluation of an exposure assessment used in epidemiological studies of diesel exhaust and lung cancer in underground mines

    PubMed Central

    Crump, Kenny; Van Landingham, Cynthia

    2012-01-01

    NIOSH/NCI (National Institute of Occupational Safety and Health and National Cancer Institute) developed exposure estimates for respirable elemental carbon (REC) as a surrogate for exposure to diesel exhaust (DE) for different jobs in eight underground mines by year beginning in the 1940s—1960s when diesel equipment was first introduced into these mines. These estimates played a key role in subsequent epidemiological analyses of the potential relationship between exposure to DE and lung cancer conducted in these mines. We report here on a reanalysis of some of the data from this exposure assessment. Because samples of REC were limited primarily to 1998–2001, NIOSH/NCI used carbon monoxide (CO) as a surrogate for REC. In addition, because CO samples were limited, particularly in the earlier years, they used the ratio of diesel horsepower (HP) to the mine air exhaust rate as a surrogate for CO. There are considerable uncertainties connected with each of these surrogate-based steps. The estimates of HP appear to involve considerable uncertainty, although we had no data upon which to evaluate the magnitude of this uncertainty. A sizable percentage (45%) of the CO samples used in the HP to CO model was below the detection limit which required NIOSH/NCI to assign CO values to these samples. In their preferred REC estimates, NIOSH/NCI assumed a linear relation between C0 and REC, although they provided no credible support for that assumption. Their assumption of a stable relationship between HP and CO also is questionable, and our reanalysis found a statistically significant relationship in only one-half of the mines. We re-estimated yearly REC exposures mainly using NIOSH/NCI methods but with some important differences: (i) rather than simply assuming a linear relationship, we used data from the mines to estimate the CO—REC relationship; (ii) we used a different method for assigning values to nondetect CO measurements; and (iii) we took account of statistical

  6. An investigation into the effect of a ceramic particle trap on the chemical mutagens in diesel exhaust

    SciTech Connect

    Bagley, S.T.; Dorie, L.D.; Leddy, D.G.; Johnson, J.H. )

    1987-01-01

    Diesel exhaust particles and vapor phase samples were collected from the diluted (15:1) exhaust of a 10.4 L displacement medium-duty engine (Caterpillar 3208), operated under EPA steady-state cycle Modes 4 and 5 conditions for load (50 and 75 percent, respectively) and speed (1680 rpm). Baseline (uncontrolled) emissions were compared to the exhaust modified by the use of an uncatalyzed monolithic ceramic trap (Corning). The Salmonella/microsome mutagenicity bioassay (Ames Test) was used to direct the course of chemical analyses. Total particulate matter (TPM), soluble organic fraction (SOF) (from TPM), sulfate fraction (SO4) (from TPM), and solid fraction (SOL) (from particle) were determined from dilute exhaust particles collected on 47 mm Teflon-coated woven glass fiber filters. Coincidentally, particles were collected on 508 x 508 mm Teflon-coated non-woven glass fiber filters, and vapor-phase samples were collected on XAD-2 resin. The SOF and VOC for chemical and biological characterization were obtained by Soxhlet extraction of samples with dichloromethane (DCM). Hydrocarbon mass balances were developed to evaluate the efficiency of the sampling system. Use of the ceramic traps caused no change in engine total hydrocarbon (HC) levels at Mode 4 but decreases in TPM, SOF, and NO2 were noted. In terms of HC emissions only, the percentage of SOF was significantly reduced, but the percentage of VOC was unchanged. For Mode 5, the engine HC levels were significantly reduced but the proportions of HC components, i.e. the percentage of SOF and the percentage of VOC, did not change significantly. Engine emission levels of TPM, SOF, and nitrogen dioxide were also significantly reduced at Mode 5. At both Modes 4 and 5, use of the ceramic particle traps caused an increase in the direct-acting (TA98) mutagenicity of the SOF and a decrease in the activity of the VOC.

  7. A tale of two diesels.

    PubMed

    Arey, Janet

    2004-06-01

    Two different samples of diesel exhaust particles (DEP) have been used by toxicologists interested primarily in cancer/genotoxicity or noncancer--such as pulmonary inflammation and asthma exacerbation--health end points. These are, respectively, a standard reference material, SRM 2975, from a heavy-duty diesel engine, and a sample collected by researchers at the Japanese National Institute for Environmental Studies from an automobile diesel engine. In this issue of Environmental Health Perspectives companion papers appear, by David DeMarini and co-workers and by Pramila Singh and co-workers, characterizing these samples and contrasting their Salmonella mutagenicity and pulmonary toxicity in mice. This commentary is a plea from an atmospheric chemist for more cooperation among toxicologists, analytical chemists, atmospheric chemists, and automotive and combustion engineers to provide a comprehensive assessment of health risks to humans exposed to contemporary diesel emissions and for greater quantities and more diverse types of DEP and ambient samples (i.e., SRMs) that can be shared and exhaustively characterized. This needs to be a continuing process as diesel engines, fuels, and exhaust components evolve in response to control regulations. PMID:15175165

  8. Influence of fuel injection timing and pressure on in-flame soot particles in an automotive-size diesel engine.

    PubMed

    Zhang, Renlin; Kook, Sanghoon

    2014-07-15

    The current understanding of soot particle morphology in diesel engines and their dependency on the fuel injection timing and pressure is limited to those sampled from the exhaust. In this study, a thermophoretic sampling and subsequent transmission electron microscope imaging were applied to the in-flame soot particles inside the cylinder of a working diesel engine for various fuel injection timings and pressures. The results show that the number count of soot particles per image decreases by more than 80% when the injection timing is retarded from -12 to -2 crank angle degrees after the top dead center. The late injection also results in over 90% reduction of the projection area of soot particles on the TEM image and the size of soot aggregates also become smaller. The primary particle size, however, is found to be insensitive to the variations in fuel injection timing. For injection pressure variations, both the size of primary particles and soot aggregates are found to decrease with increasing injection pressure, demonstrating the benefits of high injection velocity and momentum. Detailed analysis shows that the number count of soot particles per image increases with increasing injection pressure up to 130 MPa, primarily due to the increased small particle aggregates that are less than 40 nm in the radius of gyration. The fractal dimension shows an overall decrease with the increasing injection pressure. However, there is a case that the fractal dimension shows an unexpected increase between 100 and 130 MPa injection pressure. It is because the small aggregates with more compact and agglomerated structures outnumber the large aggregates with more stretched chain-like structures. PMID:24933154

  9. Variability in onset of ECG changes indicative of ischemia after exposure to whole vs filtered diesel exhaust in hypertensive rats. Insight on mechanism?

    EPA Science Inventory

    Diesel exhaust (DE) is a complex mixture of gases including C02, O2, N02, CO, aldehydes, benzene, and polycyclic aromatic hydrocarbons (PAHs) as well as highly respirable particulate matter. DE is a significant component of fine particulate matter (PM2.5) air pollution, which its...

  10. MUTAGENICITY OF DIESEL-EXHAUST PARTICLE EXTRACT, 1-NITROPYRENE, AND 2,7-DINITROFLUORENONE IN SALMONELLA TYPHIMURIUM UNDER VARIOUS METABOLIC ACTIVATION CONDITIONS

    EPA Science Inventory

    The mutagenic activities of 1-nitropyrene, 2,7-dinitrofluorenone, and a diesel-exhaust extract were compared using the Salmonella typhimurium plate-incorporation assay. Each sample was tested with and without a 9000 x g liver homogenate (S9), both with and without an NADPH-genera...

  11. Isolation and Quantitative Estimation of Diesel Exhaust and Carbon Black Particles Ingested by Lung Epithelial Cells and Alveolar Macrophages In Vitro

    EPA Science Inventory

    A new procedure for isolating and estimating ingested carbonaceous diesel exhaust particles (DEP) or carbon black (CB) particles by lung epithelial cells and macrophages is described. Cells were incubated with DEP or CB to examine cell-particle interaction and ingestion. After va...

  12. 40 CFR 86.110-94 - Exhaust gas sampling system; diesel-cycle vehicles, and Otto-cycle vehicles requiring particulate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; diesel-cycle vehicles, and Otto-cycle vehicles requiring particulate emissions measurements. 86.110-94 Section 86.110-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND...

  13. 40 CFR 86.110-94 - Exhaust gas sampling system; diesel-cycle vehicles, and Otto-cycle vehicles requiring particulate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-cycle vehicles, and Otto-cycle vehicles requiring particulate emissions measurements. 86.110-94 Section... 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.110-94 Exhaust gas sampling system; diesel-cycle vehicles,...

  14. 40 CFR 86.110-94 - Exhaust gas sampling system; diesel-cycle vehicles, and Otto-cycle vehicles requiring particulate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-cycle vehicles, and Otto-cycle vehicles requiring particulate emissions measurements. 86.110-94 Section... 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.110-94 Exhaust gas sampling system; diesel-cycle vehicles,...

  15. 40 CFR 86.110-94 - Exhaust gas sampling system; diesel-cycle vehicles, and Otto-cycle vehicles requiring particulate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-cycle vehicles, and Otto-cycle vehicles requiring particulate emissions measurements. 86.110-94 Section... 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.110-94 Exhaust gas sampling system; diesel-cycle vehicles,...

  16. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled engines and particulate emissions from all engines. 86.1310-2007 Section 86.1310-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL...

  17. The Diesel Exhaust in Miners Study: III. Interrelations between Respirable Elemental Carbon and Gaseous and Particulate Components of Diesel Exhaust derived from Area Sampling in Underground Non-metal Mining Facilities

    PubMed Central

    Vermeulen, Roel; Coble, Joseph B.; Yereb, Daniel; Lubin, Jay H.; Blair, Aaron; Portengen, Lützen; Stewart, Patricia A.; Attfield, Michael; Silverman, Debra T.

    2010-01-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NOx) and carbon oxides (COx) were measured most frequently to estimate DE, but since the 1990s, the most commonly accepted surrogate for DE has been elemental carbon (EC). We developed quantitative estimates of historical exposure levels of respirable elemental carbon (REC) for an epidemiologic study of mortality, particularly lung cancer, among diesel-exposed miners by back-extrapolating 1998–2001 REC exposure levels using historical measurements of carbon monoxide (CO). The choice of CO was based on the availability of historical measurement data. Here, we evaluated the relationship of REC with CO and other current and historical components of DE from side-by-side area measurements taken in underground operations of seven non-metal mining facilities. The Pearson correlation coefficient of the natural log-transformed (Ln)REC measurements with the Ln(CO) measurements was 0.4. The correlation of REC with the other gaseous, organic carbon (OC), and particulate measurements ranged from 0.3 to 0.8. Factor analyses indicated that the gaseous components, including CO, together with REC, loaded most strongly on a presumed ‘Diesel exhaust’ factor, while the OC and particulate agents loaded predominantly on other factors. In addition, the relationship between Ln(REC) and Ln(CO) was approximately linear over a wide range of REC concentrations. The fact that CO correlated with REC, loaded on the same factor, and increased linearly in log–log space supported the use of CO in estimating historical exposure levels to DE. PMID:20876234

  18. Diesel and biodiesel exhaust particle effects on rat alveolar machrophages with in vitro exposure

    EPA Science Inventory

    We conducted in vitro exposures of Wistar rat alveolar macrophages (AM) to compare and contrast the toxicity of particulate matter (PM) produced in combustion of biodiesel blend (B20) and petroleum diesel (PDEP). The PM contain detectable levels of transition metals and ions howe...

  19. CONTROLLED EXPOSURES OF HUMAN VOLUNTEERS TO DIESEL ENGINE EXHAUST: BIOMARKERS OF EXPOSURE AND HEALTH OUTCOMES

    EPA Science Inventory

    Combustion of diesel fuel contributes to ambient air pollutant fine particulate matter (PM) and gases. Fine PM exposure has been associated with increased mortality due to adverse cardiac events, and morbidity, such as increased hospitalization for asthma symptoms and lung infect...

  20. HEALTH EFFECTS OF REAL-WORLD EXPOSURE TO DIESEL EXHAUST IN PERSONS WITH ASTHMA

    EPA Science Inventory

    Investigators anticipate that this proposed research will indicate that lung function is slightly decreased and some markers of airway inflammation are increased in people with asthma who are exposed to ambient urban air in a roadside environment dominated by diesel vehicle...