Science.gov

Sample records for autonomous bdfig-wind generator

  1. Next generation autonomous wheelchair control.

    PubMed

    Benson, John; Barrett, Steven

    2005-01-01

    Often times the physically challenged, limited to a wheelchair, also have difficulty with vision. In order to help, something must "see" for them. Therefore there must be some way for a wheelchair to know its environment, sense where it is, and where it must go. It also must be able to avoid any obstacles which are not normally part of the environment. An autonomous wheelchair will serve an important role by allowing users more freedom and independence. This design challenge is broken into four major steps: wheelchair control, environment recognition, route planning, and obstacle avoidance. The first step is to reverse engineer a wheelchair and rebuild the controls, which will be the main topic of discussion for this paper. Two big challenges with this step are high power motor control and joystick control. An H-bridge motor interface, controlled by a microprocessor, was designed for the motors. The joystick control is handled with the same microprocessor. PMID:15850119

  2. Incorporating Manual and Autonomous Code Generation

    NASA Technical Reports Server (NTRS)

    McComas, David

    1998-01-01

    Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.

  3. Patellar clonus: an autonomous central generator.

    PubMed

    Walsh, E G; Wright, G W

    1987-09-01

    The mechanisms underlying clonus are considered in relation to current theories. By the use of a lever attached to a printed motor forces have been applied to the upper edge of the patella, a steady stretching force in suitable hemiplegic patients started the clonic oscillations. With rhythmic forces it has been found that the underlying rhythm is very resistant to entrainment. The oscillation provoked by a steady bias is increased in amplitude but unchanged in frequency when inertia is added to the apparatus. The frequency of clonus at the ankle, patella and wrist is similar. These and other considerations lead to the conclusion that clonus is not due to the self re-excitation of stretch reflexes but to an autonomous central generator. PMID:3668572

  4. Trajectory generation for an on-road autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  5. Autonomous quantum thermal machine for generating steady-state entanglement

    NASA Astrophysics Data System (ADS)

    Bohr Brask, Jonatan; Haack, Géraldine; Brunner, Nicolas; Huber, Marcus

    2015-11-01

    We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.

  6. Advanced Video Guidance Sensor and Next Generation Autonomous Docking Sensors

    NASA Technical Reports Server (NTRS)

    Granade, Stephen R.

    2004-01-01

    In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.

  7. Automated Generation and Assessment of Autonomous Systems Test Cases

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Friberg, Kenneth H.; Horvath, Gregory A.

    2008-01-01

    This slide presentation reviews some of the issues concerning verification and validation testing of autonomous spacecraft routinely culminates in the exploration of anomalous or faulted mission-like scenarios using the work involved during the Dawn mission's tests as examples. Prioritizing which scenarios to develop usually comes down to focusing on the most vulnerable areas and ensuring the best return on investment of test time. Rules-of-thumb strategies often come into play, such as injecting applicable anomalies prior to, during, and after system state changes; or, creating cases that ensure good safety-net algorithm coverage. Although experience and judgment in test selection can lead to high levels of confidence about the majority of a system's autonomy, it's likely that important test cases are overlooked. One method to fill in potential test coverage gaps is to automatically generate and execute test cases using algorithms that ensure desirable properties about the coverage. For example, generate cases for all possible fault monitors, and across all state change boundaries. Of course, the scope of coverage is determined by the test environment capabilities, where a faster-than-real-time, high-fidelity, software-only simulation would allow the broadest coverage. Even real-time systems that can be replicated and run in parallel, and that have reliable set-up and operations features provide an excellent resource for automated testing. Making detailed predictions for the outcome of such tests can be difficult, and when algorithmic means are employed to produce hundreds or even thousands of cases, generating predicts individually is impractical, and generating predicts with tools requires executable models of the design and environment that themselves require a complete test program. Therefore, evaluating the results of large number of mission scenario tests poses special challenges. A good approach to address this problem is to automatically score the results based on a range of metrics. Although the specific means of scoring depends highly on the application, the use of formal scoring - metrics has high value in identifying and prioritizing anomalies, and in presenting an overall picture of the state of the test program. In this paper we present a case study based on automatic generation and assessment of faulted test runs for the Dawn mission, and discuss its role in optimizing the allocation of resources for completing the test program.

  8. Autonomous generator based on Ni-Mn-Ga microactuator as a frequency selective element

    NASA Astrophysics Data System (ADS)

    Krupa, M. M.; Skirta, Y. B.; Barandiaran, J. M.; Ohtsuka, M.; Chernenko, V. A.

    2013-01-01

    In this work, we suggest the temperature-induced resistivity change at the martensitic transformation in the Ni-Mn-Ga ferromagnetic shape memory alloy as a driving mechanism enabling periodic signal generation. We demonstrated its practical importance by a design of the prototype of a low-frequency autonomous generator. A prominent feature of this new generator is a control of its frequency by the external magnetic field.

  9. An Autonomous Mobile Robot Guided by a Chaotic True Random Bits Generator

    NASA Astrophysics Data System (ADS)

    Volos, Ch. K.; Kyprianidis, I. M.; Stouboulos, I. N.; Stavrinides, S. G.; Anagnostopoulos, A. N.

    In this work a robot's controller, which ensures chaotic motion to an autonomous mobile robot, is presented. This new strategy, which is very useful in many robotic missions, generates an unpredictable trajectory by using a chaotic path planning generator. The proposed generator produces a trajectory, which is the result of a sequence of planned target locations. In contrary with other similar works, this one is based on a new chaotic true random bits generator, which has as a basic feature the coexistence of two different synchronization phenomena between mutually coupled identical nonlinear circuits. Simulation tests confirm that the whole robot's workplace is covered with unpredictable way in a very satisfactory time.

  10. Autonomic and Apoptotic, Aeronautical and Aerospace Systems, and Controlling Scientific Data Generated Therefrom

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2015-01-01

    A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.

  11. Systems, methods and apparatus for generation and verification of policies in autonomic computing systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Rash, James L. (Inventor); Truszkowski, Walter F. (Inventor); Rouff, Christopher A. (Inventor); Sterritt, Roy (Inventor); Gracanin, Denis (Inventor)

    2011-01-01

    Described herein is a method that produces fully (mathematically) tractable development of policies for autonomic systems from requirements through to code generation. This method is illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming method described provides faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.Further, the systems, methods and apparatus described herein provide a way of analyzing policies for autonomic systems and facilities the generation of provably correct implementations automatically, which in turn provides reduced development time, reduced testing requirements, guarantees of correctness of the implementation with respect to the policies specified at the outset, and provides a higher degree of confidence that the policies are both complete and reasonable. The ability to specify the policy for the management of a system and then automatically generate an equivalent implementation greatly improves the quality of software, the survivability of future missions, in particular when the system will operate untended in very remote environments, and greatly reduces development lead times and costs.

  12. Calculation of the Autonomous Mc-Generator with a Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Gurin, V. E.; Kargin, V. I.; Pikar, A. S.; Popkov, N. F.; Ryaslov, E. A.

    2004-11-01

    Numerical calculations of an autonomous magnetocumulative generator with permanent magnets based on barium oxide are presented. Application of barium oxide magnets allows creation of a closed magnetic circuit with four acting gaps and provides magnetic flux compression with axial geometry. A generator using a permanent magnet does not require an additional energy source thus it is convenient to operate and always ready for activation. Numerical calculation results are discussed here and compared with tests of trial samples. A numerical simulation describes the capture of the magnetic flux, its compression by a copper expanding liner, energy losses to cut the flux and non-liner diffusion of magnetic field in conductors. The optimized autonomous generator design using the MKM-48 permanent magnet is shown. Energy is released from the generator by a low-inductive matching transformer. The generator using permanent magnets and having an explosive charge mass of several tens of grams provides 30 J of magnetic energy, sufficient to drive cascade energy amplifiers of submegajoule range.

  13. Autonomous trajectory generation for mobile robots with non-holonomic and steering angle constraints

    SciTech Connect

    Pin, F.G.; Vasseur, H.A.

    1990-01-01

    This paper presents an approach to the trajectory planning of mobile platforms characterized by non-holonomic constraints and constraints on the steering angle and steering angle rate. The approach is based on geometric reasoning and provides deterministic trajectories for all pairs of initial and final configurations (position x, y, and orientation {theta}) of the robot. Furthermore, the method generates trajectories taking into account the forward and reverse mode of motion of the vehicle, or combination of these when complex maneuvering is involved or when the environment is obstructed with obstacles. The trajectory planning algorithm is described, and examples of trajectories generated for a variety of environmental conditions are presented. The generation of the trajectories only takes a few milliseconds of run time on a micro Vax, making the approach quite attractive for use as a real-time motion planner for teleoperated or sensor-based autonomous vehicles in complex environments. 10 refs., 11 figs.

  14. The Next Generation of Mars-GRAM and Its Role in the Autonomous Aerobraking Development Plan

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.; Ramey, Holly S.

    2011-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM 2010 is currently being used to develop the onboard atmospheric density estimator that is part of the Autonomous Aerobraking Development Plan. In previous versions, Mars-GRAM was less than realistic when used for sensitivity studies for Thermal Emission Spectrometer (TES) MapYear=0 and large optical depth values, such as tau=3. A comparison analysis has been completed between Mars-GRAM, TES and data from the Planetary Data System (PDS) resulting in updated coefficients for the functions relating density, latitude, and longitude of the sun. The adjustment factors are expressed as a function of height (z), Latitude (Lat) and areocentric solar longitude (Ls). The latest release of Mars-GRAM 2010 includes these adjustment factors that alter the in-put data from MGCM and MTGCM for the Mapping Year 0 (user-controlled dust) case. The greatest adjustment occurs at large optical depths such as tau greater than 1. The addition of the adjustment factors has led to better correspondence to TES Limb data from 0-60 km as well as better agreement with MGS, ODY and MRO data at approximately 90-135 km. Improved simulations utilizing Mars-GRAM 2010 are vital to developing the onboard atmospheric density estimator for the Autonomous Aerobraking Development Plan. Mars-GRAM 2010 was not the only planetary GRAM utilized during phase 1 of this plan; Titan-GRAM and Venus-GRAM were used to generate density data sets for Aerobraking Design Reference Missions. These data sets included altitude profiles (both vertical and along a trajectory), GRAM perturbations (tides, gravity waves, etc.) and provided density and scale height values for analysis by other Autonomous Aero-braking team members.

  15. Automated generation of discrete event controllers for dynamic reconfiguration of autonomous sensor networks

    NASA Astrophysics Data System (ADS)

    Damiani, Sarah; Griffin, Christopher; Phoha, Shashi

    2003-12-01

    Autonomous Sensor Networks have the potential for broad applicability to national security, intelligent transportation, industrial production and environmental and hazardous process control. Distributed sensors may be used for detecting bio-terrorist attacks, for contraband interdiction, border patrol, monitoring building safety and security, battlefield surveillance, or may be embedded in complex dynamic systems for enabling fault tolerant operations. In this paper we present algorithms and automation tools for constructing discrete event controllers for complex networked systems that restrict the dynamic behavior of the system according to given specifications. In our previous work we have modeled dynamic system as a discrete event automation whose open loop behavior is represented as a language L of strings generated with the alphabet 'Elipson' of all possible atomic events that cause state transitions in the network. The controlled behavior is represented by a sublanguage K, contained in L, that restricts the behavior of the system according to the specifications of the controller. We have developed the algebraic structure of controllable sublanguages as perfect right partial ideals that satisfy a precontrollability condition. In this paper we develop an iterative algorithm to take an ad hoc specification described using a natural language, and to formulate a complete specification that results in a controllable sublanguage. A supervisory controller modeled as an automaton that runs synchronously with the open loop system in the sense of Ramadge and Wonham is automatically generated to restrict the behavior of the open loop system to the controllable sublanguage. A battlefield surveillance scenario illustrates the iterative evolution of ad hoc specifications for controlling an autonomous sensor network and the generation of a controller that reconfigures the sensor network to dynamically adapt to environmental perturbations.

  16. On-electrode autonomous current generator for multi-frequency EIT.

    PubMed

    Jivet, I; Dragoi, B

    2008-06-01

    The paper presents an autonomous programmable current generator module for multi-frequency EIT systems. The module incorporates all stages from the sine wave generation with frequency and amplitude tuning, D/A converter and filter, a high output resistance voltage-to-current converter to the associated digital communication and control. The paper presents in depth the original digital quadrature signal generator and the output current generator with a high resistance. The other main blocks of the design use current practice specifications, since recent technological solutions proposed in the literature were found appropriate. The proposed signal generator circuit, characterized by a very low complexity, is analyzed in its capacity to produce multiple accurate signals up to 1 MHz in frequency. The precision output current source uses a modified current conveyor of type CCII with a high output resistance and low distortion. The output current frequency spectrum and linearity parameters obtained in the simulations are also described. The simulation results indicate a good linearity and high output resistance with an acceptable output voltage swing. The calculated performance parameters are validated with simulations, and future work for the prototype fabrication of the IC is outlined. PMID:18544811

  17. A low-cost wireless system for autonomous generation of road safety alerts

    NASA Astrophysics Data System (ADS)

    Banks, B.; Harms, T.; Sedigh Sarvestani, S.; Bastianini, F.

    2009-03-01

    This paper describes an autonomous wireless system that generates road safety alerts, in the form of SMS and email messages, and sends them to motorists subscribed to the service. Drivers who regularly traverse a particular route are the main beneficiaries of the proposed system, which is intended for sparsely populated rural areas, where information available to drivers about road safety, especially bridge conditions, is very limited. At the heart of this system is the SmartBrick, a wireless system for remote structural health monitoring that has been presented in our previous work. Sensors on the SmartBrick network regularly collect data on water level, temperature, strain, and other parameters important to safety of a bridge. This information is stored on the device, and reported to a remote server over the GSM cellular infrastructure. The system generates alerts indicating hazardous road conditions when the data exceeds thresholds that can be remotely changed. The remote server and any number of designated authorities can be notified by email, FTP, and SMS. Drivers can view road conditions and subscribe to SMS and/or email alerts through a web page. The subscription-only form of alert generation has been deliberately selected to mitigate privacy concerns. The proposed system can significantly increase the safety of travel through rural areas. Real-time availability of information to transportation authorities and law enforcement officials facilitates early or proactive reaction to road hazards. Direct notification of drivers further increases the utility of the system in increasing the safety of the traveling public.

  18. Automatic generation of modules of object categorization for autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Gorbenko, Anna

    2013-10-01

    Many robotic tasks require advanced systems of visual sensing. Robotic systems of visual sensing must be able to solve a number of different complex problems of visual data analysis. Object categorization is one of such problems. In this paper, we propose an approach to automatic generation of computationally effective modules of object categorization for autonomous mobile robots. This approach is based on the consideration of the stack cover problem. In particular, it is assumed that the robot is able to perform an initial inspection of the environment. After such inspection, the robot needs to solve the stack cover problem by using a supercomputer. A solution of the stack cover problem allows the robot to obtain a template for computationally effective scheduling of object categorization. Also, we consider an efficient approach to solve the stack cover problem. In particular, we consider an explicit reduction from the decision version of the stack cover problem to the satisfiability problem. For different satisfiability algorithms, the results of computational experiments are presented.

  19. Autonomous 3D Model Generation of Orbital Debris using Point Cloud Sensors

    NASA Astrophysics Data System (ADS)

    Trowbridge, Michael Aaron

    A software prototype for autonomous 3D scanning of uncooperatively rotating orbital debris using a point cloud sensor is designed and tested. The software successfully generated 3D models under conditions that simulate some on-orbit orbit challenges including relative motion between observer and target, inconsistent target visibility and a target with more than one plane of symmetry. The model scanning software performed well against an irregular object with one plane of symmetry but was weak against objects with 2 planes of symmetry. The suitability of point cloud sensors and algorithms for space is examined. Terrestrial Graph SLAM is adapted for an uncooperatively rotating orbital debris scanning scenario. A joint EKF attitude estimate and shape similiarity loop closure heuristic for orbital debris is derived and experimentally tested. The binary Extended Fast Point Feature Histogram (EFPFH) is defined and analyzed as a binary quantization of the floating point EFPFH. Both the binary and floating point EPFH are experimentally tested and compared as part of the joint loop closure heuristic.

  20. Validating a UAV artificial intelligence control system using an autonomous test case generator

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy; Huber, Justin

    2013-05-01

    The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.

  1. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs).

    PubMed

    Szuplewska, Magdalena; Ludwiczak, Marta; Lyzwa, Katarzyna; Czarnecki, Jakub; Bartosik, Dariusz

    2014-01-01

    Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons--Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element "captured" with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements. PMID:25121765

  2. Welding torch trajectory generation for hull joining using autonomous welding mobile robot

    NASA Astrophysics Data System (ADS)

    Hascoet, J. Y.; Hamilton, K.; Carabin, G.; Rauch, M.; Alonso, M.; Ares, E.

    2012-04-01

    Shipbuilding processes involve highly dangerous manual welding operations. Welding of ship hulls presents a hazardous environment for workers. This paper describes a new robotic system, developed by the SHIPWELD consortium, that moves autonomously on the hull and automatically executes the required welding processes. Specific focus is placed on the trajectory control of such a system and forms the basis for the discussion in this paper. It includes a description of the robotic hardware design as well as some methodology used to establish the torch trajectory control.

  3. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    PubMed

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation. PMID:19141895

  4. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  5. Intelligent behavior generator for autonomous mobile robots using planning-based AI decision making and supervisory control logic

    NASA Astrophysics Data System (ADS)

    Shah, Hitesh K.; Bahl, Vikas; Martin, Jason; Flann, Nicholas S.; Moore, Kevin L.

    2002-07-01

    In earlier research the Center for Self-Organizing and Intelligent Systems (CSOIS) at Utah State University (USU) have been funded by the US Army Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program to develop and demonstrate enhanced mobility concepts for unmanned ground vehicles (UGVs). One among the several out growths of this work has been the development of a grammar-based approach to intelligent behavior generation for commanding autonomous robotic vehicles. In this paper we describe the use of this grammar for enabling autonomous behaviors. A supervisory task controller (STC) sequences high-level action commands (taken from the grammar) to be executed by the robot. It takes as input a set of goals and a partial (static) map of the environment and produces, from the grammar, a flexible script (or sequence) of the high-level commands that are to be executed by the robot. The sequence is derived by a planning function that uses a graph-based heuristic search (A* -algorithm). Each action command has specific exit conditions that are evaluated by the STC following each task completion or interruption (in the case of disturbances or new operator requests). Depending on the system's state at task completion or interruption (including updated environmental and robot sensor information), the STC invokes a reactive response. This can include sequencing the pending tasks or initiating a re-planning event, if necessary. Though applicable to a wide variety of autonomous robots, an application of this approach is demonstrated via simulations of ODIS, an omni-directional inspection system developed for security applications.

  6. AutoNav Mark3: Engineering the Next Generation of Autonomous Onboard Navigation and Guidance

    NASA Technical Reports Server (NTRS)

    Riedel, Joseph Ed; Bhaskaran, Shyam; Eldred, Dan B.; Gaskell, Robert A.; Grasso, Christopher A.; Kennedy, Brian; Kubitscheck, Daniel; Mastrodemos, Nickolaos; Synnott, Stephen. P.; Vaughan, Andrew; Werner, Robert A.

    2006-01-01

    The success of JPL's AutoNav system at comet Tempel-1 on July 4, 2005, demonstrated the power of autonomous navigation technology for the Deep Impact Mission. This software is being planned for use as the onboard navigation, tracking and rendezvous system for a Mars Sample Return Mission technology demonstration, and several mission proposals are evaluating its use for rendezvous with, and landing on asteroids. Before this however, extensive re-engineering of AutoNav will take place. This paper describes the AutoNav systems-engineering effort in several areas: extending the capabilities, improving operability, utilizing new hardware elements, and demonstrating the new possibilities of AutoNav in simulations.

  7. Autonomously generating operations sequences for a Mars Rover using AI-based planning

    NASA Technical Reports Server (NTRS)

    Sherwood, Rob; Mishkin, Andrew; Estlin, Tara; Chien, Steve; Backes, Paul; Cooper, Brian; Maxwell, Scott; Rabideau, Gregg

    2001-01-01

    This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from highlevel science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules.

  8. Behavior generation strategy of artificial behavioral system by self-learning paradigm for autonomous robot tasks

    NASA Astrophysics Data System (ADS)

    Dağlarli, Evren; Temeltaş, Hakan

    2008-04-01

    In this study, behavior generation and self-learning paradigms are investigated for the real-time applications of multi-goal mobile robot tasks. The method is capable to generate new behaviors and it combines them in order to achieve multi goal tasks. The proposed method is composed from three layers: Behavior Generating Module, Coordination Level and Emotion -Motivation Level. Last two levels use Hidden Markov models to manage dynamical structure of behaviors. The kinematics and dynamic model of the mobile robot with non-holonomic constraints are considered in the behavior based control architecture. The proposed method is tested on a four-wheel driven and four-wheel steered mobile robot with constraints in simulation environment and results are obtained successfully.

  9. Photo-driven autonomous hydrogen generation system based on hierarchically shelled ZnO nanostructures

    SciTech Connect

    Kim, Heejin; Yong, Kijung

    2013-11-25

    A quantum dot semiconductor sensitized hierarchically shelled one-dimensional ZnO nanostructure has been applied as a quasi-artificial leaf for hydrogen generation. The optimized ZnO nanostructure consists of one dimensional nanowire as a core and two-dimensional nanosheet on the nanowire surface. Furthermore, the quantum dot semiconductors deposited on the ZnO nanostructures provide visible light harvesting properties. To realize the artificial leaf, we applied the ZnO based nanostructure as a photoelectrode with non-wired Z-scheme system. The demonstrated un-assisted photoelectrochemical system showed the hydrogen generation properties under 1 sun condition irradiation. In addition, the quantum dot modified photoelectrode showed 2 mA/cm{sup 2} current density at the un-assisted condition.

  10. An architecture for the autonomous generation of preference-based trajectories

    NASA Astrophysics Data System (ADS)

    Lennon, Jamie

    Numerous techniques exist to optimize aircraft and spacecraft trajectories over cost functions that include terms such as fuel, time, and separation from obstacles. Relative weighting factors can dramatically alter solution characteristics, and engineers often must manually adjust either cost weights or the trajectory itself to obtain desirable solutions. Further, when humans and robots work together, or when humans task robots, they may express their performance expectations in a "fuzzy" natural language fashion, or else as an uncertain range of more or less acceptable values. This work describes a software architecture which accepts both fuzzy linguistic and hard numeric constraints on trajectory performance and, using a trajectory generator provided by the user, automatically constructs trajectories to meet these specifications as closely as possible. The system respects hard constraints imposed by system dynamics or by the user, and will not let the user's preferences interfere with the system and user needs. The architecture's evaluation agent translates these requirements into cost functional weights expected to produce the desired motion characteristics. The quality of the resulting full-state trajectory is then evaluated based on a set of computed trajectory features compared to the specified constraints. If constraints are not met, the cost functional weights are adjusted according to precomputed heuristic equations. Heuristics are not generated in an ad hoc fashion, but are instead the result of a systematic testing of the simulated system under a range of simple conditions. The system is tested in a 2DOF linear and a 6DOF nonlinear domain with a variety of constraints and in the presence of obstacles. Results show that the system consistently meets all hard numeric constraints placed on the trajectory. Desired characteristics are often attainable or else, in those cases where they are discounted in favor of the hard constraints, failed by small margins. Results are discussed as a function of obstacles and of constraints.

  11. PARISROC, an autonomous front-end ASIC for triggerless acquisition in next generation neutrino experiments

    NASA Astrophysics Data System (ADS)

    Conforti Di Lorenzo, S.; Campagne, J. E.; Drouet, S.; Dulucq, F.; El Berni, M.; Genolini, B.; de La Taille, C.; Martin-Chassard, G.; Seguin Moreau, N.; Wanlin, E.; Xiangbo, Y.

    2012-12-01

    PARISROC (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is a complete readout chip in AustriaMicroSystems (AMS) SiGe 0.35 ?m technology designed to read array of 16 Photomultipliers (PMTs). The ASIC is realized in the context of the PMm2 (square meter PhotoMultiplier) project that has proposed a new system of “smart photo-detectors” composed by sensor and read-out electronics dedicated to next generation neutrino experiments. The future water Cherenkov detectors will take place in megaton size water tanks then with a large surface of photo-detection. We propose to segment the large surface in arrays with a single front-end electronics and only the useful data send in surface to be stocked and analyzed. This paper describes the second version of the ASIC and illustrates the chip principle of operation and the main characteristics thank to a series of measurements. It is a 16-channel ASIC with channels that work independently, in triggerless mode and all managed by a common digital part. Then main innovation is that all the channels are handled independently by the digital part so that only channels that have triggered are digitized. Then the data are transferred to the internal memory and sent out in a data driven way. The ASIC allows charge and time measurement. We measured a charge measurement range starting from 160 fC (1 photoelectron-p.e., at PMT gain of 106) to 100 pC (around 600 p.e.) at 1% of linearity; time tagging at 1 ns thanks to a 24-bit counter at 10 MHz and a Time to Digital Converter (TDC) on a 100 ns ramp.

  12. Delayed Dendritic Development in Newly Generated Dentate Granule Cells by Cell-Autonomous Expression of the Amyloid Precursor Protein

    PubMed Central

    Castaño, Eduardo M.; Schinder, Alejandro F.

    2013-01-01

    Neuronal connectivity and synaptic remodeling are fundamental substrates for higher brain functions. Understanding their dynamics in the mammalian allocortex emerges as a critical step to tackle the cellular basis of cognitive decline that occurs during normal aging and in neurodegenerative disorders. In this work we have designed a novel approach to assess alterations in the dynamics of functional and structural connectivity elicited by chronic cell-autonomous overexpression of the human amyloid precursor protein (hAPP). We have taken advantage of the fact that the hippocampus continuously generates new dentate granule cells (GCs) to probe morphofunctional development of GCs expressing different variants of hAPP in a healthy background. hAPP was expressed together with a fluorescent reporter in neural progenitor cells of the dentate gyrus of juvenile mice by retroviral delivery. Neuronal progeny was analyzed several days post infection (dpi). Amyloidogenic cleavage products of hAPP such as the ?-C terminal fragment (?-CTF) induced a substantial reduction in glutamatergic connectivity at 21 dpi, at which time new GCs undergo active growth and synaptogenesis. Interestingly, this effect was transient, since the strength of glutamatergic inputs was normal by 35 dpi. This delay in glutamatergic synaptogenesis was paralleled by a decrease in dendritic length with no changes in spine density, consistent with a protracted dendritic development without alterations in synapse formation. Finally, similar defects in newborn GC development were observed by overexpression of ?-CTF, a non-amyloidogenic cleavage product of hAPP. These results indicate that hAPP can elicit protracted dendritic development independently of the amyloidogenic processing pathway. PMID:23851186

  13. Autonomic neuropathies

    NASA Technical Reports Server (NTRS)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  14. Autonomic Dysreflexia

    MedlinePLUS

    Autonomic Dysreflexia Spinal Cord Injury InfoSheet 15 W HAT IS A UTONOMIC D YSREFLEXIA ? Autonomic dysreflexia (AD), also known as hyperreflexia, is a condition unique to people with spinal cord injury (SCI). The condition occurs because the pathway for ...

  15. Autophosphorylation of CaMKK2 generates autonomous activity that is disrupted by a T85S mutation linked to anxiety and bipolar disorder.

    PubMed

    Scott, John W; Park, Elizabeth; Rodriguiz, Ramona M; Oakhill, Jonathan S; Issa, Samah M A; O'Brien, Matthew T; Dite, Toby A; Langendorf, Christopher G; Wetsel, William C; Means, Anthony R; Kemp, Bruce E

    2015-01-01

    Mutations that reduce expression or give rise to a Thr85Ser (T85S) mutation of Ca(2+)-CaM-dependent protein kinase kinase-2 (CaMKK2) have been implicated in behavioural disorders such as anxiety, bipolar and schizophrenia in humans. Here we report that Thr85 is an autophosphorylation site that endows CaMKK2 with a molecular memory that enables sustained autonomous activation following an initial, transient Ca(2+) signal. Conversely, autophosphorylation of Ser85 in the T85S mutant fails to generate autonomous activity but instead causes a partial loss of CaMKK2 activity. The loss of autonomous activity in the mutant can be rescued by blocking glycogen synthase kinase-3 (GSK3) phosphorylation of CaMKK2 with the anti-mania drug lithium. Furthermore, CaMKK2 null mice representing a loss of function model the human behavioural phenotypes, displaying anxiety and manic-like behavioural disturbances. Our data provide a novel insight into CaMKK2 regulation and its perturbation by a mutation associated with behavioural disorders. PMID:26395653

  16. Autophosphorylation of CaMKK2 generates autonomous activity that is disrupted by a T85S mutation linked to anxiety and bipolar disorder

    PubMed Central

    Scott, John W.; Park, Elizabeth; Rodriguiz, Ramona M.; Oakhill, Jonathan S.; Issa, Samah M. A.; O’Brien, Matthew T.; Dite, Toby A.; Langendorf, Christopher G.; Wetsel, William C.; Means, Anthony R.; Kemp, Bruce E.

    2015-01-01

    Mutations that reduce expression or give rise to a Thr85Ser (T85S) mutation of Ca2+-CaM-dependent protein kinase kinase-2 (CaMKK2) have been implicated in behavioural disorders such as anxiety, bipolar and schizophrenia in humans. Here we report that Thr85 is an autophosphorylation site that endows CaMKK2 with a molecular memory that enables sustained autonomous activation following an initial, transient Ca2+ signal. Conversely, autophosphorylation of Ser85 in the T85S mutant fails to generate autonomous activity but instead causes a partial loss of CaMKK2 activity. The loss of autonomous activity in the mutant can be rescued by blocking glycogen synthase kinase-3 (GSK3) phosphorylation of CaMKK2 with the anti-mania drug lithium. Furthermore, CaMKK2 null mice representing a loss of function model the human behavioural phenotypes, displaying anxiety and manic-like behavioural disturbances. Our data provide a novel insight into CaMKK2 regulation and its perturbation by a mutation associated with behavioural disorders. PMID:26395653

  17. Autonomic hyperreflexia

    MedlinePLUS

    The most common cause of autonomic hyperreflexia is spinal cord injury. The nervous system of people with this condition ... Flushed (red) skin above the level of the spinal cord injury High blood pressure Slow pulse or fast pulse ...

  18. Autonomic neuropathy

    MedlinePLUS

    ... and pupils. Autonomic neuropathy may be seen with: Alcohol abuse Diabetes (diabetic neuropathy) Disorders involving scarring of ... dizziness when standing High blood pressure Shortness of breath with activity or exercise Bladder symptoms may include: ...

  19. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  20. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  1. Autonomous electrochromic assembly

    DOEpatents

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  2. Autonomous Soaring

    NASA Technical Reports Server (NTRS)

    Lin, Victor P.

    2007-01-01

    This viewgraph presentation reviews the autonomous soaring flight of unmanned aerial vehicles (UAV). It reviews energy sources for UAVs, and two examples of UAV's that used alternative energy sources, and thermal currents for soaring. Examples of flight tests, plans, and results are given. Ultimately, the concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology.

  3. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  4. Autonomous target screeners

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. K.; Geokezas, M.; Soland, D. E.

    1980-11-01

    The basic functions of an autonomous target screener are: segmentation, feature generation, classification (detection/recognition), and symbol generation. Image segmentation is the function by which the image is segmented in background and objects of interest. The image information within these objects of interest is processed to generate a set of features which characterize the targets of interest. The classification function utilizes statistical/syntactic classifier for detection (target vs. clutter decision) and recognition (truck, tank, APC, etc.). A symbol indicating the position and type of target is displayed on the monitor for cueing purposes.

  5. Autonomous control

    NASA Technical Reports Server (NTRS)

    Brown, Barbara

    1990-01-01

    KSC has been developing the Knowledge-Based Autonomous Test Engineer (KATE), which is a tool for performing automated monitoring, diagnosis, and control of electromechanical devices. KATE employs artificial intelligence computing techniques to perform these functions. The KATE system consists of a generic shell and a knowledge base. The KATE shell is the portion of the system which performs the monitoring, diagnosis, and control functions. It is generic in the sense that it is application independent. This means that the monitoring activity, for instance, will be performed with the same algorithms regardless of the particular physical device being used. The knowledge base is the portion of the system which contains specific functional and behavorial information about the physical device KATE is working with. Work is nearing completion on a project at KSC to interface a Texas Instruments Explorer running a LISP version of KATE with a Generic Checkout System (GCS) test-bed to control a physical simulation of a shuttle tanking system (humorously called the Red Wagon because of its color and mobility). The Autonomous Control System (ACS) project supplements and extends the KATE/GCS project by adding three other major activities. The activities include: porting KATE from the Texas Instruments Explorer machine to an Intel 80386-based UNIX workstation in the LISP language; rewriting KATE as necessary to run on the same 80386 workstation but in the Ada language; and investigating software and techniques to translate ANSI Standard Common LISP to Mil Standard Ada. Primary goals of this task are as follows: (1) establish the advantages of using expert systems to provide intelligent autonomous software for Space Station Freedom applications; (2) determine the feasibility of using Ada as the run-time environment for model-based expert systems; (3) provide insight into the advantages and disadvantagesof using LISP or Ada in the run-time environment for expert systems; and (4) compare the performance of the 80386 processor to a symbolic processor as a delivery vehicle for expert systems.

  6. INL Autonomous Navigation System

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  7. Autonomic activity.

    PubMed

    Venables, P H

    1991-01-01

    A review such as this can do no more than provide an indication of the issues involved in using autonomic activity as a means of providing a "window on the brain." Several points arise. One of the most important is that of careful and appropriate use of techniques available. One well-known textbook of experimental psychology published some time ago advocated the use of two dimes applied to the palm of the hand for the measurement of electrodermal activity. It was this sort of recommendation that led to the use of psychophysiological measurement falling into disrepute. As indicated in the second section, it is important to understand fully the peripheral mechanisms involved before measurement of electrodermal activity can be usefully carried out. Appropriate use of silver/silver chloride electrodes and physiologically appropriate levels of saline in the electrolyte medium can lead to accurate and repeatable measurement where artefact is not carelessly introduced. Equally important is the context in which studies are carried out. The psychological invasiveness of the technique is important to recognize, and it is here that measurement of autonomic activity probably scores over other methods that are available insofar as very little restriction of the subject is required and the number of transducers that must be applied is minimal. The measurement of autonomic activity within the totality of the experimental context is all important. As an example Dawson and Schell investigated the SCR to words which had previously been associated with shock. When these words were presented to the ear to which attention was not directed in a dichotic listening paradigm, an SCR could be elicited although the subject was unaware of the presentation of the stimulus. The importance of the Dawson and Schell study was the care that they took to make sure that the subject really was unaware of the critical stimulus and had not momentarily switched attention from the attended ear. More important, their experiment, in contrast to some which had gone before, used a balanced design in which the critical stimuli were presented on different occasions to each ear. As a result of this it was found that critical stimuli, which were presented to the left ear, right hemisphere, gave rise to SCRs, even when the subject was not aware of their presentation, whereas stimuli presented to the right ear, left hemisphere elicited no response.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2035942

  8. Note: utilizing Pb(Zr(0.95)Ti(0.05))O3 ferroelectric ceramics to scale down autonomous explosive-driven shock-wave ferroelectric generators.

    PubMed

    Shkuratov, Sergey I; Baird, Jason; Talantsev, Evgueni F

    2012-07-01

    Further miniaturization of recently designed autonomous ferroelectric generators (FEGs) [S. I. Shkuratov, J. Baird, and E. F. Talantsev, Rev. Sci. Instrum. 82, 086107 (2011)], which are based on the effect of explosive-shock-wave depolarization of poled ferroelectrics is achieved. The key miniaturization factor was the utilization of high-energy density Pb(Zr(0.95)Ti(0.05))O(3) (PZT 95/5) ferroelectric ceramics as energy-carrying elements of FEGs instead of the previously used Pb(Zr(0.52)Ti(0.48))O(3) (PZT 52/48). A series of experiments demonstrated that FEGs based on smaller PZT 95/5 ferroelectric elements are capable of producing the same output voltage as those based on PZT 52/48 elements twice as large. It follows from the experimental results that the FEG output voltage is directly proportional to the thickness of PZT 95/5 samples. A comparison of the operation of FEGs based on PZT 95/5 and on PZT 52/48 ferroelectrics is presented. PMID:22852739

  9. Autonomous, waste-free eluent generation and suppression in a single device: electrodialytic eluent reflux for ion chromatography.

    PubMed

    Elkin, Kyle R; Riviello, John M

    2014-02-01

    Eluent reflux provides a new approach to suppress and reflux (recover) eluent without the continuous generation of chromatographic waste. The current work utilized a device containing ion exchange membranes at the electrodes, in order to prohibit electrolysis gases from entering the eluent stream. Two resin beds (separated by a membrane stack) were responsible for suppressing incoming eluent and regenerating the suppressed eluent to nearly its original concentration after detection. A greater than expected dilution in the eluent concentration was observed as a result of the minor leakage of potassium ions through the anion membrane stack into the electrode chamber. The incomplete recovery of the eluent was offset by the addition of a three port valve (DRV) to regulate eluent concentration. Over 48 h of continuous operation (192 injections), the device's performance was stable (RSD of 0.21% with the three port valve, compared to RSD 3.73% without). The device was able to operate for up to four weeks using 1L of eluent. Chromatograms showing the reproducibility of the device are presented for anions. PMID:24401425

  10. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  11. Nemesis Autonomous Test System

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  12. Note: Miniature 120-kV autonomous generator based on transverse shock-wave depolarization of Pb(Zr0.52Ti0.48)O3 ferroelectrics.

    PubMed

    Shkuratov, Sergey I; Baird, Jason; Talantsev, Evgueni F

    2011-08-01

    The design of autonomous ultrahigh-voltage generators with no moving metallic parts based on transverse explosive shock wave depolarization of Pb(Zr(0.52)Ti(0.48))O(3) (PZT 52∕48) poled ferroelectrics was explored and studied. It follows from experimental results that the output voltage produced by the shock-wave ferroelectric generators (FEGs) is directly proportional to the number of PZT 52/48 elements connected in series. It was demonstrated that miniature FEGs (volume less than 180 cm(3)) were capable of reliably producing output voltage pulses with amplitudes exceeding 120 kV which is the record reported in open literature. PMID:21895285

  13. Image, Concept, Model and Proposition for Instructional Designing and Its Application in Pre-Service Education: A Framework To Generate Lesson Plan for Autonomous Learning Using IT.

    ERIC Educational Resources Information Center

    Nishinosono, Haruo

    Japanese education, including preservice teacher education, is incorporating instructional technology as an effective, systematic way to enhance planning, teaching, and learning. Japanese researchers developed a framework for using instructional technology to develop lesson plans for autonomous learning. Preservice teachers in Japan tend to hold…

  14. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  15. Autonomic Nervous System Disorders

    MedlinePLUS

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  16. Autonomous Attitude Determination System (AADS). Volume 1: System description

    NASA Technical Reports Server (NTRS)

    Saralkar, K.; Frenkel, Y.; Klitsch, G.; Liu, K. S.; Lefferts, E.; Tasaki, K.; Snow, F.; Garrahan, J.

    1982-01-01

    Information necessary to understand the Autonomous Attitude Determination System (AADS) is presented. Topics include AADS requirements, program structure, algorithms, and system generation and execution.

  17. The Autonomic Symptom Profile: a new instrument to assess autonomic symptoms

    NASA Technical Reports Server (NTRS)

    Suarez, G. A.; Opfer-Gehrking, T. L.; Offord, K. P.; Atkinson, E. J.; O'Brien, P. C.; Low, P. A.

    1999-01-01

    OBJECTIVE: To develop a new specific instrument called the Autonomic Symptom Profile to measure autonomic symptoms and test its validity. BACKGROUND: Measuring symptoms is important in the evaluation of quality of life outcomes. There is no validated, self-completed questionnaire on the symptoms of patients with autonomic disorders. METHODS: The questionnaire is 169 items concerning different aspects of autonomic symptoms. The Composite Autonomic Symptom Scale (COMPASS) with item-weighting was established; higher scores indicate more or worse symptoms. Autonomic function tests were performed to generate the Composite Autonomic Scoring Scale (CASS) and to quantify autonomic deficits. We compared the results of the COMPASS with the CASS derived from the Autonomic Reflex Screen to evaluate validity. RESULTS: The instrument was tested in 41 healthy controls (mean age 46.6 years), 33 patients with nonautonomic peripheral neuropathies (mean age 59.5 years), and 39 patients with autonomic failure (mean age 61.1 years). COMPASS scores correlated well with the CASS, demonstrating an acceptable level of content and criterion validity. The mean (+/-SD) overall COMPASS score was 9.8 (+/-9) in controls, 25.9 (+/-17.9) in the patients with nonautonomic peripheral neuropathies, and 52.3 (+/-24.2) in the autonomic failure group. Scores of symptoms of orthostatic intolerance and secretomotor dysfunction best predicted the CASS on multiple stepwise regression analysis. CONCLUSIONS: We describe a questionnaire that measures autonomic symptoms and present evidence for its validity. The instrument shows promise in assessing autonomic symptoms in clinical trials and epidemiologic studies.

  18. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  19. Discerning non-autonomous dynamics

    NASA Astrophysics Data System (ADS)

    Clemson, Philip T.; Stefanovska, Aneta

    2014-09-01

    Structure and function go hand in hand. However, while a complex structure can be relatively safely broken down into the minutest parts, and technology is now delving into nanoscales, the function of complex systems requires a completely different approach. Here the complexity clearly arises from nonlinear interactions, which prevents us from obtaining a realistic description of a system by dissecting it into its structural component parts. At best, the result of such investigations does not substantially add to our understanding or at worst it can even be misleading. Not surprisingly, the dynamics of complex systems, facilitated by increasing computational efficiency, is now readily tackled in the case of measured time series. Moreover, time series can now be collected in practically every branch of science and in any structural scale-from protein dynamics in a living cell to data collected in astrophysics or even via social networks. In searching for deterministic patterns in such data we are limited by the fact that no complex system in the real world is autonomous. Hence, as an alternative to the stochastic approach that is predominantly applied to data from inherently non-autonomous complex systems, theory and methods specifically tailored to non-autonomous systems are needed. Indeed, in the last decade we have faced a huge advance in mathematical methods, including the introduction of pullback attractors, as well as time series methods that cope with the most important characteristic of non-autonomous systems-their time-dependent behaviour. Here we review current methods for the analysis of non-autonomous dynamics including those for extracting properties of interactions and the direction of couplings. We illustrate each method by applying it to three sets of systems typical for chaotic, stochastic and non-autonomous behaviour. For the chaotic class we select the Lorenz system, for the stochastic the noise-forced Duffing system and for the non-autonomous the Poincaré oscillator with quasi-periodic forcing. In this way we not only discuss and review each method, but also present properties which help to clearly distinguish the three classes of systems when analysed in an inverse approach-from measured, or numerically generated data. In particular, this review provides a framework to tackle inverse problems in these areas and clearly distinguish non-autonomous dynamics from chaos or stochasticity.

  20. The MDS autonomous control architecture

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    We describe the autonomous control architecture for the JPL Mission Data System (MDS). MDS is a comprehensive new software infrastructure for supporting unmanned space exploration. The autonomous control architecture is one component of MDS designed to enable autonomous operations.

  1. [Technical means of the new generation used for autonomous supply of the mobile medical formations of RF Armed Forces medical service with oxygen].

    PubMed

    Grishin, V I; Medvdev, V R

    2005-04-01

    According to the tasks and initiative of RF MD Main Military Medical Headquarters the series of research and experimental designers' work was performed. It allowed determining the main principles of anew conception of supplying the mobile medical formations with oxygen and creating the necessary technical means for its realization, i.e. for autonomous supply of medical service troop link with oxygen. The most optimal schemes of new technical mean application to obtain the oxygen at the stages of medical evacuation were worked out. The oxygen supply system based on the use of created technical means of its production is easily adapted to dynamically changing problems of medical service. The state trials have confirmed the prospects of the conception proposed. PMID:15962601

  2. Rover: Autonomous concepts for Mars exploration

    NASA Astrophysics Data System (ADS)

    Baiget, A.; Castets, B.; Chochon, H.; Hayard, M.; Lamarre, H.; Lamothe, A.

    1993-01-01

    The development of a mobile, autonomous vehicle that will be launched towards an unknown planet is considered. The rover significant constraints are: Ariane 5 compatibility, Earth/Mars transfer capability, 1000 km autonomous moving in Mars environment, on board localization, and maximum science capability. Two different types of subsystem were considered: classical subsystems (mechanical and mechanisms, thermal, telecommunications, power, onboard data processing) and robotics subsystem, (perception/navigation, autonomous displacement generation, autonomous localization). The needs of each subsystem were studied in terms of energy and data handling capability, in order to choose an on board architecture which best use the available capability, by means of specialized parts. A compromise must always be done between every subsystem in order to obtain the real need with respect to the goal, for example: between perception/navigation and the motion capability. A compromise must also be found between mechanical assembly and calibration need, which is a real problem.

  3. Autonomous multifunctional nanobrushes-autonomous materials

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.; Tius, Marcus A.

    2007-04-01

    In this work, taking advantage of carbon nanotubes' small size, and exceptional mechanical, chemical and electrical properties, we report on a series of nano-synthesis procedures that combine conventional chemical vapor deposition and selective substrate area growth followed by chemical functionalizations to fabricate functionalized nano-brushes from aligned carbon nanotube arrays and chemically selective functional groups. The high aspect ratio and small dimension, mechanical stability and flexibility, surface chemical and adhesive characteristics of carbon nanotubes provide opportunities to create nano-brushes with selected chemical functionalities. The nano-brushes are made from aligned multi-walled carbon nanotube bristles grafted onto long SiC fiber handles in various configurations and functionalized with various chemical functional groups. These nano-brushes can easily be manipulated physically, either manually or with the aid of motors. Here, we explain the autonomous characteristics of the functionalized nano-brushes employing functional chemical groups such that the nano-brush can potentially collect various metal particles, ions, and contaminants from liquid solutions and the air environment, autonomously. These functionalized multiwalled carbon nanotube based nano-brushes can work swiftly in both liquid and air environments. With surface modification and functionalization, the nanotube nano-brushes can potentially become a versatile nano-devices in many chemical and biological applications, where they can autonomously pick up the particles they encounter since they can be chemically programmed to function as Autonomous Chemical Nano Robots (ACNR).

  4. Autonomous Byte Stream Randomizer

    NASA Technical Reports Server (NTRS)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  5. Autonomous surveillance for biosecurity.

    PubMed

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance. PMID:25744760

  6. Snail Promotes the Cell-Autonomous Generation of Flk1+ Endothelial Cells Through the Repression of the microRNA-200 Family

    PubMed Central

    Gill, Jennifer G.; Langer, Ellen M.; Lindsley, R. Coleman; Cai, Mi; Murphy, Theresa L.

    2012-01-01

    Expression of the transcription factor Snail is required for normal vasculogenesis in the developing mouse embryo. In addition, tumors expressing Snail have been associated with a more malignant phenotype, with both increased invasive properties and angiogenesis. Although the relationship between Snail and vasculogenesis has been noted, no mechanistic analysis has been elucidated. Here, we show that in addition to inducing an epithelial mesenchymal transition, Snail promotes the cell-autonomous induction of Flk1+ endothelial cells in an early subset of differentiating mouse embryonic stem (ES) cells. Cells that become Flk1+ in response to Snail have a transcriptional profile specific to Gata6+primitive endoderm, but not the early Nanog+epiblast. We further show that Snail's ability to promote Flk1+ endothelium depends on fibroblast growth factor signaling as well as the repression of the microRNA-200 (miR-200) family, which directly targets the 3? UTRs of Flk1 and Ets1. Together, our results show that Snail is capable of inducing Flk1+ lineage commitment in a subset of differentiating ES cells through the down-regulation of the miR-200 family. We hypothesize that this mechanism of Snail-induced vasculogenesis may be conserved in both the early developing embryo and malignant cancers. PMID:21861700

  7. Autoimmune Autonomic Ganglionopathy

    MedlinePLUS

    ... Rare Disease Day More Search for News on Rare Diseases Search Go Advanced News Search About GARD ... Home Diseases Autoimmune autonomic ganglionopathy Diseases Genetic and Rare Diseases Information Center (GARD) Print friendly version Autoimmune ...

  8. Pure Autonomic Failure

    MedlinePLUS

    ... Families Recursos en Español Teaching Resources Medical and Science Glossaries More Quick Links Evaluating Health Information Financial ... Links About the National Center for Advancing Translational Sciences (NCATS) GARD Home Diseases Pure autonomic failure Diseases ...

  9. Autonomous video surveillance

    NASA Astrophysics Data System (ADS)

    Flinchbaugh, Bruce E.; Olson, Thomas J.

    1997-02-01

    This presentation highlights needs for autonomous video surveillance in the context of physical security for office buildings and surrounding areas. Physical security is described from an operational perspective, defining the principal responsibilities and concerns of a physical security system. Capabilities and limitations of current video surveillance technology are described, followed by examples of how computer vision techniques are being used and advanced for autonomous video surveillance systems.

  10. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  11. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  12. Autonomic cardiac innervation

    PubMed Central

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure. PMID:23872607

  13. Thinking Ahead: Autonomic Buildings

    SciTech Connect

    Brambley, Michael R. )

    2002-08-31

    The time has come for the commercial buildings industries to reconsider the very nature of the systems installed in facilities today and to establish a vision for future buildings that differs from anything in the history of human shelter. Drivers for this examination include reductions in building operation staffs; uncertain costs and reliability of electric power; growing interest in energy-efficient and resource-conserving?green? and?high-performance? commercial buildings; and a dramatic increase in security concerns since the tragic events of September 11. This paper introduces a new paradigm? autonomic buildings? which parallels the concept of autonomic computing, introduced by IBM as a fundamental change in the way computer networks work. Modeled after the human nervous system,?autonomic systems? themselves take responsibility for a large portion of their own operation and even maintenance. For commercial buildings, autonomic systems could provide environments that afford occupants greater opportunity to focus on the things we do in buildings rather than on operation of the building itself, while achieving higher performance levels, increased security, and better use of energy and other natural resources. The author uses the human body and computer networking to introduce and illustrate this new paradigm for high-performance commercial buildings. He provides a vision for the future of commercial buildings based on autonomicity, identifies current research that could contribute to this future, and highlights research and technological gaps. The paper concludes with a set of issues and needs that are key to converting this idealized future into reality.

  14. Planning and Execution for an Autonomous Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.

    2010-01-01

    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.

  15. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1986-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  16. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  17. Cardiovascular autonomic neuropathy

    PubMed Central

    McCarty, Niamh

    2016-01-01

    Cardiovascular autonomic neuropathy often goes unrecognized. We present a case of a 22-year-old man with multiple manifestations of this disease, including weakness, dizziness, fatigue, tachycardia, abnormal QTc, and orthostasis, which occurred 2 years after his type 1 diabetes diagnosis. He exhibited parasympathetic denervation with resting tachycardia and exercise intolerance but also had evidence of orthostatic hypotension, which suggests sympathetic denervation. He did not have complete cardiovascular autonomic reflex testing, which would have been helpful, but improved with aggressive diabetes treatment and the increase of beta-blockade. It is important to identify these patients to understand their signs and symptoms and consider appropriate therapies.

  18. Autonomous Aerobraking for Mars Orbiters

    NASA Astrophysics Data System (ADS)

    Prince, J. L.

    2012-06-01

    Autonomous Aerobraking is a developing technology that will reduce cost and increase flexibility of an aerobraking orbiter around Mars. Currently in its second phase of development, autonomous aerobraking could be implemented for a 2018 Mars orbiter.

  19. Assisting Autonomous Performance.

    ERIC Educational Resources Information Center

    Allan, Margaret

    1997-01-01

    A study investigated the phenomenon of learner autonomy in six graduate students in a course in English for academic purposes. Students were developing skills in discourse intonation using a CD-ROM program, designed to encourage autonomous learning. Student interview data suggest that development of explicit knowledge of the language system can…

  20. Developing Autonomous Learners.

    ERIC Educational Resources Information Center

    Mulcahy, Robert F.

    1991-01-01

    Defines the concept of autonomous learning. Presents the Strategies Program for Effective Learning/Thinking (SPELT), including its underlying assumptions, instructional model, teacher training procedures, research findings, and anticipated future development. Research results include implications for learning-disabled and gifted students. (KS)

  1. Autonomous Optical Lunar Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; Crouse, Brian; D'souza, Chris

    2009-01-01

    The performance of optical autonomous navigation is investigated for low lunar orbits and for high elliptical lunar orbits. Various options for employing the camera measurements are presented and compared. Strategies for improving navigation performance are developed and applied to the Orion vehicle lunar mission

  2. Autonomous staff selection teams.

    PubMed

    Mills, J; Oie, M

    1992-12-01

    Although some other organizations encourage staff input into employee selection, the advanced care department at Bellin Hospital in Green Bay, Wisconsin has taken this concept to a new level by implementing an autonomous interview team. This team is empowered to make hiring decisions for all positions within the department without management influence or interference. PMID:1469489

  3. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  4. Autonomous pathogen detection system 2001

    SciTech Connect

    Langlois, R G; Wang, A; Colston, B; Masquelier, D; Jones, L; Venkateswaran, K S; Nasarabadi, S; Brown, S; Ramponi, A; Milanovich, F P

    2001-01-09

    The objective of this project is to design, fabricate and field-demonstrate a fully Autonomous Pathogen Detector (identifier) System (APDS). This will be accomplished by integrating a proven flow cytometer and real-time polymerase chain reaction (PCR) detector with sample collection, sample preparation and fluidics to provide a compact, autonomously operating instrument capable of simultaneously detecting multiple pathogens and/or toxins. The APDS will be designed to operate in fixed locations, where it continuously monitors air samples and automatically reports the presence of specific biological agents. The APDS will utilize both multiplex immuno and nucleic acid assays to provide ''quasi-orthogonal'', multiple agent detection approaches to minimize false positives and increase the reliability of identification. Technical advancements across several fronts must first be made in order to realize the full extent of the APDS. Commercialization will be accomplished through three progressive generations of instruments. The APDS is targeted for domestic applications in which (1) the public is at high risk of exposure to covert releases of bioagent such as in major subway systems and other transportation terminals, large office complexes, and convention centers; and (2) as part of a monitoring network of sensors integrated with command and control systems for wide area monitoring of urban areas and major gatherings (e.g., inaugurations, Olympics, etc.). In this latter application there is potential that a fully developed APDS could add value to Defense Department monitoring architectures.

  5. Systems, methods and apparatus for quiesence of autonomic safety devices with self action

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic environmental safety device may be quiesced. In at least one embodiment, a method for managing an autonomic safety device, such as a smoke detector, based on functioning state and operating status of the autonomic safety device includes processing received signals from the autonomic safety device to obtain an analysis of the condition of the autonomic safety device, generating one or more stay-awake signals based on the functioning status and the operating state of the autonomic safety device, transmitting the stay-awake signal, transmitting self health/urgency data, and transmitting environment health/urgency data. A quiesce component of an autonomic safety device can render the autonomic safety device inactive for a specific amount of time or until a challenging situation has passed.

  6. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  7. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2009-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  8. Mobile Autonomous Humanoid Assistant

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  9. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  10. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.

  11. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.

  12. Pharmacotherapy of autonomic failure

    PubMed Central

    Shibao, Cyndya; Okamoto, Luis; Biaggioni, Italo

    2012-01-01

    The clinical picture of autonomic failure is characterized by severe and disabling orthostatic hypotension. These disorders can develop as a result of damage of central neural pathways or peripheral autonomic nerves, caused either by a primary autonomic neurodegenerative disorder or secondary to systemic illness. Treatment should be focused on decreasing presyncopal symptoms instead of achieving blood pressure goals. Non-pharmacologic strategies such as physical counter-maneuvers, dietary changes (i.e. high salt diet, rapid water drinking or compression garments) are the first line therapy. Affected patients should be screened for co-morbid conditions such as post-prandial hypotension and supine hypertension that can worsen orthostatic hypotension if not treated. If symptoms are not controlled with these conservative measures the next step is to start pharmacological agents; these interventions should be aimed at increasing intravascular volume either by promoting water and salt retention (fludrocortisone) or by increasing red blood cell mass when anemia is present (recombinant erythropoietin). When pressor agents are needed, direct pressor agents (midodrine) or agents that potentiate sympathetic activity (atomoxetine, yohimbine, pyridostigmine) can be used. It is preferable to use short-acting pressor agents that can be taken on as needed basis in preparation for upright activities. PMID:21664375

  13. Trigeminal autonomic cephalalgias.

    PubMed

    Eller, M; Goadsby, P J

    2016-01-01

    The trigeminal autonomic cephalalgias (TACs) are a group of primary headache disorders characterised by lateralized symptoms: prominent headache and ipsilateral cranial autonomic features, such as conjunctival injection, lacrimation and rhinorrhea. The TACs are: cluster headache (CH), paroxysmal hemicrania (PH), short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT)/short-lasting neuralgiform headache attacks with cranial autonomic features (SUNA) and hemicrania continua (HC). Their diagnostic criteria are outlined in the International Classification of Headache Disorders, third edition-beta (ICHD-IIIb). These conditions are distinguished by their attack duration and frequency, as well as response to treatment. HC is continuous and by definition responsive to indomethacin. The main differential when considering this headache is chronic migraine. Other TACs are remarkable for their short duration and must be distinguished from other short-lasting painful conditions, such as trigeminal neuralgia and primary stabbing headache. Cluster headache is characterised by exquisitely painful attacks that occur in discrete episodes lasting 15-180 min a few times a day. In comparison, PH occurs more frequently and is of shorter duration, and like HC is responsive to indomethacin. SUNCT/SUNA is the shortest duration and highest frequency TAC; attacks can occur over a hundred times every day. PMID:24888770

  14. Autonomous star tracker performance

    NASA Astrophysics Data System (ADS)

    Rogers, Gabe D.; Schwinger, Marsha R.; Kaidy, James T.; Strikwerda, Thomas E.; Casini, Roberto; Landi, Andrea; Bettarini, Rossano; Lorenzini, Stefano

    2009-07-01

    First in NASA's New Frontiers series of missions, the New Horizons spacecraft was successfully launched on January 19, 2006. New Horizons is scheduled to perform a gravity assist at Jupiter on February 28, 2007, arrive at Pluto on July 14, 2015; completing an extended mission to at least one Kuiper Belt Object in subsequent years. The concept of operations requires a star tracker that operates autonomously both in a standard three-axis "staring" mode during operations involving instrument observations and in a spin stabilized mode during cruise operations with nominal rotational rates up to 5 rpm. With the support of the Johns Hopkins University Applied Physics Laboratory, Galileo Avionica redesigned their Autonomous Star Trackers (ASTR) to use time-delayed integration techniques to provide autonomous spacecraft attitude estimates at 10 Hz at spin rates up to 10 rpm. This paper will present the performance of the upgraded ASTR in both inertial stare and spin stabilized modes for the first six months of the mission. In addition, effects of the vehicle motion on performance, effects of stray light and direct Sun blinding on tracking and performance, and unanticipated "features" or characteristics of the ASTRs will be discussed.

  15. Microscale autonomous sensor and communications module

    DOEpatents

    Okandan, Murat; Nielson, Gregory N

    2014-03-25

    Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

  16. Autonomous satellite navigation by stellar refraction

    NASA Technical Reports Server (NTRS)

    Gounley, R.; White, R.; Gai, E.

    1983-01-01

    This paper describes an error analysis of an autonomous navigator using refraction measurements of starlight passing through the upper atmosphere. The analysis is based on a discrete linear Kalman filter. The filter generated steady-state values of navigator performance for a variety of test cases. Results of these simulations show that in low-earth orbit position-error standard deviations of less than 0.100 km may be obtained using only 40 star sightings per orbit.

  17. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  18. Autonomous interplanetary constellation design

    NASA Astrophysics Data System (ADS)

    Chow, Cornelius Channing, II

    According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design methodology to the restricted Earth-Moon system, reveals optimal pairwise configurations for various L1, L2, and L5 (halo, axial, and vertical) periodic orbit families. Navigation accuracies, ranging from O (10+/-1) meters in position space, are obtained for the optimal Earth-Moon constellations, given measurement noise on the order of 1 meter.

  19. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  20. Autonomous Phase Retrieval Calibration

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Chien, Steve A.; Castano, Rebecca; Gaines, Daniel M.; Doubleday, Joshua R.; Schoolcraft, Josua B.; Oyake, Amalaye; Vaughs, Ashton G.; Torgerson, Jordan L.

    2011-01-01

    The Palomar Adaptive Optics System actively corrects for changing aberrations in light due to atmospheric turbulence. However, the underlying internal static error is unknown and uncorrected by this process. The dedicated wavefront sensor device necessarily lies along a different path than the science camera, and, therefore, doesn't measure the true errors along the path leading to the final detected imagery. This is a standard problem in adaptive optics (AO) called "non-common path error." The Autonomous Phase Retrieval Calibration (APRC) software suite performs automated sensing and correction iterations to calibrate the Palomar AO system to levels that were previously unreachable.

  1. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  2. Experiments in autonomous robotics

    SciTech Connect

    Hamel, W.R.

    1987-01-01

    The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.

  3. Autonomic Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.; Miller, N. E.

    1994-01-01

    The purpose of this report is to describe how changes in autonomic nervous system responses may be used as an index of individual differences in adaptational capacity to space flight. During two separate Spacelab missions, six crewmembers wore an ambulatory monitoring system which enabled continuous recording of their physiological responses for up to twelve hours a day for 3 to 5 mission days. The responses recorded were electrocardiography, respiration wave form, skin conductance level, hand temperature, blood flow to the hands and triaxial accelerations of the head and upper body. Three of these subjects had been given training, before the mission, in voluntary control of these autonomic responses as a means of facilitating adaptation to space. Three of these subjects served as Controls, i.e., did not receive this training but took anti-motion sickness medication. Nearly 300 hours of flight data are summarized. These data were examined using time-series analyses, spectral analyses of heart rate variability, and analyses of variance. Information was obtained on responses to space motion sickness, inflight medications, circadian rhythm, workload and fatigue. Preliminary assessment was made on the effectiveness of self-regulation training as a means of facilitating adaptation, with recommendations for future flights.

  4. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  5. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  6. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.

  7. Asteroid Exploration with Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.

  8. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  9. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  10. Autonomous and non-autonomous roles of DNase II during cell death in C. elegans embryos

    PubMed Central

    Yu, Hsiang; Lai, Huey-Jen; Lin, Tai-Wei; Lo, Szecheng J.

    2015-01-01

    Generation of DNA fragments is a hallmark of cell apoptosis and is executed within the dying cells (autonomous) or in the engulfing cells (non-autonomous). The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) method is used as an in situ assay of apoptosis by labelling DNA fragments generated by caspase-associated DNase (CAD), but not those by the downstream DNase II. In the present study, we report a method of ToLFP (topoisomerase ligation fluorescence probes) for directly visualizing DNA fragments generated by DNase II in Caenorhabditis elegans embryos. ToLFP analysis provided the first demonstration of a cell autonomous mode of DNase II activity in dying cells in ced-1 embryos, which are defective in engulfing apoptotic bodies. Compared with the number of ToLFP signals between ced-1 and wild-type (N2) embryos, a 30% increase in N2 embryos was found, suggesting that the ratio of non-autonomous and autonomous modes of DNase II was ~3–7. Among three DNase II mutant embryos (nuc-1, crn-6 and crn-7), nuc-1 embryos exhibited the least number of ToLFP. The ToLFP results confirmed the previous findings that NUC-1 is the major DNase II for degrading apoptotic DNA. To further elucidate NUC-1′s mode of action, nuc-1-rescuing transgenic worms that ectopically express free or membrane-bound forms of NUC-1 fusion proteins were utilized. ToLFP analyses revealed that anteriorly expressed NUC-1 digests apoptotic DNA in posterior blastomeres in a non-autonomous and secretion-dependent manner. Collectively, we demonstrate that the ToLFP method can be used to differentiate the locations of blastomeres where DNase II acts autonomously or non-autonomously in degrading apoptotic DNA. PMID:26182365

  11. Development of autonomous grasping and navigating robot

    NASA Astrophysics Data System (ADS)

    Kudoh, Hiroyuki; Fujimoto, Keisuke; Nakayama, Yasuichi

    2015-01-01

    The ability to find and grasp target items in an unknown environment is important for working robots. We developed an autonomous navigating and grasping robot. The operations are locating a requested item, moving to where the item is placed, finding the item on a shelf or table, and picking the item up from the shelf or the table. To achieve these operations, we designed the robot with three functions: an autonomous navigating function that generates a map and a route in an unknown environment, an item position recognizing function, and a grasping function. We tested this robot in an unknown environment. It achieved a series of operations: moving to a destination, recognizing the positions of items on a shelf, picking up an item, placing it on a cart with its hand, and returning to the starting location. The results of this experiment show the applicability of reducing the workforce with robots.

  12. Autonomous land navigation: A demonstration of retrotraverse

    SciTech Connect

    Klarer, P.R.

    1989-01-01

    This paper describes a hardware and software system developed to perform autonomous navigation of a land vehicle in a structured environment. The vehicle used for development and testing of the system was the Jeep Cherokee Mobile Robotics Testbed Vehicle developed at Sandia National Laboratories in Albuquerque. Since obstacle detection/avoidance has not yet been incorporated into the system, a structured environment is postulated that presumes the paths to be traversed are obstacle-free. The system performs path planning and execution (following) based on maps constructed using the vehicle's navigation system and onboard map-maker. The system configuration allows a map to be generated and stored during teleoperation of the vehicle, which may then be inverted and autonomously followed to perform ''retrotraverse'' back to the path start point. The system software, hardware, and performance data are discussed. 9 refs.

  13. Autonomous docking ground demonstration

    NASA Technical Reports Server (NTRS)

    Lamkin, Steve L.; Le, Thomas Quan; Othon, L. T.; Prather, Joseph L.; Eick, Richard E.; Baxter, Jim M.; Boyd, M. G.; Clark, Fred D.; Spehar, Peter T.; Teters, Rebecca T.

    1991-01-01

    The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved.

  14. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  15. Autonomic and Coevolutionary Sensor Networking

    NASA Astrophysics Data System (ADS)

    Boonma, Pruet; Suzuki, Junichi

    (WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.

  16. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.

  17. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  18. Mission Operations with an Autonomous Agent

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.

    1998-01-01

    The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.

  19. Diagnosing faults in autonomous robot plan execution

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Doshi, Rajkumar S.; Atkinson, David J.; Lawson, Denise M.

    1989-01-01

    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment.

  20. Diagnosing faults in autonomous robot plan execution

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Doshi, Rajkumar S.; Atkinson, David J.; Lawson, Denise M.

    1988-01-01

    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment.

  1. Navigation and steering for autonomous virtual humans.

    PubMed

    Kapadia, Mubbasir; Badler, Norman I

    2013-05-01

    The ever-increasing applicability of interactive virtual worlds in industry and academia has given rise to the need for robust, versatile autonomous virtual humans to inject life into these environments. There are two fundamental problems that must be addressed to produce functional, purposeful autonomous populaces: (1)Navigation: finding a collision-free global path from an agent's start position to its target in large complex environments, and (2) Steering: moving an agent along the path while avoiding static and dynamic threats such as other agents. In this review, we survey the large body of contributions in steering and navigation for autonomous agents in dynamic virtual worlds. We describe the benefits and limitations of different proposed solutions and identify potential future research directions to meet the needs for the next generation of interactive virtual world applications. WIREs Cogn Sci 2013, 4:263-272. doi: 10.1002/wcs.1223 For further resources related to this article, please visit the WIREs website. PMID:26304204

  2. Autonomous power system brassboard

    NASA Technical Reports Server (NTRS)

    Merolla, Anthony

    1992-01-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the brassboard hardware and intelligent controlling software, fault circuits have been developed and integrated as part of the brassboard. A description of these fault circuits and their function is included. The brassboard has become an extremely useful test facility, promoting artificial intelligence (AI) applications for power distribution systems. However, there are elements of the brassboard which could be enhanced, thus improving system performance. Modifications and enhancements to improve the brassboard's operation are discussed.

  3. Autonomous power system brassboard

    NASA Astrophysics Data System (ADS)

    Merolla, Anthony

    1992-10-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the brassboard hardware and intelligent controlling software, fault circuits have been developed and integrated as part of the brassboard. A description of these fault circuits and their function is included. The brassboard has become an extremely useful test facility, promoting artificial intelligence (AI) applications for power distribution systems.

  4. Autonomic Dysregulation in Multiple Sclerosis

    PubMed Central

    Pintér, Alexandra; Cseh, Domonkos; Sárközi, Adrienn; Illigens, Ben M.; Siepmann, Timo

    2015-01-01

    Multiple sclerosis (MS) is a chronic, progressive central neurological disease characterized by inflammation and demyelination. In patients with MS, dysregulation of the autonomic nervous system may present with various clinical symptoms including sweating abnormalities, urinary dysfunction, orthostatic dysregulation, gastrointestinal symptoms, and sexual dysfunction. These autonomic disturbances reduce the quality of life of affected patients and constitute a clinical challenge to the physician due to variability of clinical presentation and inconsistent data on diagnosis and treatment. Early diagnosis and initiation of individualized interdisciplinary and multimodal strategies is beneficial in the management of autonomic dysfunction in MS. This review summarizes the current literature on the most prevalent aspects of autonomic dysfunction in MS and provides reference to underlying pathophysiological mechanisms as well as means of diagnosis and treatment. PMID:26213927

  5. Autonomous underwater barcode recognition

    NASA Astrophysics Data System (ADS)

    Schulze, Karl R.

    2003-11-01

    Wide area symbol recognition is a task that plagues many autonomous vehicles. A process is needed first to recognize if the symbol is present, and if so where it is. Once the symbol's position is detected it must be analyzed and recognized. In this scenario we have a submersible attempting to locate man made objects on the bottom of a large water basin. These man made objects have bar codes on them that need to be read and the position of the code needs to be recorded relative to where it is in the entire pond. A two step process has been developed to allow the position recognition within a frame to be dealt with on a separate DSP associated with one of three total cameras. The object recognition is then dealt with on a high speed computer aboard the vehicle to read the proper code. The reading is done using a statistics based approach that assumes a noisy, but contrasting background. This approach has proven to be effective in environments in which the background has very little ordered noise, such as the bottom of lakes and ponds, but requires very high clarity in order to capture a suitable image.

  6. Autonomous Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirovi?, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-04-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  7. Autonomous landing guidance program

    NASA Astrophysics Data System (ADS)

    Brown, John A.

    1996-05-01

    The Autonomous Landing Guidance program is partly funded by the US Government under the Technology Reinvestment Project. The program consortium consists of avionics and other equipment vendors, airlines and the USAF. A Sextant Avionique HUD is used to present flight symbology in cursive form as well as millimeter wave radar imagery from Lear Astronics equipment and FLIR Systems dual-channel, forward-looking, infrared imagery. All sensor imagery is presented in raster form. A future aim is to fuse all imagery data into a single presentation. Sensor testing has been accomplished in a Cessna 402 operated by the Maryland Advanced Development Laboratory. Development testing is under way in a Northwest Airlines simulator equipped with HUD and image simulation. Testing is also being carried out using United Airlines Boeing 727 and USAF C-135C (Boeing 707) test aircraft. The paper addresses the technology utilized in sensory and display systems as well as modifications made to accommodate the elements in the aircraft. Additions to the system test aircraft include global positioning systems, inertial navigation systems and extensive data collection equipment. Operational philosophy and benefits for both civil and military users are apparent. Approach procedures have been developed allowing use of Category 1 ground installations in Category 3 conditions.

  8. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  9. Is paramecium swimming autonomic?

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; Toplosky, Norman; Hansen, Joshua

    2010-11-01

    We seek to explore if the swimming of paramecium has an underlying autonomic mechanism. Such robotic elements may be useful in capturing the disturbance field in an environment in real time. Experimental evidence is emerging that motion control neurons of other animals may be present in paramecium as well. The limit cycle determined using analog simulation of the coupled nonlinear oscillators of olivo-cerebellar dynamics (ieee joe 33, 563-578, 2008) agrees with the tracks of the cilium of a biological paramecium. A 4-motor apparatus has been built that reproduces the kinematics of the cilium motion. The motion of the biological cilium has been analyzed and compared with the results of the finite element modeling of forces on a cilium. The modeling equates applied torque at the base of the cilium with drag, the cilium stiffness being phase dependent. A low friction pendulum apparatus with a multiplicity of electromagnetic actuators is being built for verifying the maps of the attractor basin computed using the olivo-cerebellar dynamics for different initial conditions. Sponsored by ONR 33.

  10. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  11. Genetic engineering and autonomous agency.

    PubMed

    Barclay, Linda

    2003-01-01

    In this paper I argue that the genetic manipulation of sexual orientation at the embryo stage could have a detrimental effect on the subsequent person's later capacity for autonomous agency. By focussing on an example of sexist oppression I show that the norms and expectations expressed with this type of genetic manipulation can threaten the development of autonomous agency and the kind of social environment that makes its exercise likely. PMID:14989287

  12. A Heuristic Route Planner For Autonomous Robots

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Semeco, Antonio C.; Eamsherangkoon, Pipat

    1985-01-01

    This paper describes a heuristic route planning system for use in robotic vehicles. The route planner described herein is applicable to a variety of natural terrain ground systems such as autonomous tactical vehicles and mobile robot sentries. The route planner consists of five processing stages: (1) terrain preprocessing, (2) local points-of-interest extraction, (3) postprocessing point reduction, (4) search space criterion graph construction, and (5) heuristic search path generation. Examples of these processing steps are presented and additional system improvements are discussed.

  13. A power autonomous monopedal robot

    NASA Astrophysics Data System (ADS)

    Krupp, Benjamin T.; Pratt, Jerry E.

    2006-05-01

    We present the design and initial results of a power-autonomous planar monopedal robot. The robot is a gasoline powered, two degree of freedom robot that runs in a circle, constrained by a boom. The robot uses hydraulic Series Elastic Actuators, force-controllable actuators which provide high force fidelity, moderate bandwidth, and low impedance. The actuators are mounted in the body of the robot, with cable drives transmitting power to the hip and knee joints of the leg. A two-stroke, gasoline engine drives a constant displacement pump which pressurizes an accumulator. Absolute position and spring deflection of each of the Series Elastic Actuators are measured using linear encoders. The spring deflection is translated into force output and compared to desired force in a closed loop force-control algorithm implemented in software. The output signal of each force controller drives high performance servo valves which control flow to each of the pistons of the actuators. In designing the robot, we used a simulation-based iterative design approach. Preliminary estimates of the robot's physical parameters were based on past experience and used to create a physically realistic simulation model of the robot. Next, a control algorithm was implemented in simulation to produce planar hopping. Using the joint power requirements and range of motions from simulation, we worked backward specifying pulley diameter, piston diameter and stroke, hydraulic pressure and flow, servo valve flow and bandwidth, gear pump flow, and engine power requirements. Components that meet or exceed these specifications were chosen and integrated into the robot design. Using CAD software, we calculated the physical parameters of the robot design, replaced the original estimates with the CAD estimates, and produced new joint power requirements. We iterated on this process, resulting in a design which was prototyped and tested. The Monopod currently runs at approximately 1.2 m/s with the weight of all the power generating components, but powered from an off-board pump. On a test stand, the eventual on-board power system generates enough pressure and flow to meet the requirements of these runs and we are currently integrating the power system into the real robot. When operated from an off-board system without carrying the weight of the power generating components, the robot currently runs at approximately 2.25 m/s. Ongoing work is focused on integrating the power system into the robot, improving the control algorithm, and investigating methods for improving efficiency.

  14. Towards an Autonomic Cluster Management System (ACMS) with Reflex Autonomicity

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Hinchey, Mike; Sterritt, Roy

    2005-01-01

    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of providing a fault-tolerant environment and achieving significant computational capabilities for high-performance computing applications. However, the task of manually managing and configuring a cluster quickly becomes daunting as the cluster grows in size. Autonomic computing, with its vision to provide self-management, can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Autonomic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management and its evolution to include reflex reactions via pulse monitoring.

  15. Polymer vesicles: Autonomous propulsion

    NASA Astrophysics Data System (ADS)

    Howse, Jonathan

    2012-04-01

    Polymer vesicles have been constructed that entrap platinum nanoparticles in their outer surface. These serve to break down a fuel of hydrogen peroxide, generating water and oxygen and in turn inducing a propulsive effect.

  16. Onboard Processing and Autonomous Operations on the IPEX Cubesat

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi; Stanton, Eric; Yee, Edmond

    2012-01-01

    IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.

  17. Quantifying Emergent Behavior of Autonomous Robots

    NASA Astrophysics Data System (ADS)

    Martius, Georg; Olbrich, Eckehard

    2015-10-01

    Quantifying behaviors of robots which were generated autonomously from task-independent objective functions is an important prerequisite for objective comparisons of algorithms and movements of animals. The temporal sequence of such a behavior can be considered as a time series and hence complexity measures developed for time series are natural candidates for its quantification. The predictive information and the excess entropy are such complexity measures. They measure the amount of information the past contains about the future and thus quantify the nonrandom structure in the temporal sequence. However, when using these measures for systems with continuous states one has to deal with the fact that their values will depend on the resolution with which the systems states are observed. For deterministic systems both measures will diverge with increasing resolution. We therefore propose a new decomposition of the excess entropy in resolution dependent and resolution independent parts and discuss how they depend on the dimensionality of the dynamics, correlations and the noise level. For the practical estimation we propose to use estimates based on the correlation integral instead of the direct estimation of the mutual information using the algorithm by Kraskov et al. (2004) which is based on next neighbor statistics because the latter allows less control of the scale dependencies. Using our algorithm we are able to show how autonomous learning generates behavior of increasing complexity with increasing learning duration.

  18. Autonomous Navigation by a Mobile Robot

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Aghazarian, Hrand

    2005-01-01

    ROAMAN is a computer program for autonomous navigation of a mobile robot on a long (as much as hundreds of meters) traversal of terrain. Developed for use aboard a robotic vehicle (rover) exploring the surface of a remote planet, ROAMAN could also be adapted to similar use on terrestrial mobile robots. ROAMAN implements a combination of algorithms for (1) long-range path planning based on images acquired by mast-mounted, wide-baseline stereoscopic cameras, and (2) local path planning based on images acquired by body-mounted, narrow-baseline stereoscopic cameras. The long-range path-planning algorithm autonomously generates a series of waypoints that are passed to the local path-planning algorithm, which plans obstacle-avoiding legs between the waypoints. Both the long- and short-range algorithms use an occupancy-grid representation in computations to detect obstacles and plan paths. Maps that are maintained by the long- and short-range portions of the software are not shared because substantial localization errors can accumulate during any long traverse. ROAMAN is not guaranteed to generate an optimal shortest path, but does maintain the safety of the rover.

  19. Autonomous mobile robots: Vehicles with cognitive control

    SciTech Connect

    Meystel, A.

    1987-01-01

    This book explores a new rapidly developing area of robotics. It describes the state-of-the-art intelligence control, applied machine intelligence, and research and initial stages of manufacturing of autonomous mobile robots. A complete account of the theoretical and experimental results obtained during the last two decades together with some generalizations on Autonomous Mobile Systems are included in this book. Contents: Introduction; Requirements and Specifications; State-of-the-art in Autonomous Mobile Robots Area; Structure of Intelligent Mobile Autonomous System; Planner, Navigator; Pilot; Cartographer; Actuation Control; Computer Simulation of Autonomous Operation; Testing the Autonomous Mobile Robot; Conclusions; Bibliography.

  20. Autonomous hazard detection and avoidance

    NASA Technical Reports Server (NTRS)

    Pien, Homer

    1992-01-01

    During GFY 91, Draper Laboratory was awarded a task by NASA-JSC under contract number NAS9-18426 to study and evaluate the potential for achieving safe autonomous landings on Mars using an on-board autonomous hazard detection and avoidance (AHDA) system. This report describes the results of that study. The AHDA task had four objectives: to demonstrate, via a closed-loop simulation, the ability to autonomously select safe landing sites and the ability to maneuver to the selected site; to identify key issues in the development of AHDA systems; to produce strawman designs for AHDA sensors and algorithms; and to perform initial trade studies leading to better understanding of the effect of sensor/terrain/viewing parameters on AHDA algorithm performance. This report summarizes the progress made during the first year, with primary emphasis on describing the tools developed for simulating a closed-loop AHDA landing. Some cursory performance evaluation results are also presented.

  1. Intelligent, autonomous systems in space

    NASA Technical Reports Server (NTRS)

    Lum, H.; Heer, E.

    1988-01-01

    The Space Station is expected to be equipped with intelligent, autonomous capabilities; to achieve and incorporate these capabilities, the required technologies need to be identitifed, developed and validated within realistic application scenarios. The critical technologies for the development of intelligent, autonomous systems are discussed in the context of a generalized functional architecture. The present state of this technology implies that it be introduced and applied in an evolutionary process which must start during the Space Station design phase. An approach is proposed to accomplish design information acquisition and management for knowledge-base development.

  2. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  3. Progress towards autonomous, intelligent systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry; Heer, Ewald

    1987-01-01

    An aggressive program has been initiated to develop, integrate, and implement autonomous systems technologies starting with today's expert systems and evolving to autonomous, intelligent systems by the end of the 1990s. This program includes core technology developments and demonstration projects for technology evaluation and validation. This paper discusses key operational frameworks in the content of systems autonomy applications and then identifies major technological challenges, primarily in artificial intelligence areas. Program content and progress made towards critical technologies and demonstrations that have been initiated to achieve the required future capabilities in the year 2000 era are discussed.

  4. Contingency Software in Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn; Patterson-Hine, Ann

    2006-01-01

    This viewgraph presentation reviews the development of contingency software for autonomous systems. Autonomous vehicles currently have a limited capacity to diagnose and mitigate failures. There is a need to be able to handle a broader range of contingencies. The goals of the project are: 1. Speed up diagnosis and mitigation of anomalous situations.2.Automatically handle contingencies, not just failures.3.Enable projects to select a degree of autonomy consistent with their needs and to incrementally introduce more autonomy.4.Augment on-board fault protection with verified contingency scripts

  5. Object guided autonomous exploration for mobile robots in indoor environments

    NASA Astrophysics Data System (ADS)

    Nieto-Granda, Carlos; Choudhary, Siddarth; Rogers, John G.; Twigg, Jeff; Murali, Varun; Christensen, Henrik I.

    2014-06-01

    Autonomous mobile robotic teams are increasingly used in exploration of indoor environments. Accurate modeling of the world around the robot and describing the interaction of the robot with the world greatly increases the ability of the robot to act autonomously. This paper demonstrates the ability of autonomous robotic teams to find objects of interest. A novel feature of our approach is the object discovery and the use of it to augment the mapping and navigation process. The generated map can then be decomposed into semantic regions while also considering the distance and line of sight to anchor points. The advantage of this approach is that the robot can return a dense map of the region around an object of interest. The robustness of this approach is demonstrated in indoor environments with multiple platforms with the objective of discovering objects of interest.

  6. Autonomous UAV persistent surveillance using bio-inspired strategies

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2012-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara, the Army Research Laboratory, the Engineer Research and Development Center, and IBM UK is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bioinspired techniques for autonomous search provide a novel strategy to detect, capture and fuse data from heterogeneous sensor networks. The bio-inspired algorithm is based on chemotaxis or the motion of bacteria seeking nutrients in their environment. Field tests of a bio-inspired system that routed UAVs were conducted in June 2011 at Camp Roberts, CA. The field test results showed that such a system can autonomously detect and locate the source of terrestrial events with very high accuracy and visually verify the event. In June 2011, field tests of the system were completed and include the use of multiple autonomously controlled UAVs, detection and disambiguation of multiple acoustic events occurring in short time frames, optimal sensor placement based on local phenomenology and the use of the International Technology Alliance (ITA) Sensor Network Fabric. The system demonstrated TRL 6 performance in the field at Camp Roberts.

  7. Autonomous movement of platinum-loaded stomatocytes

    NASA Astrophysics Data System (ADS)

    Wilson, Daniela A.; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2012-04-01

    Polymer stomatocytes are bowl-shaped structures of nanosize dimensions formed by the controlled deformation of polymer vesicles. The stable nanocavity and strict control of the opening are ideal for the physical entrapment of nanoparticles which, when catalytically active, can turn the stomatocyte morphology into a nanoreactor. Herein we report an approach to generate autonomous movement of the polymer stomatocytes by selectively entrapping catalytically active platinum nanoparticles within their nanocavities and subsequently using catalysis as a driving force for movement. Hydrogen peroxide is free to access the inner stomatocyte cavity, where it is decomposed by the active catalyst (the entrapped platinum nanoparticles) into oxygen and water. This generates a rapid discharge, which induces thrust and directional movement. The design of the platinum-loaded stomatocytes resembles a miniature monopropellant rocket engine, in which the controlled opening of the stomatocytes directs the expulsion of the decomposition products away from the reaction chamber (inner stomatocyte cavity).

  8. Autonomous movement of platinum-loaded stomatocytes.

    PubMed

    Wilson, Daniela A; Nolte, Roeland J M; van Hest, Jan C M

    2012-04-01

    Polymer stomatocytes are bowl-shaped structures of nanosize dimensions formed by the controlled deformation of polymer vesicles. The stable nanocavity and strict control of the opening are ideal for the physical entrapment of nanoparticles which, when catalytically active, can turn the stomatocyte morphology into a nanoreactor. Herein we report an approach to generate autonomous movement of the polymer stomatocytes by selectively entrapping catalytically active platinum nanoparticles within their nanocavities and subsequently using catalysis as a driving force for movement. Hydrogen peroxide is free to access the inner stomatocyte cavity, where it is decomposed by the active catalyst (the entrapped platinum nanoparticles) into oxygen and water. This generates a rapid discharge, which induces thrust and directional movement. The design of the platinum-loaded stomatocytes resembles a miniature monopropellant rocket engine, in which the controlled opening of the stomatocytes directs the expulsion of the decomposition products away from the reaction chamber (inner stomatocyte cavity). PMID:22437710

  9. Development of Methodology for Programming Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Erol, Kutluhan; Levy, Renato; Lang, Lun

    2004-01-01

    A brief report discusses the rationale for, and the development of, a methodology for generating computer code for autonomous-agent-based systems. The methodology is characterized as enabling an increase in the reusability of the generated code among and within such systems, thereby making it possible to reduce the time and cost of development of the systems. The methodology is also characterized as enabling reduction of the incidence of those software errors that are attributable to the human failure to anticipate distributed behaviors caused by the software. A major conceptual problem said to be addressed in the development of the methodology was that of how to efficiently describe the interfaces between several layers of agent composition by use of a language that is both familiar to engineers and descriptive enough to describe such interfaces unambivalently

  10. A Robust Compositional Architecture for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara

    2006-01-01

    Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.

  11. The Functioning of Autonomous Colleges

    ERIC Educational Resources Information Center

    Rao, V. Pala Prasada; Rao, Digumarti Bhaskara

    2012-01-01

    The college gets separated from the university, though not completely, when it is an autonomous college, which is practice in India. Academic package will become flexible and the decision-making is internalized, changes and updating could be easily carried out, depending on the need as reflected from the feedback taken from alumni, user sectors,…

  12. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  13. The autonomic phenotype of rumination.

    PubMed

    Ottaviani, Cristina; Shapiro, David; Davydov, Dmitry M; Goldstein, Iris B; Mills, Paul J

    2009-06-01

    Recent studies suggest that ruminative thoughts may be mediators of the prolonged physiological effects of stress. We hypothesized that autonomic dysregulation plays a role in the relation between rumination and health. Rumination was induced by an anger-recall task in 45 healthy subjects. Heart rate variability (HRV), baroreflex sensitivity (BRS), and baroreflex effectiveness index (BEI) change scores were evaluated to obtain the autonomic phenotype of rumination. Personality traits and endothelial activation were examined for their relation to autonomic responses during rumination. Degree of endothelial activation was assessed by circulating soluble intercellular adhesion molecule-1 (sICAM-1). Vagal withdrawal during rumination was greater for women than men. Larger decreases in the high frequency component of HRV were associated with higher levels of anger-in, depression, and sICAM-1 levels. BRS reactivity was negatively related to trait anxiety. BEI reactivity was positively related to anger-in, hostility, anxiety, and depression. Lower BEI and BRS recovery were associated with lower social desirability and higher anger-out, anxiety, and depression. Findings suggest that the autonomic dysregulation that characterizes rumination plays a role in the relationships between personality and cardiovascular health. PMID:19272312

  14. An Autonomous Spacecraft Agent Prototype

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Bernard, Douglas E.; Chien, Steve A.; Gat, Erann; Muscettola, Nicola; Nayak, P. Pandurang; Wagner, Michael D.; Williams, Brian C.

    1997-01-01

    This paper describes the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. This architecture integrates traditional real-time monitoring and control with constraint-based planning and scheduling, robust multi-threaded execution, and model-based diagnosis and reconfiguration.

  15. The Functioning of Autonomous Colleges

    ERIC Educational Resources Information Center

    Rao, V. Pala Prasada; Rao, Digumarti Bhaskara

    2012-01-01

    The college gets separated from the university, though not completely, when it is an autonomous college, which is practice in India. Academic package will become flexible and the decision-making is internalized, changes and updating could be easily carried out, depending on the need as reflected from the feedback taken from alumni, user sectors,…

  16. Algorithms for autonomous star identification

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Algorithms for onboard autonomous star identification are presented. The algorithms are applicable to two types of spacecraft missions, those flown with nearly inertially fixed attitude (solar maximum mission type); and those flown with smoothly time varying attitude (LANDSAT-D type).

  17. Linguistic geometry for autonomous navigation

    SciTech Connect

    Stilman, B.

    1995-09-01

    To discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, we develop a formal theory, the Linguistic Geometry. This paper reports two examples of application of Linguistic Geometry to autonomous navigation of aerospace vehicles that demonstrate dramatic search reduction.

  18. Semi-Autonomous Study Groups.

    ERIC Educational Resources Information Center

    Hogan, Christine

    1999-01-01

    Innovations in the teaching and learning strategies used in an organizational-behavior course developed for the business school of Curtin University of Technology (Australia) are detailed. Faculty (n=18) and students (n=800) involved in the course-development process were organized into semi-autonomous study groups and learned to cope with group…

  19. Computing architecture for autonomous microgrids

    SciTech Connect

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the microgrid.

  20. Design for autonomous test

    NASA Astrophysics Data System (ADS)

    McCluskey, E. J.; Bozorgui-Nesbat, S.

    1981-11-01

    A technique for modifying networks so that they are capable of self test is presented. The major innovation is partitioning the network into subnetworks with sufficiently few inputs that exhaustive testing of the subnetworks is possible. Procedures for reconfiguring the existing registers into modified linear feedback shift registers, which apply the exhaustive (not pseudorandom) test patterns or convert the responses into signatures are described. No fault models or test pattern generation programs are required. A method to modify CMOS circuits so that exhaustive testing can be used even when stuck-open faults must be detected is described. A detailed example using the 74181 ALU is presented.

  1. Optimal soaring by a small autonomous glider

    NASA Astrophysics Data System (ADS)

    Kyle, Jason A.

    Extending the flight time of an autonomous unmanned air vehicle by soaring is considered. A suboptimal controller is developed and successful static soaring is demonstrated with a 6 degree of freedom glider model. Altitude gain rates of between ¼ and ½ m/s are achieved with this simple implementation. A hybrid optimal trajectory generation algorithm is developed and used to find optimal closed cycles in typical wind conditions using a point mass model. The algorithm is shown to be robust to a poor initial guess, with computational performance comparable to a common direct shooting algorithm. A receding horizon optimal controller strategy is investigated for the problem of autonomous soaring. An efficient Riccatti recursion algorithm is used to determine the next step in the Newton Iteration of the Non-Linear optimization problem. A real time strategy for optimal soaring is developed and shown to perform very well for a point mass model, resulting in repeatable trajectories with significant altitude gain. Sensitivity to errors including wind model errors is investigated. The real time algorithm was found to be insensitive to reasonable errors.

  2. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  3. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2012-01-01

    The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.

  4. Autonomic Computing: Freedom or a Threat?

    SciTech Connect

    Fink, Glenn A.; Frincke, Deb

    2007-12-01

    No longer is the question whether autonomic computing will gain general acceptance but when. Experts expect autonomic computing to be widely used within 10 years. When it does become mainstream, how will autonomics change system administration and corporations, and will the change be for better or worse? The answer depends on how well we anticipate the limitations of what autonomic systems are suited to do, whether we can collectively address the vulnerabilities of autonomic approaches as we draw upon the advantages, and whether administrators, companies, partners, and users are prepared for the transition. This article presents some design considerations to address the first two issues and some suggested survival techniques for the third.

  5. Autonomic function testing aboard the ISS using “PNEUMOCARD”

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Funtova, I. I.; Diedrich, A.; Chernikova, A. G.; Drescher, J.; Baranov, V. M.; Tank, J.

    2009-10-01

    Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the "ISS" have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device "Pneumocard" was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex "Pneumocard" was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates. HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight. Our results demonstrate that autonomic function testing aboard the ISS using "Pneumocard" is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut. Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant and compelling.

  6. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy

    PubMed Central

    Jin, Heung Yong; Baek, Hong Sun

    2015-01-01

    Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN). Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed. PMID:26706915

  7. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy.

    PubMed

    Jin, Heung Yong; Baek, Hong Sun; Park, Tae Sun

    2015-12-01

    Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN). Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed. PMID:26706915

  8. Experiences in Benchmarking of Autonomic Systems

    NASA Astrophysics Data System (ADS)

    Etchevers, Xavier; Coupaye, Thierry; Vachet, Guy

    Autonomic computing promises improvements of systems quality of service in terms of availability, reliability, performance, security, etc. However, little research and experimental results have so far demonstrated this assertion, nor provided proof of the return on investment stemming from the efforts that introducing autonomic features requires. Existing works in the area of benchmarking of autonomic systems can be characterized by their qualitative and fragmented approaches. Still a crucial need is to provide generic (i.e. independent from business, technology, architecture and implementation choices) autonomic computing benchmarking tools for evaluating and/or comparing autonomic systems from a technical and, ultimately, an economical point of view. This article introduces a methodology and a process for defining and evaluating factors, criteria and metrics in order to qualitatively and quantitatively assess autonomic features in computing systems. It also discusses associated experimental results on three different autonomic systems.

  9. An Autonomously Reciprocating Transmembrane Nanoactuator.

    PubMed

    Watson, Matthew A; Cockroft, Scott L

    2016-01-01

    Biological molecular machines operate far from equilibrium by coupling chemical potential to repeated cycles of dissipative nanomechanical motion. This principle has been exploited in supramolecular systems that exhibit true machine behavior in solution and on surfaces. However, designed membrane-spanning assemblies developed to date have been limited to simple switches or stochastic shuttles, and true machine behavior has remained elusive. Herein, we present a transmembrane nanoactuator that turns over chemical fuel to drive autonomous reciprocating (back-and-forth) nanomechanical motion. Ratcheted reciprocating motion of a DNA/PEG copolymer threaded through a single ?-hemolysin pore was induced by a combination of DNA strand displacement processes and enzyme-catalyzed reactions. Ion-current recordings revealed saw-tooth patterns, indicating that the assemblies operated in autonomous, asymmetric cycles of conformational change at rates of up to one cycle per minute. PMID:26661295

  10. Validating the Autonomous Science Agent

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Cichy, Benjamin; Schaffer, Steve; Tran, Danny; Rabideau, Gregg; Sherwood, Rob; Bote, Robert; Mandl, Dan; Frye, Stu; Shulman, Seth; Van Gaasbeck, Jim; Boyer, Darrell

    2003-01-01

    This paper describes the validation process for the Autonomous Science Agent, a software agent that will fly onboard the EO-1 spacecraft from 2003-2004. This agent will recognize science events, retarget the spacecraft to respond to the science events, and reduce data downlink to only the highest value science data. The autonomous science agent has been designed using a layered architectural approach with specific redundant safeguards to reduce the risk of an agent malfunction to the EO-1 spacecraft. This 'safe' design is also in the process of being thoroughly validated by informal validation methods and extensive testing. This paper describes the analysis used to define agent safety, elements of the design that increase the safety of the agent, and the process being used to validate agent safety prior to the agent software controlling the spacecraft.

  11. Experiments on autonomous Boolean networks

    NASA Astrophysics Data System (ADS)

    Rosin, David P.; Rontani, Damien; Gauthier, Daniel J.; Schöll, Eckehard

    2013-06-01

    We realize autonomous Boolean networks by using logic gates in their autonomous mode of operation on a field-programmable gate array. This allows us to implement time-continuous systems with complex dynamical behaviors that can be conveniently interconnected into large-scale networks with flexible topologies that consist of time-delay links and a large number of nodes. We demonstrate how we realize networks with periodic, chaotic, and excitable dynamics and study their properties. Field-programmable gate arrays define a new experimental paradigm that holds great potential to test a large body of theoretical results on the dynamics of complex networks, which has been beyond reach of traditional experimental approaches.

  12. Autonomously managed high power systems

    NASA Technical Reports Server (NTRS)

    Weeks, D. J.; Bechtel, R. T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion.

  13. Treatment of gastrointestinal autonomic neuropathy.

    PubMed

    Törnblom, Hans

    2016-03-01

    The symptoms caused by gastrointestinal autonomic neuropathy in diabetes mellitus is important to highlight since it affects a large proportion of people with diabetes, regardless of whether this is type 1 or type 2. Gastroparesis and general signs of bowel dysfunction, such as constipation, diarrhoea and abdominal pain are most often encountered and involve both pharmacological and non-pharmacological treatment options. This mini-review summarises a presentation given at the 'Diagnosis and treatment of autonomic diabetic neuropathy in the gut' symposium at the 2015 annual meeting of the EASD. It is accompanied by another mini-review on a topic from this symposium (by Azpiroz and Malagelada, DOI: 10.1007/s00125-015-3831-1 ) and a commentary by the Session Chair, Péter Kempler (DOI: 10.1007/s00125-015-3826-y ). PMID:26634570

  14. Autonomous spacecraft maintenance study group

    NASA Technical Reports Server (NTRS)

    Marshall, M. H.; Low, G. D.

    1981-01-01

    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.

  15. Integrated Microsensors for Autonomous Microrobots

    SciTech Connect

    ADKINS, DOUGLAS R.; BYRNE, RAYMOND H.; HELLER, EDWIN J.; WOLF, JIMMIE V.

    2003-02-01

    This report describes the development of a miniature mobile microrobot device and several microsystems needed to create a miniature microsensor delivery platform. This work was funded under LDRD No.10785, entitled, ''Integrated Microsensors for Autonomous Microrobots''. The approach adopted in this project was to develop a mobile platform, to which would be attached wireless RF remote control and data acquisition in addition to various microsensors. A modular approach was used to produce a versatile microrobot platform and reduce power consumption and physical size.

  16. Semi autonomous mine detection system

    SciTech Connect

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  17. Autonomic Neuropathy in Diabetes Mellitus

    PubMed Central

    Verrotti, Alberto; Prezioso, Giovanni; Scattoni, Raffaella; Chiarelli, Francesco

    2014-01-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent definition, different diagnostic method, different patient cohorts studied. The pathogenesis is still unclear and probably multifactorial. Once DAN becomes clinically evident, no form of therapy has been identified, which can effectively stop or reverse it. Prevention strategies are based on strict glycemic control with intensive insulin treatment, multifactorial intervention, and lifestyle modification including control of hypertension, dyslipidemia, stop smoking, weight loss, and adequate physical exercise. The present review summarizes the latest knowledge regarding clinical presentation, epidemiology, pathogenesis, and management of DAN, with some mention to childhood and adolescent population. PMID:25520703

  18. Integrated System for Autonomous Science

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Robert; Tran, Daniel; Cichy, Benjamin; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Frye, Stuart; Trout, Bruce; Shulman, Seth; Doggett, Thomas; Ip, Felipe; Greeley, Ron; Baker, Victor; Dohn, James; Boyer, Darrell

    2006-01-01

    The New Millennium Program Space Technology 6 Project Autonomous Sciencecraft software implements an integrated system for autonomous planning and execution of scientific, engineering, and spacecraft-coordination actions. A prior version of this software was reported in "The TechSat 21 Autonomous Sciencecraft Experiment" (NPO-30784), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 33. This software is now in continuous use aboard the Earth Orbiter 1 (EO-1) spacecraft mission and is being adapted for use in the Mars Odyssey and Mars Exploration Rovers missions. This software enables EO-1 to detect and respond to such events of scientific interest as volcanic activity, flooding, and freezing and thawing of water. It uses classification algorithms to analyze imagery onboard to detect changes, including events of scientific interest. Detection of such events triggers acquisition of follow-up imagery. The mission-planning component of the software develops a response plan that accounts for visibility of targets and operational constraints. The plan is then executed under control by a task-execution component of the software that is capable of responding to anomalies.

  19. Autonomic Computing: Panacea or Poppycock?

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    Autonomic Computing arose out of a need for a means to cope with rapidly growing complexity of integrating, managing, and operating computer-based systems as well as a need to reduce the total cost of ownership of today's systems. Autonomic Computing (AC) as a discipline was proposed by IBM in 2001, with the vision to develop self-managing systems. As the name implies, the influence for the new paradigm is the human body's autonomic system, which regulates vital bodily functions such as the control of heart rate, the body's temperature and blood flow-all without conscious effort. The vision is to create selfivare through self-* properties. The initial set of properties, in terms of objectives, were self-configuring, self-healing, self-optimizing and self-protecting, along with attributes of self-awareness, self-monitoring and self-adjusting. This self-* list has grown: self-anticipating, self-critical, self-defining, self-destructing, self-diagnosis, self-governing, self-organized, self-reflecting, and self-simulation, for instance.

  20. Autonomic neuropathy in diabetes mellitus.

    PubMed

    Verrotti, Alberto; Prezioso, Giovanni; Scattoni, Raffaella; Chiarelli, Francesco

    2014-01-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent definition, different diagnostic method, different patient cohorts studied. The pathogenesis is still unclear and probably multifactorial. Once DAN becomes clinically evident, no form of therapy has been identified, which can effectively stop or reverse it. Prevention strategies are based on strict glycemic control with intensive insulin treatment, multifactorial intervention, and lifestyle modification including control of hypertension, dyslipidemia, stop smoking, weight loss, and adequate physical exercise. The present review summarizes the latest knowledge regarding clinical presentation, epidemiology, pathogenesis, and management of DAN, with some mention to childhood and adolescent population. PMID:25520703

  1. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.

  2. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette Syndrome

    PubMed Central

    Nagai, Yoko

    2015-01-01

    This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in epilepsy (small) and tics in Tourette Syndrome (TS). In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g., syncope), or in relation to Sudden Unexpected Death in Epilepsy (SUDEP). Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in epilepsy and TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behavior influence central thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated to gain a strong position within the next generation of treatment for epilepsy, as a non-invasive technique with minimal side effects. This approach also takes advantage of the current practical opportunity to utilize growing digital health technology. PMID:26441491

  3. Autonomic neuropathy in patients with hepatic cirrhosis

    PubMed Central

    Bajaj, B; Agarwal, M; Ram, B

    2003-01-01

    Background: Autonomic neuropathy has been reported in patients with alcoholic liver disease but information on its occurrence in patients with non-alcoholic liver disease is contradictory. Aim: To assess autonomic functions in patients with alcoholic and non-alcoholic liver disease. Study design: Autonomic function using five standard tests was examined in 20 cirrhotics (10 alcoholics and 10 non-alcoholics) and 20 age and sex matched controls. The extent of autonomic dysfunction was determined in the patients and a comparison between the characteristics of patients with and without autonomic neuropathy was made. Results: Sixteen (80%) of the cirrhotic subjects were found to have evidence of autonomic neuropathy. Of these, three (15%) patients had early parasympathetic damage, five (25%) had definite parasympathetic damage, and eight (40%) had combined (that is, both parasympathetic and sympathetic) damage. Nine (90%) of the alcoholics and seven (70%) of the non-alcoholics had autonomic dysfunction. Only one patient belonging to the alcoholic group had clinical evidence of peripheral neuropathy. Moreover, there was no significant association between subjective symptoms of autonomic neuropathy and objective evidence of autonomic damage as assessed by autonomic function tests. Autonomic dysfunction was significantly more frequent in advanced liver disease compared with early liver damage. Nine (75%) out of 12 cirrhotic subjects belonging to Child class B and six (85.7%) of the seven patients belonging to Child class C had autonomic neuropathy. Conclusion: This study shows that autonomic neuropathy is common in cirrhotic subjects, that it is found with comparable frequency in alcoholics and non-alcoholics, and that it increases in severity with increase in extent of liver damage, suggesting that liver damage contributes to the neurological deficit. PMID:12897221

  4. Autonomic neural functions in space.

    PubMed

    Mano, T

    2005-08-01

    Autonomic neural functions are important to regulate vital functions in the living body. There are different methods to evaluate indirectly and directly autonomic, sympathetic and parasympathetic, neural functions of human body. Among various methods, microneurography is a technique to evaluate directly sympathetic neural functions in humans. Using this technique sympathetic neural traffic leading to skeletal muscles (muscle sympathetic nerve activity; MSNA) can be recorded from human peripheral nerves in situ. MSNA plays essentially important roles to maintain blood pressure homeostasis against gravity. Orthostatic intolerance is an important problem as an autonomic dysfunction encountered after exposure of human beings to microgravity. There exist at least two different types of sympathetic neural responses, low and high responders to orthostatic stress in orthostatic hypotension seen in neurological disorders. To answer the question if post-spaceflight orthostatic intolerance is induced by low or high MSNA responses to orthostatic stress, MSNA was microneurographically recorded for the first time before, during and after spaceflight in 1998 under Neurolab international research project. The same activity has been recorded during and/or after ground-based short- and long-term simulations of microgravity. MSNA was rather enhanced on the 12(th) and 13(th) day of spaceflight and just after landing day. Postflight MSNA response to head-up tilt was well preserved in astronauts who were orthostatically well tolerant. MSNA was suppressed during short-term simulation of microgravity less than 2 hours but was enhanced after long-term simulation of microgravity more than 3 days. Orthostatic intolerance after exposure to long-term simulation of microgravity was associated with reduced MSNA response to orthostatic stress with impaired baroreflex functions. These findings obtained from MSNA recordings in subjects exposed to space as well as short- and long-term simulations of microgravity indicate that sympathetic neural control is lowered when exposed to short-term microgravity but becomes enhanced after exposure to long-term microgravity. A lack of enhanced sympathetic neural response to orthostatic stress may induce orthostatic intolerance. Based on these findings effective countermeasures should be developed to prevent autonomic dysfunctions induced by exposure to microgravity. These include development of prescription and devices of physical exercise, electrical and magnetic nerve stimulations, body vibration, elastic bandage and stocking, lower body negative pressure, artificial gravity, medical drugs, and combinations of them. These countermeasures will be beneficial to prevent autonomic dysfunctions related to gravitational stress such encountered in bedridden subjects as orthostatic hypotension, atrophy of antigravity muscles and so on. This is particularly important in the present aged-society with many bedridden elderly people. The knowledge accumulated from studies on autonomic neural functions in space should be very useful to establish effective countermeasures and preventive methods for gravity-dependent autonomic dysfunctions. PMID:16101470

  5. Navigation path planning for autonomous aircraft - Voronoi diagram approach

    NASA Technical Reports Server (NTRS)

    Krozel, Jimmy; Andrisani, Dominick, II

    1990-01-01

    The present technique for generating a search graph depicting topologically unique paths around mountain boundaries at constant altitudes involves a description of mountain boundaries as polygons; the search graph is then generated on the basis of a geometric construct. All nodes and arcs of the search graph are guaranteed to lie in free space, thereby ensuring an autonomous aircraft's avoidance of mountain obstacles. The solution path is generated by searching the graph for the optimal path from a start location to a finish location.

  6. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  7. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  8. 3-D laser radar simulation for autonomous spacecraft landing

    NASA Technical Reports Server (NTRS)

    Reiley, Michael F.; Carmer, Dwayne C.; Pont, W. F.

    1991-01-01

    A sophisticated 3D laser radar sensor simulation, developed and applied to the task of autonomous hazard detection and avoidance, is presented. This simulation includes a backward ray trace to sensor subpixels, incoherent subpixel integration, range dependent noise, sensor point spread function effects, digitization noise, and AM-CW modulation. Specific sensor parameters, spacecraft lander trajectory, and terrain type have been selected to generate simulated sensor data.

  9. Path planning strategies for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Gifford, Kevin Kent

    Several key issues involved with the planning and executing of optimally generated paths for autonomous vehicles are addressed. Two new path planning algorithms are developed, and examined, which effectively minimize replanning as unmapped hazards are encountered. The individual algorithms are compared via extensive simulation. The search strategy results are implemented and tested using the University of Colorado's autonomous vehicle test-bed, RoboCar, and results show the advantages of solving the single-destination all-paths problem for autonomous vehicle path planning. Both path planners implement a graph search methodology incorporating dynamic programming that solves the single-destination shortest-paths problem. Algorithm 1, termed DP for dynamic programming, searches a state space where each state represents a potential vehicle location in a breadth-first fashion expanding from the goal to all potential start locations in the state space. Algorithm 2, termed DP*, couples the heuristic search power of the well-known A* search procedure (Nilsson-80) with the dynamic programming principle applied to graph searching to efficiently make use of overlapping subproblems. DP* is the primary research contribution of the work contained within this thesis. The advantage of solving the single-destination shortest-paths problem is that the entire terrain map is solved in terms of reaching a specified goal. Therefore, if the robot is diverted from the pre-planned path, an alternative path is already computed. The search algorithms are extended to include a probabilistic approach using empirical loss functions to incorporate terrain map uncertainties into the path considering terrain planning process. The results show the importance of considering terrain uncertainty. If the map representation ignores uncertainty by marking any area with less than perfect confidence as unpassable or assigns it the worst case rating, then the paths are longer than intuitively necessary. A hierarchical software control architecture is introduced that uses as the main guidance function an arbitration-based scheme which is able to efficiently and robustly integrate disparate sensor data. The flexibility provided by such an architecture allows for very easy integration of any type of environmental sensing device into the path planning algorithm.

  10. Extraesophageal autonomic dysfunction in patients with achalasia.

    PubMed

    Olk, W; Kiesewalter, B; Auer, P; Enck, P; Kuhlbusch, R; Von Giesen, H J; Weber, E; Häussinger, D; Frieling, T

    1999-10-01

    A disagreement exists as to whether extraintestinal parasympathetic autonomic function is altered in patients with esophageal achalasia. Therefore, we assessed autonomic dysfunction in esophageal achalasia and considered the most relevant parameters of parasympathetic autonomic function in these patients. In a prospective study, heart rate variation and pupillary function were investigated in 15 patients with achalasia of the esophagus and in 15 controls by application of a battery of standardized autonomic function tests. Significant differences between patients and controls were detected for various parameters of heart rate variation and pupillometry. When compared to values obtained from large groups of healthy subjects, none of the controls but 11 patients had at least one abnormal parameter of parasympathetic autonomic function. It is suggested that in esophageal achalasia parasympathetic dysfunction that extends beyond the gastrointestinal tract can be frequently detected. This finding supports the view of a generalized alteration of the autonomic nervous system in achalasia. PMID:10548362

  11. Attainability of Carnot efficiency with autonomous engines

    NASA Astrophysics Data System (ADS)

    Shiraishi, Naoto

    2015-11-01

    The maximum efficiency of autonomous engines with a finite chemical potential difference is investigated. We show that, without a particular type of singularity, autonomous engines cannot attain the Carnot efficiency. This singularity is realized in two ways: single particle transports and the thermodynamic limit. We demonstrate that both of these ways actually lead to the Carnot efficiency in concrete setups. Our results clearly illustrate that the singularity plays a crucial role in the maximum efficiency of autonomous engines.

  12. Tele/Autonomous Robot For Nuclear Facilities

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Tso, Kam S.

    1994-01-01

    Fail-safe tele/autonomous robotic system makes it unnecessary for human technicians to enter nuclear-fuel-reprocessing facilities and other high-radiation or otherwise hazardous industrial environments. Used to carry out experiments as exchanging equipment modules, turning bolts, cleaning surfaces, and grappling turning objects by use of mixture of autonomous actions and teleoperation with either single arm or two cooperating arms. System capable of fully autonomous operation, teleoperation or shared control.

  13. Sustainable and Autonomic Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter

    2006-01-01

    Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.

  14. The EO-1 Autonomous Science Agent Architecture

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Lee, Rachel; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    An Autonomous Science Agent is currently flying onboard the Earth Observing One Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. Because of the deployment to a remote spacecraft, this Autonomous Science Agent has stringent constraints of autonomy, reliability, and limited computing resources. We describe these constraints and how they are reflected in our agent architecture.

  15. Information for Successful Interaction with Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Johnson, Kathy A.

    2003-01-01

    Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.

  16. General autonomic components of motion sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Suter, Steve; Toscano, William B.; Kamiya, Joe; Naifeh, Karen

    1986-01-01

    This report refers to a body of investigations directed toward the examination of autonomic nervous system responses to motion sickness. Heart rate, respiration rate, finger pulse volume, and basal skin resistance were measured on 127 men and women before, during, and after exposure to a nauseogenic rotating chair test. Significant changes in all autonomic responses were observed across the tests (p less than .05). Significant differences in autonomic responses among groups divided according to motion sickness susceptibility were also observed (p less than .05). Results suggest that the examination of autonomic responses as an objective indicator of motion sickness malaise is warranted and may contribute to the overall understanding of the syndrome.

  17. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  18. The Autonomous Pathogen Detection System

    SciTech Connect

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  19. Autonomous sensor manager agents (ASMA)

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  20. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  1. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders.

  2. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders

  3. Living systems are tonically inhibited, autonomous optimizers, and disinhibition coupled to variability generation is their major organizing principle: inhibitory command-control at levels of membrane, genome, metabolism, brain, and society.

    PubMed

    Roberts, E

    1991-03-01

    It is proposed that the major organizing principle in living systems is disinhibition coupled to variability generation. Facile traverse of adaptive functional ranges is made possible by activities of inhibitory (attenuating and/or time-delaying) influences. These maintain barriers to physicochemical perturbations, so that interactions between the external environment and living systems produce transient local changes (signals) that are transduced by a variety of devices at hand to release activities within them. Coupling exists between the driving force (forcing function) and the generation of variability (information-processing capacity) among subunits of particular systems, i.e., there is expansible capacity for processing information in relation to demand. Metaphorically, metabolically generated energy is used to wind the biological springs. Hierarchical nesting of inhibitory command-control is discussed at levels of membrane, metabolism, genomic expression, brain function, and internalization of societal prohibitions (conscience). PMID:1780033

  4. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  5. Structured control for autonomous robots

    SciTech Connect

    Simmons, R.G. . School of Computer Science)

    1994-02-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator.

  6. Autonomous star referenced attitude determination

    NASA Technical Reports Server (NTRS)

    Van Bezooijen, R. W. H.

    1989-01-01

    A general star pattern recognition algorithm has been used to develop JPL's redundant, microcomputer-equipped ASTROS II CCD star tracker into a full-sky autonomous star tracker (FAST), capable of determining its attitude about all three axes without requiring any a priori attitude knowledge. A large field of view allows the number of guide stars in the all-sky data-base of the tracker to be limited to a manageable number, while high accuracy ensures that the pattern formed by the observed guide stars is unique. The recognition algorithm can also be used for automating the acquisition of celestial targets by astronomy telescopes, for autonomously updating the attitude of gyro-based attitude control systems, and for automating ground-based attitude recognition. Using both Monte Carlo simulations and a quasi-analytical method, it is shown that the general recognition algorithm and a less software-intensive special algorithm can be used to reliably automate the acquisition of celestial targets by astronomy telescopes.

  7. Genetics Home Reference: Hereditary sensory and autonomic neuropathy type IE

    MedlinePLUS

    ... Genetic disorder catalog Conditions > Hereditary sensory and autonomic neuropathy type IE On this page: Description Genetic changes ... November 2012 What is hereditary sensory and autonomic neuropathy type IE? Hereditary sensory and autonomic neuropathy type ...

  8. New Small Autonomous Schools District Policy. Revised.

    ERIC Educational Resources Information Center

    Oakland Unified School District, CA.

    Inspired by the gains in student achievement realized by the small schools movement in New York City, the Oakland Unified School District (California) has proposed creating a network of 10 new, small autonomous (NSA) schools over the next 3 years. School size will range between 250 and 500 students, depending on grade level. "Autonomous" means…

  9. Autonomic Physiological Response Patterns Related to Intelligence

    ERIC Educational Resources Information Center

    Melis, Cor; van Boxtel, Anton

    2007-01-01

    We examined autonomic physiological responses induced by six different cognitive ability tasks, varying in complexity, that were selected on the basis of on Guilford's Structure of Intellect model. In a group of 52 participants, task performance was measured together with nine different autonomic response measures and respiration rate. Weighted…

  10. Autonomous Control of Space Reactor Systems

    SciTech Connect

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  11. New Small Autonomous Schools District Policy. Revised.

    ERIC Educational Resources Information Center

    Oakland Unified School District, CA.

    Inspired by the gains in student achievement realized by the small schools movement in New York City, the Oakland Unified School District (California) has proposed creating a network of 10 new, small autonomous (NSA) schools over the next 3 years. School size will range between 250 and 500 students, depending on grade level. "Autonomous" means…

  12. Planning Flight Paths of Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli

    2009-01-01

    Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.

  13. Autonomic Physiological Response Patterns Related to Intelligence

    ERIC Educational Resources Information Center

    Melis, Cor; van Boxtel, Anton

    2007-01-01

    We examined autonomic physiological responses induced by six different cognitive ability tasks, varying in complexity, that were selected on the basis of on Guilford's Structure of Intellect model. In a group of 52 participants, task performance was measured together with nine different autonomic response measures and respiration rate. Weighted…

  14. Autonomous landmark tracking orbit determination strategy

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Cheng, Y.

    2003-01-01

    In this paper, an orbit determination strategy is described that is fully autonomous and relies on a computer-based crater detection and identification algorithm that is suitable for both automation of the ground based navigation system and autonomous spacecraft based navigation.

  15. Autonomous, teleoperated, and shared control of robot systems

    SciTech Connect

    Anderson, R.J.

    1994-12-31

    This paper illustrates how different modes of operation such as bilateral teleoperation, autonomous control, and shared control can be described and implemented using combinations of modules in the SMART robot control architecture. Telerobotics modes are characterized by different ``grids`` of SMART icons, where each icon represents a portion of run-time code that implements a passive control law. By placing strict requirements on the module`s input-output behavior and using scattering theory to develop a passive sampling technique, a flexible, expandable telerobot architecture is achieved. An automatic code generation tool for generating SMART systems is also described.

  16. INS integrated motion analysis for autonomous vehicle navigation

    NASA Technical Reports Server (NTRS)

    Roberts, Barry; Bazakos, Mike

    1991-01-01

    The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.

  17. Autonomous rendezvous targeting techniques for national launch system application

    NASA Technical Reports Server (NTRS)

    Lomas, James J.; Deaton, A. Wayne

    1991-01-01

    The rendezvous targeting techniques that can be utilized to achieve autonomous guidance for delivering a cargo to Space Station Freedom (SSF) using the National Launch System's (NLS) Heavy Lift Launch Vehicle (HLLV) and the on-orbit Cargo Transfer Vehicle (CTV) are described. This capability is made possible by advancements in autonomous navigation (Global Positioning System - GPS) on-board the CTV and SSF as well as the new generation flight computers. How the HLLV launch window can be decoupled from the CTV phasing window is described. The performance trades that have to be made to determine the length of the launch window and the phasing window between the CTV and SSF are identified and recommendations made that affect mission timelines.

  18. Cell-autonomous responses in Listeria monocytogenes infection.

    PubMed

    Pillich, Helena; Chakraborty, Trinad; Mraheil, Mobarak Abu

    2015-01-01

    Listeria monocytogenes is a facultative intracellular bacterium causing listeriosis, a food-borne infection with a high mortality rate. The mechanisms and the role of cells and tissular components in generating protective adaptive immune responses are well studied, and cell biological studies provide a detailed understanding of the processes targeted by the bacterial products. Much less is known of the cellular responses activated to limit infection in individual cells when confronted with stress or infection. Eukaryotic cellular responses depend on multitiered homeostatic systems that ensure maintenance of proteostatis, organellar integrity, function and turnover, and overall cellular viability ('the cell-autonomous response'). Here, we review the cell-autonomous responses induced during extracellular and intracellular L. monocytogenes growth and discuss their contribution to limiting infection. PMID:25865195

  19. Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.

    2006-01-01

    With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.

  20. Lower cost offshore field development utilizing autonomous vehicles

    SciTech Connect

    Frisbie, F.R.; Vie, K.J.; Welch, D.W.

    1996-12-31

    The offshore oil and gas industry has the requirement to inspect offshore oil and gas pipelines for scour, corrosion and damage as well as inspect and intervene on satellite production facilities. This task is currently performed with Remotely Operated Vehicles (ROV) operated from dynamically positioned (DP) offshore supply or diving support boats. Currently, these tasks are expensive due to the high day rates for DP ships and the slow, umbilical impeded, 1 knot inspection rates of the tethered ROVs, Emerging Autonomous Undersea Vehicle (AUV) technologies offer opportunities to perform these same inspection tasks for 50--75% lower cost, with comparable or improved quality. The new generation LAPV (Linked Autonomous Power Vehicles) will operate from fixed facilities such as TLPs or FPFs and cover an operating field 10 kms in diameter.

  1. Autonomous and Adaptive Voltage Control using Multiple Distributed Energy Resources

    SciTech Connect

    Li, Huijuan; Li, Fangxing; Xu, Yan; Rizy, D Tom

    2012-01-01

    Voltage regulation using distributed energy resources (DE) or distributed generators (DG) with power electronics interfaces and logic control has drawn increasing interests. This paper addresses the challenges of controlling multiple DEs to regulate voltages in distribution systems using an autonomous and adaptive control approach. Theoretical analysis shows that there exists a corresponding formulation of the dynamic control parameters with multiple DEs. Hence, the proposed control method is theoretically solid. Simulation results confirm that this method is capable of satisfying the fast response requirement for operational use without causing oscillation or inefficiency. This method is autonomous based on local information and the other DEs input without the instructions from any control center, is widely adaptive to variable power system operational situations, and has a high tolerance to data shortage of systems parameter. Hence, it is suitable for broad utility application

  2. Autonomous learning in humanoid robotics through mental imagery.

    PubMed

    Di Nuovo, Alessandro G; Marocco, Davide; Di Nuovo, Santo; Cangelosi, Angelo

    2013-05-01

    In this paper we focus on modeling autonomous learning to improve performance of a humanoid robot through a modular artificial neural networks architecture. A model of a neural controller is presented, which allows a humanoid robot iCub to autonomously improve its sensorimotor skills. This is achieved by endowing the neural controller with a secondary neural system that, by exploiting the sensorimotor skills already acquired by the robot, is able to generate additional imaginary examples that can be used by the controller itself to improve the performance through a simulated mental training. Results and analysis presented in the paper provide evidence of the viability of the approach proposed and help to clarify the rational behind the chosen model and its implementation. PMID:23122490

  3. Autonomous onboard crew operations: A review and developmental approach

    NASA Technical Reports Server (NTRS)

    Rogers, J. G.

    1982-01-01

    A review of the literature generated by an intercenter mission approach and consolidation team and their contractors was performed to obtain background information on the development of autonomous operations concepts for future space shuttle and space platform missions. The Boeing 757/767 flight management system was examined to determine the relevance for transfer of the developmental approach and technology to the performance of the crew operations function. In specific, the engine indications and crew alerting system was studied to determine the relevance of this display for the performance of crew operations onboard the vehicle. It was concluded that the developmental approach and technology utilized in the aeronautics industry would be appropriate for development of an autonomous operations concept for the space platform.

  4. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    PubMed Central

    2015-01-01

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. As a result of this unique integration, we can analyze large profiling datasets and simultaneously obtain structural identifications. Validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level. PMID:25496351

  5. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  6. Autonomic dysfunction in systemic lupus erythematosus.

    PubMed

    Shalimar; Handa, Rohini; Deepak, Kishore Kumar; Bhatia, Manvir; Aggarwal, Praveen; Pandey, Ravindra Mohan

    2006-07-01

    The objectives were to study the frequency and pattern of autonomic dysfunction in systemic lupus erythematosus (SLE). Fifty-one patients of SLE and 30 age- and sex-matched healthy controls were studied prospectively using a standard battery of noninvasive tests. Autonomic symptoms were seen in 37% patients. On laboratory testing incipient dysfunction was seen in 9 (18%) cases and 1 (3%) control, while atypical involvement was seen in 11 (21%) cases and 6 (20%) controls. Autonomic dysfunction did not correlate with disease duration, lupus activity, disease damage, any particular organ involvement or the presence/absence of peripheral neuropathy. Autonomic neuropathy is not uncommon in lupus and may exist independent of peripheral neuropathy. There are no specific clinical predictors. The clinical significance of autonomic dysfunction detected by laboratory testing warrants longitudinal studies. PMID:16365754

  7. Autonomic neural control of intrathoracic airways.

    PubMed

    Undem, Bradley J; Potenzieri, Carl

    2012-04-01

    Autonomic neural control of the intrathoracic airways aids in optimizing air flow and gas exchange. In addition, and perhaps more importantly, the autonomic nervous system contributes to host defense of the respiratory tract. These functions are accomplished by tightly regulating airway caliber, blood flow, and secretions. Although both the sympathetic and parasympathetic branches of the autonomic nervous system innervate the airways, it is the later that dominates, especially with respect to control of airway smooth muscle and secretions. Parasympathetic tone in the airways is regulated by reflex activity often initiated by activation of airway stretch receptors and polymodal nociceptors. This review discusses the preganglionic, ganglionic, and postganglionic mechanisms of airway autonomic innervation. Additionally, it provides a brief overview of how dysregulation of the airway autonomic nervous system may contribute to respiratory diseases. PMID:23798300

  8. A Practical Approach to Autonomic Dysfunction in Patients with Headache.

    PubMed

    Ailani, Jessica

    2016-05-01

    The presence of autonomic symptoms can make the diagnosis of headache challenging. While commonly seen with the trigeminal autonomic cephalalgias, autonomic dysfunction can also be present in patients with migraine, or with a variety of secondary headaches. The pathophysiology of cranial autonomic symptoms in headache is based between the trigeminal system and the hypothalamus. This article will review the pathophysiology and presence of autonomic dysfunction in headache and will provide techniques to help in headache diagnosis in patients with autonomic dysfunction. PMID:27021770

  9. Dysréflexie autonome

    PubMed Central

    Milligan, James; Lee, Joseph; McMillan, Colleen; Klassen, Hilary

    2012-01-01

    Résumé Objectif Sensibiliser davantage les médecins de famille à la dysréflexie autonome (DA) chez les patients victimes d’une lésion médullaire (LM) et proposer certaines interventions. Sources de l’information On a fait une recension dans MEDLINE de 1970 à juillet 2011 à l’aide des expressions en anglais autonomic dysreflexia et spinal cord injury, ainsi que family medicine ou primary care. On a aussi passé en revue et utilisé d’autres ressources et guides de pratique pertinents. Message principal Il arrive souvent que les médecins de famille ne se sentent pas confiants de traiter des patients ayant une LM dont les problèmes sont complexes et exigent beaucoup de temps. Les médecins de famille ont l’impression de n’avoir pas la formation nécessaire pour répondre à leurs besoins. Pourtant, ils offrent une composante essentielle des soins à de tels patients et il est important qu’ils comprennent les problèmes médicaux particuliers aux LM. La dysréflexie autonome est un important et fréquent problème potentiellement sérieux que connaissent mal de nombreux médecins de famille. Cet article passe en revue les signes et les symptômes de la DA et présente certaines options de prise en charge aiguë, ainsi que des stratégies de prévention à l’intention des médecins de famille. Conclusion Les médecins de famille devraient savoir quels patients traumatisés médullaires sont susceptibles d’avoir une DA et surveiller ceux qui sont touchés par ce problème. Une explication est donnée dans cet article quant à l’approche à suivre pour la prise en charge aiguë. Les médecins de famille jouent un rôle essentiel dans la prévention de la DA, notamment par l’éducation (du patient et des autres professionnels de la santé) et la consignation dans le dossier médical de stratégies comme les soins appropriés de la vessie, de l’intestin et de la peau, d’avertissements et de plans de prise en charge.

  10. Full autonomous microline trace robot

    NASA Astrophysics Data System (ADS)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  11. Autonomous Guidance, Navigation and Control

    NASA Technical Reports Server (NTRS)

    Bordano, A. J.; Mcswain, G. G.; Fernandes, S. T.

    1991-01-01

    The NASA Autonomous Guidance, Navigation and Control (GN&C) Bridging program is reviewed to demonstrate the program plan and GN&C systems for the Space Shuttle. The ascent CN&C system is described in terms of elements such as the general-purpose digital computers, sensors for the navigation subsystem, the guidance-system software, and the flight-control subsystem. Balloon-based and lidar wind soundings are used for operations assessment on the day of launch, and the guidance software is based on dedicated units for atmospheric powered flight, vacuum powered flight, and abort-specific situations. Optimization of the flight trajectories is discussed, and flight-control responses are illustrated for wavelengths of 500-6000 m. Alternate sensors are used for load relief, and adaptive GN&C systems based on alternate gain synthesis are used for systems failures.

  12. Autonomous Infrastructure for Observatory Operations

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  13. An Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  14. Autonomous navigation system and method

    DOEpatents

    Bruemmer, David J. [Idaho Falls, ID; Few, Douglas A. [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  15. APDS: Autonomous Pathogen Detection System

    SciTech Connect

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  16. Autonomous Medical Care for Exploration

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Polk, J. D.; Hines, John W.; Nall, Marsha M.

    2005-01-01

    The goal of Autonomous Medical Care (AMC) is to ensure a healthy, well-performing crew which is a primary need for exploration. The end result of this effort will be the requirements and design for medical systems for the CEV, lunar operations, and Martian operations as well as a ground-based crew health optimization plan. Without such systems, we increase the risk of medical events occurring during a mission and we risk being unable to deal with contingencies of illness and injury, potentially threatening mission success. AMC has two major components: 1) pre-flight crew health optimization and 2) in-flight medical care. The goal of pre-flight crew health optimization is to reduce the risk of illness occurring during a mission by primary prevention and prophylactic measures. In-flight autonomous medical care is the capability to provide medical care during a mission with little or no real-time support from Earth. Crew medical officers or other crew members provide routine medical care as well as medical care to ill or injured crew members using resources available in their location. Ground support becomes telemedical consultation on-board systems/people collect relevant data for ground support to review. The AMC system provides capabilities to incorporate new procedures and training and advice as required. The on-board resources in an autonomous system should be as intelligent and integrated as is feasible, but autonomous does not mean that no human will be involved. The medical field is changing rapidly, and so a challenge is to determine which items to pursue now, which to leverage other efforts (e.g. military), and which to wait for commercial forces to mature. Given that what is used for the CEV or the Moon will likely be updated before going to Mars, a critical piece of the system design will be an architecture that provides for easy incorporation of new technologies into the system. Another challenge is to determine the level of care to provide for each mission type. The level of care refers to the amount and type of care one will render based on perceived need and ability. This is in contrast to the standard of care which is the benchmark by which that care is provided. There are certainly some devices and procedures that have unique microgravity or partial gravity requirements such that terrestrial methods will not work. For example, performing CPR on Mars cannot be done in exactly the same way as on Earth because the reduced gravity causes too large a reduction in the forces available for effective compression of the chest. Likewise, fluid behavior in microgravity may require a specialized water filtration and mixing system for the creation of intravenous fluids. This paper will outline the drivers for the design of the medical care systems, prioritization and planning techniques, key system components, and long term goals.

  17. Wireless autonomous device data transmission

    NASA Technical Reports Server (NTRS)

    Sammel, Jr., David W. (Inventor); Cain, James T. (Inventor); Mickle, Marlin H. (Inventor); Mi, Minhong (Inventor)

    2013-01-01

    A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.

  18. Autonomous Spacecraft Navigation With Pulsars

    NASA Astrophysics Data System (ADS)

    Becker, Werner

    2014-08-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. We will describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  19. Autonomous power management and distribution

    NASA Technical Reports Server (NTRS)

    Dolce, Jim; Kish, Jim

    1990-01-01

    The goal of the Autonomous Power System program is to develop and apply intelligent problem solving and control to the Space Station Freedom's electric power testbed being developed at NASA's Lewis Research Center. Objectives are to establish artificial intelligence technology paths, craft knowledge-based tools and products for power systems, and integrate knowledge-based and conventional controllers. This program represents a joint effort between the Space Station and Office of Aeronautics and Space Technology to develop and demonstrate space electric power automation technology capable of: (1) detection and classification of system operating status, (2) diagnosis of failure causes, and (3) cooperative problem solving for power scheduling and failure recovery. Program details, status, and plans will be presented.

  20. Testbed for an autonomous system

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok K.; Larsen, Ronald L.

    1989-01-01

    In previous works we have defined a general architectural model for autonomous systems, which can easily be mapped to describe the functions of any automated system (SDAG-86-01), and we illustrated that model by applying it to the thermal management system of a space station (SDAG-87-01). In this note, we will further develop that application and design the detail of the implementation of such a model. First we present the environment of our application by describing the thermal management problem and an abstraction, which was called TESTBED, that includes a specific function for each module in the architecture, and the nature of the interfaces between each pair of blocks.

  1. Autonomous caregiver following robotic wheelchair

    NASA Astrophysics Data System (ADS)

    Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary

    2011-12-01

    In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.

  2. Engineering Autonomous Chemomechanical Nanomachines Using Brownian Ratchets

    NASA Astrophysics Data System (ADS)

    Lavella, Gabriel

    Nanoscale machines which directly convert chemical energy into mechanical work are ubiquitous in nature and are employed to perform a diverse set of tasks such as transporting molecules, maintaining molecular gradients, and providing motion to organisms. Their widespread use in nature suggests that large technological rewards can be obtained by designing synthetic machines that use similar mechanisms. This thesis addresses the technological adaptation of a specific mechanism known as the Brownian ratchet for the design of synthetic autonomous nanomachines. My efforts were focused more specifically on synthetic chemomechanical ratchets which I deem will be broadly applicable in the life sciences. In my work I have theoretically explored the biophysical mechanisms and energy landscapes that give rise to the ratcheting phenomena and devised devices that operate off these principles. I demonstrate two generations of devices that produce mechanical force/deformation in response to a user specified ligand. The first generation devices, fabricatied using a combination nanoscale lithographic processes and bioconjugation techniques, were used to provide evidence that the proposed ratcheting phenomena can be exploited in synthetic architectures. Second generation devices fabricated using self-assembled DNA/hapten motifs were constructed to gain a precise understanding of ratcheting dynamics and design constraints. In addition, the self-assembled devices enabled fabrication en masse, which I feel will alleviate future experimental hurdles in analysis and facilitate its adaptation to technologies. The product of these efforts is an architecture that has the potential to enable numerous technologies in biosensing and drug delivery. For example, the coupling of molecule-specific actuation to the release of drugs or signaling molecules from nanocapsules or porous materials could be transformative. Such architectures could provide possible avenues to pressing issues in biology and medicine: drugs could eventually be triggered to release in the presence of molecular signals indicative of diseased states, early disease detection could be achieved by examining the cell microenvironment then releasing imaging agents and generalized control could exerted over the free molecule signaling networks of cells.

  3. Current challenges in autonomous vehicle development

    NASA Astrophysics Data System (ADS)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  4. Cardiovascular autonomic dysfunctions and sleep disorders.

    PubMed

    Calandra-Buonaura, Giovanna; Provini, Federica; Guaraldi, Pietro; Plazzi, Giuseppe; Cortelli, Pietro

    2016-04-01

    Animal and human studies have shown that disorders of the autonomic nervous system may influence sleep physiology. Conversely, sleep disorders may be associated with autonomic dysfunctions. The current review describes the clinical presentation, supposed pathogenetic mechanisms and the diagnostic and prognostic implications of impaired cardiovascular autonomic control in sleep disorders. This dysfunction may result from a common pathogenetic mechanism affecting both autonomic cardiovascular control and sleep, as in fatal familial insomnia, or it may be mainly caused by the sleep disorder, as observed in obstructive sleep apnoea. For other sleep disorders, like primary insomnia, restless legs syndrome, narcolepsy type 1 and rapid eye movement sleep behaviour disorder, the causal link with the autonomic dysfunction and its possible impact on health remains unsettled. Given its clinical implications, most of the data available suggest that a systematic assessment of the association between sleep disorders and impaired autonomic control of the cardiovascular system is warranted. Understanding the mechanism of this association may also yield insights into the interaction between the autonomic nervous system and sleep. PMID:26146026

  5. See and avoidance behaviors for autonomous navigation

    NASA Astrophysics Data System (ADS)

    Lee, Dah-Jye; Beard, Randal W.; Merrell, Paul C.; Zhan, Pengcheng

    2004-12-01

    Recent advances in many multi-discipline technologies have allowed small, low-cost fixed wing unmanned air vehicles (UAV) or more complicated unmanned ground vehicles (UGV) to be a feasible solution in many scientific, civil and military applications. Cameras can be mounted on-board of the unmanned vehicles for the purpose of scientific data gathering, surveillance for law enforcement and homeland security, as well as to provide visual information to detect and avoid imminent collisions for autonomous navigation. However, most current computer vision algorithms are highly complex computationally and usually constitute the bottleneck of the guidance and control loop. In this paper, we present a novel computer vision algorithm for collision detection and time-to-impact calculation based on feature density distribution (FDD) analysis. It does not require accurate feature extraction, tracking, or estimation of focus of expansion (FOE). Under a few reasonable assumptions, by calculating the expansion rate of the FDD in space, time-to-impact can be accurately estimated. A sequence of monocular images is studied, and different features are used simultaneously in FDD analysis to show that our algorithm can achieve a fairly good accuracy in collision detection. In this paper we also discuss reactive path planning and trajectory generation techniques that can be accomplished without violating the velocity and heading rate constraints of the UAV.

  6. Curiosity's Autonomous Surface Safing Behavior Design

    NASA Technical Reports Server (NTRS)

    Neilson, Tracy A.; Manning, Robert M.

    2013-01-01

    The safing routines on all robotic deep-space vehicles are designed to put the vehicle in a power and thermally safe configuration, enabling communication with the mission operators on Earth. Achieving this goal is made a little more difficult on Curiosity because the power requirements for the core avionics and the telecommunication equipment exceed the capability of the single power source, the Multi-Mission Radioisotope Thermoelectric Generator. This drove the system design to create an operational mode, called "sleep mode", where the vehicle turns off most of the loads in order to charge the two Li-ion batteries. The system must keep the vehicle safe from over-heat and under-heat conditions, battery cell failures, under-voltage conditions, and clock failures, both while the computer is running and while the system is sleeping. The other goal of a safing routine is to communicate. On most spacecraft, this simply involves turning on the receiver and transmitter continuously. For Curiosity, Earth is above the horizon only a part of the day for direct communication to the Earth, and the orbiter overpass opportunities only occur a few times a day. The design must robustly place the Rover in a communicable condition at the correct time. This paper discusses Curiosity's autonomous safing behavior and describes how the vehicle remains power and thermally safe while sleeping, as well as a description of how the Rover communicates with the orbiters and Earth at specific times.

  7. An autonomous structural health monitoring solution

    NASA Astrophysics Data System (ADS)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  8. Artificial consciousness, artificial emotions, and autonomous robots.

    PubMed

    Cardon, Alain

    2006-12-01

    Nowadays for robots, the notion of behavior is reduced to a simple factual concept at the level of the movements. On another hand, consciousness is a very cultural concept, founding the main property of human beings, according to themselves. We propose to develop a computable transposition of the consciousness concepts into artificial brains, able to express emotions and consciousness facts. The production of such artificial brains allows the intentional and really adaptive behavior for the autonomous robots. Such a system managing the robot's behavior will be made of two parts: the first one computes and generates, in a constructivist manner, a representation for the robot moving in its environment, and using symbols and concepts. The other part achieves the representation of the previous one using morphologies in a dynamic geometrical way. The robot's body will be seen for itself as the morphologic apprehension of its material substrata. The model goes strictly by the notion of massive multi-agent's organizations with a morphologic control. PMID:17016730

  9. Towards Robot Scientists for autonomous scientific discovery.

    PubMed

    Sparkes, Andrew; Aubrey, Wayne; Byrne, Emma; Clare, Amanda; Khan, Muhammed N; Liakata, Maria; Markham, Magdalena; Rowland, Jem; Soldatova, Larisa N; Whelan, Kenneth E; Young, Michael; King, Ross D

    2010-01-01

    We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist. PMID:20119518

  10. Towards Robot Scientists for autonomous scientific discovery

    PubMed Central

    2010-01-01

    We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist. PMID:20119518

  11. Autonomic modification of intestinal smooth muscle contractility.

    PubMed

    Montgomery, Laura E A; Tansey, Etain A; Johnson, Chris D; Roe, Sean M; Quinn, Joe G

    2016-03-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe this spontaneous activity and its modification by agents associated with parasympathetic and sympathetic nerve activity. A section of the rabbit small intestine is suspended in an organ bath, and the use of a pressure transducer and data-acquisition software allows the measurement of tension generated by the smooth muscle of intestinal walls. The application of the parasympathetic neurotransmitter ACh at varying concentrations allows students to observe an increase in intestinal smooth muscle tone with increasing concentrations of this muscarinic receptor agonist. Construction of a concentration-effect curve allows students to calculate an EC50 value for ACh and consider some basic concepts surrounding receptor occupancy and activation. Application of the hormone epinephrine to the precontracted intestine allows students to observe the inhibitory effects associated with sympathetic nerve activation. Introduction of the drug atropine to the preparation before a maximal concentration of ACh is applied allows students to observe the inhibitory effect of a competitive antagonist on the physiological response to a receptor agonist. The final experiment involves the observation of the depolarizing effect of K(+) on smooth muscle. Students are also invited to consider why the drugs atropine, codeine, loperamide, and botulinum toxin have medicinal uses in the management of gastrointestinal problems. PMID:26873897

  12. The NASA/Army Autonomous Rotorcraft Project

    NASA Technical Reports Server (NTRS)

    Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.

    2002-01-01

    An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.

  13. Development of Autonomous Aerobraking (Phase 1)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Powell, Richard W.; Prince, Jill L.

    2012-01-01

    The NASA Engineering and Safety Center received a request from Mr. Daniel Murri (NASA Technical Fellow for Flight Mechanics) to develop an autonomous aerobraking capability. An initial evaluation for all phases of this assessment was approved to proceed at the NESC Review Board meeting. The purpose of phase 1 of this study was to provide an assessment of the feasibility of autonomous aerobraking. During this phase, atmospheric, aerodynamic, and thermal models for a representative spacecraft were developed for both the onboard algorithm known as Autonomous Aerobraking Development Software, and a ground-based "truth" simulation developed for testing purposes. The results of the phase 1 assessment are included in this report.

  14. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  15. Pure autonomic failure with cold induced sweating.

    PubMed

    Idiaquez, Juan; Fadic, Ricardo; Verdugo, Renato; Idiaquez, Juan F; Iodice, Valeria; Low, David A; Mathias, C J; Lombardi, Raffaela; Lauria, Giuseppe

    2013-06-01

    Pure autonomic failure (PAF) is a progressive autonomic neurodegenerative disorder. Cold induced sweating occurred in syndromes with mutations in CRLF1 and CLCF1 genes and in a case of cervical dissection. A patient with PAF developed sweating induced by cool ambient temperatures. He had severe orthostatic hypotension, abnormal cardiovagal reflexes, and paradoxical sweating in the upper trunk at a room temperature of 18°C. Skin biopsy showed involvement of somatic epidermal unmyelinated nerve fibers. Quantitative sensory testing showed abnormal thresholds to all thermal modalities. Possible mechanisms include cold induced noradrenaline release in remaining autonomic innervation and a supersensitive sudomotor response. PMID:23511064

  16. Autonomous underwater pipeline monitoring navigation system

    NASA Astrophysics Data System (ADS)

    Mitchell, Byrel; Mahmoudian, Nina; Meadows, Guy

    2014-06-01

    This paper details the development of an autonomous motion-control and navigation algorithm for an underwater autonomous vehicle, the Ocean Server IVER3, to track long linear features such as underwater pipelines. As part of this work, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) developed an algorithm that utilizes inputs from the vehicles state of the art sensor package, which includes digital imaging, digital 3-D Sidescan Sonar, and Acoustic Doppler Current Profilers. The resulting algorithms should tolerate real-world waterway with episodic strong currents, low visibility, high sediment content, and a variety of small and large vessel traffic.

  17. Development of Autonomous Aerobraking - Phase 2

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2013-01-01

    Phase 1 of the Development of Autonomous Aerobraking (AA) Assessment investigated the technical capability of transferring the processes of aerobraking maneuver (ABM) decision-making (currently performed on the ground by an extensive workforce and communicated to the spacecraft via the deep space network) to an efficient flight software algorithm onboard the spacecraft. This document describes Phase 2 of this study, which was a 12-month effort to improve and rigorously test the AA Development Software developed in Phase 1. Aerobraking maneuver; Autonomous Aerobraking; Autonomous Aerobraking Development Software; Deep Space Network; NASA Engineering and Safety Center

  18. Innovative thermal energy harvesting for future autonomous applications

    NASA Astrophysics Data System (ADS)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  19. Autonomous Control Capabilities for Space Reactor Power Systems

    SciTech Connect

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-04

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  20. Autonomous movement of controllable assembled Janus capsule motors.

    PubMed

    Wu, Yingjie; Wu, Zhiguang; Lin, Xiankun; He, Qiang; Li, Junbai

    2012-12-21

    We demonstrate the first example of a self-propelled Janus polyelectrolyte multilayer hollow capsule that can serve as both autonomous motor and smart cargo. This new autonomous Janus capsule motor composed of partially coated dendritic platinum nanoparticles (Pt NPs) was fabricated by using a template-assisted layer-by-layer (LbL) self-assembly combined with a microcontact printing method. The resulting Janus capsule motors still retain outstanding delivery capacities and can respond to external stimuli for controllable encapsulation and triggered release of model drugs. The Pt NPs on the one side of the Janus capsule motors catalytically decompose hydrogen peroxide fuel, generating oxygen bubbles which then recoil the movement of the capsule motors in solution or at an interface. They could autonomously move at a maximum speed of above 1 mm/s (over 125 body lengths/s), while exerting large forces exceeding 75 pN. Also, these asymmetric hollow capsules can be controlled by an external magnetic field to achieve directed movement. This LbL-assembled Janus capsule motor system has potential in making smart self-propelling delivery systems. PMID:23153409

  1. Compact, autonomous, multi-mission synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Walls, Thomas J.; Wilson, Michael L.; Madsen, David; Knight, Chad; Jensen, Mark D.; Partridge, Darin C.; Addario, Mike

    2013-05-01

    The utilization of unmanned aerial systems (UASs) for intelligence, surveillance and reconnaissance (ISR) applications continues to increase and unmanned systems have become a critical asset in current and future battlespaces. With the development of medium-to-low altitude, rapidly deployable aircraft platforms, the ISR community has seen an increasing push to develop ISR sensors and systems with real-time mission support capabilities. This paper describes the design and development of the RASAR (Real-time, Autonomous, Synthetic Aperture Radar) sensor system and presents demonstration flight test results. RASAR is a modular, multi-band (L and X) synthetic aperture radar (SAR) imaging sensor designed for self-contained, autonomous, real-time operation with mission flexibility to support a wide range of ISR needs within the size, weight and power constraints of Group III UASs. SAR waveforms are generated through direct digital synthesis enabling arbitrary waveform notching to enable operations in cluttered RF environments. RASAR is capable of simultaneous dual-channel receive to enable polarization based target discrimination. The sensor command and control and real-time image formation processing are designed to enable integration of RASAR into larger, multi-intelligence system of systems. The multi-intelligence architecture and a demonstration of real-time autonomous cross-cueing of a separate optical sensor will be presented.

  2. Scheduling lessons learned from the Autonomous Power System

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA LeRC is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The AIPS scheduler was tested within the APS system. This scheduler is able to efficiently assign available power to the requesting activities and share this information with other software agents within the APS system in order to implement the generated schedule. The AIPS scheduler is also able to cooperatively recover from fault situations by rescheduling the affected loads on the Brassboard in conjunction with the APEX FDIR system. AIPS served as a learning tool and an initial scheduling testbed for the integration of FDIR and automated scheduling systems. Many lessons were learned from the AIPS scheduler and are now being integrated into a new scheduler called SCRAP (Scheduler for Continuous Resource Allocation and Planning). This paper will service three purposes: an overview of the AIPS implementation, lessons learned from the AIPS scheduler, and a brief section on how these lessons are being applied to the new SCRAP scheduler.

  3. An autonomous rendezvous and docking system using cruise missile technologies

    NASA Technical Reports Server (NTRS)

    Jones, Ruel Edwin

    1991-01-01

    In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.

  4. Autonomous Control Capabilities for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  5. Scalable autonomous operations of unmanned assets

    NASA Astrophysics Data System (ADS)

    Jung, Sunghun

    Although there have been great theoretical advances in the region of Unmanned Aerial Vehicle (UAV) autonomy, applications of those theories into real world are still hesitated due to unexpected disturbances. Most of UAVs which are currently used are mainly, strictly speaking, Remotely Piloted Vehicles (RPA) since most works related with the flight control, sensor data analysis, and decision makings are done by human operators. To increase the degree of autonomy, many researches are focused on developing Unmanned Autonomous Aerial Vehicle (UAAV) which can takeoff, fly to the interested area by avoiding unexpected obstacles, perform various missions with decision makings, come back to the base station, and land on by itself without any human operators. To improve the performance of UAVs, the accuracies of position and orientation sensors are enhanced by integrating a Unmanned Ground Vehicle (UGV) or a solar compass to a UAV; Position sensor accuracy of a GPS sensor on a UAV is improved by referencing the position of a UGV which is calculated by using three GPS sensors and Weighted Centroid Localization (WCL) method; Orientation sensor accuracy is improved as well by using Three Pixel Theorem (TPT) and integrating a solar compass which composed of nine light sensors to a magnetic compass. Also, improved health management of a UAV is fulfilled by developing a wireless autonomous charging station which uses four pairs of transmitter and receiver magnetic loops with four robotic arms. For the software aspect, I also analyze the error propagation of the proposed mission planning hierarchy to achieve the safest size of the buffer zone. In addition, among seven future research areas regarding UAV, this paper mainly focuses on developing algorithms of path planning, trajectory generation, and cooperative tactics for the operations of multiple UAVs using GA based multiple Traveling Salesman Problem (mTSP) which is solved by dividing into m number of Traveling Salesman Problems (TSP) using two region division methods such as Uniform Region Division (URD) and K-means Voronoi Region Division (KVRD). The topic of the maximum fuel efficiency is also dealt to ensure the minimum amount fuel consumption to perform surveillance on a given region using multiple UAVs. Last but not least, I present an application example of cattle roundup with two UAVs and two animals using the feedback linearization controller.

  6. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback

    NASA Technical Reports Server (NTRS)

    Humphreys, William M, Jr.; Culliton, William G.

    2008-01-01

    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  7. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    NASA Technical Reports Server (NTRS)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  8. The role of the autonomic nervous system in Tourette Syndrome

    PubMed Central

    Hawksley, Jack; Cavanna, Andrea E.; Nagai, Yoko

    2015-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device that gives pulsatile electrical stimulation to the vagus nerve, directly modulates afferent interoceptive signals. The potential efficacy of biofeedback/VNS in TS and the implications for understanding the underlying neural mechanisms of tics will be discussed. PMID:26074752

  9. Flight Control System Development for the BURRO Autonomous UAV

    NASA Technical Reports Server (NTRS)

    Colbourne, Jason D.; Frost, Chad R.; Tischler, Mark B.; Ciolani, Luigi; Sahai, Ranjana; Tomoshofski, Chris; LaMontagne, Troy; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    Developing autonomous flying vehicles has been a growing field in aeronautical research within the last decade and will continue into the next century. With concerns about safety, size, and cost of manned aircraft, several autonomous vehicle projects are currently being developed; uninhabited rotorcraft offer solutions to requirements for hover, vertical take-off and landing, as well as slung load transportation capabilities. The newness of the technology requires flight control engineers to question what design approaches, control law architectures, and performance criteria apply to control law development and handling quality evaluation. To help answer these questions, this paper documents the control law design process for Kaman Aerospace BURRO project. This paper will describe the approach taken to design control laws and develop math models which will be used to convert the manned K-MAX into the BURRO autonomous rotorcraft. With the ability of the K-MAX to lift its own weight (6000 lb) the load significantly affects the dynamics of the system; the paper addresses the additional design requirements for slung load autonomous flight. The approach taken in this design was to: 1) generate accurate math models of the K-MAX helicopter with and without slung loads, 2) select design specifications that would deliver good performance as well as satisfy mission criteria, and 3) develop and tune the control system architecture to meet the design specs and mission criteria. An accurate math model was desired for control system development. The Comprehensive Identification from Frequency Responses (CIFER(R)) software package was used to identify a linear math model for unloaded and loaded flight at hover, 50 kts, and 100 kts. The results of an eight degree-of-freedom CIFER(R)-identified linear model for the unloaded hover flight condition are presented herein, and the identification of the two-body slung-load configuration is in progress.

  10. An introduction to autonomous control systems

    NASA Technical Reports Server (NTRS)

    Antsaklis, Panos J.; Passino, Kevin M.; Wang, S. J.

    1991-01-01

    The functions, characteristics, and benefits of autonomous control are outlined. An autonomous control functional architecture for future space vehicles that incorporates the concepts and characteristics described is presented. The controller is hierarchical, with an execution level (the lowest level), coordination level (middle level), and management and organization level (highest level). The general characteristics of the overall architecture, including those of the three levels, are explained, and an example to illustrate their functions is given. Mathematical models for autonomous systems, including 'logical' discrete event system models, are discussed. An approach to the quantitative, systematic modeling, analysis, and design of autonomous controllers is also discussed. It is a hybrid approach since it uses conventional analysis techniques based on difference and differential equations and new techniques for the analysis of the systems described with a symbolic formalism such as finite automata. Some recent results from the areas of planning and expert systems, machine learning, artificial neural networks, and the area restructurable controls are briefly outlined.

  11. Control System Validation In The Autonomous Helicopter

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Fugedy, John; Friedel, Thomas

    1989-03-01

    Autonomous systems require the ability to analyze their environment and develop responsive plans of action. Autonomous vehicle research has led to the development of several land, sea, and air vehicle prototypes. These systems integrate vision, diagnostics, planning, situation assessment, tactical reasoning, and intelligent control at a variety of levels to function in limited environments or computer simulation. Route planning in these systems has historically focused on pure numerical computations unable to adapt to the dynamic nature of the world. This paper describes a knowledge-based system for autonomous route planning that has been applied to airborne vehicles. Specific focus is the vehicle model knowledge source that validates routes based upon the physical capabilities of the helicopter system. An overview of the autonomous helicopter is present to establish system context with specific results in validated route planning presented.

  12. Overview of the Autonomic Nervous System

    MedlinePLUS

    ... News Overview of the Autonomic Nervous System by Phillip Low, MD NOTE: This is the Consumer Version. ... Us Global Medical Knowledge Veterinary Edition © 2015 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., ...

  13. A Primer on Autonomous Aerial Vehicle Design.

    PubMed

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  14. DEMONSTRATION OF AUTONOMOUS AIR MONITORING THROUGH ROBOTICS

    EPA Science Inventory

    This project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. An existing teleoperated "Surveyor" robot developed by ARD...

  15. A Primer on Autonomous Aerial Vehicle Design

    PubMed Central

    Coppejans, Hugo H. G.; Myburgh, Herman C.

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  16. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  17. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  18. Autonomous intelligent cruise control system

    NASA Astrophysics Data System (ADS)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  19. Autonomic regulation of kidney function.

    PubMed

    Johns, Edward J

    2013-01-01

    The kidneys play a central role in cardiovascular homeostasis by ensuring a balance between the fluid taken in and that lost and excreted during everyday activities. This ensures stability of extracellular fluid volume and maintenance of normal levels of blood pressure. Renal fluid handling is controlled via neural and humoral influences, with the former determining a rapid dynamic response to changing intake of sodium whereas the latter cause a slower longer-term modulation of sodium and water handling. Activity in the renal sympathetic nerves arises from an integration of information from the high and low pressure cardiovascular baroreceptors, the somatosensory and visceral systems as well as the higher cortical centers. Each sensory system provides varying input to the autonomic centers of the hypothalamic and medullary areas of the brain at a level appropriate to the activity being performed. In pathophysiological states, such as hypertension, heart failure and chronic renal disease, there may be an inappropriate sympathoexcitation causing sodium retention which exacerbates the disease process. The contribution of the renal sympathetic nerves to these cardiovascular diseases is beginning to be appreciated with the demonstration that renal denervation of resistant hypertensive patients results in a long-term normalization of blood pressure. PMID:24095127

  20. Is acting on delusions autonomous?

    PubMed Central

    2013-01-01

    In this paper the question of autonomy in delusional disorders is investigated using a phenomenological approach. I refer to the distinction between freedom of intentional action, and freedom of the will, and develop phenomenological descriptions of lived autonomy, taking into account the distinction between a pre-reflective and a reflective type. Drawing on a case report, I deliver finely-grained phenomenological descriptions of lived autonomy and experienced self-determination when acting on delusions. This analysis seeks to demonstrate that a person with delusions can be described as responsible for her behaviour on a ‘framed’ level (level of freedom of intentional action), even though she is not autonomous on a higher (‘framing’) level (level of freedom of the will), if, and only if, the goods of agency for herself and others are respected. In these cases the person with delusions is very nearly comparable to people in love, who are also not free to choose their convictions, and who could also be rightly held responsible for the behaviour flowing from their convictions. PMID:24125114

  1. Development of autonomous triggering instrumentation

    NASA Astrophysics Data System (ADS)

    Watkins, Steve E.; Swift, Theresa M.; Fonda, James W.

    2008-03-01

    Triggering instrumentation for autonomous monitoring of load-induced strain is described for economical, fast bridge inspection. The development addresses one aspect for the management of transportation infrastructure - bridge monitoring and inspection. The objectives are to provide quantitative performance information from a load test, to minimize the setup time at the bridge, and to minimize the closure time to traffic. Multiple or networked measurements can be made for a prescribed loading sequence. The proposed smart system consists of in-situ strain sensors, an embedded data acquisition module, and a measurement triggering system. A companion control unit is mounted on the truck serving as the load. As the truck moves to the proper position, the desired measurement is automatically relayed back to the control unit. In this work, the testing protocol is developed and the performance parameters for the triggering and data acquisition are measured. The test system uses a dedicated wireless sensor mote and an infrared positioning system. The electronic procedure offers improvements in available information and economics.

  2. Autonomous motion of catalytic nanomotors

    NASA Astrophysics Data System (ADS)

    Paxton, Walter F.

    In this thesis, I explore and discuss a system that uses the platinum catalyzed decomposition of hydrogen peroxide to induce interfacial effects that result in the autonomous motion of micro-/nanosized particles. Chapter 2 describes the behavior of platinum-gold (PtAu) striped nanorods in hydrogen peroxide and its dependence on a number of factors. Chapter 3 explores several different mechanisms that may contribute to the motion of the PtAu nanorods, and discusses an interfacial tension mechanism for motion in depth. In Chapter 4, I discuss the electrochemical decomposition of hydrogen peroxide involving both Pt and Au and how this bimetallic catalytic process can induce electrokinetic effects to drive the motion of PtAu nanorods in H2O2 solutions. In Chapter 5, I describe a switchable catalytic micropump composed of a Pt/Au interdigitated array electrode in contact with H2O 2 solution, expanding on the concept of catalytically induced electrokinetics discussed in Chapter 4. This work has important implications when considering the development of functional nano- and micromachines powered by catalytic reactions, particularly those that utilize oxidation reduction processes to induce electrokinetic effects.

  3. Autonomous synergic control of nanomotors.

    PubMed

    Liu, Meihan; Hou, Ruizheng; Cheng, Juan; Loh, Iong Ying; Sreelatha, Sarangapani; Tey, Ju Nie; Wei, Jun; Wang, Zhisong

    2014-02-25

    Control is a hallmark of machines; effective control over a nanoscale system is necessary to turn it into a nanomachine. Nanomotors from biology often integrate a ratchet-like passive control and a power-stroke-like active control, and this synergic active-plus-passive control is critical to efficient utilization of energy. It remains a challenge to integrate the two differing types of control in rationally designed nanomotor systems. Recently a light-powered track-walking DNA nanomotor was developed from a bioinspired design principle that has the potential to integrate both controls. However, it is difficult to separate experimental signals for either control due to a tight coupling of both controls. Here we present a systematic study of the motor and new derivatives using different fluorescence labeling schemes and light operations. The experimental data suggest that the motor achieves the two controls autonomously through a mechanics-mediated symmetry breaking. This study presents an experimental validation for the bioinspired design principle of mechanical breaking of symmetry for synergic ratchet-plus-power stroke control. Augmented by mechanical and kinetic modeling, this experimental study provides mechanistic insights that may help advance molecular control in future nanotechnological systems. PMID:24422493

  4. Autonomic dysregulation in headache patients.

    PubMed

    Gass, Jason J; Glaros, Alan G

    2013-12-01

    To analyze autonomic nervous system activity in headache subjects, measurements of heart rate variability (HRV), skin temperature, skin conductance, and respiration were compared to a matched control group. HRV data were recorded in time and frequency domains. Subjects also completed self-report questionnaires assessing psychological distress, fatigue, and sleep dysfunction. Twenty-one headache and nineteen control subjects participated. In the time domain, the number of consecutive R-to-R intervals that varied by more than 50 ms and the standard deviation of the normalized R-to-R intervals, both indices of parasympathetic nervous system activity, were significantly lower in the headache group than the control group. Groups did not differ statistically on HRV measures in the frequency domain. Self-report measures showed significantly increased somatization, hostility, anxiety, symptom distress, fatigue, and sleep problems in the headache group. The results suggest headache subjects have increased sympathetic nervous system activity and decreased parasympathetic activity compared to non-headache control subjects. Headaches subjects also showed greater emotional distress, fatigue, and sleep problems. The results indicate an association between headaches and cardiovascular functioning suggestive of sympathetic nervous system activation in this sample of mixed migraine and tension-type headache sufferers. PMID:23912525

  5. Fast autonomous holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff; Ghebremichael, Fassil; Gelsinger-Austin, Paul; MacDonald, Ken; Gaddipati, Ravi; Gaddipati, Phani

    2013-12-01

    We present an adaptive optics system incorporating a holographic wavefront sensor with the autonomous closed-loop control of a MEMS deformable mirror. HALOS incorporates a multiplexed holographic recording of the response functions of each actuator in a deformable mirror. On reconstruction with an arbitrary input beam, multiple focal spots are produced. By measuring the relative intensities of these spots a full measurement of the absolute phase can be constructed. Using fast photodiodes, direct feedback correction can be applied to the actuators.In this talk we will present the results from an all-optical, ultra-compact system that runs in closed-loop without the need for a computer. The 32-actuator HALOS runs at a 100kHz bandwidth, but the speed is independent of the number of actuators and should run equally fast with 32 million. Additionally, the system is largely insensitive to obscuration unlike the more conventional Shack-Hartmann WFS. We will present information on how HALOS can be used for image correction and beam propagation as well as several other novel applications.

  6. Tele-robotic/autonomous control using controlshell

    SciTech Connect

    Wilhelmsen, K.C.; Hurd, R.L.; Couture, S.

    1996-12-10

    A tele-robotic and autonomous controller architecture for waste handling and sorting has been developed which uses tele-robotics, autonomous grasping and image processing. As a starting point, prior work from LLNL and ORNL was restructured and ported to a special real-time development environment. Significant improvements in collision avoidance, force compliance, and shared control aspects were then developed. Several orders of magnitude improvement were made in some areas to meet the speed and robustness requirements of the application.

  7. Autonomous navigation ability: FIDO test results

    NASA Technical Reports Server (NTRS)

    Baumgartner, E.; Maurette, M.

    2000-01-01

    The FIDO platform of the JPL has been used to evaluate the ability of autonomous obstacle avoidance developed by JPL and CNES autonomous long range path planning. The test results show that only a very small amount of energy and computing time is used to implement autonomy and that the capabilities of the rover are fully used, allowing a much longer daily traverse than purely ground-planned strategies.

  8. Basic and clinical pharmacology of autonomic drugs.

    PubMed

    Becker, Daniel E

    2012-01-01

    Autonomic drugs are used clinically to either imitate or inhibit the normal functions of the sympathetic and parasympathetic nervous systems. A large number of additional drug classes also interact with these systems to produce a stunning number of possible side effects. This article reviews the basic function of the autonomic nervous system and the various drug classes that act within these neural synapses. PMID:23241039

  9. Autonomic networks and network-enabled capability

    NASA Astrophysics Data System (ADS)

    Spillings, James

    2004-07-01

    Changes in the nature of battlespace information services, combined with the drive to digitization, are raising expectations of the ability of network-centric systems to provide information throughput and timeliness. At a level often abstracted from the systems perspective, it becomes necessary to consider the nature of the underlying network and its ability to adapt, recover, and organise in the face of increasing demands and non-optimal environments. Without this consideration, it may be that the capabilities of the underlying network act to restrict the exploitation of Network-Enabled Capability. Autonomic networks and autonomic computing are being presented as a possible aid to sustaining critical infrastructures of dynamic nodes. Although the focus of much commercial activity, autonomic networks are also believed to have relevance in the military environment and, most importantly, in supporting emerging battlespace information systems and digitization initiatives. Albeit well understood in biological contexts, autonomic principles have yet to be proven in commercial technological environments and, more importantly, in the context of military demands. Derived from this, key issues relate to the true nature of autonomic networks, the benefits accruing from such networks, and those challenges compounded by increasing demands from the ongoing development of military technology and digitization trends. This paper presents an examination of the demands made by the evolution of battlespace information services, some of the applicable technologies to address those demands, and examines the state of current and emerging technology to determine the perceived nature of autonomic networks in the context of Network-Enabled Capability.

  10. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  11. Autonomous control systems - Architecture and fundamental issues

    NASA Technical Reports Server (NTRS)

    Antsaklis, P. J.; Passino, K. M.; Wang, S. J.

    1988-01-01

    A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).

  12. Secure, Autonomous, Intelligent Controller for Integrating Distributed Sensor Webs

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    This paper describes the infrastructure and protocols necessary to enable near-real-time commanding, access to space-based assets, and the secure interoperation between sensor webs owned and controlled by various entities. Select terrestrial and aeronautics-base sensor webs will be used to demonstrate time-critical interoperability between integrated, intelligent sensor webs both terrestrial and between terrestrial and space-based assets. For this work, a Secure, Autonomous, Intelligent Controller and knowledge generation unit is implemented using Virtual Mission Operation Center technology.

  13. Issues and approaches in control for autonomous reactor operation

    SciTech Connect

    Vilim, R. B.; Khalil, H. S.; Wei, T. Y. C.

    2000-07-20

    A capability for autonomous and passively safe operation is one of the goals of the NERI funded development of Generation IV nuclear plants. An approach is described for evaluating the effect of increasing autonomy on safety margins and load behavior and for examining issues that arise with increasing autonomy and their potential impact on performance. The method provides a formal approach to the process of exploiting the innate self-regulating property of a reactor to make it less dependent on operator action and less vulnerable to automatic control system fault and/or operator error. Some preliminary results are given.

  14. Autonomic Findings in Takotsubo Cardiomyopathy.

    PubMed

    Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Martinez, Jose; Katz, Stuart D; Tully, Lisa; Reynolds, Harmony R

    2016-01-15

    Takotsubo cardiomyopathy (TC) often occurs after emotional or physical stress. Norepinephrine levels are unusually high in the acute phase, suggesting a hyperadrenergic mechanism. Comparatively little is known about parasympathetic function in patients with TC. We sought to characterize autonomic function at rest and in response to physical and emotional stimuli in 10 women with a confirmed history of TC and 10 age-matched healthy women. Sympathetic and parasympathetic activity was assessed at rest and during baroreflex stimulation (Valsalva maneuver and tilt testing), cognitive stimulation (Stroop test), and emotional stimulation (event recall, patients). Ambulatory blood pressure monitoring and measurement of brachial artery flow-mediated vasodilation were also performed. TC women (tested an average of 37 months after the event) had excessive pressor responses to cognitive stress (Stroop test: p <0.001 vs baseline and p = 0.03 vs controls) and emotional arousal (recall of TC event: p = 0.03 vs baseline). Pressor responses to hemodynamic stimuli were also amplified (Valsalva overshoot: p <0.05) and prolonged (duration: p <0.01) in the TC women compared with controls. Plasma catecholamine levels did not differ between TC women and controls. Indexes of parasympathetic (vagal) modulation of heart rate induced by respiration and cardiovagal baroreflex gain were significantly decreased in the TC women versus controls. In conclusion, even long after the initial episode, women with previous episode of TC have excessive sympathetic responsiveness and reduced parasympathetic modulation of heart rate. Impaired baroreflex control may therefore play a role in TC. PMID:26743349

  15. Compact Autonomous Hemispheric Vision System

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  16. Improved autonomous star identification algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Li-Yan; Xu, Lu-Ping; Zhang, Hua; Sun, Jing-Rong

    2015-06-01

    The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014_CXJJ-DH_12), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JB141303 and 201413B), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), and the Xi’an Science and Technology Plan, China (Grant. No CXY1350(4)).

  17. Bifurcation and Enhancement of Autonomous-Non-Autonomous Retrotransposon Partnership through LTR Swapping in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although non-autonomous LTR-retrotransposons lacking significant protein coding domains have been identified in eukaryotes, how they interact with their autonomous partners to maintain transpositional activity during host genome evolution is poorly understood. We performed a comprehensive analysis o...

  18. Trajectory Generation and Path Planning for Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto

    2007-01-01

    This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.

  19. Autonomous planetary rover at Carnegie Mellon

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Kanade, Takeo; Mitchell, Tom

    1990-01-01

    This report describes progress in research on an autonomous robot for planetary exploration. In 1989, the year covered by this report, a six-legged walking robot, the Ambler, was configured, designed, and constructed. This configuration was used to overcome shortcomings exhibited by existing wheeled and walking robot mechanisms. The fundamental advantage of the Ambler is that the actuators for body support are independent of those for propulsion; a subset of the planar joints propel the body, and the vertical actuators support and level the body over terrain. Models of the Ambler's dynamics were developed and the leveling control was studied. An integrated system capable of walking with a single leg over rugged terrain was implemented and tested. A prototype of an Ambler leg is suspended below a carriage that slides along rails. To walk, the system uses a laser scanner to find a clear, flat foothold, positions the leg above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced rocks, and sand hills. In addition, preliminary experiments were conducted with concurrent planning and execution, and a leg recovery planner that generates time and power efficient 3D trajectories using 2D search was developed. A Hero robot was used to demonstrate mobile manipulation. Indoor tasks include collecting cups from the lab floor, retrieving printer output, and recharging when its battery gets low. The robot monitors its environment, and handles exceptional conditions in a robust fashion, using vision to track the appearance and disappearance of cups, onboard sonars to detect imminent collisions, and monitors to detect the battery level.

  20. Adults' Autonomic and Subjective Emotional Responses to Infant Vocalizations: The Role of Secure Base Script Knowledge

    ERIC Educational Resources Information Center

    Groh, Ashley M.; Roisman, Glenn I.

    2009-01-01

    This article examines the extent to which secure base script knowledge--as reflected in an adult's ability to generate narratives in which attachment-related threats are recognized, competent help is provided, and the problem is resolved--is associated with adults' autonomic and subjective emotional responses to infant distress and nondistress…

  1. A Double-Blind Atropine Trial for Active Learning of Autonomic Function

    ERIC Educational Resources Information Center

    Fry, Jeffrey R.; Burr, Steven A.

    2011-01-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to…

  2. A Double-Blind Atropine Trial for Active Learning of Autonomic Function

    ERIC Educational Resources Information Center

    Fry, Jeffrey R.; Burr, Steven A.

    2011-01-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to…

  3. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius is denoted by h. It is the final value of h, reached before beginning construction on the next spindle, that is denoted by r. During construction of a spindle, if a new vector falls between C and the inner boundary, the vector is regarded as completely familiar and no action is taken. If the new vector falls into the region between the inner and outer boundaries, it is considered unusual enough to warrant the adjustment of C and r by use of the aforementioned algorithms, but not unusual enough to be considered novel. If a vector falls outside the outer boundary, it is considered novel, in which case one of several appropriate responses could be initiation of construction of a new spindle.

  4. Abnormal thermoregulation in diabetic autonomic neuropathy.

    PubMed

    Scott, A R; MacDonald, I A; Bennett, T; Tattersall, R B

    1988-07-01

    Hypothermia has been reported to be more common in diabetic people than in nondiabetic people, and we have investigated the possibility that autonomic neuropathy may be associated with disordered thermoregulation. After an overnight fast and maintenance of normoglycemia, 12 insulin-treated diabetic patients with and 11 without neuropathy and 12 nondiabetic control subjects, all less than 55 yr, were subjected to external cooling by perfusing water at 16 degrees C through a liquid-conditioned coverall for less than or equal to 45 min. Patients with autonomic neuropathy had impaired vasoconstriction to cooling, particularly in the foot, calf, and forearm. Core temperature rose by 0.2 degrees C in control subjects and by 0.15 degrees C in patients with diabetes but no neuropathy. In contrast, group mean core temperature was unchanged in those with autonomic neuropathy and fell in 3 subjects (P less than .001). Cooling caused shivering in 6 patients with diabetic autonomic neuropathy, but not in those with neuropathy or control subjects (P less than .05). Baseline metabolic rates were similar in all three groups, but the increase after cooling was significantly greater among those who shivered (P less than .05-.02). Thus, young diabetic patients with autonomic neuropathy have impaired thermoregulation to a relatively short period of external cooling, even during metabolic stability, which may predispose to hypothermia. PMID:3384191

  5. Induction of electromotive force by an autonomously moving magnetic bot.

    PubMed

    Sailapu, Sunil Kumar; Chattopadhyay, Arun

    2014-02-01

    We report the observation of the induction of electromotive force (emf) into a Faraday coil by an autonomously moving composite magnetic particle in aqueous medium. The particle consisted of a micron-sized polymer sphere, which was decorated with catalytic Pd nanoparticles (NPs) and attached to a micron-scale (N-42 grade) rare-earth magnet. The Pd NPs catalytically decomposed H2 O2 to generate O2 , resulting in buoyancy-driven vertical motion of the particle, while the micromagnet induced emf during the flight. Because a small volume of ethanol was layered on top of the liquid, the bubble burst when the particle ascended to the top and thus nearly continuous vertical motion was achieved. Spikes of alternating electrical signal could be observed up to 20?times per minute. The signal was sufficiently strong to illuminate light-emitting diodes following appropriate amplification. This distinctive approach is expected to pave the way to developing synthetic bots which are autonomously propelled, generating their own signal for running complex circuitry. PMID:24492970

  6. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  7. Autonomic dysreflexia and posterior reversible encephalopathy syndrome.

    PubMed

    Matias, Ana Catarina; Rocha, João; Cerqueira, Maria Emília; Pereira, João Manuel

    2013-05-01

    Autonomic dysreflexia is a syndrome of massive imbalanced reflex sympathetic discharge in patients who had a spinal cord injury above the splanchnic sympathetic outflow resulting in a sudden increase in blood pressure. Posterior reversible encephalopathy syndrome (PRES) refers to a clinicoradiologic entity characterized by headache, consciousness impairment, visual disturbances, seizures, and posterior transient changes on neuroimaging (cerebral vasogenic edema). Hypertension is a common cause of PRES. The authors describe two case reports of patients with tetraplegia who developed PRES after an autonomic dysreflexia episode. One of them had recurrence of PRES in a similar clinical context. The authors discuss further aspects of PRES and its recurrence, which seems to be unusual particularly after autonomic dysreflexia. PMID:23117272

  8. Autonomic regulation in Fragile X Syndrome

    PubMed Central

    Heilman, Keri J.; Harden, Emily R.; Zageris, Danielle M.; Berry-Kravis, Elizabeth; Porges, Stephen W.

    2011-01-01

    Autonomic reactivity was studied in individuals with fragile X syndrome (FXS), a genetic disorder partially characterized by abnormal social behavior. Relative to age-matched controls, the FXS group had faster baseline heart rate and lower amplitude respiratory sinus arrhythmia (RSA). In contrast to the typically developing controls, there was a decrease in RSA with age within the FXS group. Moreover, within the FXS group heart rate did not slow with age. The FXS group also responded with an atypical increase in RSA to the social challenge, while the control group reduced RSA. In a subset of the FXS group, the autonomic profile did not change following 2 months and 1 year of lithium treatment. The observed indices of atypical autonomic regulation, consistent with the Polyvagal Theory, may contribute to the deficits in social behavior and social communication observed in FXS. PMID:21547900

  9. Software control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Nelson, Michael L.; DeAnda, Juan R.; Fox, Richard K.; Meng, Xiannong

    1999-07-01

    The Strategic-Tactical-Execution Software Control Architecture (STESCA) is a tri-level approach to controlling autonomous vehicles. Using an object-oriented approach, STESCA has been developed as a generalization of the Rational Behavior Model (RBM). STESCA was initially implemented for the Phoenix Autonomous Underwater Vehicle (Naval Postgraduate School -- Monterey, CA), and is currently being implemented for the Pioneer AT land-based wheeled vehicle. The goals of STESCA are twofold. First is to create a generic framework to simplify the process of creating a software control architecture for autonomous vehicles of any type. Second is to allow for mission specification system by 'anyone' with minimal training to control the overall vehicle functionality. This paper describes the prototype implementation of STESCA for the Pioneer AT.

  10. Lessons learned from the autonomous power system

    SciTech Connect

    Ringer, M.J.; Quinn, T.M.; Merolla, A. . NASA Lewis Research Center Group)

    1993-01-01

    The Autonomous Power System (APS) project at the NASA Lewis Research Center is designed to demonstrate the applications of integrated intelligent diagnosis, control and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Detection, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The APS project has been through one design iteration. Each of the three elements of the APS project has been designed, tested, and integrated into a complete working system. After these three portions were completed, an evaluation period was initiated. Each piece of the system was critiqued based on individual performance as well as ability to interact with the other portions of the APS project. These critiques were then used to determine guidelines for new and improved components of the APS system.

  11. On-Orbit Autonomous Assembly from Nanosatellites

    NASA Technical Reports Server (NTRS)

    Murchison, Luke S.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.

  12. Autonomic dysfunction in chronic liver disease

    PubMed Central

    Frith, James; Newton, Julia L

    2011-01-01

    It is becoming increasingly clear that quality of life (QOL) is impaired in those with chronic liver disease (CLD). One of the most important contributors to impaired QOL is the symptomatic burden which can range from slight to debilitating. Autonomic dysfunction accounts for a significant proportion of these symptoms, which can be common, non-specific and challenging to treat. Investigating the autonomic nervous system can be straight forward and can assist the clinician to diagnose and treat specific symptoms. Evidence-based treatment options for autonomic symptoms, specifically in CLD, can be lacking and must be extrapolated from other studies and expert opinion. For those with severely impaired quality of life, liver transplantation may offer an improvement; however, more research is needed to confirm this. PMID:24367224

  13. Functional organization of autonomic neural pathways

    PubMed Central

    Gibbins, Ian

    2013-01-01

    There is now abundant functional and anatomical evidence that autonomic motor pathways represent a highly organized output of the central nervous system. Simplistic notions of antagonistic all-or-none activation of sympathetic or parasympathetic pathways are clearly wrong. Sympathetic or parasympathetic pathways to specific target tissues generally can be activated tonically or phasically, depending on current physiological requirements. For example, at rest, many sympathetic pathways are tonically active, such as those limiting blood flow to the skin, inhibiting gastrointestinal tract motility and secretion, or allowing continence in the urinary bladder. Phasic parasympathetic activity can be seen in lacrimation, salivation or urination. Activity in autonomic motor pathways can be modulated by diverse sensory inputs, including the visual, auditory and vestibular systems, in addition to various functional populations of visceral afferents. Identifying the central pathways responsible for coordinated autonomic activity has made considerable progress, but much more needs to be done. PMID:23872517

  14. Knowledge-based Autonomous Test Engineer (KATE)

    NASA Technical Reports Server (NTRS)

    Parrish, Carrie L.; Brown, Barbara L.

    1991-01-01

    Mathematical models of system components have long been used to allow simulators to predict system behavior to various stimuli. Recent efforts to monitor, diagnose, and control real-time systems using component models have experienced similar success. NASA Kennedy is continuing the development of a tool for implementing real-time knowledge-based diagnostic and control systems called KATE (Knowledge based Autonomous Test Engineer). KATE is a model-based reasoning shell designed to provide autonomous control, monitoring, fault detection, and diagnostics for complex engineering systems by applying its reasoning techniques to an exchangeable quantitative model describing the structure and function of the various system components and their systemic behavior.

  15. Light sailboats: Laser driven autonomous microrobots

    NASA Astrophysics Data System (ADS)

    Búzás, Anrdás; Kelemen, Lóránd; Mathesz, Anna; Oroszi, László; Vizsnyiczai, Gaszton; Vicsek, Tamás; Ormos, Pál

    2012-07-01

    We introduce a system of light driven microscopic autonomous moving particles that move on a flat surface. The design is simple, yet effective: Micrometer sized objects with wedge shape are produced by photopolymerization, and they are covered with a reflective surface. When the area of motion is illuminated perpendicularly from above, the light is deflected to the side by the wedge shaped objects, in the direction determined by the position and orientation of the particles. The momentum change during reflection provides the driving force for an effectively autonomous motion. The system is an efficient tool to study self propelled microscopic robots.

  16. Autonomous scheduling technology for Earth orbital missions

    NASA Technical Reports Server (NTRS)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  17. Advanced control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  18. Design of an autonomous exterior security robot

    NASA Technical Reports Server (NTRS)

    Myers, Scott D.

    1994-01-01

    This paper discusses the requirements and preliminary design of robotic vehicle designed for performing autonomous exterior perimeter security patrols around warehouse areas, ammunition supply depots, and industrial parks for the U.S. Department of Defense. The preliminary design allows for the operation of up to eight vehicles in a six kilometer by six kilometer zone with autonomous navigation and obstacle avoidance. In addition to detection of crawling intruders at 100 meters, the system must perform real-time inventory checking and database comparisons using a microwave tags system.

  19. Autonomous Landing and Hazard Avoidance Technology (ALHAT)

    NASA Technical Reports Server (NTRS)

    Epp, Chirold

    2007-01-01

    This viewgraph presentation reviews the work towards technology that will result in an autonomous landing on the lunar surface, that will avoid the hazards of lunar landing. In October 2005, the Exploration Systems Mission Directorate at NASA Headquarters assigned the development of new technologies to support the return to the moon. One of these was Autonomous Precision Landing and Hazard Detection and Avoidance Technology now known as ALHAT ALHAT is a lunar descent and landing GNC technology development project led by Johnson Space Center (JSC) with team members from Langley Research Center (LaRC), Jet Propulsion Laboratory (JPL), Draper Laboratories (CSDL) and the Applied Physics Laboratory (APL)

  20. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  1. Lessons Learned from Autonomous Sciencecraft Experiment

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce; D'Agostino, Jeff; Shulman, Seth; Boyer, Darrell; Hayden, Sandra; Sweet, Adam; Christa, Scott

    2005-01-01

    An Autonomous Science Agent has been flying onboard the Earth Observing One Spacecraft since 2003. This software enables the spacecraft to autonomously detect and responds to science events occurring on the Earth such as volcanoes, flooding, and snow melt. The package includes AI-based software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software is in routine use to fly the EO-l mission. In this paper we briefly review the agent architecture and discuss lessons learned from this multi-year flight effort pertinent to deployment of software agents to critical applications.

  2. Road boundary detection for autonomous vehicle navigation

    SciTech Connect

    Davis, L.S.; Kushner, T.R.; LeMoigne, J.J.; Waxman, A.M.

    1986-03-01

    The Computer Vision Laboratory at the University Maryland for the past year has been developing a computer vision system for autonomous ground navigation of roads and road networks for the Defense Advanced Research Projects Agency's Strategic Computing Program. The complete system runs on a VAX 11/785, but certain parts of it have been reimplemented on a VICOM image processing sysem for experimentation on an autonomous vehicle built for the Martin Marietta Corp., Aerospace Division, in Denver, Colorado. A brief overview is given of the principal software components of the system and the VICOM implementation in detail.

  3. Sensorpedia: Information Sharing Across Autonomous Sensor Systems

    SciTech Connect

    Gorman, Bryan L; Resseguie, David R; Tomkins-Tinch, Christopher H

    2009-01-01

    The concept of adapting social media technologies is introduced as a means of achieving information sharing across autonomous sensor systems. Historical examples of interoperability as an underlying principle in loosely-coupled systems is compared and contrasted with corresponding tightly-coupled, integrated systems. Examples of ad hoc information sharing solutions based on Web 2.0 social networks, mashups, blogs, wikis, and data tags are presented and discussed. The underlying technologies of these solutions are isolated and defined, and Sensorpedia is presented as a formalized application for implementing sensor information sharing across large-scale enterprises with incompatible autonomous sensor systems.

  4. Autonomic Regulation Therapy in Heart Failure.

    PubMed

    Buckley, Una; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2015-08-01

    Autonomic regulation therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART. PMID:26054327

  5. Evolutionary strategy for achieving autonomous navigation

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.

    1999-01-01

    An approach is presented for the evolutionary development of supervised autonomous navigation capabilities for small 'backpackable' ground robots, in the context of a DARPA- sponsored program to provide robotic support to small units of dismounted warfighters. This development approach relies on the implementation of a baseline visual serving navigation capability, including tools to support operator oversight and override, which is then enhanced with semantically referenced commands and a mission scripting structure. As current and future machine perception techniques are able to automatically designate visual serving goal points, this approach should provide a natural evolutionary pathway to higher levels of autonomous operation and reduced requirements for operator intervention.

  6. NEURON: Enabling Autonomicity in Wireless Sensor Networks

    PubMed Central

    Zafeiropoulos, Anastasios; Gouvas, Panagiotis; Liakopoulos, Athanassios; Mentzas, Gregoris; Mitrou, Nikolas

    2010-01-01

    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. PMID:22399931

  7. Vision guided landing of an an autonomous helicopter in hazardous terrain

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Montgomery, Jim

    2005-01-01

    Future robotic space missions will employ a precision soft-landing capability that will enable exploration of previously inaccessible sites that have strong scientific significance. To enable this capability, a fully autonomous onboard system that identifies and avoids hazardous features such as steep slopes and large rocks is required. Such a system will also provide greater functionality in unstructured terrain to unmanned aerial vehicles. This paper describes an algorithm for landing hazard avoidance based on images from a single moving camera. The core of the algorithm is an efficient application of structure from motion to generate a dense elevation map of the landing area. Hazards are then detected in this map and a safe landing site is selected. The algorithm has been implemented on an autonomous helicopter testbed and demonstrated four times resulting in the first autonomous landing of an unmanned helicopter in unknown and hazardous terrain.

  8. Ultrafast physical generation of random numbers using hybrid Boolean networks

    NASA Astrophysics Data System (ADS)

    Rosin, David P.; Rontani, Damien; Gauthier, Daniel J.

    2013-04-01

    We describe a high-speed physical random number generator based on a hybrid Boolean network with autonomous and clocked logic gates, realized on a reconfigurable chip. The autonomous logic gates are arranged in a bidirectional ring topology and generate broadband chaos. The clocked logic gates receive input from the autonomous logic gates so that random numbers are generated physically that pass standard randomness tests without further postprocessing. The large number of logic gates on reconfigurable chips allows for parallel generation of random numbers, as demonstrated by our implementation of 128 physical random number generators that achieve a real-time bit rate of 12.8Gbits/s.

  9. System identification of closed-loop cardiovascular control mechanisms: diabetic autonomic neuropathy

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.

    1999-01-01

    We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.

  10. Autonomic dysfunction in muscular dystrophy: a theoretical framework for muscle reflex involvement

    PubMed Central

    Smith, Scott A.; Downey, Ryan M.; Williamson, Jon W.; Mizuno, Masaki

    2014-01-01

    Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy. PMID:24600397

  11. Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles.

    PubMed

    Stilwell, Daniel J; Bishop, Bradley E; Sylvester, Caleb A

    2005-08-01

    An approach to real-time trajectory generation for platoons of autonomous vehicles is developed from well-known control techniques for redundant robotic manipulators. The partially decentralized structure of this approach permits each vehicle to independently compute its trajectory in real-time using only locally generated information and low-bandwidth feedback generated by a system exogenous to the platoon. Our work is motivated by applications for which communications bandwidth is severely limited, such for platoons of autonomous underwater vehicles. The communication requirements for our trajectory generation approach are independent of the number of vehicles in the platoon, enabling platoons composed of a large number of vehicles to be coordinated despite limited communication bandwidth. PMID:16128465

  12. Autonomous Multi-sensor Coordination: The Science Goal Monitor

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Jung, John; Geiger, Jenny; Grosvenor, Sandy

    2004-01-01

    Next-generation science and exploration systems will employ new observation strategies that will use multiple sensors in a dynamic environment to provide high quality monitoring, self-consistent analyses and informed decision making. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing of earth phenomenon. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe the dynamic phenomena. The SGM system enables users to specify events of interest and how to react when an event is detected. The system monitors streams of data to identify occurrences of the key events previously specified by the scientist/user. When an event occurs, the system autonomously coordinates the execution of the users desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems Aqua/Terra spacecrafts MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM is being used to investigate forest fires, floods and volcanic eruptions. We are now identifying new earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.

  13. What does autonomic arousal tell us about locomotor learning?

    PubMed

    Green, D A; Bunday, K L; Bowen, J; Carter, T; Bronstein, A M

    2010-09-29

    Walking onto a stationary sled previously experienced as moving induces locomotor aftereffects (LAE, or "broken escalator phenomenon"). This particular form of aftereffect can develop after a single adaptation trial and occurs despite subjects being fully aware that the sled will not move. Here, we investigate whether such strong LAE expression may relate to arousal or fear related to instability during the gait adaptation process. Forty healthy subjects were allocated to three sled velocity groups; SLOW (0.6 m/s), MEDIUM (1.3 m/s), or FAST (2.0 m/s). Subjects walked onto the stationary sled for five trials (BEFORE), then onto the moving sled for 15 trials (adaptation or MOVING trials) and, finally, again onto the stationary sled for five trials (AFTER). Explicit warning regarding sled status was given. Trunk position, foot-sled contact timing, autonomic markers (electrodermal activity [EDA], ECG, respiratory movements) in addition to self-reported task-related confidence and state/trait anxiety were recorded. Trunk sway, EDA, and R-R interval shortening were greatest during the first MOVING trial (MOVING_1), progressively attenuating during subsequent MOVING trials. A LAE, recorded as increased gait velocity and trunk sway during AFTER_1, occurred in both MEDIUM and FAST sled velocity groups. The amplitude of forward trunk sway in AFTER_1 (an indicator of aftereffect magnitude) was related to EDA during the final adaptation trial (MOVING_15). AFTER_1 gait velocity (also an indicator of aftereffect magnitude) was related to MOVING_1 trunk sway. Hence, gait velocity and trunk sway components of the LAE are differentially related to kinematic and autonomic parameters during the early and late adaptation phase. The finding that EDA is a predictor of LAE expression indicates that autonomic arousal or fear-based mechanisms can promote locomotor learning. This could in turn explain some unusual characteristics of this LAE, namely its resistance to explicit knowledge and its generation with just a single adaptation trial. PMID:20620200

  14. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  15. Genetics Home Reference: Hereditary sensory and autonomic neuropathy type II

    MedlinePLUS

    ... Genetic disorder catalog Conditions > Hereditary sensory and autonomic neuropathy type II (often shortened to HSAN2 ) On this ... 2011 What is HSAN2? Hereditary sensory and autonomic neuropathy type II (HSAN2) is a condition that primarily ...

  16. Genetics Home Reference: Hereditary sensory and autonomic neuropathy type V

    MedlinePLUS

    ... Genetic disorder catalog Conditions > Hereditary sensory and autonomic neuropathy type V (often shortened to HSAN5 ) On this ... 2011 What is HSAN5? Hereditary sensory and autonomic neuropathy type V (HSAN5) is a condition that primarily ...

  17. Why Computer-Based Systems Should be Autonomic

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    The objective of this paper is to discuss why computer-based systems should be autonomic, where autonomicity implies self-managing, often conceptualized in terms of being self-configuring, self-healing, self-optimizing, self-protecting and self-aware. We look at motivations for autonomicity, examine how more and more systems are exhibiting autonomic behavior, and finally look at future directions.

  18. Generalized synchronization of chaos in autonomous systems.

    PubMed

    Alvarez-Llamoza, O; Cosenza, M G

    2008-10-01

    We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system can be synchronized to each other, but not to a coupling function defined from them. The form of the coupling function is not crucial; it may not depend on all the state variables. Nor does it need to be active for all times for achieving generalized synchronization. The procedure is based on an analogy between a response map subject to an external drive acting with a probability p and an autonomous system of coupled maps where a global interaction between the maps takes place with this same probability. It is shown that, under some circumstances, the conditions for stability of generalized synchronized states are equivalent in both types of systems. Our results reveal the existence of similar minimal conditions for the emergence of generalized synchronization of chaos in driven and in autonomous spatiotemporal systems. PMID:18999517

  19. Fully autonomous mobile mini-robot

    NASA Astrophysics Data System (ADS)

    Buechi, Roland; Rohrer, Daniel; Schmid, Christian; Siegwart, Roland Y.

    1995-12-01

    In recent years, many new designs of micro robots have been developed. Miniaturization is a challenge and most mechanisms designed up to now are not autonomous, i.e. they don't have their intelligence and/or power supply on board. A new fully autonomous miniature mobile robot has been designed in our lab in a final year project. It has been programmed to follow a black line printed on the ground. An autonomous mechatronic system consists at least of a sensor, an actuator, a microprocessor to provide intelligence and a power supply. In our case, the robot's intelligence is based on a PIC16C71 microcontroller that controls its movement. To follow a black line, an infrared emitter and two receivers are placed at the front of the robot. As actuators, two watch motors are used. The gears of the watch's second hand are directly used as wheels to move the system. Two small batteries supply the energy to the motors and the microprocessor as well. The technical details of the mini mobile robot are as follows: dimensions: 20 mm * 8 mm * 15 mm; velocity: 40 mm/s; power consumption: 6 mW. This low power consumption allows the system to move autonomous for about 8 - 10 hours.

  20. Autonomous biomorphic robots as platforms for sensors

    SciTech Connect

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  1. AUTONOMOUS BURIED PIPE DETECTION USING NEURAL NETWORKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An autonomous pipe detection algorithm using two independent Artificial Neural Networks (ANN) in two dimensional GPR data has been developed. And a pipe orientation estimation method has been discussed. The first neural network, called step-l ANN, was trained with a waveform reflected from a pipe in...

  2. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  3. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  4. Directed Autonomic Flow: Functional Motility Fluidics.

    PubMed

    Kühn, Philipp T; de Miranda, Barbara Santos; van Rijn, Patrick

    2015-12-01

    Unidirectional coherent motion of a self-moving droplet is achieved and combined in a functional motility fluidic chip for chemical reactions via a novel and straightforward approach. The droplet shows both increased movement speeds and displacement distances without any input of energy. Nanoparticle synthesis is performed using the autonomous movement in a fluidic chip that induces transport, mixing, and collection. PMID:26467031

  5. An Algorithm for Autonomous Formation Obstacle Avoidance

    NASA Astrophysics Data System (ADS)

    Cruz, Yunior I.

    The level of human interaction with Unmanned Aerial Systems varies greatly from remotely piloted aircraft to fully autonomous systems. In the latter end of the spectrum, the challenge lies in designing effective algorithms to dictate the behavior of the autonomous agents. A swarm of autonomous Unmanned Aerial Vehicles requires collision avoidance and formation flight algorithms to negotiate environmental challenges it may encounter during the execution of its mission, which may include obstacles and chokepoints. In this work, a simple algorithm is developed to allow a formation of autonomous vehicles to perform point to point navigation while avoiding obstacles and navigating through chokepoints. Emphasis is placed on maintaining formation structures. Rather than breaking formation and individually navigating around the obstacle or through the chokepoint, vehicles are required to assemble into appropriately sized/shaped sub-formations, bifurcate around the obstacle or negotiate the chokepoint, and reassemble into the original formation at the far side of the obstruction. The algorithm receives vehicle and environmental properties as inputs and outputs trajectories for each vehicle from start to the desired ending location. Simulation results show that the algorithm safely routes all vehicles past the obstruction while adhering to the aforementioned requirements. The formation adapts and successfully negotiates the obstacles and chokepoints in its path while maintaining proper vehicle separation.

  6. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel. PMID:26227680

  7. Autonomous Learning from a Social Cognitive Perspective

    ERIC Educational Resources Information Center

    Ponton, Michael K.; Rhea, Nancy E.

    2006-01-01

    The current perspective of autonomous learning defines it as the agentive exhibition of resourcefulness, initiative, and persistence in self-directed learning. As a form of human agency, it has been argued in the literature that this perspective should be consistent with Bandura's (1986) Social Cognitive Theory (SCT). The purpose of this article…

  8. Autonomic failure with postprandial hypotension: case report.

    PubMed

    Turnbull, C J; Palmer, K T; Taylor, B B

    1981-07-01

    A case of severe symptomatic postprandial hypotension associated with idiopathic autonomic neuropathy and endogenous hyperinsulinaemia is described. The possible mechanisms of the blood pressure changes are discussed. Attempts at treatment included dietary change; the use of vasodilators with salt and fludrocortisone; elastic stockings, antigravity suit; diazoxide and bromocriptine. PMID:6943464

  9. Control algorithms for autonomous robot navigation

    SciTech Connect

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  10. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  11. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves. PMID:20444653

  12. Love alters autonomic reactivity to emotions.

    PubMed

    Schneiderman, Inna; Zilberstein-Kra, Yael; Leckman, James F; Feldman, Ruth

    2011-12-01

    Periods of bond formation are accompanied by physiological and emotional changes, yet, little is known about the effects of falling in love on the individual's physiological response to emotions. We examined autonomic reactivity to the presentation of negative and positive films in 112 young adults, including 57 singles and 55 new lovers who began a romantic relationship 2.5 months prior to the experiment Autonomic reactivity was measured by Respiratory Sinus Arrhythmia (RSA) to two baseline emotionally neutral films, two negative films, and two positive films. Results demonstrated that RSA in singles decreased during the presentation of negative emotions, indicating physiological stress response. However, no such decrease was found among new lovers, pointing to more optimal vagal regulation during the period of falling in love. Autonomic reactivity, indexed by RSA decrease from the positive to the negative films, was greater among singles as compared to lovers, suggesting that love buffers against autonomic stress and facilitates emotion regulation. Findings suggest that vagal regulation may be one mechanism through which love and attachment reduce stress and promote well-being and health. PMID:22142209

  13. GROVER: An autonomous vehicle for ice sheet research

    NASA Astrophysics Data System (ADS)

    Trisca, G. O.; Robertson, M. E.; Marshall, H.; Koenig, L.; Comberiate, M. A.

    2013-12-01

    The Goddard Remotely Operated Vehicle for Exploration and Research or Greenland Rover (GROVER) is a science enabling autonomous robot specifically designed to carry a low-power, large bandwidth radar for snow accumulation mapping over the Greenland Ice Sheet. This new and evolving technology enables reduced cost and increased safety for polar research. GROVER was field tested at Summit, Greenland in May 2013. The robot traveled over 30 km and was controlled both by line of sight wireless and completely autonomously with commands and telemetry via the Iridium Satellite Network, from Summit as well as remotely from Boise, Idaho. Here we describe GROVER's unique abilities and design. The software stack features a modular design that can be adapted for any application that requires autonomous behavior, reliable communications using different technologies and low level control of peripherals. The modules are built to communicate using the publisher-subscriber design pattern to maximize data-reuse and allow for graceful failures at the software level, along with the ability to be loaded or unloaded on-the-fly, enabling the software to adopt different behaviors based on power constraints or specific processing needs. These modules can also be loaded or unloaded remotely for servicing and telemetry can be configured to contain any kind of information being generated by the sensors or scientific instruments. The hardware design protects the electronic components and the control system can change functional parameters based on sensor input. Power failure modes built into the hardware prevent the vehicle from running out of energy permanently by monitoring voltage levels and triggering software reboots when the levels match pre-established conditions. This guarantees that the control software will be operational as soon as there is enough charge to sustain it, giving the vehicle increased longevity in case of a temporary power loss. GROVER demonstrates that autonomous rovers can be a revolutionary tool for data collection, and that both the technology and the software are available and ready to be implemented to create scientific data collection platforms.

  14. Towards an Autonomous Global Ocean Carbon Observatory

    NASA Astrophysics Data System (ADS)

    Bishop, J. K.

    2007-12-01

    The ocean is by far the largest carbon reservoir in rapid communication with the atmosphere. Understanding both ocean carbon chemistry and ocean carbon biology are critical for carbon prediction. Marine carbon biomass accounts for roughly 50% of global carbon photosynthesis and a ~10 Pg C/year particulate carbon flux through 100 m into the deep sea. The latter export is commonly referred to as the biological carbon pump. The entire plant biomass of the ocean turns over on week time scales. We lack predictive skill for the biological pump mainly because observations of the biological pump have to be tied to ships which are unable to remain at sea at any location longer than several weeks. Since 2001, a dozen low cost, long lived, robotic Carbon Explorers have been deployed to operate in the ocean for year-long time scales and return real-time information on the daily variation of Particulate Organic Carbon (POC) concentration of the upper 1000 m of the ocean. On June 22 2007 the next generation of Explorer, the Carbon Flux Explorer (CFE) was recovered after a successful two day test and routine operation as deep as 800 m in waters of the San Clemente Basin off shore of San Diego. The CFE represents integration of the Optical Sedimentation Recorder (engineered at Berkeley Laboratory) and the Sounding Ocean Lagrangian Observer (SOLO) profiling float engineered at Scripps. Every eight hours, the CFE surfaced and transmitted in real time engineering and position information in minutes to shore and ship via Iridium satellite link. This fully autonomous and robotic free vehicle/instrument is designed to follow (at hourly resolution) variations of particulate organic and inorganic carbon sedimentation for seasons. Beyond enhanced predictability of the ocean biological carbon pump brought by such enhanced technology, it is fully feasible in the next decade to implement a low cost real-time ocean carbon observing system (a CARBON-ARGO), capable of real time assessment of ocean carbon flux which when coupled with atmospheric CO2 measurements will constrain the balance between carbon emissions and natural and human mediated carbon sinks on land.

  15. The Conductor of the Autonomic Orchestra

    PubMed Central

    Vinik, Aaron I.

    2012-01-01

    Bad bedfellows – autonomic dysfunction, inflammation, and diabetes! Are they related? How? Evidence suggests the activation of inflammatory cytokines like IL-6 and TNFα in newly diagnosed type 2 diabetes and that the inflammatory change correlates with abnormalities in sympathovagal balance. Dysfunction of the autonomic system predicts cardiovascular risk and sudden death in patients with type 2 diabetes. It occurs in prediabetes, providing opportunities for early intervention. The importance of recognizing autonomic dysfunction as a predictor of morbidity and mortality with intensification of treatment suggests that all patients with type 2 diabetes at onset, and those with type 1 diabetes after 5 years should be screened for autonomic imbalance. These tests can be performed at the bedside with real time output of information – within the scope of the practicing physician – facilitates diagnosis and allows the application of sound strategies for management. The window of opportunity for aggressive control of all the traditional risk factors for cardiovascular events or sudden death with intensification of therapy is with short duration diabetes, the absence of cardiovascular disease, and a history of severe hypoglycemic events. To this list we can now add autonomic dysfunction and neuropathy, which have become the most powerful predictors of risk for mortality. It seems prudent that practitioners should be encouraged to become familiar with this information and apply risk stratification in clinical practice. After all, how difficult is it to ask patients “do you have numb feet?” and to determine their heart rate variability – it could be lifesaving. Ultimately methods to reset the hypothalamus and the inflammatory cascade are needed if we are to impact the care of patients with this compendium of conditions. PMID:22737143

  16. Autonomic Nervous System and Immune System Interactions

    PubMed Central

    Kenney, MJ; Ganta, CK

    2015-01-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease development and immune-associated changes in autonomic nervous system function. PMID:24944034

  17. Autonomous Pathogen Detection System - FY02 Annual Progress Report

    SciTech Connect

    Colston, B; Brown, S; Burris, K; Elkin, C; Hindson, B; Langlois, R; Masquelier, D; McBride, M; Metz, T; Nasarabadi, S; Makarewicz, T; Milznovich, F; Venkateswaran, K S; Visuri, S

    2002-11-11

    The objective of this project is to design, fabricate and field demonstrate a biological agent detection and identification capability, the Autonomous Pathogen Detector System (APDS). Integrating a flow cytometer and real-time polymerase chain reaction (PCR) detector with sample collection, sample preparation and fluidics will provide a compact, autonomously operating instrument capable of simultaneously detecting multiple pathogens and/or toxins. The APDS will operate in fixed locations, continuously monitoring air samples and automatically reporting the presence of specific biological agents. The APDS will utilize both multiplex immunoassays and nucleic acid assays to provide ''quasi-orthogonal'' multiple agent detection approaches to minimize false positives and increase the reliability of identification. Technical advances across several fronts must occur, however, to realize the full extent of the APDS. The end goal of a commercially available system for civilian biological weapon defense will be accomplished through three progressive generations of APDS instruments. The APDS is targeted for civilian applications in which the public is at high risk of exposure to covert releases of bioagent, such as major subway systems and other transportation terminals, large office complexes and convention centers. APDS is also designed to be part of a monitoring network of sensors integrated with command and control systems for wide-area monitoring of urban areas and major public gatherings. In this latter application there is potential that a fully developed APDS could add value to DoD monitoring architectures.

  18. Autonomous unobtrusive detection of mild cognitive impairment in older adults.

    PubMed

    Akl, Ahmad; Taati, Babak; Mihailidis, Alex

    2015-05-01

    The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults. PMID:25585407

  19. Autonomous Satellite Operations Via Secure Virtual Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Miller, Eric; Paulsen, Phillip E.; Pasciuto, Michael

    2011-01-01

    The science community is interested in improving their ability to respond to rapidly evolving, transient phenomena via autonomous rapid reconfiguration, which derives from the ability to assemble separate but collaborating sensors and data forecasting systems to meet a broad range of research and application needs. Current satellite systems typically require human intervention to respond to triggers from dissimilar sensor systems. Additionally, satellite ground services often need to be coordinated days or weeks in advance. Finally, the boundaries between the various sensor systems that make up such a Sensor Web are defined by such things as link delay and connectivity, data and error rate asymmetry, data reliability, quality of service provisions, and trust, complicating autonomous operations. Over the past ten years, researchers from the NASA Glenn Research Center (GRC), General Dynamics, Surrey Satellite Technology Limited (SSTL), Cisco, Universal Space Networks (USN), the U.S. Geological Survey (USGS), the Naval Research Laboratory, the DoD Operationally Responsive Space (ORS) Office, and others have worked collaboratively to develop a virtual mission operations capability. Called VMOC (Virtual Mission Operations Center), this new capability allows cross-system queuing of dissimilar mission unique systems through the use of a common security scheme and published application programming interfaces (APIs). Collaborative VMOC demonstrations over the last several years have supported the standardization of spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of new tactics, techniques and procedures that lead to responsive space employment.

  20. Capturing Requirements for Autonomous Spacecraft with Autonomy Requirements Engineering

    NASA Astrophysics Data System (ADS)

    Vassev, Emil; Hinchey, Mike

    2014-08-01

    The Autonomy Requirements Engineering (ARE) approach has been developed by Lero - the Irish Software Engineering Research Center within the mandate of a joint project with ESA, the European Space Agency. The approach is intended to help engineers develop missions for unmanned exploration, often with limited or no human control. Such robotics space missions rely on the most recent advances in automation and robotic technologies where autonomy and autonomic computing principles drive the design and implementation of unmanned spacecraft [1]. To tackle the integration and promotion of autonomy in software-intensive systems, ARE combines generic autonomy requirements (GAR) with goal-oriented requirements engineering (GORE). Using this approach, software engineers can determine what autonomic features to develop for a particular system (e.g., a space mission) as well as what artifacts that process might generate (e.g., goals models, requirements specification, etc.). The inputs required by this approach are the mission goals and the domain-specific GAR reflecting specifics of the mission class (e.g., interplanetary missions).

  1. Terrain modelling and motion planning for an autonomous exploration rover

    NASA Technical Reports Server (NTRS)

    Richard, F.; Benoliel, S.; Faugeras, O.; Grandjean, P.; Hayard, M.; Simeon, T.

    1994-01-01

    To assess the feasibility of planetary exploration missions using rovers, the French national agency CNES, with a consortium of European laboratories and industrial concerns, has initiated the Eureka project, 'Illustration of an Autonomous Robot for the Exploration of Space' (IARES). IARES is a demonstrator composed of a rover and a ground station, linked by telemetry and telecommand. It is aimed at verifying, on earth, robotic concepts developed by the RISP group of French laboratories (LAAS, INRIA, CERT, LETI) to perform scientific missions such as autonomous terrain sample collecting over large areas. To cope with the actual needs of planet exploration, IARES suitability is assessed through constraints on limited bandwidth, time delay and on-board resources. This autonomy relies heavily on robust onboard trajectory generation capabilities. This paper presents the main functions of the IARES navigation sub-system and shows how they are combined to allow movement in Mars-like environments. Section 2 gives an overall description of the IARES system. Section 3 details the functions of the Navigation sub-system, and finally, section 4 illustrates with a simple example the use of these functions.

  2. Autonomous Unobtrusive Detection of Mild Cognitive Impairment in Older Adults

    PubMed Central

    Taati, Babak; Mihailidis, Alex

    2015-01-01

    The current diagnosis process of dementia is resulting in a high-percentage of cases with delayed detection. To address this problem, in this paper we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of 3 years, a number of measures associated with the subjects' walking speeds and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This work is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults. PMID:25585407

  3. Towards a New Architecture for Autonomous Data Collection

    NASA Astrophysics Data System (ADS)

    Tanzi, T. J.; Roudier, Y.; Apvrille, L.

    2015-08-01

    A new generation of UAVs is coming that will help improve the situational awareness and assessment necessary to ensure quality data collection, especially in difficult conditions like natural disasters. Operators should be relieved from time-consuming data collection tasks as much as possible and at the same time, UAVs should assist data collection operations through a more insightful and automated guidance thanks to advanced sensing capabilities. In order to achieve this vision, two challenges must be addressed though. The first one is to achieve a sufficient autonomy, both in terms of navigation and of interpretation of the data sensed. The second one relates to the reliability of the UAV with respect to accidental (safety) or even malicious (security) risks. This however requires the design and development of new embedded architectures for drones to be more autonomous, while mitigating the harm they may potentially cause. We claim that the increased complexity and flexibility of such platforms requires resorting to modelling, simulation, or formal verification techniques in order to validate such critical aspects of the platform. This paper first discusses the potential and challenges faced by autonomous UAVs for data acquisition. The design of a flexible and adaptable embedded UAV architecture is then addressed. Finally, the need for validating the properties of the platform is discussed. Our approach is sketched and illustrated with the example of a lightweight drone performing 3D reconstructions out of the combination of 2D image acquisition and a specific motion control.

  4. Autonomous self-organizing resource manager for multiple networked platforms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III

    2002-08-01

    A fuzzy logic based expert system for resource management has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar autonomous naval platforms defending their group against attackers. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper provides an overview of the resource manager including the four fuzzy decision trees that make up the resource manager; the fuzzy EA model; genetic algorithm based optimization; co-evolutionary data mining through gaming; and mathematical, computational and hardware based validation. Methods of automatically designing new multi-platform EA techniques are considered. The expert system runs on each defending platform rendering it an autonomous system requiring no human intervention. There is no commanding platform. Instead the platforms work cooperatively as a function of battlespace geometry; sensor data such as range, bearing, ID, uncertainty measures for sensor output; intelligence reports; etc. Computational experiments will show the defending networked platform's ability to self- organize. The platforms' ability to self-organize is illustrated through the output of the scenario generator, a software package that automates the underlying data mining problem and creates a computer movie of the platforms' interaction for evaluation.

  5. Mapping planetary caves with an autonomous, heterogeneous robot team

    NASA Astrophysics Data System (ADS)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  6. Apoptosis and Self-Destruct: A Contribution to Autonomic Agents?

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2004-01-01

    Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward in designing reliable systems. Agent technologies have been identified as a key enabler for engineering autonomicity in systems, both in terms of retrofitting autonomicity into legacy systems and designing new systems. The AC initiative provides an opportunity to consider other biological systems and principles in seeking new design strategies. This paper reports on one such investigation; utilizing the apoptosis metaphor of biological systems to provide a dynamic health indicator signal between autonomic agents.

  7. Autonomous Surface Sample Acquisition for Planetary and Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Barnes, D. P.

    2007-08-01

    Surface science sample acquisition is a critical activity within any planetary and lunar exploration mission, and our research is focused upon the design, implementation, experimentation and demonstration of an onboard autonomous surface sample acquisition capability for a rover equipped with a robotic arm upon which are mounted appropriate science instruments. Images captured by a rover stereo camera system can be processed using shape from stereo methods and a digital elevation model (DEM) generated. We have developed a terrain feature identification algorithm that can determine autonomously from DEM data suitable regions for instrument placement and/or surface sample acquisition. Once identified, surface normal data can be generated autonomously which are then used to calculate an arm trajectory for instrument placement and sample acquisition. Once an instrument placement and sample acquisition trajectory has been calculated, a collision detection algorithm is required to ensure the safe operation of the arm during sample acquisition.We have developed a novel adaptive 'bounding spheres' approach to this problem. Once potential science targets have been identified, and these are within the reach of the arm and will not cause any undesired collision, then the 'cost' of executing the sample acquisition activity is required. Such information which includes power expenditure and duration can be used to select the 'best' target from a set of potential targets. We have developed a science sample acquisition resource requirements calculation that utilises differential inverse kinematics methods to yield a high fidelity result, thus improving upon simple 1st order approximations. To test our algorithms a new Planetary Analogue Terrain (PAT) Laboratory has been created that has a terrain region composed of Mars Soil Simulant-D from DLR Germany, and rocks that have been fully characterised in the laboratory. These have been donated by the UK Planetary Analogue Field Study network, and constitute the science targets for our autonomous sample acquisition work. Our PAT Lab. terrain has been designed to support our new rover chassis which is based upon the ExoMars rover Concept-E mechanics which were investigated during the ESA ExoMars Phase A study. The rover has 6 wheel drives, 6 wheels steering, and a 6 wheel walking capability. Mounted on the rover chassis is the UWA robotic arm and mast. We have designed and built a PanCam system complete with a computer controlled pan and tilt mechanism. The UWA PanCam is based upon the ExoMars PanCam (Phase A study) and hence supports two Wide Angle Cameras (WAC - 64 degree FOV), and a High Resolution Camera (HRC - 5 degree FOV). WAC separation is 500 mm. Software has been developed to capture images which form the data input into our on-board autonomous surface sample acquisition algorithms.

  8. Passive autonomous infrared sensor technology

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz

    1987-10-01

    This study was conducted in response to the DoD's need for establishing understanding of algorithm's modules for passive infrared sensors and seekers and establishing a standardized systematic procedure for applying this understanding to DoD applications. We quantified the performances of Honeywell's Background Adaptive Convexity Operator Region Extractor (BACORE) detection and segmentation modules, as functions of a set of image metrics for both single-frame and multiframe processing. We established an understanding of the behavior of the BACORE's internal parameters. We characterized several sets of stationary and sequential imagery and extracted TIR squared, TBIR squared, ESR, and range for each target. We generated a set of performance models for multi-frame processing BACORE that could be used to predict the behavior of BACORE in image metric space. A similar study was conducted for another of Honeywell's segmentors, namely Texture Boundary Locator (TBL), and its performances were quantified. Finally, a comparison of TBL and BACORE on the same data base and same number of frames was made.

  9. Dynamic map building for an autonomous mobile robot

    SciTech Connect

    Leonard, J.J.; Durrant-Whyte, H.F. ); Cox, I.J. )

    1992-08-01

    This article presents an algorithm for autonomous map building and maintenance for a mobile robot. The authors believe that mobile robot navigation can be treated as a problem of tracking geometric features that occur naturally in the environment. They represent each feature in the map by a location estimate (the feature state vector) and two distinct measures of uncertainty: a covariance matrix to represent uncertainty in feature location, and a credibility measure to represent their belief in the validity of the feature. During each position update cycle, predicted measurements are generated for each geometric feature in the map and compared with actual sensor observations. Successful matches cause a feature's credibility to be increased. Unpredicted observations are used to initialize new geometric features, while unobserved predictions result in a geometric feature's credibility being decreased. They also describe experimental results obtained with the algorithm that demonstrate successful map building using real sonar data.

  10. Autonomous Robotic Refueling System (ARRS) for rapid aircraft turnaround

    NASA Astrophysics Data System (ADS)

    Williams, O. R.; Jackson, E.; Rueb, K.; Thompson, B.; Powell, K.

    An autonomous robotic refuelling system is being developed to achieve rapid aircraft turnaround, notably during combat operations. The proposed system includes a gantry positioner with sufficient reach to position a robotic arm that performs the refuelling tasks; a six degree of freedom manipulator equipped with a remote center of compliance, torque sensor, and a gripper that can handle standard tools; a computer vision system to locate and guide the refuelling nozzle, inspect the nozzle, and avoid collisions; and an operator interface with video and graphics display. The control system software will include components designed for trajectory planning and generation, collision detection, sensor interfacing, sensory processing, and human interfacing. The robotic system will be designed so that upgrading to perform additional tasks will be relatively straightforward.

  11. Navigation strategies for multiple autonomous mobile robots moving in formation

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1991-01-01

    The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.

  12. Visual exploration of 2D autonomous dynamical systems

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Sadlo, Filip

    2015-05-01

    In an introductory course on dynamical systems or Hamiltonian mechanics, vector field diagrams are a central tool to show a system’s qualitative behaviour in a certain domain. Because of their low sampling rates and the involved issues of vector normalization, these plots give only a coarse insight and are unable to convey the vector field behaviour at locations with high variation, in particular in the neighbourhood of critical points. Similarly, automatic generation of phase portraits based on traditional sampling cannot precisely capture separatrices or limit cylces. In this paper, we present ASysViewer, an application for the interactive visual exploration of two-dimensional autonomous dynamical systems, using line integral convolution techniques for visualization, and grid-based techniques to extract critical points and separatrices. ASysViewer is addressed to undergraduate students during their first course in dynamical systems or Hamiltonian mechanics.

  13. Application of a Chaotic Oscillator in an Autonomous Mobile Robot

    NASA Astrophysics Data System (ADS)

    Tlelo-Cuautle, Esteban; Ramos-López, Hugo C.; Sánchez-Sánchez, Mauro; Pano-Azucena, Ana D.; Sánchez-Gaspariano, Luis A.; Núñez-Pérez, José C.; Camas-Anzueto, Jorge L.

    2014-05-01

    Terrain exploration robots can be of great usefulness in critical navigation circumstances. However, the challenge is how to guarantee a control for covering a full terrain area. That way, the application of a chaotic oscillator to control the wheels of an autonomous mobile robot, is introduced herein. Basically, we describe the realization of a random number generator (RNG) based on a double-scroll chaotic oscillator, which is used to guide the robot to cover a full terrain area. The resolution of the terrain exploration area is determined by both the number of bits provided by the RNG and the characteristics of step motors. Finally, the experimental results highlight the covered area by painting the trajectories that the robot explores.

  14. The autonomic nervous system and renal physiology

    PubMed Central

    D’Elia, John A; Weinrauch, Larry A

    2013-01-01

    Research in resistant hypertension has again focused on autonomic nervous system denervation – 50 years after it had been stopped due to postural hypotension and availability of newer drugs. These (ganglionic blockers) drugs have all been similarly stopped, due to postural hypotension and yet newer antihypertensive agents. Recent demonstration of the feasibility of limited regional transcatheter sympathetic denervation has excited clinicians due to potential therapeutic implications. Standard use of ambulatory blood pressure recording equipment may alter our understanding of the diagnosis, potential treatment strategies, and health care outcomes – when faced with patients whose office blood pressure remains in the hypertensive range – while under treatment with three antihypertensive drugs at the highest tolerable doses, plus a diuretic. We review herein clinical relationships between autonomic function, resistant hypertension, current treatment strategies, and reflect upon the possibility of changes in our approach to resistant hypertension. PMID:24039445

  15. Autonomous microfluidic system for phosphate detection.

    PubMed

    McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot

    2007-02-28

    Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L. PMID:19071430

  16. Auditory stimulation and cardiac autonomic regulation

    PubMed Central

    Valenti, Vitor E.; Guida, Heraldo L.; Frizzo, Ana C. F.; Cardoso, Ana C. V.; Vanderlei, Luiz Carlos M.; de Abreu, Luiz Carlos

    2012-01-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: “auditory stimulation”, “autonomic nervous system”, “music” and “heart rate variability”. The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders. PMID:22948465

  17. Unmanned air vehicle: autonomous takeoff and landing

    NASA Astrophysics Data System (ADS)

    Lim, K. L.; Gitano-Briggs, Horizon Walker

    2009-12-01

    UAVs are increasing in popularity and sophistication due to the demonstrated performance which cannot be attained by manned aircraft1. These developments have been made possible by development of sensors, instrumentation, telemetry and controls during the last few decades. UAVs are now common in areas such as aerial observation and as communication relays3. Most UAVs, however, are still flown by a human pilot via remote control from a ground station. Even the existing autonomous UAVs often require a human pilot to handle the most difficult tasks of take off and landing2 (TOL). This is mainly because the navigation of the airplane requires observation, constant situational assessment and hours of experience from the pilot himself4. Therefore, an autonomous takeoff and landing system (TLS) for UAVs using a few practical design rules with various sensors, instrumentation, etc has been developed. This paper details the design and modeling of the UAV TLS. The model indicates that the UAV's TLS shows promising stability.

  18. Unmanned air vehicle: autonomous takeoff and landing

    NASA Astrophysics Data System (ADS)

    Lim, K. L.; Gitano-Briggs, Horizon Walker

    2010-03-01

    UAVs are increasing in popularity and sophistication due to the demonstrated performance which cannot be attained by manned aircraft1. These developments have been made possible by development of sensors, instrumentation, telemetry and controls during the last few decades. UAVs are now common in areas such as aerial observation and as communication relays3. Most UAVs, however, are still flown by a human pilot via remote control from a ground station. Even the existing autonomous UAVs often require a human pilot to handle the most difficult tasks of take off and landing2 (TOL). This is mainly because the navigation of the airplane requires observation, constant situational assessment and hours of experience from the pilot himself4. Therefore, an autonomous takeoff and landing system (TLS) for UAVs using a few practical design rules with various sensors, instrumentation, etc has been developed. This paper details the design and modeling of the UAV TLS. The model indicates that the UAV's TLS shows promising stability.

  19. Efforts toward an autonomous wheelchair - biomed 2011.

    PubMed

    Barrett, Steven; Streeter, Robert

    2011-01-01

    An autonomous wheelchair is in development to provide mobility to those with significant physical challenges. The overall goal of the project is to develop a wheelchair that is fully autonomous with the ability to navigate about an environment and negotiate obstacles. As a starting point for the project, we have reversed engineered the joystick control system of an off-the-shelf commercially available wheelchair. The joystick control has been replaced with a microcontroller based system. The microcontroller has the capability to interface with a number of subsystems currently under development including wheel odometers, obstacle avoidance sensors, and ultrasonic-based wall sensors. This paper will discuss the microcontroller based system and provide a detailed system description. Results of this study may be adapted to commercial or military robot control. PMID:21525611

  20. Autonomous Rovers for Polar Science Campaigns

    NASA Astrophysics Data System (ADS)

    Lever, J. H.; Ray, L. E.; Williams, R. M.; Morlock, A. M.; Burzynski, A. M.

    2012-12-01

    We have developed and deployed two over-snow autonomous rovers able to conduct remote science campaigns on Polar ice sheets. Yeti is an 80-kg, four-wheel-drive (4WD) battery-powered robot with 3 - 4 hr endurance, and Cool Robot is a 60-kg 4WD solar-powered robot with unlimited endurance during Polar summers. Both robots navigate using GPS waypoint-following to execute pre-planned courses autonomously, and they can each carry or tow 20 - 160 kg instrument payloads over typically firm Polar snowfields. In 2008 - 12, we deployed Yeti to conduct autonomous ground-penetrating radar (GPR) surveys to detect hidden crevasses to help establish safe routes for overland resupply of research stations at South Pole, Antarctica, and Summit, Greenland. We also deployed Yeti with GPR at South Pole in 2011 to identify the locations of potentially hazardous buried buildings from the original 1950's-era station. Autonomous surveys remove personnel from safety risks posed during manual GPR surveys by undetected crevasses or buried buildings. Furthermore, autonomous surveys can yield higher quality and more comprehensive data than manual ones: Yeti's low ground pressure (20 kPa) allows it to cross thinly bridged crevasses or other voids without interrupting a survey, and well-defined survey grids allow repeated detection of buried voids to improve detection reliability and map their extent. To improve survey efficiency, we have automated the mapping of detected hazards, currently identified via post-survey manual review of the GPR data. Additionally, we are developing machine-learning algorithms to detect crevasses autonomously in real time, with reliability potentially higher than manual real-time detection. These algorithms will enable the rover to relay crevasse locations to a base station for near real-time mapping and decision-making. We deployed Cool Robot at Summit Station in 2005 to verify its mobility and power budget over Polar snowfields. Using solar power, this zero-emissions rover could travel more than 500 km per week during Polar summers and provide 100 - 200 W to power instrument payloads to help investigate the atmosphere, magnetosphere, glaciology and sub-glacial geology in Antarctica and Greenland. We are currently upgrading Cool Robot's navigation and solar-power systems and will deploy it during 2013 to map the emissions footprint around Summit Station to demonstrate its potential to execute long-endurance Polar science campaigns. These rovers could assist science traverses to chart safe routes into the interior of Antarctica and Greenland or conduct autonomous, remote science campaigns to extend spatial and temporal coverage for data collection. Our goals include 1,000 - 2,000-km summertime traverses of Antarctica and Greenland, safe navigation through 0.5-m amplitude sastrugi fields, survival in blizzards, and rover-network adaptation to research events of opportunity. We are seeking Polar scientists interested in autonomous, mobile data collection and can adapt the rovers to meet their requirements.

  1. Autonomous RPRV Navigation, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Johnston, Donald E.; Myers, Thomas T.; Zellner, John W.

    1983-01-01

    Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described.

  2. Video guidance sensor for autonomous capture

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Book, Michael L.

    1991-01-01

    A video-based sensor has been developed specifically for the close-range maneuvering required in the last phase of autonomous rendezvous and capture. The system is a combination of target and sensor, with the target being a modified version of the standard target used by the astronauts with the Remote Manipulator System (RMS). The system, as currently configured, works well for autonomous docking maneuvers from approximately forty feet in to soft-docking and capture. The sensor was developed specifically to track and calculate its position and attitude relative to a target consisting of three retro-reflective spots, equally spaced, with the center spot being on a pole. This target configuration was chosen for its sensitivity to small amounts of relative pitch and yaw and because it could be used with a small modification to the standard RMS target already in use by NASA.

  3. Multiple Autonomous Discrete Event Controllers for Constellations

    NASA Technical Reports Server (NTRS)

    Esposito, Timothy C.

    2003-01-01

    The Multiple Autonomous Discrete Event Controllers for Constellations (MADECC) project is an effort within the National Aeronautics and Space Administration Goddard Space Flight Center's (NASA/GSFC) Information Systems Division to develop autonomous positioning and attitude control for constellation satellites. It will be accomplished using traditional control theory and advanced coordination algorithms developed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). This capability will be demonstrated in the discrete event control test-bed located at JHU/APL. This project will be modeled for the Leonardo constellation mission, but is intended to be adaptable to any constellation mission. To develop a common software architecture. the controllers will only model very high-level responses. For instance, after determining that a maneuver must be made. the MADECC system will output B (Delta)V (velocity change) value. Lower level systems must then decide which thrusters to fire and for how long to achieve that (Delta)V.

  4. Fuzzy logic in autonomous orbital operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.

  5. Autonomous Flight Safety System Road Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.

    2005-01-01

    On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.

  6. Demonstration of autonomous air monitoring through robotics

    SciTech Connect

    Rancatore, R.

    1989-11-01

    The project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. The robot was also modified to carry a HNU PI-101 Photoionization Detector air monitoring device. A sonar range finder, which already was an integral part of the Surveyor, was repositioned to the front of the robot chassis to detect large obstacles in the path of the robot. In addition, the software of the onboard computer was also extensively modified to provide: navigation control, dynamic steering to smoothly follow the wire-course without hesitation, obstacle avoidance, autonomous shut down and remote reporting of toxic substance detection.

  7. Performance Simulation of Autonomous Solar Navigation

    NASA Technical Reports Server (NTRS)

    Guo, Yanping; Strikwerda, Thomas E.

    1999-01-01

    The performance of a new type of autonomous solar navigation system is analyzed in this paper. Such efficient autonomous navigation systems will reduce operation costs and alleviate the Deep Space Network workload in future space missions. The method is demonstrated by applying it to the STEREO mission. Orbit determination is simulated through the use of the mission-defined trajectory profile and solar angular data acquired by the on-board science instruments currently being considered. The study shows that the orbit solution derived by this new type of solar navigation system can satisfy the mission's navigation requirements; the position uncertainties obtained in the simulations are well below the mission allowable values, and are comparable to the results obtained with the conventional Doppler tracking system in some cases.

  8. Auditory stimulation and cardiac autonomic regulation.

    PubMed

    Valenti, Vitor E; Guida, Heraldo L; Frizzo, Ana C F; Cardoso, Ana C V; Vanderlei, Luiz Carlos M; Abreu, Luiz Carlos de

    2012-08-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders. PMID:22948465

  9. Autonomous microexplosives subsurface tracing system final report.

    SciTech Connect

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

    2004-04-01

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

  10. Autonomous Exploration for Gathering Increased Science

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.; Judd, Michele A.

    2010-01-01

    The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.

  11. Autonomous reinforcement learning with experience replay.

    PubMed

    Wawrzyński, Paweł; Tanwani, Ajay Kumar

    2013-05-01

    This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the use of previously collected samples, and autonomously estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor-critic with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an autonomous way within reasonably short time. PMID:23237972

  12. Simulating autonomous agents wtih augmented reality

    NASA Astrophysics Data System (ADS)

    Gelenbe, Erol; Hussain, Khaled F.; Kaptan, Varol

    2002-07-01

    In many critical applications such as airport operations (for capacity planning), military simulations (for tactical training and planning), and medical simulations (for the planning of medical treatment and surgical operations), it is very useful to conduct simulations within physically accurate and visually realistic settings that are represented by real video imaging sequences. Furthermore, it is important that the simulated entities conduct autonomous actions which are realistic and which follow plans of action or intelligent behavior in reaction to current situations. We describe the research we have conducted to incorporate synthetic objects in a visually realistic manner in video sequences representing a real scene. We also discuss how the synthetic objects can be designed to conduct intelligent behavior within an augmented reality setting. The paper discusses both the computer vision aspects that we have addressed and solved, and the issues related to the insertion of intelligent autonomous objects within an augmented reality simulation.

  13. Forced synchronization of autonomous dynamical Boolean networks.

    PubMed

    Rivera-Durón, R R; Campos-Cantón, E; Campos-Cantón, I; Gauthier, Daniel J

    2015-08-01

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics. PMID:26328564

  14. ALHAT: Autonomous Landing and Hazard Avoidance Technology

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Carson, John M., III

    2015-01-01

    The ALHAT project was chartered by NASA HQ in 2006 to develop and mature to TRL 6 an autonomous lunar landing GN&C and sensing system for crewed, cargo, and robotic planetary landing vehicles. The multi-center ALHAT team was tasked with providing a system capable of identifying and avoiding surface hazards in real time to enable safe precision landing to within tens of meters of a designated planetary landing site under any lighting conditions.

  15. Automatic learning by an autonomous mobile robot

    SciTech Connect

    de Saussure, G.; Spelt, P.F.; Killough, S.M.; Pin, F.G.; Weisbin, C.R.

    1989-01-01

    This paper describes recent research in automatic learning by the autonomous mobile robot HERMIES-IIB at the Center for Engineering Systems Advanced Research (CESAR). By acting on the environment and observing the consequences during a set of training examples, the robot learns a sequence of successful manipulations on a simulated control panel. The robot learns to classify panel configurations in order to deal with new configurations that are not part of the original training set. 5 refs., 2 figs.

  16. Flocking algorithm for autonomous flying robots.

    PubMed

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks. PMID:24852272

  17. Autonomous Rendezvous and Docking Conference, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document consists of the presentation submitted at the Autonomous Rendezvous and Docking (ARD) Conference. It contains three volumes: ARD hardware technology; ARD software technology; and ARD operations. The purpose of this conference is to identify the technologies required for an on orbit demonstration of the ARD, assess the maturity of these technologies, and provide the necessary insight for a quality assessment of the programmatic management, technical, schedule, and cost risks.

  18. Autonomous Spacecraft Communication Interface for Load Planning

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  19. System for autonomous monitoring of bioagents

    SciTech Connect

    Langlois, Richard G.; Milanovich, Fred P.; Colston, Jr, Billy W.; Brown, Steve B.; Masquelier, Don A.; Mariella, Jr., Raymond P.; Venkateswaran, Kodomudi

    2015-06-09

    An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.

  20. An architecture for an autonomous learning robot

    NASA Technical Reports Server (NTRS)

    Tillotson, Brian

    1988-01-01

    An autonomous learning device must solve the example bounding problem, i.e., it must divide the continuous universe into discrete examples from which to learn. We describe an architecture which incorporates an example bounder for learning. The architecture is implemented in the GPAL program. An example run with a real mobile robot shows that the program learns and uses new causal, qualitative, and quantitative relationships.

  1. Precise laser gyroscope for autonomous inertial navigation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. G.; Molchanov, A. V.; Chirkin, M. V.; Izmailov, E. A.

    2015-01-01

    Requirements to gyroscopes of strapdown inertial navigation systems for aircraft application are formulated. The construction of a ring helium - neon laser designed for autonomous navigation is described. The processes that determine the laser service life and the relation between the random error of the angular velocity measurement and the surface relief features of the cavity mirrors are analysed. The results of modelling one of the promising approaches to processing the laser gyroscope signals are presented.

  2. Autonomously motile catalytic nanomotors by bubble propulsion

    NASA Astrophysics Data System (ADS)

    Gibbs, J. G.; Zhao, Y.-P.

    2009-04-01

    A bubble propulsion model based on catalyzed hydrogen peroxide decomposition and momentum change via O2 bubbles detaching from the catalytic surface is proposed to explain the autonomous motion of catalytic nanomotors. The propelling force closely depends upon the surface tension of the liquid as well as the bulk concentration of hydrogen peroxide, and the model predictions are supported by the experimental data of Pt-coated spherical silica microbead motors.

  3. Precise laser gyroscope for autonomous inertial navigation

    SciTech Connect

    Kuznetsov, A G; Molchanov, A V; Izmailov, E A; Chirkin, M V

    2015-01-31

    Requirements to gyroscopes of strapdown inertial navigation systems for aircraft application are formulated. The construction of a ring helium – neon laser designed for autonomous navigation is described. The processes that determine the laser service life and the relation between the random error of the angular velocity measurement and the surface relief features of the cavity mirrors are analysed. The results of modelling one of the promising approaches to processing the laser gyroscope signals are presented. (laser gyroscopes)

  4. Automated knowledge generation

    NASA Technical Reports Server (NTRS)

    Myler, Harley R.; Gonzalez, Avelino J.

    1988-01-01

    The general objectives of the NASA/UCF Automated Knowledge Generation Project were the development of an intelligent software system that could access CAD design data bases, interpret them, and generate a diagnostic knowledge base in the form of a system model. The initial area of concentration is in the diagnosis of the process control system using the Knowledge-based Autonomous Test Engineer (KATE) diagnostic system. A secondary objective was the study of general problems of automated knowledge generation. A prototype was developed, based on object-oriented language (Flavors).

  5. Applying neural networks in autonomous systems

    NASA Astrophysics Data System (ADS)

    Thornbrugh, Allison L.; Layne, J. D.; Wilson, James M., III

    1992-03-01

    Autonomous and teleautonomous operations have been defined in a variety of ways by different groups involved with remote robotic operations. For example, Conway describes architectures for producing intelligent actions in teleautonomous systems. Applying neural nets in such systems is similar to applying them in general. However, for autonomy, learning or learned behavior may become a significant system driver. Thus, artificial neural networks are being evaluated as components in fully autonomous and teleautonomous systems. Feed- forward networks may be trained to perform adaptive signal processing, pattern recognition, data fusion, and function approximation -- as in control subsystems. Certain components of particular autonomous systems become more amenable to implementation using a neural net due to a match between the net's attributes and desired attributes of the system component. Criteria have been developed for distinguishing such applications and then implementing them. The success of hardware implementation is a crucial part of this application evaluation process. Three basic applications of neural nets -- autoassociation, classification, and function approximation -- are used to exemplify this process and to highlight procedures that are followed during the requirements, design, and implementation phases. This paper assumes some familiarity with basic neural network terminology and concentrates upon the use of different neural network types while citing references that cover the underlying mathematics and related research.

  6. Autonomic correlates of physical and moral disgust.

    PubMed

    Ottaviani, Cristina; Mancini, Francesco; Petrocchi, Nicola; Medea, Barbara; Couyoumdjian, Alessandro

    2013-07-01

    Given that the hypothesis of a common origin of physical and moral disgust has received sparse empirical support, this study aimed to shed light on the subjective and autonomic signatures of these two facets of the same emotional response. Participants (20 men, 20 women) were randomly assigned to physical or moral disgust induction by the use of audio scripts while their electrocardiogram was continuously recorded. Affect ratings were obtained before and after the induction. Time and frequency domain heart rate variability (HRV) measures were obtained. After controlling for disgust sensitivity (DS-R) and obsessive-compulsive (OCI-R) tendencies, both scripts elicited disgust but whereas the physical script elicited a feeling of dirtiness, the moral script evoked more indignation and contempt. The disgust-induced subjective responses were associated with opposite patterns of autonomic reactivity: enhanced activity of the parasympathetic nervous system without concurrent changes in heart rate (HR) for physical disgust and decreased vagal tone and increased HR and autonomic imbalance for moral disgust. Results suggest that immorality relies on the same biological root of physical disgust only in subjects with obsessive compulsive tendencies. Disgust appears to be a heterogeneous response that varies based on the individuals' contamination-based appraisal. PMID:23684734

  7. Infant autonomic functioning and neonatal abstinence syndrome

    PubMed Central

    Jansson, Lauren M.; DiPietro, Janet A.; Elko, Andrea; Velez, Martha

    2010-01-01

    Background Neonatal abstinence syndrome (NAS) expression is widely variable among affected infants and the reasons for this variability are largely unknown; mechanisms that predispose infants to NAS expression are not understood. It has been postulated that the regulatory problems of prenatally drug exposed infants are manifested in dysfunctional vagal regulation of autonomic processes. The current study examines whether cardiac vagal tone, an indicator of parasympathetic neuroregulation, provides a marker for autonomic dysregulation subsequently expressed as NAS in prenatally opioid-exposed newborns. Methods Heart period (HP) and cardiac vagal tone (V) were derived from electrocardiogram data collected from 64 methadone-exposed infants on postnatal days 1 and 3. The postpartum NAS course was assessed serially. Results Infants with lower V on day 1 had significantly higher NAS symptomatology on day 3. Boys had more severe NAS symptoms than girls through the first 4 days of life and, among infants receiving pharmacologic treatment for NAS, boys required longer treatment course and hospitalizations. Greater poly-drug exposure, detected through toxicology screening throughout pregnancy, and cocaine use in particular, were associated with lower V and shorter HP (faster heart rate) in newborns. Multiple regression models accounted for 25 to 35% of the variance in NAS symptoms and duration of hospitalization in methadone-exposed infants. Significant predictors included infant sex, SSRI/SNRI use, and cigarette smoking. Conclusions Results support the hypothesis of a biologic vulnerability of autonomic regulatory functioning in methadone-exposed infants and greater male infant vulnerability to maternal methadone use. PMID:20189732

  8. A concept for a supervised autonomous robot

    NASA Astrophysics Data System (ADS)

    Kalaycioglu, S.

    The paper describes work in progress at Thomson-CSF Systems Canada Inc. on the Mobile Servicing System (MSS) Autonomous Robotics Program. The main objective of this program is to define and plan the development of technologies required to provide a supervised autonomous operation capability for the Special Purpose Dexterous Manipulator (SPDM) on the Mobile Servicing System (MSS). In this paper, a telerobotics system concept is introduced and a summary of the system requirements is given. The development methodology as well as the concept for a supervised autonomous robot (telerobotics) are briefly explained. The functional and physical architectures of the telerobotics system are also provided. This system will be responsible for carrying out operations such as assembly and maintenance of the Space Station Freedom; loading / unloading from the shuttle; and retrieval and deployment of the shuttle, etc. The paper also investigates an operational scenario for maintenance of the Space Station Freedom and briefly describes the operational scenario for changing an orbital replacement unit (ORU) on the Mobile Servicing System. The functional responsibilities of the system components in order to implement the ORU change are outlined.

  9. Autonomous environment modeling by a mobile robot

    NASA Astrophysics Data System (ADS)

    Moutarlier, Philippe

    1991-02-01

    Internal geometric representation of the environment is considered. The autonomy of a mobile robot partly relies on its ability to build a reliable representation of its environment. On the other hand, an autonomous environment building process requires that model be adapted to plan motions and perception actions. Therefore, the modeling process must be a reversible interface between perception motion devices and the model itself. Several kinds of models are necessary in order to achieve an autonomous process. Sensors give stochastic information on the surface, navigation needs free-space representation, and perception planning requires aspect graphs. The functions of stochastic surface modeling, free space representation, and topological graph computing are presented through the integrated geometric model builder called 'Yaka.' Since all environment data uncertainties are correlated together through the robot location inaccuracy, classical filtering methods are inadequate. A method of computing a linear variance estimator, that is adapted to the problem, is proposed. This general formalism is validated by a large number of experimentation wherein the robot incrementally builds a surfacic representation of its environment. Free space cannot be deduced directly, at each step, from the surfacic data provided by the sensors. Innacuracies on object surfaces and uncertainties on the visibility of objects by the sensor as well as the possible motion of objects must all be taken into account for building the free space incrementally. Then, motion and perception planning for autonomous environment modeling are achieved using this free space model and topological location and aspect graphs.

  10. SOLON: An autonomous vehicle mission planner

    NASA Technical Reports Server (NTRS)

    Dudziak, M. J.

    1987-01-01

    The State-Operator Logic Machine (SOLON) Planner provides an architecture for effective real-time planning and replanning for an autonomous vehicle. The highlights of the system, which distinguish it from other AI-based planners that have been designed previously, are its hybrid application of state-driven control architecture and the use of both schematic representations and logic programming for the management of its knowledge base. SOLON is designed to provide multiple levels of planning for a single autonomous vehicle which is supplied with a skeletal, partially-specified mission plan at the outset of the vehicle's operations. This mission plan consists of a set of objectives, each of which will be decomposable by the planner into tasks. These tasks are themselves comparatively complex sets of actions which are executable by a conventional real-time control system which does not perform planning but which is capable of making adjustments or modifications to the provided tasks according to constraints and tolerances provided by the Planner. The current implementation of the SOLON is in the form of a real-time simulation of the Planner module of an Intelligent Vehicle Controller (IVC) on-board an autonomous underwater vehicle (AUV). The simulation is embedded within a larger simulator environment known as ICDS (Intelligent Controller Development System) operating on a Symbolics 3645/75 computer.

  11. Autonomous navigation for structured exterior environments

    SciTech Connect

    Pletta, J B

    1993-12-01

    The Telemanaged Mobile Security Station (TMSS) was developed at Sandia National Laboratories to investigate the role of mobile robotics in exterior perimeter security systems. A major feature of the system is its capability to perform autonomous patrols of the security site`s network of roads. Perimeter security sites are well known, structured environments; the locations of the roads, buildings, and fences are relatively static. A security robot has the advantage of being able to learn its new environment prior to autonomous travel. The TMSS robot combines information from a microwave beacon system and on-board dead reckoning sensors to determine its location within the site. The operator is required to teleoperate the robot in a teach mode over all desired paths before autonomous operations can commence. During this teach phase, TMSS stores points from its position location system at two meter intervals. This map data base is used for planning paths and for reference during path following. Details of the position location and path following systems will be described along with system performance and recommendations for future enhancements.

  12. Autonomous system for cross-country navigation

    NASA Astrophysics Data System (ADS)

    Stentz, Anthony; Brumitt, Barry L.; Coulter, R. C.; Kelly, Alonzo

    1993-05-01

    Autonomous cross-country navigation is essential for outdoor robots moving about in unstructured environments. Most existing systems use range sensors to determine the shape of the terrain, plan a trajectory that avoids obstacles, and then drive the trajectory. Performance has been limited by the range and accuracy of sensors, insufficient vehicle-terrain interaction models, and the availability of high-speed computers. As these elements improve, higher- speed navigation on rougher terrain becomes possible. We have developed a software system for autonomous navigation that provides for greater capability. The perception system supports a large braking distance by fusing multiple range images to build a map of the terrain in front of the vehicle. The system identifies range shadows and interpolates undersamples regions to account for rough terrain effects. The motion planner reduces computational complexity by investigating a minimum number of trajectories. Speeds along the trajectory are set to provide for dynamic stability. The entire system was tested in simulation, and a subset of the capability was demonstrated on a real vehicle. Results to date include a continuous 5.1 kilometer run across moderate terrain with obstacles. This paper begins with the applications, prior work, limitations, and current paradigms for autonomous cross-country navigation, and then describes our contribution to the area.

  13. Grid administration: towards an autonomic approach

    NASA Astrophysics Data System (ADS)

    Ubeda Garcia, M.; Stagni, F.; Tsaregorodtsev, A.; Charpentier, P.; Bernardoff, V.

    2012-12-01

    Within the DIRAC framework in the LHCb collaboration, we deployed an autonomous policy system acting as a central status information point for grid elements. Experts working as grid administrators have a broad and very deep knowledge about the underlying system which makes them very precious. We have attempted to formalize this knowledge in an autonomous system able to aggregate information, draw conclusions, validate them, and take actions accordingly. The DIRAC Resource Status System (RSS) is a monitoring and generic policy system that enforces managerial and operational actions automatically. As an example, the status of a grid entity can be evaluated using a number of policies, each making assessments relative to specific monitoring information. Individual results of these policies can be combined to evaluate and propose a global status for the resource. This evaluation goes through a validation step driven by a state machine and an external validation system. Once validated, actions can be triggered accordingly. External monitoring and testing systems such as Nagios or Hammercloud are used by policies for site commission and certification. This shows the flexibility of our system, and of what an autonomous policy system can achieve.

  14. Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2004-01-01

    NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.

  15. Autonomous urban reconnaissance ingress system (AURIS): providing a tactically relevant autonomous door-opening kit for unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Shane, David J.; Rufo, Michael A.; Berkemeier, Matthew D.; Alberts, Joel A.

    2012-06-01

    The Autonomous Urban Reconnaissance Ingress System (AURIS™) addresses a significant limitation of current military and first responder robotics technology: the inability of reconnaissance robots to open doors. Leveraging user testing as a baseline, the program has derived specifications necessary for military personnel to open doors with fielded UGVs (Unmanned Ground Vehicles), and evaluates the technology's impact on operational mission areas: duration, timing, and user patience in developing a tactically relevant, safe, and effective system. Funding is provided through the US ARMY Tank Automotive Research, Development and Engineering Center (TARDEC) and the project represents a leap forward in perception, autonomy, robotic implements, and coordinated payload operation in UGVs. This paper describes high level details of specification generation, status of the last phase of development, an advanced view of the system autonomy capability, and a short look ahead towards the ongoing work on this compelling and important technology.

  16. Systems, methods and apparatus for modeling, specifying and deploying policies in autonomous and autonomic systems using agent-oriented software engineering

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Penn, Joaquin (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments, an agent-oriented specification modeled with MaCMAS, is analyzed, flaws in the agent-oriented specification modeled with MaCMAS are corrected, and an implementation is derived from the corrected agent-oriented specification. Described herein are systems, method and apparatus that produce fully (mathematically) tractable development of agent-oriented specification(s) modeled with methodology fragment for analyzing complex multiagent systems (MaCMAS) and policies for autonomic systems from requirements through to code generation. The systems, method and apparatus described herein are illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming systems, method and apparatus described herein may provide faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.

  17. Autonomous Image Analysis for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Bandari, E.; Roush, T. L.

    1999-01-01

    To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to preferentially transmit "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high-resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. We are currently investigating the possibility of reconstructing a 3D surface from a sequence of images acquired by a robotic arm camera. This would then allow the return of a single completely in focus image constructed only from those portions of individual images that lie within the camera's depth of field. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these algorithms and their performance during a recent rover field test.

  18. Multiple independent autonomous hydraulic oscillators driven by a common gravity head

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2015-01-01

    Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity-head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s – 2 h) and flow rates (0.10 – 63 μL min−1) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system. PMID:26073884

  19. Multiple independent autonomous hydraulic oscillators driven by a common gravity head.

    PubMed

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2015-01-01

    Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner, similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s-2 h) and flow rates (0.10-63 μl min(-1)) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system. PMID:26073884

  20. Multiple independent autonomous hydraulic oscillators driven by a common gravity head

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Jin; Yokokawa, Ryuji; Cai Lesher-Perez, Sasha; Takayama, Shuichi

    2015-06-01

    Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner, similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s-2 h) and flow rates (0.10-63 μl min-1) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system.

  1. An architectural approach to create self organizing control systems for practical autonomous robots

    NASA Technical Reports Server (NTRS)

    Greiner, Helen

    1991-01-01

    For practical industrial applications, the development of trainable robots is an important and immediate objective. Therefore, the developing of flexible intelligence directly applicable to training is emphasized. It is generally agreed upon by the AI community that the fusion of expert systems, neural networks, and conventionally programmed modules (e.g., a trajectory generator) is promising in the quest for autonomous robotic intelligence. Autonomous robot development is hindered by integration and architectural problems. Some obstacles towards the construction of more general robot control systems are as follows: (1) Growth problem; (2) Software generation; (3) Interaction with environment; (4) Reliability; and (5) Resource limitation. Neural networks can be successfully applied to some of these problems. However, current implementations of neural networks are hampered by the resource limitation problem and must be trained extensively to produce computationally accurate output. A generalization of conventional neural nets is proposed, and an architecture is offered in an attempt to address the above problems.

  2. Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin.

    PubMed

    Demaria, Marco; Desprez, Pierre Yves; Campisi, Judith; Velarde, Michael C

    2015-07-01

    Human and mouse skin accumulate senescent cells in both the epidermis and dermis during aging. When chronically present, senescent cells are thought to enhance the age-dependent deterioration of the skin during extrinsic and intrinsic aging. However, when transiently present, senescent cells promote optimal wound healing. Here, we review recent studies on how senescent cells and the senescence-associated secretory phenotype contribute to different physiological and pathophysiological conditions in the skin with a focus on some of the cell autonomous and non-autonomous functions of senescent cells in the context of skin aging and wound healing. PMID:25855157

  3. Neural dynamic optimization for autonomous aerial vehicle trajectory design

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Verma, Ajay; Mayer, Richard J.

    2007-04-01

    Online aerial vehicle trajectory design and reshaping are crucial for a class of autonomous aerial vehicles such as reusable launch vehicles in order to achieve flexibility in real-time flying operations. An aerial vehicle is modeled as a nonlinear multi-input-multi-output (MIMO) system. The inputs include the control parameters and current system states that include velocity and position coordinates of the vehicle. The outputs are the new system states. An ideal trajectory control design system generates a series of control commands to achieve a desired trajectory under various disturbances and vehicle model uncertainties including aerodynamic perturbations caused by geometric damage to the vehicle. Conventional approaches suffer from the nonlinearity of the MIMO system, and the high-dimensionality of the system state space. In this paper, we apply a Neural Dynamic Optimization (NDO) based approach to overcome these difficulties. The core of an NDO model is a multilayer perceptron (MLP) neural network, which generates the control parameters online. The inputs of the MLP are the time-variant states of the MIMO systems. The outputs of the MLP and the control parameters will be used by the MIMO to generate new system states. By such a formulation, an NDO model approximates the time-varying optimal feedback solution.

  4. The nature of the autonomic dysfunction in multiple system atrophy

    NASA Technical Reports Server (NTRS)

    Parikh, Samir M.; Diedrich, Andre; Biaggioni, Italo; Robertson, David

    2002-01-01

    The concept that multiple system atrophy (MSA, Shy-Drager syndrome) is a disorder of the autonomic nervous system is several decades old. While there has been renewed interest in the movement disorder associated with MSA, two recent consensus statements confirm the centrality of the autonomic disorder to the diagnosis. Here, we reexamine the autonomic pathophysiology in MSA. Whereas MSA is often thought of as "autonomic failure", new evidence indicates substantial persistence of functioning sympathetic and parasympathetic nerves even in clinically advanced disease. These findings help explain some of the previously poorly understood features of MSA. Recognition that MSA entails persistent, constitutive autonomic tone requires a significant revision of our concepts of its diagnosis and therapy. We will review recent evidence bearing on autonomic tone in MSA and discuss their therapeutic implications, particularly in terms of the possible development of a bionic baroreflex for better control of blood pressure.

  5. Autonomic imbalance: prophet of doom or scope for hope?

    PubMed Central

    Vinik, A I; Maser, R E; Ziegler, D

    2011-01-01

    It has long been recognized that cardiac autonomic neuropathy increases morbidity and mortality in diabetes and may have greater predictive power than traditional risk factors for cardiovascular events. Significant morbidity and mortality can now be attributable to autonomic imbalance between the sympathetic and parasympathetic nervous system regulation of cardiovascular function. New and emerging syndromes include orthostatic tachycardia, orthostatic bradycardia and an inability to use heart rate as a guide to exercise intensity because of the resting tachycardia. Recent studies have shown that autonomic imbalance may be a predictor of risk of sudden death with intensification of glycaemic control. This review examines an association of autonomic dysregulation and the role of inflammatory cytokines and adipocytokines that promote cardiovascular risk. In addition, conditions of autonomic imbalance associated with cardiovascular risk are discussed. Potential treatment for restoration of autonomic balance is outlined. PMID:21569084

  6. Autonomic imbalance: prophet of doom or scope for hope?

    PubMed

    Vinik, A I; Maser, R E; Ziegler, D

    2011-06-01

    It has long been recognized that cardiac autonomic neuropathy increases morbidity and mortality in diabetes and may have greater predictive power than traditional risk factors for cardiovascular events. Significant morbidity and mortality can now be attributable to autonomic imbalance between the sympathetic and parasympathetic nervous system regulation of cardiovascular function. New and emerging syndromes include orthostatic tachycardia, orthostatic bradycardia and an inability to use heart rate as a guide to exercise intensity because of the resting tachycardia. Recent studies have shown that autonomic imbalance may be a predictor of risk of sudden death with intensification of glycaemic control. This review examines an association of autonomic dysregulation and the role of inflammatory cytokines and adipocytokines that promote cardiovascular risk. In addition, conditions of autonomic imbalance associated with cardiovascular risk are discussed. Potential treatment for restoration of autonomic balance is outlined. PMID:21569084

  7. Methods of determining complete sensor requirements for autonomous mobility

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2012-01-01

    A method of determining complete sensor requirements for autonomous mobility of an autonomous system includes computing a time variation of each behavior of a set of behaviors of the autonomous system, determining mobility sensitivity to each behavior of the autonomous system, and computing a change in mobility based upon the mobility sensitivity to each behavior and the time variation of each behavior. The method further includes determining the complete sensor requirements of the autonomous system through analysis of the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior, wherein the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior are characteristic of the stability of the autonomous system.

  8. Multi-organ autonomic dysfunction in Parkinson disease

    PubMed Central

    2010-01-01

    Both pathologic and clinical studies of autonomic pathways have expanded the concept of Parkinson disease (PD) from a movement disorder to a multi-level widespread neurodegenerative process with non-motor features spanning several organ systems. This review integrates neuropathologic findings and autonomic physiology in PD as it relates to end organ autonomic function. Symptoms, pathology and physiology of the cardiovascular, skin/sweat gland, urinary, gastrointestinal, pupillary and neuroendocrine systems can be probed by autopsy, biopsy and non-invasive electrophysiological techniques in vivo which assess autonomic anatomy and function. There is mounting evidence that PD affects a chain of neurons in autonomic pathways. Consequently, autonomic physiology may serve as a window into non-motor PD progression and allow the development of mechanistically based treatment strategies for several non-motor features of PD. End-organ physiologic markers may be used to inform a model of PD pathophysiology and non-motor progression. PMID:20851033

  9. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton

    PubMed Central

    Ottesen, Elizabeth A; Marin, Roman; Preston, Christina M; Young, Curtis R; Ryan, John P; Scholin, Christopher A; DeLong, Edward F

    2011-01-01

    Planktonic microbial activity and community structure is dynamic, and can change dramatically on time scales of hours to days. Yet for logistical reasons, this temporal scale is typically under-sampled in the marine environment. In order to facilitate higher-resolution, long-term observation of microbial diversity and activity, we developed a protocol for automated collection and fixation of marine microbes using the Environmental Sample Processor (ESP) platform. The protocol applies a preservative (RNALater) to cells collected on filters, for long-term storage and preservation of total cellular RNA. Microbial samples preserved using this protocol yielded high-quality RNA after 30 days of storage at room temperature, or onboard the ESP at in situ temperatures. Pyrosequencing of complementary DNA libraries generated from ESP-collected and preserved samples yielded transcript abundance profiles nearly indistinguishable from those derived from conventionally treated replicate samples. To demonstrate the utility of the method, we used a moored ESP to remotely and autonomously collect Monterey Bay seawater for metatranscriptomic analysis. Community RNA was extracted and pyrosequenced from samples collected at four time points over the course of a single day. In all four samples, the oxygenic photoautotrophs were predominantly eukaryotic, while the bacterial community was dominated by Polaribacter-like Flavobacteria and a Rhodobacterales bacterium sharing high similarity with Rhodobacterales sp. HTCC2255. However, each time point was associated with distinct species abundance and gene transcript profiles. These laboratory and field tests confirmed that autonomous collection and preservation is a feasible and useful approach for characterizing the expressed genes and environmental responses of marine microbial communities. PMID:21716310

  10. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton

    SciTech Connect

    Ottesen. E.; Marin III, R.; Preston, C.; Young, C. R.; Ryan, J. P.; Scholin C. A.; DeLong, E. F.

    2011-06-30

    Planktonic microbial activity and community structure is dynamic, and can change dramatically on time scales of hours to days. Yet for logistical reasons, this temporal scale is typically undersampled in the marine environment. In order to facilitate higher-resolution, long-term observation of microbial diversity and activity, we developed a protocol for automated collection and fixation of marine microbes using the Environmental Sample Processor (ESP) platform. The protocol applies a preservative (RNALater) to cells collected on filters, for long-term storage and preservation of total cellular RNA. Microbial samples preserved using this protocol yielded high-quality RNA after 30 days of storage at room temperature, or onboard the ESP at in situ temperatures. Pyrosequencing of complementary DNA libraries generated from ESP-collected and preserved samples yielded transcript abundance profiles nearly indistinguishable from those derived from conventionally treated replicate samples. To demonstrate the utility of the method, we used a moored ESP to remotely and autonomously collect Monterey Bay seawater for metatranscriptomic analysis. Community RNA was extracted and pyrosequenced from samples collected at four time points over the course of a single day. In all four samples, the oxygenic photoautotrophs were predominantly eukaryotic, while the bacterial community was dominated by Polaribacter-like Flavobacteria and a Rhodobacterales bacterium sharing high similarity with Rhodobacterales sp. HTCC2255. However, each time point was associated with distinct species abundance and gene transcript profiles. These laboratory and field tests confirmed that autonomous collection and preservation is a feasible and useful approach for characterizing the expressed genes and environmental responses of marine microbial communities.

  11. Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision

    PubMed Central

    Reina, Giulio; Milella, Annalisa

    2012-01-01

    Autonomous driving is a challenging problem, particularly when the domain is unstructured, as in an outdoor agricultural setting. Thus, advanced perception systems are primarily required to sense and understand the surrounding environment recognizing artificial and natural structures, topology, vegetation and paths. In this paper, a self-learning framework is proposed to automatically train a ground classifier for scene interpretation and autonomous navigation based on multi-baseline stereovision. The use of rich 3D data is emphasized where the sensor output includes range and color information of the surrounding environment. Two distinct classifiers are presented, one based on geometric data that can detect the broad class of ground and one based on color data that can further segment ground into subclasses. The geometry-based classifier features two main stages: an adaptive training stage and a classification stage. During the training stage, the system automatically learns to associate geometric appearance of 3D stereo-generated data with class labels. Then, it makes predictions based on past observations. It serves as well to provide training labels to the color-based classifier. Once trained, the color-based classifier is able to recognize similar terrain classes in stereo imagery. The system is continuously updated online using the latest stereo readings, thus making it feasible for long range and long duration navigation, over changing environments. Experimental results, obtained with a tractor test platform operating in a rural environment, are presented to validate this approach, showing an average classification precision and recall of 91.0% and 77.3%, respectively.

  12. Autonomic Imbalance and Borderline States of Thyrotoxicosis

    PubMed Central

    Martin, Laurence

    1939-01-01

    Primary thyrotoxicosis may be regarded as having two main components—thyroid overactivity or dysfunction, and instability of the autonomic nervous system. Clinical observation suggests that the proportion of each component varies in individual cases. Results of treatment show that the larger the thyroid element the greater is the benefit of thyroidectomy or X-ray therapy, and the fewer the subsequent residual signs. When nervous instability predominates less relief is obtained by surgery or X-rays, and symptoms may be little changed or even made worse by the addition of hypothyroidism. Cases in which nervous instability predominates, with minimal thyroid dysfunction, have been termed “autonomic imbalance”, “neurocirculatory asthenia”, or “Basedow's disease with no thyrotoxicosis”. Thirteen such cases are described, all of which were females, with average age of 32 years. 9 had enlarged thyroids, 11 complained of palpitations, and 8 of excessive sweating. The basal metabolic rate, estimated in 8 cases, did not exceed +10%. There was some loss of weight in 6 cases, but in none was the appetite increased. The average diurnal pulse-rate did not exceed 95 and sleeping pulse was significantly lower. X-rays of heart, taken in 6 cases, were normal. Psychological troubles in 6 cases. Three cases treated by X-ray therapy and I surgically with no benefit. Remaining 10 cases treated medically with improvement. The group is ill-defined and requires further investigation of cause and treatment. The recognition of autonomic imbalance is important in order to avoid useless thyroidectomy or X-ray therapy, and encourage more extended use of psychotherapy. Investigation of its cause may yield information of value in the ætiological problem of thyrotoxicosis. PMID:19992127

  13. Autonomously stabilized entanglement between two superconducting qubits

    NASA Astrophysics Data System (ADS)

    Shankar, Shyam

    2014-03-01

    Quantum error-correction codes are designed to protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for the development of large-scale quantum computers. A first step is to stabilize a non-equilibrium state of a simple quantum system such as a qubit or a cavity mode, in the presence of decoherence. Several groups have recently accomplished this goal using measurement-based feedback schemes. A next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved by an autonomous feedback scheme which combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative bath. Similar bath engineering techniques have recently been used for qubit reset, single qubit state stabilization, as well as for the creation and stabilization of states of multipartite quantum systems. Unlike conventional, measurement-based schemes, an autonomous approach which uses engineered dissipation to counteract decoherence, obviates the need for a complicated external feedback loop to correct errors. Instead the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building-block for quantum information processing. Such autonomous schemes, which are broadly applicable to a variety of physical systems, will be an essential tool for the implementation of quantum-error correction. Work supported by: IARPA, ARO, and NSF.

  14. The Relationship between Vascular Function and the Autonomic Nervous System

    PubMed Central

    2014-01-01

    Endothelial dysfunction and autonomic nervous system dysfunction are both risk factors for atherosclerosis. There is evidence demonstrating that there is a close interrelationship between these two systems. In hypertension, endothelial dysfunction affects the pathologic process through autonomic nervous pathways, and the pathophysiological process of autonomic neuropathy in diabetes mellitus is closely related with vascular function. However, detailed mechanisms of this interrelationship have not been clearly explained. In this review, we summarize findings concerning the interrelationship between vascular function and the autonomic nervous system from both experimental and clinical studies. The clarification of this interrelationship may provide more comprehensive risk stratification and a new effective therapeutic strategy against atherosclerosis. PMID:24995054

  15. Autonomous micromotor based on catalytically pneumatic behavior of balloon-like MnO(x)-graphene crumples.

    PubMed

    Chen, Xueli; Wu, Guan; Lan, Tian; Chen, Wei

    2014-07-11

    A novel autonomous micromotor, based on catalytically pneumatic behaviour of balloon-like MnOx-graphene crumples, has been synthesized via an ultrasonic spray pyrolysis method. Through catalytic decomposition of H2O2 into O2, the gas accumulated in a confined space and was released to generate a strong force to push the micromotor. PMID:24854005

  16. Autonomic care platform for optimizing query performance

    PubMed Central

    2013-01-01

    Background As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients’ data on the bedside screens. Results The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions We found that by controlled reduction of queries’ executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse. PMID:24160892

  17. Pipeline inspection using an autonomous underwater vehicle

    SciTech Connect

    Egeskov, P.; Bech, M.; Bowley, R.; Aage, C.

    1995-12-31

    Pipeline inspection can be carried out by means of small Autonomous Underwater Vehicles (AUVs), operating either with a control link to a surface vessel, or totally independently. The AUV offers an attractive alternative to conventional inspection methods where Remotely Operated Vehicles (ROVs) or paravanes are used. A flatfish type AUV ``MARTIN`` (Marine Tool for Inspection) has been developed for this purpose. The paper describes the proposed types of inspection jobs to be carried out by ``MARTIN``. The design and construction of the vessel, its hydrodynamic properties, its propulsion and control systems are discussed. The pipeline tracking and survey systems, as well as the launch and recovery systems are described.

  18. A Diversified Investment Strategy Using Autonomous Agents

    NASA Astrophysics Data System (ADS)

    Barbosa, Rui Pedro; Belo, Orlando

    In a previously published article, we presented an architecture for implementing agents with the ability to trade autonomously in the Forex market. At the core of this architecture is an ensemble of classification and regression models that is used to predict the direction of the price of a currency pair. In this paper, we will describe a diversified investment strategy consisting of five agents which were implemented using that architecture. By simulating trades with 18 months of out-of-sample data, we will demonstrate that data mining models can produce profitable predictions, and that the trading risk can be diminished through investment diversification.

  19. Development of an Autonomous Pathogen Detection System

    SciTech Connect

    Langlosi, S.; Brown, S.; Colston, B.; Jones, L.; Masquelier, D.; Meyer, P.; McBride, M.; Nasarabad, S.; Ramponi, A.J.; Venkatseswarm, K.; Milanovich, F.

    2000-10-12

    An Autonomous Pathogen Detection System (APDS) is being designed and evaluated for use in domestic counter-terrorism. The goal is a fully automated system that utilizes both flow cytometry and polymerase chain reaction (PCR) to continuously monitor the air for BW pathogens in major buildings or high profile events. A version 1 APDS system consisting of an aerosol collector, a sample preparation subsystem, and a flow cytometer for detecting the antibody-labeled target organisms has been completed and evaluated. Improved modules are under development for a version 2 APDS including a Lawrence Livermore National Laboratory-designed aerosol preconcentrator, a multiplex flow cytometer, and a flow-through PCR detector.

  20. Autonomous land navigation in a structured environment

    SciTech Connect

    Klarer, P.R.

    1989-01-01

    This paper describes a hardware and software system developed to perform autonomous navigation of a land vehicle in a structured environment. The vehicle used for development and testing of the system was the Jeep Cherokee Mobile Robotics Testbed Vehicle developed at Sandia National Laboratories in Albuquerque. Since obstacle detection and avoidance have not yet been incorporated into the system, a structured environment is postulated that presumes the paths to be traversed are free of obstacles. The system performs path planning and execution based on maps constructed using the vehicle's onboard navigation system and mapmaker. The system software, hardware, and performance data are discussed. 6 refs.

  1. Autonomous Mission Operations for Sensor Webs

    NASA Astrophysics Data System (ADS)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.

  2. A design strategy for autonomous systems

    NASA Technical Reports Server (NTRS)

    Forster, Pete

    1989-01-01

    Some solutions to crucial issues regarding the competent performance of an autonomously operating robot are identified; namely, that of handling multiple and variable data sources containing overlapping information and maintaining coherent operation while responding adequately to changes in the environment. Support for the ideas developed for the construction of such behavior are extracted from speculations in the study of cognitive psychology, an understanding of the behavior of controlled mechanisms, and the development of behavior-based robots in a few robot research laboratories. The validity of these ideas is supported by some simple simulation experiments in the field of mobile robot navigation and guidance.

  3. Autonomous land navigation in a structured environment

    SciTech Connect

    Klarer, P.R. )

    1990-03-01

    This paper describes a hardware and software system developed to perform autonomous navigation of a land vehicle in a structured environment. The vehicle used for development and testing of the system was the Jeep Cherokee Mobile Robotics Testbed Vehicle developed at Sandia National Laboratories in Albuquerque. Since obstacle detection and avoidance have not yet been incorporated into the system, a structured environment is postulated that presumes the paths to be traversed are free of obstacles. The system performs path planning and execution based on maps constructed using the vehicle's on board navigation system and map-maker. The system software, hardware and performance data are discussed.

  4. Malicious Hubs: Detecting Abnormally Malicious Autonomous Systems

    SciTech Connect

    Kalafut, Andrew J.; Shue, Craig A; Gupta, Prof. Minaxi

    2010-01-01

    While many attacks are distributed across botnets, investigators and network operators have recently targeted malicious networks through high profile autonomous system (AS) de-peerings and network shut-downs. In this paper, we explore whether some ASes indeed are safe havens for malicious activity. We look for ISPs and ASes that exhibit disproportionately high malicious behavior using 12 popular blacklists. We find that some ASes have over 80% of their routable IP address space blacklisted and others account for large fractions of blacklisted IPs. Overall, we conclude that examining malicious activity at the AS granularity can unearth networks with lax security or those that harbor cybercrime.

  5. Autonomous unmanned air vehicles (UAV) techniques

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Kai; Lee, Ting N.

    2007-04-01

    The UAVs (Unmanned Air Vehicles) have great potentials in different civilian applications, such as oil pipeline surveillance, precision farming, forest fire fighting (yearly), search and rescue, boarder patrol, etc. The related industries of UAVs can create billions of dollars for each year. However, the road block of adopting UAVs is that it is against FAA (Federal Aviation Administration) and ATC (Air Traffic Control) regulations. In this paper, we have reviewed the latest technologies and researches on UAV navigation and obstacle avoidance. We have purposed a system design of Jittering Mosaic Image Processing (JMIP) with stereo vision and optical flow to fulfill the functionalities of autonomous UAVs.

  6. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome.

    PubMed

    Carlson, Shawn R; Rudgers, Gary W; Zieler, Helge; Mach, Jennifer M; Luo, Song; Grunden, Eric; Krol, Cheryl; Copenhaver, Gregory P; Preuss, Daphne

    2007-10-01

    Autonomous chromosomes are generated in yeast (yeast artificial chromosomes) and human fibrosarcoma cells (human artificial chromosomes) by introducing purified DNA fragments that nucleate a kinetochore, replicate, and segregate to daughter cells. These autonomous minichromosomes are convenient for manipulating and delivering DNA segments containing multiple genes. In contrast, commercial production of transgenic crops relies on methods that integrate one or a few genes into host chromosomes; extensive screening to identify insertions with the desired expression level, copy number, structure, and genomic location; and long breeding programs to produce varieties that carry multiple transgenes. As a step toward improving transgenic crop production, we report the development of autonomous maize minichromosomes (MMCs). We constructed circular MMCs by combining DsRed and nptII marker genes with 7-190 kb of genomic maize DNA fragments containing satellites, retroelements, and/or other repeats commonly found in centromeres and using particle bombardment to deliver these constructs into embryogenic maize tissue. We selected transformed cells, regenerated plants, and propagated their progeny for multiple generations in the absence of selection. Fluorescent in situ hybridization and segregation analysis demonstrated that autonomous MMCs can be mitotically and meiotically maintained. The MMC described here showed meiotic segregation ratios approaching Mendelian inheritance: 93% transmission as a disome (100% expected), 39% transmission as a monosome crossed to wild type (50% expected), and 59% transmission in self crosses (75% expected). The fluorescent DsRed reporter gene on the MMC was expressed through four generations, and Southern blot analysis indicated the encoded genes were intact. This novel approach for plant transformation can facilitate crop biotechnology by (i) combining several trait genes on a single DNA fragment, (ii) arranging genes in a defined sequence context for more consistent gene expression, and (iii) providing an independent linkage group that can be rapidly introgressed into various germplasms. PMID:17953486

  7. Autonomous support for microorganism research in space

    NASA Technical Reports Server (NTRS)

    Luttges, M. W.; Klaus, D. M.; Fleet, M. L.; Miller, M. S.; Shipley, D. E.; Smith, J. D.

    1992-01-01

    A preliminary design for performing on-orbit, autonomous research on microorganisms and cultured cells/tissues is presented. An understanding of gravity and its effects on cells is crucial for space exploration as well as for terrestrial applications. The payload is designed to be compatible with the COMmercial Experiment Transported (COMET) launch vehicle, an orbiter middeck locker interface, and with Space Station Freedom. Uplink/downlink capabilities and sample return through controlled reentry are available for all carriers. Autonomous testing activities are preprogrammed with inflight reprogrammability. Sensors for monitoring temperature, pH, light, gravity levels, vibration, and radiation are provided for environmental regulation and experimental data collection. Additional experiment data acquisition includes optical density measurement, microscopy, video, and file photography. Onboard full data storage capabilities are provided. A fluid transfer mechanism is utilized for inoculation, sampling, and nutrient replenishment of experiment cultures. In addition to payload design, representative experiments were developed to ensure scientific objectives remained compatible with hardware capabilities. The project is defined to provide biological data pertinent to extended duration crewed space flight including crew health issues and development of a Controlled Ecological Life Support System (CELSS). In addition, opportunities are opened for investigations leading to commercial applications of space, such as pharmaceutical development, modeling of terrestrial diseases, and material processing.

  8. Autonomous support for microorganism research in space

    NASA Technical Reports Server (NTRS)

    Fleet, Mary L.; Miller, Mark S.; Shipley, Derek, E.; Smith, Jeff D.

    1992-01-01

    A preliminary design for performing on orbit, autonomous research on microorganisms and cultured cells/tissues is presented. An understanding of gravity and its effects on cells is crucial for space exploration as well as for terrestrial applications. The payload is designed to be compatible with the Commercial Experiment Transporter (COMET) launch vehicle, an orbiter middeck locker interface, and with Space Station Freedom. Uplink/downlink capabilities and sample return through controlled reentry are available for all carriers. Autonomous testing activities are preprogrammed with in-flight reprogrammability. Sensors for monitoring temperature, pH, light, gravity levels, vibrations, and radiation are provided for environmental regulation and experimental data collection. Additional experimental data acquisition includes optical density measurement, microscopy, video, and film photography. On-board full data storage capabilities are provided. A fluid transfer mechanism is utilized for inoculation, sampling, and nutrient replenishment of experiment cultures. In addition to payload design, representative experiments were developed to ensure scientific objectives remained compatible with hardware capabilities. The project is defined to provide biological data pertinent to extended duration crewed space flight including crew health issues and development of a Controlled Ecological Life Support System (CELSS). In addition, opportunities are opened for investigations leading to commercial applications of space, such as pharmaceutical development, modeling of terrestrial diseases, and material processing.

  9. Computer vision for autonomous robotics in space

    NASA Astrophysics Data System (ADS)

    Wong, Andrew K. C.

    1993-08-01

    This paper presents a computer vision system being developed at the Pattern Analysis and Machine Intelligence (PAMI) Lab of the University of Waterloo and at the Vision, Intelligence and Robotics Technologies Corporation (VIRTEK) in support of the Canadian Space Autonomous Robotics Project. This system was originally developed for flexible manufacturing and guidance of autonomous roving vehicles. In the last few years, it has been engineered to support the operations of the Mobile Service System (MSS) (or its equivalence) for the Space Station Project. In the near term, this vision system will provide vision capability for the recognition, location and tracking of payloads as well as for relating the spatial information to the manipulator for capturing, manipulating and berthing payloads. In the long term, it will serve in the role of inspection, surveillance and servicing of the Station. Its technologies will be continually expanded and upgraded to meet the demand as the needs of the Space Station evolve and grow. Its spin-off technologies will benefit the industrial sectors as well.

  10. Small Autonomous Aircraft Servo Health Monitoring

    NASA Technical Reports Server (NTRS)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  11. Perspective: Autonomic care systems for hospitalized patients.

    PubMed

    Goldschmidt-Clermont, Pascal J; Dong, Chunming; Rhodes, Nancy M; McNeill, Diana B; Adams, Martha B; Gilliss, Catherine L; Cuffe, Michael S; Califf, Robert M; Peterson, Eric D; Lubarsky, David A

    2009-12-01

    With advancements of medical technology and improved diagnostic and treatment options, children with severe birth defects who would otherwise have no chance of surviving post birth survive to go home every day. The average lifespan in the United States has increased substantially over the last century. These successes and many other medical breakthroughs in managing complex illnesses, particularly in frail, elderly patients, have resulted in an increasing percentage of patients with comorbidities. This, coupled with a policy change by Medicare (i.e., Medicare will no longer reimburse hospitals for costs associated with treating preventable errors and injuries that a patient acquires while in the hospital), creates an enormous challenge to health care providers. To meet the challenge, the authors propose a new model of health care--the autonomic care system (ACS)--a concept derived from the intensive care unit and the autonomic computing initiative in the computer industry. Using wound care as an example, the authors examine the necessity, feasibility, design, and challenges related to ACS. Specifically, they discuss the role of the human operator, the potential combination of ACS and existing hospital information technology (e.g., electronic medical records and computerized provider order entry), and the costs associated with ACS. ACS may serve as a roadmap to revamp the health care system, bringing down the barriers among different specialties and improving the quality of care for each problem for all hospitalized patients. PMID:19940580

  12. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions. PMID:25051401

  13. Sensor study for high speed autonomous operations

    NASA Astrophysics Data System (ADS)

    Schneider, Anne; La Celle, Zachary; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Close, Ryan

    2015-06-01

    As robotic ground systems advance in capabilities and begin to fulfill new roles in both civilian and military life, the limitation of slow operational speed has become a hindrance to the wide-spread adoption of these systems. For example, military convoys are reluctant to employ autonomous vehicles when these systems slow their movement from 60 miles per hour down to 40. However, these autonomous systems must operate at these lower speeds due to the limitations of the sensors they employ. Robotic Research, with its extensive experience in ground autonomy and associated problems therein, in conjunction with CERDEC/Night Vision and Electronic Sensors Directorate (NVESD), has performed a study to specify system and detection requirements; determined how current autonomy sensors perform in various scenarios; and analyzed how sensors should be employed to increase operational speeds of ground vehicles. The sensors evaluated in this study include the state of the art in LADAR/LIDAR, Radar, Electro-Optical, and Infrared sensors, and have been analyzed at high speeds to study their effectiveness in detecting and accounting for obstacles and other perception challenges. By creating a common set of testing benchmarks, and by testing in a wide range of real-world conditions, Robotic Research has evaluated where sensors can be successfully employed today; where sensors fall short; and which technologies should be examined and developed further. This study is the first step to achieve the overarching goal of doubling ground vehicle speeds on any given terrain.

  14. Autonomic function in manganese alloy workers

    SciTech Connect

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.; Padula, M.A.; Korn, T.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years after the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.

  15. The MAP Autonomous Mission Control System

    NASA Technical Reports Server (NTRS)

    Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger

    2000-01-01

    The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.

  16. Verification of Autonomous Systems for Space Applications

    NASA Technical Reports Server (NTRS)

    Brat, G.; Denney, E.; Giannakopoulou, D.; Frank, J.; Jonsson, A.

    2006-01-01

    Autonomous software, especially if it is based on model, can play an important role in future space applications. For example, it can help streamline ground operations, or, assist in autonomous rendezvous and docking operations, or even, help recover from problems (e.g., planners can be used to explore the space of recovery actions for a power subsystem and implement a solution without (or with minimal) human intervention). In general, the exploration capabilities of model-based systems give them great flexibility. Unfortunately, it also makes them unpredictable to our human eyes, both in terms of their execution and their verification. The traditional verification techniques are inadequate for these systems since they are mostly based on testing, which implies a very limited exploration of their behavioral space. In our work, we explore how advanced V&V techniques, such as static analysis, model checking, and compositional verification, can be used to gain trust in model-based systems. We also describe how synthesis can be used in the context of system reconfiguration and in the context of verification.

  17. Quantum Behavior of an Autonomous Maxwell Demon

    NASA Astrophysics Data System (ADS)

    Chapman, Adrian; Miyake, Akimasa

    2015-03-01

    A Maxwell Demon is an agent that can exploit knowledge of a system's microstate to perform useful work. The second law of thermodynamics is only recovered upon taking into account the work required to irreversibly update the demon's memory, bringing information theoretic concepts into a thermodynamic framework. Recently, there has been interest in modeling a classical Maxwell demon as an autonomous physical system to study this information-work tradeoff explicitly. Motivated by the idea that states with non-local entanglement structure can be used as a computational resource, we ask whether these states have thermodynamic resource quality as well by generalizing a particular classical autonomous Maxwell demon to the quantum regime. We treat the full quantum description using a matrix product operator formalism, which allows us to handle quantum and classical correlations in a unified framework. Applying this, together with techniques from statistical mechanics, we are able to approximate nonlocal quantities such as the erasure performed on the demon's memory register when correlations are present. Finally, we examine how the demon may use these correlations as a resource to outperform its classical counterpart.

  18. Autonomous Space Processor for Orbital Debris (ASPOD)

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett

    1992-01-01

    A project in the Advanced Design Program at the University of Arizona is described. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  19. Simulation models for autonomous rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Smith, Nick G.; Mckinnis, Jim A.; Early, Sid M.

    1991-01-01

    Autonomous rendezvous and capture (AR&C) is a critical space technology with significant application to a variety of missions. Martin Marietta Astronautics Group (MMAG) has been developing AR&C technical capability in support of several recent NASA contracts. The use of AR&C for the Mars Rover/Sample Return (MRSR) mission was studied through a contract with JSC. Incorporation of AR&C in the Space Transportation Vehicle (STV) lunar mission was studied through a contract with MSFC. The MMAG has also been developing AR&C simulation capability under independent research and development studies. Simulation development was driven by two goals: comprehensive software simulation of the autonomous rendezvous and capture mission from launch to final capture; and integration of the overall software and hardware simulation to support an AR&C flight demonstration. This presentation will highlight the AR&C software simulation tools and analyze results from their application to the STV lunar mission. Plans for an integrated software and hardware simulation will also be summarized.

  20. Acceptance Criteria Framework for Autonomous Biological Detectors

    SciTech Connect

    Dzenitis, J M

    2006-12-12

    The purpose of this study was to examine a set of user acceptance criteria for autonomous biological detection systems for application in high-traffic, public facilities. The test case for the acceptance criteria was the Autonomous Pathogen Detection System (APDS) operating in high-traffic facilities in New York City (NYC). However, the acceptance criteria were designed to be generally applicable to other biological detection systems in other locations. For such detection systems, ''users'' will include local authorities (e.g., facility operators, public health officials, and law enforcement personnel) and national authorities [including personnel from the Department of Homeland Security (DHS), the BioWatch Program, the Centers for Disease Control and Prevention (CDC), and the Federal Bureau of Investigation (FBI)]. The panel members brought expertise from a broad range of backgrounds to complete this picture. The goals of this document are: (1) To serve as informal guidance for users in considering the benefits and costs of these systems. (2) To serve as informal guidance for developers in understanding the needs of users. In follow-up work, this framework will be used to systematically document the APDS for appropriateness and readiness for use in NYC.

  1. Autonomous docking ground demonstration (category 3)

    NASA Technical Reports Server (NTRS)

    Lamkin, Steve L.; Eick, Richard E.; Baxter, James M.; Boyd, M. G.; Clark, Fred D.; Lee, Thomas Q.; Othon, L. T.; Prather, Joseph L.; Spehar, Peter T.; Teders, Rebecca J.

    1991-01-01

    The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented.

  2. Promethazine affects autonomic cardiovascular mechanisms minimally

    NASA Technical Reports Server (NTRS)

    Brown, T. E.; Eckberg, D. L.

    1997-01-01

    Promethazine hydrochloride, Phenergan, is a phenothiazine derivative with antihistaminic (H1), sedative, antiemetic, anticholinergic, and antimotion sickness properties. These properties have made promethazine a candidate for use in environments such as microgravity, which provoke emesis and motion sickness. Recently, we evaluated carotid baroreceptor-cardiac reflex responses during two Space Shuttle missions 18 to 20 hr after the 50 mg intramuscular administration of promethazine. Because the effects of promethazine on autonomic cardiovascular mechanisms in general and baroreflex function in particular were not known, we were unable to exclude a possible influence of promethazine on our results. Our purpose was to determine the ground-based effects of promethazine on autonomic cardiovascular control. Because of promethazine's antihistaminic and anticholinergic properties, we expected that a 50-mg intramuscular injection of promethazine would affect sympathetically and vagally mediated cardiovascular mechanisms. Eight healthy young subjects, five men and three women, were studied at rest in recumbency. All reported drowsiness as a result of the promethazine injection; most also reported nervous excitation, dry mouth, and fatigue. Three subjects had significant reactions: two reported excessive anxiety and one reported dizziness. Measurements were performed immediately prior to injection and 3.1 +/- 0.1 and 19.5 +/- 0.4 hr postinjection. We found no significant effect of promethazine on resting mean R-R interval, arterial pressure, R-R interval power spectra, carotid baroreflex function, and venous plasma catecholamine levels.

  3. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  4. Interoception and autonomic nervous system reflexes thermoregulation.

    PubMed

    Fealey, Robert D

    2013-01-01

    Important conceptual changes concerning human thermoregulation have occurred in the last decade. While the hypothalamus maintains its central role in sensing core temperature and providing connectivity to orchestrate heat loss and cold defense autonomic neuronal mechanisms, it is now regarded as one of multiple, independent thermoeffector pathways that control core body temperature. Recent research in primate central and peripheral thermosensitivity has emphasized the importance of temperature-activated transient receptor potential (TRP) channels and afferent neuronal pathways from peripheral thermosensors that are activated by unique combinations of core and shell temperature. The interoceptive aspects of behavioral thermoregulation have been emphasized including the primary importance of shell (skin) temperature, the concept of thermal discomfort and the important contribution of orbitofrontal, insular, somatosensory, and amygdala cortical regions deployed to anticipate and avoid thermal stress. Clinical testing of human thermoregulation requires afferent stimuli to activate the independent thermoeffector loops while monitoring an efferent response. Patterns of sweat gland activation, amount of sweat produced, and areas of anhidrosis demonstrated by the thermoregulatory and axon reflex sweat testing provide diagnostic information about neurological and medical disorders of the autonomic nervous system. PMID:24095117

  5. Autonomous Navigation for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam

    2012-01-01

    Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.

  6. Systems and methods for autonomously controlling agricultural machinery

    DOEpatents

    Hoskinson, Reed L.; Bingham, Dennis N.; Svoboda, John M.; Hess, J. Richard

    2003-07-08

    Systems and methods for autonomously controlling agricultural machinery such as a grain combine. The operation components of a combine that function to harvest the grain have characteristics that are measured by sensors. For example, the combine speed, the fan speed, and the like can be measured. An important sensor is the grain loss sensor, which may be used to quantify the amount of grain expelled out of the combine. The grain loss sensor utilizes the fluorescence properties of the grain kernels and the plant residue to identify when the expelled plant material contains grain kernels. The sensor data, in combination with historical and current data stored in a database, is used to identify optimum operating conditions that will result in increased crop yield. After the optimum operating conditions are identified, an on-board computer can generate control signals that will adjust the operation of the components identified in the optimum operating conditions. The changes result in less grain loss and improved grain yield. Also, because new data is continually generated by the sensor, the system has the ability to continually learn such that the efficiency of the agricultural machinery is continually improved.

  7. Classifying and recovering from sensing failures in autonomous mobile robots

    SciTech Connect

    Murphy, R.R.; Hershberger, D.

    1996-12-31

    This paper presents a characterization of sensing failures in autonomous mobile robots, a methodology for classification and recovery, and a demonstration of this approach on a mobile robot performing landmark navigation. A sensing failure is any event leading to defective perception, including sensor malfunctions, software errors, environmental changes, and errant expectations. The approach demonstrated in this paper exploits the ability of the robot to interact with its environment to acquire additional information for classification (i.e., active perception). A Generate and Test strategy is used to generate hypotheses to explain the symptom resulting from the sensing failure. The recovery scheme replaces the affected sensing processes with an alternative logical sensor. The approach is implemented as the Sensor Fusion Effects Exception Handling (SFX-EH) architecture. The advantages of SFX-EH are that it requires only a partial causal model of sensing failure, the control scheme strives for a fast response, tests are constructed so as to prevent confounding from collaborating sensors which have also failed, and the logical sensor organization allows SFX-EH to be interfaced with the behavioral level of existing robot architectures.

  8. Experiences with a Requirements-Based Programming Approach to the Development of a NASA Autonomous Ground Control System

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.; Gracanin, Denis; Erickson, John

    2005-01-01

    Requirements-to-Design-to-Code (R2D2C) is an approach to the engineering of computer-based systems that embodies the idea of requirements-based programming in system development. It goes further; however, in that the approach offers not only an underlying formalism, but full formal development from requirements capture through to the automatic generation of provably-correct code. As such, the approach has direct application to the development of systems requiring autonomic properties. We describe a prototype tool to support the method, and illustrate its applicability to the development of LOGOS, a NASA autonomous ground control system, which exhibits autonomic behavior. Finally, we briefly discuss other areas where the approach and prototype tool are being considered for application.

  9. Novel Microbial Diversity Retrieved by Autonomous Robotic Exploration of the World's Deepest Vertical Phreatic Sinkhole

    NASA Astrophysics Data System (ADS)

    Sahl, Jason W.; Fairfield, Nathaniel; Harris, J. Kirk; Wettergreen, David; Stone, William C.; Spear, John R.

    2010-03-01

    The deep phreatic thermal explorer (DEPTHX) is an autonomous underwater vehicle designed to navigate an unexplored environment, generate high-resolution three-dimensional (3-D) maps, collect biological samples based on an autonomous sampling decision, and return to its origin. In the spring of 2007, DEPTHX was deployed in Zacatón, a deep (˜318 m), limestone, phreatic sinkhole (cenote) in northeastern Mexico. As DEPTHX descended, it generated a 3-D map based on the processing of range data from 54 onboard sonars. The vehicle collected water column samples and wall biomat samples throughout the depth profile of the cenote. Post-expedition sample analysis via comparative analysis of 16S rRNA gene sequences revealed a wealth of microbial diversity. Traditional Sanger gene sequencing combined with a barcoded-amplicon pyrosequencing approach revealed novel, phylum-level lineages from the domains Bacteria and Archaea; in addition, several novel subphylum lineages were also identified. Overall, DEPTHX successfully navigated and mapped Zacatón, and collected biological samples based on an autonomous decision, which revealed novel microbial diversity in a previously unexplored environment.

  10. Novel microbial diversity retrieved by autonomous robotic exploration of the world's deepest vertical phreatic sinkhole.

    PubMed

    Sahl, Jason W; Fairfield, Nathaniel; Harris, J Kirk; Wettergreen, David; Stone, William C; Spear, John R

    2010-03-01

    The deep phreatic thermal explorer (DEPTHX) is an autonomous underwater vehicle designed to navigate an unexplored environment, generate high-resolution three-dimensional (3-D) maps, collect biological samples based on an autonomous sampling decision, and return to its origin. In the spring of 2007, DEPTHX was deployed in Zacatón, a deep (approximately 318 m), limestone, phreatic sinkhole (cenote) in northeastern Mexico. As DEPTHX descended, it generated a 3-D map based on the processing of range data from 54 onboard sonars. The vehicle collected water column samples and wall biomat samples throughout the depth profile of the cenote. Post-expedition sample analysis via comparative analysis of 16S rRNA gene sequences revealed a wealth of microbial diversity. Traditional Sanger gene sequencing combined with a barcoded-amplicon pyrosequencing approach revealed novel, phylum-level lineages from the domains Bacteria and Archaea; in addition, several novel subphylum lineages were also identified. Overall, DEPTHX successfully navigated and mapped Zacatón, and collected biological samples based on an autonomous decision, which revealed novel microbial diversity in a previously unexplored environment. PMID:20298146

  11. ALI (Autonomous Lunar Investigator): Revolutionary Approach to Exploring the Moon with Addressable Reconfigurable Technology

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.

    2005-03-01

    Addressable Reconfigurable Technology (ART), conceived for future ANTS (Autonomous Nanotechnology Swarm) Architectures, is now implemented as Autonomous Lunar Investigator (ALI) rovers, a mission concept allowing autonomous exploration of the lunar farside and poles within 10 years.

  12. COMPASS 31: A Refined and Abbreviated Composite Autonomic Symptom Score

    PubMed Central

    Sletten, David M.; Suarez, Guillermo A.; Low, Phillip A.; Mandrekar, Jay; Singer, Wolfgang

    2012-01-01

    Objective To develop a concise and statistically robust instrument to assess autonomic symptoms that provides clinically relevant scores of autonomic symptom severity based on the well-established 169-item Autonomic Symptom Profile (ASP) and its validated 84-question scoring instrument, the Composite Autonomic Symptom Score (COMPASS). Patients and Methods We assessed the internal consistency of COMPASS using Cronbach ? coefficients based on the ASP of 405 healthy control subjects recruited and seen in the Mayo Clinic Autonomic Disorders Center between March 1, 1995, and March 31, 2010. Applying a simplified scoring algorithm, we then used exploratory factor analysis with orthogonal rotation and eigenvalue calculations to extract internally consistent domains and to reduce dimensionality. This analysis was followed by expert revisions to eliminate redundant content and to retain clinically important questions and final assessment of the new instrument. Results The new simplified scoring algorithm alone resulted in higher Cronbach ? values in all domains. Factor analysis revealed 7 domains with a total of 54 questions retained. Expert revisions resulted in further reduction of questions and domains with a remaining total of 31 questions in 6 domains (COMPASS 31). Measures of internal consistency were much improved compared to those for COMPASS. Following appropriate weighting, this instrument provides an autonomic symptom score from 0 to 100. Conclusion COMPASS 31 is a refined, internally consistent, and markedly abbreviated quantitative measure of autonomic symptoms. It is based on the original ASP and COMPASS, applies a much simplified scoring algorithm, and is suitable for widespread use in autonomic research and practice. PMID:23218087

  13. Autonomic Impairment in Borderline Personality Disorder: A Laboratory Investigation

    ERIC Educational Resources Information Center

    Weinberg, Anna; Klonsky, E. David; Hajcak, Greg

    2009-01-01

    Recent research suggests that emotional dysfunction in psychiatric disorders can be reflected in autonomic abnormalities. The present study examines sympathetic and parasympathetic autonomic nervous system activity in individuals with Borderline Personality Disorder (BPD) before, during, and following a social stressor task. Data were obtained…

  14. Cardiac Autonomic Control in Individuals With Down Syndrome

    ERIC Educational Resources Information Center

    Goulopoulou, Styliani; Baynard, Tracy; Collier, Scott; Giannopoulou, Ifigenia; Figueroa, Arturo; Beets, Michael; Pitetti, Kenneth; Fernhall, Bo

    2006-01-01

    Our goal in this study was to compare cardiac autonomic control at rest between 50 individuals with Down syndrome and 24 control participants without disabilities. Resting autonomic function was assessed using analysis of heart rate variability. Participants with Down syndrome had reduced total heart rate variability, which indicates possible…

  15. Symptoms of Autonomic Dysfunction in Human Immunodeficiency Virus

    PubMed Central

    Chow, Dominic; Nakamoto, Beau K.; Sullivan, Katherine; Sletten, David M.; Fujii, Satomi; Umekawa, Sari; Kocher, Morgan; Kallianpur, Kalpana J.; Shikuma, Cecilia M.; Low, Phillip

    2015-01-01

    This retrospective study evaluated the frequencies of symptoms associated with autonomic dysfunction in human immunodeficiency virus (HIV)-infected patients on stable combined antiretroviral therapy. Patients infected with HIV reported higher frequencies of dysautonomia symptoms compared with HIV-negative patients, particularly in the autonomic domains related to urinary, sleep, gastroparesis, secretomotor, pupillomotor, and male sexual dysfunction. PMID:26269797

  16. Evaluation in an Autonomous Learning Scheme. Melanges Pedagogiques, 1977.

    ERIC Educational Resources Information Center

    Henner-Stanchina, C.; Holec, H.

    This document consists of a discussion of the place and nature of evaluation within the autonomous learning scheme developed by the Centre de Recherches et d'Applications Pedagogiques en Langues (C.R.A.P.E.L.). The center's commitment to the development of an autonomous learning scheme dates back several years. It is the outcome of an attempt to…

  17. Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    NASA Technical Reports Server (NTRS)

    Zornetzer, Steve; Gage, Douglas

    2005-01-01

    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.

  18. ANTS: Exploring the Solar System with an Autonomous Nanotechnology Swarm

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S.; Rilee, M.; Truszkowski, W.; Marr, G.

    2002-01-01

    ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, calls for a large (1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft to prospect the asteroid belt. Additional information is contained in the original extended abstract.

  19. Contingency Software in Autonomous Systems: Technical Level Briefing

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.; Patterson-Hines, Ann

    2006-01-01

    Contingency management is essential to the robust operation of complex systems such as spacecraft and Unpiloted Aerial Vehicles (UAVs). Automatic contingency handling allows a faster response to unsafe scenarios with reduced human intervention on low-cost and extended missions. Results, applied to the Autonomous Rotorcraft Project and Mars Science Lab, pave the way to more resilient autonomous systems.

  20. Symptoms of Autonomic Dysfunction in Human Immunodeficiency Virus.

    PubMed

    Chow, Dominic; Nakamoto, Beau K; Sullivan, Katherine; Sletten, David M; Fujii, Satomi; Umekawa, Sari; Kocher, Morgan; Kallianpur, Kalpana J; Shikuma, Cecilia M; Low, Phillip

    2015-09-01

    This retrospective study evaluated the frequencies of symptoms associated with autonomic dysfunction in human immunodeficiency virus (HIV)-infected patients on stable combined antiretroviral therapy. Patients infected with HIV reported higher frequencies of dysautonomia symptoms compared with HIV-negative patients, particularly in the autonomic domains related to urinary, sleep, gastroparesis, secretomotor, pupillomotor, and male sexual dysfunction. PMID:26269797

  1. Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy.

    PubMed

    Vernino, Steven; Hopkins, Steve; Wang, Zhengbei

    2009-03-12

    Nicotinic acetylcholine receptors (AChR) are ligand-gated cation channels that are present throughout the nervous system. The ganglionic (alpha3-type) neuronal AChR mediates fast synaptic transmission in sympathetic, parasympathetic and enteric autonomic ganglia. Autonomic ganglia are an important site of neural integration and regulation of autonomic reflexes. Impaired cholinergic ganglionic synaptic transmission is one important cause of autonomic failure. Ganglionic AChR antibodies are found in many patients with autoimmune autonomic ganglionopathy (AAG). These antibodies recognize the alpha3 subunit of the ganglionic AChR, and thus do not bind non-specifically to other nicotinic AChR. Patients with high levels of ganglionic AChR antibodies typically present with rapid onset of severe autonomic failure, with orthostatic hypotension, gastrointestinal dysmotility, anhidrosis, bladder dysfunction and sicca symptoms. Impaired pupillary light reflex is often seen. Like myasthenia gravis, AAG is an antibody-mediated neurological disorder. Antibodies from patients with AAG inhibit ganglionic AChR currents and impair transmission in autonomic ganglia. An animal model of AAG in the rabbit recapitulates the important clinical features of the human disease and provides additional evidence that AAG is an antibody-mediated disorder caused by impairment of synaptic transmission in autonomic ganglia. PMID:18951069

  2. Autonomic Impairment in Borderline Personality Disorder: A Laboratory Investigation

    ERIC Educational Resources Information Center

    Weinberg, Anna; Klonsky, E. David; Hajcak, Greg

    2009-01-01

    Recent research suggests that emotional dysfunction in psychiatric disorders can be reflected in autonomic abnormalities. The present study examines sympathetic and parasympathetic autonomic nervous system activity in individuals with Borderline Personality Disorder (BPD) before, during, and following a social stressor task. Data were obtained…

  3. Paradoxical Autonomic Response to Mental Tasks in Autism.

    ERIC Educational Resources Information Center

    Toichi, Motomi; Kamio, Yoko

    2003-01-01

    Autonomic response to mental tasks requiring sustained attention were examined in 20 adolescents with autism and 20 controls. Cardiac autonomic function (CAF) was evaluated based on heart rate variability. While controls showed a significant decrease in the parasympathetic function during mental tasks, subjects showed no significant change in CAF.…

  4. Cardiac Autonomic Control in Individuals With Down Syndrome

    ERIC Educational Resources Information Center

    Goulopoulou, Styliani; Baynard, Tracy; Collier, Scott; Giannopoulou, Ifigenia; Figueroa, Arturo; Beets, Michael; Pitetti, Kenneth; Fernhall, Bo

    2006-01-01

    Our goal in this study was to compare cardiac autonomic control at rest between 50 individuals with Down syndrome and 24 control participants without disabilities. Resting autonomic function was assessed using analysis of heart rate variability. Participants with Down syndrome had reduced total heart rate variability, which indicates possible…

  5. Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscosity oscillation

    NASA Astrophysics Data System (ADS)

    Onoda, Michika; Ueki, Takeshi; Shibayama, Mitsuhiro; Yoshida, Ryo

    2015-10-01

    Here we report an ABA triblock copolymer that can express microscopic autonomous formation and break-up of aggregates under constant condition to generate macroscopic viscoelastic self-oscillation of the solution. The ABA triblock copolymer is designed to have hydrophilic B segment and self-oscillating A segment at the both sides by RAFT copolymerization. In the A segment, a metal catalyst of chemical oscillatory reaction, i.e., the Belousov-Zhabotinsky (BZ) reaction, is introduced as a chemomechanical transducer to change the aggregation state of the polymer depending on the redox states. Time-resolved DLS measurements of the ABA triblock copolymer confirm the presence of a transitional network structure of micelle aggregations in the reduced state and a unimer structure in the oxidized state. This autonomous oscillation of a well-designed triblock copolymer enables dynamic biomimetic softmaterials with spatio-temporal structure.

  6. Cell-Autonomous Requirement for Rx Function in the Mammalian Retina and Posterior Pituitary

    PubMed Central

    Medina-Martinez, Olga; Amaya-Manzanares, Felipe; Liu, Chaomei; Mendoza, Marisela; Shah, Rina; Zhang, Li; Behringer, Richard R.

    2009-01-01

    Rx is a paired-like homeobox gene that is required for vertebrate eye formation. Mice lacking Rx function do not develop eyes or the posterior pituitary. To determine whether Rx is required cell autonomously in these tissues, we generated embryonic chimeras consisting of wild type and Rx?/? cells. We found that in the eye, Rx-deficient cells cannot participate in the formation of the neuroretina, retina pigment epithelium and the distal part of the optic stalk. In addition, in the ventral forebrain, Rx function is required cell autonomously for the formation of the posterior pituitary. Interestingly, Rx?/? and wild type cells segregate before the morphogenesis of these two tissues begins. Our observations suggest that Rx function is not only required for the morphogenesis of the retina and posterior pituitary, but also prior to morphogenesis, for the sorting out of cells to form distinct fields of retinal/pituitary cells. PMID:19229337

  7. Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscosity oscillation

    PubMed Central

    Onoda, Michika; Ueki, Takeshi; Shibayama, Mitsuhiro; Yoshida, Ryo

    2015-01-01

    Here we report an ABA triblock copolymer that can express microscopic autonomous formation and break-up of aggregates under constant condition to generate macroscopic viscoelastic self-oscillation of the solution. The ABA triblock copolymer is designed to have hydrophilic B segment and self-oscillating A segment at the both sides by RAFT copolymerization. In the A segment, a metal catalyst of chemical oscillatory reaction, i.e., the Belousov-Zhabotinsky (BZ) reaction, is introduced as a chemomechanical transducer to change the aggregation state of the polymer depending on the redox states. Time-resolved DLS measurements of the ABA triblock copolymer confirm the presence of a transitional network structure of micelle aggregations in the reduced state and a unimer structure in the oxidized state. This autonomous oscillation of a well-designed triblock copolymer enables dynamic biomimetic softmaterials with spatio-temporal structure. PMID:26511660

  8. Functional Imaging of Autonomic Regulation: Methods and Key Findings

    PubMed Central

    Macey, Paul M.; Ogren, Jennifer A.; Kumar, Rajesh; Harper, Ronald M.

    2016-01-01

    Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: (1) describe the fMRI neuroimaging methodology for assessment of autonomic neural control, (2) outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, (3) illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and (4) highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure, and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory, and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with brain regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function. PMID:26858595

  9. Autonomous Underwater Vehicle Magnetic Mapping System

    NASA Astrophysics Data System (ADS)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional compensation methods that do not use electrical current terms. Recent demonstrations of the AUV MM System conducted at test plots seeded with inert munitions show reliable detection of 75mm and larger projectiles at altitudes of over 2 meters above the seafloor. Improvement ratios between 11 and 12.4 were observed in the survey data after magnetic compensation, reducing system noise to approximately ±0.25 nano-Tesla. Co-registered side scan sonar images were acquired with the magnetic data to augment target analysis and interpretation. No net drift of the navigation solution was observed during survey missions thus confirming target positional accuracy to better than 1 meter.;

  10. Autonomous Formation Flying from Ground to Flight

    NASA Technical Reports Server (NTRS)

    Chapman, Keith B.; Dell, Gregory T.; Rosenberg, Duane L.; Bristow, John

    1999-01-01

    The cost of on-orbit operations remains a significant and increasingly visible concern in the support of satellite missions. Headway has been made in automating some ground operations; however, increased mission complexity and more precise orbital constraints have compelled continuing human involvement in mission design and maneuver planning operations. AI Solutions, Inc. in cooperation with the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) has tackled these more complex problems through the development of AutoCon as a tool for an automated solution. NASA is using AutoCon to automate the maneuver planning for the Earth Orbiter-1 (EO-1) mission. AutoCon was developed originally as a ground system tool. The EO-1 mission will be using a scaled version of AutoCon on-board the EO-1 satellite to command orbit adjustment maneuvers. The flight version of AutoCon plans maneuvers based on formation flying algorithms developed by GSFC, JPL, and other industry partners. In its fully autonomous mode, an AutoCon planned maneuver will be executed on-board the satellite without intervention from the ground. This paper describes how AutoCon automates maneuver planning for the formation flying constraints of the EO-1 mission. AutoCon was modified in a number of ways to automate the maneuver planning on-board the satellite. This paper describes how the interface and functionality of AutoCon were modified to support the on-board system. A significant component of this modification was the implementation of a data smoother, based on a Kalman filter, that ensures that the spacecraft states estimated by an on-board GPS receiver are as accurate as possible for maneuver planning. This paper also presents the methodology use to scale the AutoCon functionality to fit and execute on the flight hardware. This paper also presents the modes built that allow the incremental phasing in of autonomy. New technologies for autonomous operations are usually received with significant, and probably appropriate trepidation. A number of safeguards have been designed in both AutoCon and the interfacing systems to alleviate the potential of mission-impacting anomalies from the on-board autonomous system. This paper describes the error checking, input data integrity validation and limits set on maneuvers in AutoCon and the on-board system.

  11. Autonomic Cluster Management System (ACMS): A Demonstration of Autonomic Principles at Work

    NASA Technical Reports Server (NTRS)

    Baldassari, James D.; Kopec, Christopher L.; Leshay, Eric S.; Truszkowski, Walt; Finkel, David

    2005-01-01

    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of achieving significant computational capabilities for high-performance computing applications, while simultaneously affording the ability to. increase that capability simply by adding more (inexpensive) processors. However, the task of manually managing and con.guring a cluster quickly becomes impossible as the cluster grows in size. Autonomic computing is a relatively new approach to managing complex systems that can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Automatic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management.

  12. Autonomous Rule Creation for Intrusion Detection

    SciTech Connect

    Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-04-01

    Many computational intelligence techniques for anomaly based network intrusion detection can be found in literature. Translating a newly discovered intrusion recognition criteria into a distributable rule can be a human intensive effort. This paper explores a multi-modal genetic algorithm solution for autonomous rule creation. This algorithm focuses on the process of creating rules once an intrusion has been identified, rather than the evolution of rules to provide a solution for intrusion detection. The algorithm was demonstrated on anomalous ICMP network packets (input) and Snort rules (output of the algorithm). Output rules were sorted according to a fitness value and any duplicates were removed. The experimental results on ten test cases demonstrated a 100 percent rule alert rate. Out of 33,804 test packets 3 produced false positives. Each test case produced a minimum of three rule variations that could be used as candidates for a production system.

  13. Autonomous Formations of Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Dhali, Sanjana; Joshi, Suresh M.

    2013-01-01

    Autonomous formation control of multi-agent dynamic systems has a number of applications that include ground-based and aerial robots and satellite formations. For air vehicles, formation flight ("flocking") has the potential to significantly increase airspace utilization as well as fuel efficiency. This presentation addresses two main problems in multi-agent formations: optimal role assignment to minimize the total cost (e.g., combined distance traveled by all agents); and maintaining formation geometry during flock motion. The Kuhn-Munkres ("Hungarian") algorithm is used for optimal assignment, and consensus-based leader-follower type control architecture is used to maintain formation shape despite the leader s independent movements. The methods are demonstrated by animated simulations.

  14. Autonomic pain: features and methods of assessment

    SciTech Connect

    Gandhavadi, B.; Rosen, J.S.; Addison, R.G.

    1982-01-01

    The distribution of pain originating in the sympathetic nervous system does not match the somatic segmental sensory distribution at the postganglionic level. The two types of distribution are separate and different. At the preganglionic level, fibers show typical segmental sensory distribution, which resembles but is not identical to somatic segmental sensory distribution. Instead, sympathetic pain has its own distribution along the vascular supply and some peripheral nerves. It cannot be called atypical in terms of somatic segmental sensory distribution. Several techniques are available to assess autonomic function in cases of chronic pain. Infrared thermography is superior to any other physiologic or pharmacologic method to assess sympathetic function. Overactivity of sympathetic function in the area of pain is the probable cause of temperature reduction in that area. Accordingly it would appear that in cases in which thermography demonstrates decreased temperature, sympathetic block or sympathectomy would provide relief from the pain.

  15. IED blast postconcussive syncope and autonomic dysregulation.

    PubMed

    Sams, Richard; LaBrie, D Walter; Norris, Jacob; Schauer, Judy; Frantz, Earl

    2012-01-01

    Concussions are the most frequent battle injury sustained in Afghanistan. The Concussion Restoration Care Center provides multidisciplinary care to concussed service members in theater. The Concussion Restoration Care Center has managed over 500 concussions, the majority being from improvised explosive device (IED) blasts. Syncope following a concussion without a loss of consciousness is rarely reported in the literature. The pathophysiology of concussion from a blast injury may be distinct from a concussion secondary to blunt trauma. Two cases of syncope following concussions with an alteration of consciousness are presented, and a mechanism of action is proposed. Post-IED blast concussive symptom frequency at initial presentation on a cohort of patients is reported, with 1.3% of patients experiencing postconcussive syncope. Syncope following an IED blast may be related to centrally mediated autonomic dysregulation at the brain stem level. Syncope should be added to the list of possible symptoms that occur following concussions, in particular concussions following a blast injury. PMID:22338979

  16. Autonomous microsystems for ground observation (AMIGO)

    NASA Astrophysics Data System (ADS)

    Laou, Philips

    2005-05-01

    This paper reports the development of a prototype autonomous surveillance microsystem AMIGO that can be used for remote surveillance. Each AMIGO unit is equipped with various sensors and electronics. These include passive infrared motion sensor, acoustic sensor, uncooled IR camera, electronic compass, global positioning system (GPS), and spread spectrum wireless transceiver. The AMIGO unit was configured to multipoint (AMIGO units) to point (base station) communication mode. In addition, field trials were conducted with AMIGO in various scenarios. These scenarios include personnel and vehicle intrusion detection (motion or sound) and target imaging; determination of target GPS position by triangulation; GPS position real time tracking; entrance event counting; indoor surveillance; and aerial surveillance on a radio controlled model plane. The architecture and test results of AMIGO will be presented.

  17. The Stored Waste Autonomous Mobile Inspector (SWAMI)

    SciTech Connect

    Peterson, K.D.; Ward, C.R.

    1995-12-31

    A mobile robot system called Stored Waste Autonomous Mobile Inspector (SWAMI) is under development by the Savannah River Technology Center (SRTC) Robotics Group of Westinghouse Savannah River Company (WSRC) to perform mandated inspections of waste drums stored in warehouse facilities. The system will reduce personnel exposure to potential hazards and create accurate, high-quality documentation to ensure regulatory compliance and enhance waste management operations. Development work is coordinated among several Department of Energy (DOE), academic, and commercial entities in accordance wit DOE`s technology transfer initiative. The prototype system, SWAMI I, was demonstrated at Savannah River Site (SRS) in November, 1993. SWAMI II is now under development for field trails at the Fernald site.

  18. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  19. Exploring the autonomic correlates of personality.

    PubMed

    Shepherd, Daniel; Mulgrew, Joseph; Hautus, Michael J

    2015-12-01

    The aim of this study was to investigate the relationship between personality and resting heart rate variability (HRV) indices. Healthy volunteers (n=106) completed a 240-item Big Five personality inventory, the state/Trait Anxiety inventory, and a ten minute electrocardiographic recording. Time and frequency domain estimates of HRV were derived from the cardiac time series and related to the Big Five dimensions of personality, to personality types extracted from a cluster analysis, and to Trait Anxiety. Frequency domain measures of HRV (HRV-HF, LF/HF) were associated with specific dimensions of personality, but significance was not noted for the time domain measure (STD-RR). Furthermore, distressed personality types exhibited significantly greater autonomic imbalance (LF/HF) than other personality types. However, significance was not noted for the time domain measure (STD-RR). These results can be explained with reference to a contemporary model of neurovisceral integration. PMID:26026396

  20. From Autonomous Robots to Artificial Ecosystems

    NASA Astrophysics Data System (ADS)

    Mastrogiovanni, Fulvio; Sgorbissa, Antonio; Zaccaria, Renato

    During the past few years, starting from the two mainstream fields of Ambient Intelligence [2] and Robotics [17], several authors recognized the benefits of the socalled Ubiquitous Robotics paradigm. According to this perspective, mobile robots are no longer autonomous, physically situated and embodied entities adapting themselves to a world taliored for humans: on the contrary, they are able to interact with devices distributed throughout the environment and get across heterogeneous information by means of communication technologies. Information exchange, coupled with simple actuation capabilities, is meant to replace physical interaction between robots and their environment. Two benefits are evident: (i) smart environments overcome inherent limitations of mobile platforms, whereas (ii) mobile robots offer a mobility dimension unknown to smart environments.