Science.gov

Sample records for autonomic nerve preserving

  1. Analysis of autonomic nerve preservation and pouch reconstruction influencing fragmentation of defecation after sphincter-preserving surgery for rectal cancer.

    PubMed

    Katsumata, K; Sumi, T; Enomoto, M; Mori, Y; Aoki, T

    2010-01-01

    Our questionnaire survey on defecation disorders after rectal cancer surgery revealed that 66.7% of postoperative patients were most annoyed with fragmentation of defecation. Therefore, we performed a change-over-time analysis on the relationship of fragmentation and factors including location of rectal cancer, surgical technique, anastomosis method, pouch reconstruction, extent of lymph node dissection, and degree of pelvic and colonic nerve preservation surrounding the superior mesenteric artery. The fragmentation decreased over time at the postoperative time points of 6 months, 2 and 5 years. A statistical analysis of factors influencing fragmentation revealed that location of cancer, reconstruction technique, anastomosis method and degree of pelvic nerve preservation were significant factors for the entire patient population and that colonic nerve preservation was a significant factor 5 years after surgery. Analysis of patients with lower rectal cancer only showed that in addition to surgical technique and anastomosis method, pouch reconstruction was effective and autonomic nerve preservation was effective 5 years after surgery. As a result, when the anastomotic site was closer to the anus, the frequency of fragmentation increased; we concluded that pouch reconstruction was an effective surgical technique and colonic nerve preservation was effective in the longer term. PMID:21051900

  2. Anatomical basis and clinical research of pelvic autonomic nerve preservation with laparoscopic radical resection for rectal cancer.

    PubMed

    Liu, Yan; Lu, Xiao-ming; Tao, Kai-xiong; Ma, Jian-hua; Cai, Kai-lin; Wang, Lin-fang; Niu, Yan-feng; Wang, Guo-bin

    2016-04-01

    The clinical effect of laparoscopic rectal cancer curative excision with pelvic autonomic nerve preservation (PANP) was investigated. This study evaluated the frequency of urinary and sexual dysfunction of 149 male patients with middle and low rectal cancer who underwent laparoscopic or open total mesorectal excision with pelvic autonomic nerve preservation (PANP) from March 2011 to March 2013. Eighty-four patients were subjected to laparoscopic surgery, and 65 to open surgery respectively. The patients were followed up for 12 months, interviewed, and administered a standardized questionnaire about postoperative functional outcomes and quality of life. In the laparoscopic group, 13 patients (18.37%) presented transitory postoperative urinary dysfunction, and were medically treated. So did 12 patients (21.82%) in open group. Sexual desire was maintained by 52.86%, un-ability to engage in intercourse by 47.15%, and un-ability to achieve orgasm and ejaculation by 34.29% of the patients in the laparoscopic group. Sexual desire was maintained by 56.36%, un-ability to engage in intercourse by 43.63%, and un-ability to achieve orgasm and ejaculation by 33.73% of the patients in the open group. No significant differences in urinary and sexual dysfunction between the laparoscopic and open rectal resection groups were observed (P>0.05). It was concluded that laparoscopic rectal cancer radical excision with PANP did not aggravate or improve sexual and urinary dysfunction. PMID:27072964

  3. Pelvic autonomic nerve preservation in radical rectal cancer surgery: changes in the past 3 decades

    PubMed Central

    Chew, Min-Hoe; Yeh, Yu-Ting; Lim, Evan; Seow-Choen, Francis

    2016-01-01

    The advent of total mesorectal excision (TME) together with minimally invasive techniques such as laparoscopic colorectal surgery and robotic surgery has improved surgical results. However, the incidence of bladder and sexual dysfunction remains high. This may be particularly distressing for the patient and troublesome to manage for the surgeon when it does occur. The increased use of neoadjuvant and adjuvant radiotherapy is also associated with poorer functional outcomes. In this review, we evaluate current understanding of the anatomy of pelvic nerves which are divided into the areas of the inferior mesenteric artery pedicle, the lateral pelvic wall and dissection around the urogenital organs. Surgical techniques in these areas are discussed. We also discuss the results in functional outcomes of the various techniques including open, laparoscopic and robotic over the last 30 years. PMID:27478196

  4. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy.

    PubMed

    Jin, Heung Yong; Baek, Hong Sun; Park, Tae Sun

    2015-12-01

    Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN). Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed. PMID:26706915

  5. Is the preservation of the phrenic nerve important after pneumonectomy?

    PubMed

    Burns, Jessica; Dunning, Joel

    2011-01-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: is the preservation of the phrenic nerve important after pneumonectomy? Altogether more than 49 papers were found using the reported search, of which four represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. We conclude that care should be taken to preserve the integrity of the phrenic nerve wherever possible. The abnormal diaphragmatic motion which occurs as a consequence of phrenic nerve damage significantly reduces expiratory lung volumes, gas exchange and exercise capacity in already compromised patients. Phrenic nerve injury can also lead to a prolonged need for mechanical ventilation; this alone carries a risk of complication, such as infection. Plication of the paralyzed hemi-diaphragm has proved effective in reducing respiratory insufficiency after pneumonectomy. The aim of this is to fix and flatten the diaphragm, thus mimicking the role of a functioning phrenic nerve. Furthermore, the function of a preserved phrenic nerve remains normal for up to 11 years post pneumonectomy. Therefore, deterioration in function may highlight a recurrence in disease or a change in the post pneumonectomy space. PMID:20937666

  6. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton

    PubMed Central

    Ottesen, Elizabeth A; Marin, Roman; Preston, Christina M; Young, Curtis R; Ryan, John P; Scholin, Christopher A; DeLong, Edward F

    2011-01-01

    Planktonic microbial activity and community structure is dynamic, and can change dramatically on time scales of hours to days. Yet for logistical reasons, this temporal scale is typically under-sampled in the marine environment. In order to facilitate higher-resolution, long-term observation of microbial diversity and activity, we developed a protocol for automated collection and fixation of marine microbes using the Environmental Sample Processor (ESP) platform. The protocol applies a preservative (RNALater) to cells collected on filters, for long-term storage and preservation of total cellular RNA. Microbial samples preserved using this protocol yielded high-quality RNA after 30 days of storage at room temperature, or onboard the ESP at in situ temperatures. Pyrosequencing of complementary DNA libraries generated from ESP-collected and preserved samples yielded transcript abundance profiles nearly indistinguishable from those derived from conventionally treated replicate samples. To demonstrate the utility of the method, we used a moored ESP to remotely and autonomously collect Monterey Bay seawater for metatranscriptomic analysis. Community RNA was extracted and pyrosequenced from samples collected at four time points over the course of a single day. In all four samples, the oxygenic photoautotrophs were predominantly eukaryotic, while the bacterial community was dominated by Polaribacter-like Flavobacteria and a Rhodobacterales bacterium sharing high similarity with Rhodobacterales sp. HTCC2255. However, each time point was associated with distinct species abundance and gene transcript profiles. These laboratory and field tests confirmed that autonomous collection and preservation is a feasible and useful approach for characterizing the expressed genes and environmental responses of marine microbial communities. PMID:21716310

  7. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton

    SciTech Connect

    Ottesen, Elizabeth A.; Marin, Roman; Preston, Christina M.; Young, Curtis R.; Ryan, John P.; Scholin, Christopher A.; DeLong, Edward F.

    2011-06-30

    Planktonic microbial activity and community structure is dynamic, and can change dramatically on time scales of hours to days. Yet for logistical reasons, this temporal scale is typically undersampled in the marine environment. In order to facilitate higher-resolution, long-term observation of microbial diversity and activity, we developed a protocol for automated collection and fixation of marine microbes using the Environmental Sample Processor (ESP) platform. The protocol applies a preservative (RNALater) to cells collected on filters, for long-term storage and preservation of total cellular RNA. Microbial samples preserved using this protocol yielded high-quality RNA after 30 days of storage at room temperature, or onboard the ESP at in situ temperatures. Pyrosequencing of complementary DNA libraries generated from ESP-collected and preserved samples yielded transcript abundance profiles nearly indistinguishable from those derived from conventionally treated replicate samples. To demonstrate the utility of the method, we used a moored ESP to remotely and autonomously collect Monterey Bay seawater for metatranscriptomic analysis. Community RNA was extracted and pyrosequenced from samples collected at four time points over the course of a single day. In all four samples, the oxygenic photoautotrophs were predominantly eukaryotic, while the bacterial community was dominated by Polaribacter-like Flavobacteria and a Rhodobacterales bacterium sharing high similarity with Rhodobacterales sp. HTCC2255. However, each time point was associated with distinct species abundance and gene transcript profiles. These laboratory and field tests confirmed that autonomous collection and preservation is a feasible and useful approach for characterizing the expressed genes and environmental responses of marine microbial communities.

  8. Autonomic Nerve Activity and Blood Pressure in Ambulatory Dogs

    PubMed Central

    Hellyer, Jessica; Akingba, A. George; Rhee, Kyoung-Suk; Tan, Alex Y.; Lane, Kathleen A.; Shen, Changyu; Patel, Jheel; Fishbein, Michael C; Chen, Peng-Sheng

    2014-01-01

    Background The relationship between cardiac autonomic nerve activity and blood pressure (BP) changes in ambulatory dogs is unclear. Objective To test the hypotheses that simultaneous termination of stellate ganglion nerve activity (SGNA) and vagal nerve activity (VNA) predisposes to spontaneous orthostatic hypotension and that specific β2 adrenoceptor blockade prevents the hypotensive episodes. Methods We used a radiotransmitter to record SGNA, VNA and blood pressure (BP) in 8 ambulatory dogs. Video imaging was used to document postural changes. Results Out of these 8 dogs, 5 showed simultaneous sympathovagal discharges in which the minute by minute integrated SGNA correlated with integrated VNA in a linear pattern (“Group 1”). In these dogs abrupt termination of simultaneous SGNA-VNA at the time of postural changes (as documented by video imaging) was followed by abrupt (>20 mmHg over 4 beats) drops in BP. Dogs without simultaneous on/off firing (“Group 2”) did not have drastic drops in pressure. ICI 118,551 (ICI, a specific β2-blocker) infused at 3.1 µg/kg/hr for 7 days significantly increased BP from 126 (95% confidence interval, CI: 118 to 133) mmHg to 133 (95% CI 125 to141) mmHg (p=0.0001). The duration of hypotension (mean systolic BP < 100 mmHg) during baseline accounted for 7.1% of the recording. The percentage was reduced by ICI to 1.3% (p = 0.01). Conclusions Abrupt simultaneous termination of SGNA-VNA was observed at the time of orthostatic hypotension in ambulatory dogs. Selective β2 adrenoceptor blockade increased BP and reduced the duration of hypotension in this model. PMID:24275433

  9. Re-Innervation of the Bladder through End-to-Side Neurorrhaphy of Autonomic Nerve and Somatic Nerve in Rats

    PubMed Central

    Gao, Wan-sheng; Dong, Chuan-jiang; Li, Shu-qiang; Kunwar, Kiran Jang

    2012-01-01

    Abstract End-to-side neurorrhaphy is widely used in the peripheral nervous system for nerve repair; however, the application of this technique has been limited to somatic nerves. The feasibility of nerve regeneration through end-to-side neurorrhaphy between autonomic and somatic nerves with different characteristics in the peripheral nervous system is still undetermined. In this study, rats were divided into three groups for different treatments (n=10 per group). In the end-to-side neurorrhaphy group, left L6 and S1 were transected in the dura, and the distal stump of L6 ventral root was sutured to the lateral face of L4 ventral root through end-to-side coaptation. In the no repair group, the rats did not undergo neurorrhaphy. In the control group, the left L6 dorsal root and S1 roots were transected, respectively, but the L6 ventral root was kept intact. After 16 weeks, the origin and mechanism of nerve regeneration was evaluated by retrograde double labeling technique as well as histological examination and intravesical pressure measurement. Retrograde double labeling indicated that the reconstructed reflex pathway was successfully established and the primary regeneration mechanism involved axon collateral sprouting. Morphological examination and intravesical pressure measurement indicated prominent nerve regeneration and successful re-innervation of the bladder in the neurorrhaphy group, compared with the “no repair” group (p<0.05). No significant changes were observed in the histology of the donor nerve and the bilateral extensor digitorum longus muscles in the neurorrhaphy group. Nerve regeneration may be achievable for nerve repair through end-to-side neurorrhaphy between autonomic and somatic nerves without apparent impairment of donor somatic nerve. PMID:22332710

  10. Rat Whisker Movement after Facial Nerve Lesion: Evidence for Autonomic Contraction of Skeletal Muscle

    PubMed Central

    Heaton, James T.; Sheu, Shu-Hsien; Hohman, Marc H.; Knox, Christopher J.; Weinberg, Julie S.; Kleiss, Ingrid J.; Hadlock, Tessa A.

    2014-01-01

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10 weeks, and during intraoperative stimulation of the ION and facial nerves at ≥18 weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation

  11. SOD1 Overexpression Preserves Baroreflex Control of Heart Rate with an Increase of Aortic Depressor Nerve Function.

    PubMed

    Hatcher, Jeffrey; Gu, He; Cheng, Zixi Jack

    2016-01-01

    Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2 (∙-)), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2 (∙-) may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951

  12. SOD1 Overexpression Preserves Baroreflex Control of Heart Rate with an Increase of Aortic Depressor Nerve Function

    PubMed Central

    Hatcher, Jeffrey; Gu, He; Cheng, Zixi (Jack)

    2016-01-01

    Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2∙−), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2∙− may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951

  13. Device-Based Autonomic Modulation in Arrhythmia Patients: the Role of Vagal Nerve Stimulation

    PubMed Central

    Huang, William A.; Shivkumar, Kalyanam; Vaseghi, Marmar

    2015-01-01

    Opinion statement Vagal nerve stimulation (VNS) has shown promise as an adjunctive therapy for management of cardiac arrhythmias by targeting the cardiac parasympathetic nervous system. VNS has been evaluated in the setting of ischemia-driven ventricular arrhythmias and atrial arrhythmias, as well as a treatment option for heart failure. As better understanding of the complexities of the cardiac autonomic nervous system is obtained, vagal nerve stimulation will likely become a powerful tool in the current cardiovascular therapeutic armamentarium. PMID:25894588

  14. Autonomic nerves terminating on microvessels in the pineal organs of various submammalian vertebrates.

    PubMed

    Frank, C L; Czirok, Szabina J; Vincze, Csilla; Rácz, G; Szél, A; Vígh, B

    2005-01-01

    In earlier works we have found that in the mammalian pineal organ, a part of autonomic nerves--generally thought to mediate light information from the retina--form vasomotor endings on smooth muscle cells of vessels. We supposed that they serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. In the present work, we investigated whether peripheral nerves present in the photoreceptive pineal organs of submammalians form similar terminals on microvessels. In the cyclostome, fish, amphibian, reptile and bird species investigated, autonomic nerves accompany vessels entering the arachnoidal capsule and interfollicular meningeal septa of the pineal organ. The autonomic nerves do not enter the pineal tissue proper but remain in the perivasal meningeal septa isolated by basal lamina. They are composed of unmyelinated and myelinated fibers and form terminals around arterioles, veins and capillaries. The terminals contain synaptic and granular vesicles. Comparing various vertebrates, more perivasal terminals were found in reptiles and birds than in the cyclostome, fish and amphibian pineal organs. Earlier, autonomic nerves of the pineal organs were predominantly investigated in connection with the innervation of pineal tissue. The perivasal terminals found in various submammalians show that a part of the pineal autonomic fibers are vasomotoric in nature, but the vasosensor function of some fibers cannot be excluded. We suppose that the vasomotor regulation of the pineal microvessels in the photosensory submamalian pineal--like in mammals--may serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. The higher number of perivasal terminals in reptiles and birds may correspond to the higher metabolic activity of the tissues in more differentiated species. PMID:15813212

  15. Inhomogeneous derangement of cardiac autonomic nerve control in diabetic rats.

    PubMed

    Sanyal, Shamarendra Nath; Arita, Makoto; Ono, Katsushige

    2002-03-01

    The present study compared autonomic nervous function in Kob [Spontaneously Diabetic, Bio-Breeding (BB)] rats with control Wistar rats to determine the development of cardiac neuropathy in diabetic rats. Telemetric ECG signals were obtained from an ECG radio-transmitter placed in a dorsal subcutaneous pouch of male Kob and Wistar rats for 30min every 6h at a sample rate of 5kHz. Heart rate (HR) and HR variability (HRV) were analyzed in each group by power spectrograms obtained by a fast Fourier transform algorithm. RR interval, total power (TP), low frequency (LF) power (0.04-0.67 Hz), high frequency (HF) power (0.79-1.48 Hz) and LF/HF ratio were also measured. The Kob rats had lower HRV than the control Wistar rats; HR, TP, and HF power, but not the LF/HF ratio, in the Kob rats were significantly lower than those of the control rats (p<0.001). However, in the Kob rats the response of these parameters to a muscarinic antagonist (atropine: 2mg/kg) was left intact, but their response to a beta-adrenergic antagonist (propranolol: 4mg/kg) was impeded. Autonomic nervous control of HR in spontaneously diabetic rats was inhomogeneously deranged in terms of the balance in sympathetic and parasympathetic tone, not only in the baseline condition, but also in the regulatory systems, including postsynaptic receptor function. PMID:11922279

  16. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    NASA Technical Reports Server (NTRS)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  17. Olfactory stimulatory with grapefruit and lavender oils change autonomic nerve activity and physiological function.

    PubMed

    Nagai, Katsuya; Niijima, Akira; Horii, Yuko; Shen, Jiao; Tanida, Mamoru

    2014-10-01

    This review summarizes the effects of olfactory stimulation with grapefruit and lavender oils on autonomic nerve activity and physiological function. Olfactory stimulation with the scent of grapefruit oil (GFO) increases the activity of sympathetic nerves that innervate white and brown adipose tissues, the adrenal glands, and the kidneys, decreases the activity of the gastric vagal nerve in rats and mice. This results in an increase in lipolysis, thermogenesis, and blood pressure, and a decrease in food intake. Olfactory stimulation with the scent of lavender oil (LVO) elicits the opposite changes in nerve activity and physiological variables. Olfactory stimulation with scent of limonene, a component of GFO, and linalool, a component of LVO, has similar effects to stimulation with GFO and LVO, respectively. The histamine H1-receptor antagonist, diphenhydramine, abolishes all GFO-induced changes in nerve activity and physiological variables, and the hitstamine H3-receptor antagonist, thioperamide, eliminates all LVO-induced changes. Lesions to the hypothalamic suprachiasmatic nucleus and anosmic treatment with ZnSO4 also abolish all GFO- and LVO-induced changes. These findings indicate that limonene and linalool might be the active substances in GFO and LVO, and suggest that the suprachiasmatic nucleus and histamine are involved in mediating the GFO- and LVO-induced changes in nerve activity and physiological variables. PMID:25002406

  18. Real-Time Assessment of Autonomic Nerve Activity During Adaptive Servo-Ventilation Support or Waon Therapy.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro; Nitta, Daisuke; Komuro, Issei

    2016-07-27

    Adaptive servo-ventilation support and Waon therapy are recently developed non-pharmacological and noninvasive therapies for patients with heart failure refractory to guideline-directed medical therapy. These therapies decrease both preload and afterload, increase cardiac output, and appear to ameliorate autonomic nerve activity. However, the time course of autonomic nerve activity during these therapies remains unclear. We performed heart rate variability analysis using the MemCalc power spectral density method (MemCalc system; Suwa Trust Co, Tokyo) to assess autonomic nerve activity during adaptive servo-ventilation support and Waon therapy in two different cases and determined the time course of autonomic nerve activity during these therapies. During both therapies, we found a drastic increase in parasympathetic nerve activity and continuous suppression of sympathetic nerve activity. Heart rate variability analysis using the MemCalc method may be promising for the assessment of the efficacy of various treatments, including adaptive servo-ventilation support and Waon therapy, from the viewpoint of autonomic nerve activity. PMID:27385607

  19. Retrolabyrinthine approach for cochlear nerve preservation in neurofibromatosis type 2 and simultaneous cochlear implantation

    PubMed Central

    Bento, Ricardo Ferreira; Monteiro, Tatiana Alves; Bittencourt, Aline Gomes; Goffi-Gomez, Maria Valeria Schmidt; de Brito, Rubens

    2013-01-01

    Summary Introduction: Few cases of cochlear implantation (CI) in neurofibromatosis type 2 (NF2) patients had been reported in the literature. The approaches described were translabyrinthine, retrosigmoid or middle cranial fossa. Objectives: To describe a case of a NF2- deafened-patient who underwent to vestibular schwannoma resection via RLA with cochlear nerve preservation and CI through the round window, at the same surgical time. Resumed Report: A 36-year-old woman with severe bilateral hearing loss due to NF2 was submitted to vestibular schwannoma resection and simultaneous CI. Functional assessment of cochlear nerve was performed by electrical promontory stimulation. Complete tumor removal was accomplishment via RLA with anatomic and functional cochlear and facial nerve preservation. Cochlear electrode array was partially inserted via round window. Sound field hearing threshold improvement was achieved. Mean tonal threshold was 46.2 dB HL. The patient could only detect environmental sounds and human voice but cannot discriminate vowels, words nor do sentences at 2 years of follow-up. Conclusion: Cochlear implantation is a feasible auditory restoration option in NF2 when cochlear anatomic and functional nerve preservation is achieved. The RLA is adequate for this purpose and features as an option for hearing preservation in NF2 patients. PMID:25992034

  20. Differential myelinated and unmyelinated sensory and autonomic skin nerve fiber involvement in patients with ophthalmic postherpetic neuralgia

    PubMed Central

    Truini, Andrea; Haanpaa, Maija; Provitera, Vincenzo; Biasiotta, Antonella; Stancanelli, Annamaria; Caporaso, Giuseppe; Santoro, Lucio; Cruccu, Giorgio; Nolano, Maria

    2015-01-01

    Postherpetic neuralgia (PHN) is a common and exceptionally drug-resistant neuropathic pain condition. In this cross-sectional skin biopsy study, seeking information on the responsible pathophysiological mechanisms we assessed how ophthalmic PHN affects sensory and autonomic skin innervation. We took 2-mm supraorbital punch skin biopsies from the affected and unaffected sides in 10 patients with ophthalmic PHN. Using indirect immunofluorescence and a large panel of antibodies including protein gene product (PGP) 9.5 we quantified epidermal unmyelinated, dermal myelinated and autonomic nerve fibers. Although skin biopsy showed reduced epidermal and dermal myelinated fiber density in specimens from the affected side, the epidermal/dermal myelinated nerve fiber ratio was lower in the affected than in the unaffected side (p < 0.001), thus suggesting a predominant epidermal unmyelinated nerve fiber loss. Conversely, autonomic skin innervation was spared. Our study showing that ophthalmic PHN predominantly affects unmyelinated nerve fiber and spares autonomic nerve fiber might help to understand the pathophysiological mechanisms underlying this difficult-to-treat condition. PMID:26300742

  1. Differences in autonomic nerve function in patients with silent and symptomatic myocardial ischaemia.

    PubMed Central

    Shakespeare, C. F.; Katritsis, D.; Crowther, A.; Cooper, I. C.; Coltart, J. D.; Webb-Peploe, M. W.

    1994-01-01

    BACKGROUND--Autonomic neuropathy provides a mechanism for the absence of symptoms in silent myocardial ischaemia, but characterisation of the type of neuropathy is lacking. AIM--To characterise and compare autonomic nerve function in patients with silent and symptomatic myocardial ischaemia. METHODS AND RESULTS--The Valsalva manoeuvre, heart rate variation (HRV) in response to deep breathing and standing, lower body negative pressure, isometric handgrip, and the cold pressor test were performed by patients with silent (n = 25) and symptomatic (n = 25) ambulatory ischaemia and by controls (n = 21). No difference in parasympathetic efferent function between patients with silent and symptomatic ischaemia was recorded, but both had significantly less HRV in response to standing than the controls (p < 0.005 for silent and p < 0.01 for symptomatic). Patients with silent ischaemia showed an increased propensity for peripheral vasodilatation compared with symptomatic patients (p < 0.02) and controls (p < 0.04). Impaired sympathetic function was found in patients with pure silent ischaemia (n = 4) compared with the remaining patients with silent ischaemia whose pain pathways were presumed to be intact. CONCLUSIONS--Patients with silent ischaemia and pain pathways presumed to be intact have an enhanced peripheral vasodilator response, and if this applied to the coronary vasculature it could provide a mechanism for limiting ischaemia to below the pain threshold. Patients with pure silent ischaemia have evidence of sympathetic autonomic dysfunction. Images PMID:8297687

  2. Uterine autonomic nerve innervation plays a crucial role in regulating rat uterine mast cell functions during embryo implantation.

    PubMed

    Yuan, Xue-Jun; Huang, Li-Bo; Qiao, Hui-Li; Deng, Ze-Pei; Fa, Jing-Jing

    2009-12-01

    To explore the potential mechanism of how uterine innervations would affect the uterine mast cell (MC) population and functions during the periimplantation. We herein first examined the consequence of uterine neurectomy on embryo implantation events. We observed that amputation of autonomic nerves innervating the uterus led to on-time implantation failure in rats. Exploiting MC culture and ELISA approaches, we then further analyzed the effect of neurectomy on cellular histamine levels and its release from uterine MCs, to elucidate the relation of the autonomic nerves and local cellular immunity in the uterine during early pregnancy. We observed that disconnection of autonomic nerve innervation significantly increased the population of uterine MCs. Most interestingly, these increased number of uterine MCs in neuroectomized rats contained a much reduced cellular level of histamine. Our subsequent challenge experiments revealed that uterine MCs in nerve amputated rats exhibited enhanced histamine releasing rate in response to substance P and antiIgE, suggesting loss of nerve innervation in the uterus not only increases the population of uterine MCs, but also facilitates the release of histamine from MCs, thus subsequently interfere with the normal implantation process. Collectively, our findings provide a new line of evidence supporting the concept that immune-neuro-endocrine network plays important role during pregnancy establishment and maintenance. PMID:19765668

  3. Effects of culture supernatant from Lactobacillus pentosus strain S-PT84 on autonomic nerve activity in rats.

    PubMed

    Beppu, Yoshinori; Izumo, Takayuki; Horii, Yuko; Shen, Jiao; Fujisaki, Yoshiyuki; Nakashima, Toshihiro; Tsuruoka, Nobuo; Nagai, Katsuya

    2012-01-01

    Intestinal administration of various lactobacilli has been reported to affect autonomic neurotransmission, blood pressure, blood glucose, and body weight in rats, however, the mechanisms of action of the lactobacilli remain to be clarified. Therefore, the effect of the culture supernatant of Lactobacillus pentosus strain S-PT84 on the autonomic nerve activity in urethane-anesthetized rats was investigated. Intraduodenal injection of the low-molecular-weight (LMW) fraction (molecules less than 10,000 Da) of the S-PT84 culture supernatant elevated the brown adipose tissue sympathetic nerve activity and reduced the gastric vagal nerve activity. Moreover, intraoral administration of this LMW fraction increased the body temperature of rats above the interscapular brown adipose tissue. These results suggest that the LMW fraction of the S-PT84 culture supernatant affects the autonomic nerve activity and thermogenesis, and that the change in thermogenesis may be caused by the change in the sympathetic nerve activity of brown adipose tissue. PMID:22523286

  4. The role of intercostal nerve preservation in acute pain control after thoracotomy*

    PubMed Central

    Marchetti-Filho, Marco Aurélio; Leão, Luiz Eduardo Villaça; Costa-Junior, Altair da Silva

    2014-01-01

    OBJECTIVE: To evaluate whether the acute pain experienced during in-hospital recovery from thoracotomy can be effectively reduced by the use of intraoperative measures (dissection of the neurovascular bundle prior to the positioning of the Finochietto retractor and preservation of the intercostal nerve during closure). METHODS: We selected 40 patients who were candidates for elective thoracotomy in the Thoracic Surgery Department of the Federal University of São Paulo/Paulista School of Medicine, in the city of São Paulo, Brazil. The patients were randomized into two groups: conventional thoracotomy (CT, n = 20) and neurovascular bundle preservation (NBP, n = 20). All of the patients underwent thoracic epidural anesthesia and muscle-sparing thoracotomy. Pain intensity was assessed with a visual analog scale on postoperative days 1, 3, and 5, as well as by monitoring patient requests for/consumption of analgesics. RESULTS: On postoperative day 5, the self-reported pain intensity was significantly lower in the NBP group than in the CT group (visual analog scale score, 1.50 vs. 3.29; p = 0.04). No significant differences were found between the groups regarding the number of requests for/consumption of analgesics. CONCLUSIONS: In patients undergoing thoracotomy, protecting the neurovascular bundle prior to positioning the retractor and preserving the intercostal nerve during closure can minimize pain during in-hospital recovery. PMID:24831401

  5. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    NASA Astrophysics Data System (ADS)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  6. Great auricular nerve preservation in parotid surgery: rationale and long-term results insights.

    PubMed

    Moretti, Antonio; Citraro, Leonardo; Petrucci, Anna Grazia; Di Giovanni, Pamela; Di Mauro, Roberta; Giacomini, Pier Giorgio

    2015-11-01

    Great auricular nerve (GAN) is frequently sacrificed during parotid surgery. GAN preservation during parotidectomy is advised to avoid complications such as sensitive disorders, but debate still exists. In this study, our experience is reported on the matter. From a cohort of 173 parotidectomies carried out in the period 2005-2010, we studied 60 patients: 20 patients in which we preserved only the posterior branch of GAN (group A), 20 patients in which we preserved also the lobular branch (group B) and 20 patients in which the main trunk of GAN was sectioned (group C); we evaluated tactile sensitivity in all the skin supplied by GAN at 1 week, 1 month, 6 months and 1 year after surgery. Group B is the best in terms of loss and recovery of sensitivity after 1-year post-surgery, followed closely by group A, on the contrary group C confirmed to be the worst. Results suggest that saving as many branches of the GAN as possible during parotid surgery could be useful for reducing hypo-dysesthesia. Preserving posterior and lobular branches of the GAN, when possible, improves the sensitivity of the preauricular area with better quality of life for the patient. PMID:25381094

  7. Significance of Vestibular Testing on Distinguishing the Nerve of Origin for Vestibular Schwannoma and Predicting the Preservation of Hearing

    PubMed Central

    He, Yu-Bo; Yu, Chun-Jiang; Ji, Hong-Ming; Qu, Yan-Ming; Chen, Ning

    2016-01-01

    Background: Determining the nerve of origin for vestibular schwannoma (VS), as a method for predicting hearing prognosis, has not been systematically considered. The vestibular test can be used to investigate the function of the superior vestibular nerve (SVN) and the inferior vestibular nerve (IVN). This study aimed to preoperatively distinguish the nerve of origin for VS patients using the vestibular test, and determine if this correlated with hearing preservation. Methods: A total of 106 patients with unilateral VS were enrolled in this study prospectively. Each patient received a caloric test, vestibular-evoked myogenic potential (VEMP) test, and cochlear nerve function test (hearing) before the operation and 1 week, 3, and 6 months, postoperatively. All patients underwent surgical removal of the VS using the suboccipital approach. During the operation, the nerve of tumor origin (SVN or IVN) was identified by the surgeon. Tumor size was measured by preoperative magnetic resonance imaging. Results: The nerve of tumor origin could not be unequivocally identified in 38 patients (38/106, 35.80%). These patients were not subsequently evaluated. In 26 patients (nine females, seventeen males), tumors arose from the SVN and in 42 patients (18 females, 24 males), tumors arose from the IVN. Comparing with the nerve of origins (SVN and IVN) of tumors, the results of the caloric tests and VEMP tests were significantly different in tumors originating from the SVN and the IVN in our study. Hearing was preserved in 16 of 26 patients (61.54%) with SVN-originating tumors, whereas hearing was preserved in only seven of 42 patients (16.67%) with IVN-originating tumors. Conclusions: Our data suggest that caloric and VEMP tests might help to identify whether VS tumors originate from the SVN or IVN. These tests could also be used to evaluate the residual function of the nerves after surgery. Using this information, we might better predict the preservation of hearing for patients

  8. Temporary Neurotrophin Treatment Prevents Deafness-Induced Auditory Nerve Degeneration and Preserves Function.

    PubMed

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B; Klis, Sjaak F L; Grolman, Wilko

    2015-09-01

    After substantial loss of cochlear hair cells, exogenous neurotrophins prevent degeneration of the auditory nerve. Because cochlear implantation, the current therapy for profound sensorineural hearing loss, depends on a functional nerve, application of neurotrophins is being investigated. We addressed two questions important for fundamental insight into the effects of exogenous neurotrophins on a degenerating neural system, and for translation to the clinic. First, does temporary treatment with brain-derived neurotrophic factor (BDNF) prevent nerve degeneration on the long term? Second, how does a BDNF-treated nerve respond to electrical stimulation? Deafened guinea pigs received a cochlear implant, and their cochleas were infused with BDNF for 4 weeks. Up to 8 weeks after treatment, their cochleas were analyzed histologically. Electrically evoked compound action potentials (eCAPs) were recorded using stimulation paradigms that are informative of neural survival. Spiral ganglion cell (SGC) degeneration was prevented during BDNF treatment, resulting in 1.9 times more SGCs than in deafened untreated cochleas. Importantly, SGC survival was almost complete 8 weeks after treatment cessation, when 2.6 times more SGCs were observed. In four eCAP characteristics (three involving alteration of the interphase gap of the biphasic current pulse and one involving pulse trains), we found large and statistically significant differences between normal-hearing and deaf controls. Importantly, for BDNF-treated animals, these eCAP characteristics were near normal, suggesting healthy responsiveness of BDNF-treated SGCs. In conclusion, clinically practicable short-term neurotrophin treatment is sufficient for long-term survival of SGCs, and it can restore or preserve SGC function well beyond the treatment period. Significance statement: Successful restoration of hearing in deaf subjects by means of a cochlear implant requires a healthy spiral ganglion cell population. Deafness

  9. Derangement of autonomic nerve control in rat with right ventricular failure.

    PubMed

    Sanyal, S N.; Ono, K

    2002-06-01

    The effects of right ventricular hypertrophy and eventual right ventricular failure on autonomic nerve regulation of heart rate variability were investigated using rats with monocrotaline (MCT)-induced pulmonary hypertension. ECG signals were obtained from a radio transmitter placed into the subcutaneous pouch in the back of the male MCT-treated and control rats for 30 min every 6 h at a sample rate of 5 kHz with or without injection of atropine (2 mg/kg I.P.) or propranolol (4 mg/kg I.P.), in a room equipped with a climate controller. Heart rate (HR) and HR variability (HRV) were analyzed in each group by power spectrograms obtained by the fast-Fourier transform algorithm. The RR interval, total power (TP), low-frequency (LF) power (0.04-0.73 Hz), high-frequency (HF) power (0.73-2 Hz) and LF/HF (L/H) ratio were measured. HR was significantly increased in the MCT-treated rats (P<0.001), which also presented lower HRV than that of the control Wistar rats; TP (P<0.05) and HF (P<0.05) power, but not the L/H ratio, were significantly lower than that of the control rats. Responses of these parameters to a muscarinic antagonist (atropine: 2 mg/kg) and a beta-adrenergic antagonist (propranolol: 4 mg/kg), however, remained intact in the MCT-treated rats. Only the parasympathetic component of autonomic nervous controls of HRV was deranged in rats with MCT-induced right ventricular failure. PMID:12039652

  10. Evaluation of distal symmetric polyneuropathy: the role of autonomic testing, nerve biopsy, and skin biopsy (an evidence-based review).

    PubMed

    England, J D; Gronseth, G S; Franklin, G; Carter, G T; Kinsella, L J; Cohen, J A; Asbury, A K; Szigeti, K; Lupski, J R; Latov, N; Lewis, R A; Low, P A; Fisher, M A; Herrmann, D; Howard, J F; Lauria, G; Miller, R G; Polydefkis, M; Sumner, A J

    2009-01-01

    Distal symmetric polyneuropathy (DSP) is the most common variety of neuropathy. Since the evaluation of this disorder is not standardized, the available literature was reviewed to provide evidence-based guidelines regarding the role of autonomic testing, nerve biopsy, and skin biopsy for the assessment of polyneuropathy. A literature review using MEDLINE, EMBASE, Science Citation Index, and Current Contents was performed to identify the best evidence regarding the evaluation of polyneuropathy published between 1980 and March 2007. Articles were classified according to a four-tiered level of evidence scheme and recommendations were based on the level of evidence. (1) Autonomic testing may be considered in the evaluation of patients with polyneuropathy to document autonomic nervous system dysfunction (Level B). Such testing should be considered especially for the evaluation of suspected autonomic neuropathy (Level B) and distal small fiber sensory polyneuropathy (SFSN) (Level C). A battery of validated tests is recommended to achieve the highest diagnostic accuracy (Level B). (2) Nerve biopsy is generally accepted as useful in the evaluation of certain neuropathies as in patients with suspected amyloid neuropathy, mononeuropathy multiplex due to vasculitis, or with atypical forms of chronic inflammatory demyelinating polyneuropathy (CIDP). However, the literature is insufficient to provide a recommendation regarding when a nerve biopsy may be useful in the evaluation of DSP (Level U). (3) Skin biopsy is a validated technique for determining intraepidermal nerve fiber (IENF) density and may be considered for the diagnosis of DSP, particularly SFSN (Level C). There is a need for additional prospective studies to define more exact guidelines for the evaluation of polyneuropathy. PMID:19086069

  11. Melatonin preserves superoxide dismutase activity in hypoglossal motoneurons of adult rats following peripheral nerve injury.

    PubMed

    Chang, Hung-Ming; Huang, Yi-Lun; Lan, Chyn-Tair; Wu, Un-In; Hu, Ming-E; Youn, Su-Chung

    2008-03-01

    Peripheral nerve injury (PNI) produces functional changes in lesioned neurons in which oxidative stress is considered to be the main cause of neuronal damage. As superoxide dismutase (SOD) is an important antioxidative enzyme involved in redox regulation of oxidative stress, the present study determined whether melatonin would exert its beneficial effects by preserving the SOD reactivity following PNI. Adult rats subjected to hypoglossal nerve transection were intraperitoneally injected with melatonin at ones for 3, 7, 14, 30 and 60 days successively. The potential neuroprotective effects of melatonin were quantitatively demonstrated by neuronal nitric oxide synthase (nNOS), mitochondrial manganese SOD (Mn-SOD), and cytosolic copper-zinc SOD (Cu/Zn-SOD) immunohistochemistry. The functional recovery of the lesioned neurons was evaluated by choline acetyltransferase (ChAT) immunohistochemistry along with the electromyographic (EMG) recordings of denervation-induced fibrillation activity. The results indicate that following PNI, the nNOS immunoreactivity was significantly increased in lesioned neurons peaking at 14 days. The up-regulation of nNOS temporally coincided with the reduction of ChAT and SOD in which the Cu/Zn-SOD showed a greater diminution than Mn-SOD. However, following melatonin administration, the nNOS augmentation was successfully suppressed and the activities of Mn-SOD, Cu/Zn-SOD, and ChAT were effectively preserved at all postaxotomy periods. EMG data also showed a decreased fibrillation in melatonin-treated groups, suggesting a potential effect of melatonin in promoting functional recovery. In association with its significant capacity in preserving SOD reactivity, melatonin is suggested to serve as a powerful therapeutic agent for treating PNI-relevant oxidative damage. PMID:18289169

  12. Perinatal taurine exposure programs patterns of autonomic nerve activity responses to tooth pulp stimulation in adult male rats

    PubMed Central

    Khimsuksri, Sawita; Wyss, J. Michael; Thaeomor, Atcharaporn; Paphangkorakit, Jarin; Jirakulsomchok, Dusit; Roysommuti, Sanya

    2016-01-01

    Perinatal taurine excess or deficit influences adult health and disease, especially relative to the autonomic nervous system. This study tests the hypothesis that perinatal taurine exposure influences adult autonomic nervous system control of arterial pressure in response to acute electrical tooth pulp stimulation. Female Sprague-Dawley rats were fed normal rat chow with 3% β-alanine (taurine depletion, TD), 3% taurine (taurine supplementation, TS) or water alone (control, C) from conception to weaning. Their male offspring were fed normal rat chow and tap water throughout the experiment. At 8–10 weeks of age, blood chemistry, arterial pressure, heart rate and renal sympathetic nerve activity were measured in anesthetized rats. Age, body weight, mean arterial pressure, heart rate, plasma electrolytes, blood urea nitrogen, plasma creatinine and plasma cortisol were not significantly different among the three groups. Before tooth pulp stimulation, low (0.3–0.5 Hz) and high frequency (0.5–4.0 Hz) power spectral densities of arterial pressure were not significantly different among groups, while the power spectral densities of renal sympathetic nerve activity were significantly decreased in TD compared to control rats. Tooth pulp stimulation did not change arterial pressure, heart rate, renal sympathetic nerve and arterial pressure power spectral densities in the 0.3–4.0 Hz spectrum or renal sympathetic nerve firing rate in any group. In contrast, perinatal taurine imbalance disturbed very low frequency power spectral densities of both arterial pressure and renal sympathetic nerve activity (below 0.1 Hz), both before and after the tooth pulp stimulation. The power densities of TS were most sensitive to ganglionic blockade and central adrenergic inhibition, while those of TD were sensitive to both central and peripheral adrenergic inhibition. The present data indicate that perinatal taurine imbalance can lead to aberrant autonomic nervous system responses in

  13. Influences of casein hydrolysate ingestion on cerebral activity, autonomic nerve activity, and anxiety.

    PubMed

    Nakamura, Hirohiko; Iwamoto, Mario; Washida, Kenji; Sekine, Kazunori; Takase, Mitsunori; Park, Bum-Jin; Morikawa, Takeshi; Miyazaki, Yoshifumi

    2010-01-01

    This study examined the influences of the oral ingestion of casein hydrolysate from bovine milk at rest physiologically and psychologically. Eleven male university students were given a casein hydrolysate drink (H) or a maltitol drink as a control (C) in a crossover study. Just before and one hour after ingestion of each drink, the total-hemoglobin (tHb) concentrations at ten points of the prefrontal cortex to evaluate cerebral activity, and heart rate variability (HRV) to evaluate autonomic nerve activity through spectral analysis were measured as physiological indicators. The Japanese version of the State--Trait Anxiety Inventory--state anxiety (STAI-s) score was also used, as a psychological indicator. In comparison between H and C ingestion, a significant difference is observed only in tHb concentrations at one of ten points. At this point, the change in tHb concentration was lower after H ingestion compared to C ingestion. And in comparison between before and after ingestion of each drink, a significant increase in tHb concentration at two points after C ingestion, a significant increase in parasympathetic activity and decrease in sympathetic activity after H ingestion, and a significant decrease in STAI-s score in H ingestion were observed. These results suggest that ingestion of the casein hydrolysate may keep prefrontal cortex activity stable while maltitol ingestion partially increases the activity. Moreover, there is a possibility that casein hydrolysate might decrease sympathetic activity, increase parasympathetic activity, and lower anxiety. We conclude that the bovine milk casein hydrolysate may have more relaxing effects than maltitol. PMID:20558968

  14. The onset and rate of myelination in six peripheral and autonomic nerves of the rat.

    PubMed Central

    Schäfer, K; Friede, R L

    1988-01-01

    A light and electron microscopic study was carried out of the numbers of myelinated fibres in 6 nerves of the rat for 7 age groups from birth to 73 weeks. The hypoglossal nerve and the mandibular branch of the facial nerve had short and early myelination periods, essentially complete by the second week. The glossopharyngeal nerve and the sympathetic rami communicantes myelinated late and over a protracted period. Myelination of the rami communicantes continued up to 20 weeks, followed by a marked loss of fibres in the 73 week animals. Intercostal and saphenous nerves had intermediary patterns. There was evidence of subpopulations myelinating at different times. Measurements of myelin sheath thickness showed variations of relative sheath thickness with age, between nerves and for subpopulations of nerves. Late myelination corresponded to relatively thin myelin sheaths. Statistical two-stage-density cluster analysis by computer was used for analysing complex fibre populations. The developmental changes of three subpopulations of the intercostal nerve are documented. Nerves also differed in their rates of axon growth. The increment in axon calibre was small and late for sympathetic fibres. Intercostal and facial nerve fibres had rapid axon growth with different growth rates for subpopulations. PMID:3248966

  15. Preservation of the vegetative pelvic nerves and local reccurence in the operative treatment of rectal cancer.

    PubMed

    Jota, G J; Karadzov, Z; Panovski, M; Vasilevski, V; Serafimoski, V

    2006-12-01

    Life quality of the patients operated from rectal cancer is a serious problem. Despite the curing as a primary objective in the treatment of the rectal cancer, special attention is paid to the life quality upon the performed operation on the subjected patients. The analyzed series consists of 29 patients with rectal cancer, operated on at the Digestive Surgery Clinic within the framework of the Clinical Centre in Skopje, in the period between 2001-2006. Our series involves patients from the T2 and T3 stage of the illness, where it possible to preserve the vegetative pelvic nerves, that are characterized by a relatively long-lasting symptomatology and relatively high percentage of lymphatic metastases. The standardization of the operative intervention resulted in an increase in the number of patients with continuous operations and preservation of the neuro-vegetative plexus without influencing the radicalism of the intervention. The application of the Stapler and Double Stapler technique brought about an increase in the number of continuous operations characterized by a termino-terminal colorectal anastomosis. On the other hand the preventive creation of LOOP ileostomies in the case of the ultra low resections resulted in a decrease in the level of dehiscence of this type as one of the most common and most difficult complications. The preservation of the pelvic neuro-vegetative plexus prolongs the operation time by 30 to 60 minutes, depending on the case and the patient. We assume that the procedure does not have a particular influence on the frequency of the complications, and at the same time it positively affects the revival of the urinal and sexual function. Taking into consideration the fact that the lymphatic dissection increases the possibility of removal of the malignant tissue and enables an adequate "staging" and on the other hand the preservation of the pelvic plexus improves the quality of life, both in terms of the sexual function and the function of

  16. Effects of carvedilol on cardiac autonomic nerve activities during sinus rhythm and atrial fibrillation in ambulatory dogs

    PubMed Central

    Choi, Eue-Keun; Shen, Mark J.; Lin, Shien-Fong; Chen, Peng-Sheng; Oh, Seil

    2014-01-01

    Aims We hypothesized that carvedilol can effectively suppress autonomic nerve activity (ANA) in ambulatory dogs during sinus rhythm and atrial fibrillation (AF), and that carvedilol withdrawal can lead to rebound elevation of ANA. Carvedilol is known to block pre-junctional β2-adrenoceptor responsible for norepinephrine release. Methods and results We implanted radiotransmitters to record stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA), and superior left ganglionated plexi nerve activity (SLGPNA) in 12 ambulatory dogs. Carvedilol (12.5 mg orally twice a day) was given for 7 days during sinus rhythm (n = 8). Four of the eight dogs and an additional four dogs were paced into persistent AF. Carvedilol reduced heart rate [from 103 b.p.m. (95% confidence interval (CI), 100–105) to 100 b.p.m. (95% CI, 98–102), P = 0.044], suppressed integrated nerve activities (Int-NAs, SGNA by 17%, VNA by 19%, and SLGPNA by 12%; all P < 0.05 vs. the baseline), and significantly reduced the incidence (from 8 ± 6 to 3 ± 3 episodes/day, P < 0.05) and total duration (from 68 ± 64 to 16 ± 21 s/day, P < 0.05) of paroxysmal atrial tachycardia (PAT). Following the development of persistent AF, carvedilol loading was associated with AF termination in three dogs. In the remaining five dogs, Int-NAs were not significantly suppressed by carvedilol, but SGNA significantly increased by 16% after carvedilol withdrawal (P < 0.001). Conclusion Carvedilol suppresses ANA and PAT in ambulatory dogs during sinus rhythm. PMID:24469435

  17. Leptin Receptor Signaling in the Hypothalamus Regulates Hepatic Autonomic Nerve Activity via Phosphatidylinositol 3-Kinase and AMP-Activated Protein Kinase

    PubMed Central

    Yamamoto, Naoki; Morgan, Donald A.; Kurata, Yasutaka; Shibamoto, Toshishige

    2015-01-01

    Leptin action in the brain has emerged as an important regulator of liver function independently from its effects on food intake and body weight. The autonomic nervous system plays a key role in the regulation of physiological processes by leptin. Here, we used direct recording of nerve activity from sympathetic or vagal nerves subserving the liver to investigate how brain action of leptin controls hepatic autonomic nerve activity. Intracerebroventricular (ICV) administration of leptin activated hepatic sympathetic traffic in rats and mice in dose- and receptor-dependent manners. The hepatic sympatho-excitatory effects of leptin were also observed when leptin was microinjected directly into the arcuate nucleus (ARC), but not into the ventromedial hypothalamus (VMH). Moreover, using pharmacological and genetic approaches, we show that leptin-induced increase in hepatic sympathetic outflow depends on PI3K but not AMP-activated protein kinase (AMPK), STAT3, or ERK1/2. Interestingly, ICV leptin also increased hepatic vagal nerve activity in rats. We show that this response is reproduced by intra-ARC, but not intra-VMH, leptin administration and requires PI3K and AMPK. We conclude that central leptin signaling conveys the information to the liver through the sympathetic and parasympathetic branches of the autonomic nervous system. Our data also provide important insight into the molecular events underlying leptin's control of hepatic autonomic nerve activity by implicating PI3K and AMPK pathways. PMID:25589743

  18. Preserved cardiac autonomic dynamics during sleep in patients with spinal cord injury

    PubMed Central

    Tobaldini, Eleonora; Proserpio, Paola; Sambusida, Katrina; Lanza, Andrea; Redaelli, Tiziana; Frigerio, Pamela; Fratticci, Lara; Rosa, Silvia; Casali, Karina R.; Somers, Virend K; Nobili, Lino; Montano, Nicola

    2015-01-01

    Spinal cord injuries (SCI) are associated with altered cardiovascular autonomic control. Sleep is characterized by modifications of autonomic control across sleep stages; however, no data are available on the effects of SCI on CAC during sleep. The aim of our study was to assess cariac autonomic modulation during sleep in SCI patients. Overnight polysomnographic recordings were obtained in 27 patients with cervical (Cerv) and thoracic (Thor) SCI and in healthy subjects (Controls). ECG and respiration were extracted from PSG, divided into sleep stages (W, N2, N3 and REM) for assessment of CAC, using symbolic analysis and Corrected Conditional Entropy. SA identifies three main indices, 0V%, index of sympathetic modulation, and 2LV% and 2UV%, markers of vagal modulation. CCE evaluates the complexity of heart period time series. Symbolic analysis revealed a reduction of 0V% in N2 and N3 compared to W and REM and an increase of 2LV% and 2UV% in N2 and N3 compared to W and REM in SCI patients, independent of the level of the lesion, and similar to Controls. Corrected Conditional Entropy was higher in N2 and N3 compared to W and REM in all three groups. In SCI patients, cardiac autonomic control changed across sleep stages, with a reduction of sympathetic and an increase of parasympathetic modulation during NREM compared to W and REM and a parallel increase of complexity during NREM, similar to Controls. Cardiac autonomic dynamics during sleep are maintained in SCI, independent of the level of the lesion. PMID:25953303

  19. Prophylactic nimodipine treatment for cochlear and facial nerve preservation after vestibular schwannoma surgery: a randomized multicenter Phase III trial.

    PubMed

    Scheller, Christian; Wienke, Andreas; Tatagiba, Marcos; Gharabaghi, Alireza; Ramina, Kristofer F; Ganslandt, Oliver; Bischoff, Barbara; Zenk, Johannes; Engelhorn, Tobias; Matthies, Cordula; Westermaier, Thomas; Antoniadis, Gregor; Pedro, Maria Teresa; Rohde, Veit; von Eckardstein, Kajetan; Kretschmer, Thomas; Kornhuber, Malte; Steighardt, Jörg; Richter, Michael; Barker, Fred G; Strauss, Christian

    2016-03-01

    OBJECT A pilot study of prophylactic nimodipine and hydroxyethyl starch treatment showed a beneficial effect on facial and cochlear nerve preservation following vestibular schwannoma (VS) surgery. A prospective Phase III trial was undertaken to confirm these results. METHODS An open-label, 2-arm, randomized parallel group and multicenter Phase III trial with blinded expert review was performed and included 112 patients who underwent VS surgery between January 2010 and February 2013 at 7 departments of neurosurgery to investigate the efficacy and safety of the prophylaxis. The surgery was performed after the patients were randomly assigned to one of 2 groups using online randomization. The treatment group (n = 56) received parenteral nimodipine (1-2 mg/hr) and hydroxyethyl starch (hematocrit 30%-35%) from the day before surgery until the 7th postoperative day. The control group (n = 56) was not treated prophylactically. RESULTS Intent-to-treat analysis showed no statistically significant effects of the treatment on either preservation of facial nerve function (35 [67.3%] of 52 [treatment group] compared with 34 [72.3%] of 47 [control group]) (p = 0.745) or hearing preservation (11 [23.4%] of 47 [treatment group] compared with 15 [31.2%] of 48 [control group]) (p = 0.530) 12 months after surgery. Since tumor sizes were significantly larger in the treatment group than in the control group, logistic regression analysis was required. The risk for deterioration of facial nerve function was adjusted nearly the same in both groups (OR 1.07 [95% CI 0.34-3.43], p = 0.91). In contrast, the risk for postoperative hearing loss was adjusted 2 times lower in the treatment group compared with the control group (OR 0.49 [95% CI 0.18-1.30], p = 0.15). Apart from dose-dependent hypotension (p < 0.001), no clinically relevant adverse reactions were observed. CONCLUSIONS There were no statistically significant effects of the treatment. Despite the width of the confidence intervals, the

  20. Large Kindred Evaluation of Mitofusin 2 Novel Mutation, Extremes of Neurologic Presentations, and Preserved Nerve Mitochondria

    PubMed Central

    Klein, Christopher J.; Kimmel, Grace W.; Pittock, Sean J.; Engelstad, JaNean E.; Cunningham, Julie M.; Wu, Yanhong; Dyck, Peter J.

    2013-01-01

    Background Mitofusin 2 (MFN2) is a mitochondrial membrane protein mediating mitochondrial fusion and function. Mutated MFN2 is responsible for Charcot-Marie-Tooth type 2A2. In small kindreds, specific MFN2 mutations have been reported to associate with severity of axonal neuropathy, optic atrophy, and involvement of the central nervous system. The results of the nerve biopsy specimens suggested that the mitochondria are structurally abnormal in patients with MFN2 mutations. Objective To study a newly identified MFN2 mutation, Leu146Phe, and the associated phenotypes in a large kindred. Patients An American kindred of Northern European and Cherokee American Indian descent. Results Genetic analysis revealed a novel GTPase domain MFN2 mutation Leu146Phe that associated with clinical status of 15 studied persons (10 affected and 5 unaffected) and not found in 800 control persons. Clinical manifestations were markedly different. In 1 affected person, optic atrophy and brain magnetic resonance imaging abnormalities led to multiple sclerosis diagnosis and interferon β-1a treatment when neuropathy was initially unrecognized. Age of onset ranged from 1 to 45 years. In some affected family members, severe and rapid-onset motor sensory neuropathy led to early loss of ambulation, whereas other family members experienced minimal neuropathic sensory symptoms. Despite histologically significant loss of nerve fibers, the mitochondria were not distinguishable from diseased sural nerve biopsy specimens and healthy controls. Conclusions Novel MFN2 mutation Leu146Phe causes Charcot-Marie-Tooth type 2A2. Intrafamilial clinical phenotype variability is emphasized and has important implications in genetic counseling. The clinical phenotype may mimic multiple sclerosis when optic atrophy and the characteristic brain lesions of MFN2 on magnetic resonance imaging are present and neuropathy is mild or unrecognized. The predicted molecular pathogenesis may occur without evident histological

  1. A schwannoma of the S1 dural sleeve was resected while the intact nerve fibers were preserved using a microscope. Report of a case with early MRI findings.

    PubMed

    Kobayashi, S; Uchida, K; Kokubo, Y; Yayama, T; Nakajima, H; Inukai, T; Nomura, E; Baba, H

    2007-04-01

    In this report, we describe a small schwannoma of the dural sleeve and mention that it is often difficult to differentiate this tumor from lumbar disc herniation, especially a sequestered hernia, or a discal cyst. Gadolinium-enhanced MR images were a useful preoperative examination modality for differentiating this lesion from other diseases. Microscopically, the intradural tumor was successfully removed. The dura mater of the S1 nerve root was opened microsurgically, allowing the nerve fibers involved in the tumor to be identified. The involved fibers were cut around the tumor, and the lesion was resected while the intact nerve fibers were preserved. Based on histological examination of the resected specimen, the tumor was diagnosed as a schwannoma with multilocular cystic degeneration. Microsurgery allowed the tumor to be removed with minimal impairment from cutting of nerve fibers in the nerve root. PMID:17674301

  2. Delayed neurotrophic treatment preserves nerve survival and electrophysiological responsiveness in neomycin-deafened guinea pigs.

    PubMed

    Yamagata, Takahiko; Miller, Josef M; Ulfendahl, Mats; Olivius, N Petri; Altschuler, Richard A; Pyykkö, Ilmari; Bredberg, Göran

    2004-10-01

    Benefits of cochlear prostheses for the deaf are dependent on survival and excitability of the auditory nerve. Degeneration of deafferented auditory nerve fibers is prevented and excitability maintained by immediate replacement therapy with exogenous neurotrophic factors, in vivo. It is important to know whether such interventions are effective after a delay following deafness, typical for the human situation. This study evaluated the efficacy of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor axokine-1 analogue (CNTF Ax1) application, 2 or 6 weeks postdeafening, in preventing further degeneration and a decrease in excitability. Guinea pigs were deafened and implanted with intracochlear stimulating electrodes, a scala tympani cannula-osmotic pump system, and auditory brainstem response (ABR) recording electrodes. Subjects received BDNF + CNTF Ax1 or artificial perilymph (AP) treatment for 27 days, beginning at 2 or 6 weeks following deafening. Electrical (E) ABR thresholds increased following deafening. After 1 week, in the 2-weeks-delayed neurotrophic factor treatment group, EABR thresholds decreased relative to AP controls, which were statistically significant at 2 weeks. In the 6-week delay group, a tendency to enhanced EABR sensitivity began at 2 weeks of treatment and increased thereafter, with a significant difference between neurotrophic factor- and AP-treated groups across the treatment period. A clear, statistically significant, enhanced survival of spiral ganglion cells was seen in both neurotrophic factor treatment groups relative to AP controls. These findings demonstrate that BDNF + CNTF Ax1 can act to delay or possibly even reverse degenerative and, likely apoptotic, processes well after they have been activated. These survival factors can rescue cells from death and enhance electrical excitability, even during the period of degeneration and cell loss when the spiral ganglion cell population is reduced by >50% (6 weeks). It is

  3. Autonomic nervous system dysfunction in workers exposed to lead, zinc, and copper in relation to peripheral nerve conduction: a study of R-R interval variability

    SciTech Connect

    Murata, K.; Araki, S. )

    1991-01-01

    Quantitative assessment of the autonomic neurotoxicity due to lead was undertaken by measuring variability in the electrocardiographic R-R interval (CVRR) in 16 male workers exposed to lead, zinc, copper, and tin and in 16 unexposed control subjects. Two component coefficients of variation in the R-R interval, the C-CVRSA (respiratory sinus arrhythmia) and C-CVMWSA (Mayer wave related sinus arrhythmia), were examined; these indices are considered to reflect parasympathetic and sympathetic activities, respectively. Maximal motor and sensory conduction velocities (MCV and SCV) in the median nerve were also measured. In the 16 exposed workers, blood lead concentrations ranged from 16 to 60 (mean 34) micrograms/dl. The CVRR and C-CVRSA were found to be significantly reduced in the workers with elevated lead, zinc, and copper absorption as compared to unexposed control subjects; also, the MCV and SCV were significantly slowed. The C-CVMWSA was not significantly reduced, and was positively related to plasma zinc concentrations. No significant relationships were found between indicators of lead and copper absorption and these electrophysiological measurements. These data suggest that subclinical toxicity of lead occurs in the parasympathetic component of the autonomic nervous system as well as in the peripheral nerves. Zinc may antagonize the autonomic nervous dysfunction caused by lead.

  4. Nerve growth factor preserves a critical motor period in rat striatum.

    PubMed

    Wolansky, M J; Paratcha, G C; Ibarra, G R; Azcurra, J M

    1999-01-01

    We previously found the occurrence of a critical motor period during rat postnatal development where circling training starting the 7-day schedule at 30 days-but not before or after-induces a lifetime drop in the binding to cholinergic muscarinic receptors (mAChRs) in striatum. Here, we studied whether nerve growth factor (NGF) participates in this restricted period of muscarinic sensitivity. For this purpose, we administered mouse salival gland 2.5S NGF (1.4 or 0.4 microg/day, infused by means of ALZA minipumps) by intrastriatal unilateral route between days 25 and 39, and then trained rats starting at 40 days. Under these conditions, NGF induced a long-term reduction in the striatal [3H] quinuclidilbenzylate (QNB) binding sites despite the fact that motor training was carried out beyond the natural critical period. Thus, at day 70, measurement of specific QNB binding in infused striata of trained rats showed decreases of 42% (p < .0004) and 33% (p < .02) after administration of the higher and lower NGF doses, respectively, with respect to trained rats treated with cytochrome C, for control. Noncannulated striata of the NGF-treated rats also showed a decrease in QNB binding sites (44%; p < .0001) only at the higher infusion rate. This effect was not found in the respective control groups. Our observations show that NGF modulates the critical period in which activity-dependent mAChR setting takes place during rat striatal maturation. PMID:10027568

  5. Raman microspectroscopy for visualization of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  6. Autonomic neuropathy resulting in recurrent laryngeal nerve palsy in an HIV patient with Hodgkin lymphoma receiving vinblastine and antiretroviral therapy.

    PubMed

    Cherif, S; Danino, S; Yoganathan, K

    2015-03-01

    Hoarseness of voice due to vocal cord paresis as a result of recurrent laryngeal nerve palsy has been well recognised. Recurrent laryngeal nerve palsy is commonly caused by compression due to tumour or lymph nodes or by surgical damage. Vinca alkaloids are well known to cause peripheral neuropathy. However, vinca alkaloids causing recurrent laryngeal nerve palsy has been reported rarely in children. We report a case of an adult patient with HIV who developed hoarseness of voice due to vocal cord paralysis during vinblastine treatment for Hodgkin lymphoma. Mediastinal and hilar lymph node enlargement in such patients may distract clinicians from considering alternative causes of recurrent laryngeal nerve palsy, with potential ensuing severe or even life-threatening stridor. PMID:24828552

  7. Circumferential targeted renal sympathetic nerve denervation with preservation of the renal arterial wall using intra-luminal ultrasound

    NASA Astrophysics Data System (ADS)

    Roth, Austin; Coleman, Leslie; Sakakura, Kenichi; Ladich, Elena; Virmani, Renu

    2015-03-01

    An intra-luminal ultrasound catheter system (ReCor Medical's Paradise System) has been developed to provide circumferential denervation of the renal sympathetic nerves, while preserving the renal arterial intimal and medial layers, in order to treat hypertension. The Paradise System features a cylindrical non-focused ultrasound transducer centered within a balloon that circulates cooling fluid and that outputs a uniform circumferential energy pattern designed to ablate tissues located 1-6 mm from the arterial wall and protect tissues within 1 mm. RF power and cooling flow rate are controlled by the Paradise Generator which can energize transducers in the 8.5-9.5 MHz frequency range. Computer simulations and tissue-mimicking phantom models were used to develop the proper power, cooling flow rate and sonication duration settings to provide consistent tissue ablation for renal arteries ranging from 5-8 mm in diameter. The modulation of these three parameters allows for control over the near-field (border of lesion closest to arterial wall) and far-field (border of lesion farthest from arterial wall, consisting of the adventitial and peri-adventitial spaces) depths of the tissue lesion formed by the absorption of ultrasonic energy and conduction of heat. Porcine studies have confirmed the safety (protected intimal and medial layers) and effectiveness (ablation of 1-6 mm region) of the system and provided near-field and far-field depth data to correlate with bench and computer simulation models. The safety and effectiveness of the Paradise System, developed through computer model, bench and in vivo studies, has been demonstrated in human clinical studies.

  8. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  9. Functional Ser205Leu polymorphism of the nerve growth factor receptor (NGFR) gene is associated with vagal autonomic dysregulation in humans

    PubMed Central

    Chang, Chuan-Chia; Fang, Wen-Hui; Chang, Hsin-An; Huang, San-Yuan

    2015-01-01

    Evidence indicates that reduced cardiac vagal (parasympathetic) tone, a robust cardiovascular risk factor, is a trait vulnerability marker of major depressive disorder (MDD). The Ser205/Ser205 genotype of the functional polymorphism (Ser205Leu) of the nerve growth factor receptor (NGFR), also called p75 neurotrophin receptor (p75NTR), gene is reported to increase the risk of MDD. Here, we hypothesized that the NGFR Ser205Leu polymorphism may have an effect on vagal control. A sample of 810 healthy, drug-free, unrelated Han Chinese (413 males, 397 females; mean age 35.17 ± 8.53 years) was included in the NGFR genotyping. Short-term heart rate variability (HRV) was used to assess vagus-mediated autonomic function. Potential HRV covariates, such as mood/anxiety status and serum metabolic parameters, were assessed. Homozygotes of the Ser205 allele had significantly lower high frequency power and root mean square of successive heartbeat interval differences, both HRV indices of vagal modulation, compared to Leu205 allele carriers. Even after adjusting for relevant confounders, these associations remained significant. Further stratification by sex revealed that the associations were observed only in males. Our results implicate that decreased parasympathetic activity is associated with the NGFR Ser205/Ser205 genotype in a gender-specific manner, suggesting a potential role of NGFR polymorphism in modulating cardiac autonomic function. PMID:26278479

  10. Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors.

    PubMed

    Clavaguera, Simon; Raoul, Nicolas; Carella, Alexandre; Delalande, Michael; Celle, Caroline; Simonato, Jean-Pierre

    2011-10-15

    The ability to detect minute traces of chemical warfare agents is mandatory both for military forces and homeland security. Various detectors based on different technologies are available but still suffer from serious drawbacks such as false positives. There is still a need for the development of innovative reliable sensors, in particular for organophosphorus nerve agents like Sarin. We report herein on the fabrication of a portable, battery-operated, microprocessor-based prototype sensor system relying on silicon nanowire field-effect transistors for the detection of nerve agents. A fast, supersensitive and highly selective detection of organophosphorus molecules is reported. The results show also high selectivity in complex mixtures and on contaminated materials. PMID:21962681

  11. [Subtotal parotidectomy for a parotid gland tumour in two players of wind instruments, with preservation of facial nerve function].

    PubMed

    Heeremans, E H; Mastboom, W J B

    2007-03-01

    Two professional musicians, a 55-year-old clarinet player and a 58-year-old trumpet player, presented to the surgical outpatient clinic with a Warthin's tumour and a pleomorphic adenoma in the deep lobe of the parotid gland, respectively. The several branches of the facial nerve form the virtual plane between the superficial and deep lobes of the parotid gland. Due to the localisation of this nerve, parotid surgery entails a significant risk of neurapraxia of the facial nerve branches. Before the operation, both patients were informed carefully about both the necessity and the risks of surgical excision of parotid tumours. Even slight damage to the facial nerve during parotidectomy could have severe implications for their careers. Both underwent subtotal parotidectomy. Postoperatively, there was clinically a temporary minor marginal branch dysfunction in one patient. Pre- and postoperative electromyography did not indicate asymmetrical function of the facial muscles. A few weeks after the operations, both musicians could resume playing; subtotal parotidectomy can apparently be safely performed in players of wind instruments. PMID:17373397

  12. Preserved functional autonomic phenotype in adult mice overexpressing moderate levels of human alpha‐synuclein in oligodendrocytes

    PubMed Central

    Tank, Jens; da Costa‐Goncalves, Andrey C.; Kamer, Ilona; Qadri, Fatimunnisa; Ubhi, Kiren; Rockenstein, Edward; Diedrich, André; Masliah, Eliezer; Gross, Volkmar; Jordan, Jens

    2014-01-01

    Abstract Mice overexpressing human alpha‐synuclein in oligodendrocytes (MBP1‐α‐syn) recapitulate some key functional and neuropathological features of multiple system atrophy (MSA). Whether or not these mice develop severe autonomic failure, which is a key feature of human MSA, remains unknown. We explored cardiovascular autonomic regulation using long‐term blood pressure (BP) radiotelemetry and pharmacological testing. We instrumented 12 MBP1‐α‐syn mice and 11 wild‐type mice aged 9 months for radiotelemetry. Animals were tested with atropine, metoprolol, clonidine, and trimethaphan at 9 and 12 months age. We applied spectral and cross‐spectral analysis to assess heart rate (HR) and BP variability. At 9 months of age daytime BP (transgenic: 101 ± 2 vs. wild type: 99 ± 2 mmHg) and HR (497 ± 11 vs. 505 ± 16 beats/min) were similar. Circadian BP and HR rhythms were maintained. Nighttime BP (109 ± 2 vs. 108 ± 2 mmHg) and HR (575 ± 15 vs. 569 ± 14 beats/min), mean arterial BP responses to trimethaphan (−21 ± 8 vs. −10 ± 5 mmHg, P = 0.240) and to clonidine (−8 ± 3 vs. −5 ± 2 mmHg, P = 0.314) were similar. HR responses to atropine (+159 ± 24 vs. +146 ± 22 beats/min), and to clonidine (−188 ± 21 vs. −163 ± 33 beats/min) did not differ between strains. Baroreflex sensitivity (4 ± 1 vs. 4 ± 1 msec/mmHg) and HR variability (total power, 84 ± 17 vs. 65 ± 21 msec²) were similar under resting conditions and during pharmacological testing. Repeated measurements at 12 months of age provided similar results. In mice, moderate overexpression of human alpha‐synuclein in oligodendrocytes is not sufficient to induce overt autonomic failure. Additional mechanisms may be required to express the autonomic failure phenotype including higher levels of expression or more advanced age. PMID:25428949

  13. Differential Patterns and Determinants of Cardiac Autonomic Nerve Dysfunction during Endotoxemia and Oral Fat Load in Humans

    PubMed Central

    Ziegler, Dan; Strom, Alexander; Strassburger, Klaus; Nowotny, Bettina; Zahiragic, Lejla; Nowotny, Peter J.; Carstensen-Kirberg, Maren; Herder, Christian; Szendroedi, Julia; Roden, Michael

    2015-01-01

    The autonomic nervous system (ANS) plays an important role in regulating the metabolic homeostasis and controlling immune function. ANS alterations can be detected by reduced heart rate variability (HRV) in conditions like diabetes and sepsis. We determined the effects of experimental conditions mimicking inflammation and hyperlipidemia on HRV and heart rate (HR) in relation to the immune, metabolic, and hormonal responses resulting from these interventions. Sixteen lean healthy subjects received intravenous (i.v.) low-dose endotoxin (lipopolysaccharide [LPS]), i.v. fat, oral fat, and i.v. glycerol (control) for 6 hours, during which immune, metabolic, hormonal, and five HRV parameters (pNN50, RMSSD, low-frequency (LF) and high-frequency (HF) power, and LF/HF ratio) were monitored and energy metabolism and insulin sensitivity (M-value) were assessed. LPS infusion induced an increase (AUC) in HR and LF/HF ratio and decline in pNN50 and RMSSD, while oral fat resulted in elevated HR and a transient (hours 1-2) decrease in pNN50, RMSSD, and HF power. During LPS infusion, ΔIL-1ra levels and ΔIL-1ra and ΔIL-1ß gene expression correlated positively with ΔLF/HF ratio and inversely with ΔRMSSD. During oral fat intake, ΔGLP-1 tended to correlate positively with ΔHR and inversely with ΔpNN50 and ΔRMSSD. Following LPS infusion, lipid oxidation correlated positively with HR and inversely with pNN50 and RMSSD, whereas HRV was not related to M-value. In conclusion, suppression of vagal tone and sympathetic predominance during endotoxemia are linked to anti-inflammatory processes and lipid oxidation but not to insulin resistance, while weaker HRV changes in relation to the GLP-1 response are noted during oral fat load. Trial Registration ClinicalTrials.gov NCT01054989 PMID:25893426

  14. IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function.

    PubMed

    Cai, Liying; Johnstone, Brian H; Cook, Todd G; Tan, Jian; Fishbein, Michael C; Chen, Peng-Sheng; March, Keith L

    2009-01-01

    The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults. However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms. Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction. Human ASCs in saline or saline alone was injected into the peri-infarct region in athymic rats following left anterior descending (LAD) coronary artery ligation. Cardiac function and structure were evaluated by serial echocardiography and histology. ASC-treated rats consistently exhibited better cardiac function, by all measures, than control rats 1 month following LAD occlusion. Left ventricular (LV) ejection fraction and fractional shortening were improved in the ASC group, whereas LV remodeling and dilation were limited in the ASC group compared with the saline control group. Anterior wall thinning was also attenuated by ASC treatment, and post-mortem histological analysis demonstrated reduced fibrosis in ASC-treated hearts, as well as increased peri-infarct density of both arterioles and nerve sprouts. Human ASCs were persistent at 1 month in the peri-infarct region, but they were not observed to exhibit significant cardiomyocyte differentiation. Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors. PMID:18772313

  15. Autoimmune autonomic disorders.

    PubMed

    Mckeon, Andrew; Benarroch, Eduardo E

    2016-01-01

    Autoimmune autonomic disorders occur because of an immune response directed against sympathetic, parasympathetic, and enteric ganglia, autonomic nerves, or central autonomic pathways. In general, peripheral autoimmune disorders manifest with either generalized or restricted autonomic failure, whereas central autoimmune disorders manifest primarily with autonomic hyperactivity. Some autonomic disorders are generalized, and others are limited in their anatomic extent, e.g., isolated gastrointestinal dysmotility. Historically, these disorders were poorly recognized, and thought to be neurodegenerative. Over the last 20 years a number of autoantibody biomarkers have been discovered that have enabled the identification of certain patients as having an autoimmune basis for either autonomic failure or hyperactivity. Peripheral autoimmune autonomic disorders include autoimmune autonomic ganglionopathy (AAG), paraneoplastic autonomic neuropathy, and acute autonomic and sensory neuropathy. AAG manifests with acute or subacute onset of generalized or selective autonomic failure. Antibody targeting the α3 subunit of the ganglionic-type nicotinic acetylcholine receptor (α3gAChR) is detected in approximately 50% of cases of AAG. Some other disorders are characterized immunologically by paraneoplastic antibodies with a high positive predictive value for cancer, such as antineuronal nuclear antibody, type 1 (ANNA-1: anti-Hu); others still are seronegative. Recognition of an autoimmune basis for autonomic disorders is important, as their manifestations are disabling, may reflect an underlying neoplasm, and have the potential to improve with a combination of symptomatic and immune therapies. PMID:27112689

  16. Assessing nerves in leprosy.

    PubMed

    Garbino, José Antonio; Heise, Carlos Otto; Marques, Wilson

    2016-01-01

    Leprosy neuropathy is dependent on the patient's immune response and expresses itself as a focal or multifocal neuropathy with asymmetric involvement. Leprosy neuropathy evolves chronically but recurrently develops periods of exacerbation during type 1 or type 2 reactions, leading to acute neuropathy. Nerve enlargement leading to entrapment syndromes is also a common manifestation. Pain may be either of inflammatory or neuropathic origin. A thorough and detailed evaluation is mandatory for adequate patient follow-up, including nerve palpation, pain assessment, graded sensory mapping, muscle power testing, and autonomic evaluation. Nerve conduction studies are a sensitive tool for nerve dysfunction, including new lesions during reaction periods or development of entrapment syndromes. Nerve ultrasonography is also a very promising method for nerve evaluation in leprosy. The authors propose a composite nerve clinical score for nerve function assessment that can be useful for longitudinal evaluation. PMID:26773623

  17. Identificaton of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one isolated from Lactobacillus pentosus strain S-PT84 culture supernatants as a compound that stimulates autonomic nerve activities in rats.

    PubMed

    Beppu, Yoshinori; Komura, Hajime; Izumo, Takayuki; Horii, Yuko; Shen, Jiao; Tanida, Mamoru; Nakashima, Toshihiro; Tsuruoka, Nobuo; Nagai, Katsuya

    2012-11-01

    Intestinal administration of various lactobacilli has been reported to affect autonomic neurotransmission, blood pressure, and body weight in rats. In this study, three molecules (peaks A, B, and C) were isolated from Lactobacillus pentosus strain S-PT84 (S-PT 84) culture supernatants. Intraduodenal (ID) injection of these molecules increased or inhibited renal sympathetic nerve activity (RSNA) in rats as follows: peak A, 134%; peak B, 40.1%; peak C, 408%. Furthermore, we identified peak C as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). ID injection of DDMP increased brown adipose tissue sympathetic nerve activity (BAT-SNA; 118 ± 15.3%), whereas intraoral injection of DDMP increased the body temperature above the interscapular brown adipose tissue (BAT-T; 0.72 ± 0.13 °C) in rats. These data suggest that S-PT84 produces molecules that modulate autonomic nerve activity. In addition, DDMP increased BAT-SNA and BAT-T, and these changes in BAT-T may be caused by changes in BAT-SNA. PMID:23082723

  18. A Rare Case of C2 Sensory Blockade with Preserved Phrenic Nerve Function in an Obstetric Patient.

    PubMed

    Coffman, John C; Fiorini, Kasey; Cook, Meghan; Small, Robert H

    2016-01-01

    High neuraxial blockade is a serious complication in obstetric patients and requires prompt recognition and management in order to optimize patient outcomes. In cases of high neuroblockade, patients may present with significant hypotension, dyspnea, agitation, difficulty speaking or inability to speak, or even loss of consciousness. We report the unusual presentation of an obstetric patient that remained hemodynamically stable and had the preserved ability to initiate breaths despite sensory blockade up to C2. The presence of differential motor and sensory block documented in this case helped enable the patient to be managed with noninvasive ventilatory support until the high blockade regressed and we are not aware of any other similar reports in literature. PMID:27559484

  19. A Rare Case of C2 Sensory Blockade with Preserved Phrenic Nerve Function in an Obstetric Patient

    PubMed Central

    Fiorini, Kasey; Cook, Meghan

    2016-01-01

    High neuraxial blockade is a serious complication in obstetric patients and requires prompt recognition and management in order to optimize patient outcomes. In cases of high neuroblockade, patients may present with significant hypotension, dyspnea, agitation, difficulty speaking or inability to speak, or even loss of consciousness. We report the unusual presentation of an obstetric patient that remained hemodynamically stable and had the preserved ability to initiate breaths despite sensory blockade up to C2. The presence of differential motor and sensory block documented in this case helped enable the patient to be managed with noninvasive ventilatory support until the high blockade regressed and we are not aware of any other similar reports in literature. PMID:27559484

  20. Sildenafil promotes smooth muscle preservation and ameliorates fibrosis through modulation of extracellular matrix and tissue growth factor gene expression after bilateral cavernosal nerve resection in the rat

    PubMed Central

    Sirad, Fara; Hlaing, Su; Kovanecz, Istvan; Artaza, Jorge N.; Garcia, Leah A.; Rajfer, Jacob; Ferrini, Monica G.

    2010-01-01

    Introduction It has been shown that PDE 5 inhibitors preserve smooth muscle (SM) content and ameliorate the fibrotic degeneration normally seen in the corpora cavernosa after bilateral cavernosal nerve resection (BCNR). However, the downstream mechanisms by which these drugs protect the corpora cavernosa remain poorly understood. Aim To provide insight into the mechanism, we aimed to determine the gene expression profile of angiogenesis related pathways within the penile tissue after BCNR with or without continuous sildenafil treatment. Methods 5-month old Fisher rats were subjected to BCNR or sham operation and treated with or without sildenafil (20 mg/Kg. B.W drinking water) for 3 days or 45 days (n=8 rats per group). Total RNAs isolated from the denuded penile shaft and prostate were subjected to reverse transcription and to angiogenesis real time-PCR arrays (84 genes). Changes in protein expression of selected genes such as epiregulin and CTGF were corroborated by western blot and immunohistochemistry. Main outcomes measures Genes modulated by BCNR and sildenafil treatment. Results A decreased expression of genes related to SM growth factors such as epiregulin (EREG), platelet derived growth factor (PDGF), extracellular matrix regulators such as metalloproteinases 3 and 9, endothelial growth factors, together with an up-regulation of pro-fibrotic genes such as connective tissue growth factor (CTGF) and TGFβ2 were found at both time points after BCNR. Sildenafil treatment reversed this process by up-regulating endothelial and SM growth factors and down-regulating pro-fibrotic factors. Sildenafil did not affect the expression of EREG, VEGF, PDGF in the ventral prostate of BCNR animals Conclusions Sildenafil treatment after BCNR activates genes related to SM preservation and down regulates genes related to fibrosis in the corpora cavernosa. These results provide a mechanistic justification for the use of sildenafil and other PDE5 inhibitors as protective therapy

  1. Improved Stratification of Autonomic Regulation for risk prediction in post-infarction patients with preserved left ventricular function (ISAR-Risk)

    PubMed Central

    Bauer, Axel; Barthel, Petra; Schneider, Raphael; Ulm, Kurt; Müller, Alexander; Joeinig, Anke; Stich, Raphael; Kiviniemi, Antti; Hnatkova, Katerina; Huikuri, Heikki; Schömig, Albert; Malik, Marek; Schmidt, Georg

    2009-01-01

    Aims To investigate the combination of heart rate turbulence (HRT) and deceleration capacity (DC) as risk predictors in post-infarction patients with left ventricular ejection fraction (LVEF) > 30%. Methods and results We enrolled 2343 consecutive survivors of acute myocardial infarction (MI) (<76 years) in sinus rhythm. HRT and DC were obtained from 24 h Holter recordings. Patients with both abnormal HRT (slope ≤ 2.5 ms/RR and onset ≥ 0%) and abnormal DC (≤4.5 ms) were considered suffering from severe autonomic failure (SAF) and prospectively classified as high risk. Primary and secondary endpoints were all-cause, cardiac, and sudden cardiac mortality within the first 5 years of follow-up. During follow-up, 181 patients died; 39 deaths occurred in 120 patients with LVEF ≤ 30%, and 142 in 2223 patients with LVEF>30% (cumulative 5-year mortality rates of 37.9% and 7.8%, respectively). Among patients with LVEF > 30%, SAF identified another high-risk group of 117 patients with 37 deaths (cumulative 5-year mortality rates of 38.6% and 6.1%, respectively). Merging both high-risk groups (i.e. LVEF ≤ 30% and/or SAF) doubled the sensitivity of mortality prediction compared with LVEF ≤ 30% alone (21.1% vs. 42.1%, P < 0.001) while preserving 5-year mortality rate (38.2%). Conclusion In post-MI patients with LVEF>30%, SAF identifies a high-risk group equivalent in size and mortality risk to patients with LVEF ≤ 30%. PMID:19109245

  2. Anatomic basis for the continence-preserving radical retropubic prostatectomy.

    PubMed

    Steiner, M S

    2000-02-01

    The technique of continence-preserving anatomic radical retropubic prostatectomy focuses on the preservation of the following anatomic components of the external striated urethral sphincteric complex: (1) the entire circumference of the rhabdosphincter musculature, (2) the periurethral fascial investments (the pubourethral ligaments anterolaterally and median fibrous raphe posteriorly), and (3) the innervation of both the rhabdosphincter by way of the intrapelvic branch of the pudendal nerve (somatic) and the mucosal and smooth muscle components by way of the urethral branch of the inferior hypogastric plexus (autonomic). The clinical impact of preserving the external striated urethral sphincter and its innervation by performing a continence preserving anatomic retropubic prostatectomy is a shorter time to achieve urinary continence. PMID:10719925

  3. Intraoperative vagal nerve monitoring.

    PubMed

    Leonetti, J P; Jellish, W S; Warf, P; Hudson, E

    1996-08-01

    A variety of benign and malignant neoplasms occur in the superior cervical neck, parapharyngeal space or the infratemporal fossa. The surgical resection of these lesions may result in postoperative iatrogenic injury to the vagus nerve with associated dysfunctional swallowing and airway protection. Anatomic and functional preservation of this critical cranial nerve will contribute to a favorable surgical outcome. Fourteen patients with tumors of the cervical neck or adjacent skull base underwent intraoperative vagal nerve monitoring in an attempt to preserve neural integrity following tumor removal. Of the 11 patients with anatomically preserved vagal nerves in this group, seven patients had normal vocal cord mobility following surgery and all 11 patients demonstrated normal vocal cord movement by six months. In an earlier series of 23 patients with tumors in the same region who underwent tumor resection without vagal nerve monitoring, 18 patients had anatomically preserved vagal nerves. Within this group, five patients had normal vocal cord movement at one month and 13 patients demonstrated normal vocal cord movement at six months. This paper will outline a technique for intraoperative vagal nerve monitoring utilizing transcricothyroid membrane placement of bipolar hook-wire electrodes in the vocalis muscle. Our results with the surgical treatment of cervical neck and lateral skull base tumors for patients with unmonitored and monitored vagal nerves will be outlined. PMID:8828272

  4. [Ganglia of peripheral nerves].

    PubMed

    Tatagiba, M; Penkert, G; Samii, M

    1993-01-01

    The authors present two different types of ganglion affecting the peripheral nerves: extraneural and intraneural ganglion. Compression of peripheral nerves by articular ganglions is well known. The surgical management involves the complete removal of the lesion with preservation of most nerve fascicles. Intraneural ganglion is an uncommon lesion which affects the nerve diffusely. The nerve fascicles are usually intimately involved between the cysts, making complete removal of all cysts impossible. There is no agreement about the best surgical management to be applied in these cases. Two possibilities are available: opening of the epineural sheath lengthwise and pressing out the lesion; or resection of the affected part of the nerve and performing a nerve reconstruction. While in case of extraneural ganglion the postoperative clinical evolution is very favourable, only long follow up studies will reveal in case of intraneural ganglion the best surgical approach. PMID:8128785

  5. Diabetic autonomic neuropathy.

    PubMed

    Clarke, B F; Ewing, D J; Campbell, I W

    1979-10-01

    This review attempts to outline the present understanding of diabetic autonomic neuropathy. The clinical features have been increasinly recognised but knowledge of the localization and morphology of the lesions and their pathogenesis remains fragmentary. A metabolic causation as postulated in somatic nerves accords best with clinical observations. Most bodily systems, particularly the cardiovascular, gastrointestinal and urogenital, are involved with added disturbances of thermoregulatory function and pupillary reflexes. Possible effects on neuroendocrine and peptidergic secretion and respiratory control await definition. Current interest centres around the development of a new generation of tests of autonomic nerve function that are simple, non-invasive, reproducible and allow precision in diagnosis and accurate quantitation. Most are based on cardiovascular reflexes and abnormality in them is assumed to reflect autonomic damage elsewhere. Probably no single test suffices and a battery of tests reflecting both parasympathetic and sympathetic function is preferable. Little is known of the natural history. The prevalence may be greater than previously suspected and although symptoms are mild in the majority, a few develop florid features. The relation of control and duration of diabetes to the onset and progression of autonomic neuropathy is not clearly established. Once tests of autonomic function become abnormal they usually remain abnormal. Symptomatic autonomic neuropathy carries a greatly increased mortality rate possibly due to indirect mechanisms such as renal failure and direct mechanisms such as cardio-resiratory arrest. Improved treatment of some of the more disabling symptoms has been possible in recent years. PMID:387501

  6. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  7. Nerve biopsy

    MedlinePlus

    Nerve biopsy may be done to help diagnose: Axon degeneration (destruction of the axon portion of the nerve cell) Damage to the ... Demyelination Inflammation of the nerve Leprosy Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis

  8. Pinched Nerve

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Pinched Nerve Information Page Table of Contents (click to jump ... being done? Clinical Trials Organizations What is Pinched Nerve? The term "pinched nerve" is a colloquial term ...

  9. Inferior alveolar nerve repositioning.

    PubMed

    Louis, P J

    2001-09-01

    Nerve repositioning is a viable alternative for patients with an atrophic edentulous posterior mandible. Patients, however, should be informed of the potential risks of neurosensory disturbance. Documentation of the patient's baseline neurosensory function should be performed with a two-point discrimination test or directional brush stroke test preoperatively and postoperatively. Recovery of nerve function should be expected in 3 to 6 months. The potential for mandibular fracture when combining nerve repositioning with implant placement also should be discussed with the patient. This can be avoided by minimizing the amount of buccal cortical plate removal during localization of the nerve and maintaining the integrity of the inferior cortex of the mandible. Additionally, avoid overseating the implant, thus avoiding stress along the inferior border of the mandible. The procedure does allow for the placement of longer implants, which should improve implant longevity. Patients undergoing this procedure have expressed overall satisfaction with the results. Nerve repositioning also can be used to preserve the inferior alveolar nerve during resection of benign tumors or cysts of the mandible. This procedure allows the surgeon to maintain nerve function in situations in which the nerve would otherwise have to be resected. PMID:11665379

  10. [Autonomic features in Parkinson disease].

    PubMed

    Yamamoto, Toshimasa; Tamura, Naotoshi

    2012-04-01

    Nonmotor symptoms such as autonomic and neuropsychiatric dysfunctions, are commonly seen in Parkinson disease (PD). Recent studies have shown that PD is accompanied by cardiac sympathetic denervation and constipation even in the early stage. Neuropathological studies confirmed changes in the cardiac sympathetic nerves and the gastrointestinal tract. These findings suggest that PD neuropathology may occur first in the peripheral autonomic pathways and extend to the central autonomic pathways, in agreement with the "Braak theory". This article will reviews the symptoms and pathophysiology of gastrointestinal dysfunction, urinary disturbance, sexual dysfunction, sweating dysfunction, pupillary autonomic dysfunction, and orthostatic and postprandial hypotension in PD patients, and discuss to organ selectiveness in autonomic dysfunction in PD. PMID:22481512

  11. Nerve agents: implications for anesthesia providers.

    PubMed

    Hrobak, Paula Kay

    2008-04-01

    Anesthesia providers may be called to treat injuries from chemical weapons or spills, for which prompt treatment is vital. It is therefore important to understand the mechanism of action of nerve agents and the resultant pathophysiology and to be able to quickly recognize the signs and symptoms of nerve agent exposure. This review article addresses the different types of nerve agents that are currently being manufactured as well as the symptomatic and definitive treatment of the patient who presents with acute nerve agent toxicity. This article also reviews the physiology of the neuromuscular junction and the autonomic nervous system receptors that nerve agent toxicity affects. PMID:18478812

  12. Autonomic neuropathies

    NASA Technical Reports Server (NTRS)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  13. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Update Date 6/1/2015 ...

  14. Nerve conduction

    MedlinePlus Videos and Cool Tools

    ... the spinal cord to muscles and sensory receptors. A peripheral nerve is composed of nerve bundles (fascicles) ... two neurons, it must first be converted to a chemical signal, which then crosses a space of ...

  15. Erectile Function Outcomes in the Current Era of Anatomic Nerve-Sparing Radical Prostatectomy

    PubMed Central

    Burnett, Arthur L

    2006-01-01

    The contemporary use of anatomic nerve-sparing radical prostatectomy, which entails preserving the autonomic nerve supply to the penis required for penile erection, has led to improved erectile function outcomes compared with what has been seen historically. However, delay of postoperative recovery of erection for as long as 2 years is common, such that dysfunctional erection status lingers as a major postoperative problem. Several possible strategies to improve overall recovery rates and to hasten postoperative recovery of erectile function are currently being advanced. These include pharmacologic rehabilitation therapy and neuromodulatory therapy. Rigorous basic scientific investigation and clinical assessment of these new strategic approaches are critically important to establish their actual therapeutic benefits. PMID:17021626

  16. Autonomic hyperreflexia

    MedlinePlus

    The most common cause of autonomic hyperreflexia is spinal cord injury. The nervous system of people with this condition ... Flushed (red) skin above the level of the spinal cord injury High blood pressure Slow pulse or fast pulse ...

  17. Autonomic hyperreflexia

    MedlinePlus

    ... The most common cause of autonomic hyperreflexia is spinal cord injury. The nervous system of people with this condition ... Flushed (red) skin above the level of the spinal cord injury High blood pressure Slow pulse or fast pulse ...

  18. [Acute idiopathic autonomic neuropathy with local autonomic failure in a child].

    PubMed

    Arai, Hidee; Kubota, Hiroaki; Omata, Taku; Tanabe, Yuzo

    2010-09-01

    A 5-year-old girl presented with flushing and sweating on the left arm with coldness on the left palm that had persisted for approximately 24 hours. She had a fever and chicken pox-like exanthemas on her skin. She had no weakness, sensory disturbance or other autonomic dysfunction, such as orthostatic hypotension. Physical, neurological, blood and cerebrospinal fluid findings, including those of a viral study, were normal. A spinal MRI revealed no abnormal signals. Motor nerve conduction velocity, compound muscle action potential and sensory nerve conduction velocity in both medial nerves were normal, although compound sensory nerve action potential was low in the left medial nerve. F waves were absent in both medial nerves. The amplitude of the sympathetic skin response was low in the left palm. The cold-induced vasodilatation test showed bilateral sympathetic nerve dysfunction, especially on the left side. The coefficient of variation of RR intervals was low. Aciclovir was administered until chicken pox was ruled out. Subsequently, her symptoms improved. However, a sympathetic skin response and cold-induced vasodilatation findings 9 months later revealed sympathetic nerve dysfunction. These findings suggested autonomic neuropathy with local sympathetic dysfunction and a mild sensory nerve disturbance. PMID:20845769

  19. Neurophysiological approach to disorders of peripheral nerve.

    PubMed

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves, plexus, or root lesions). Furthermore pathological processes may result in either demyelination, axonal degeneration or both. In order to reach an exact diagnosis of any neuropathy electrophysiological studies are crucial to obtain information about these variables. Conventional electrophysiological methods including nerve conduction studies and electromyography used in the study of patients suspected of having a neuropathy and the significance of the findings are discussed in detail and more novel and experimental methods are mentioned. Diagnostic considerations are based on a flow chart classifying neuropathies into eight categories based on mode of onset, distribution, and electrophysiological findings, and the electrophysiological characteristics in each type of neuropathy are discussed. PMID:23931776

  20. Lack of efficacy of an intradural somatic-to-autonomic nerve anastomosis (Xiao procedure) for bladder control in children with myelomeningocele and lipomyelomeningocele: results of a prospective, randomized, double-blind study.

    PubMed

    Tuite, Gerald F; Polsky, Ethan G; Homsy, Yves; Reilly, Margaret A; Carey, Carolyn M; Parrish Winesett, S; Rodriguez, Luis F; Storrs, Bruce B; Gaskill, Sarah J; Tetreault, Lisa L; Martinez, Denise G; Amankwah, Ernest K

    2016-08-01

    OBJECTIVE Xiao et al. and other investigators have studied an intradural somatic-to-autonomic (e.g., L-5 to S3-4) nerve transfer as a method to create a reflex arc to allow bladder emptying in response to cutaneous stimulation (the Xiao procedure). In previous clinical studies of patients with spinal dysraphism who underwent the Xiao procedure, high success rates (70%-85%) were reported for the establishment of a "skin-CNS-bladder" reflex arc that allows spontaneous, controlled voiding in children with neurogenic bladder dysfunction. However, many of these studies did not use blinded observers, did not have control groups, and/or featured only limited follow-up durations. METHODS A randomized, prospective, double-blind trial was initiated in March 2009, enrolling children with myelomeningocele (MM), lipomyelomeningocele (LMM), and neurogenic bladder dysfunction who were scheduled for spinal cord detethering (DT) for the usual indications. At the time of DT, patients were randomized between 2 arms of the study: half of the patients underwent a standard spinal cord DT procedure alone (DT group) and half underwent DT as well as the Xiao procedure (DT+X group). Patients, families, and study investigators, all of whom were blinded to the surgical details, analyzed the patients' strength, sensory function, mobility, voiding, and urodynamic bladder function before surgery and at regular intervals during the 3-year follow-up. RESULTS Twenty patients were enrolled in the study: 10 underwent only DT and the other 10 underwent DT+X. The addition of the Xiao procedure to spinal cord DT resulted in longer operative times (p = 0.024) and a greater chance of wound infection (p = 0.03). Patients in both treatment arms could intermittently void or dribble small amounts of urine (< 20% total bladder capacity) in response to scratching in dermatomes T-9 through S-2 using a standardized protocol, but the voiding was not reproducible and the volume voided was not clinically useful in

  1. Sensory nerve function and auto-mutilation after reconstruction of various gap lengths with nerve guides and autologous nerve grafts.

    PubMed

    den Dunnen, W F; Meek, M F

    2001-05-01

    The aim of this study was to evaluate sensory nerve recovery and auto-mutilation after reconstruction of various lengths of nerve gaps in the sciatic nerve of the rat, using different techniques. Group 4, in which the longest nerve gap (15 mm) was reconstructed with a thin-walled p(DL-lactide-gamma-caprolactone) nerve guide filled with modified denatured muscle tissue, showed the best results in the electro-stimulation tests and signs of severe auto-mutilation were not observed. Even in the control group, in which a 10 mm nerve gap was left open, in two of the five rats improvement of the sensory nerve function was observed, which was caused by re-innervation of the sciatic nerve and not by expansion of the neighboring saphenous nerve. It is hypothesized that a better quality of nerve reconstruction/guidance channel/support results in faster regeneration and hence re-innervation, thereby, preventing auto-mutilation. A thin red glabrous skin, anhydrosis (dryness of the skin), short nails and edema were interpreted as signs of autonomic dysfunction. PMID:11352096

  2. Neurophysiologic intraoperative monitoring: II. Facial nerve function.

    PubMed

    Niparko, J K; Kileny, P R; Kemink, J L; Lee, H M; Graham, M D

    1989-01-01

    Intraoperative facial nerve monitoring provides a potentially useful adjunct to recent surgical advances in neurotology and neurosurgery. These measures further aid the surgeon in preserving facial nerve function by enhancing visual identification with electrical monitoring of mechanically evoked facial muscle activation. Facial nerve monitoring in neurotologic surgery may achieve the following goals: (1) early recognition of surgical trauma to the facial nerve, with immediate feedback made available to the surgeon through monitoring of mechanical activation; (2) assistance in distinguishing the facial nerve from regional cranial nerves and from adjacent soft tissue and tumor with selective electrical stimulation; (3) facilitation of tumor excision by electrical mapping of portions of tumor that are remote from the facial nerve; (4) confirmation of nerve stimulability at the completion of surgery; and (5) identification of the site and degree of neural dysfunction in patients undergoing nerve exploration for suspected facial nerve neoplasm or undergoing decompression in acute facial palsy. This paper provides an overview of intraoperative facial nerve monitoring principles and methodology and reports a recent clinical investigation that demonstrates the utility of facial nerve monitoring in translabyrinthine acoustic neuroma surgery. PMID:2655465

  3. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  4. Autonomic control of the eye

    PubMed Central

    McDougal, David H.; Gamlin, Paul D.

    2016-01-01

    The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. PMID:25589275

  5. Autonomic control of the eye.

    PubMed

    McDougal, David H; Gamlin, Paul D

    2015-01-01

    The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. PMID:25589275

  6. Autonomous Soaring

    NASA Technical Reports Server (NTRS)

    Lin, Victor P.

    2007-01-01

    This viewgraph presentation reviews the autonomous soaring flight of unmanned aerial vehicles (UAV). It reviews energy sources for UAVs, and two examples of UAV's that used alternative energy sources, and thermal currents for soaring. Examples of flight tests, plans, and results are given. Ultimately, the concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology.

  7. Autonomic dysreflexia

    PubMed Central

    Milligan, James; Lee, Joseph; McMillan, Colleen; Klassen, Hilary

    2012-01-01

    Abstract Objective To raise family physicians’ awareness of autonomic dysreflexia (AD) in patients with spinal cord injury (SCI) and to provide some suggestions for intervention. Sources of information MEDLINE was searched from 1970 to July 2011 using the terms autonomic dysreflexia and spinal cord injury with family medicine or primary care. Other relevant guidelines and resources were reviewed and used. Main message Family physicians often lack confidence in treating patients with SCI, see them as complex and time-consuming, and feel undertrained to meet their needs. Family physicians provide a vital component of the health care of such patients, and understanding of the unique medical conditions related to SCI is important. Autonomic dysreflexia is an important, common, and potentially serious condition with which many family physicians are unfamiliar. This article will review the signs and symptoms of AD and offer some acute management options and preventive strategies for family physicians. Conclusion Family physicians should be aware of which patients with SCI are susceptible to AD and monitor those affected by it. Outlined is an approach to acute management. Family physicians play a pivotal role in prevention of AD through education (of the patient and other health care providers) and incorporation of strategies such as appropriate bladder, bowel, and skin care practices and warnings and management plans in the medical chart. PMID:22893332

  8. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  9. Optic nerve atrophy

    MedlinePlus

    Optic nerve atrophy is damage to the optic nerve. The optic nerve carries images of what the eye sees to ... problem most often affects older adults. The optic nerve can also be damaged by shock, toxins, radiation, ...

  10. Peripheral Nerve Disorders

    MedlinePlus

    ... spinal cord. Like static on a telephone line, peripheral nerve disorders distort or interrupt the messages between the brain ... body. There are more than 100 kinds of peripheral nerve disorders. They can affect one nerve or many nerves. ...

  11. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  12. Autonomous control

    NASA Technical Reports Server (NTRS)

    Brown, Barbara

    1990-01-01

    KSC has been developing the Knowledge-Based Autonomous Test Engineer (KATE), which is a tool for performing automated monitoring, diagnosis, and control of electromechanical devices. KATE employs artificial intelligence computing techniques to perform these functions. The KATE system consists of a generic shell and a knowledge base. The KATE shell is the portion of the system which performs the monitoring, diagnosis, and control functions. It is generic in the sense that it is application independent. This means that the monitoring activity, for instance, will be performed with the same algorithms regardless of the particular physical device being used. The knowledge base is the portion of the system which contains specific functional and behavorial information about the physical device KATE is working with. Work is nearing completion on a project at KSC to interface a Texas Instruments Explorer running a LISP version of KATE with a Generic Checkout System (GCS) test-bed to control a physical simulation of a shuttle tanking system (humorously called the Red Wagon because of its color and mobility). The Autonomous Control System (ACS) project supplements and extends the KATE/GCS project by adding three other major activities. The activities include: porting KATE from the Texas Instruments Explorer machine to an Intel 80386-based UNIX workstation in the LISP language; rewriting KATE as necessary to run on the same 80386 workstation but in the Ada language; and investigating software and techniques to translate ANSI Standard Common LISP to Mil Standard Ada. Primary goals of this task are as follows: (1) establish the advantages of using expert systems to provide intelligent autonomous software for Space Station Freedom applications; (2) determine the feasibility of using Ada as the run-time environment for model-based expert systems; (3) provide insight into the advantages and disadvantagesof using LISP or Ada in the run-time environment for expert systems; and (4

  13. Hemangioma of the Facial Nerve

    PubMed Central

    Balkany, Thomas; Fradis, Milo; Jafek, Bruce W.; Rucker, Nolan C.

    1991-01-01

    Hemangioma of the facial nerve may occur more frequently than previously recognized. This benign vascular tumor most often arises in the area of the geniculate ganglion, although the reason for this site of predilection is not known. Using silicon injection and cross-sectional vessel counts, we recently demonstrated the presence of a geniculate capillary plexus (GCP) in the cat. The present study was designed to identify a similar GCP in man, if present, and to relate if to the site of predilection of hemangioma of the facial nerve. Twenty-five human facial nerves were studied in horizontally sectioned temporal bones. A clinical case of hemangioma arising at the geniculate ganglion is presented. The human geniculate ganglion has a very rich capillary plexus in contrast to the poor intrinsic vasculature of the adjacent labyrinthine segment and nioderate vasculature of the tympanic segment of the facial nerve. We hypothesize that the GCP is the origin of most hemangiomas of facial nerve. The anatomic distinctness of the geniculate gangion and GCP from the facial nerve may allow removal of these tumors with preservation of motor function in certain cases. ImagesFigure 1Figure 2Figure 3 PMID:17170823

  14. INL Autonomous Navigation System

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  15. The Evolution and Technique of Nerve-Sparing Retroperitoneal Lymphadenectomy.

    PubMed

    Masterson, Timothy A; Cary, Clint; Rice, Kevin R; Foster, Richard S

    2015-08-01

    The evolution of retroperitoneal lymph node dissection technique and associated template modifications for nonseminomatous germ cell tumors have resulted in significant improvement in the long-term morbidity. Through the preservation of sympathetic nerves via exclusion from or prospective identification within the boundaries of resection, maintenance and recovery of antegrade ejaculation are achieved. Nerve-sparing strategies in early-stage disease are feasible in most patients. Postchemotherapy, select patients can be considered for nerve preservation. This article describes the anatomic and physiologic basis for, indications and technical aspects of, and functional and oncologic outcomes reported after nerve-sparing retroperitoneal lymphadenectomy in testicular cancer. PMID:26216818

  16. [Evaluation of autonomic dysfunction by novel methods].

    PubMed

    Ando, Yukio; Obayashi, Konen

    2004-07-01

    The autonomic nervous system innervates every organ in the body. Since autonomic disturbances affect patient survival, an understanding and recognition of these disturbances are important. We adopted several new methods to evaluate autonomic function accurately. 123I-metaiodobenzylguanidine scintigraphy can assess the cardiac autonomic function even in the presence of cardiac arrhythmia. Laser-Doppler flowmetry, ultrasonographic study in the vessels and near-infrared spectrophotoscopy techniques serve as useful markers for screening the dysfunction of vasomotor neurons and blood circulation. Electrogastrography and the circadian rhythms of protein C secretion could be markers of the visceromotor nerves in the abdomen. Electrogastrography is a particularly useful tool for reflecting on functional changes in gastrointestinal motility. The evaluation of anemia could be a marker of autonomic dysfunction in the kidney and bone marrow in patients with familial amyloidotic polyneuropathy, pandysautonomia, and multiple system atrophy. Normocytic and normochromic anemia correlated with the severity of autonomic dysfunction were shown in these patients. We also evaluated the dysfunction of the neuroendocrine system and sudomotor neuron using our new autonomic function tests. The glucose-tolerance test could become one of the most useful clinical tools for detecting autonomic dysfunction in the endocrine system. Microhydrography and thermography could be useful tools for diagnosing the lesion site of dyshidrosis. Moreover, it is clinically important to check the systemic circulation and autonomic function in patients treated with sildenafil citrate and organ transplantation to save their lives. Our new autonomic function tests, such as laser-Doppler flowmetry and 123I-metaiodobenzylguanidine scintigraphy, are crucial tools in supplying the best symptomatic treatment for such patients. PMID:15344558

  17. Hypothalamic Nesfatin-1 Stimulates Sympathetic Nerve Activity via Hypothalamic ERK Signaling.

    PubMed

    Tanida, Mamoru; Gotoh, Hitoshi; Yamamoto, Naoki; Wang, Mofei; Kuda, Yuhichi; Kurata, Yasutaka; Mori, Masatomo; Shibamoto, Toshishige

    2015-11-01

    Nesfatin-1 acts on the hypothalamus and regulates the autonomic nervous system. However, the hypothalamic mechanisms of nesfatin-1 on the autonomic nervous system are not well understood. In this study, we found that intracerebroventricular (ICV) administration of nesfatin-1 increased the extracellular signal-regulated kinase (ERK) activity in rats. Furthermore, the activity of sympathetic nerves, in the kidneys, liver, and white adipose tissue (WAT), and blood pressure was stimulated by the ICV injection of nesfatin-1, and these effects were abolished owing to pharmacological inhibition of ERK. Renal sympathoexcitatory and hypertensive effects were also observed with nesfatin-1 microinjection into the paraventricular hypothalamic nucleus (PVN). Moreover, nesfatin-1 increased the number of phospho (p)-ERK1/2-positive neurons in the PVN and coexpression of the protein in neurons expressing corticotropin-releasing hormone (CRH). Pharmacological blockade of CRH signaling inhibited renal sympathetic and hypertensive responses to nesfatin-1. Finally, sympathetic stimulation of WAT and increased p-ERK1/2 levels in response to nesfatin-1 were preserved in obese animals such as rats that were fed a high-fat diet and leptin receptor-deficient Zucker fatty rats. These findings indicate that nesfatin-1 regulates the autonomic nervous system through ERK signaling in PVN-CRH neurons to maintain cardiovascular function and that the antiobesity effect of nesfatin-1 is mediated by hypothalamic ERK-dependent sympathoexcitation in obese animals. PMID:26310564

  18. Autonomic Regulation Therapy in Heart Failure

    PubMed Central

    Buckley, Una; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Autonomic Regulation Therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART. PMID:26054327

  19. Autonomic Regulation Therapy in Heart Failure.

    PubMed

    Buckley, Una; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2015-08-01

    Autonomic regulation therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART. PMID:26054327

  20. Facial nerve identification with fluorescent dye in rats.

    PubMed

    de Melo, Giulianno Molina; Cervantes, Onivaldo; Covolan, Luciene; Baptista, Heloisa Allegro; Ferreira, Elenn Soares; Abrahao, Marcio

    2016-02-01

    PURPOSE The parotidectomy technique still has an elevated paresis and paralysis index, lowering patient life's quality. The correct identification of the facial nerve can prevent nerve damage. Fluorescent dye identifies nerves in experimental studies but only few articles focused its use on facial nerve study in parotidectomies. We aimed to stain the rat facial nerve with fluorescent dye to facilitate visualization and dissection in order to prevent injuries. METHODS Forty adult male Wistar rats were submitted to facial injection of saline solution (Gsf-control group, 10) or fluorescent dye solution (Gdye group, 30) followed by parotidectomy preserving the facial nerve, measuring the time for localization and facility of localization (LocTime and LFN). Nerve function was assessed using the Vibrissae Movements (PMV) and Eyelid Closure Motion (PFP) scores. RESULTS Nerve localization was faster in Gdye group, with 83% Easy LFN rate. The Gdye group presented with low nerve injury degree and better PMV and PFP scores, with high sensitivity and accuracy. CONCLUSIONS This experimental method of facial nerve fluorescence was effective for intraoperative nerve visualization, identification and preservation. The technique may be used in future facial nerve studies, translated to humans, contributing to the optimization of parotid surgery in the near future. PMID:26959618

  1. The nature of the autonomic dysfunction in multiple system atrophy

    NASA Technical Reports Server (NTRS)

    Parikh, Samir M.; Diedrich, Andre; Biaggioni, Italo; Robertson, David

    2002-01-01

    The concept that multiple system atrophy (MSA, Shy-Drager syndrome) is a disorder of the autonomic nervous system is several decades old. While there has been renewed interest in the movement disorder associated with MSA, two recent consensus statements confirm the centrality of the autonomic disorder to the diagnosis. Here, we reexamine the autonomic pathophysiology in MSA. Whereas MSA is often thought of as "autonomic failure", new evidence indicates substantial persistence of functioning sympathetic and parasympathetic nerves even in clinically advanced disease. These findings help explain some of the previously poorly understood features of MSA. Recognition that MSA entails persistent, constitutive autonomic tone requires a significant revision of our concepts of its diagnosis and therapy. We will review recent evidence bearing on autonomic tone in MSA and discuss their therapeutic implications, particularly in terms of the possible development of a bionic baroreflex for better control of blood pressure.

  2. Preservation Environments

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.

    2004-01-01

    The long-term preservation of digital entities requires mechanisms to manage the authenticity of massive data collections that are written to archival storage systems. Preservation environments impose authenticity constraints and manage the evolution of the storage system technology by building infrastructure independent solutions. This seeming paradox, the need for large archives, while avoiding dependence upon vendor specific solutions, is resolved through use of data grid technology. Data grids provide the storage repository abstractions that make it possible to migrate collections between vendor specific products, while ensuring the authenticity of the archived data. Data grids provide the software infrastructure that interfaces vendor-specific storage archives to preservation environments.

  3. OCT image segmentation of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-08-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. In this study, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. Three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The features were segmented using a nearestneighbor classifier. N-ary morphological post-processing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058 +/- 0.019.

  4. The role of the autonomic ganglia in atrial fibrillation

    PubMed Central

    Stavrakis, Stavros; Nakagawa, Hiroshi; Po, Sunny S.; Scherlag, Benjamin J.; Lazzara, Ralph; Jackman, Warren M.

    2015-01-01

    Recent experimental and clinical studies have shown that the epicardial autonomic ganglia play an important role in the initiation and maintenance of atrial fibrillation (AF). In this review, we present the current data on the role of the autonomic ganglia in the pathogenesis of AF and discuss potential therapeutic implications. Experimental studies have demonstrated that acute autonomic remodeling may play a crucial role in AF maintenance in the very early stages. The benefit of adding ablation of the autonomic ganglia to the standard pulmonary vein (PV) isolation procedure for patients with paroxysmal AF is supported by both experimental and clinical data. The interruption of axons from these hyperactive autonomic ganglia to the PV myocardial sleeves may be an important factor in the success of PV isolation procedures. The vagus nerve exerts an inhibitory control over the autonomic ganglia and attenuation or loss of this control may allow these ganglia to become hyperactive. Autonomic neuromodulation using low-level vagus nerve stimulation inhibits the activity of the autonomic ganglia and reverses acute electrical atrial remodeling during rapid atrial pacing and may provide an alternative non-ablative approach for the treatment of AF, especially in the early stages. This notion is supported by a preliminary human study. Further studies are warranted to confirm these findings. PMID:26301262

  5. Urine Preservative

    NASA Technical Reports Server (NTRS)

    Smith, Scott M. (Inventor); Nillen, Jeannie (Inventor)

    2001-01-01

    Disclosed is CPG, a combination of a chlorhexidine salt (such as chlorhexidine digluconate, chlorhexidine diacetate, or chlorhexidine dichloride) and n-propyl gallate that can be used at ambient temperatures as a urine preservative.

  6. Nerve conduction velocity

    MedlinePlus

    Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... normal body temperature. Being too cold slows nerve conduction. Tell your doctor if you have a cardiac ...

  7. Femoral nerve damage (image)

    MedlinePlus

    The femoral nerve is located in the leg and supplies the muscles that assist help straighten the leg. It supplies sensation ... leg. One risk of damage to the femoral nerve is pelvic fracture. Symptoms of femoral nerve damage ...

  8. Ulnar nerve damage (image)

    MedlinePlus

    The ulnar nerve originates from the brachial plexus and travels down arm. The nerve is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body where ...

  9. Diabetes and nerve damage

    MedlinePlus

    ... hot or cold When the nerves that control digestion are affected, you may have trouble digesting food. ... harder to control. Damage to nerves that control digestion almost always occurs in people with severe nerve ...

  10. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves. PMID:20444653

  11. Preserved Hearing Following Vestibular Schwannoma Surgery: Audiological Findings.

    ERIC Educational Resources Information Center

    Bauch, Christopher D.; And Others

    1995-01-01

    Audiologic test results were reviewed for 30 patients whose hearing was preserved following eighth nerve tumor surgery. Improved auditory brainstem response tracings were seen as probably indicating increased neural synchrony due to reduced pressure on the cochlear nerve following surgery, whereas reduced hearing sensitivity probably reflects…

  12. Preservation Matters

    ERIC Educational Resources Information Center

    Noriega, Chon A.

    2005-01-01

    One must undertake multi-institutional efforts that include universities, archives, museums, libraries and community-based arts organizations and the artists to preserve Latino art history. Arts infrastructure can be strengthened by various Chicano Studies Research Center projects that are concerned with archive building and scholarship, and with…

  13. Digital Preservation.

    ERIC Educational Resources Information Center

    Yakel, Elizabeth

    2001-01-01

    Reviews research on digital preservation issues, including born-digital and digitally recreated documents. Discusses electronic records research; metadata and other standards; electronic mail; Web-based documents; moving images media; selection of materials for digitization, including primary sources; administrative issues; media stability…

  14. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating ... with breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as ...

  15. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  16. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  17. The cranial nerve skywalk: A 3D tutorial of cranial nerves in a virtual platform.

    PubMed

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways is difficult using two-dimensional (2D) illustrations alone. Three-dimensional (3D) models aid the teacher in describing intricate and complex anatomical structures and help students visualize them. The study of the cranial nerves can be supplemented with 3D, which permits the students to fully visualize their distribution within the craniofacial complex. This article describes the construction and usage of a virtual anatomy platform in Second Life™, which contains 3D models of the cranial nerves III, V, VII, and IX. The Cranial Nerve Skywalk features select cranial nerves and the associated autonomic pathways in an immersive online environment. This teaching supplement was introduced to groups of pre-healthcare professional students in gross anatomy courses at both institutions and student feedback is included. PMID:24678025

  18. Autonomic control of gut motility: a comparative view.

    PubMed

    Olsson, Catharina; Holmgren, Susanne

    2011-11-16

    Gut motility is regulated to optimize food transport and processing. The autonomic innervation of the gut generally includes extrinsic cranial and spinal autonomic nerves. It also comprises the nerves contained entirely within the gut wall, i.e. the enteric nervous system. The extrinsic and enteric nervous control follows a similar pattern throughout the vertebrate groups. However, differences are common and may occur between groups and families as well as between closely related species. In this review, we give an overview of the distribution and effects of common neurotransmitters in the vertebrate gut. While the focus is on birds, reptiles, amphibians and fish, mammalian data are included to form the background for comparisons. While some transmitters, like acetylcholine and nitric oxide, show similar distribution patterns and effects in most species investigated, the role of others is more varying. The significance for these differences is not yet fully understood, emphasizing the need for continued comparative studies of autonomic control. PMID:20724224

  19. Genetic autonomic disorders.

    PubMed

    Axelrod, Felicia B

    2013-03-01

    Genetic disorders affecting the autonomic nervous system can result in abnormal development of the nervous system or they can be caused by neurotransmitter imbalance, an ion-channel disturbance or by storage of deleterious material. The symptoms indicating autonomic dysfunction, however, will depend upon whether the genetic lesion has disrupted peripheral or central autonomic centers or both. Because the autonomic nervous system is pervasive and affects every organ system in the body, autonomic dysfunction will result in impaired homeostasis and symptoms will vary. The possibility of genetic confirmation by molecular testing for specific diagnosis is increasing but treatments tend to remain only supportive and directed toward particular symptoms. PMID:23465768

  20. Activities of autonomic neurotransmitters in Meibomian gland tissues are associated with menopausal dry eye★

    PubMed Central

    Li, Lianxiang; Jin, Dongling; Gao, Jinsheng; Wang, Liguang; Liu, Xianjun; Wang, Jingzhang; Xu, Zhongxin

    2012-01-01

    The secretory activities of meibomian glands are regulated by the autonomic nervous system. The change in density and activity of autonomic nerves in meibomian glands during menopause play an important role in the pathogenesis of dry eye. In view of this, we established a dry eye rat model by removing the bilateral ovaries. We used neuropeptide Y and vasoactive intestinal polypeptide as markers of autonomic neurotransmitters. Our results showed that the concentration of estradiol in serum significantly decreased, the density of neuropeptide Y immunoreactivity in nerve fibers significantly increased, the density of vasoactive intestinal polypeptide immunoreactivity in nerve fibers significantly decreased, and the ratio of vasoactive intestinal polypeptide/neuropeptide Y positive staining significantly decreased. These results suggest that a decrease in ovary activity may lead to autonomic nervous system dysfunction, thereby affecting the secretory activity of the meibomian gland, which participates in sexual hormone imbalance-induced dry eye. PMID:25317125

  1. Pure Autonomic Failure.

    PubMed

    Thaisetthawatkul, Pariwat

    2016-08-01

    Pure autonomic failure (PAF) is a rare sporadic neurodegenerative autonomic disorder characterized by slowly progressive pan autonomic failure without other features of neurologic dysfunctions. The main clinical symptoms result from neurogenic orthostatic hypotension and urinary and gastrointestinal autonomic dysfunctions. Autonomic failure in PAF is caused by neuronal degeneration of pre- and postganglionic sympathetic and parasympathetic neurons in the thoracic spinal cord and paravertebral autonomic ganglia. The presence of Lewy bodies and α-synuclein deposits in these neural structures suggests that PAF is one of Lewy body synucleinopathies, examples of which include multiple system atrophy, Parkinson disease, and Lewy body disease. There is currently no specific treatment to stop progression in PAF. Management of autonomic symptoms is the mainstay of treatment and includes management of orthostatic hypotension and supine hypertension. The prognosis for survival of PAF is better than for the other synucleinopathies. PMID:27338613

  2. Electrophysiologic studies of cutaneous nerves of the forelimb of the cat.

    PubMed

    Kitchell, R L; Canton, D D; Johnson, R D; Maxwell, S A

    1982-10-01

    The cutaneous innervation of the forelimb was investigated in 20 barbiturate-anesthetized cats by using electrophysiological techniques. The cutaneous area (CA) innervated by each cutaneous nerve was delineated in at least six cats by brushing the hair in the CA with a small watercolor brush while recording from the nerve. Mapping of adjacent CA revealed larger overlap zones (OZ) than were noted in the dog. Remarkable findings were that the brachiocephalic nerve arose from the axillary nerve and the CA comparable to that supplied by the cutaneous branch of the brachiocephalic nerve in the dog was supplied by a cutaneous branch of the suprascapular nerve. The CA supplied by the communicating branch from the musculocutaneous to the median nerve was similar in both species except that the communicating branch arose proximal to any other branches of the musculocutaneous nerve in the cat, whereas it was a terminal branch in the dog. The superficial branch of the radial nerve gave off cutaneous brachial branches in the cat proximal to the lateral cutaneous antebrachial nerve. The CA of the palmar branches of the ulnar nerve did not completely overlap the CA of the palmar branches of the median nerve as occurred in the dog; thus an autonomous zone (AZ) for the CA of the palmar branches of the median nerve is present in the cat, whereas no AZ existed for the CA of this nerve in the dog. PMID:7142449

  3. Endocrine tumors associated with the vagus nerve.

    PubMed

    Varoquaux, Arthur; Kebebew, Electron; Sebag, Fréderic; Wolf, Katherine; Henry, Jean-François; Pacak, Karel; Taïeb, David

    2016-09-01

    The vagus nerve (cranial nerve X) is the main nerve of the parasympathetic division of the autonomic nervous system. Vagal paragangliomas (VPGLs) are a prime example of an endocrine tumor associated with the vagus nerve. This rare, neural crest tumor constitutes the second most common site of hereditary head and neck paragangliomas (HNPGLs), most often in relation to mutations in the succinate dehydrogenase complex subunit D (SDHD) gene. The treatment paradigm for VPGL has progressively shifted from surgery to abstention or therapeutic radiation with curative-like outcomes. Parathyroid tissue and parathyroid adenoma can also be found in close association with the vagus nerve in intra or paravagal situations. Vagal parathyroid adenoma can be identified with preoperative imaging or suspected intraoperatively by experienced surgeons. Vagal parathyroid adenomas located in the neck or superior mediastinum can be removed via initial cervicotomy, while those located in the aortopulmonary window require a thoracic approach. This review particularly emphasizes the embryology, molecular genetics, and modern imaging of these tumors. PMID:27406876

  4. Histochemical discrimination of fibers in regenerating rat infraorbital nerve

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Sanger, J. R.

    1992-01-01

    In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.

  5. Nerve conduction velocity

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see how ...

  6. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  7. Ulnar nerve damage (image)

    MedlinePlus

    ... arm. The nerve is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near ... surface of the body where it crosses the elbow, so prolonged pressure on the elbow or entrapment ...

  8. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  9. Radial nerve dysfunction (image)

    MedlinePlus

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  10. Tibial nerve dysfunction

    MedlinePlus

    ... a loss of movement or sensation in the foot from damage to the tibial nerve. ... Tibial nerve dysfunction is an unusual form of peripheral ... the calf and foot muscles. A problem in function with a single ...

  11. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many ... viruses. Sometimes the cause is not known. Degenerative nerve diseases include Alzheimer's disease Amyotrophic lateral sclerosis Friedreich's ...

  12. Radial nerve dysfunction

    MedlinePlus

    ... nerve leads to problems with movement in the arm and wrist and with sensation in the back of the arm or hand. ... to the radial nerve, which travels down the arm and controls movement of the triceps muscle at ...

  13. Pediatric autonomic disorders.

    PubMed

    Axelrod, Felicia B; Chelimsky, Gisela G; Weese-Mayer, Debra E

    2006-07-01

    The scope of pediatric autonomic disorders is not well recognized. The goal of this review is to increase awareness of the expanding spectrum of pediatric autonomic disorders by providing an overview of the autonomic nervous system, including the roles of its various components and its pervasive influence, as well as its intimate relationship with sensory function. To illustrate further the breadth and complexities of autonomic dysfunction, some pediatric disorders are described, concentrating on those that present at birth or appear in early childhood. PMID:16818580

  14. Science, technology and the future of small autonomous drones.

    PubMed

    Floreano, Dario; Wood, Robert J

    2015-05-28

    We are witnessing the advent of a new era of robots - drones - that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications. PMID:26017445

  15. Science, technology and the future of small autonomous drones

    NASA Astrophysics Data System (ADS)

    Floreano, Dario; Wood, Robert J.

    2015-05-01

    We are witnessing the advent of a new era of robots -- drones -- that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.

  16. Clinical and electrophysiologic attributes as predictors of results of autonomic function tests

    NASA Technical Reports Server (NTRS)

    Wu, C. L.; Denq, J. C.; Harper, C. M.; O'Brien, P. C.; Low, P. A.

    1998-01-01

    Autonomic dysfunction is a feature of some neuropathies and not others. It has been suggested that some clinical and electrophysiologic attributes are predictable of autonomic impairment detected using laboratory testing; however, dear guidelines are unavailable. We evaluated 138 relatively unselected patients with peripheral neuropathy who underwent neurologic evaluation, electromyography (EMG), nerve conduction studies, and autonomic function tests to determine which variables were predictive of laboratory findings of autonomic failure. The variables evaluated were 1) clinical somatic neuropathic findings, 2) clinical autonomic symptoms, and 3) electrophysiologic findings. Autonomic symptoms were strongly predictive (Rs = 0.40, p < 0.001) of autonomic failure. Among the non-autonomic indices, absent ankle reflexes were mildly predictive (Rs = 0.19, p = 0.022) of autonomic impairment, but all others were not (duration, clinical pattern, severity, weakness, sensory loss). Electrophysiologic changes of an axonal neuropathy predicted autonomic impairment while demyelinating neuropathy did not. We conclude that autonomic studies will most likely be abnormal in patients who have symptoms of autonomic involvement and those who have an axonal neuropathy.

  17. Laryngeal nerve damage

    MedlinePlus

    Laryngeal nerve damage is injury to one or both of the nerves that are attached to the voice box. ... Injury to the laryngeal nerves is uncommon. When it does occur, it can be from: A complication of neck or chest surgery (especially thyroid, lung, ...

  18. Electrophysiologic studies of cutaneous nerves of the thoracic limb of the dog.

    PubMed

    Kitchell, R L; Whalen, L R; Bailey, C S; Lohse, C L

    1980-01-01

    The cutaneous innervation of the thoracic limb was investigated in 36 barbiturate-anesthetized dogs, using electrophysiologic techniques. The cutaneous area (CA) innervated by each cutaneous nerve was delineated in at least five dogs by stroking the hair in the area with a small watercolor brush while recording from the nerve. Mapping of adjacent CA revealed areas of considerable overlapping. The part of the CA of a given nerve supplied by only that nerve is referred to as its autonomous zone. Of all nerves arising from the brachial plexus, only the suprascapular, subscapular, lateral thoracic, thoracodorsal, and cranial and caudal pectoral nerves lacked cutaneous afferents. The dorsal cutaneous branch of C6 had a CA, but no grossly demonstrable dorsal cutaneous branches for C7 C8, or T1 were found. The cervical nerves had ventral cutaneous branches, but no lateral cutaneous branches. Thoracic nerves T2-T4 had dorsal, ventral, and lateral cutaneous branches. The cutaneous branches of the brachiocephalic, axillary, musculocutaneous, radial, median, and ulnar nerves all had CA which were overlapped by adjacent CA, thus their autonomous zones were much smaller than the cutaneous areas usually depicted for these nerves in anatomy and neurology textbooks. PMID:7362125

  19. High Median Nerve Injuries.

    PubMed

    Isaacs, Jonathan; Ugwu-Oju, Obinna

    2016-08-01

    The median nerve serves a crucial role in extrinsic and intrinsic motor and sensory function to the radial half of the hand. High median nerve injuries, defined as injuries proximal to the anterior interosseous nerve origin, therefore typically result in significant functional loss prompting aggressive surgical management. Even with appropriate recognition and contemporary nerve reconstruction, however, motor and sensory recovery may be inadequate. With isolated persistent high median nerve palsies, a variety of available tendon transfers can improve key motor functions and salvage acceptable use of the hand. PMID:27387077

  20. Assessment of nerve morphology in nerve activation during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  1. Role of the Autonomic Nervous System in Atrial Fibrillation: Pathophysiology and Therapy

    PubMed Central

    Chen, Peng-Sheng; Chen, Lan S.; Fishbein, Michael C.; Lin, Shien-Fong; Nattel, Stanley

    2014-01-01

    Autonomic nervous system activation can induce significant and heterogeneous changes of atrial electrophysiology and induce atrial tachyarrhythmias, including atrial tachycardia (AT) and atrial fibrillation (AF). The importance of the autonomic nervous system in atrial arrhythmogenesis is also supported by circadian variation in the incidence of symptomatic AF in humans. Methods that reduce autonomic innervation or outflow have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. In this review we focus on the relationship between the autonomic nervous system and the pathophysiology of AF, and the potential benefit and limitations of neuromodulation in the management of this arrhythmia. We conclude that autonomic nerve activity plays an important role in the initiation and maintenance of AF, and modulating autonomic nerve function may contribute to AF control. Potential therapeutic applications include ganglionated plexus ablation, renal sympathetic denervation, cervical vagal nerve stimulation, baroreflex stimulation, cutaneous stimulation, novel drug approaches and biological therapies. While the role of the autonomic nervous system has long been recognized, new science and new technologies promise exciting prospects for the future. PMID:24763467

  2. Intraoperative Vagus Nerve Monitoring: A Transnasal Technique during Skull Base Surgery

    PubMed Central

    Schutt, Christopher A.; Paskhover, Boris; Judson, Benjamin L.

    2014-01-01

    Objectives Intraoperative vagus nerve monitoring during skull base surgery has been reported with the use of an oral nerve monitoring endotracheal tube. However, the intraoral presence of an endotracheal tube can limit exposure by its location in the operative field during transfacial approaches and by limiting superior mobilization of the mandible during transcervical approaches. We describe a transnasal vagus nerve monitoring technique. Design and Participants Ten patients underwent open skull base surgery. Surgical approaches included transcervical (five), transfacial/maxillary swing (three), and double mandibular osteotomy (two). The vagus nerve was identified, stimulated, and monitored in all cases. Main Outcome Measures Intraoperative nerve stimulation, pre- and postoperative vagus nerve function through the use of flexible laryngoscopy in conjunction with assessment of subjective symptoms of hoarseness, voice change, and swallowing difficulty. Results Three patients had extensive involvement of the nerve by tumor with complete postoperative nerve deficit, one patient had a transient deficit following dissection of tumor off of nerve with resolution, and the remaining patients had nerve preservation. One patient experienced minor epistaxis during monitor tube placement that was managed conservatively. Conclusions Transnasal vagal nerve monitoring is a simple method that allows for intraoperative monitoring during nerve preservation surgery without limiting surgical exposure. PMID:25844292

  3. Visualizing Oxazine 4 nerve-specific fluorescence ex vivo in frozen tissue sections

    NASA Astrophysics Data System (ADS)

    Barth, Connor W.; Gibbs, Summer L.

    2016-03-01

    Nerve damage plagues surgical outcomes and remains a major burden for patients, surgeons, and the healthcare system. Fluorescence image-guided surgery using nerve specific small molecule fluorophores offers a solution to diminish surgical nerve damage through improved intraoperative nerve identification and visualization. Oxazine 4 has shown superior nerve specificity in initial testing in vivo, while exhibiting a red shifted excitation and emission spectra compared to other nerve-specific fluorophores. However, Oxazine 4 does not exhibit near-infrared (NIR) excitation and emission, which would be ideal to improve penetration depth and nerve signal to background ratios for in vivo imaging. Successful development of a NIR nerve-specific fluorophore will require understanding of the molecular target of fluorophore nerve specificity. While previous small molecule nerve-specific fluorophores have demonstrated excellent ex vivo nerve specificity, Oxazine 4 ex vivo nerve specific fluorescence has been difficult to visualize. In the present study, we examined each step of the ex vivo fluorescence microscopy sample preparation procedure to discover how in vivo nerve-specific fluorescence is changed during ex vivo tissue sample preparation. Through step-by-step examination we found that Oxazine 4 fluorescence was significantly diminished by washing and mounting tissue sections for microscopy. A method to preserve Oxazine 4 nerve specific fluorescence ex vivo was determined, which can be utilized for visualization by fluorescence microscopy.

  4. Intraoperative Cranial Nerve Monitoring During Posterior Skull Base Surgery

    PubMed Central

    Kartush, Jack M.; LaRouere, Michael J.; Graham, Malcolm D.; Bouchard, Kenneth R.; Audet, Blaise V.

    1991-01-01

    Intraoperative monitoring of neurophysiologic function is rapidly evolving as an important adjunct during skull base surgery to reduce the incidence of neurologic deficit. Facial nerve monitoring is an excellent model, since electrical and mechanical evoked potentials can be directly presented to the surgeon in real-time through an acoustic loudspeaker display. The lower cranial nerves may also be monitored using similar electromyographic techniques. Auditory system monitoring is more difficult due to the low amplitude response that requires averaging and filtering to extract the evoked potential. In conjunction with auditory monitoring, improved hearing preservation may be further enhanced by concomitant facial nerve monitoring, since the surgeon is alerted to traumatic manipulations that may affect both facial and cochlear nerves. Techniques and interpretative issues are presented to maximize the efficacy and safety of cranial nerve monitoring. ImagesFigure 1Figure 2Figure 3Figure 5 PMID:17170827

  5. Median nerve schwannoma: A case and review of literature

    PubMed Central

    Padasali, Praveen S.; Shankaregowda, V. S.; Kshirsagar, Shriram D.

    2015-01-01

    We report a case of a median nerve schwannoma, a rare type of a benign tumor of Schwann cells that presents as a palpable and painful mass on the flexor aspect of the forearm. Schwannomas of the median nerve make up 0.1–0.3% of all hand tumors. Symptoms are caused by an entrapment syndrome resulting from the growing tumor. Pain is the most common complaint of schwannomas. Imaging studies include computed tomography and magnetic resonance imaging and ultrasound. It is difficult to differentiate schwanommas from neurofibromas solely on the basis of a radiological investigation. Tumors of the median nerve are diagnostically challenging and median nerve schwannomas are rare. Diagnostic pearls are described to facilitate a more accurate and timely diagnosis. These characteristics include mobility, Tinel's sign, S-100 histological staining, and Antoni patterns. With a correct diagnosis, the tumor can be extirpated with preservation of nerve function and a low risk of recurrence. PMID:26396609

  6. Autonomous surveillance for biosecurity.

    PubMed

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance. PMID:25744760

  7. The Furcal Nerve Revisited

    PubMed Central

    Dabke, Harshad V.

    2014-01-01

    Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked) is an independent nerve with its own ventral and dorsal branches (rootlets) and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to the lumbosacral trunk. It is most commonly found at L4 level and is the most common cause of atypical presentation of radiculopathy/sciatica. Very little is published about the furcal nerve and many are unaware of its existence. This article summarizes all the existing evidence about furcal nerve in English literature in an attempt to create awareness and offer insight about this unique entity to fellow colleagues/professionals involved in spine care. PMID:25317309

  8. Sciatic nerve injection injury.

    PubMed

    Jung Kim, Hyun; Hyun Park, Sang

    2014-06-11

    Nerve injury is a common complication following intramuscular injection and the sciatic nerve is the most frequently affected nerve, especially in children, the elderly and underweight patients. The neurological presentation may range from minor transient pain to severe sensory disturbance and motor loss with poor recovery. Management of nerve injection injury includes drug treatment of pain, physiotherapy, use of assistive devices and surgical exploration. Early recognition of nerve injection injury and appropriate management are crucial in order to reduce neurological deficit and to maximize recovery. Sciatic nerve injection injury is a preventable event. Total avoidance of intramuscular injection is recommended if other administration routes can be used. If the injection has to be administered into the gluteal muscle, the ventrogluteal region (gluteal triangle) has a more favourable safety profile than the dorsogluteal region (the upper outer quadrant of the buttock). PMID:24920643

  9. Decellularisation and histological characterisation of porcine peripheral nerves.

    PubMed

    Zilic, Leyla; Wilshaw, Stacy-Paul; Haycock, John W

    2016-09-01

    Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three-dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1%; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1% (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95% (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair. Biotechnol. Bioeng. 2016;113: 2041-2053. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. PMID:26926914

  10. Preservation of Digital Objects.

    ERIC Educational Resources Information Center

    Galloway, Patricia

    2004-01-01

    Presents a literature review that covers the following topics related to preservation of digital objects: practical examples; stakeholders; recordkeeping standards; genre-specific problems; trusted repository standards; preservation methods; preservation metadata standards; and future directions. (Contains 82 references.) (MES)

  11. Endoscopic Facial Nerve Surgery.

    PubMed

    Marchioni, Daniele; Soloperto, Davide; Rubini, Alessia; Nogueira, João Flávio; Badr-El-Dine, Mohamed; Presutti, Livio

    2016-10-01

    Tympanic facial nerve segment surgery has been traditionally performed using microscopic approaches, but currently, exclusive endoscopic approaches have been performed for traumatic, neoplastic, or inflammatory diseases, specially located at the geniculate ganglion, greater petrosal nerve, and second tract of the facial nerve, until the second genu. The tympanic segment of the facial nerve can be reached and visualized using an exclusive transcanal endoscopic approach, even in poorly accessible regions such as the second genu and geniculate ganglion, avoiding mastoidectomy, bony demolition, and meningeal or cerebral lobe tractions, with low complication rates using a minimally invasive surgical route. PMID:27468633

  12. Highly Autonomous Systems Workshop

    NASA Technical Reports Server (NTRS)

    Doyle, R.; Rasmussen, R.; Man, G.; Patel, K.

    1998-01-01

    It is our aim by launching a series of workshops on the topic of highly autonomous systems to reach out to the larger community interested in technology development for remotely deployed systems, particularly those for exploration.

  13. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  14. Autonomic modification of intestinal smooth muscle contractility.

    PubMed

    Montgomery, Laura E A; Tansey, Etain A; Johnson, Chris D; Roe, Sean M; Quinn, Joe G

    2016-03-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe this spontaneous activity and its modification by agents associated with parasympathetic and sympathetic nerve activity. A section of the rabbit small intestine is suspended in an organ bath, and the use of a pressure transducer and data-acquisition software allows the measurement of tension generated by the smooth muscle of intestinal walls. The application of the parasympathetic neurotransmitter ACh at varying concentrations allows students to observe an increase in intestinal smooth muscle tone with increasing concentrations of this muscarinic receptor agonist. Construction of a concentration-effect curve allows students to calculate an EC50 value for ACh and consider some basic concepts surrounding receptor occupancy and activation. Application of the hormone epinephrine to the precontracted intestine allows students to observe the inhibitory effects associated with sympathetic nerve activation. Introduction of the drug atropine to the preparation before a maximal concentration of ACh is applied allows students to observe the inhibitory effect of a competitive antagonist on the physiological response to a receptor agonist. The final experiment involves the observation of the depolarizing effect of K(+) on smooth muscle. Students are also invited to consider why the drugs atropine, codeine, loperamide, and botulinum toxin have medicinal uses in the management of gastrointestinal problems. PMID:26873897

  15. Ex vivo peripheral nerve detection of rats by spontaneous Raman spectroscopy

    PubMed Central

    Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro

    2015-01-01

    Nerve-sparing surgery is increasingly being applied to avoid functional deficits of the limbs and organs following surgery. Peripheral nerves that should be preserved are, however, sometimes misidentified due to similarity of shape and color to non-nerve tissues. To avoid misidentification of peripheral nerves, development of an in situ nerve detection method is desired. In this study, we report the label-free detection of ex vivo peripheral nerves of Wistar rats by using Raman spectroscopy. We obtained Raman spectra of peripheral nerves (myelinated and unmyelinated nerves) and their adjacent tissues of Wistar rats without any treatment such as fixation and/or staining. For the identification of tissue species and further analysis of spectral features, we proposed a principal component regression-based discriminant analysis with representative Raman spectra of peripheral nerves and their adjacent tissues. Our prediction model selectively detected myelinated nerves and unmyelinated nerves of Wistar rats with respective sensitivities of 95.5% and 88.3% and specificities of 99.4% and 93.5%. Furthermore, important spectral features for the identification of tissue species were revealed by detailed analysis of principal components of representative Raman spectra of tissues. Our proposed approach may provide a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future. PMID:26602842

  16. Nerve sparing clitoroplasty in a rare case of idiopathic clitoromegaly

    PubMed Central

    Kujur, Abha Rani; Joseph, Vijay; Chandra, Praveen

    2016-01-01

    Clitoromegaly is an embarrassing condition causing psychological stress, requiring intervention. The goals of clitoroplasty are to achieve normal genital anatomy and to preserve tactile sensation with a satisfactory sexual response. We present a rare case of idiopathic clitoromegaly managed by reduction clitoroplasty, preserving the dorsal neurovascular bundle and extensive network of nerves around the corpora to the glans and the creation of labia minora. PMID:27274128

  17. Orbital intraconal abducens nerve schwannoma: A case report and review of the literature

    PubMed Central

    Bhaganagare, Amresh Subhash; Bidkar, Vishakha Chandrakant; Rodrigus, Elvis; Naik, Vikas; Pai, Balaji

    2015-01-01

    Authors report a case of right orbital intraconal abducens nerve schwannoma in a 32-year lady, who presented with a sense of tightness and discomfort in right eye on looking extreme right side since 4 months. The tumor was totally excised with functional preservation of the nerve by superior orbitotomy. The clinical, radiological features and the management are discussed. PMID:25767598

  18. Optic Nerve Decompression

    MedlinePlus

    ... canals). The optic nerve is the “nerve of vision” and extends from the brain, through your skull, and into your eye. A ... limited to, the following: loss of vision, double vision, inadequate ... leakage of brain fluid (CSF), meningitis, nasal bleeding, infection of the ...

  19. Distal median nerve dysfunction

    MedlinePlus

    ... Names Neuropathy - distal median nerve Images Central nervous system and peripheral nervous system References Jarvik JG, Comstock BA, Kliot M, et al. Surgery versus non-surgical therapy for carpal tunnel syndrome: a randomized ... D. Disorders of peripheral nerves. In: Daroff RB, Fenichel GM, Jankovic J, ...

  20. A new technique for hypoglossal-facial nerve repair.

    PubMed

    Atlas, M D; Lowinger, D S

    1997-07-01

    Hypoglossal reinnervation of the facial nerve may be required after a proximal facial nerve injury. The classic hypoglossal-facial graft procedure involves transection of the donor hypoglossal nerve, resulting in hemiglottic paralysis that, in association with paralysis of other cranial nerves, may cause speech and swallowing difficulties. Multiple lower cranial nerve palsies in conjunction with facial paralysis, as may occur after procedures such as skull base surgery, contraindicate the use of such techniques. The successful use of XII-VII "interposition jump grafts" without hemiglossal weakness has been described However, a prolonged recovery period and weaker facial reanimation have been seen. In order to attain maximum facial reinnervation while preserving hypoglossal function, we have developed a new technique of XII-VII repair. This method involves mobilization of the intratemporal portion of the facial nerve remnant, achieving a single anastomosis with the hypoglossal nerve, which has been partially incised. This technique has been used in three patients to date, with 6 to 11 months follow-up. In all cases facial tone and symmetry have been restored and voluntary facial expression accomplished. The authors conclude that by employing the techniques described highly satisfactory cosmetic and functional results may be expected, without compromising hypoglossal nerve function. PMID:9217143

  1. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. PMID:26420473

  2. Noninvasive subject-specific monitoring of autonomic-cardiac regulation.

    PubMed

    Ataee, Pedram; Hahn, Jin-Oh; Dumont, Guy A; Boyce, W Thomas

    2014-04-01

    This paper presents a feasibility study of a model-based approach to noninvasive and subject-specific monitoring of autonomic-cardiac regulation. The proposed approach is built upon individualizing a physiologically-based model by applying a parameter estimation method to routine clinical observations, thereby assuring physical transparency, computational efficiency, and clinical adaptability. To develop an efficient parameter estimation procedure, a parametric sensitivity analysis was performed on the autonomic-cardiac regulation model to identify high-sensitivity model parameters whose changes exert significant impacts on the system outputs. Then, a parameter estimation problem formulated as a nonlinear optimization was solved to estimate high-sensitivity model parameters associated with autonomic-cardiac regulation, whereas the remaining parameters were fixed at their nominal values. The proposed approach can potentially monitor temporal changes in autonomic-cardiac regulation by identifying time-varying changes in the autonomic-cardiac model parameters, including sympathetic and parasympathetic nerve activities on the heart (modulating heart rate), and sympathetic nerve activity on the arterial tree (modulating total peripheral resistance). The proof-of-concept for the proposed approach was tested using a number of experimental data from the MIMIC database and the orthostatic hypotension tests. Our finding shows that the proposed approach is able to provide low-variance estimates of the autonomic-cardiac model parameters, which are consistent with their anticipated behaviors inferred from the physiologic knowledge. An extensive comparison study must be conducted in the future to establish the clinical validity of the proposed approach. PMID:24658244

  3. Phosphorylated α-synuclein in skin nerve fibres differentiates Parkinson's disease from multiple system atrophy.

    PubMed

    Zange, Leonora; Noack, Cornelia; Hahn, Katrin; Stenzel, Werner; Lipp, Axel

    2015-08-01

    Deposition of phosphorylated SNCA (also known as α-synuclein) in cutaneous nerve fibres has been shown pre- and post-mortem in Parkinson's disease. Thus far, no pre-mortem studies investigating the presence of phosphorylated SNCA in skin sympathetic nerve fibres of multiple system atrophy, another synucleinopathy, have been conducted. In this in vivo study, skin from the ventral forearm of 10 patients with multiple system atrophy and 10 with Parkinson's disease, together with six control subjects with essential tremor, were examined by immunohistochemistry. Phosphorylated SNCA deposits in skin sympathetic nerve fibres and dermal nerve fibre density were assessed. All patients with Parkinson's disease expressed phosphorylated SNCA in sympathetic skin nerve fibres, correlating with an age-independent denervation of autonomic skin elements. In contrast, no phosphorylated SNCA was found in autonomic skin nerve fibres of patients with multiple system atrophy and essential tremor control subjects. These findings support that phosphorylated SNCA deposition is causative for nerve fibre degeneration in Parkinson's disease. Moreover, pre-mortem investigation of phosphorylated SNCA in cutaneous nerve fibres may prove a relevant and easily conductible diagnostic procedure to differentiate Parkinson's disease from multiple system atrophy. PMID:26017579

  4. Pure autonomic failure.

    PubMed

    Garland, Emily M; Hooper, William B; Robertson, David

    2013-01-01

    A 1925 report by Bradbury and Eggleston first described patients with extreme orthostatic hypotension and a low, steady heart rate. Evidence accumulated over the next two decades that patients with orthostatic hypotension include those with pure autonomic failure (PAF), characterized by isolated peripheral autonomic dysfunction and decreased norepinephrine synthesis; multiple system atrophy (MSA) with symptoms of a central Parkinson-like syndrome and normal resting plasma norepinephrine; and Parkinson's disease (PD), with lesions in postganglionic noradrenergic neurons and signs of autonomic dysfunction. All three disorders are classified as α-synucleinopathies. Insoluble deposits of α-synuclein are found in glia in MSA, whereas they take the form of neuronal cytoplasmic inclusions called Lewy bodies in PAF and PD. The exact relationship between α-synuclein deposits and the pathology remains undetermined. PAF occurs sporadically, and progresses slowly with a relatively good prognosis. However, it has been proposed that some cases of PAF may develop a central neurodegenerative disorder. Differentiation between PAF, MSA, and PD with autonomic failure can be facilitated by a number of biochemical and functional tests and by imaging studies. Cardiac sympathetic innervation is generally intact in MSA but decreased or absent in Parkinson's disease with autonomic failure and PAF. Treatment of PAF is directed at relieving symptoms with nonpharmacological interventions and with medications producing volume expansion and vasoconstriction. Future studies should focus on determining the factors that lead to central rather than solely peripheral neurodegeneration. PMID:24095130

  5. Thinking Ahead: Autonomic Buildings

    SciTech Connect

    Brambley, Michael R. )

    2002-08-31

    The time has come for the commercial buildings industries to reconsider the very nature of the systems installed in facilities today and to establish a vision for future buildings that differs from anything in the history of human shelter. Drivers for this examination include reductions in building operation staffs; uncertain costs and reliability of electric power; growing interest in energy-efficient and resource-conserving?green? and?high-performance? commercial buildings; and a dramatic increase in security concerns since the tragic events of September 11. This paper introduces a new paradigm? autonomic buildings? which parallels the concept of autonomic computing, introduced by IBM as a fundamental change in the way computer networks work. Modeled after the human nervous system,?autonomic systems? themselves take responsibility for a large portion of their own operation and even maintenance. For commercial buildings, autonomic systems could provide environments that afford occupants greater opportunity to focus on the things we do in buildings rather than on operation of the building itself, while achieving higher performance levels, increased security, and better use of energy and other natural resources. The author uses the human body and computer networking to introduce and illustrate this new paradigm for high-performance commercial buildings. He provides a vision for the future of commercial buildings based on autonomicity, identifies current research that could contribute to this future, and highlights research and technological gaps. The paper concludes with a set of issues and needs that are key to converting this idealized future into reality.

  6. Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases.

    PubMed

    He, Bo; Lu, Zhibing; He, Wenbo; Huang, Bing; Jiang, Hong

    2016-06-01

    The cardiac autonomic nervous system has been known to play an important role in the development and progression of cardiovascular diseases. Autonomic modulation by electrical stimulation of the parasympathetic nervous system, which increases the parasympathetic activity and suppresses the sympathetic activity, is emerging as a therapeutic strategy for the treatment of cardiovascular diseases. Here, we review the recent literature on autonomic modulation by electrical stimulation of the parasympathetic nervous system, including vagus nerve stimulation, transcutaneous auricular vagal stimulation, spinal cord stimulation, and ganglionated plexi stimulation, in the treatment of heart failure, atrial fibrillation, and ventricular arrhythmias. PMID:26914959

  7. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  8. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1986-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  9. Exercise and autonomic function.

    PubMed

    Goldsmith, R L; Bloomfield, D M; Rosenwinkel, E T

    2000-03-01

    The complex interplay between the dichotomous subdivisions of the autonomic nervous system establishes and maintains a delicately tuned homeostasis in spite of an ever-changing environment. Aerobic exercise training can increase activity of the parasympathetic nervous system and decrease sympathetic activity. Conversely, it is well-documented that cardiac disease is often characterized by attenuated parasympathetic activity and heightened sympathetic tone. A correlation between autonomic disequilibrium and disease has led to the hypothesis that exercise training, as a therapy that restores the autonomic nervous system towards normal function, may be associated with, and possibly responsible for, outcome improvements in various populations. This is merely one of the many benefits that is conferred by chronic exercise training and reviewed in this issue. PMID:10758814

  10. A flexible platform for biofeedback-driven control and personalization of electrical nerve stimulation therapy.

    PubMed

    Ward, Matthew P; Qing, Kurt Y; Otto, Kevin J; Worth, Robert M; John, Simon W M; Irazoqui, Pedro P

    2015-05-01

    Electrical vagus nerve stimulation is a treatment alternative for many epileptic and depressed patients whose symptoms are not well managed with pharmaceutical therapy. However, the fixed stimulus, open loop dosing mechanism limits its efficacy and precludes major advances in the quality of therapy. A real-time, responsive form of vagus nerve stimulation is needed to control nerve activation according to therapeutic need. This personalized approach to therapy will improve efficacy and reduce the number and severity of side effects. We present autonomous neural control, a responsive, biofeedback-driven approach that uses the degree of measured nerve activation to control stimulus delivery. We demonstrate autonomous neural control in rats, showing that it rapidly learns how to most efficiently activate any desired proportion of vagal A, B, and/or C fibers over time. This system will maximize efficacy by minimizing patient response variability and by minimizing therapeutic failures resulting from longitudinal decreases in nerve activation with increasing durations of treatment. The value of autonomous neural control equally applies to other applications of electrical nerve stimulation. PMID:25167554

  11. Radial Nerve Tendon Transfers.

    PubMed

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  12. The Autonomous Helicopter System

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.

    1984-06-01

    This paper describes an autonomous airborne vehicle being developed at the Georgia Tech Engineering Experiment Station. The Autonomous Helicopter System (AHS) is a multi-mission system consisting of three distinct sections: vision, planning and control. Vision provides the local and global scene analysis which is symbolically represented and passed to planning as the initial route planning constraints. Planning generates a task dependent path for the vehicle to traverse which assures maximum mission system success as well as safety. Control validates the path and either executes the given route or feeds back to previous sections in order to resolve conflicts.

  13. Autonomous electrochromic assembly

    DOEpatents

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  14. Cardiovascular autonomic neuropathy

    PubMed Central

    McCarty, Niamh

    2016-01-01

    Cardiovascular autonomic neuropathy often goes unrecognized. We present a case of a 22-year-old man with multiple manifestations of this disease, including weakness, dizziness, fatigue, tachycardia, abnormal QTc, and orthostasis, which occurred 2 years after his type 1 diabetes diagnosis. He exhibited parasympathetic denervation with resting tachycardia and exercise intolerance but also had evidence of orthostatic hypotension, which suggests sympathetic denervation. He did not have complete cardiovascular autonomic reflex testing, which would have been helpful, but improved with aggressive diabetes treatment and the increase of beta-blockade. It is important to identify these patients to understand their signs and symptoms and consider appropriate therapies. PMID:27034552

  15. Cardiovascular autonomic neuropathy.

    PubMed

    McCarty, Niamh; Silverman, Barry

    2016-04-01

    Cardiovascular autonomic neuropathy often goes unrecognized. We present a case of a 22-year-old man with multiple manifestations of this disease, including weakness, dizziness, fatigue, tachycardia, abnormal QTc, and orthostasis, which occurred 2 years after his type 1 diabetes diagnosis. He exhibited parasympathetic denervation with resting tachycardia and exercise intolerance but also had evidence of orthostatic hypotension, which suggests sympathetic denervation. He did not have complete cardiovascular autonomic reflex testing, which would have been helpful, but improved with aggressive diabetes treatment and the increase of beta-blockade. It is important to identify these patients to understand their signs and symptoms and consider appropriate therapies. PMID:27034552

  16. Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies

    PubMed Central

    Canning, Brendan J.; Merlo-Pich, Emilio; Woodcock, Ashley A.; Smith, Jaclyn A.

    2015-01-01

    Rationale: Neuroplasticity of bronchopulmonary afferent neurons that respond to mechanical and chemical stimuli may sensitize the cough reflex. Afferent drive in cough is carried by the vagus nerve, and vagal afferent nerve terminals have been well defined in animals. Yet, both unmyelinated C fibers and particularly the morphologically distinct, myelinated, nodose-derived mechanoreceptors described in animals are poorly characterized in humans. To date there are no distinctive molecular markers or detailed morphologies available for human bronchopulmonary afferent nerves. Objectives: Morphologic and neuromolecular characterization of the afferent nerves that are potentially involved in cough in humans. Methods: A whole-mount immunofluorescence approach, rarely used in human lung tissue, was used with antibodies specific to protein gene product 9.5 (PGP9.5) and, for the first time in human lung tissue, 200-kD neurofilament subunit. Measurements and Main Results: We have developed a robust technique to visualize fibers consistent with autonomic and C fibers and pulmonary neuroendocrine cells. A group of morphologically distinct, 200-kD neurofilament-immunopositive myelinated afferent fibers, a subpopulation of which did not express PGP9.5, was also identified. Conclusions: PGP9.5-immunonegative nerves are strikingly similar to myelinated airway afferents, the cough receptor, and smooth muscle–associated airway receptors described in rodents. These have never been described in humans. Full description of human airway nerves is critical to the translation of animal studies to the clinical setting. PMID:25906337

  17. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    PubMed

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. PMID:27094893

  18. Dysfunctional penile cholinergic nerves in diabetic impotent men

    SciTech Connect

    Blanco, R.; Saenz de Tejada, I.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1990-08-01

    Impotence in the diabetic man may be secondary to a neuropathic condition of the autonomic penile nerves. The relationship between autonomic neuropathy and impotence in diabetes was studied in human corporeal tissue obtained during implantation of a penile prosthesis in 19 impotent diabetic and 15 nondiabetic patients. The functional status of penile cholinergic nerves was assessed by determining their ability to accumulate tritiated choline (34), and synthesize (34) and release (19) tritiated-acetylcholine after incubation of corporeal tissue with tritiated-choline (34). Tritiated-choline accumulation, and tritiated-acetylcholine synthesis and release were significantly reduced in the corporeal tissue from diabetic patients compared to that from nondiabetic patients (p less than 0.05). The impairment in acetylcholine synthesis worsened with the duration of diabetes (p less than 0.025). No differences in the parameters measured were found between insulin-dependent (11) and noninsulin-dependent (8) diabetic patients. The ability of the cholinergic nerves to synthesize acetylcholine could not be predicted clinically with sensory vibration perception threshold testing. It is concluded that there is a functional penile neuropathic condition of the cholinergic nerves in the corpus cavernosum of diabetic impotent patients that may be responsible for the erectile dysfunction.

  19. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  20. Common peroneal nerve dysfunction

    MedlinePlus

    ... people: Who are very thin (for example, from anorexia nervosa ) Who have certain autoimmune conditions, such as ... Elsevier; 2013:chap 22. Read More Alertness - decreased Anorexia Broken bone Diabetes and nerve damage Mononeuritis multiplex ...

  1. Ulnar nerve dysfunction

    MedlinePlus

    ... pressure on the elbow An elbow fracture or dislocation Temporary pain and tingling of this nerve can ... Saunders; 2011:chap 428. Read More Broken bone Dislocation Mononeuritis multiplex Mononeuropathy Myelin Peripheral neuropathy Systemic Update ...

  2. Diabetic Nerve Problems

    MedlinePlus

    ... at the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get ... you change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. ...

  3. Ulnar nerve dysfunction

    MedlinePlus

    ... surface of the body where it crosses the elbow. The damage destroys the nerve covering ( myelin sheath) ... be caused by: Long-term pressure on the elbow An elbow fracture or dislocation Temporary pain and ...

  4. Femoral nerve dysfunction

    MedlinePlus

    Neuropathy - femoral nerve; Femoral neuropathy ... Craig EJ, Clinchot DM. Femoral neuropathy. In: Frontera WR, Silver JK, Rizzo TD Jr, eds. Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation . 3rd ...

  5. Diabetic Nerve Problems

    MedlinePlus

    ... the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. ... change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. Controlling ...

  6. Femoral nerve dysfunction

    MedlinePlus

    ... An abnormal knee reflex Smaller than normal quadriceps muscles on the front of the thigh Tests that may be done include: Electromyography ( EMG ) Nerve conduction tests ( NCV ), usually done at ...

  7. Schwannoma of Extraocular Nerves

    PubMed Central

    Niazi, Wasim; Boggan, James E.

    1994-01-01

    An unusual case of schwannoma arising from the third cranial nerve in a thirteen year old male is reported. The patient presented with paresis of the right oculomotor nerve and ipsilateral hemiparesis. The clinical features of this case are discussed and the pertinent medical literature reviewed. ImagesFigure 1p220-bFigure 2Figure 3Figure 4Figure 5Figure 6 PMID:17171175

  8. Vestibular influences on autonomic cardiovascular control in humans.

    PubMed

    Biaggioni, I; Costa, F; Kaufmann, H

    1998-01-01

    There is substantial evidence that anatomical connections exist between vestibular and autonomic nuclei. Animal studies have shown functional interactions between the vestibular and autonomic systems. The nature of these interactions, however, is complex and has not been fully defined. Vestibular stimulation has been consistently found to reduce blood pressure in animals. Given the potential interaction between vestibular and autonomic pathways this finding could be explained by a reduction in sympathetic activity. However, rather than sympathetic inhibition, vestibular stimulation has consistently been shown to increase sympathetic outflow in cardiac and splanchnic vascular beds in most experimental models. Several clinical observations suggest that a link between vestibular and autonomic systems may also exist in humans. However, direct evidence for vestibular/autonomic interactions in humans is sparse. Motion sickness has been found to induce forearm vasodilation and reduce baroreflex gain, and head down neck flexion induces transient forearm and calf vasoconstriction. On the other hand, studies using optokinetic stimulation have found either very small, variable, or inconsistent changes in heart rate and blood pressure, despite substantial symptoms of motion sickness. Furthermore, caloric stimulation severe enough to produce nystagmus, dizziness, and nausea had no effect on sympathetic nerve activity measured directly with microneurography. No effect was observed on heart rate, blood pressure, or plasma norepinephrine. Several factors may explain the apparent discordance of these results, but more research is needed before we can define the potential importance of vestibular input to cardiovascular regulation and orthostatic tolerance in humans. PMID:9416587

  9. Vestibular influences on autonomic cardiovascular control in humans

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Costa, F.; Kaufmann, H.; Robertson, D. (Principal Investigator)

    1998-01-01

    There is substantial evidence that anatomical connections exist between vestibular and autonomic nuclei. Animal studies have shown functional interactions between the vestibular and autonomic systems. The nature of these interactions, however, is complex and has not been fully defined. Vestibular stimulation has been consistently found to reduce blood pressure in animals. Given the potential interaction between vestibular and autonomic pathways this finding could be explained by a reduction in sympathetic activity. However, rather than sympathetic inhibition, vestibular stimulation has consistently been shown to increase sympathetic outflow in cardiac and splanchnic vascular beds in most experimental models. Several clinical observations suggest that a link between vestibular and autonomic systems may also exist in humans. However, direct evidence for vestibular/autonomic interactions in humans is sparse. Motion sickness has been found to induce forearm vasodilation and reduce baroreflex gain, and head down neck flexion induces transient forearm and calf vasoconstriction. On the other hand, studies using optokinetic stimulation have found either very small, variable, or inconsistent changes in heart rate and blood pressure, despite substantial symptoms of motion sickness. Furthermore, caloric stimulation severe enough to produce nystagmus, dizziness, and nausea had no effect on sympathetic nerve activity measured directly with microneurography. No effect was observed on heart rate, blood pressure, or plasma norepinephrine. Several factors may explain the apparent discordance of these results, but more research is needed before we can define the potential importance of vestibular input to cardiovascular regulation and orthostatic tolerance in humans.

  10. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  11. Developing Autonomous Learners.

    ERIC Educational Resources Information Center

    Mulcahy, Robert F.

    1991-01-01

    Defines the concept of autonomous learning. Presents the Strategies Program for Effective Learning/Thinking (SPELT), including its underlying assumptions, instructional model, teacher training procedures, research findings, and anticipated future development. Research results include implications for learning-disabled and gifted students. (KS)

  12. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  13. Autonomic pain: features and methods of assessment

    SciTech Connect

    Gandhavadi, B.; Rosen, J.S.; Addison, R.G.

    1982-01-01

    The distribution of pain originating in the sympathetic nervous system does not match the somatic segmental sensory distribution at the postganglionic level. The two types of distribution are separate and different. At the preganglionic level, fibers show typical segmental sensory distribution, which resembles but is not identical to somatic segmental sensory distribution. Instead, sympathetic pain has its own distribution along the vascular supply and some peripheral nerves. It cannot be called atypical in terms of somatic segmental sensory distribution. Several techniques are available to assess autonomic function in cases of chronic pain. Infrared thermography is superior to any other physiologic or pharmacologic method to assess sympathetic function. Overactivity of sympathetic function in the area of pain is the probable cause of temperature reduction in that area. Accordingly it would appear that in cases in which thermography demonstrates decreased temperature, sympathetic block or sympathectomy would provide relief from the pain.

  14. Sural nerve defects after nerve biopsy or nerve transfer as a sensory regeneration model for peripheral nerve conduit implantation.

    PubMed

    Radtke, C; Kocsis, J D; Reimers, K; Allmeling, C; Vogt, P M

    2013-09-01

    Nerve repair after injury can be effectively accomplished by direct suture approximation of the proximal and distal segments. This is more successful if coadaptation can be achieved without tension. Currently, the gold standard repair of larger deficits is the transplantation of an autologous sensory sural nerve graft. However, a significant disadvantage of this technique is the inevitable donor morbidity (sensory loss, neuroma and scar formation) after harvesting of the sural nerve. Moreover, limitation of autologous donor nerve length and fixed diameter of the available sural nerve are major drawbacks of current autograft treatment. Another approach that was introduced for nerve repair is the implantation of alloplastic nerve tubes made of, for example, poly-L-lactide. In these, nerve stumps of the transected nerves are surgically bridged using the biosynthetic conduit. A number of experimental studies, primarily in rodents, indicate axonal regeneration and remyelination after implantation of various conduits. However, only limited clinical studies with conduit implantation have been performed in acute peripheral nerve injuries particularly on digital nerves. Clinical transfer of animal studies, which can be carefully calibrated for site and extent of injury, to humans is difficult to interpret due to the intrinsic variability in human nerve injuries. This prevents effective quantification of improvement and induces bias in the study. Therefore, standardization of lesion/repair in human studies is warranted. Here we propose to use sural nerve defects, induced due to nerve graft harvesting or from diagnostic nerve biopsies as a model site to enable standardization of nerve conduit implantation. This would help better with the characterization of the implants and its effectiveness in axonal regeneration and remyelination. Nerve regeneration can be assessed, for example, by recovery of sensation, measured non-invasively by threshold to von Frey filaments and cold

  15. Software Architecture for Autonomous Spacecraft

    NASA Technical Reports Server (NTRS)

    Shih, Jimmy S.

    1997-01-01

    The thesis objective is to design an autonomous spacecraft architecture to perform both deliberative and reactive behaviors. The Autonomous Small Planet In-Situ Reaction to Events (ASPIRE) project uses the architecture to integrate several autonomous technologies for a comet orbiter mission.

  16. Glucagon Release Induced by Pancreatic Nerve Stimulation in the Dog

    PubMed Central

    Marliss, Errol B.; Girardier, Lucien; Seydoux, Josiane; Wollheim, Claes B.; Kanazawa, Yasunori; Orci, Lelio; Renold, Albert E.; Porte, Daniel

    1973-01-01

    A direct neural role in the regulation of immunoreactive glucagon (IRG) secretion has been investigated during stimulation of mixed autonomic nerves to the pancreas in anesthetized dogs. The responses were evaluated by measurement of blood flow and hormone concentration in the venous effluent from the stimulated region of pancreas. Electrical stimulation of the distal end of the discrete bundles of nerve fibers isolated along the superior pancreaticoduodenal artery was invariably followed by an increase in IRG output. With 10-min periods of nerve stimulation, the integrated response showed that the higher the control glucagon output, the greater was the increment. Atropinization did not influence the response to stimulation. That the preparation behaved in physiologic fashion was confirmed by a fall in IRG output, and a rise in immunoreactive insulin (IRI) output, during hyperglycemia induced by intravenous glucose (0.1 g/kg). The kinetics of this glucose effect on IRG showed characteristics opposite to those of nerve stimulation: the lower the control output, the less the decrement. Furthermore, during the control steady state, blood glucose concentration was tightly correlated with the IRI/IRG molar output ratio, the function relating the two parameters being markedly nonlinear. Injection or primed infusion of glucose diminished the IRG response to simultaneous nerve stimulation. Measurement of IRG was inferred to reflect response of pancreatic glucagon secretion on the basis of the site of sample collection (the superior pancreaticoduodenal vein), the absence of changes in arterial IRG, and similar responses being obtained using an antibody specific for pancreatic glucagon. These studies support a role for the autonomic nervous system in the control of glucagon secretion: direct nerve stimulation induces glucagon release. Such sympathetic activation may be interpreted as capable of shifting the sensitivity of the A cell to glucose in the direction of higher

  17. Facial Nerve Outcome after Vestibular Schwannoma Surgery: Our Experience*

    PubMed Central

    Rinaldi, Vittorio; Casale, Manuele; Bressi, Federica; Potena, Massimiliano; Vesperini, Emanuela; De Franco, Antonio; Silvestri, Sergio; Zini, Carlo; Salvinelli, Fabrizio

    2012-01-01

    In this study we evaluate the postoperative facial nerve function after vestibular schwannoma (VS) surgery and analyze the factors that cause it. We included 97 consecutive patients undergoing surgical excision of sporadic unilateral VS. Patient and tumor characteristics, surgical approaches, facial nerve function, extent of tumor removal, perioperative complications are all analyzed through standardized systems. Four different surgical approaches are used: translabyrinthine, retrolabyrinthine, retrosigmoid, and middle cranial fossa. Anatomic preservation of the facial nerve is achieved in 97% of patients. The incidence of postoperative facial palsy is found to be statistically correlated to tumor size, but not to the surgical approach used and to extent of tumor penetration in the internal auditory canal. A significant improvement of the short-term facial nerve outcome is detected in patients undergone simultaneous intraoperative electromyography (EMG) and pneumatic facial nerve monitoring. Complete tumor excision is achieved in 94% of cases. Complication rates are excellent and no deaths are reported. Short- and long-term facial nerve outcome is good and comparable with those of other series reported in literature. In VS surgery both EMG and pneumatic facial nerve monitors should be simultaneously used. Further investigations are desirable to improve the facial outcome respecting the oncological radicality. PMID:23372991

  18. Formax Preserved Birds

    ERIC Educational Resources Information Center

    Sheridan, Philip

    1978-01-01

    A quick, simple method for preserving bird specimens using borax and a formalin solution is described. Procedures for injecting and mounting the specimens are given along with certain restrictions on preserving specimens. (MA)

  19. Influence of cigarette smoking on human autonomic function

    NASA Technical Reports Server (NTRS)

    Niedermaier, O. N.; Smith, M. L.; Beightol, L. A.; Zukowska-Grojec, Z.; Goldstein, D. S.; Eckberg, D. L.

    1993-01-01

    BACKGROUND. Although cigarette smoking is known to lead to widespread augmentation of sympathetic nervous system activity, little is known about the effects of smoking on directly measured human sympathetic activity and its reflex control. METHODS AND RESULTS. We studied the acute effects of smoking two research-grade cigarettes on muscle sympathetic nerve activity and on arterial baroreflex-mediated changes of sympathetic and vagal neural cardiovascular outflows in eight healthy habitual smokers. Measurements were made during frequency-controlled breathing, graded Valsalva maneuvers, and carotid baroreceptor stimulation with ramped sequences of neck pressure and suction. Smoking provoked the following changes: Arterial pressure increased significantly, and RR intervals, RR interval spectral power at the respiratory frequency, and muscle sympathetic nerve activity decreased. Plasma nicotine levels increased significantly, but plasma epinephrine, norepinephrine, and neuropeptide Y levels did not change. Peak sympathetic nerve activity during and systolic pressure overshoots after Valsalva straining increased significantly in proportion to increases of plasma nicotine levels. The average carotid baroreceptor-cardiac reflex relation shifted rightward and downward on arterial pressure and RR interval axes; average gain, operational point, and response range did not change. CONCLUSIONS. In habitual smokers, smoking acutely reduces baseline levels of vagal-cardiac nerve activity and completely resets vagally mediated arterial baroreceptor-cardiac reflex responses. Smoking also reduces muscle sympathetic nerve activity but augments increases of sympathetic activity triggered by brief arterial pressure reductions. This pattern of autonomic changes is likely to influence smokers' responses to acute arterial pressure reductions importantly.

  20. Ultrasound in Dual Nerve Impairment after Proximal Radial Nerve Lesion

    PubMed Central

    Lämmer, Alexandra B; Schwab, Stefan; Schramm, Axel

    2015-01-01

    Introduction Sonography in classical nerve entrapment syndromes is an established and validated method. In contrast, few publications highlight lesions of the radial nerve, particularly of the posterior interosseus nerve (PIN). Method Five patients with a radial nerve lesion were investigated by electromyography, nerve conduction velocity and ultrasound. Further normative values of 26 healthy subjects were evaluated. Results Four patients presented a clinical and electrophysiological proximal axonal radial nerve lesion and one patient showed a typical posterior interosseous nerve syndrome (PINS). The patient with PINS presented an enlargement of the PIN anterior to the supinator muscle. However four patients with proximal lesions showed an unexpected significant enlargement of the PIN within the supinator muscle. Conclusion High-resolution sonography is a feasible method to demonstrate the radial nerve including its distal branches. At least in axonal radial nerve lesions, sonography might reveal abnormalities far distant from a primary proximal lesion site clearly distinct from the appearance in classical PINS. PMID:25992766

  1. [Biophysics of nerve excitation].

    PubMed

    Kol'e, O R; Maksimov, G V

    2010-01-01

    The studies testifying to the presence of the interrelation between the physiological functions of the organism and physical and chemical processes in nerves are discussed. Changes in some physical and chemical parameters observed both upon elicited rhythmic exaltation of nerves and during the spontaneous rhythmic activity of neurons are analyzed. Upon rhythmic exaltation, a complex of physical and chemical processes is triggered, and reversible structural and metabolic rearrangements at the subcellular and molecular levels occur that do not take place during the generation of a single action potential. Thus, only in conditions of rhythmic exaltation of a nerve, it is possible to reveal those processes that provide exaltation of nerves in the organism. The future possibilities of the investigations combining the biophysical and physiological approaches are substantiated. Characteristic changes in physicochemical parameters are observed in nerves during the generation of a series of action potentials of different frequency and duration ("frequency dependence") under normal physiological conditions, as well as in extreme situations and in nerve pathology. The structural and metabolic rearrangements are directly related to the mode of rhythmic exaltation and proceed both in the course of rhythmic exaltation and after its termination. Participation and the basic components of the nervous fulcrum (an axon, Shwan cell, myelin, subcellular organelles) in the realization of rhythmic exaltation is shown. In the coordination of all processes involved in rhythmic exaltation, the main role is played by the systems of redistribution and transport of intercellular and endocellular calcium. The idea is put forward that myelin of nerve fibers is not only an isolator, but also an "intercellular depot" of calcium and participates in the redistribution of different ions. Thus, the rhythmic excitation is of great importance in the realization of some physiological functions, the

  2. Respiratory modulation of human autonomic rhythms

    NASA Technical Reports Server (NTRS)

    Badra, L. J.; Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    2001-01-01

    We studied the influence of three types of breathing [spontaneous, frequency controlled (0.25 Hz), and hyperventilation with 100% oxygen] and apnea on R-R interval, photoplethysmographic arterial pressure, and muscle sympathetic rhythms in nine healthy young adults. We integrated fast Fourier transform power spectra over low (0.05-0.15 Hz) and respiratory (0.15-0.3 Hz) frequencies; estimated vagal baroreceptor-cardiac reflex gain at low frequencies with cross-spectral techniques; and used partial coherence analysis to remove the influence of breathing from the R-R interval, systolic pressure, and muscle sympathetic nerve spectra. Coherence among signals varied as functions of both frequency and time. Partialization abolished the coherence among these signals at respiratory but not at low frequencies. The mode of breathing did not influence low-frequency oscillations, and they persisted during apnea. Our study documents the independence of low-frequency rhythms from respiratory activity and suggests that the close correlations that may exist among arterial pressures, R-R intervals, and muscle sympathetic nerve activity at respiratory frequencies result from the influence of respiration on these measures rather than from arterial baroreflex physiology. Most importantly, our results indicate that correlations among autonomic and hemodynamic rhythms vary over time and frequency, and, thus, are facultative rather than fixed.

  3. Injection nerve palsy

    PubMed Central

    Kakati, Arindhom; Bhat, Dhananjaya; Devi, Bhagavathula Indira; Shukla, Dhaval

    2013-01-01

    Objective: To study the clinical profile and outcome of surgery for injection nerve palsies. Materials and Methods: This is a retrospective study of patients with INP who were treated at our institute during May 2000 to May 2009. Clinical, electroneuromyography (ENMG), and operative findings were noted. Intraoperative nerve action potential monitoring was not used in any case. Outcome of patients who were followed was reviewed. Results: INP comprised 92 (11%) of 837 nerve injury patients. Seventy one patients were children less than 16 years. The nerves involved were sciatic in 80 patients, radial in 8, and others in four. Fifty seven patients had power, grade 0/5. ENMG studies revealed absent compound muscle action potential in 64 and absent sensory nerve action potential in 67 patients. Thirty nine (42.3%) of 92 patients underwent surgery. The mean duration since injury in these patients was 5.2 months (3 months to 11 months). All underwent neurolysis. Only 18 patients who underwent surgery had a follow up of more than 3 months. Ten (55.5%) patients had good or fair outcome after surgery. Except for grade of motor deficit prior to surgery, none of the variables were found to significantly affect the outcome. Conclusion: The outcome of INP is generally good and many patients recover spontaneously. The outcome of surgery is dependent on preoperative motor power. PMID:23546341

  4. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  5. Mobile Autonomous Humanoid Assistant

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  6. Barriers of the peripheral nerve

    PubMed Central

    Peltonen, Sirkku; Alanne, Maria; Peltonen, Juha

    2013-01-01

    This review introduces the traditionally defined anatomic compartments of the peripheral nerves based on light and electron microscopic topography and then explores the cellular and the most recent molecular basis of the different barrier functions operative in peripheral nerves. We also elucidate where, and how, the homeostasis of the normal human peripheral nerve is controlled in situ and how claudin-containing tight junctions contribute to the barriers of peripheral nerve. Also, the human timeline of the development of the barriers of the peripheral nerve is depicted. Finally, potential future therapeutic modalities interfering with the barriers of the peripheral nerve are discussed. PMID:24665400

  7. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  8. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.

  9. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.

  10. Trigeminal autonomic cephalalgias.

    PubMed

    Eller, M; Goadsby, P J

    2016-01-01

    The trigeminal autonomic cephalalgias (TACs) are a group of primary headache disorders characterised by lateralized symptoms: prominent headache and ipsilateral cranial autonomic features, such as conjunctival injection, lacrimation and rhinorrhea. The TACs are: cluster headache (CH), paroxysmal hemicrania (PH), short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT)/short-lasting neuralgiform headache attacks with cranial autonomic features (SUNA) and hemicrania continua (HC). Their diagnostic criteria are outlined in the International Classification of Headache Disorders, third edition-beta (ICHD-IIIb). These conditions are distinguished by their attack duration and frequency, as well as response to treatment. HC is continuous and by definition responsive to indomethacin. The main differential when considering this headache is chronic migraine. Other TACs are remarkable for their short duration and must be distinguished from other short-lasting painful conditions, such as trigeminal neuralgia and primary stabbing headache. Cluster headache is characterised by exquisitely painful attacks that occur in discrete episodes lasting 15-180 min a few times a day. In comparison, PH occurs more frequently and is of shorter duration, and like HC is responsive to indomethacin. SUNCT/SUNA is the shortest duration and highest frequency TAC; attacks can occur over a hundred times every day. PMID:24888770

  11. Patterning of sympathetic nerve activity in response to vestibular stimulation

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  12. Fibrolipomatous hamartoma of the inferior calcaneal nerve (Baxter nerve).

    PubMed

    Zeng, Rong; Frederick-Dyer, Katherine; Ferguson, N Lynn; Lewis, James; Fu, Yitong

    2012-09-01

    Fibrolipomatous hamartoma (FLH) is a rare, benign lesion of the peripheral nerves most frequently involving the median nerve and its digital branches (80 %). Pathognomonic MR features of FLH such as coaxial-cable-like appearance on axial planes and a spaghetti-like appearance on coronal planes have been described by Marom and Helms, obviating the need for diagnostic biopsy. We present a case of fibrolipomatous hamartoma of the inferior calcaneal nerve (Baxter nerve) with associated subcutaneous fat proliferation. PMID:22526881

  13. Vagal and sympathetic nerve activities influenced by posterior cerebral circulation in rabbits.

    PubMed

    Yamamoto, K; Kubo, T; Matsunaga, T

    1993-01-01

    Vagal and sympathetic nervous activities in the rabbit were recorded while vertebral blood flow was partially blocked by the injection of adenosine 5'-diphosphate (ADP; platelet aggregator). When a small dose of ADP (0.2 mg/kg) was administered into a unilateral vertebral artery, sympathetic nerve (SN) activity increased, and its magnitude was inversely correlated with the extent of the decrease in blood pressure (BP). A larger dose (2 mg/kg) of ADP suppressed SN activity on the injected side, whereas the change was small on the non-injected side. Vagal nerve (VN) activity showed a monophasic excitatory response on both sides, although the change was larger on the injected than on the non-injected side. As a result, asymmetry in autonomic nerve activity was more distinct in SN than in VN. The present study demonstrated that asymmetry of autonomic nervous function can result from changes in blood flow in the cerebellum and brainstem. PMID:8256597

  14. What Are Nerve Blocks for Headache?

    MedlinePlus

    ... nerve blocks for headache? Print Email What are nerve blocks for headache? ACHE Newsletter Sign up for ... entering your e-mail address below. What are nerve blocks for headache? A nerve block is the ...

  15. [Preservatives in ophthalmology].

    PubMed

    Messmer, E M

    2012-11-01

    Preservatives are a legal requirement for eye drops in multidose containers. Moreover, they are necessary for stabilization and intraocular penetration for a number of ophthalmic preparations. Most preservatives act in a relatively unspecific manner as detergents or by oxidative mechanisms and thereby cause side effects at the ocular surface. They may also affect the lens, trabecular meshwork and the retina. Benzalkonium chloride is the most commonly used preservative in ophthalmology and is more toxic than other or newer preservatives, such as polyquaternium-1 (Polyquad), sodium perborate, oxychloro-complex (Purite®) and SofZia. Preservative-free topical medication is highly recommended for patients with ocular surface disease, frequent eye drop administration, proven allergy to preservatives and contact lens wear. PMID:23179809

  16. Optic nerve hypoplasia in children.

    PubMed Central

    Zeki, S. M.; Dutton, G. N.

    1990-01-01

    Optic nerve hypoplasia (ONH) is characterised by a diminished number of optic nerve fibres in the optic nerve(s) and until recently was thought to be rare. It may be associated with a wide range of other congenital abnormalities. Its pathology, clinical features, and the conditions associated with it are reviewed. Neuroendocrine disorders should be actively sought in any infant or child with bilateral ONH. Early recognition of the disorder may in some cases be life saving. Images PMID:2191713

  17. Differential responses of components of the autonomic nervous system.

    PubMed

    Goldstein, David S

    2013-01-01

    This chapter conveys several concepts and points of view about the scientific and medical significance of differential alterations in activities of components of the autonomic nervous system in stress and disease. The use of terms such as "the autonomic nervous system," "autonomic failure," "dysautonomia," and "autonomic dysfunction" imply the existence of a single entity; however, the autonomic nervous system has functionally and neurochemically distinctive components, which are reflected in differential responses to stressors and differential involvement in pathophysiologic states. One can conceptualize the autonomic nervous system as having at least five components: the sympathetic noradrenergic system, the sympathetic cholinergic system, the parasympathetic cholinergic system, the sympathetic adrenergic system, and the enteric nervous system. Evidence has accumulated for differential noradrenergic vs. adrenergic responses in various situations. The largest sympathetic adrenergic system responses are seen when the organism encounters stressors that pose a global or metabolic threat. Sympathetic noradrenergic system activation dominates the responses to orthostasis, moderate exercise, and exposure to cold, whereas sympathetic adrenergic system activation dominates those to glucoprivation and emotional distress. There seems to be at least as good a justification for the concept of coordinated adrenocortical-adrenomedullary responses as for coordinated adrenomedullary-sympathoneural responses in stress. Fainting reactions involve differential adrenomedullary hormonal vs. sympathetic noradrenergic activation. Parkinson disease entails relatively selective dysfunction of the sympathetic noradrenergic system, with prominent loss of noradrenergic nerves in the heart, yet normal adrenomedullary function. Allostatic load links stress with degenerative diseases, and Parkinson disease may be a disease of the elderly because of allostatic load. PMID:24095112

  18. Optic Nerve Atrophy

    MedlinePlus

    ... with the occipital lobe (the part of the brain that interprets vision) like a cable wire. What is optic nerve ... nystagmus. In older patients, peripheral vision and color vision assessment ... around the brain and spinal cord (hydrocephalus) may prevent further optic ...

  19. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  20. Optic Nerve Drusen

    MedlinePlus

    ... the drusen enlarge and the overlying tissue (nerve fiber layer) thins with age, the disc drusen become more apparent. How are optic disc drusen treated? There is no treatment for drusen. In the rare cases (with choroidal neovascularization) laser treatment may be indicated. Revised March 2016 Eye ...

  1. Autonomic neural control of heart rate during dynamic exercise: revisited

    PubMed Central

    White, Daniel W; Raven, Peter B

    2014-01-01

    The accepted model of autonomic control of heart rate (HR) during dynamic exercise indicates that the initial increase is entirely attributable to the withdrawal of parasympathetic nervous system (PSNS) activity and that subsequent increases in HR are entirely attributable to increases in cardiac sympathetic activity. In the present review, we sought to re-evaluate the model of autonomic neural control of HR in humans during progressive increases in dynamic exercise workload. We analysed data from both new and previously published studies involving baroreflex stimulation and pharmacological blockade of the autonomic nervous system. Results indicate that the PSNS remains functionally active throughout exercise and that increases in HR from rest to maximal exercise result from an increasing workload-related transition from a 4 : 1 vagal–sympathetic balance to a 4 : 1 sympatho–vagal balance. Furthermore, the beat-to-beat autonomic reflex control of HR was found to be dependent on the ability of the PSNS to modulate the HR as it was progressively restrained by increasing workload-related sympathetic nerve activity. In conclusion: (i) increases in exercise workload-related HR are not caused by a total withdrawal of the PSNS followed by an increase in sympathetic tone; (ii) reciprocal antagonism is key to the transition from vagal to sympathetic dominance, and (iii) resetting of the arterial baroreflex causes immediate exercise-onset reflexive increases in HR, which are parasympathetically mediated, followed by slower increases in sympathetic tone as workloads are increased. PMID:24756637

  2. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  3. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  4. C2 nerve dysfunction associated with C1 lateral mass screw fixation.

    PubMed

    Huang, Da-geng; Hao, Ding-jun; Li, Guang-lin; Guo, Hao; Zhang, Yu-chen; He, Bao-rong

    2014-11-01

    The C1 lateral mass screw technique is widely used for atlantoaxial fixation. However, C2 nerve dysfunction may occur as a complication of this procedure, compromising the quality of life of affected patients. This is a review of the topic of C2 nerve dysfunction associated with C1 lateral mass screw fixation and related research developments. The C2 nerve root is located in the space bordered superiorly by the posterior arch of C1 , inferiorly by the C2 lamina, anteriorly by the lateral atlantoaxial joint capsule, and posteriorly by the anterior edge of the ligamentum flavum. Some surgeons suggest cutting the C2 nerve root during C1 lateral mass screw placement, whereas others prefer to preserve it. The incidence, clinical manifestations, causes, management, and prevention of C2 nerve dysfunction associated with C(1) lateral mass screw fixation are reviewed. Sacrifice of the C2 nerve root carries a high risk of postoperative numbness, whereas postoperative nerve dysfunction can occur when it has been preserved. Many surgeons have been working hard on minimizing the risk of postoperative C2 nerve dysfunction associated with C1 lateral mass screw fixation. PMID:25430709

  5. Temperature-controlled optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2013-06-01

    Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.

  6. Temperature-controlled optical stimulation of the rat prostate cavernous nerves.

    PubMed

    Tozburun, Serhat; Hutchens, Thomas C; McClain, Michael A; Lagoda, Gwen A; Burnett, Arthur L; Fried, Nathaniel M

    2013-06-01

    Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (~42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs. PMID:23733025

  7. Role of the autonomic nervous system in tumorigenesis and metastasis

    PubMed Central

    Magnon, Claire

    2015-01-01

    Convergence of multiple stromal cell types is required to develop a tumorigenic niche that nurtures the initial development of cancer and its dissemination. Although the immune and vascular systems have been shown to have strong influences on cancer, a growing body of evidence points to a role of the nervous system in promoting cancer development. This review discusses past and current research that shows the intriguing role of autonomic nerves, aided by neurotrophic growth factors and axon cues, in creating a favorable environment for the promotion of tumor formation and metastasis.

  8. Seasonal variation in muscle sympathetic nerve activity.

    PubMed

    Cui, Jian; Muller, Matthew D; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2015-08-01

    Epidemiologic data suggest there are seasonal variations in the incidence of severe cardiac events with peak levels being evident in the winter. Whether autonomic indices including muscle sympathetic nerve activity (MSNA) vary with season remains unclear. In this report, we tested the hypothesis that resting MSNA varies with the seasons of the year with peak levels evident in the winter. We analyzed the supine resting MSNA in 60 healthy subjects. Each subject was studied during two, three, or four seasons (total 237 visits). MSNA burst rate in the winter (21.0 ± 6.8 burst/min, mean ± SD) was significantly greater than in the summer (13.5 ± 5.8 burst/min, P < 0.001), the spring (17.1 ± 9.0 burst/min, P = 0.03), and the fall (17.9 ± 7.7 burst/min, P = 0.002). There was no significant difference in MSNA for other seasonal comparisons. The results suggest that resting sympathetic nerve activity varies along the seasons, with peak levels evident in the winter. We speculate that the seasonal changes in sympathetic activity may be a contribution to the previously observed seasonal variations in cardiovascular morbidity and mortality. PMID:26265752

  9. Seasonal variation in muscle sympathetic nerve activity

    PubMed Central

    Cui, Jian; Muller, Matthew D; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2015-01-01

    Epidemiologic data suggest there are seasonal variations in the incidence of severe cardiac events with peak levels being evident in the winter. Whether autonomic indices including muscle sympathetic nerve activity (MSNA) vary with season remains unclear. In this report, we tested the hypothesis that resting MSNA varies with the seasons of the year with peak levels evident in the winter. We analyzed the supine resting MSNA in 60 healthy subjects. Each subject was studied during two, three, or four seasons (total 237 visits). MSNA burst rate in the winter (21.0 ± 6.8 burst/min, mean ± SD) was significantly greater than in the summer (13.5 ± 5.8 burst/min, P < 0.001), the spring (17.1 ± 9.0 burst/min, P = 0.03), and the fall (17.9 ± 7.7 burst/min, P = 0.002). There was no significant difference in MSNA for other seasonal comparisons. The results suggest that resting sympathetic nerve activity varies along the seasons, with peak levels evident in the winter. We speculate that the seasonal changes in sympathetic activity may be a contribution to the previously observed seasonal variations in cardiovascular morbidity and mortality. PMID:26265752

  10. Interactions between developing nerves and salivary glands.

    PubMed

    Ferreira, João N; Hoffman, Matthew P

    2013-01-01

    Our aim is to provide a summary of the field of salivary gland development and regeneration from the perspective of what is known about the function of nerves during these processes. The primary function of adult salivary glands is to produce and secrete saliva. Neuronal control of adult salivary gland function has been a focus of research ever since Pavlov's seminal experiments on salivation in dogs. Less is known about salivary gland innervation during development and how the developing nerves influence gland organogenesis and regeneration. Here, we will review what is known about the communication between the autonomic nervous system and the epithelium of the salivary glands during organogenesis. An important emerging theme is the instructive role of the nervous system on the epithelial stem/progenitor cells during development as well as regeneration after damage. We will provide a brief overview of the neuroanatomy of the salivary glands and discuss recent literature that begins to integrate neurobiology with epithelial organogenesis, which may provide paradigms for exploring these interactions in other organ systems. PMID:23974175

  11. Disorders of the lower cranial nerves

    PubMed Central

    Finsterer, Josef; Grisold, Wolfgang

    2015-01-01

    Lesions of the lower cranial nerves (LCN) are due to numerous causes, which need to be differentiated to optimize management and outcome. This review aims at summarizing and discussing diseases affecting LCN. Review of publications dealing with disorders of the LCN in humans. Affection of multiple LCN is much more frequent than the affection of a single LCN. LCN may be affected solely or together with more proximal cranial nerves, with central nervous system disease, or with nonneurological disorders. LCN lesions have to be suspected if there are typical symptoms or signs attributable to a LCN. Causes of LCN lesions can be classified as genetic, vascular, traumatic, iatrogenic, infectious, immunologic, metabolic, nutritional, degenerative, or neoplastic. Treatment of LCN lesions depends on the underlying cause. An effective treatment is available in the majority of the cases, but a prerequisite for complete recovery is the prompt and correct diagnosis. LCN lesions need to be considered in case of disturbed speech, swallowing, coughing, deglutition, sensory functions, taste, or autonomic functions, neuralgic pain, dysphagia, head, pharyngeal, or neck pain, cardiac or gastrointestinal compromise, or weakness of the trapezius, sternocleidomastoid, or the tongue muscles. To correctly assess manifestations of LCN lesions, precise knowledge of the anatomy and physiology of the area is required. PMID:26167022

  12. Autonomous Phase Retrieval Calibration

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Chien, Steve A.; Castano, Rebecca; Gaines, Daniel M.; Doubleday, Joshua R.; Schoolcraft, Josua B.; Oyake, Amalaye; Vaughs, Ashton G.; Torgerson, Jordan L.

    2011-01-01

    The Palomar Adaptive Optics System actively corrects for changing aberrations in light due to atmospheric turbulence. However, the underlying internal static error is unknown and uncorrected by this process. The dedicated wavefront sensor device necessarily lies along a different path than the science camera, and, therefore, doesn't measure the true errors along the path leading to the final detected imagery. This is a standard problem in adaptive optics (AO) called "non-common path error." The Autonomous Phase Retrieval Calibration (APRC) software suite performs automated sensing and correction iterations to calibrate the Palomar AO system to levels that were previously unreachable.

  13. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  14. Autonomous interplanetary constellation design

    NASA Astrophysics Data System (ADS)

    Chow, Cornelius Channing, II

    According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design

  15. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  16. The role of the autonomic nervous system in Tourette Syndrome

    PubMed Central

    Hawksley, Jack; Cavanna, Andrea E.; Nagai, Yoko

    2015-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device

  17. The role of the autonomic nervous system in Tourette Syndrome.

    PubMed

    Hawksley, Jack; Cavanna, Andrea E; Nagai, Yoko

    2015-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device

  18. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  19. Modes of fossil preservation

    USGS Publications Warehouse

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  20. EFFECTS OF HYPERGLYCEMIA ON RAT CAVERNOUS NERVE AXONS: A FUNCTIONAL AND ULTRASTRUCTURAL STUDY

    PubMed Central

    Zotova, Elena G.; Schaumburg, Herbert H.; Raine, Cedric S.; Cannella, Barbara; Tar, Moses; Melman, Arnold; Arezzo, Joseph C.

    2008-01-01

    The present study explored parallel changes in the physiology and structure of myelinated (Aδ) and unmyelinated (C) small diameter axons in the cavernous nerve of rats associated with streptozotocin-induced hyperglycemia. Damage to these axons is thought to play a key role in diabetic autonomic neuropathy and erectile dysfunction, but their pathophysiology has been poorly studied. Velocities in slow conducting fibers were measured by applying multiple unit procedures; histopathology was evaluated with both light and electron microscopy. To our knowledge, these are the initial studies of slow nerve conduction velocities in the distal segments of the cavernous nerve. We report that hyperglycemia is associated with a substantial reduction in the amplitude of the slow conducting response, as well as a slowing of velocities within this very slow range (<2.5 m/sec). Even with prolonged hyperglycemia (> 4 months), histopathological abnormalities were mild and limited to the distal segments of the cavernous nerve. Structural findings included dystrophic changes in nerve terminals, abnormal accumulations of glycogen granules in unmyelinated and preterminal axons, and necrosis of scattered smooth muscle fibers. The onset of slowing of velocity in the distal cavernous nerve occurred subsequent to slowing in somatic nerves in the same rats. The functional changes in the cavernous nerve anticipated and exceeded the axonal degeneration detected by morphology. The physiologic techniques outlined in these studies are feasible in most electrophysiologic laboratories and could substantially enhance our sensitivity to the onset and progression of small fiber diabetic neuropathy. PMID:18687329

  1. Nemesis Autonomous Test System

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  2. Autonomous mobile communication relays

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Everett, Hobart R.; Manouk, Narek; Verma, Ambrish

    2002-07-01

    Maintaining a solid radio communication link between a mobile robot entering a building and an external base station is a well-recognized problem. Modern digital radios, while affording high bandwidth and Internet-protocol-based automatic routing capabilities, tend to operate on line-of-sight links. The communication link degrades quickly as a robot penetrates deeper into the interior of a building. This project investigates the use of mobile autonomous communication relay nodes to extend the effective range of a mobile robot exploring a complex interior environment. Each relay node is a small mobile slave robot equipped with sonar, ladar, and 802.11b radio repeater. For demonstration purposes, four Pioneer 2-DX robots are used as autonomous mobile relays, with SSC-San Diego's ROBART III acting as the lead robot. The relay robots follow the lead robot into a building and are automatically deployed at various locations to maintain a networked communication link back to the remote operator. With their on-board external sensors, they also act as rearguards to secure areas already explored by the lead robot. As the lead robot advances and RF shortcuts are detected, relay nodes that become unnecessary will be reclaimed and reused, all transparent to the operator. This project takes advantage of recent research results from several DARPA-funded tasks at various institutions in the areas of robotic simulation, ad hoc wireless networking, route planning, and navigation. This paper describes the progress of the first six months of the project.

  3. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  4. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  5. Autonomic Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.; Miller, N. E.

    1994-01-01

    The purpose of this report is to describe how changes in autonomic nervous system responses may be used as an index of individual differences in adaptational capacity to space flight. During two separate Spacelab missions, six crewmembers wore an ambulatory monitoring system which enabled continuous recording of their physiological responses for up to twelve hours a day for 3 to 5 mission days. The responses recorded were electrocardiography, respiration wave form, skin conductance level, hand temperature, blood flow to the hands and triaxial accelerations of the head and upper body. Three of these subjects had been given training, before the mission, in voluntary control of these autonomic responses as a means of facilitating adaptation to space. Three of these subjects served as Controls, i.e., did not receive this training but took anti-motion sickness medication. Nearly 300 hours of flight data are summarized. These data were examined using time-series analyses, spectral analyses of heart rate variability, and analyses of variance. Information was obtained on responses to space motion sickness, inflight medications, circadian rhythm, workload and fatigue. Preliminary assessment was made on the effectiveness of self-regulation training as a means of facilitating adaptation, with recommendations for future flights.

  6. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  7. Grafts for Ridge Preservation

    PubMed Central

    Jamjoom, Amal; Cohen, Robert E.

    2015-01-01

    Alveolar ridge bone resorption is a biologic phenomenon that occurs following tooth extraction and cannot be prevented. This paper reviews the vertical and horizontal ridge dimensional changes that are associated with tooth extraction. It also provides an overview of the advantages of ridge preservation as well as grafting materials. A Medline search among English language papers was performed in March 2015 using alveolar ridge preservation, ridge augmentation, and various graft types as search terms. Additional papers were considered following the preliminary review of the initial search that were relevant to alveolar ridge preservation. The literature suggests that ridge preservation methods and augmentation techniques are available to minimize and restore available bone. Numerous grafting materials, such as autografts, allografts, xenografts, and alloplasts, currently are used for ridge preservation. Other materials, such as growth factors, also can be used to enhance biologic outcome. PMID:26262646

  8. Self-preserving cosmetics.

    PubMed

    Varvaresou, A; Papageorgiou, S; Tsirivas, E; Protopapa, E; Kintziou, H; Kefala, V; Demetzos, C

    2009-06-01

    Preservatives are added to products for two reasons: first, to prevent microbial spoilage and therefore to prolong the shelf life of the product; second, to protect the consumer from a potential infection. Although chemical preservatives prevent microbial growth, their safety is questioned by a growing segment of consumers. Therefore, there is a considerable interest in the development of preservative-free or self-preserving cosmetics. In these formulations traditional/chemical preservatives have been replaced by other cosmetic ingredients with antimicrobial properties that are not legislated as preservatives according to the Annex VI of the Commission Directive 76/768/EEC and the amending directives (2003/15/EC, 2007/17/EC and 2007/22/EC). 'Hurdle Technology', a technology that has been used for the control of product safety in the food industry since 1970s, has also been applied for the production of self-preserving cosmetics. 'Hurdle Technology' is a term used to describe the intelligent combination of different preservation factors or hurdles to deteriorate the growth of microorganisms. Adherence to current good manufacturing practice, appropriate packaging, careful choice of the form of the emulsion, low water activity and low or high pH values are significant variables for the control of microbial growth in cosmetic formulations. This paper describes the application of the basic principles of 'Hurdle Technology' in the production of self-preserving cosmetics. Multifunctional antimicrobial ingredients and plant-derived essential oils and extracts that are used as alternative or natural preservatives and are not listed in Annex VI of the Cosmetic Directive are also reported. PMID:19302511

  9. Asteroid Exploration with Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.

  10. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…