Science.gov

Sample records for autonomous microexplosives subsurface

  1. Autonomous microexplosives subsurface tracing system final report.

    SciTech Connect

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

    2004-04-01

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

  2. Micro-explosion cystolithotripsy.

    PubMed

    Watanabe, H; Watanabe, K; Shiino, K; Oinuma, S

    1983-01-01

    According to the newly established method of micro-explosion lithotripsy, a cystolithotriptor with an explosive catheter, the tip of which was charged with 5 mg. lead azide explosives, was developed. In 3 clinical cases bladder stones from 32 to 65 mm. in diameter were crushed successfully into several fragments by 1 to 8 explosions using the cystolithotriptor. The fragments then were smashed into grains with Young's cystoscope and washed out by aspiration. This success may prove the usefulness of micro-explosion lithotripsy, which also may be introduced for the treatment of calculi in other organs in the future. PMID:6827683

  3. Coulomb microexplosions of ferroelectric ceramics.

    PubMed

    Yarmolich, D; Vekselman, V; Gurovich, V Tz; Krasik, Ya E

    2008-02-22

    Energetic neutral and extreme ultraviolet emission initiated by the dense plasma propagation along a ferroelectric surface has been found. It was shown that the emission of neutrals is characterized by a large divergence and velocities up to 7 x 10(7) cm/s. This phenomenon is explained by an extremely large electric field with amplitude > or =10(6) V/cm and rise time approximately 10(-10) s which appears at the plasma front due to the fast fall in the driving pulse. This electric field causes microexplosions of the ferroelectric surface due to inertia in the ion polarization response. PMID:18352565

  4. Ignition of thermonuclear microexplosions with antimatter

    SciTech Connect

    Shmatov, M.L.

    1994-10-01

    The use of antimatter for the indirect ignition of staged thermonuclear microexplosions is proposed. The space propulsion system based on this method may become economically acceptable earlier than that which uses only the energy of annihilation. 19 refs.

  5. Autonomous robot for detecting subsurface voids and tunnels using microgravity

    NASA Astrophysics Data System (ADS)

    Wilson, Stacy S.; Crawford, Nicholas C.; Croft, Leigh Ann; Howard, Michael; Miller, Stephen; Rippy, Thomas

    2006-05-01

    Tunnels have been used to evade security of defensive positions both during times of war and peace for hundreds of years. Tunnels are presently being built under the Mexican Border by drug smugglers and possibly terrorists. Several have been discovered at the border crossing at Nogales near Tucson, Arizona, along with others at other border towns. During this war on terror, tunnels under the Mexican Border pose a significant threat for the security of the United States. It is also possible that terrorists will attempt to tunnel under strategic buildings and possibly discharge explosives. The Center for Cave and Karst Study (CCKS) at Western Kentucky University has a long and successful history of determining the location of caves and subsurface voids using microgravity technology. Currently, the CCKS is developing a remotely controlled robot which will be used to locate voids underground. The robot will be a remotely controlled vehicle that will use microgravity and GPS to accurately detect and measure voids below the surface. It is hoped that this robot will also be used in military applications to locate other types of voids underground such as tunnels and bunkers. It is anticipated that the robot will be able to function up to a mile from the operator. This paper will describe the construction of the robot and the use of microgravity technology to locate subsurface voids with the robot.

  6. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive and inserted manners. The drop ignition delay time increased with increasing water content. The average burning rate of alkane-water drops decreased with increasing water content. In the burning process, hexadecane-water drops exhibited flash vaporization or flame extinction. Heterogeneous explosion was occasionally observed in drops with trapped air bubbles. The air bubbles were assumed to be the nucleation points of the heterogeneous explosions. Chen and Lin[11 studied the characteristics of water-in-dodecane compound drop with different water content, diameter of drop and environmental oxygen concentration. The vaporization rate increased with increasing environmental oxygen concentration. The compound drops micro-exploded during the burning process in a random way. The number of micro-explosions was majorly influenced by drop diameter, followed by environmental oxygen concentration. Water content had a weaker effect on micro-explosion. As available literature and research results of compound drop burning are scarce, their combustion and micro-explosion behaviors are still poorly understood. In this regard, we changed the drop nature as compound drops to study their combustion characteristics and micro-explosion phenomena.

  7. Microexplosive Metallized Fuels for Energetic Materials

    NASA Astrophysics Data System (ADS)

    Terry, Brandon; Rubio, Mario; Gunduz, Ibrahim; Son, Steven

    2015-06-01

    Microexplosions have been widely investigated for multicomponent liquid fuels. This phenomenon is caused by internal bubble nucleation and growth from within a fuel droplet (i.e., intraparticle boiling), which induces droplet fragmentation. Microexplosive fuels are advantageous as they promote fuel atomization, which can reduce residence times, increase completeness of combustion, and reduce product agglomeration (if condensed phase products are formed). While this is well understood and utilized with liquid fuels, it has not been fully investigated for metallic fuel particles. Recent work has shown that mechanical activation of aluminum/polymer (inclusion) composites can also cause microexplosions, analogous to liquid emulsion fuels. Gases are produced when the polymer within the composite decomposes below the boiling point of aluminum, causing the composite particle to shatter into smaller particles. Here we show that fully metallic multicomponent fuels (e.g., Al-Li alloy) can also microexplode during combustion and compare this to inclusion composite ignition. Because the two components have a large disparity in boiling points, intraparticle boiling causes the particle to expand and eventually shatter the fuel particle, analogous to missive liquid fuels. National Defense Science and Engineering Graduate Fellowship, 32 CFR 168a; AFOSR MURI, Contract #FA9550-13-1-0004.

  8. [Clinical application of extracorporeal microexplosive lithotripsy].

    PubMed

    Honda, M; Maeda, S; Takasaki, E

    1989-03-01

    A total of 46 cases underwent 66 treatments with extracorporeal microexplosive lithotripsy (EML) for upper urinary tract calculi between March 10, 1987 and May 28, 1987. The efficacy of EML therapy was investigated in all cases over 3 months. The lithotripter of EML made by the Yachiyoda Co. Ltd (SZ-1) was adapted to a microexplosion (10 mg silver azide) as the source of energy for underwater shock wave generation. Fifteen cases (32.6%) had a history of previous open lithotomy of the same upper urinary tract as being treated by EML. Pre-treatments with ureteral catheters and ureteral stents were performed in 4 and 4 cases (8.7% and 8.7%), respectively. The microexplosions were conducted in syncronization with patient exhalation from 100 to 400 times during 1 session, depending upon the size of the stone. The patients felt pressure only on their back at the pulse of explosion and complained occasionally a dull pain, but this pain was mild and tolerable, and no patients required anesthesia. When stone disintegration was judged to be unsatisfactory, that is the stone remained unfragment or the size of the residual stone fragments was greater than 5 mm., an additional session was performed, usually 1 week after the previous session. On the X-ray film obtained three months after EML treatment, 26 cases (57%) were completely free from stone concerments, 17 cases (37%) had stone fragments of equal to or less than 5 mm and 3 cases (6%) had ones of greater than 5 mm. Treatment of EML alone was performed in 44 cases (96%), while 2 cases (4%) required transurethral stone manipulation following EML.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2735248

  9. Microexplosions of boron and boron/carbon slurry droplets

    SciTech Connect

    Shwinchung Wong; Archeng Lin; Chunee Wu . Dept. of Power Mechanical Engineering Chung Cheng Inst. of Tech., Ta-Hsi . Dept. of Mechanical Engineering)

    1994-02-01

    Microexplosions of suspended boron/JP-10 and boron/carbon/JP-10 slurry droplets were studied for various solids loadings in the postflame region of a flat-flame burner. While the small-particle amorphous boron slurry droplets of a low solids loading shrank considerably before microexplosion, the droplets of high loadings held a nearly constant diameter before considerable swelling and drastic disruption occurred. The transient internal temperature distributions of small-particle amorphous boron slurry droplet were measured up to microexplosion with fine thermocouples at 1,000 K. Measurements indicated that temperatures at the outer region of the droplets rose continuously beyond the boiling point of JP-10, resulting from evaporation suppression by the surface shell textures. The key event appeared to be the evaporation-suppressed heating process, similar to the microexplosion mechanism proposed by Wong and Lin for Al/C/JP-10 slurries. The semiempirical microexplosion model of Wong and Lin was applied to an amorphous boron slurry. The calculations agreed satisfactorily with the experimental data at various droplet diameters and ambient temperatures. The effects of carbon black on microexplosion were also examined. For small-particle amorphous B/C/JP-10 slurries, a proportion of 8--12 wt.% carbon in the solids resulted in stronger microexplosions. For large-particle crystalline B/C/JP-10 slurries (mean boron particle diameter of about 20 [mu]m), the addition of an appropriate amount of carbon black always appeared beneficial.

  10. Autocatalytic fission-fusion microexplosions for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2000-12-01

    Autocatalytic fission-fusion microexplosions, mutually amplifying fission and fusion reactions, are proposed for propulsion. Autocatalytic fission-fusion microexplosions can be realized by imploding a shell of uranium 235 (or plutonium) onto a magnetized deuterium-tritium (DT) plasma. After having reached a high temperature, the DT plasma releases fusion neutrons making fission reactions in the fissile shell increasing the implosion velocity which in turn increases the fusion reaction rate until full ignition of the DT plasma. To implode the fissile shell a small amount of high explosive and to magnetize the DT plasma a small auxiliary electric discharge are required. In comparison to nuclear bomb pulse propulsion, the energy released per pulse is much smaller and the efficiency higher. And in comparison to laser- or particle-beam-ignited fusion microexplosions, there is no need for a massive fusion ignition driver.

  11. Subsurface observations of white shark Carcharodon carcharias predatory behaviour using an autonomous underwater vehicle.

    PubMed

    Skomal, G B; Hoyos-Padilla, E M; Kukulya, A; Stokey, R

    2015-12-01

    In this study, an autonomous underwater vehicle (AUV) was used to test this technology as a viable tool for directly observing the behaviour of marine animals and to investigate the behaviour, habitat use and feeding ecology of white sharks Carcharodon carcharias near Guadalupe Island off the coast of Mexico. During the period 31 October to 7 November 2013, six AUV missions were conducted to track one male and three female C. carcharias, ranging in estimated total length (LT ) from 3·9 to 5·7 m, off the north-east coast of Guadalupe Island. In doing so, the AUV generated over 13 h of behavioural data for C. carcharias at depths down to 90 m. The sharks remained in the area for the duration of each mission and moved through broad depth and temperature ranges from the surface to 163·8 m depth (mean ± s.d. = 112·5 ± 40·3 m) and 7·9-27·1° C (mean ± s.d. = 12·7 ± 2·9° C), respectively. Video footage and AUV sensor data revealed that two of the C. carcharias being tracked and eight other C. carcharias in the area approached (n = 17), bumped (n = 4) and bit (n = 9) the AUV during these tracks. This study demonstrated that an AUV can be used to effectively track and observe the behaviour of a large pelagic animal, C. carcharias. In doing so, the first observations of subsurface predatory behaviour were generated for this species. At its current state of development, this technology clearly offers a new and innovative tool for tracking the fine-scale behaviour of marine animals. PMID:26709209

  12. Physics of puffing and microexplosion of emulsion fuel droplets

    NASA Astrophysics Data System (ADS)

    Shinjo, J.; Xia, J.; Ganippa, L. C.; Megaritis, A.

    2014-10-01

    The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.

  13. Design, implementation and results of an autonomous hydrogeophysical monitoring system to monitor subsurface flow at the Hanford 300 area

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Ward, A.

    2007-12-01

    Time lapse electrical data (both self potential and electrical resistivity data) can provide information on subsurface flow, and over the last several years there has been an increase in the interest of automating hydrogeophysical data acquisition systems. Such systems require both adaptations to hardware and system setup, and a well designed computational backend allowing for the management and processing of such data. The 300 area at Hanford is the location of multiple DOE Office of Science and Environmental Management funded research efforts which seek to understand the groundwater and contaminant behavior at this site. The groundwater head distribution and resulting flow at this site is known to be strongly influenced by the adjacent Columbia river, and there is an interest in mapping out the spatiotemporal flow directions at this site. The site has been extensively characterized using electrical resistivity measurements, and the geometries and resistivities of subsurface formations are well known both from borings and geophysical characterization efforts. In addition, the overall Hanford 300 area contains 8 continuously recording wells which monitor groundwater level and conductivity at the site at 15 minute intervals, as well as adjacent monitoring stations which record river stage. An autonomous, one hundred electrode SP system was installed at the Hanford 300 area over a 300 x 300 m sub part of the site. Data from both the hydrological sensors and geophysical systems is collected automatically, and transferred to a central database server located at the Idaho National Laboratory. Once data is arrived, data qa/qc and data reduction are run automatically to create time lapse maps of self potential values. We will discuss the design, implementation and results obtained with this system (including ongoing modeling and inversion efforts for the data collected with these systems) as well as the potential of these hydrogeophysical monitoring systems to provide insights in to subsurface flow processes.

  14. Time Evolution of the Density Field of a Micro-Explosion Using Background Oriented Schlieren

    NASA Astrophysics Data System (ADS)

    Suriyanarayanan, P.; Venkatakrishnan, L.; Jagadeesh, G.

    In recent years micro-explosions have found interesting trans-disciplinary applications in the areas of food preservation,wood science, drug delivery, gene therapy and bio-medical applications [1, 2]. Generating controlled micro-explosions in a laboratory environment in a reliable manner is essential; to study and understand some of the near field flow dynamics associated with blast waves.

  15. Evidence of superdense aluminium synthesized by ultrafast microexplosion

    PubMed Central

    Vailionis, Arturas; Gamaly, Eugene G.; Mizeikis, Vygantas; Yang, Wenge; Rode, Andrei V.; Juodkazis, Saulius

    2011-01-01

    At extreme pressures and temperatures, such as those inside planets and stars, common materials form new dense phases with compacted atomic arrangements and unusual physical properties. The synthesis and study of new phases of matter at pressures above 100 GPa and temperatures above 104 K—warm dense matter—may reveal the functional details of planet and star interiors, and may lead to materials with extraordinary properties. Many phases have been predicted theoretically that may be realized once appropriate formation conditions are found. Here we report the synthesis of a superdense stable phase of body-centred-cubic aluminium, predicted by first-principles theories to exist at pressures above 380 GPa. The superdense Al phase was synthesized in the non-equilibrium conditions of an ultrafast laser-induced microexplosion confined inside sapphire (?-Al2O3). Confined microexplosions offer a strategy to create and recover high-density polymorphs, and a simple method for tabletop study of warm dense matter. PMID:21863012

  16. Evidence of superdense aluminium synthesized by ultrafast microexplosion.

    PubMed

    Vailionis, Arturas; Gamaly, Eugene G; Mizeikis, Vygantas; Yang, Wenge; Rode, Andrei V; Juodkazis, Saulius

    2011-01-01

    At extreme pressures and temperatures, such as those inside planets and stars, common materials form new dense phases with compacted atomic arrangements and unusual physical properties. The synthesis and study of new phases of matter at pressures above 100 GPa and temperatures above 10(4) K--warm dense matter--may reveal the functional details of planet and star interiors, and may lead to materials with extraordinary properties. Many phases have been predicted theoretically that may be realized once appropriate formation conditions are found. Here we report the synthesis of a superdense stable phase of body-centred-cubic aluminium, predicted by first-principles theories to exist at pressures above 380 GPa. The superdense Al phase was synthesized in the non-equilibrium conditions of an ultrafast laser-induced microexplosion confined inside sapphire (?-Al(2)O(3)). Confined microexplosions offer a strategy to create and recover high-density polymorphs, and a simple method for tabletop study of warm dense matter. PMID:21863012

  17. Thermal Imaging of Subsurface Coal Fires by means of an Unmanned Aerial Vehicle (UAV) in the Autonomous Province Xinjiang, PRC

    NASA Astrophysics Data System (ADS)

    Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph

    2010-05-01

    Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature measured at the surface underestimates the energy emitted by the subsurface coal fire. In addition, surface temperature is strongly influenced by solar radiation and the prevailing ambient conditions (wind, temperature, humidity). As a consequence there is no simple correlation between surface and subsurface soil temperature. Efforts have been made to set up a coupled energy transport and energy balance model for the near surface considering thermal conduction, solar irradiation, thermal radiative energy and ambient temperature so far. The model can help to validate space-born and UAV-born thermal imagery and link surface to subsurface temperature but depends on in-situ measurements for input parameter determination and calibration. Results obtained so far strongly necessitate the integration of different data sources (in-situ / remote; point / area; local / medium scale) to obtain a reliable energy release estimation which is then used for coal fire characterization.

  18. Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface

    NASA Astrophysics Data System (ADS)

    Rapp, Ludovic; Haberl, Bianca; Bradby, Jodie E.; Gamaly, Eugene G.; Williams, Jim S.; Rode, Andrei V.

    2014-01-01

    Ultrashort laser pulses tightly focused inside a transparent material present an example of laser interaction with matter where all the laser-affected material remains inside the bulk, thus the mass is conserved. In this paper, we present the case where the high intensity of a laser pulse is above the threshold for optical breakdown, and the material is ionised in the focal area. We consider in detail a special case where a micro-explosion is formed at the boundary of a silicon surface buried under a 10-micron-thick oxidised layer, providing the opportunity to affect the silicon crystal by a strong shock wave and creating new material phases from the plasma state. We summarise the main conclusions on ultrafast laser-induced material modifications in confined geometry and discuss the prospects of confined micro-explosion for forming new silicon phases.

  19. Microexplosions initiated by a microwave capillary torch on a metal surface at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A.

    2015-07-01

    The interaction of the plasma of a microwave capillary argon torch with a metal surface was studied experimentally. It is shown that the interaction of the plasma jet generated by the capillary plasma torch with the metal in atmospheric-pressure air leads to the initiation of microexplosions (sparks) on the metal surface. As a result, the initially smooth surface acquires a relief in the form of microtips and microcraters. The possibility of practical application of the observed phenomenon is discussed.

  20. Linking catchment-scale subglacial discharge to subsurface glacially modified waters near the front of a marine terminating outlet glacier using an autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Stevens, L. A.; Straneo, F.; Das, S. B.; Plueddemann, A. J.; Kukulya, A. L.; Morlighem, M.

    2015-09-01

    Measurements of near-ice (< 200 m) hydrography and near-terminus subglacial hydrology are lacking due in large part to the difficulty in working at the margin of calving glaciers. Here we pair detailed hydrographic and bathymetric measurements collected with an Autonomous Underwater Vehicle as close as 150 m from the ice/ocean interface of the Sarqardliup sermia/Sarqardleq Fjord system, West Greenland, with modeled and observed subglacial discharge locations and magnitudes. We find evidence of two main types of subsurface glacially modified water localized in space and with distinct properties that are consistent with runoff discharged at two locations along the grounded margin. These locations, in turn, correspond with two prominent subglacial subcatchments beneath Sarqardliup sermia. Thus, near-ice observations and subglacial discharge routing indicate that subglacial discharge from this glacier occurs at only two primary locations and gives rise to two distinct glacially modified waters. Furthermore, we show that the location with the largest discharge flux is associated with the lighter, fresher glacially modified watermass. This is qualitatively consistent with results from an idealized plume model.

  1. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion

    PubMed Central

    Rapp, L.; Haberl, B.; Pickard, C.J.; Bradby, J.E.; Gamaly, E.G.; Williams, J.S.; Rode, A.V.

    2015-01-01

    Ordinary materials can transform into novel phases at extraordinary high pressure and temperature. The recently developed method of ultrashort laser-induced confined microexplosions initiates a non-equilibrium disordered plasma state. Ultra-high quenching rates overcome kinetic barriers to the formation of new metastable phases, which are preserved in the surrounding pristine crystal for subsequent exploitation. Here we demonstrate that confined microexplosions in silicon produce several metastable end phases. Comparison with an ab initio random structure search reveals six energetically competitive potential phases, four tetragonal and two monoclinic structures. We show the presence of bt8 and st12, which have been predicted theoretically previously, but have not been observed in nature or in laboratory experiments. In addition, the presence of the as yet unidentified silicon phase, Si-VIII and two of our other predicted tetragonal phases are highly likely within laser-affected zones. These findings may pave the way for new materials with novel and exotic properties. PMID:26118985

  2. Warm dense matter at the bench-top: Fs-laser-induced confined micro-explosion

    SciTech Connect

    Gamaly, E.G.; Vailionis, A.; Mizeikis, V.; Yang, W.; Rode, A.V.; Juodkazis, S.

    2012-02-07

    We report the experimental evidence for creation of Warm Dense Matter (WDM) in ultrafast laser-induced micro-explosion inside a sapphire (Al{sub 2}O{sub 3}) crystal. We show that the WDM can be formed by a 100 nJ fs-pulse if the following conditions are satisfied: (1) the laser pulse is tightly focused to inside of the bulk of transparent material so the intensity at focus is two orders of magnitude higher than the optical breakdown threshold; (2) the pulse duration is shorter than the electron-ion energy exchange time; and, (3) the absorbed energy density is above the Young's modulus for the material studied. The empty void created inside a sapphire crystal surrounded by a shell of compressed material provides the direct evidence of the maximum pressure above the Young's modulus of sapphire ({approx}400 GPa). Synchrotron X-ray diffraction (XRD) analysis of the shell revealed the presence of novel super-dense bcc-Al crystalline phase predicted at pressures above {approx}380 GPa theoretically, which has never been observed experimentally before neither in nature in laboratory experiments. These results show that confined micro-explosion induced by tightly focused fs-laser inside a transparent solid opens new routes for synthesis of new materials and study of WDM at a laboratory bench-top.

  3. On Heating Large Bright Coronal Loops by Magnetic Microexplosions at their Feet

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L; Falconer, D. A.; Porter, Jason G.

    1999-01-01

    In previous work, by registering Yohkoh SXT coronal X-ray images with MSFC vector magnetograms, we found that: (1) many of the larger bright coronal loops rooted at one or both ends in an active region are rooted around magnetic islands of included polarity, (2) the core field encasing the neutral line encircling the island is strongly sheared, and (3) this sheared core field is the seat of frequent microflares. This suggests that the coronal heating in these extended bright loops is driven by many small explosive releases of stored magnetic energy from the sheared core field at their feet, some of which magnetic microexplosions also produce the microflare heating in the core fields. In this paper, we show that this scenario is feasible in terms of the energy Abstract: required for the observed coronal heating and the magnetic energy available in the observed sheared core fields. In a representative active region, from the X-ray and vector field data, we estimate the coronal heating consumption by a selected typical large bright loop, the coronal heating consumption by a typical microflare at the foot of this loop, the frequency of microflares at the foot, and the available magnetic energy in the microflaring core field. We find that: (1) the rate of magnetic energy release to power the microflares at the foot (approx. 6 x 10(ext 25)erg/s) is enough to also power the coronal heating in the body of the extended loop (approx. 2 x l0(exp 25 erg/s), and (2) there is enough stored magnetic energy in the sheared core field to sustain the microflaring and extended loop heating for about a day, which is a typical time for buildup of neutral-line magnetic shear in an active region. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  4. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  5. The droplet group microexplosions in water-in-oil emulsion sprays and their effects on diesel engine combustion

    SciTech Connect

    Sheng, H.Z.; Chen, L.; Zhang, Z.P.; Wu, C.K.; An, C.; Cheng, C.Q.

    1994-12-31

    To clarify the combustion mechanism of water-in-diesel fuel emulsion sprays and to evaluate the possible benefit of emulsions in practical usage, combustion bomb experiments, dynamic engine tests, and computer simulation were carried out, and some useful conclusions have been reached. The droplet group (lump-fashioned) microexplosions in water-in-diesel fuel emulsion sprays on an eddy-size scale during the atomization, evaporation, and combustion processes in a high-pressure, high-temperature bomb were observed with a multipulsed, off-axis, image-plane, ruby laser holocamera and a high-speed camera. The explosions eject droplet fragments from the spray region to several millimeters away, improving the fuel-air mixing process and speeding up the flame propagation. A no-water layer formed by a Hill vortex was also observed in emulsion droplets. The ambient temperature has the most important influence on the occurrence and violence of the microexplosion. Road-load-simulation engine tests were carried out on a dynamic engine test bed. The experimental results show that emulsion fuels have no significant influence on fuel consumption and reduce engine torque if no adjustment is made for the injection system, but that smoke emission is much improved when emulsion fuel is used. The combustion characteristics and the rate of heat release are also analyzed to reveal the difference between emulsion and diesel fuel. The relationships between the optimum water percentages and fuel consumption under various operating conditions were analyzed by numerical combustion modeling.

  6. Autonomic neuropathies

    NASA Technical Reports Server (NTRS)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  7. Autonomic Dysreflexia

    MedlinePLUS

    Autonomic Dysreflexia Spinal Cord Injury InfoSheet 15 W HAT IS A UTONOMIC D YSREFLEXIA ? Autonomic dysreflexia (AD), also known as hyperreflexia, is a condition unique to people with spinal cord injury (SCI). The condition occurs because the pathway for ...

  8. Autonomic hyperreflexia

    MedlinePLUS

    The most common cause of autonomic hyperreflexia is spinal cord injury. The nervous system of people with this condition ... Flushed (red) skin above the level of the spinal cord injury High blood pressure Slow pulse or fast pulse ...

  9. Autonomic neuropathy

    MedlinePLUS

    ... and pupils. Autonomic neuropathy may be seen with: Alcohol abuse Diabetes (diabetic neuropathy) Disorders involving scarring of ... dizziness when standing High blood pressure Shortness of breath with activity or exercise Bladder symptoms may include: ...

  10. Subsurface Mapping

    NASA Astrophysics Data System (ADS)

    1985-01-01

    Target areas for sinking base holes, underground pipelines, etc., can be identified with the assistance of NASA Ames developed technology, by Airborne Pipeline Services, Inc. Subsurface features are computer processed; the system can cover 250 miles a day and was first developed by Applied Science, Inc.

  11. Autonomous Soaring

    NASA Technical Reports Server (NTRS)

    Lin, Victor P.

    2007-01-01

    This viewgraph presentation reviews the autonomous soaring flight of unmanned aerial vehicles (UAV). It reviews energy sources for UAVs, and two examples of UAV's that used alternative energy sources, and thermal currents for soaring. Examples of flight tests, plans, and results are given. Ultimately, the concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology.

  12. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  13. Autonomous control

    NASA Technical Reports Server (NTRS)

    Brown, Barbara

    1990-01-01

    KSC has been developing the Knowledge-Based Autonomous Test Engineer (KATE), which is a tool for performing automated monitoring, diagnosis, and control of electromechanical devices. KATE employs artificial intelligence computing techniques to perform these functions. The KATE system consists of a generic shell and a knowledge base. The KATE shell is the portion of the system which performs the monitoring, diagnosis, and control functions. It is generic in the sense that it is application independent. This means that the monitoring activity, for instance, will be performed with the same algorithms regardless of the particular physical device being used. The knowledge base is the portion of the system which contains specific functional and behavorial information about the physical device KATE is working with. Work is nearing completion on a project at KSC to interface a Texas Instruments Explorer running a LISP version of KATE with a Generic Checkout System (GCS) test-bed to control a physical simulation of a shuttle tanking system (humorously called the Red Wagon because of its color and mobility). The Autonomous Control System (ACS) project supplements and extends the KATE/GCS project by adding three other major activities. The activities include: porting KATE from the Texas Instruments Explorer machine to an Intel 80386-based UNIX workstation in the LISP language; rewriting KATE as necessary to run on the same 80386 workstation but in the Ada language; and investigating software and techniques to translate ANSI Standard Common LISP to Mil Standard Ada. Primary goals of this task are as follows: (1) establish the advantages of using expert systems to provide intelligent autonomous software for Space Station Freedom applications; (2) determine the feasibility of using Ada as the run-time environment for model-based expert systems; (3) provide insight into the advantages and disadvantagesof using LISP or Ada in the run-time environment for expert systems; and (4) compare the performance of the 80386 processor to a symbolic processor as a delivery vehicle for expert systems.

  14. INL Autonomous Navigation System

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  15. Autonomic activity.

    PubMed

    Venables, P H

    1991-01-01

    A review such as this can do no more than provide an indication of the issues involved in using autonomic activity as a means of providing a "window on the brain." Several points arise. One of the most important is that of careful and appropriate use of techniques available. One well-known textbook of experimental psychology published some time ago advocated the use of two dimes applied to the palm of the hand for the measurement of electrodermal activity. It was this sort of recommendation that led to the use of psychophysiological measurement falling into disrepute. As indicated in the second section, it is important to understand fully the peripheral mechanisms involved before measurement of electrodermal activity can be usefully carried out. Appropriate use of silver/silver chloride electrodes and physiologically appropriate levels of saline in the electrolyte medium can lead to accurate and repeatable measurement where artefact is not carelessly introduced. Equally important is the context in which studies are carried out. The psychological invasiveness of the technique is important to recognize, and it is here that measurement of autonomic activity probably scores over other methods that are available insofar as very little restriction of the subject is required and the number of transducers that must be applied is minimal. The measurement of autonomic activity within the totality of the experimental context is all important. As an example Dawson and Schell investigated the SCR to words which had previously been associated with shock. When these words were presented to the ear to which attention was not directed in a dichotic listening paradigm, an SCR could be elicited although the subject was unaware of the presentation of the stimulus. The importance of the Dawson and Schell study was the care that they took to make sure that the subject really was unaware of the critical stimulus and had not momentarily switched attention from the attended ear. More important, their experiment, in contrast to some which had gone before, used a balanced design in which the critical stimuli were presented on different occasions to each ear. As a result of this it was found that critical stimuli, which were presented to the left ear, right hemisphere, gave rise to SCRs, even when the subject was not aware of their presentation, whereas stimuli presented to the right ear, left hemisphere elicited no response.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2035942

  16. Subsurface Microorganisms: Ecological significance

    SciTech Connect

    Fredrickson, Jim K.

    2003-01-15

    Terrestrial subsurface environments are inhabited almost exclusively by microorganisms and are in essence 'aphotic' ecosystems. Photosynthesis plays only an indirect role in subsurface microbial ecology, providing reduced organic compounds that can be metabolized by aerobic or anaerobic heterotrophic bacteria. Organic compounds are introduced into the subsurface, in general, via burial of detrital organic matter or as solutes that are transported to the subsurface in the form of dissolved organic carbon (DOC) in waters that percolate downward and recharge aquifers. Microbial generation of energy in deep subsurface environments results from biochemical reactions involving the oxidation of reduced compounds and the subsequent transfer of electrons to an adjacent oxidized compound. It is these metabolic processes that have a great impact on microbial ecological interactions in the subsurface and subsequent impacts of microbial metabolism on groundwater geochemistry and geological processes such as diagenesis (1). This article will provide an overview of the sources of energy that drive microbial metabolism in the subsurface and the physical constraints on the presence and function of subsurface microorganisms. The distributions and general characteristics of microorganisms in the subsurface will be examined and critical issues with regards to sampling the subsurface and enumerating associated microorganisms will be discussed. Finally, the extent of the subsurface biosphere on earth will be explored along with how this concept has focused the search for life elsewhere in the solar system to the subsurface of other planetary bodies.

  17. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  18. Autonomic Nervous System Disorders

    MedlinePLUS

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  19. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  20. Radar sensor for an autonomous Antarctic explorer

    NASA Astrophysics Data System (ADS)

    Foessel, Alex; Apostolopoulos, Dimi; Whittaker, William L.

    1999-01-01

    The localization and identification of antarctic meteorites is a task of great scientific interest and with implications to planetary exploration. Autonomous search for antarctic meteorites presents a profound technical challenge. Ground Penetrating Radar (GPR) holds the prospect to safeguard antarctic robot from terrain dangers and detect subsurface objects. In January 1998, we validated a 500 MHz GPR sensor as part of a field robotic technology demonstration at Patriot Hills, Antarctica. We deployed the sensor from a sled and integrate with position and attitude instruments to perform field measurements. Data was acquired under different conditions and in multiple locations. The radar detected hidden crevasses from 50 cm. distance, thus showing its merit as a rover safeguarding device. It also localized 5 cm. rocks ins now and ice. Moreover, the radar data was used to characterize snow/ice/bedrock stratigraphy. GPR position measurements enabled ground truth and mapping of the location of hazards and interesting subsurface objects and features.

  1. The MDS autonomous control architecture

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    We describe the autonomous control architecture for the JPL Mission Data System (MDS). MDS is a comprehensive new software infrastructure for supporting unmanned space exploration. The autonomous control architecture is one component of MDS designed to enable autonomous operations.

  2. Electrical Subsurface Grounding Analysis

    SciTech Connect

    J.M. Calle

    2000-11-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

  3. Ceramic subsurface marker prototypes

    SciTech Connect

    Lukens, C.E.

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  4. Subsurface Microbiology and Biogeochemistry

    SciTech Connect

    Fredrickson, Jim K.; Fletcher, Madilyn

    2001-05-01

    Jim contributed a chapter to this book, in addition to co-editing it with Madilyn Fletcher. Fredrickson, J. K., and M. Fletcher. (eds.) 2001 Subsurface Microbiology and Biogeochemistry. Wiley-Liss, Inc., New York.

  5. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of other habitats, the study of deep subsurface microbiology is still in its infancy.

  6. Autonomous multifunctional nanobrushes-autonomous materials

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.; Tius, Marcus A.

    2007-04-01

    In this work, taking advantage of carbon nanotubes' small size, and exceptional mechanical, chemical and electrical properties, we report on a series of nano-synthesis procedures that combine conventional chemical vapor deposition and selective substrate area growth followed by chemical functionalizations to fabricate functionalized nano-brushes from aligned carbon nanotube arrays and chemically selective functional groups. The high aspect ratio and small dimension, mechanical stability and flexibility, surface chemical and adhesive characteristics of carbon nanotubes provide opportunities to create nano-brushes with selected chemical functionalities. The nano-brushes are made from aligned multi-walled carbon nanotube bristles grafted onto long SiC fiber handles in various configurations and functionalized with various chemical functional groups. These nano-brushes can easily be manipulated physically, either manually or with the aid of motors. Here, we explain the autonomous characteristics of the functionalized nano-brushes employing functional chemical groups such that the nano-brush can potentially collect various metal particles, ions, and contaminants from liquid solutions and the air environment, autonomously. These functionalized multiwalled carbon nanotube based nano-brushes can work swiftly in both liquid and air environments. With surface modification and functionalization, the nanotube nano-brushes can potentially become a versatile nano-devices in many chemical and biological applications, where they can autonomously pick up the particles they encounter since they can be chemically programmed to function as Autonomous Chemical Nano Robots (ACNR).

  7. Site Recommendation Subsurface Layout

    SciTech Connect

    C.L. Linden

    2000-06-28

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M&O 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M&O 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU.

  8. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-11-16

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

  9. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

  10. Autonomous surveillance for biosecurity.

    PubMed

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance. PMID:25744760

  11. Autoimmune Autonomic Ganglionopathy

    MedlinePLUS

    ... Rare Disease Day More Search for News on Rare Diseases Search Go Advanced News Search About GARD ... Home Diseases Autoimmune autonomic ganglionopathy Diseases Genetic and Rare Diseases Information Center (GARD) Print friendly version Autoimmune ...

  12. Pure Autonomic Failure

    MedlinePLUS

    ... Families Recursos en Español Teaching Resources Medical and Science Glossaries More Quick Links Evaluating Health Information Financial ... Links About the National Center for Advancing Translational Sciences (NCATS) GARD Home Diseases Pure autonomic failure Diseases ...

  13. Autonomous video surveillance

    NASA Astrophysics Data System (ADS)

    Flinchbaugh, Bruce E.; Olson, Thomas J.

    1997-02-01

    This presentation highlights needs for autonomous video surveillance in the context of physical security for office buildings and surrounding areas. Physical security is described from an operational perspective, defining the principal responsibilities and concerns of a physical security system. Capabilities and limitations of current video surveillance technology are described, followed by examples of how computer vision techniques are being used and advanced for autonomous video surveillance systems.

  14. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  15. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  16. Best Practice -- Subsurface Investigations

    SciTech Connect

    Clark Scott

    2010-03-01

    These best practices for Subsurface Survey processes were developed at the Idaho National Laboratory (INL) and later shared and formalized by a sub-committee, under the Electrical Safety Committee of EFCOG. The developed best practice is best characterized as a Tier II (enhanced) survey process for subsurface investigations. A result of this process has been an increase in the safety and lowering of overall cost, when utility hits and their related costs are factored in. The process involves improving the methodology and thoroughness of the survey and reporting processes; or improvement in tool use rather than in the tools themselves. It is hoped that the process described here can be implemented at other sites seeking to improve their Subsurface Investigation results with little upheaval to their existing system.

  17. The Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  18. Subsurface electrical centrifugal pumps

    SciTech Connect

    Coltharp, E.D.

    1984-04-01

    The first subsurface electrical centrifugal pump for oilwell service in the U.S. was installed in the Russell field, KS, in 1926. Since that time many improvements have increased the efficiency of the pump at various pumping rates and depths in a variety of casing sizes. Each oil well has a different producing environment that the design engineer must consider to optimize the pumping installation for maximum service life. This paper discusses the major items involved in selection of a subsurface electrical centrifugal pump for a specific application. Additionally, installation, operating, and servicing practices are discussed.

  19. Autonomic cardiac innervation

    PubMed Central

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure. PMID:23872607

  20. Subsurface connection methods for subsurface heaters

    SciTech Connect

    Vinegar, Harold J.; Bass, Ronald Marshall; Kim, Dong Sub; Mason, Stanley Leroy; Stegemeier, George Leo; Keltner, Thomas Joseph; Carl, Jr., Frederick Gordon

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  1. Subsurface "radar" camera

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1977-01-01

    Long-wave length multiple-frequency radar is used for imaging and determining depth of subsurface stratified layers. Very-low frequency radar signals pinpoint below-ground strata via direct imagery techniques. Variation of frequency and scanning angle adjusts image depth and width.

  2. Tracking Subsurface Water

    USGS Multimedia Gallery

    Jeff Wynn, Herb Pierce and Chris Lockett (R to L) observe the incoming data used to measure water conductivity in the deep (900+ m) subsurface at Mount St. Helens. Water, from rain, melting snow and ice, seeps into the rubble of the crater floor. The water fills the pore spaces and interacts with st...

  3. Subsurface electrical centrifugal pumps

    SciTech Connect

    Coltharp

    1982-01-01

    This paper discusses the major items which the engineer must consider when selecting a subsurface electrical centrifugal pump for a specific applications. Additionally, installation, operating, and servicing practices are discussed. Only the standard equipment arrangement where the base of pump motor is located approximately 30 above the top of the producing formations is considered.

  4. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    SciTech Connect

    T. Wilson; R. Novotny

    1999-11-22

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES).

  5. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  6. Thinking Ahead: Autonomic Buildings

    SciTech Connect

    Brambley, Michael R. )

    2002-08-31

    The time has come for the commercial buildings industries to reconsider the very nature of the systems installed in facilities today and to establish a vision for future buildings that differs from anything in the history of human shelter. Drivers for this examination include reductions in building operation staffs; uncertain costs and reliability of electric power; growing interest in energy-efficient and resource-conserving?green? and?high-performance? commercial buildings; and a dramatic increase in security concerns since the tragic events of September 11. This paper introduces a new paradigm? autonomic buildings? which parallels the concept of autonomic computing, introduced by IBM as a fundamental change in the way computer networks work. Modeled after the human nervous system,?autonomic systems? themselves take responsibility for a large portion of their own operation and even maintenance. For commercial buildings, autonomic systems could provide environments that afford occupants greater opportunity to focus on the things we do in buildings rather than on operation of the building itself, while achieving higher performance levels, increased security, and better use of energy and other natural resources. The author uses the human body and computer networking to introduce and illustrate this new paradigm for high-performance commercial buildings. He provides a vision for the future of commercial buildings based on autonomicity, identifies current research that could contribute to this future, and highlights research and technological gaps. The paper concludes with a set of issues and needs that are key to converting this idealized future into reality.

  7. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1986-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  8. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  9. Cardiovascular autonomic neuropathy

    PubMed Central

    McCarty, Niamh

    2016-01-01

    Cardiovascular autonomic neuropathy often goes unrecognized. We present a case of a 22-year-old man with multiple manifestations of this disease, including weakness, dizziness, fatigue, tachycardia, abnormal QTc, and orthostasis, which occurred 2 years after his type 1 diabetes diagnosis. He exhibited parasympathetic denervation with resting tachycardia and exercise intolerance but also had evidence of orthostatic hypotension, which suggests sympathetic denervation. He did not have complete cardiovascular autonomic reflex testing, which would have been helpful, but improved with aggressive diabetes treatment and the increase of beta-blockade. It is important to identify these patients to understand their signs and symptoms and consider appropriate therapies.

  10. Autonomous electrochromic assembly

    DOEpatents

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  11. Subsurface tension permeametry

    NASA Astrophysics Data System (ADS)

    Or, D.; Shani, U.; Warrick, A. W.

    2000-08-01

    A new method for determining subsurface unsaturated hydraulic conductivity in situ was developed. Steady state flow conditions were established from spheroidal cavities under subatmospheric pressure. Several borehole tension permeameter devices were constructed and field tested in four different soils. While the capillary length parameter (?) values were generally consistent with previously reported values, the estimates for saturated hydraulic conductivity (Ks) were, in some cases, 1 order of magnitude lower than reported values for the test soils. In part, this can be traced to the rigid log linear shape of conductivity to pressure head used by the Gardner [1958] model, which produces overly small intercept values (K(0) = Ks) when measured for drier conditions. Transformation of the estimated parameters to the Brooks and Corey [1964] model seems to extend the useful range of the parameters. A potential combination of near-saturation measurements [Shani and Or, 1995] with the proposed method could lead to improved characterization of subsurface K(h).

  12. Subsurface Ice Probe

    NASA Technical Reports Server (NTRS)

    Hecht, Michael; Carsey, Frank

    2005-01-01

    The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.

  13. Autonomous Aerobraking for Mars Orbiters

    NASA Astrophysics Data System (ADS)

    Prince, J. L.

    2012-06-01

    Autonomous Aerobraking is a developing technology that will reduce cost and increase flexibility of an aerobraking orbiter around Mars. Currently in its second phase of development, autonomous aerobraking could be implemented for a 2018 Mars orbiter.

  14. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  15. Assisting Autonomous Performance.

    ERIC Educational Resources Information Center

    Allan, Margaret

    1997-01-01

    A study investigated the phenomenon of learner autonomy in six graduate students in a course in English for academic purposes. Students were developing skills in discourse intonation using a CD-ROM program, designed to encourage autonomous learning. Student interview data suggest that development of explicit knowledge of the language system can…

  16. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  17. Developing Autonomous Learners.

    ERIC Educational Resources Information Center

    Mulcahy, Robert F.

    1991-01-01

    Defines the concept of autonomous learning. Presents the Strategies Program for Effective Learning/Thinking (SPELT), including its underlying assumptions, instructional model, teacher training procedures, research findings, and anticipated future development. Research results include implications for learning-disabled and gifted students. (KS)

  18. Autonomous Optical Lunar Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; Crouse, Brian; D'souza, Chris

    2009-01-01

    The performance of optical autonomous navigation is investigated for low lunar orbits and for high elliptical lunar orbits. Various options for employing the camera measurements are presented and compared. Strategies for improving navigation performance are developed and applied to the Orion vehicle lunar mission

  19. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  20. Autonomous staff selection teams.

    PubMed

    Mills, J; Oie, M

    1992-12-01

    Although some other organizations encourage staff input into employee selection, the advanced care department at Bellin Hospital in Green Bay, Wisconsin has taken this concept to a new level by implementing an autonomous interview team. This team is empowered to make hiring decisions for all positions within the department without management influence or interference. PMID:1469489

  1. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  2. Applications of Subsurface Microscopy

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Farahi, R H; Voy, Brynn H; Thundat, Thomas George

    2012-01-01

    Exploring the interior of a cell is of tremendous importance in order to assess the effects of nanomaterials on biological systems. Outside of a controlled laboratory environment, nanomaterials will most likely not be conveniently labeled or tagged so that their translocation within a biological system cannot be easily identified and quantified. Ideally, the characterization of nanomaterials within a cell requires a nondestructive, label-free, and subsurface approach. Subsurface nanoscale imaging represents a real challenge for instrumentation. Indeed the tools available for high resolution characterization, including optical, electron or scanning probe microscopies, mainly provide topography images or require tagants that fluoresce. Although the intercellular environment holds a great deal of information, subsurface visualization remains a poorly explored area. Recently, it was discovered that by mechanically perturbing a sample, it was possible to observe its response in time with nanoscale resolution by probing the surface with a micro-resonator such as a microcantilever probe (Figure 1). Microcantilevers are used as the force-sensing probes in Atomic Force Microscopy (AFM), where the nanometer-scale probe tip on the microcantilever interacts with the sample in a highly controlled manner to produce high-resolution raster-scanned information of the sample surface. Taking advantage of the existing capabilities of AFM, we present a novel technique, Mode Synthesizing Atomic Force Microscopy (MSAFM) (Figure 1), which has the ability to probe subsurface structures such as non-labeled nanoparticles embedded in a cell. In MSAFM mechanical actuators (PZTs) excite the probe and the sample at different frequencies as depicted in Figure 1. The nonlinear nature of the tip-sample interaction, at the point of contact of the probe and the surface of the sample, in the contact mode AFM configuration permits the mixing of the elastic waves. The new dynamic system comprises new synthesized imaging modes, resulting from sum- and difference-frequency generation of the driving frequencies. The specific electronics of MSAFM allows the selection of individual modes and the monitoring of their amplitude and phase. From these quantities of various synthesized modes a series of images can be acquired. The new images contain subsurface information, thus revealing the presence of nanoparticles inside the cells.

  3. Mobile Autonomous Humanoid Assistant

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  4. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  5. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  6. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.

  7. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.

  8. Pharmacotherapy of autonomic failure

    PubMed Central

    Shibao, Cyndya; Okamoto, Luis; Biaggioni, Italo

    2012-01-01

    The clinical picture of autonomic failure is characterized by severe and disabling orthostatic hypotension. These disorders can develop as a result of damage of central neural pathways or peripheral autonomic nerves, caused either by a primary autonomic neurodegenerative disorder or secondary to systemic illness. Treatment should be focused on decreasing presyncopal symptoms instead of achieving blood pressure goals. Non-pharmacologic strategies such as physical counter-maneuvers, dietary changes (i.e. high salt diet, rapid water drinking or compression garments) are the first line therapy. Affected patients should be screened for co-morbid conditions such as post-prandial hypotension and supine hypertension that can worsen orthostatic hypotension if not treated. If symptoms are not controlled with these conservative measures the next step is to start pharmacological agents; these interventions should be aimed at increasing intravascular volume either by promoting water and salt retention (fludrocortisone) or by increasing red blood cell mass when anemia is present (recombinant erythropoietin). When pressor agents are needed, direct pressor agents (midodrine) or agents that potentiate sympathetic activity (atomoxetine, yohimbine, pyridostigmine) can be used. It is preferable to use short-acting pressor agents that can be taken on as needed basis in preparation for upright activities. PMID:21664375

  9. Trigeminal autonomic cephalalgias.

    PubMed

    Eller, M; Goadsby, P J

    2016-01-01

    The trigeminal autonomic cephalalgias (TACs) are a group of primary headache disorders characterised by lateralized symptoms: prominent headache and ipsilateral cranial autonomic features, such as conjunctival injection, lacrimation and rhinorrhea. The TACs are: cluster headache (CH), paroxysmal hemicrania (PH), short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT)/short-lasting neuralgiform headache attacks with cranial autonomic features (SUNA) and hemicrania continua (HC). Their diagnostic criteria are outlined in the International Classification of Headache Disorders, third edition-beta (ICHD-IIIb). These conditions are distinguished by their attack duration and frequency, as well as response to treatment. HC is continuous and by definition responsive to indomethacin. The main differential when considering this headache is chronic migraine. Other TACs are remarkable for their short duration and must be distinguished from other short-lasting painful conditions, such as trigeminal neuralgia and primary stabbing headache. Cluster headache is characterised by exquisitely painful attacks that occur in discrete episodes lasting 15-180 min a few times a day. In comparison, PH occurs more frequently and is of shorter duration, and like HC is responsive to indomethacin. SUNCT/SUNA is the shortest duration and highest frequency TAC; attacks can occur over a hundred times every day. PMID:24888770

  10. Autonomous star tracker performance

    NASA Astrophysics Data System (ADS)

    Rogers, Gabe D.; Schwinger, Marsha R.; Kaidy, James T.; Strikwerda, Thomas E.; Casini, Roberto; Landi, Andrea; Bettarini, Rossano; Lorenzini, Stefano

    2009-07-01

    First in NASA's New Frontiers series of missions, the New Horizons spacecraft was successfully launched on January 19, 2006. New Horizons is scheduled to perform a gravity assist at Jupiter on February 28, 2007, arrive at Pluto on July 14, 2015; completing an extended mission to at least one Kuiper Belt Object in subsequent years. The concept of operations requires a star tracker that operates autonomously both in a standard three-axis "staring" mode during operations involving instrument observations and in a spin stabilized mode during cruise operations with nominal rotational rates up to 5 rpm. With the support of the Johns Hopkins University Applied Physics Laboratory, Galileo Avionica redesigned their Autonomous Star Trackers (ASTR) to use time-delayed integration techniques to provide autonomous spacecraft attitude estimates at 10 Hz at spin rates up to 10 rpm. This paper will present the performance of the upgraded ASTR in both inertial stare and spin stabilized modes for the first six months of the mission. In addition, effects of the vehicle motion on performance, effects of stray light and direct Sun blinding on tracking and performance, and unanticipated "features" or characteristics of the ASTRs will be discussed.

  11. Subsurface safety valve

    SciTech Connect

    Wong, F. S.; Cerohman, L. F.

    1985-11-12

    A tubing retrievable surface controlled subsurface safety valve having a rotatable ball-type flow closure element is disclosed. The ball element is rotationally operated and guided by a pair of guide members fixed in the valve by a stop ring. The guide members co-act with the ball to provide the desired rotational movement as well as providing a movement limit stop to prevent rotational overtravel of the ball. The tubular operator means imparts longitudinal movement to the ball greater than the predetermined movement required to effect the desired ball rotation prior to engaging the stop ring. A locking sleeve having a longitudinal locking movement greater than the predetermined movement to rotate the ball open is provided. Operating movement of the locking sleeve uncovers a control fluid port for operating a supplemental subsurface valve operably secured with the valve. Prior to activating the locking sleeve to install the supplemental valve, the valve may be controlled through either of two conduits. Only one conduit may be used to operate the supplemental valve.

  12. Subsurface fracture spacing

    SciTech Connect

    Lorenz, J.C. ); Hill, R.E. )

    1991-01-01

    This study was undertaken in order to document and analyze the unique set of data on subsurface fracture characteristics, especially spacing, provided by the US Department of Energy's Slant Hole Completion Test well (SHCT-1) in the Piceance Basin, Colorado. Two hundred thirty-six (236) ft (71.9 m) of slant core and 115 ft (35.1 m) of horizontal core show irregular, but remarkably close, spacings for 72 natural fractures cored in sandstone reservoirs of the Mesaverde Group. Over 4200 ft (1280 m) of vertical core (containing 275 fractures) from the vertical Multiwell Experiment wells at the same location provide valuable information on fracture orientation, termination, and height, but only data from the SHCT-1 core allow calculations of relative fracture spacing. Within the 162-ft (49-m) thick zone of overlapping core from the vertical and deviated wellbores, only one fracture is present in vertical core whereas 52 fractures occur in the equivalent SHCT-1 core. The irregular distribution of regional-type fractures in these heterogeneous reservoirs suggests that measurements of average fracture spacing'' are of questionable value as direct input parameters into reservoir engineering models. Rather, deviated core provides data on the relative degree of fracturing, and confirms that cross fractures can be rare in the subsurface. 13 refs., 11 figs.

  13. Subsurface marker emplacement test plan

    SciTech Connect

    Adams, M.R.; Carlson, R.A.

    1986-05-30

    Current plans propose placing subsurface markers within protective barriers to deter potential human intrusion into disposed radioactive wastes. The subsurface markers would provide warning to the digging intruder should surface markers be removed, destroyed, or ignored. This plan sets forth procedures for testing the survivability of the subsurface markers during construction of the barrier. After the tests described herein are concluded, a decision can be made as to whether subsurface markers will require protection during barrier construction. If protection is required, additional tests will be needed to test the effectiveness of various protective approaches.

  14. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.

  15. Containment of subsurface contaminants

    DOEpatents

    Corey, J.C.

    1994-09-06

    A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

  16. Nonintrusive subsurface surveying capability

    SciTech Connect

    Tunnell, T.W.; Cave, S.P.

    1994-06-01

    This presentation describes the capabilities of a ground-pentrating radar (GPR) system developed by EG&G Energy Measurements (EM), a prime contractor to the Department of Energy (DOE). The focus of the presentation will be on the subsurface survey of DOE site TA-21 in Los Alamos, New Mexico. EG&G EM developed the system for the Department of Defense. The system is owned by the Department of the Army and currently resides at KO in Albuquerque. EM is pursuing efforts to transfer this technology to environmental applications such as waste-site characterization with DOE encouragement. The Army has already granted permission to use the system for the waste-site characterization activities.

  17. Containment of subsurface contaminants

    DOEpatents

    Corey, John C. (Aiken, SC)

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  18. SUBSURFACE FACILITY WORKER DOES ASSESSMENT

    SciTech Connect

    V. Arakali; E. Faillace; A. Linden

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel working in the subsurface facility of the repository performing emplacement, maintenance, and retrieval operations under normal conditions. The results of this calculation will be used to support the design of the subsurface facilities and provide occupational dose estimates for the License Application.

  19. Subsurface Samples: Collection and Processing

    SciTech Connect

    Long, Philip E.; Griffin, W. Timothy; Phelps, Tommy J.

    2002-12-01

    Microbiological data, interpretation, and conclusions from subsurface samples ultimately depend on the quality and representative character of the samples. Subsurface samples for environmental microbiology ideally contain only the microbial community and geochemical properties that are representative of the subsurface environment from which the sample was taken. To that end, sample contamination by exogenous microorganisms or chemical constituents must be eliminated or minimized, and sample analyses need to begin before changes in the microbial community or geochemical characteristics occur. This article presents sampling methods and sample processing techniques for collecting representative samples from a range of subsurface environments. Factors that should be considered when developing a subsurface sampling program are discussed, including potential benefits, costs, and limitations enabling researchers to evaluate the techniques that are presented and match them to their project requirements. Methods and protocols to address coring, sampling, processing and quality assessment issues are presented.

  20. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  1. Autonomous interplanetary constellation design

    NASA Astrophysics Data System (ADS)

    Chow, Cornelius Channing, II

    According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design methodology to the restricted Earth-Moon system, reveals optimal pairwise configurations for various L1, L2, and L5 (halo, axial, and vertical) periodic orbit families. Navigation accuracies, ranging from O (10+/-1) meters in position space, are obtained for the optimal Earth-Moon constellations, given measurement noise on the order of 1 meter.

  2. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  3. Autonomous target screeners

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. K.; Geokezas, M.; Soland, D. E.

    1980-11-01

    The basic functions of an autonomous target screener are: segmentation, feature generation, classification (detection/recognition), and symbol generation. Image segmentation is the function by which the image is segmented in background and objects of interest. The image information within these objects of interest is processed to generate a set of features which characterize the targets of interest. The classification function utilizes statistical/syntactic classifier for detection (target vs. clutter decision) and recognition (truck, tank, APC, etc.). A symbol indicating the position and type of target is displayed on the monitor for cueing purposes.

  4. Autonomous Phase Retrieval Calibration

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Chien, Steve A.; Castano, Rebecca; Gaines, Daniel M.; Doubleday, Joshua R.; Schoolcraft, Josua B.; Oyake, Amalaye; Vaughs, Ashton G.; Torgerson, Jordan L.

    2011-01-01

    The Palomar Adaptive Optics System actively corrects for changing aberrations in light due to atmospheric turbulence. However, the underlying internal static error is unknown and uncorrected by this process. The dedicated wavefront sensor device necessarily lies along a different path than the science camera, and, therefore, doesn't measure the true errors along the path leading to the final detected imagery. This is a standard problem in adaptive optics (AO) called "non-common path error." The Autonomous Phase Retrieval Calibration (APRC) software suite performs automated sensing and correction iterations to calibrate the Palomar AO system to levels that were previously unreachable.

  5. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  6. Experiments in autonomous robotics

    SciTech Connect

    Hamel, W.R.

    1987-01-01

    The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.

  7. Subsurface Ventilation System Description Document

    SciTech Connect

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  8. Subsurface Ventilation System Description Document

    SciTech Connect

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  9. Autonomous micro and nano sensors for upstream oil and gas

    NASA Astrophysics Data System (ADS)

    Chapman, David; Trybula, Walt

    2015-06-01

    This paper describes the development of autonomous electronic micro and nanoscale sensor systems for very harsh downhole oilfield conditions and provides an overview of the operational requirements necessary to survive and make direct measurements of subsurface conditions. One of several significant developmental challenges is selecting appropriate technologies that are simultaneously miniaturize-able, integrate-able, harsh environment capable, and economically viable. The Advanced Energy Consortium (AEC) is employing a platform approach to developing and testing multi-chip, millimeter and micron-scale systems in a package at elevated temperature and pressure in API brine and oil analogs, with the future goal of miniaturized systems that enable the collection of previously unattainable data. The ultimate goal is to develop subsurface nanosensor systems that can be injected into oil and gas well bores, to gather and record data, providing an unparalleled level of direct reservoir characterization. This paper provides a status update on the research efforts and developmental successes at the AEC.

  10. Autonomous Sample Acquisition for Planetary and Small Body Explorations

    NASA Technical Reports Server (NTRS)

    Ghavimi, Ali R.; Serricchio, Frederick; Dolgin, Ben; Hadaegh, Fred Y.

    2000-01-01

    Robotic drilling and autonomous sample acquisition are considered as the key technology requirements in future planetary or small body exploration missions. Core sampling or subsurface drilling operation is envisioned to be off rovers or landers. These supporting platforms are inherently flexible, light, and can withstand only limited amount of reaction forces and torques. This, together with unknown properties of sampled materials, makes the sampling operation a tedious task and quite challenging. This paper highlights the recent advancements in the sample acquisition control system design and development for the in situ scientific exploration of planetary and small interplanetary missions.

  11. Autonomic Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.; Miller, N. E.

    1994-01-01

    The purpose of this report is to describe how changes in autonomic nervous system responses may be used as an index of individual differences in adaptational capacity to space flight. During two separate Spacelab missions, six crewmembers wore an ambulatory monitoring system which enabled continuous recording of their physiological responses for up to twelve hours a day for 3 to 5 mission days. The responses recorded were electrocardiography, respiration wave form, skin conductance level, hand temperature, blood flow to the hands and triaxial accelerations of the head and upper body. Three of these subjects had been given training, before the mission, in voluntary control of these autonomic responses as a means of facilitating adaptation to space. Three of these subjects served as Controls, i.e., did not receive this training but took anti-motion sickness medication. Nearly 300 hours of flight data are summarized. These data were examined using time-series analyses, spectral analyses of heart rate variability, and analyses of variance. Information was obtained on responses to space motion sickness, inflight medications, circadian rhythm, workload and fatigue. Preliminary assessment was made on the effectiveness of self-regulation training as a means of facilitating adaptation, with recommendations for future flights.

  12. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  13. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  14. Nemesis Autonomous Test System

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  15. Subsurface Facility System Description Document

    SciTech Connect

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  16. Asteroid Exploration with Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.

  17. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  18. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  19. Autonomous docking ground demonstration

    NASA Technical Reports Server (NTRS)

    Lamkin, Steve L.; Le, Thomas Quan; Othon, L. T.; Prather, Joseph L.; Eick, Richard E.; Baxter, Jim M.; Boyd, M. G.; Clark, Fred D.; Spehar, Peter T.; Teters, Rebecca T.

    1991-01-01

    The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved.

  20. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  1. Adverse possession of subsurface minerals

    SciTech Connect

    Bowles, P.N.

    1983-01-01

    Concepts applicable to adverse possession of subsurface minerals are generally the same as those that apply to adverse possession of all real estate. However, special requirements must be satisfied in order to perfect title to subsurface minerals by adverse possession, particularly when there has been a severance of the true title between surface and subsurface minerals. In those jurisdictions where senior and junior grants came from the state or commonwealth covering the same or some of the same land and in those areas where descriptions of land were vague or not carefully drawn, adverse possession serves to solidify land and mineral ownership. There may be some public, social, and economic justification in rewarding, with good title, those who take possession and use real estate for its intended use, including the extraction of subsurface minerals. 96 refernces.

  2. Microbial Transport in the Subsurface

    SciTech Connect

    Ginn, Timothy R.; Camesano, Terri; Scheibe, Timothy D.; Nelson, Kirk B.; Clement, T. P.; Wood, Brian D.

    2005-12-01

    In this article we focus on the physical, chemical, and biological processes involved in the transport of bacteria in the saturated subsurface. We will first review conceptual models of bacterial phases in the subsurface, and then the processes controlling fate and transport on short (e.g., bioremediation) time scales. Finally we briefly review field bacterial transport experiments and discuss a number of issues that impact the application of current process descriptions and models at the field scale.

  3. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.

  4. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  5. Subsurface Geotechnical Parameters Report

    SciTech Connect

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce conclusions derived from the pool of data gathered within a full QA-controlled domain. An evaluation of the completeness of the current data is provided with respect to the requirements for geotechnical data to support design and performance assessment.

  6. Autonomous power system brassboard

    NASA Technical Reports Server (NTRS)

    Merolla, Anthony

    1992-01-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the brassboard hardware and intelligent controlling software, fault circuits have been developed and integrated as part of the brassboard. A description of these fault circuits and their function is included. The brassboard has become an extremely useful test facility, promoting artificial intelligence (AI) applications for power distribution systems. However, there are elements of the brassboard which could be enhanced, thus improving system performance. Modifications and enhancements to improve the brassboard's operation are discussed.

  7. Autonomous power system brassboard

    NASA Astrophysics Data System (ADS)

    Merolla, Anthony

    1992-10-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the brassboard hardware and intelligent controlling software, fault circuits have been developed and integrated as part of the brassboard. A description of these fault circuits and their function is included. The brassboard has become an extremely useful test facility, promoting artificial intelligence (AI) applications for power distribution systems.

  8. Autonomic Dysregulation in Multiple Sclerosis

    PubMed Central

    Pintér, Alexandra; Cseh, Domonkos; Sárközi, Adrienn; Illigens, Ben M.; Siepmann, Timo

    2015-01-01

    Multiple sclerosis (MS) is a chronic, progressive central neurological disease characterized by inflammation and demyelination. In patients with MS, dysregulation of the autonomic nervous system may present with various clinical symptoms including sweating abnormalities, urinary dysfunction, orthostatic dysregulation, gastrointestinal symptoms, and sexual dysfunction. These autonomic disturbances reduce the quality of life of affected patients and constitute a clinical challenge to the physician due to variability of clinical presentation and inconsistent data on diagnosis and treatment. Early diagnosis and initiation of individualized interdisciplinary and multimodal strategies is beneficial in the management of autonomic dysfunction in MS. This review summarizes the current literature on the most prevalent aspects of autonomic dysfunction in MS and provides reference to underlying pathophysiological mechanisms as well as means of diagnosis and treatment. PMID:26213927

  9. Autonomous underwater barcode recognition

    NASA Astrophysics Data System (ADS)

    Schulze, Karl R.

    2003-11-01

    Wide area symbol recognition is a task that plagues many autonomous vehicles. A process is needed first to recognize if the symbol is present, and if so where it is. Once the symbol's position is detected it must be analyzed and recognized. In this scenario we have a submersible attempting to locate man made objects on the bottom of a large water basin. These man made objects have bar codes on them that need to be read and the position of the code needs to be recorded relative to where it is in the entire pond. A two step process has been developed to allow the position recognition within a frame to be dealt with on a separate DSP associated with one of three total cameras. The object recognition is then dealt with on a high speed computer aboard the vehicle to read the proper code. The reading is done using a statistics based approach that assumes a noisy, but contrasting background. This approach has proven to be effective in environments in which the background has very little ordered noise, such as the bottom of lakes and ponds, but requires very high clarity in order to capture a suitable image.

  10. Autonomous Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirovi?, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-04-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  11. Autonomous landing guidance program

    NASA Astrophysics Data System (ADS)

    Brown, John A.

    1996-05-01

    The Autonomous Landing Guidance program is partly funded by the US Government under the Technology Reinvestment Project. The program consortium consists of avionics and other equipment vendors, airlines and the USAF. A Sextant Avionique HUD is used to present flight symbology in cursive form as well as millimeter wave radar imagery from Lear Astronics equipment and FLIR Systems dual-channel, forward-looking, infrared imagery. All sensor imagery is presented in raster form. A future aim is to fuse all imagery data into a single presentation. Sensor testing has been accomplished in a Cessna 402 operated by the Maryland Advanced Development Laboratory. Development testing is under way in a Northwest Airlines simulator equipped with HUD and image simulation. Testing is also being carried out using United Airlines Boeing 727 and USAF C-135C (Boeing 707) test aircraft. The paper addresses the technology utilized in sensory and display systems as well as modifications made to accommodate the elements in the aircraft. Additions to the system test aircraft include global positioning systems, inertial navigation systems and extensive data collection equipment. Operational philosophy and benefits for both civil and military users are apparent. Approach procedures have been developed allowing use of Category 1 ground installations in Category 3 conditions.

  12. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  13. Is paramecium swimming autonomic?

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; Toplosky, Norman; Hansen, Joshua

    2010-11-01

    We seek to explore if the swimming of paramecium has an underlying autonomic mechanism. Such robotic elements may be useful in capturing the disturbance field in an environment in real time. Experimental evidence is emerging that motion control neurons of other animals may be present in paramecium as well. The limit cycle determined using analog simulation of the coupled nonlinear oscillators of olivo-cerebellar dynamics (ieee joe 33, 563-578, 2008) agrees with the tracks of the cilium of a biological paramecium. A 4-motor apparatus has been built that reproduces the kinematics of the cilium motion. The motion of the biological cilium has been analyzed and compared with the results of the finite element modeling of forces on a cilium. The modeling equates applied torque at the base of the cilium with drag, the cilium stiffness being phase dependent. A low friction pendulum apparatus with a multiplicity of electromagnetic actuators is being built for verifying the maps of the attractor basin computed using the olivo-cerebellar dynamics for different initial conditions. Sponsored by ONR 33.

  14. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  15. Genetic engineering and autonomous agency.

    PubMed

    Barclay, Linda

    2003-01-01

    In this paper I argue that the genetic manipulation of sexual orientation at the embryo stage could have a detrimental effect on the subsequent person's later capacity for autonomous agency. By focussing on an example of sexist oppression I show that the norms and expectations expressed with this type of genetic manipulation can threaten the development of autonomous agency and the kind of social environment that makes its exercise likely. PMID:14989287

  16. Tangible Exploration of Subsurface Data

    NASA Astrophysics Data System (ADS)

    Petrasova, A.; Harmon, B.; Mitasova, H.; White, J.

    2014-12-01

    Since traditional subsurface visualizations using 2D maps, profiles or charts can be difficult to interpret and often do not convey information in an engaging form, scientists are interested in developing alternative visualization techniques which would help them communicate the subsurface volume data with students and general public. We would like to present new technique for interactive visualization of subsurface using Tangible geospatial modeling and visualization system (Tangeoms). It couples a physical, three-dimensional model with geospatial modeling and analysis through a cycle of scanning and projection. Previous applications of Tangeoms were exploring the impact of terrain modifications on surface-based geophysical processes, such as overland water flow, sediment transport, and also on viewsheds, cast shadows or solar energy potential. However, Tangeoms can serve as a tool for exploring subsurface as well. By creating a physical sand model of a study area, removing the sand from different parts of the model and projecting the computed cross-sections, we can look under the ground as if we were at an excavation site, and see the actual data represented as a 3D raster in that particular part of the model. Depending on data availability, we can also incorporate temporal dimension. Our method is an intuitive and natural way of exploring subsurface data and for users, it represents an alternative to more abstract 3D computer visualization tools, by offering direct, tangible interface.

  17. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  18. ESF Subsurface Standby Generator Analysis

    SciTech Connect

    L. Fernandez

    1998-04-17

    The purpose of this analysis is to outline and recommend two standby generator systems. These systems shall provide power during a utility outage to critical Alcove No.5's thermal test loads and to subsurface flow through ventilation loads. Critical loads that will be supported by these generator systems will be identified and evaluated. Additionally, other requirements from the Exploratory Studies Facilities Design Requirements (ESFDR) document will be evaluated. Finally, the standby generator systems will be integrated into the existing ESF subsurface distribution system. The objective of this analysis is to provide design inputs for an efficient and reliable standby generator systems which will provide power for critical loads during a power outage; specifically, Alcove No.5's thermal test loads and the subsurface flow through ventilation loads. Additionally, preliminary one-line diagrams will be developed using this analysis as a primary input.

  19. Autonomous Byte Stream Randomizer

    NASA Technical Reports Server (NTRS)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  20. Towed Subsurface Optical Communications Buoy

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert C.; Farr, William H.

    2013-01-01

    The innovation allows critical, high-bandwidth submarine communications at speed and depth. This reported innovation is a subsurface optical communications buoy, with active neutral buoyancy and streamlined flow surface veins for depth control. This novel subsurface positioning for the towed communications buoy enables substantial reduction in water-absorption and increased optical transmission by eliminating the intervening water absorption and dispersion, as well as by reducing or eliminating the beam spread and the pulse spreading that is associated with submarine-launched optical beams.

  1. Towards an Autonomic Cluster Management System (ACMS) with Reflex Autonomicity

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Hinchey, Mike; Sterritt, Roy

    2005-01-01

    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of providing a fault-tolerant environment and achieving significant computational capabilities for high-performance computing applications. However, the task of manually managing and configuring a cluster quickly becomes daunting as the cluster grows in size. Autonomic computing, with its vision to provide self-management, can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Autonomic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management and its evolution to include reflex reactions via pulse monitoring.

  2. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    SciTech Connect

    D.W. Markman

    2001-08-06

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M&O 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M&O 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree of difficulty and complexity in determining requirements in adapting existing data communication highways to support the subsurface visual alarm system. These requirements would include such things as added or new communication cables, added Programmable Logic Controller (PLC), Inputs and Outputs (I/O), and communication hardware components, and human machine interfaces and their software operating system. (4) Select the best data communication highway system based on this review of adapting or integrating with existing data communication systems.

  3. Autonomous mobile robots: Vehicles with cognitive control

    SciTech Connect

    Meystel, A.

    1987-01-01

    This book explores a new rapidly developing area of robotics. It describes the state-of-the-art intelligence control, applied machine intelligence, and research and initial stages of manufacturing of autonomous mobile robots. A complete account of the theoretical and experimental results obtained during the last two decades together with some generalizations on Autonomous Mobile Systems are included in this book. Contents: Introduction; Requirements and Specifications; State-of-the-art in Autonomous Mobile Robots Area; Structure of Intelligent Mobile Autonomous System; Planner, Navigator; Pilot; Cartographer; Actuation Control; Computer Simulation of Autonomous Operation; Testing the Autonomous Mobile Robot; Conclusions; Bibliography.

  4. Autonomous hazard detection and avoidance

    NASA Technical Reports Server (NTRS)

    Pien, Homer

    1992-01-01

    During GFY 91, Draper Laboratory was awarded a task by NASA-JSC under contract number NAS9-18426 to study and evaluate the potential for achieving safe autonomous landings on Mars using an on-board autonomous hazard detection and avoidance (AHDA) system. This report describes the results of that study. The AHDA task had four objectives: to demonstrate, via a closed-loop simulation, the ability to autonomously select safe landing sites and the ability to maneuver to the selected site; to identify key issues in the development of AHDA systems; to produce strawman designs for AHDA sensors and algorithms; and to perform initial trade studies leading to better understanding of the effect of sensor/terrain/viewing parameters on AHDA algorithm performance. This report summarizes the progress made during the first year, with primary emphasis on describing the tools developed for simulating a closed-loop AHDA landing. Some cursory performance evaluation results are also presented.

  5. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    PubMed Central

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  6. Remote real-time monitoring of subsurface landfill gas migration.

    PubMed

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  7. Discerning non-autonomous dynamics

    NASA Astrophysics Data System (ADS)

    Clemson, Philip T.; Stefanovska, Aneta

    2014-09-01

    Structure and function go hand in hand. However, while a complex structure can be relatively safely broken down into the minutest parts, and technology is now delving into nanoscales, the function of complex systems requires a completely different approach. Here the complexity clearly arises from nonlinear interactions, which prevents us from obtaining a realistic description of a system by dissecting it into its structural component parts. At best, the result of such investigations does not substantially add to our understanding or at worst it can even be misleading. Not surprisingly, the dynamics of complex systems, facilitated by increasing computational efficiency, is now readily tackled in the case of measured time series. Moreover, time series can now be collected in practically every branch of science and in any structural scale-from protein dynamics in a living cell to data collected in astrophysics or even via social networks. In searching for deterministic patterns in such data we are limited by the fact that no complex system in the real world is autonomous. Hence, as an alternative to the stochastic approach that is predominantly applied to data from inherently non-autonomous complex systems, theory and methods specifically tailored to non-autonomous systems are needed. Indeed, in the last decade we have faced a huge advance in mathematical methods, including the introduction of pullback attractors, as well as time series methods that cope with the most important characteristic of non-autonomous systems-their time-dependent behaviour. Here we review current methods for the analysis of non-autonomous dynamics including those for extracting properties of interactions and the direction of couplings. We illustrate each method by applying it to three sets of systems typical for chaotic, stochastic and non-autonomous behaviour. For the chaotic class we select the Lorenz system, for the stochastic the noise-forced Duffing system and for the non-autonomous the Poincaré oscillator with quasi-periodic forcing. In this way we not only discuss and review each method, but also present properties which help to clearly distinguish the three classes of systems when analysed in an inverse approach-from measured, or numerically generated data. In particular, this review provides a framework to tackle inverse problems in these areas and clearly distinguish non-autonomous dynamics from chaos or stochasticity.

  8. Intelligent, autonomous systems in space

    NASA Technical Reports Server (NTRS)

    Lum, H.; Heer, E.

    1988-01-01

    The Space Station is expected to be equipped with intelligent, autonomous capabilities; to achieve and incorporate these capabilities, the required technologies need to be identitifed, developed and validated within realistic application scenarios. The critical technologies for the development of intelligent, autonomous systems are discussed in the context of a generalized functional architecture. The present state of this technology implies that it be introduced and applied in an evolutionary process which must start during the Space Station design phase. An approach is proposed to accomplish design information acquisition and management for knowledge-base development.

  9. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  10. Progress towards autonomous, intelligent systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry; Heer, Ewald

    1987-01-01

    An aggressive program has been initiated to develop, integrate, and implement autonomous systems technologies starting with today's expert systems and evolving to autonomous, intelligent systems by the end of the 1990s. This program includes core technology developments and demonstration projects for technology evaluation and validation. This paper discusses key operational frameworks in the content of systems autonomy applications and then identifies major technological challenges, primarily in artificial intelligence areas. Program content and progress made towards critical technologies and demonstrations that have been initiated to achieve the required future capabilities in the year 2000 era are discussed.

  11. Contingency Software in Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn; Patterson-Hine, Ann

    2006-01-01

    This viewgraph presentation reviews the development of contingency software for autonomous systems. Autonomous vehicles currently have a limited capacity to diagnose and mitigate failures. There is a need to be able to handle a broader range of contingencies. The goals of the project are: 1. Speed up diagnosis and mitigation of anomalous situations.2.Automatically handle contingencies, not just failures.3.Enable projects to select a degree of autonomy consistent with their needs and to incrementally introduce more autonomy.4.Augment on-board fault protection with verified contingency scripts

  12. A Robust Compositional Architecture for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara

    2006-01-01

    Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.

  13. Method of installing subsurface barrier

    SciTech Connect

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  14. The Functioning of Autonomous Colleges

    ERIC Educational Resources Information Center

    Rao, V. Pala Prasada; Rao, Digumarti Bhaskara

    2012-01-01

    The college gets separated from the university, though not completely, when it is an autonomous college, which is practice in India. Academic package will become flexible and the decision-making is internalized, changes and updating could be easily carried out, depending on the need as reflected from the feedback taken from alumni, user sectors,…

  15. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  16. The autonomic phenotype of rumination.

    PubMed

    Ottaviani, Cristina; Shapiro, David; Davydov, Dmitry M; Goldstein, Iris B; Mills, Paul J

    2009-06-01

    Recent studies suggest that ruminative thoughts may be mediators of the prolonged physiological effects of stress. We hypothesized that autonomic dysregulation plays a role in the relation between rumination and health. Rumination was induced by an anger-recall task in 45 healthy subjects. Heart rate variability (HRV), baroreflex sensitivity (BRS), and baroreflex effectiveness index (BEI) change scores were evaluated to obtain the autonomic phenotype of rumination. Personality traits and endothelial activation were examined for their relation to autonomic responses during rumination. Degree of endothelial activation was assessed by circulating soluble intercellular adhesion molecule-1 (sICAM-1). Vagal withdrawal during rumination was greater for women than men. Larger decreases in the high frequency component of HRV were associated with higher levels of anger-in, depression, and sICAM-1 levels. BRS reactivity was negatively related to trait anxiety. BEI reactivity was positively related to anger-in, hostility, anxiety, and depression. Lower BEI and BRS recovery were associated with lower social desirability and higher anger-out, anxiety, and depression. Findings suggest that the autonomic dysregulation that characterizes rumination plays a role in the relationships between personality and cardiovascular health. PMID:19272312

  17. An Autonomous Spacecraft Agent Prototype

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Bernard, Douglas E.; Chien, Steve A.; Gat, Erann; Muscettola, Nicola; Nayak, P. Pandurang; Wagner, Michael D.; Williams, Brian C.

    1997-01-01

    This paper describes the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. This architecture integrates traditional real-time monitoring and control with constraint-based planning and scheduling, robust multi-threaded execution, and model-based diagnosis and reconfiguration.

  18. The Functioning of Autonomous Colleges

    ERIC Educational Resources Information Center

    Rao, V. Pala Prasada; Rao, Digumarti Bhaskara

    2012-01-01

    The college gets separated from the university, though not completely, when it is an autonomous college, which is practice in India. Academic package will become flexible and the decision-making is internalized, changes and updating could be easily carried out, depending on the need as reflected from the feedback taken from alumni, user sectors,…

  19. Algorithms for autonomous star identification

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Algorithms for onboard autonomous star identification are presented. The algorithms are applicable to two types of spacecraft missions, those flown with nearly inertially fixed attitude (solar maximum mission type); and those flown with smoothly time varying attitude (LANDSAT-D type).

  20. Linguistic geometry for autonomous navigation

    SciTech Connect

    Stilman, B.

    1995-09-01

    To discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, we develop a formal theory, the Linguistic Geometry. This paper reports two examples of application of Linguistic Geometry to autonomous navigation of aerospace vehicles that demonstrate dramatic search reduction.

  1. Semi-Autonomous Study Groups.

    ERIC Educational Resources Information Center

    Hogan, Christine

    1999-01-01

    Innovations in the teaching and learning strategies used in an organizational-behavior course developed for the business school of Curtin University of Technology (Australia) are detailed. Faculty (n=18) and students (n=800) involved in the course-development process were organized into semi-autonomous study groups and learned to cope with group…

  2. Computing architecture for autonomous microgrids

    SciTech Connect

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the microgrid.

  3. INL Subsurface Wireless Sensor Platform

    SciTech Connect

    Dennis C. Kunerth; John M. Svoboda; James T. Johnson

    2005-10-01

    The Idaho National Laboratory is developing a versatile micro-power sensor interface platform for periodic subsurface sensing of environmental variables important to waste disposal sites such as volumetric moisture, water potential, and temperature. The key characteristics of the platform architecture are that the platform is passive until externally energized --no internal power source is required -- and that it communicates with a "reader" via short-range telemetry - no wires penetrate the subsurface. Other significant attributes include the potential for a long service life and a compact size that makes it well suited for retrofitting existing landfill structures. Functionally, the sensor package is "read" by a short-range induction coil that activates and powers the sensor platform as well as detects the sensor output via a radio frequency signal generated by the onboard programmable interface controller microchip. As a result, the platform has a functional subsurface communication range of approximately 10 to 12 ft. and can only accept sensors that require low power to operate.

  4. Computer stereograms of subsurface geology

    SciTech Connect

    Todd, H.W.

    1988-01-01

    Three-dimensional stereoscopic illustrations formerly have been a standard part of the subsurface geologist's toolkit. Now the immense complexity of stereograms can be resolved by inexpensive software on a personal computer. The construction technique is a simple combination of known technology. The subsurface geologist can gain an entirely new viewpoint. These new illustrations yield new patterns, new relationships, and prospective anomalies. Stereograms are particularly effective for displaying and interpreting complex geology in a simple way. Experienced geologists sometimes can fail to appreciate the vertical relationships involved in contour maps. Stereograms provide a more natural view of the data. They are useful also for presenting subsurface geology to persons unfamiliar with standard contouring methods and for clarifying vertical relationships to more experienced viewers. Contour maps and block diagrams were constructed with readily available, inexpensive software using kriging algorithms. Stereo pairs were created by rotating the blocks 4 degrees within the computer program. The pairs were positioned 2.5 in. apart to match an average viewer's interpupillary distance. The three-dimensional blocks may be viewed with a stereoscope or with naked eyes focused upon a distant point.

  5. Geophysical characterization of subsurface barriers

    SciTech Connect

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  6. Detection of Subsurface Liquid Water Using Magnetotellurics on Mars

    NASA Astrophysics Data System (ADS)

    Delory, G. T.; Grimm, R. E.; Nielsen, T.; Farrell, W. M.

    2005-12-01

    The characterization of past or present water on Mars remains a core goal of the Mars exploration program, representing a cross-cutting theme that ties together investigations relevant to life, climate, geology, and the identification of sites for future exploratory landed missions. Passive, low frequency electromagnetic (EM) soundings of the subsurface can identify salinated liquid water at depths ranging from hundreds of meters to ~10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low frequency electric and magnetic field sensors capable of being deployed from a lander or rover. With support from both the NASA Planetary Instrument Definition and Development Program (PIDDP) and Mars Instrument Development Program (MIDP), we are currently developing an autonomous sensor platform that can perform magnetotelluric soundings in environments such as Mars within the constraints of current lander or rover architectures. Once fully developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, performing deep soundings at sites identified as high priority areas by orbital radars or detecting subsurface water in environments that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low-frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest. We will describe current results obtained with our prototype systems from various terrestrial field sites, discuss sources of passive EM energy on Mars, and how these measurements might be conducted on future missions.

  7. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  8. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2012-01-01

    The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.

  9. Autonomic Computing: Freedom or a Threat?

    SciTech Connect

    Fink, Glenn A.; Frincke, Deb

    2007-12-01

    No longer is the question whether autonomic computing will gain general acceptance but when. Experts expect autonomic computing to be widely used within 10 years. When it does become mainstream, how will autonomics change system administration and corporations, and will the change be for better or worse? The answer depends on how well we anticipate the limitations of what autonomic systems are suited to do, whether we can collectively address the vulnerabilities of autonomic approaches as we draw upon the advantages, and whether administrators, companies, partners, and users are prepared for the transition. This article presents some design considerations to address the first two issues and some suggested survival techniques for the third.

  10. Autonomous and Remote-Controlled Airborne and Ground-Based Robotic Platforms for Adaptive Geophysical Surveying

    NASA Astrophysics Data System (ADS)

    Spritzer, J. M.; Phelps, G. A.

    2011-12-01

    Low-cost autonomous and remote-controlled robotic platforms have opened the door to precision-guided geophysical surveying. Over the past two years, the U.S. Geological Survey, Senseta, NASA Ames Research Center, and Carnegie Mellon University Silicon Valley, have developed and deployed small autonomous and remotely controlled vehicles for geophysical investigations. The purpose of this line of investigation is to 1) increase the analytical capability, resolution, and repeatability, and 2) decrease the time, and potentially the cost and map-power necessary to conduct near-surface geophysical surveys. Current technology has advanced to the point where vehicles can perform geophysical surveys autonomously, freeing the geoscientist to process and analyze the incoming data in near-real time. This has enabled geoscientists to monitor survey parameters; process, analyze and interpret the incoming data; and test geophysical models in the same field session. This new approach, termed adaptive surveying, provides the geoscientist with choices of how the remainder of the survey should be conducted. Autonomous vehicles follow pre-programmed survey paths, which can be utilized to easily repeat surveys on the same path over large areas without the operator fatigue and error that plague man-powered surveys. While initial deployments with autonomous systems required a larger field crew than a man-powered survey, over time operational experience costs and man power requirements will decrease. Using a low-cost, commercially available chassis as the base for autonomous surveying robotic systems promise to provide higher precision and efficiency than human-powered techniques. An experimental survey successfully demonstrated the adaptive techniques described. A magnetic sensor was mounted on a small rover, which autonomously drove a prescribed course designed to provide an overview of the study area. Magnetic data was relayed to the base station periodically, processed and gridded. A target was located in the subsurface, and a second, higher-resolution survey was programmed and executed to give detailed data over the newly-found target.

  11. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy

    PubMed Central

    Jin, Heung Yong; Baek, Hong Sun

    2015-01-01

    Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN). Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed. PMID:26706915

  12. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy.

    PubMed

    Jin, Heung Yong; Baek, Hong Sun; Park, Tae Sun

    2015-12-01

    Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN). Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed. PMID:26706915

  13. Experiences in Benchmarking of Autonomic Systems

    NASA Astrophysics Data System (ADS)

    Etchevers, Xavier; Coupaye, Thierry; Vachet, Guy

    Autonomic computing promises improvements of systems quality of service in terms of availability, reliability, performance, security, etc. However, little research and experimental results have so far demonstrated this assertion, nor provided proof of the return on investment stemming from the efforts that introducing autonomic features requires. Existing works in the area of benchmarking of autonomic systems can be characterized by their qualitative and fragmented approaches. Still a crucial need is to provide generic (i.e. independent from business, technology, architecture and implementation choices) autonomic computing benchmarking tools for evaluating and/or comparing autonomic systems from a technical and, ultimately, an economical point of view. This article introduces a methodology and a process for defining and evaluating factors, criteria and metrics in order to qualitatively and quantitatively assess autonomic features in computing systems. It also discusses associated experimental results on three different autonomic systems.

  14. An Autonomously Reciprocating Transmembrane Nanoactuator.

    PubMed

    Watson, Matthew A; Cockroft, Scott L

    2016-01-01

    Biological molecular machines operate far from equilibrium by coupling chemical potential to repeated cycles of dissipative nanomechanical motion. This principle has been exploited in supramolecular systems that exhibit true machine behavior in solution and on surfaces. However, designed membrane-spanning assemblies developed to date have been limited to simple switches or stochastic shuttles, and true machine behavior has remained elusive. Herein, we present a transmembrane nanoactuator that turns over chemical fuel to drive autonomous reciprocating (back-and-forth) nanomechanical motion. Ratcheted reciprocating motion of a DNA/PEG copolymer threaded through a single ?-hemolysin pore was induced by a combination of DNA strand displacement processes and enzyme-catalyzed reactions. Ion-current recordings revealed saw-tooth patterns, indicating that the assemblies operated in autonomous, asymmetric cycles of conformational change at rates of up to one cycle per minute. PMID:26661295

  15. Validating the Autonomous Science Agent

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Cichy, Benjamin; Schaffer, Steve; Tran, Danny; Rabideau, Gregg; Sherwood, Rob; Bote, Robert; Mandl, Dan; Frye, Stu; Shulman, Seth; Van Gaasbeck, Jim; Boyer, Darrell

    2003-01-01

    This paper describes the validation process for the Autonomous Science Agent, a software agent that will fly onboard the EO-1 spacecraft from 2003-2004. This agent will recognize science events, retarget the spacecraft to respond to the science events, and reduce data downlink to only the highest value science data. The autonomous science agent has been designed using a layered architectural approach with specific redundant safeguards to reduce the risk of an agent malfunction to the EO-1 spacecraft. This 'safe' design is also in the process of being thoroughly validated by informal validation methods and extensive testing. This paper describes the analysis used to define agent safety, elements of the design that increase the safety of the agent, and the process being used to validate agent safety prior to the agent software controlling the spacecraft.

  16. Experiments on autonomous Boolean networks

    NASA Astrophysics Data System (ADS)

    Rosin, David P.; Rontani, Damien; Gauthier, Daniel J.; Schöll, Eckehard

    2013-06-01

    We realize autonomous Boolean networks by using logic gates in their autonomous mode of operation on a field-programmable gate array. This allows us to implement time-continuous systems with complex dynamical behaviors that can be conveniently interconnected into large-scale networks with flexible topologies that consist of time-delay links and a large number of nodes. We demonstrate how we realize networks with periodic, chaotic, and excitable dynamics and study their properties. Field-programmable gate arrays define a new experimental paradigm that holds great potential to test a large body of theoretical results on the dynamics of complex networks, which has been beyond reach of traditional experimental approaches.

  17. Autonomously managed high power systems

    NASA Technical Reports Server (NTRS)

    Weeks, D. J.; Bechtel, R. T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion.

  18. Treatment of gastrointestinal autonomic neuropathy.

    PubMed

    Törnblom, Hans

    2016-03-01

    The symptoms caused by gastrointestinal autonomic neuropathy in diabetes mellitus is important to highlight since it affects a large proportion of people with diabetes, regardless of whether this is type 1 or type 2. Gastroparesis and general signs of bowel dysfunction, such as constipation, diarrhoea and abdominal pain are most often encountered and involve both pharmacological and non-pharmacological treatment options. This mini-review summarises a presentation given at the 'Diagnosis and treatment of autonomic diabetic neuropathy in the gut' symposium at the 2015 annual meeting of the EASD. It is accompanied by another mini-review on a topic from this symposium (by Azpiroz and Malagelada, DOI: 10.1007/s00125-015-3831-1 ) and a commentary by the Session Chair, Péter Kempler (DOI: 10.1007/s00125-015-3826-y ). PMID:26634570

  19. Autonomous spacecraft maintenance study group

    NASA Technical Reports Server (NTRS)

    Marshall, M. H.; Low, G. D.

    1981-01-01

    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.

  20. Subsurface well apparatus and method

    SciTech Connect

    Mott, J.D.

    1981-08-18

    Subsurface well apparatus and method of operating same, wherein a controlled ball valve or closure means is provided, with means for mounting same in a well tubing for normally opening and closing flow through the well tubing, and wherein a fluid flow control assembly having a replacement ball valve therewith is adapted to be dropped in or otherwise lowered through the well tubing so as to position same above said controlled ball valve for subsequent operation of said replacement valve to thereafter serve as a replacement for said controlled valve.

  1. Integrated Microsensors for Autonomous Microrobots

    SciTech Connect

    ADKINS, DOUGLAS R.; BYRNE, RAYMOND H.; HELLER, EDWIN J.; WOLF, JIMMIE V.

    2003-02-01

    This report describes the development of a miniature mobile microrobot device and several microsystems needed to create a miniature microsensor delivery platform. This work was funded under LDRD No.10785, entitled, ''Integrated Microsensors for Autonomous Microrobots''. The approach adopted in this project was to develop a mobile platform, to which would be attached wireless RF remote control and data acquisition in addition to various microsensors. A modular approach was used to produce a versatile microrobot platform and reduce power consumption and physical size.

  2. Semi autonomous mine detection system

    SciTech Connect

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  3. Autonomic Neuropathy in Diabetes Mellitus

    PubMed Central

    Verrotti, Alberto; Prezioso, Giovanni; Scattoni, Raffaella; Chiarelli, Francesco

    2014-01-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent definition, different diagnostic method, different patient cohorts studied. The pathogenesis is still unclear and probably multifactorial. Once DAN becomes clinically evident, no form of therapy has been identified, which can effectively stop or reverse it. Prevention strategies are based on strict glycemic control with intensive insulin treatment, multifactorial intervention, and lifestyle modification including control of hypertension, dyslipidemia, stop smoking, weight loss, and adequate physical exercise. The present review summarizes the latest knowledge regarding clinical presentation, epidemiology, pathogenesis, and management of DAN, with some mention to childhood and adolescent population. PMID:25520703

  4. Integrated System for Autonomous Science

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Robert; Tran, Daniel; Cichy, Benjamin; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Frye, Stuart; Trout, Bruce; Shulman, Seth; Doggett, Thomas; Ip, Felipe; Greeley, Ron; Baker, Victor; Dohn, James; Boyer, Darrell

    2006-01-01

    The New Millennium Program Space Technology 6 Project Autonomous Sciencecraft software implements an integrated system for autonomous planning and execution of scientific, engineering, and spacecraft-coordination actions. A prior version of this software was reported in "The TechSat 21 Autonomous Sciencecraft Experiment" (NPO-30784), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 33. This software is now in continuous use aboard the Earth Orbiter 1 (EO-1) spacecraft mission and is being adapted for use in the Mars Odyssey and Mars Exploration Rovers missions. This software enables EO-1 to detect and respond to such events of scientific interest as volcanic activity, flooding, and freezing and thawing of water. It uses classification algorithms to analyze imagery onboard to detect changes, including events of scientific interest. Detection of such events triggers acquisition of follow-up imagery. The mission-planning component of the software develops a response plan that accounts for visibility of targets and operational constraints. The plan is then executed under control by a task-execution component of the software that is capable of responding to anomalies.

  5. Autonomic Computing: Panacea or Poppycock?

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    Autonomic Computing arose out of a need for a means to cope with rapidly growing complexity of integrating, managing, and operating computer-based systems as well as a need to reduce the total cost of ownership of today's systems. Autonomic Computing (AC) as a discipline was proposed by IBM in 2001, with the vision to develop self-managing systems. As the name implies, the influence for the new paradigm is the human body's autonomic system, which regulates vital bodily functions such as the control of heart rate, the body's temperature and blood flow-all without conscious effort. The vision is to create selfivare through self-* properties. The initial set of properties, in terms of objectives, were self-configuring, self-healing, self-optimizing and self-protecting, along with attributes of self-awareness, self-monitoring and self-adjusting. This self-* list has grown: self-anticipating, self-critical, self-defining, self-destructing, self-diagnosis, self-governing, self-organized, self-reflecting, and self-simulation, for instance.

  6. Autonomic neuropathy in diabetes mellitus.

    PubMed

    Verrotti, Alberto; Prezioso, Giovanni; Scattoni, Raffaella; Chiarelli, Francesco

    2014-01-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent definition, different diagnostic method, different patient cohorts studied. The pathogenesis is still unclear and probably multifactorial. Once DAN becomes clinically evident, no form of therapy has been identified, which can effectively stop or reverse it. Prevention strategies are based on strict glycemic control with intensive insulin treatment, multifactorial intervention, and lifestyle modification including control of hypertension, dyslipidemia, stop smoking, weight loss, and adequate physical exercise. The present review summarizes the latest knowledge regarding clinical presentation, epidemiology, pathogenesis, and management of DAN, with some mention to childhood and adolescent population. PMID:25520703

  7. Phylogenetic relationships among subsurface microorganisms

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-01-01

    This project involves the development of group specific 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface organisms (e.g., groups of microbes that share certain physiological traits). Major accomplishments for the period of 6/91 to 12/1/91 are described. Nine new probes have been synthesized on the basis of published 16S rRNA sequence data from the Ribosomal Database Project. We have initiated rapid screening of many of the subsurface microbial isolates obtained from the P24 borehole at the Savannah River Site. To date, we have screened approximately 50% of the isolates from P24. We have optimized our {und in situ} hybridization technique, and have developed a cell blot hybridization technique to screen 96 samples on a single blot. This is much faster than reading 96 individual slides. Preliminary experiments have been carried out which indicate specific nutrients can be used to amplify rRNA only in those organisms capable of metabolizing those nutrients. 1 tab., 2 figs.

  8. Distribution of unusual archaea in subsurface biosphere

    NASA Astrophysics Data System (ADS)

    Takai, Ken; Inagaki, Fumio; Horikoshi, Koki

    Recent microbiological surveys of terrestrial and oceanic subsurface biospheres have revealed that sizable microbial populations are present in global subsurface environments. However, little is known about the community structure, genetic diversity, and distribution pattern of subsurface bacteria and archaea since these surveys are mainly dependent on microscopic observations and conventional cultivation techniques. Culture-independent, molecular phylogenetic techniques are now utilized to explore microbial communities in various subsurface environments such as underground mines, subterrestrial rocks, continental and ocean oil reservoirs, subseafloor sediments and subvent microbial ecosystems. It has become apparent that unique archaeal components are commonly present in these subsurface microbial habitats. The most frequently recovered genetic signatures are of members of the hyperthermophiles Thermococcus. Their unexpected ubiquity even in non-extreme subsurface environments may represent the great biomass potential of probably dormant extremophilic archaea in the global subsurface biosphere. Archaeal populations in deep-sea hydrothermal vents and subvent environments might serve as sources of dormant extremophiles. It therefore appears likely that global and local ocean hydrothermal activities have had a persistent and significant impact on the formation of subsurface microbial communities and the distribution of subsurface microorganisms.

  9. Calculation notes that support accident scenario and consequence development for the subsurface leak remaining subsurface accident

    SciTech Connect

    Ryan, G.W., Westinghouse Hanford

    1996-09-19

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Subsurface Leak Remaining Subsurface. The calculations needed to quantify the risk associated with this accident scenario are included within.

  10. Autonomic neuropathy in patients with hepatic cirrhosis

    PubMed Central

    Bajaj, B; Agarwal, M; Ram, B

    2003-01-01

    Background: Autonomic neuropathy has been reported in patients with alcoholic liver disease but information on its occurrence in patients with non-alcoholic liver disease is contradictory. Aim: To assess autonomic functions in patients with alcoholic and non-alcoholic liver disease. Study design: Autonomic function using five standard tests was examined in 20 cirrhotics (10 alcoholics and 10 non-alcoholics) and 20 age and sex matched controls. The extent of autonomic dysfunction was determined in the patients and a comparison between the characteristics of patients with and without autonomic neuropathy was made. Results: Sixteen (80%) of the cirrhotic subjects were found to have evidence of autonomic neuropathy. Of these, three (15%) patients had early parasympathetic damage, five (25%) had definite parasympathetic damage, and eight (40%) had combined (that is, both parasympathetic and sympathetic) damage. Nine (90%) of the alcoholics and seven (70%) of the non-alcoholics had autonomic dysfunction. Only one patient belonging to the alcoholic group had clinical evidence of peripheral neuropathy. Moreover, there was no significant association between subjective symptoms of autonomic neuropathy and objective evidence of autonomic damage as assessed by autonomic function tests. Autonomic dysfunction was significantly more frequent in advanced liver disease compared with early liver damage. Nine (75%) out of 12 cirrhotic subjects belonging to Child class B and six (85.7%) of the seven patients belonging to Child class C had autonomic neuropathy. Conclusion: This study shows that autonomic neuropathy is common in cirrhotic subjects, that it is found with comparable frequency in alcoholics and non-alcoholics, and that it increases in severity with increase in extent of liver damage, suggesting that liver damage contributes to the neurological deficit. PMID:12897221

  11. Autonomic neural functions in space.

    PubMed

    Mano, T

    2005-08-01

    Autonomic neural functions are important to regulate vital functions in the living body. There are different methods to evaluate indirectly and directly autonomic, sympathetic and parasympathetic, neural functions of human body. Among various methods, microneurography is a technique to evaluate directly sympathetic neural functions in humans. Using this technique sympathetic neural traffic leading to skeletal muscles (muscle sympathetic nerve activity; MSNA) can be recorded from human peripheral nerves in situ. MSNA plays essentially important roles to maintain blood pressure homeostasis against gravity. Orthostatic intolerance is an important problem as an autonomic dysfunction encountered after exposure of human beings to microgravity. There exist at least two different types of sympathetic neural responses, low and high responders to orthostatic stress in orthostatic hypotension seen in neurological disorders. To answer the question if post-spaceflight orthostatic intolerance is induced by low or high MSNA responses to orthostatic stress, MSNA was microneurographically recorded for the first time before, during and after spaceflight in 1998 under Neurolab international research project. The same activity has been recorded during and/or after ground-based short- and long-term simulations of microgravity. MSNA was rather enhanced on the 12(th) and 13(th) day of spaceflight and just after landing day. Postflight MSNA response to head-up tilt was well preserved in astronauts who were orthostatically well tolerant. MSNA was suppressed during short-term simulation of microgravity less than 2 hours but was enhanced after long-term simulation of microgravity more than 3 days. Orthostatic intolerance after exposure to long-term simulation of microgravity was associated with reduced MSNA response to orthostatic stress with impaired baroreflex functions. These findings obtained from MSNA recordings in subjects exposed to space as well as short- and long-term simulations of microgravity indicate that sympathetic neural control is lowered when exposed to short-term microgravity but becomes enhanced after exposure to long-term microgravity. A lack of enhanced sympathetic neural response to orthostatic stress may induce orthostatic intolerance. Based on these findings effective countermeasures should be developed to prevent autonomic dysfunctions induced by exposure to microgravity. These include development of prescription and devices of physical exercise, electrical and magnetic nerve stimulations, body vibration, elastic bandage and stocking, lower body negative pressure, artificial gravity, medical drugs, and combinations of them. These countermeasures will be beneficial to prevent autonomic dysfunctions related to gravitational stress such encountered in bedridden subjects as orthostatic hypotension, atrophy of antigravity muscles and so on. This is particularly important in the present aged-society with many bedridden elderly people. The knowledge accumulated from studies on autonomic neural functions in space should be very useful to establish effective countermeasures and preventive methods for gravity-dependent autonomic dysfunctions. PMID:16101470

  12. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  13. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  14. Extraesophageal autonomic dysfunction in patients with achalasia.

    PubMed

    Olk, W; Kiesewalter, B; Auer, P; Enck, P; Kuhlbusch, R; Von Giesen, H J; Weber, E; Häussinger, D; Frieling, T

    1999-10-01

    A disagreement exists as to whether extraintestinal parasympathetic autonomic function is altered in patients with esophageal achalasia. Therefore, we assessed autonomic dysfunction in esophageal achalasia and considered the most relevant parameters of parasympathetic autonomic function in these patients. In a prospective study, heart rate variation and pupillary function were investigated in 15 patients with achalasia of the esophagus and in 15 controls by application of a battery of standardized autonomic function tests. Significant differences between patients and controls were detected for various parameters of heart rate variation and pupillometry. When compared to values obtained from large groups of healthy subjects, none of the controls but 11 patients had at least one abnormal parameter of parasympathetic autonomic function. It is suggested that in esophageal achalasia parasympathetic dysfunction that extends beyond the gastrointestinal tract can be frequently detected. This finding supports the view of a generalized alteration of the autonomic nervous system in achalasia. PMID:10548362

  15. The Design and Implementation of Instruments for Low-Frequency Electromagnetic Sounding of the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Delory, G. T.; Grimm, R. E.

    2003-01-01

    Low-frequency electromagnetic soundings of the subsurface can identify liquid water at depths ranging from hundreds of meters to approx. 10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low-frequency electric and magnetic field sensors capable of being deployed from a lander or rover such that horizontal and vertical components of the fields can be measured free of structural or electrical interference. Under a NASA Planetary Instrument Definition and Development Program (PIDDP), we are currently engaged in the prototype stages of low frequency sensor implementations that will enable this technique to be performed autonomously within the constraints of a lander platform. Once developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, as the latter may not be able to identify subsurface water without significant ambiguities. Low frequency EM methods can play a crucial role as a ground truth measurement, performing deep soundings at sites identified as high priority areas by orbital radars. Alternatively, the penetration depth and conductivity discrimination of low-frequency methods may enable detection of subsurface water in areas that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest.

  16. Attainability of Carnot efficiency with autonomous engines

    NASA Astrophysics Data System (ADS)

    Shiraishi, Naoto

    2015-11-01

    The maximum efficiency of autonomous engines with a finite chemical potential difference is investigated. We show that, without a particular type of singularity, autonomous engines cannot attain the Carnot efficiency. This singularity is realized in two ways: single particle transports and the thermodynamic limit. We demonstrate that both of these ways actually lead to the Carnot efficiency in concrete setups. Our results clearly illustrate that the singularity plays a crucial role in the maximum efficiency of autonomous engines.

  17. Tele/Autonomous Robot For Nuclear Facilities

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Tso, Kam S.

    1994-01-01

    Fail-safe tele/autonomous robotic system makes it unnecessary for human technicians to enter nuclear-fuel-reprocessing facilities and other high-radiation or otherwise hazardous industrial environments. Used to carry out experiments as exchanging equipment modules, turning bolts, cleaning surfaces, and grappling turning objects by use of mixture of autonomous actions and teleoperation with either single arm or two cooperating arms. System capable of fully autonomous operation, teleoperation or shared control.

  18. Sustainable and Autonomic Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter

    2006-01-01

    Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.

  19. The EO-1 Autonomous Science Agent Architecture

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Lee, Rachel; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    An Autonomous Science Agent is currently flying onboard the Earth Observing One Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. Because of the deployment to a remote spacecraft, this Autonomous Science Agent has stringent constraints of autonomy, reliability, and limited computing resources. We describe these constraints and how they are reflected in our agent architecture.

  20. Subsurface damage in optical substrates

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liu, Shouhua; Yi, Kui; He, Hongbo; Shao, Jianda; Fan, Zhengxiu

    2005-07-01

    The origin, character, analysis and treatment of subsurface damage (SSD) were summarized in this paper. SSD, which was introduced to substrates by manufacture processes, may bring about the decrease of laser-induced damage threshold (LIDT) of substrates and thin films. Nondestructive evaluation (NDE) methods for the measurement of SSD were used extensively because of their conveniences and reliabilities. The principle, experimental setup and some other technological details were given for total internal reflection microscopy (TIRM), high-frequency scanning acoustic microscopy (HFSAM) and laser-modulated scattering (LMS). However, the spatial resolution, probing depth and theoretic models of these NDE methods demanded further studies. Furthermore, effective surface treatments for minimizing or eliminating SSD were also presented in this paper. Both advantages and disadvantages of ion beam etching (IBE) and magnetorheological finishing (MRF) were discussed. Finally, the key problems and research directions of SSD were summarized.

  1. CENTER FOR SUBSURFACE MODELING SUPPORT (CSMOS)

    EPA Science Inventory

    The Subsurface Protection and Remediation Division's (SPRD)Center for Subsurface Modeling Support (CSMoS) provides public domain groundwater and vadose zone modeling software and services to public agencies and private companies throughout the nation. CSMoS is located in Ada, Ok...

  2. Information for Successful Interaction with Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Johnson, Kathy A.

    2003-01-01

    Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.

  3. General autonomic components of motion sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Suter, Steve; Toscano, William B.; Kamiya, Joe; Naifeh, Karen

    1986-01-01

    This report refers to a body of investigations directed toward the examination of autonomic nervous system responses to motion sickness. Heart rate, respiration rate, finger pulse volume, and basal skin resistance were measured on 127 men and women before, during, and after exposure to a nauseogenic rotating chair test. Significant changes in all autonomic responses were observed across the tests (p less than .05). Significant differences in autonomic responses among groups divided according to motion sickness susceptibility were also observed (p less than .05). Results suggest that the examination of autonomic responses as an objective indicator of motion sickness malaise is warranted and may contribute to the overall understanding of the syndrome.

  4. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  5. Subsurface Flow and Contaminant Transport

    Energy Science and Technology Software Center (ESTSC)

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  6. The Autonomous Pathogen Detection System

    SciTech Connect

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  7. Autonomous sensor manager agents (ASMA)

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  8. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  9. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders.

  10. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders

  11. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  12. Autonomous pathogen detection system 2001

    SciTech Connect

    Langlois, R G; Wang, A; Colston, B; Masquelier, D; Jones, L; Venkateswaran, K S; Nasarabadi, S; Brown, S; Ramponi, A; Milanovich, F P

    2001-01-09

    The objective of this project is to design, fabricate and field-demonstrate a fully Autonomous Pathogen Detector (identifier) System (APDS). This will be accomplished by integrating a proven flow cytometer and real-time polymerase chain reaction (PCR) detector with sample collection, sample preparation and fluidics to provide a compact, autonomously operating instrument capable of simultaneously detecting multiple pathogens and/or toxins. The APDS will be designed to operate in fixed locations, where it continuously monitors air samples and automatically reports the presence of specific biological agents. The APDS will utilize both multiplex immuno and nucleic acid assays to provide ''quasi-orthogonal'', multiple agent detection approaches to minimize false positives and increase the reliability of identification. Technical advancements across several fronts must first be made in order to realize the full extent of the APDS. Commercialization will be accomplished through three progressive generations of instruments. The APDS is targeted for domestic applications in which (1) the public is at high risk of exposure to covert releases of bioagent such as in major subway systems and other transportation terminals, large office complexes, and convention centers; and (2) as part of a monitoring network of sensors integrated with command and control systems for wide area monitoring of urban areas and major gatherings (e.g., inaugurations, Olympics, etc.). In this latter application there is potential that a fully developed APDS could add value to Defense Department monitoring architectures.

  13. Structured control for autonomous robots

    SciTech Connect

    Simmons, R.G. . School of Computer Science)

    1994-02-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator.

  14. Autonomous star referenced attitude determination

    NASA Technical Reports Server (NTRS)

    Van Bezooijen, R. W. H.

    1989-01-01

    A general star pattern recognition algorithm has been used to develop JPL's redundant, microcomputer-equipped ASTROS II CCD star tracker into a full-sky autonomous star tracker (FAST), capable of determining its attitude about all three axes without requiring any a priori attitude knowledge. A large field of view allows the number of guide stars in the all-sky data-base of the tracker to be limited to a manageable number, while high accuracy ensures that the pattern formed by the observed guide stars is unique. The recognition algorithm can also be used for automating the acquisition of celestial targets by astronomy telescopes, for autonomously updating the attitude of gyro-based attitude control systems, and for automating ground-based attitude recognition. Using both Monte Carlo simulations and a quasi-analytical method, it is shown that the general recognition algorithm and a less software-intensive special algorithm can be used to reliably automate the acquisition of celestial targets by astronomy telescopes.

  15. Lunar Polar Subsurface Temperature History

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Bills, B.; Paige, D.

    2008-12-01

    We present thermal calculations for lunar polar subsurface locations to depths of 1 km in order to examine relative stability of water ice over lunar orbital history. The lunar orbit plane precesses in response to torques from the Earth and Sun. Cassini states are configurations in which the obliquity is adjusted so that the spin pole precesses about the orbit pole in the same period as the orbit pole precesses about the invariable pole. Such a state is the expected outcome of tidal dissipation within the Moon. Tidal dissipation within the Earth drives the lunar orbit outward, which in turn influences the rate of orbit plane precession. The Moon's original low obliquity Cassini state ceased to exist at a semimajor axis of about 34 Earth radii. Thereafter, the lunar spin pole reoriented into a new, higher obliquity Cassini state which slowly evolved into the Moon's current low obliquity [Ward, 1975; Siegler et al, 2007]. During the transition, there was a brief period of even higher obliquity values (~70 degrees). The duration of this transition is not well constrained, as it depends on the dissipation rate within the Moon at that time, but was likely of order 104-105 years. Though it is clear the lunar surface environment would be thermally unstable for ice during this transition, the same is not necessarily true for the polar subsurface. Furthermore, the period before this transition may have been thermally suitable for collecting volatiles in the near surface. It is therefore a worthwhile study to explore where early near surface ice might have relocated in response to orbital forcing. Here we relate a modeled subsurface thermal response to surface temperature forcing for a calculated lunar spin pole history. We examine the cases within and surrounding an idealized, currently shadowed, near polar crater that received direct illumination in earlier orbital epochs. We show depths at which temperatures would have provided a safe haven for ice if it were present and comment on its mobility. One of the motivations of this study is to understand the contrast in polar volatile inventories between the Moon and Mercury. Radar observations and thermal models support the conclusion that permanently shadowed polar craters of Mercury contain abundant near surface water ice. Thermal modeling shows that the Moon should also currently have near polar environments capable of preserving surface ice [Vasavada et al, 1999]. However, there is little conclusive evidence for surface lunar ice [Campbell et al, 2006]. A plausible explanation for this is that both bodies once had ice, but differing obliquity histories made lunar surface ice unstable and mobile, while mercurian ice remained unchanged. The present obliquity of Mercury is small, and has likely always been so. In contrast, the Moon experienced this period of very high obliquity, during which presently shadowed polar regions would have been fully illuminated.

  16. Genetics Home Reference: Hereditary sensory and autonomic neuropathy type IE

    MedlinePLUS

    ... Genetic disorder catalog Conditions > Hereditary sensory and autonomic neuropathy type IE On this page: Description Genetic changes ... November 2012 What is hereditary sensory and autonomic neuropathy type IE? Hereditary sensory and autonomic neuropathy type ...

  17. New Small Autonomous Schools District Policy. Revised.

    ERIC Educational Resources Information Center

    Oakland Unified School District, CA.

    Inspired by the gains in student achievement realized by the small schools movement in New York City, the Oakland Unified School District (California) has proposed creating a network of 10 new, small autonomous (NSA) schools over the next 3 years. School size will range between 250 and 500 students, depending on grade level. "Autonomous" means…

  18. Autonomic Physiological Response Patterns Related to Intelligence

    ERIC Educational Resources Information Center

    Melis, Cor; van Boxtel, Anton

    2007-01-01

    We examined autonomic physiological responses induced by six different cognitive ability tasks, varying in complexity, that were selected on the basis of on Guilford's Structure of Intellect model. In a group of 52 participants, task performance was measured together with nine different autonomic response measures and respiration rate. Weighted…

  19. Autonomous Control of Space Reactor Systems

    SciTech Connect

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  20. New Small Autonomous Schools District Policy. Revised.

    ERIC Educational Resources Information Center

    Oakland Unified School District, CA.

    Inspired by the gains in student achievement realized by the small schools movement in New York City, the Oakland Unified School District (California) has proposed creating a network of 10 new, small autonomous (NSA) schools over the next 3 years. School size will range between 250 and 500 students, depending on grade level. "Autonomous" means…

  1. Planning Flight Paths of Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli

    2009-01-01

    Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.

  2. Autonomic Physiological Response Patterns Related to Intelligence

    ERIC Educational Resources Information Center

    Melis, Cor; van Boxtel, Anton

    2007-01-01

    We examined autonomic physiological responses induced by six different cognitive ability tasks, varying in complexity, that were selected on the basis of on Guilford's Structure of Intellect model. In a group of 52 participants, task performance was measured together with nine different autonomic response measures and respiration rate. Weighted…

  3. Autonomous landmark tracking orbit determination strategy

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Cheng, Y.

    2003-01-01

    In this paper, an orbit determination strategy is described that is fully autonomous and relies on a computer-based crater detection and identification algorithm that is suitable for both automation of the ground based navigation system and autonomous spacecraft based navigation.

  4. Subsurface Sounding Performance In Marsis

    NASA Astrophysics Data System (ADS)

    Biccari, D.; Picardi, G.; Seu, R.; Orosei, R.

    The principle of operation of MARSIS is based on the electromagnetic wave trans- mission by the antenna impinging on the top of the Mars surface producing a first reflection echo which propagates backward to the radar. However, thanks to the long wavelengths employed, a significant fraction of the e.m. energy impinging on the sur- face is transmitted into the crust and propagates downward. Additional reflections, due to the subsurface dielectric discontinuities (due to water or ice), would occur and the relevant echoes would propagate backward through the first layer medium and then to the radar generating further echo signals, much weaker than the front surface signal. As consequence time domain analysis of the strong surface return, eventually after multi-look non-coherent integration, will allow estimation of surface roughness, reflectivity and mean distance. The presence of weaker signals after the first strong surface return will enable the detection of subsurface interfaces, while the estimation of their time delay from the first surface signal will allow the measurement of the depth of the detected interfaces. Moreover the detection performance will be limited by three main factors, namely the ionosphere distortion, surface clutter echoes and the noise floor. As a matter of fact MARSIS will operate with a very high fractional bandwidth and very close to the expected Martian Ionosphere peak plasma frequency. This will result in a generally large phase distortion across the spectrum of the re- ceived pulses (due to the Antenna frequency response and the propagation through the Ionosphere) which will cause severe degradation of the matched filter performance in term of SNR, pulse spreading and sidelobe level. Besides in particular analyzing the data now available from the Mars Orbiter Laser Altimeter (MOLA) from Mars Global Surveyor Mission new, more accurate estimation of the surface clutter power can be obtained, according also to a fractal model topography description. Finally MARSIS performances will be analyzed in terms of sounding depth vs. layer composition and surface structure, taking into account ionosphere distortion

  5. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  6. Autonomic dysfunction in systemic lupus erythematosus.

    PubMed

    Shalimar; Handa, Rohini; Deepak, Kishore Kumar; Bhatia, Manvir; Aggarwal, Praveen; Pandey, Ravindra Mohan

    2006-07-01

    The objectives were to study the frequency and pattern of autonomic dysfunction in systemic lupus erythematosus (SLE). Fifty-one patients of SLE and 30 age- and sex-matched healthy controls were studied prospectively using a standard battery of noninvasive tests. Autonomic symptoms were seen in 37% patients. On laboratory testing incipient dysfunction was seen in 9 (18%) cases and 1 (3%) control, while atypical involvement was seen in 11 (21%) cases and 6 (20%) controls. Autonomic dysfunction did not correlate with disease duration, lupus activity, disease damage, any particular organ involvement or the presence/absence of peripheral neuropathy. Autonomic neuropathy is not uncommon in lupus and may exist independent of peripheral neuropathy. There are no specific clinical predictors. The clinical significance of autonomic dysfunction detected by laboratory testing warrants longitudinal studies. PMID:16365754

  7. Autonomic neural control of intrathoracic airways.

    PubMed

    Undem, Bradley J; Potenzieri, Carl

    2012-04-01

    Autonomic neural control of the intrathoracic airways aids in optimizing air flow and gas exchange. In addition, and perhaps more importantly, the autonomic nervous system contributes to host defense of the respiratory tract. These functions are accomplished by tightly regulating airway caliber, blood flow, and secretions. Although both the sympathetic and parasympathetic branches of the autonomic nervous system innervate the airways, it is the later that dominates, especially with respect to control of airway smooth muscle and secretions. Parasympathetic tone in the airways is regulated by reflex activity often initiated by activation of airway stretch receptors and polymodal nociceptors. This review discusses the preganglionic, ganglionic, and postganglionic mechanisms of airway autonomic innervation. Additionally, it provides a brief overview of how dysregulation of the airway autonomic nervous system may contribute to respiratory diseases. PMID:23798300

  8. A Practical Approach to Autonomic Dysfunction in Patients with Headache.

    PubMed

    Ailani, Jessica

    2016-05-01

    The presence of autonomic symptoms can make the diagnosis of headache challenging. While commonly seen with the trigeminal autonomic cephalalgias, autonomic dysfunction can also be present in patients with migraine, or with a variety of secondary headaches. The pathophysiology of cranial autonomic symptoms in headache is based between the trigeminal system and the hypothalamus. This article will review the pathophysiology and presence of autonomic dysfunction in headache and will provide techniques to help in headache diagnosis in patients with autonomic dysfunction. PMID:27021770

  9. Dysréflexie autonome

    PubMed Central

    Milligan, James; Lee, Joseph; McMillan, Colleen; Klassen, Hilary

    2012-01-01

    Résumé Objectif Sensibiliser davantage les médecins de famille à la dysréflexie autonome (DA) chez les patients victimes d’une lésion médullaire (LM) et proposer certaines interventions. Sources de l’information On a fait une recension dans MEDLINE de 1970 à juillet 2011 à l’aide des expressions en anglais autonomic dysreflexia et spinal cord injury, ainsi que family medicine ou primary care. On a aussi passé en revue et utilisé d’autres ressources et guides de pratique pertinents. Message principal Il arrive souvent que les médecins de famille ne se sentent pas confiants de traiter des patients ayant une LM dont les problèmes sont complexes et exigent beaucoup de temps. Les médecins de famille ont l’impression de n’avoir pas la formation nécessaire pour répondre à leurs besoins. Pourtant, ils offrent une composante essentielle des soins à de tels patients et il est important qu’ils comprennent les problèmes médicaux particuliers aux LM. La dysréflexie autonome est un important et fréquent problème potentiellement sérieux que connaissent mal de nombreux médecins de famille. Cet article passe en revue les signes et les symptômes de la DA et présente certaines options de prise en charge aiguë, ainsi que des stratégies de prévention à l’intention des médecins de famille. Conclusion Les médecins de famille devraient savoir quels patients traumatisés médullaires sont susceptibles d’avoir une DA et surveiller ceux qui sont touchés par ce problème. Une explication est donnée dans cet article quant à l’approche à suivre pour la prise en charge aiguë. Les médecins de famille jouent un rôle essentiel dans la prévention de la DA, notamment par l’éducation (du patient et des autres professionnels de la santé) et la consignation dans le dossier médical de stratégies comme les soins appropriés de la vessie, de l’intestin et de la peau, d’avertissements et de plans de prise en charge.

  10. Imaging obscured subsurface inhomogeneity using laser speckle.

    PubMed

    Nothdurft, Ralph; Yao, Gang

    2005-12-12

    We have developed a laser speckle imaging method to reveal obscured subsurface inhomogeneities that cannot be seen under incoherent illumination. Speckle images of a scattering object were generated under coherent illumination using a laser. A sequence of speckle images was acquired with fixed exposure time and acquisition interval. The temporal statistics of each pixel in the image sequence was calculated and formed a new image. We demonstrate that such temporal speckle contrast images can reveal obscured subsurface objects. More importantly, by controlling image acquisition parameters, surface inhomogeneity can be eliminated in order to better bring to view the subsurface objects. PMID:19503214

  11. Modeling subsurface contamination at Fernald

    SciTech Connect

    Jones, B.W.; Flinn, J.C.; Ruwe, P.R.

    1994-09-13

    The Department of Energy`s Fernald site is located about 20 miles northwest of Cincinnati. Fernald produced refined uranium metal products from ores between 1953 and 1989. The pure uranium was sent to other DOE sites in South Carolina, Tennessee, Colorado,and Washington in support of the nation`s strategic defense programs. Over the years of large-scale uranium production, contamination of the site`s soil and groundwater occurred.The contamination is of particular concern because the Fernald site is located over the Great Miami Aquifer, a designated sole-source drinking water aquifer. Contamination of the aquifer with uranium was found beneath the site, and migration of the contamination had occurred well beyond the site`s southern boundary. As a result, Fernald was placed on the National Priorities (CERCLA/Superfund) List in 1989. Uranium production at the site ended in 1989,and Fernald`s mission has been changed to one of environmental restoration. This paper presents information about computerized modeling of subsurface contamination used for the environmental restoration project at Fernald.

  12. Full autonomous microline trace robot

    NASA Astrophysics Data System (ADS)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  13. Autonomous Guidance, Navigation and Control

    NASA Technical Reports Server (NTRS)

    Bordano, A. J.; Mcswain, G. G.; Fernandes, S. T.

    1991-01-01

    The NASA Autonomous Guidance, Navigation and Control (GN&C) Bridging program is reviewed to demonstrate the program plan and GN&C systems for the Space Shuttle. The ascent CN&C system is described in terms of elements such as the general-purpose digital computers, sensors for the navigation subsystem, the guidance-system software, and the flight-control subsystem. Balloon-based and lidar wind soundings are used for operations assessment on the day of launch, and the guidance software is based on dedicated units for atmospheric powered flight, vacuum powered flight, and abort-specific situations. Optimization of the flight trajectories is discussed, and flight-control responses are illustrated for wavelengths of 500-6000 m. Alternate sensors are used for load relief, and adaptive GN&C systems based on alternate gain synthesis are used for systems failures.

  14. Autonomous Infrastructure for Observatory Operations

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  15. An Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  16. Next generation autonomous wheelchair control.

    PubMed

    Benson, John; Barrett, Steven

    2005-01-01

    Often times the physically challenged, limited to a wheelchair, also have difficulty with vision. In order to help, something must "see" for them. Therefore there must be some way for a wheelchair to know its environment, sense where it is, and where it must go. It also must be able to avoid any obstacles which are not normally part of the environment. An autonomous wheelchair will serve an important role by allowing users more freedom and independence. This design challenge is broken into four major steps: wheelchair control, environment recognition, route planning, and obstacle avoidance. The first step is to reverse engineer a wheelchair and rebuild the controls, which will be the main topic of discussion for this paper. Two big challenges with this step are high power motor control and joystick control. An H-bridge motor interface, controlled by a microprocessor, was designed for the motors. The joystick control is handled with the same microprocessor. PMID:15850119

  17. Autonomous navigation system and method

    DOEpatents

    Bruemmer, David J. [Idaho Falls, ID; Few, Douglas A. [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  18. APDS: Autonomous Pathogen Detection System

    SciTech Connect

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  19. Autonomous Medical Care for Exploration

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Polk, J. D.; Hines, John W.; Nall, Marsha M.

    2005-01-01

    The goal of Autonomous Medical Care (AMC) is to ensure a healthy, well-performing crew which is a primary need for exploration. The end result of this effort will be the requirements and design for medical systems for the CEV, lunar operations, and Martian operations as well as a ground-based crew health optimization plan. Without such systems, we increase the risk of medical events occurring during a mission and we risk being unable to deal with contingencies of illness and injury, potentially threatening mission success. AMC has two major components: 1) pre-flight crew health optimization and 2) in-flight medical care. The goal of pre-flight crew health optimization is to reduce the risk of illness occurring during a mission by primary prevention and prophylactic measures. In-flight autonomous medical care is the capability to provide medical care during a mission with little or no real-time support from Earth. Crew medical officers or other crew members provide routine medical care as well as medical care to ill or injured crew members using resources available in their location. Ground support becomes telemedical consultation on-board systems/people collect relevant data for ground support to review. The AMC system provides capabilities to incorporate new procedures and training and advice as required. The on-board resources in an autonomous system should be as intelligent and integrated as is feasible, but autonomous does not mean that no human will be involved. The medical field is changing rapidly, and so a challenge is to determine which items to pursue now, which to leverage other efforts (e.g. military), and which to wait for commercial forces to mature. Given that what is used for the CEV or the Moon will likely be updated before going to Mars, a critical piece of the system design will be an architecture that provides for easy incorporation of new technologies into the system. Another challenge is to determine the level of care to provide for each mission type. The level of care refers to the amount and type of care one will render based on perceived need and ability. This is in contrast to the standard of care which is the benchmark by which that care is provided. There are certainly some devices and procedures that have unique microgravity or partial gravity requirements such that terrestrial methods will not work. For example, performing CPR on Mars cannot be done in exactly the same way as on Earth because the reduced gravity causes too large a reduction in the forces available for effective compression of the chest. Likewise, fluid behavior in microgravity may require a specialized water filtration and mixing system for the creation of intravenous fluids. This paper will outline the drivers for the design of the medical care systems, prioritization and planning techniques, key system components, and long term goals.

  20. Wireless autonomous device data transmission

    NASA Technical Reports Server (NTRS)

    Sammel, Jr., David W. (Inventor); Cain, James T. (Inventor); Mickle, Marlin H. (Inventor); Mi, Minhong (Inventor)

    2013-01-01

    A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.

  1. Autonomous Spacecraft Navigation With Pulsars

    NASA Astrophysics Data System (ADS)

    Becker, Werner

    2014-08-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. We will describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  2. Autonomous power management and distribution

    NASA Technical Reports Server (NTRS)

    Dolce, Jim; Kish, Jim

    1990-01-01

    The goal of the Autonomous Power System program is to develop and apply intelligent problem solving and control to the Space Station Freedom's electric power testbed being developed at NASA's Lewis Research Center. Objectives are to establish artificial intelligence technology paths, craft knowledge-based tools and products for power systems, and integrate knowledge-based and conventional controllers. This program represents a joint effort between the Space Station and Office of Aeronautics and Space Technology to develop and demonstrate space electric power automation technology capable of: (1) detection and classification of system operating status, (2) diagnosis of failure causes, and (3) cooperative problem solving for power scheduling and failure recovery. Program details, status, and plans will be presented.

  3. Testbed for an autonomous system

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok K.; Larsen, Ronald L.

    1989-01-01

    In previous works we have defined a general architectural model for autonomous systems, which can easily be mapped to describe the functions of any automated system (SDAG-86-01), and we illustrated that model by applying it to the thermal management system of a space station (SDAG-87-01). In this note, we will further develop that application and design the detail of the implementation of such a model. First we present the environment of our application by describing the thermal management problem and an abstraction, which was called TESTBED, that includes a specific function for each module in the architecture, and the nature of the interfaces between each pair of blocks.

  4. Autonomous caregiver following robotic wheelchair

    NASA Astrophysics Data System (ADS)

    Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary

    2011-12-01

    In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.

  5. Lidar equation for ocean surface and subsurface.

    PubMed

    Josset, Damien; Zhai, Peng-Wang; Hu, Yongxiang; Pelon, Jacques; Lucker, Patricia L

    2010-09-27

    The lidar equation for ocean at optical wavelengths including subsurface signals is revisited using the recent work of the radiative transfer and ocean color community for passive measurements. The previous form of the specular and subsurface echo term are corrected from their heritage, which originated from passive remote sensing of whitecaps, and is improved for more accurate use in future lidar research. A corrected expression for specular and subsurface lidar return is presented. The previous formalism does not correctly address angular dependency of specular lidar return and overestimates the subsurface term by a factor ranging from 89% to 194% for a nadir pointing lidar. Suggestions for future improvements to the lidar equation are also presented. PMID:20940981

  6. Evaluating Subsurface Damage in Optical Glasses

    NASA Astrophysics Data System (ADS)

    Lee, Y.

    2011-02-01

    Hard brittle materials (e.g. glasses and ceramics) increasingly appeal to general interests because of their excellent physical, mechanical and chemical properties such as super hardness and strength at extreme temperature and chemical stability. The precision manufacturing of these materials is primarily achieved by grinding and polishing, which generally employs abrasives to wear the materials. With this manufacturing technology, the materials are removed due principally to the fracture of brittle materials, which will leave a cracked layer on the surface of manufactured components, namely subsurface damage (SSD). The subsurface damage affects the strength, performance and lifetime of components. As a result, investigation into the subsurface damage is needed. A host of characterizing techniques have been developed during the past several decades. These techniques based on different mechanisms provide researchers with invaluable information on the subsurface damage in various materials. In this article the typical SSD evaluation techniques are reviewed, which are regularly used in optical workshops or laboratories.

  7. DOE UST interim subsurface barrier technologies workshop

    SciTech Connect

    1992-09-01

    This document contains information which was presented at a workshop regarding interim subsurface barrier technologies that could be used for underground storage tanks, particularly the tank 241-C-106 at the Hanford Reservation.

  8. MONTHLY HIGHLIGHTS (SUBSURFACE PROTECTION AND REMEDIATION DIVISION)

    EPA Science Inventory

    The Subsurface Protection and Remediation Division (SPRD) produces monthly highlights describing research accomplishments, involvement in current technical assistance activities, and staff participation in scientific meetings and conferences. Announcements of the release and avai...

  9. PUBLICATIONS (SUBSURFACE PROTECTION AND REMEDIATION DIVISION

    EPA Science Inventory

    SPRD's Subsurface Remediation Information Center (SRIC) provides publication distribution of highly specialized scientific and technical information developed by and through SPRD relating to groundwater protection and remediation and ecosystem restoration. The SRIC maintains a b...

  10. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    D.C. Randle

    2000-01-07

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I&C) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I&C and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I&C systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I&C systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored, controlled, and interfaced (Section 6.2). (3) Develop a preliminary design for the overall Subsurface Repository Integrated Control System functional architecture and graphically depict the operational features of this design through a series of control system functional block diagrams (Section 6.2). (4) Develop a physical architecture that presents a viable yet preliminary physical implementation for the Subsurface Repository Integrated Control System functional architecture (Section 6.3). (5) Develop an initial concept for an overall subsurface data communications network that can be used to integrate the various control systems comprising the Subsurface Repository Integrated Control System (Section 6.4). (6) Develop a preliminary central control room design for the Subsurface Repository Integrated Control System (Section 6.5). (7) Identify and discuss the general safety-related issues and design strategies with respect to development of the Subsurface Repository Integrated Control System (Section 6.6). (8) Discuss plans for the Subsurface Repository Integrated Control System's response to off-normal operations (Section 6.7). (9) Discuss plans and strategies for developing software for the Subsurface Repository Integrated Control System (Section 6.8).

  11. Mapping planetary caves with an autonomous, heterogeneous robot team

    NASA Astrophysics Data System (ADS)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  12. An intelligent subsurface buoy design for measuring ocean ambient noise

    NASA Astrophysics Data System (ADS)

    Li, Bing; Wang, Lei

    2012-11-01

    A type of ultra-low power subsurface buoy system is designed to measure and record ocean ambient noise data. The buoy utilizes a vector hydrophone (pass band 20Hz-1.2kHz) and a 6-element vertical hydrophone array (pass band 20Hz-2kHz) to measure ocean ambient noise. The acoustic signals are passed through an automatically modified gain, a band pass filter, and an analog-to-digital (A/D) conversion module. They are then stored in high-capacity flash memory. In order to identify the direction of noise source, the vector sensor measuring system has integrated an electric-magnetic compass. The system provides a low-rate underwater acoustic communication system which is used to report the buoy state information and a high-speed USB interface which is used to retrieve the recorded data on deck. The whole system weighs about 125kg and can operate autonomously for more than 72 hours. The system's main architecture and the sea-trial test results are provided in this paper.

  13. Microbial life in the deep terrestrial subsurface

    SciTech Connect

    Fliermans, C.B.; Balkwill, D.L.; Beeman, R.E.

    1988-12-31

    The distribution and function of microorganisms is a vital issue in microbial ecology. The US Department of Energy`s Program, ``Microbiology of the Deep Subsurface,`` concentrates on establishing fundamental scientific information about organisms at depth, and the use of these organisms for remediation of contaminants in deep vadose zone and groundwater environments. This investigation effectively extends the Biosphere hundreds of meters into the Geosphere and has implications to a variety of subsurface activities.

  14. Floating insulated conductors for heating subsurface formations

    SciTech Connect

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  15. Current challenges in autonomous vehicle development

    NASA Astrophysics Data System (ADS)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  16. Cardiovascular autonomic dysfunctions and sleep disorders.

    PubMed

    Calandra-Buonaura, Giovanna; Provini, Federica; Guaraldi, Pietro; Plazzi, Giuseppe; Cortelli, Pietro

    2016-04-01

    Animal and human studies have shown that disorders of the autonomic nervous system may influence sleep physiology. Conversely, sleep disorders may be associated with autonomic dysfunctions. The current review describes the clinical presentation, supposed pathogenetic mechanisms and the diagnostic and prognostic implications of impaired cardiovascular autonomic control in sleep disorders. This dysfunction may result from a common pathogenetic mechanism affecting both autonomic cardiovascular control and sleep, as in fatal familial insomnia, or it may be mainly caused by the sleep disorder, as observed in obstructive sleep apnoea. For other sleep disorders, like primary insomnia, restless legs syndrome, narcolepsy type 1 and rapid eye movement sleep behaviour disorder, the causal link with the autonomic dysfunction and its possible impact on health remains unsettled. Given its clinical implications, most of the data available suggest that a systematic assessment of the association between sleep disorders and impaired autonomic control of the cardiovascular system is warranted. Understanding the mechanism of this association may also yield insights into the interaction between the autonomic nervous system and sleep. PMID:26146026

  17. The Autonomic Symptom Profile: a new instrument to assess autonomic symptoms

    NASA Technical Reports Server (NTRS)

    Suarez, G. A.; Opfer-Gehrking, T. L.; Offord, K. P.; Atkinson, E. J.; O'Brien, P. C.; Low, P. A.

    1999-01-01

    OBJECTIVE: To develop a new specific instrument called the Autonomic Symptom Profile to measure autonomic symptoms and test its validity. BACKGROUND: Measuring symptoms is important in the evaluation of quality of life outcomes. There is no validated, self-completed questionnaire on the symptoms of patients with autonomic disorders. METHODS: The questionnaire is 169 items concerning different aspects of autonomic symptoms. The Composite Autonomic Symptom Scale (COMPASS) with item-weighting was established; higher scores indicate more or worse symptoms. Autonomic function tests were performed to generate the Composite Autonomic Scoring Scale (CASS) and to quantify autonomic deficits. We compared the results of the COMPASS with the CASS derived from the Autonomic Reflex Screen to evaluate validity. RESULTS: The instrument was tested in 41 healthy controls (mean age 46.6 years), 33 patients with nonautonomic peripheral neuropathies (mean age 59.5 years), and 39 patients with autonomic failure (mean age 61.1 years). COMPASS scores correlated well with the CASS, demonstrating an acceptable level of content and criterion validity. The mean (+/-SD) overall COMPASS score was 9.8 (+/-9) in controls, 25.9 (+/-17.9) in the patients with nonautonomic peripheral neuropathies, and 52.3 (+/-24.2) in the autonomic failure group. Scores of symptoms of orthostatic intolerance and secretomotor dysfunction best predicted the CASS on multiple stepwise regression analysis. CONCLUSIONS: We describe a questionnaire that measures autonomic symptoms and present evidence for its validity. The instrument shows promise in assessing autonomic symptoms in clinical trials and epidemiologic studies.

  18. The NASA/Army Autonomous Rotorcraft Project

    NASA Technical Reports Server (NTRS)

    Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.

    2002-01-01

    An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.

  19. Development of Autonomous Aerobraking (Phase 1)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Powell, Richard W.; Prince, Jill L.

    2012-01-01

    The NASA Engineering and Safety Center received a request from Mr. Daniel Murri (NASA Technical Fellow for Flight Mechanics) to develop an autonomous aerobraking capability. An initial evaluation for all phases of this assessment was approved to proceed at the NESC Review Board meeting. The purpose of phase 1 of this study was to provide an assessment of the feasibility of autonomous aerobraking. During this phase, atmospheric, aerodynamic, and thermal models for a representative spacecraft were developed for both the onboard algorithm known as Autonomous Aerobraking Development Software, and a ground-based "truth" simulation developed for testing purposes. The results of the phase 1 assessment are included in this report.

  20. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  1. Pure autonomic failure with cold induced sweating.

    PubMed

    Idiaquez, Juan; Fadic, Ricardo; Verdugo, Renato; Idiaquez, Juan F; Iodice, Valeria; Low, David A; Mathias, C J; Lombardi, Raffaela; Lauria, Giuseppe

    2013-06-01

    Pure autonomic failure (PAF) is a progressive autonomic neurodegenerative disorder. Cold induced sweating occurred in syndromes with mutations in CRLF1 and CLCF1 genes and in a case of cervical dissection. A patient with PAF developed sweating induced by cool ambient temperatures. He had severe orthostatic hypotension, abnormal cardiovagal reflexes, and paradoxical sweating in the upper trunk at a room temperature of 18°C. Skin biopsy showed involvement of somatic epidermal unmyelinated nerve fibers. Quantitative sensory testing showed abnormal thresholds to all thermal modalities. Possible mechanisms include cold induced noradrenaline release in remaining autonomic innervation and a supersensitive sudomotor response. PMID:23511064

  2. Autonomous underwater pipeline monitoring navigation system

    NASA Astrophysics Data System (ADS)

    Mitchell, Byrel; Mahmoudian, Nina; Meadows, Guy

    2014-06-01

    This paper details the development of an autonomous motion-control and navigation algorithm for an underwater autonomous vehicle, the Ocean Server IVER3, to track long linear features such as underwater pipelines. As part of this work, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) developed an algorithm that utilizes inputs from the vehicles state of the art sensor package, which includes digital imaging, digital 3-D Sidescan Sonar, and Acoustic Doppler Current Profilers. The resulting algorithms should tolerate real-world waterway with episodic strong currents, low visibility, high sediment content, and a variety of small and large vessel traffic.

  3. Development of Autonomous Aerobraking - Phase 2

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2013-01-01

    Phase 1 of the Development of Autonomous Aerobraking (AA) Assessment investigated the technical capability of transferring the processes of aerobraking maneuver (ABM) decision-making (currently performed on the ground by an extensive workforce and communicated to the spacecraft via the deep space network) to an efficient flight software algorithm onboard the spacecraft. This document describes Phase 2 of this study, which was a 12-month effort to improve and rigorously test the AA Development Software developed in Phase 1. Aerobraking maneuver; Autonomous Aerobraking; Autonomous Aerobraking Development Software; Deep Space Network; NASA Engineering and Safety Center

  4. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    NASA Technical Reports Server (NTRS)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  5. An introduction to autonomous control systems

    NASA Technical Reports Server (NTRS)

    Antsaklis, Panos J.; Passino, Kevin M.; Wang, S. J.

    1991-01-01

    The functions, characteristics, and benefits of autonomous control are outlined. An autonomous control functional architecture for future space vehicles that incorporates the concepts and characteristics described is presented. The controller is hierarchical, with an execution level (the lowest level), coordination level (middle level), and management and organization level (highest level). The general characteristics of the overall architecture, including those of the three levels, are explained, and an example to illustrate their functions is given. Mathematical models for autonomous systems, including 'logical' discrete event system models, are discussed. An approach to the quantitative, systematic modeling, analysis, and design of autonomous controllers is also discussed. It is a hybrid approach since it uses conventional analysis techniques based on difference and differential equations and new techniques for the analysis of the systems described with a symbolic formalism such as finite automata. Some recent results from the areas of planning and expert systems, machine learning, artificial neural networks, and the area restructurable controls are briefly outlined.

  6. Control System Validation In The Autonomous Helicopter

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Fugedy, John; Friedel, Thomas

    1989-03-01

    Autonomous systems require the ability to analyze their environment and develop responsive plans of action. Autonomous vehicle research has led to the development of several land, sea, and air vehicle prototypes. These systems integrate vision, diagnostics, planning, situation assessment, tactical reasoning, and intelligent control at a variety of levels to function in limited environments or computer simulation. Route planning in these systems has historically focused on pure numerical computations unable to adapt to the dynamic nature of the world. This paper describes a knowledge-based system for autonomous route planning that has been applied to airborne vehicles. Specific focus is the vehicle model knowledge source that validates routes based upon the physical capabilities of the helicopter system. An overview of the autonomous helicopter is present to establish system context with specific results in validated route planning presented.

  7. Overview of the Autonomic Nervous System

    MedlinePLUS

    ... News Overview of the Autonomic Nervous System by Phillip Low, MD NOTE: This is the Consumer Version. ... Us Global Medical Knowledge Veterinary Edition © 2015 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., ...

  8. A Primer on Autonomous Aerial Vehicle Design.

    PubMed

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  9. DEMONSTRATION OF AUTONOMOUS AIR MONITORING THROUGH ROBOTICS

    EPA Science Inventory

    This project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. An existing teleoperated "Surveyor" robot developed by ARD...

  10. Rover: Autonomous concepts for Mars exploration

    NASA Astrophysics Data System (ADS)

    Baiget, A.; Castets, B.; Chochon, H.; Hayard, M.; Lamarre, H.; Lamothe, A.

    1993-01-01

    The development of a mobile, autonomous vehicle that will be launched towards an unknown planet is considered. The rover significant constraints are: Ariane 5 compatibility, Earth/Mars transfer capability, 1000 km autonomous moving in Mars environment, on board localization, and maximum science capability. Two different types of subsystem were considered: classical subsystems (mechanical and mechanisms, thermal, telecommunications, power, onboard data processing) and robotics subsystem, (perception/navigation, autonomous displacement generation, autonomous localization). The needs of each subsystem were studied in terms of energy and data handling capability, in order to choose an on board architecture which best use the available capability, by means of specialized parts. A compromise must always be done between every subsystem in order to obtain the real need with respect to the goal, for example: between perception/navigation and the motion capability. A compromise must also be found between mechanical assembly and calibration need, which is a real problem.

  11. A Primer on Autonomous Aerial Vehicle Design

    PubMed Central

    Coppejans, Hugo H. G.; Myburgh, Herman C.

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  12. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  13. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  14. Autonomous intelligent cruise control system

    NASA Astrophysics Data System (ADS)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  15. Autonomic regulation of kidney function.

    PubMed

    Johns, Edward J

    2013-01-01

    The kidneys play a central role in cardiovascular homeostasis by ensuring a balance between the fluid taken in and that lost and excreted during everyday activities. This ensures stability of extracellular fluid volume and maintenance of normal levels of blood pressure. Renal fluid handling is controlled via neural and humoral influences, with the former determining a rapid dynamic response to changing intake of sodium whereas the latter cause a slower longer-term modulation of sodium and water handling. Activity in the renal sympathetic nerves arises from an integration of information from the high and low pressure cardiovascular baroreceptors, the somatosensory and visceral systems as well as the higher cortical centers. Each sensory system provides varying input to the autonomic centers of the hypothalamic and medullary areas of the brain at a level appropriate to the activity being performed. In pathophysiological states, such as hypertension, heart failure and chronic renal disease, there may be an inappropriate sympathoexcitation causing sodium retention which exacerbates the disease process. The contribution of the renal sympathetic nerves to these cardiovascular diseases is beginning to be appreciated with the demonstration that renal denervation of resistant hypertensive patients results in a long-term normalization of blood pressure. PMID:24095127

  16. Is acting on delusions autonomous?

    PubMed Central

    2013-01-01

    In this paper the question of autonomy in delusional disorders is investigated using a phenomenological approach. I refer to the distinction between freedom of intentional action, and freedom of the will, and develop phenomenological descriptions of lived autonomy, taking into account the distinction between a pre-reflective and a reflective type. Drawing on a case report, I deliver finely-grained phenomenological descriptions of lived autonomy and experienced self-determination when acting on delusions. This analysis seeks to demonstrate that a person with delusions can be described as responsible for her behaviour on a ‘framed’ level (level of freedom of intentional action), even though she is not autonomous on a higher (‘framing’) level (level of freedom of the will), if, and only if, the goods of agency for herself and others are respected. In these cases the person with delusions is very nearly comparable to people in love, who are also not free to choose their convictions, and who could also be rightly held responsible for the behaviour flowing from their convictions. PMID:24125114

  17. Development of autonomous triggering instrumentation

    NASA Astrophysics Data System (ADS)

    Watkins, Steve E.; Swift, Theresa M.; Fonda, James W.

    2008-03-01

    Triggering instrumentation for autonomous monitoring of load-induced strain is described for economical, fast bridge inspection. The development addresses one aspect for the management of transportation infrastructure - bridge monitoring and inspection. The objectives are to provide quantitative performance information from a load test, to minimize the setup time at the bridge, and to minimize the closure time to traffic. Multiple or networked measurements can be made for a prescribed loading sequence. The proposed smart system consists of in-situ strain sensors, an embedded data acquisition module, and a measurement triggering system. A companion control unit is mounted on the truck serving as the load. As the truck moves to the proper position, the desired measurement is automatically relayed back to the control unit. In this work, the testing protocol is developed and the performance parameters for the triggering and data acquisition are measured. The test system uses a dedicated wireless sensor mote and an infrared positioning system. The electronic procedure offers improvements in available information and economics.

  18. Autonomous motion of catalytic nanomotors

    NASA Astrophysics Data System (ADS)

    Paxton, Walter F.

    In this thesis, I explore and discuss a system that uses the platinum catalyzed decomposition of hydrogen peroxide to induce interfacial effects that result in the autonomous motion of micro-/nanosized particles. Chapter 2 describes the behavior of platinum-gold (PtAu) striped nanorods in hydrogen peroxide and its dependence on a number of factors. Chapter 3 explores several different mechanisms that may contribute to the motion of the PtAu nanorods, and discusses an interfacial tension mechanism for motion in depth. In Chapter 4, I discuss the electrochemical decomposition of hydrogen peroxide involving both Pt and Au and how this bimetallic catalytic process can induce electrokinetic effects to drive the motion of PtAu nanorods in H2O2 solutions. In Chapter 5, I describe a switchable catalytic micropump composed of a Pt/Au interdigitated array electrode in contact with H2O 2 solution, expanding on the concept of catalytically induced electrokinetics discussed in Chapter 4. This work has important implications when considering the development of functional nano- and micromachines powered by catalytic reactions, particularly those that utilize oxidation reduction processes to induce electrokinetic effects.

  19. Autonomous synergic control of nanomotors.

    PubMed

    Liu, Meihan; Hou, Ruizheng; Cheng, Juan; Loh, Iong Ying; Sreelatha, Sarangapani; Tey, Ju Nie; Wei, Jun; Wang, Zhisong

    2014-02-25

    Control is a hallmark of machines; effective control over a nanoscale system is necessary to turn it into a nanomachine. Nanomotors from biology often integrate a ratchet-like passive control and a power-stroke-like active control, and this synergic active-plus-passive control is critical to efficient utilization of energy. It remains a challenge to integrate the two differing types of control in rationally designed nanomotor systems. Recently a light-powered track-walking DNA nanomotor was developed from a bioinspired design principle that has the potential to integrate both controls. However, it is difficult to separate experimental signals for either control due to a tight coupling of both controls. Here we present a systematic study of the motor and new derivatives using different fluorescence labeling schemes and light operations. The experimental data suggest that the motor achieves the two controls autonomously through a mechanics-mediated symmetry breaking. This study presents an experimental validation for the bioinspired design principle of mechanical breaking of symmetry for synergic ratchet-plus-power stroke control. Augmented by mechanical and kinetic modeling, this experimental study provides mechanistic insights that may help advance molecular control in future nanotechnological systems. PMID:24422493

  20. Autonomic and Coevolutionary Sensor Networking

    NASA Astrophysics Data System (ADS)

    Boonma, Pruet; Suzuki, Junichi

    (WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.

  1. Autonomic dysregulation in headache patients.

    PubMed

    Gass, Jason J; Glaros, Alan G

    2013-12-01

    To analyze autonomic nervous system activity in headache subjects, measurements of heart rate variability (HRV), skin temperature, skin conductance, and respiration were compared to a matched control group. HRV data were recorded in time and frequency domains. Subjects also completed self-report questionnaires assessing psychological distress, fatigue, and sleep dysfunction. Twenty-one headache and nineteen control subjects participated. In the time domain, the number of consecutive R-to-R intervals that varied by more than 50 ms and the standard deviation of the normalized R-to-R intervals, both indices of parasympathetic nervous system activity, were significantly lower in the headache group than the control group. Groups did not differ statistically on HRV measures in the frequency domain. Self-report measures showed significantly increased somatization, hostility, anxiety, symptom distress, fatigue, and sleep problems in the headache group. The results suggest headache subjects have increased sympathetic nervous system activity and decreased parasympathetic activity compared to non-headache control subjects. Headaches subjects also showed greater emotional distress, fatigue, and sleep problems. The results indicate an association between headaches and cardiovascular functioning suggestive of sympathetic nervous system activation in this sample of mixed migraine and tension-type headache sufferers. PMID:23912525

  2. Fast autonomous holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff; Ghebremichael, Fassil; Gelsinger-Austin, Paul; MacDonald, Ken; Gaddipati, Ravi; Gaddipati, Phani

    2013-12-01

    We present an adaptive optics system incorporating a holographic wavefront sensor with the autonomous closed-loop control of a MEMS deformable mirror. HALOS incorporates a multiplexed holographic recording of the response functions of each actuator in a deformable mirror. On reconstruction with an arbitrary input beam, multiple focal spots are produced. By measuring the relative intensities of these spots a full measurement of the absolute phase can be constructed. Using fast photodiodes, direct feedback correction can be applied to the actuators.In this talk we will present the results from an all-optical, ultra-compact system that runs in closed-loop without the need for a computer. The 32-actuator HALOS runs at a 100kHz bandwidth, but the speed is independent of the number of actuators and should run equally fast with 32 million. Additionally, the system is largely insensitive to obscuration unlike the more conventional Shack-Hartmann WFS. We will present information on how HALOS can be used for image correction and beam propagation as well as several other novel applications.

  3. Tele-robotic/autonomous control using controlshell

    SciTech Connect

    Wilhelmsen, K.C.; Hurd, R.L.; Couture, S.

    1996-12-10

    A tele-robotic and autonomous controller architecture for waste handling and sorting has been developed which uses tele-robotics, autonomous grasping and image processing. As a starting point, prior work from LLNL and ORNL was restructured and ported to a special real-time development environment. Significant improvements in collision avoidance, force compliance, and shared control aspects were then developed. Several orders of magnitude improvement were made in some areas to meet the speed and robustness requirements of the application.

  4. Autonomous navigation ability: FIDO test results

    NASA Technical Reports Server (NTRS)

    Baumgartner, E.; Maurette, M.

    2000-01-01

    The FIDO platform of the JPL has been used to evaluate the ability of autonomous obstacle avoidance developed by JPL and CNES autonomous long range path planning. The test results show that only a very small amount of energy and computing time is used to implement autonomy and that the capabilities of the rover are fully used, allowing a much longer daily traverse than purely ground-planned strategies.

  5. Basic and clinical pharmacology of autonomic drugs.

    PubMed

    Becker, Daniel E

    2012-01-01

    Autonomic drugs are used clinically to either imitate or inhibit the normal functions of the sympathetic and parasympathetic nervous systems. A large number of additional drug classes also interact with these systems to produce a stunning number of possible side effects. This article reviews the basic function of the autonomic nervous system and the various drug classes that act within these neural synapses. PMID:23241039

  6. CSMOS GROUNDWATER MODELING SOFTWARE (CENTER FOR SUBSURFACE MODELING SUPPORT, SUBSURFACE PROTECTION AND REMEDIATION DIVISION, NRMRL)

    EPA Science Inventory

    The Center for Subsurface Modeling Support (CSMoS), which is part of NRMRL's Subsurface Protection and Remediation Division, distributes various public domain groundwater and vadose zone models. A short decription of each model is available. You can obtain both models and manuals...

  7. Autonomic networks and network-enabled capability

    NASA Astrophysics Data System (ADS)

    Spillings, James

    2004-07-01

    Changes in the nature of battlespace information services, combined with the drive to digitization, are raising expectations of the ability of network-centric systems to provide information throughput and timeliness. At a level often abstracted from the systems perspective, it becomes necessary to consider the nature of the underlying network and its ability to adapt, recover, and organise in the face of increasing demands and non-optimal environments. Without this consideration, it may be that the capabilities of the underlying network act to restrict the exploitation of Network-Enabled Capability. Autonomic networks and autonomic computing are being presented as a possible aid to sustaining critical infrastructures of dynamic nodes. Although the focus of much commercial activity, autonomic networks are also believed to have relevance in the military environment and, most importantly, in supporting emerging battlespace information systems and digitization initiatives. Albeit well understood in biological contexts, autonomic principles have yet to be proven in commercial technological environments and, more importantly, in the context of military demands. Derived from this, key issues relate to the true nature of autonomic networks, the benefits accruing from such networks, and those challenges compounded by increasing demands from the ongoing development of military technology and digitization trends. This paper presents an examination of the demands made by the evolution of battlespace information services, some of the applicable technologies to address those demands, and examines the state of current and emerging technology to determine the perceived nature of autonomic networks in the context of Network-Enabled Capability.

  8. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  9. Autonomous control systems - Architecture and fundamental issues

    NASA Technical Reports Server (NTRS)

    Antsaklis, P. J.; Passino, K. M.; Wang, S. J.

    1988-01-01

    A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).

  10. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that present preliminary concepts for integrating the diverse set of control systems to be used within the subsurface repository facility (Presented in Section 7.3). (5) Develop initial concepts for an overall subsurface data communication system that can be used to integrate critical and data-intensive control systems (Presented in Section 7.4). (6) Discuss technology trends and control system design issues (Presented in Section 7.5).

  11. Wave-Based Subsurface Guide Star

    SciTech Connect

    Lehman, S K

    2011-07-26

    Astronomical or optical guide stars are either natural or artificial point sources located above the Earth's atmosphere. When imaged from ground-based telescopes, they are distorted by atmospheric effects. Knowing the guide star is a point source, the atmospheric distortions may be estimated and, deconvolved or mitigated in subsequent imagery. Extending the guide star concept to wave-based measurement systems to include acoustic, seismo-acoustic, ultrasonic, and radar, a strong artificial scatterer (either acoustic or electromagnetic) may be buried or inserted, or a pre-existing or natural sub-surface point scatterer may be identified, imaged, and used as a guide star to determine properties of the sub-surface volume. That is, a data collection is performed on the guide star and the sub-surface environment reconstructed or imaged using an optimizer assuming the guide star is a point scatterer. The optimization parameters are the transceiver height and bulk sub-surface background refractive index. Once identified, the refractive index may be used in subsequent reconstructions of sub-surface measurements. The wave-base guide star description presented in this document is for a multimonostatic ground penetrating radar (GPR) but is applicable to acoustic, seismo-acoustic, and ultrasonic measurement systems operating in multimonostatic, multistatic, multibistatic, etc., modes.

  12. Fuzzy logic path planning system for collision avoidance by an autonomous rover vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1993-01-01

    The Space Exploration Initiative of the United States will make great demands upon NASA and its limited resources. One aspect of great importance will be providing for autonomous (unmanned) operation of vehicles and/or subsystems in space flight and surface exploration. An additional, complicating factor is that much of the need for autonomy of operation will take place under conditions of great uncertainty or ambiguity. Issues in developing an autonomous collision avoidance subsystem within a path planning system for application in a remote, hostile environment that does not lend itself well to remote manipulation by Earth-based telecommunications is addressed. A good focus is unmanned surface exploration of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. Four major issues addressed are (1) avoidance of a fuzzy moving obstacle; (2) backoff from a deadend in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system. Examples of the need for collision avoidance by an autonomous rover vehicle on the surface of Mars with a moving obstacle would be wind-blown debris, surface flow or anomalies due to subsurface disturbances, another vehicle, etc. The other issues of backoff, sensor fusion, and adaptive learning are important in the overall path planning system.

  13. Development of autonomous magnetometer rotorcraft for wide area assessment

    SciTech Connect

    Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

    2010-04-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of dynamic acquisition, i.e. survey mission inflight reprioritization). We describe and report on a one year effort with as primary goal to provide a recommendation to SERDP for a path forward in the implementation of one or more autonomous unmanned magnetometer rotorcraft platforms. This recommendation (which is provided in chapter 6) is based on the following three elements a) An assessment on the applicability of autonomous rotorcraft magnetometer systems to the current DoD site inventory, and an initial assessment of which type(s) of autonomous unmanned magnetometer rotorcraft platforms (in terms of performance characteristics such as payload, altitude, obstacle avoidance, production rate and flight time) would be most relevant to this inventory (chapter 3); b) An evaluation of the feasibility of assembling such platforms from commercial components (unmanned rotorcraft, control systems and sensors – both magnetometer sensors and supporting sensors). This evaluation included several highly successful field tests (chapter 4 and 5); c) A recommendation of the path forward, which includes a detailed outline of the efforts required in the design, assembly and testing of different modular platforms (chapter 6)

  14. Autonomic Findings in Takotsubo Cardiomyopathy.

    PubMed

    Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Martinez, Jose; Katz, Stuart D; Tully, Lisa; Reynolds, Harmony R

    2016-01-15

    Takotsubo cardiomyopathy (TC) often occurs after emotional or physical stress. Norepinephrine levels are unusually high in the acute phase, suggesting a hyperadrenergic mechanism. Comparatively little is known about parasympathetic function in patients with TC. We sought to characterize autonomic function at rest and in response to physical and emotional stimuli in 10 women with a confirmed history of TC and 10 age-matched healthy women. Sympathetic and parasympathetic activity was assessed at rest and during baroreflex stimulation (Valsalva maneuver and tilt testing), cognitive stimulation (Stroop test), and emotional stimulation (event recall, patients). Ambulatory blood pressure monitoring and measurement of brachial artery flow-mediated vasodilation were also performed. TC women (tested an average of 37 months after the event) had excessive pressor responses to cognitive stress (Stroop test: p <0.001 vs baseline and p = 0.03 vs controls) and emotional arousal (recall of TC event: p = 0.03 vs baseline). Pressor responses to hemodynamic stimuli were also amplified (Valsalva overshoot: p <0.05) and prolonged (duration: p <0.01) in the TC women compared with controls. Plasma catecholamine levels did not differ between TC women and controls. Indexes of parasympathetic (vagal) modulation of heart rate induced by respiration and cardiovagal baroreflex gain were significantly decreased in the TC women versus controls. In conclusion, even long after the initial episode, women with previous episode of TC have excessive sympathetic responsiveness and reduced parasympathetic modulation of heart rate. Impaired baroreflex control may therefore play a role in TC. PMID:26743349

  15. Compact Autonomous Hemispheric Vision System

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  16. Improved autonomous star identification algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Li-Yan; Xu, Lu-Ping; Zhang, Hua; Sun, Jing-Rong

    2015-06-01

    The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014_CXJJ-DH_12), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JB141303 and 201413B), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), and the Xi’an Science and Technology Plan, China (Grant. No CXY1350(4)).

  17. Optical subsurface damage evaluation using LSCT

    NASA Astrophysics Data System (ADS)

    Wang, Chunhui; Tian, Ailing; Wang, Hongjun; Li, Bingcail; Jiang, Zhuangde

    2010-03-01

    The evaluation of subsurface damage (SSD) has become a key problem in optical engineering field. Laser scanning confocal technology (LSCT) is one of the potential SSD non-destructive evaluation (NDE) methods. Under three assumptions, an innovative and credible scattering model, which is to detect subsurface defect through LSCT, is built base on the classical Mie light scattering theory. Aimed to the model, three important parameters are discussed respectively that is N.A., wave length and relatively refraction index. In order to verify the reasonableness of the model, an effective measurement is done for a usual polished optical surface, and the survey result is in accord with the model. At last, several helpful conclusions about subsurface damage assessment using LSCT are given.

  18. Optical subsurface damage evaluation using LSCT

    NASA Astrophysics Data System (ADS)

    Wang, Chunhui; Tian, Ailing; Wang, Hongjun; Li, Bingcail; Jiang, Zhuangde

    2009-12-01

    The evaluation of subsurface damage (SSD) has become a key problem in optical engineering field. Laser scanning confocal technology (LSCT) is one of the potential SSD non-destructive evaluation (NDE) methods. Under three assumptions, an innovative and credible scattering model, which is to detect subsurface defect through LSCT, is built base on the classical Mie light scattering theory. Aimed to the model, three important parameters are discussed respectively that is N.A., wave length and relatively refraction index. In order to verify the reasonableness of the model, an effective measurement is done for a usual polished optical surface, and the survey result is in accord with the model. At last, several helpful conclusions about subsurface damage assessment using LSCT are given.

  19. Complete Subsurface Elemental Composition Measurements With PING

    NASA Technical Reports Server (NTRS)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  20. Microbial activities in deep subsurface environments

    SciTech Connect

    Phelps, T.J.; Raione, E.G.; White, D.C. |; Fliermans, C.B.

    1988-12-31

    Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in forty-six sediment samples from three aseptically sampled boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 minutes of core recovery. [{sup 14}C-1-] Acetate incorporation into lipids. [methyl-{sup 3}H-]thymidine incorporation into DNA, [{sup 14}C-2-]acetate and [{sup 14}C-U-]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities followed by the shallow aquifer zones. Water saturated subsurface sediments exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones. Regardless of depth, sediments which contained more than 20% clays exhibited the lowest activities and culturable microorganisms.

  1. Tidal response of Europa's subsurface ocean

    NASA Astrophysics Data System (ADS)

    Karatekin, Özgür; Comblen, Richard; Toubeau, Jonathan; Deleersnijder, Eric; van Hoolst, Tim; Dehant, Veronique

    2010-05-01

    Observations of Cassini and Galileo spacecrafts suggest the presence of subsurface global water oceans under the icy shells of several satellites of Jupiter and Saturn. Previous studies have shown that in the presence of subsurface oceans, time-variable tides cause large periodic surface displacements and that tidal dissipation in the icy shell becomes a major energy source that can affect long-term orbital evolution. However, in most studies so far, the dynamics of these satellite oceans have been neglected. In the present study, we investigate the tidal response of the subsurface ocean of Europa to a time-varying potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities and surface displacements will be presented.

  2. Subsurface Contaminants Focus Area annual report 1997

    SciTech Connect

    1997-12-31

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

  3. MSTS - Multiphase Subsurface Transport Simulator theory manual

    SciTech Connect

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  4. Improving the biodegradative capacity of subsurface bacteria

    SciTech Connect

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates.

  5. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, B.E.; May, C.P.; Rossabi, J.

    1997-06-24

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere. 7 figs.

  6. Subsurface Microbes Expanding the Tree of Life

    SciTech Connect

    Banfield, Jillian

    2015-05-11

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  7. Induction heaters used to heat subsurface formations

    DOEpatents

    Nguyen, Scott Vinh (Houston, TX); Bass, Ronald M. (Houston, TX)

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  8. Radar Soundings of the Subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Picardi, Giovanni; Plaut, Jeffrey J.; Biccari, Daniela; Bombaci, Ornella; Calabrese, Diego; Cartacci, Marco; Cicchetti, Andrea; Clifford, Stephen M.; Edenhofer, Peter; Farrell, William M.; Federico, Costanzo; Frigeri, Alessandro; Gurnett, Donald A.; Hagfors, Tor; Heggy, Essam; Herique, Alain; Huff, Richard L.; Ivanov, Anton B.; Johnson, William T. K.; Jordan, Rolando L.; Kirchner, Donald L.; Kofman, Wlodek; Leuschen, Carlton J.; Nielsen, Erling; Orosei, Roberto

    2005-01-01

    The martian subsurface has been probed to kilometer depths by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument aboard the Mars Express orbiter. Signals penetrate the polar layered deposits, probably imaging the base of the deposits. Data from the northern lowlands of Chryse Planitia have revealed a shallowly buried quasi-circular structure about 250 kilometers in diameter that is interpreted to be an impact basin. In addition, a planar reflector associated with the basin structure may indicate the presence of a low-loss deposit that is more than 1 kilometer thick.

  9. Europa: Geological activity and surface - subsurface exchange

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Cowell, W.

    2005-12-01

    Jupiter's moon Europa has a geologically young surface, allowing the possibility of current, ongoing geological activity. We are searching the Galileo database for overlapping images taken during the 5-year mission, and are comparing images using an iterative coregistration technique to look for changes due to geological activity. We will also discuss methods by which such activity could occur on Europa. We are particularly interested in the ability of geological processes to bring surface material down into the subsurface, and to bring subsurface material up to the surface. We are continuing a survey of such processes, including endogenic tectonic and cryovolcanic activity, and exogenic processes such as gardening and impact cratering.

  10. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph

    1997-01-01

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere.

  11. Heating systems for heating subsurface formations

    SciTech Connect

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  12. Bifurcation and Enhancement of Autonomous-Non-Autonomous Retrotransposon Partnership through LTR Swapping in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although non-autonomous LTR-retrotransposons lacking significant protein coding domains have been identified in eukaryotes, how they interact with their autonomous partners to maintain transpositional activity during host genome evolution is poorly understood. We performed a comprehensive analysis o...

  13. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius is denoted by h. It is the final value of h, reached before beginning construction on the next spindle, that is denoted by r. During construction of a spindle, if a new vector falls between C and the inner boundary, the vector is regarded as completely familiar and no action is taken. If the new vector falls into the region between the inner and outer boundaries, it is considered unusual enough to warrant the adjustment of C and r by use of the aforementioned algorithms, but not unusual enough to be considered novel. If a vector falls outside the outer boundary, it is considered novel, in which case one of several appropriate responses could be initiation of construction of a new spindle.

  14. A power autonomous monopedal robot

    NASA Astrophysics Data System (ADS)

    Krupp, Benjamin T.; Pratt, Jerry E.

    2006-05-01

    We present the design and initial results of a power-autonomous planar monopedal robot. The robot is a gasoline powered, two degree of freedom robot that runs in a circle, constrained by a boom. The robot uses hydraulic Series Elastic Actuators, force-controllable actuators which provide high force fidelity, moderate bandwidth, and low impedance. The actuators are mounted in the body of the robot, with cable drives transmitting power to the hip and knee joints of the leg. A two-stroke, gasoline engine drives a constant displacement pump which pressurizes an accumulator. Absolute position and spring deflection of each of the Series Elastic Actuators are measured using linear encoders. The spring deflection is translated into force output and compared to desired force in a closed loop force-control algorithm implemented in software. The output signal of each force controller drives high performance servo valves which control flow to each of the pistons of the actuators. In designing the robot, we used a simulation-based iterative design approach. Preliminary estimates of the robot's physical parameters were based on past experience and used to create a physically realistic simulation model of the robot. Next, a control algorithm was implemented in simulation to produce planar hopping. Using the joint power requirements and range of motions from simulation, we worked backward specifying pulley diameter, piston diameter and stroke, hydraulic pressure and flow, servo valve flow and bandwidth, gear pump flow, and engine power requirements. Components that meet or exceed these specifications were chosen and integrated into the robot design. Using CAD software, we calculated the physical parameters of the robot design, replaced the original estimates with the CAD estimates, and produced new joint power requirements. We iterated on this process, resulting in a design which was prototyped and tested. The Monopod currently runs at approximately 1.2 m/s with the weight of all the power generating components, but powered from an off-board pump. On a test stand, the eventual on-board power system generates enough pressure and flow to meet the requirements of these runs and we are currently integrating the power system into the real robot. When operated from an off-board system without carrying the weight of the power generating components, the robot currently runs at approximately 2.25 m/s. Ongoing work is focused on integrating the power system into the robot, improving the control algorithm, and investigating methods for improving efficiency.

  15. Abnormal thermoregulation in diabetic autonomic neuropathy.

    PubMed

    Scott, A R; MacDonald, I A; Bennett, T; Tattersall, R B

    1988-07-01

    Hypothermia has been reported to be more common in diabetic people than in nondiabetic people, and we have investigated the possibility that autonomic neuropathy may be associated with disordered thermoregulation. After an overnight fast and maintenance of normoglycemia, 12 insulin-treated diabetic patients with and 11 without neuropathy and 12 nondiabetic control subjects, all less than 55 yr, were subjected to external cooling by perfusing water at 16 degrees C through a liquid-conditioned coverall for less than or equal to 45 min. Patients with autonomic neuropathy had impaired vasoconstriction to cooling, particularly in the foot, calf, and forearm. Core temperature rose by 0.2 degrees C in control subjects and by 0.15 degrees C in patients with diabetes but no neuropathy. In contrast, group mean core temperature was unchanged in those with autonomic neuropathy and fell in 3 subjects (P less than .001). Cooling caused shivering in 6 patients with diabetic autonomic neuropathy, but not in those with neuropathy or control subjects (P less than .05). Baseline metabolic rates were similar in all three groups, but the increase after cooling was significantly greater among those who shivered (P less than .05-.02). Thus, young diabetic patients with autonomic neuropathy have impaired thermoregulation to a relatively short period of external cooling, even during metabolic stability, which may predispose to hypothermia. PMID:3384191

  16. BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...

  17. SUBSURFACE PROTECTION AND REMEDIATION DIVISION (HOME PAGE

    EPA Science Inventory

    The Subsurface Protection and Remediastion Division(SPRD)conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water quality within a watershe...

  18. Subsurface Sensors to Manage Cattle Feedlot Waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface sensing tools were used to aid collection of biosolids from feedlot surfaces to be utilized by crops, for control and utilization of nutrient laden liquid runoff, and to enhance feedlot surface management to reduce nutrient losses and gaseous emissions. The work described here was all co...

  19. Liquefaction in Subsurface Layer of Sand

    USGS Multimedia Gallery

    Ground shaking triggered liquefaction in a subsurface layer of sand, producing differential lateral and vertical movement in a overlying carapace of unliquified sand and silt, which moved from right to left toward the Pajaro River. This mode of ground failure, termed "lateral spreading,

  20. Methods for forming long subsurface heaters

    SciTech Connect

    Kim, Dong Sub

    2013-09-17

    A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

  1. Is Europa's Subsurface Water Ocean Warm?

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.

    2002-01-01

    Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.

  2. Characterization of imidacloprid availability in subsurface soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degradation and sorption/desorption are the most important processes affecting the leaching of pesticides through soil because they control the amount of pesticide available for transport. Once pesticides move past the surface soil layers, variations in subsurface soil physical, chemical, and biolog...

  3. Subsurface Raman imaging with nanoscale resolution.

    PubMed

    Anderson, Neil; Anger, Pascal; Hartschuh, Achim; Novotny, Lukas

    2006-04-01

    We report on chemically specific, subsurface imaging with high spatial resolution. Using tip-enhanced Raman spectroscopy, we probe carbon nanotubes buried beneath a host dielectric media. We demonstrate our ability to map and resolve specific vibrational modes with 30 nm spatial resolution for dielectric layers with different thicknesses. PMID:16608276

  4. OVERVIEW -- SUBSURFACE PROTECTION AND REMEDIATION DIVISION

    EPA Science Inventory

    NRMRL's Subsurface Protection and Remediation Division located in Ada, Oklahoma, conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water q...

  5. MODELING MICROBIAL FATE IN THE SUBSURFACE ENVIRONMENT

    EPA Science Inventory

    The biological, chemical, and physical factors which are known to influence virus and bacterial survival and transport in the subsurface are discussed. Models used to predict the fate of microorganisms are presented. The models that have been developed to predict the fate of micr...

  6. Surface and subsurface oxygen on Pd(111)

    NASA Astrophysics Data System (ADS)

    Leisenberger, F. P.; Koller, G.; Sock, M.; Surnev, S.; Ramsey, M. G.; Netzer, F. P.; Klötzer, B.; Hayek, K.

    2000-01-01

    The interaction of O2 with Pd(111) in the temperature range from 300 K to 1000 K was studied by molecular beam adsorption, thermal desorption (TDS), low energy electron diffraction (LEED), high-resolution X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS). Using a capillary array doser and high effective oxygen pressures, evidence was found for the formation of a densely packed chemisorbed oxygen adlayer saturating at ΘO close to 1 and separately for subsurface migration of oxygen at elevated temperatures, but not at room temperature and below. Up to completion of a p(2×2) oxygen adlayer at 0.25 ML surface coverage, the dissociative sticking probability of oxygen into the chemisorbed state is high and masks the much slower diffusion into the bulk. Beyond 0.25 ML surface coverage, the adsorption rate into the chemisorbed state becomes small and the influence of bulk migration detectable. Exposure of the sample to high oxygen dosages at 1000 K fills up the subsurface reservoir and subsequent sticking measurements are no longer influenced by oxygen loss to the bulk. The subsurface oxygen could be distinguished in both XPS and off-specular HREELS. These latter techniques revealed that considerable concentrations of oxygen in the near-surface region can build up, even at lower temperatures (523 K) and oxygen exposures (40 L). In contrast to chemisorbed oxygen atoms on Pd(111), the subsurface species cannot be removed by reaction with CO.

  7. Lateral gene transfer in the subsurface

    SciTech Connect

    Barkay, Tamar; Sobecky, Patricia

    2007-08-27

    Lateral gene transfer (LGT) is an important adaptive mechanism among prokaryotic organisms. This mechanism is particularly important for the response of microorganisms to changing environmental conditions because it facilitates the transfer of a large number of genes and their rapid expression. Together the transferred genes promote rapid genetic and metabolic changes that may enhance survival to newly established and sometimes hostile environmental conditions. The goal of our project was to examine if and how LGT enhances microbial adaptation to toxic heavy metals in subsurface environments that had been contaminated by mixed wastes due to activities associated with the production of nuclear energy and weapons. This task has been accomplished by dividing the project to several sub-tasks. Thus, we: (1) Determined the level of resistance of subsurface bacterial isolates to several toxic metals, all identified as pollutants of concern in subsurface environments; (2) Designed, tested, and applied, a molecular approach that determined whether metal resistance genes had evolved by LGT among subsurface bacteria; and (3) Developed a DNA hybridization array for the identification of broad host range plasmids and of metal resistance plasmids. The results are briefly summarized below with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  8. Subsurface Remote Sensing of Kelp Forests

    NASA Astrophysics Data System (ADS)

    Allen, J. G.; Palacios, S. L.; Kudela, R. M.

    2012-12-01

    Macrocystis pyrifera, or giant kelp, provides structure and support for many marine species, and its forests rank as one of the most ecologically productive systems in the world. Traditional, in situ measurements of kelp biomass and productivity are episodic, costly, and provide limited spatial coverage across the often wide swaths of kelp ecosystems. While satellite methods have been developed to estimate kelp biomass and productivity, satellite observations are also limited, as standard practices for measuring terrestrial vegetation cannot be applied with the same confidence to marine vegetation. Here, data gathered from flights with the MASTER sensor over the Santa Barbara Channel allowed the development of two algorithms to assess the surface and subsurface areal extent of kelp in multispectral imagery. The first, a marine vegetation index (MVI), was developed from imagery to capture both surface and sub-surface vegetation pixels. The second algorithm is based on a spectral library for kelp radiance collected from field samples and modeled using the radiative transfer equations with the HydroLight software package. The endmember collection from this library was used in the Spectral Angle Mapping tool in ENVI to identify kelp at various depths. Outputs from each of these algorithms were then compared to the Normalized Difference Vegetation Index (NDVI). Analyzing spectral properties of sub-surface features will facilitate the use of satellites in measuring extent and productivity of marine ecosystems. Furthermore, these tools allow researchers to directly quantify the depth and extent of subsurface vegetation, greatly enhancing existing methods.

  9. SEQUESTRATION OF SUBSURFACE ELEMENTAL MERCURY (HG0)

    EPA Science Inventory

    Elemental mercury (Hg0) is a metal with a number of atypical properties, which has resulted in its use in myriad anthropogenic processes. However, these same properties have also led to severe local subsurface contamination at many places where it has been used. As...

  10. Subsurface manure application to reduce ammonia emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation into soil is generally recommended to reduce ammonia volatilization and nutrient runoff following land application of manures. A range of subsurface applicators are available for manure incorporation with minimal soil disturbance in reduced tillage systems, but none have been widely a...

  11. Geophysical subsurface imaging for ecological applications.

    PubMed

    Jayawickreme, Dushmantha H; Jobbágy, Esteban G; Jackson, Robert B

    2014-03-01

    Ecologists, ecohydrologists, and biogeochemists need detailed insights into belowground properties and processes, including changes in water, salts, and other elements that can influence ecosystem productivity and functioning. Relying on traditional sampling and observation techniques for such insights can be costly, time consuming, and infeasible, especially if the spatial scales involved are large. Geophysical imaging provides an alternative or complement to traditional methods to gather subsurface variables across time and space. In this paper, we review aspects of geophysical imaging, particularly electrical and electromagnetic imaging, that may benefit ecologists seeking clearer understanding of the shallow subsurface. Using electrical resistivity imaging, for example, we have been able to successfully show the effect of land-use conversions to agriculture on salt mobilization and leaching across kilometer-long transects and to depths of tens of meters. Recent advances in ground-penetrating radar and other geophysical imaging methods currently provide opportunities for subsurface imaging with sufficient detail to locate small (?5 cm diameter) animal burrows and plant roots, observe soil-water and vegetation spatial correlations in small watersheds, estuaries, and marshes, and quantify changes in groundwater storage at local to regional scales using geophysical data from ground- and space-based platforms. Ecologists should benefit from adopting these minimally invasive, scalable imaging technologies to explore the subsurface and advance our collective research. PMID:24649489

  12. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  13. Autonomic dysreflexia and posterior reversible encephalopathy syndrome.

    PubMed

    Matias, Ana Catarina; Rocha, João; Cerqueira, Maria Emília; Pereira, João Manuel

    2013-05-01

    Autonomic dysreflexia is a syndrome of massive imbalanced reflex sympathetic discharge in patients who had a spinal cord injury above the splanchnic sympathetic outflow resulting in a sudden increase in blood pressure. Posterior reversible encephalopathy syndrome (PRES) refers to a clinicoradiologic entity characterized by headache, consciousness impairment, visual disturbances, seizures, and posterior transient changes on neuroimaging (cerebral vasogenic edema). Hypertension is a common cause of PRES. The authors describe two case reports of patients with tetraplegia who developed PRES after an autonomic dysreflexia episode. One of them had recurrence of PRES in a similar clinical context. The authors discuss further aspects of PRES and its recurrence, which seems to be unusual particularly after autonomic dysreflexia. PMID:23117272

  14. Autonomic regulation in Fragile X Syndrome

    PubMed Central

    Heilman, Keri J.; Harden, Emily R.; Zageris, Danielle M.; Berry-Kravis, Elizabeth; Porges, Stephen W.

    2011-01-01

    Autonomic reactivity was studied in individuals with fragile X syndrome (FXS), a genetic disorder partially characterized by abnormal social behavior. Relative to age-matched controls, the FXS group had faster baseline heart rate and lower amplitude respiratory sinus arrhythmia (RSA). In contrast to the typically developing controls, there was a decrease in RSA with age within the FXS group. Moreover, within the FXS group heart rate did not slow with age. The FXS group also responded with an atypical increase in RSA to the social challenge, while the control group reduced RSA. In a subset of the FXS group, the autonomic profile did not change following 2 months and 1 year of lithium treatment. The observed indices of atypical autonomic regulation, consistent with the Polyvagal Theory, may contribute to the deficits in social behavior and social communication observed in FXS. PMID:21547900

  15. Software control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Nelson, Michael L.; DeAnda, Juan R.; Fox, Richard K.; Meng, Xiannong

    1999-07-01

    The Strategic-Tactical-Execution Software Control Architecture (STESCA) is a tri-level approach to controlling autonomous vehicles. Using an object-oriented approach, STESCA has been developed as a generalization of the Rational Behavior Model (RBM). STESCA was initially implemented for the Phoenix Autonomous Underwater Vehicle (Naval Postgraduate School -- Monterey, CA), and is currently being implemented for the Pioneer AT land-based wheeled vehicle. The goals of STESCA are twofold. First is to create a generic framework to simplify the process of creating a software control architecture for autonomous vehicles of any type. Second is to allow for mission specification system by 'anyone' with minimal training to control the overall vehicle functionality. This paper describes the prototype implementation of STESCA for the Pioneer AT.

  16. Lessons learned from the autonomous power system

    SciTech Connect

    Ringer, M.J.; Quinn, T.M.; Merolla, A. . NASA Lewis Research Center Group)

    1993-01-01

    The Autonomous Power System (APS) project at the NASA Lewis Research Center is designed to demonstrate the applications of integrated intelligent diagnosis, control and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Detection, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The APS project has been through one design iteration. Each of the three elements of the APS project has been designed, tested, and integrated into a complete working system. After these three portions were completed, an evaluation period was initiated. Each piece of the system was critiqued based on individual performance as well as ability to interact with the other portions of the APS project. These critiques were then used to determine guidelines for new and improved components of the APS system.

  17. On-Orbit Autonomous Assembly from Nanosatellites

    NASA Technical Reports Server (NTRS)

    Murchison, Luke S.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.

  18. Autonomic dysfunction in chronic liver disease

    PubMed Central

    Frith, James; Newton, Julia L

    2011-01-01

    It is becoming increasingly clear that quality of life (QOL) is impaired in those with chronic liver disease (CLD). One of the most important contributors to impaired QOL is the symptomatic burden which can range from slight to debilitating. Autonomic dysfunction accounts for a significant proportion of these symptoms, which can be common, non-specific and challenging to treat. Investigating the autonomic nervous system can be straight forward and can assist the clinician to diagnose and treat specific symptoms. Evidence-based treatment options for autonomic symptoms, specifically in CLD, can be lacking and must be extrapolated from other studies and expert opinion. For those with severely impaired quality of life, liver transplantation may offer an improvement; however, more research is needed to confirm this. PMID:24367224

  19. Functional organization of autonomic neural pathways

    PubMed Central

    Gibbins, Ian

    2013-01-01

    There is now abundant functional and anatomical evidence that autonomic motor pathways represent a highly organized output of the central nervous system. Simplistic notions of antagonistic all-or-none activation of sympathetic or parasympathetic pathways are clearly wrong. Sympathetic or parasympathetic pathways to specific target tissues generally can be activated tonically or phasically, depending on current physiological requirements. For example, at rest, many sympathetic pathways are tonically active, such as those limiting blood flow to the skin, inhibiting gastrointestinal tract motility and secretion, or allowing continence in the urinary bladder. Phasic parasympathetic activity can be seen in lacrimation, salivation or urination. Activity in autonomic motor pathways can be modulated by diverse sensory inputs, including the visual, auditory and vestibular systems, in addition to various functional populations of visceral afferents. Identifying the central pathways responsible for coordinated autonomic activity has made considerable progress, but much more needs to be done. PMID:23872517

  20. Quantifying nonisothermal subsurface soil water evaporation

    NASA Astrophysics Data System (ADS)

    Deol, Pukhraj; Heitman, Josh; Amoozegar, Aziz; Ren, Tusheng; Horton, Robert

    2012-11-01

    Accurate quantification of energy and mass transfer during soil water evaporation is critical for improving understanding of the hydrologic cycle and for many environmental, agricultural, and engineering applications. Drying of soil under radiation boundary conditions results in formation of a dry surface layer (DSL), which is accompanied by a shift in the position of the latent heat sink from the surface to the subsurface. Detailed investigation of evaporative dynamics within this active near-surface zone has mostly been limited to modeling, with few measurements available to test models. Soil column studies were conducted to quantify nonisothermal subsurface evaporation profiles using a sensible heat balance (SHB) approach. Eleven-needle heat pulse probes were used to measure soil temperature and thermal property distributions at the millimeter scale in the near-surface soil. Depth-integrated SHB evaporation rates were compared with mass balance evaporation estimates under controlled laboratory conditions. The results show that the SHB method effectively measured total subsurface evaporation rates with only 0.01-0.03 mm h-1difference from mass balance estimates. The SHB approach also quantified millimeter-scale nonisothermal subsurface evaporation profiles over a drying event, which has not been previously possible. Thickness of the DSL was also examined using measured soil thermal conductivity distributions near the drying surface. Estimates of the DSL thickness were consistent with observed evaporation profile distributions from SHB. Estimated thickness of the DSL was further used to compute diffusive vapor flux. The diffusive vapor flux also closely matched both mass balance evaporation rates and subsurface evaporation rates estimated from SHB.

  1. MANIPULATING SUBSURFACE COLLOIDS TO ENHANCE CLEANUPS OF DOE WASTE SITES

    EPA Science Inventory

    Colloidal phases, such as submicrometer iron oxyhydroxides, aluminosilicate clays, and humic macromolecules, are important subsurface sorbents for the low-solubility chemicals in DOE wastes. Recent research we have performed as part of DOE's Subsurface Science Program has demonst...

  2. Planning and Execution for an Autonomous Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.

    2010-01-01

    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.

  3. Knowledge-based Autonomous Test Engineer (KATE)

    NASA Technical Reports Server (NTRS)

    Parrish, Carrie L.; Brown, Barbara L.

    1991-01-01

    Mathematical models of system components have long been used to allow simulators to predict system behavior to various stimuli. Recent efforts to monitor, diagnose, and control real-time systems using component models have experienced similar success. NASA Kennedy is continuing the development of a tool for implementing real-time knowledge-based diagnostic and control systems called KATE (Knowledge based Autonomous Test Engineer). KATE is a model-based reasoning shell designed to provide autonomous control, monitoring, fault detection, and diagnostics for complex engineering systems by applying its reasoning techniques to an exchangeable quantitative model describing the structure and function of the various system components and their systemic behavior.

  4. Light sailboats: Laser driven autonomous microrobots

    NASA Astrophysics Data System (ADS)

    Búzás, Anrdás; Kelemen, Lóránd; Mathesz, Anna; Oroszi, László; Vizsnyiczai, Gaszton; Vicsek, Tamás; Ormos, Pál

    2012-07-01

    We introduce a system of light driven microscopic autonomous moving particles that move on a flat surface. The design is simple, yet effective: Micrometer sized objects with wedge shape are produced by photopolymerization, and they are covered with a reflective surface. When the area of motion is illuminated perpendicularly from above, the light is deflected to the side by the wedge shaped objects, in the direction determined by the position and orientation of the particles. The momentum change during reflection provides the driving force for an effectively autonomous motion. The system is an efficient tool to study self propelled microscopic robots.

  5. Autonomous scheduling technology for Earth orbital missions

    NASA Technical Reports Server (NTRS)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  6. Advanced control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  7. Design of an autonomous exterior security robot

    NASA Technical Reports Server (NTRS)

    Myers, Scott D.

    1994-01-01

    This paper discusses the requirements and preliminary design of robotic vehicle designed for performing autonomous exterior perimeter security patrols around warehouse areas, ammunition supply depots, and industrial parks for the U.S. Department of Defense. The preliminary design allows for the operation of up to eight vehicles in a six kilometer by six kilometer zone with autonomous navigation and obstacle avoidance. In addition to detection of crawling intruders at 100 meters, the system must perform real-time inventory checking and database comparisons using a microwave tags system.

  8. Autonomous Landing and Hazard Avoidance Technology (ALHAT)

    NASA Technical Reports Server (NTRS)

    Epp, Chirold

    2007-01-01

    This viewgraph presentation reviews the work towards technology that will result in an autonomous landing on the lunar surface, that will avoid the hazards of lunar landing. In October 2005, the Exploration Systems Mission Directorate at NASA Headquarters assigned the development of new technologies to support the return to the moon. One of these was Autonomous Precision Landing and Hazard Detection and Avoidance Technology now known as ALHAT ALHAT is a lunar descent and landing GNC technology development project led by Johnson Space Center (JSC) with team members from Langley Research Center (LaRC), Jet Propulsion Laboratory (JPL), Draper Laboratories (CSDL) and the Applied Physics Laboratory (APL)

  9. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  10. Lessons Learned from Autonomous Sciencecraft Experiment

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce; D'Agostino, Jeff; Shulman, Seth; Boyer, Darrell; Hayden, Sandra; Sweet, Adam; Christa, Scott

    2005-01-01

    An Autonomous Science Agent has been flying onboard the Earth Observing One Spacecraft since 2003. This software enables the spacecraft to autonomously detect and responds to science events occurring on the Earth such as volcanoes, flooding, and snow melt. The package includes AI-based software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software is in routine use to fly the EO-l mission. In this paper we briefly review the agent architecture and discuss lessons learned from this multi-year flight effort pertinent to deployment of software agents to critical applications.

  11. Road boundary detection for autonomous vehicle navigation

    SciTech Connect

    Davis, L.S.; Kushner, T.R.; LeMoigne, J.J.; Waxman, A.M.

    1986-03-01

    The Computer Vision Laboratory at the University Maryland for the past year has been developing a computer vision system for autonomous ground navigation of roads and road networks for the Defense Advanced Research Projects Agency's Strategic Computing Program. The complete system runs on a VAX 11/785, but certain parts of it have been reimplemented on a VICOM image processing sysem for experimentation on an autonomous vehicle built for the Martin Marietta Corp., Aerospace Division, in Denver, Colorado. A brief overview is given of the principal software components of the system and the VICOM implementation in detail.

  12. Sensorpedia: Information Sharing Across Autonomous Sensor Systems

    SciTech Connect

    Gorman, Bryan L; Resseguie, David R; Tomkins-Tinch, Christopher H

    2009-01-01

    The concept of adapting social media technologies is introduced as a means of achieving information sharing across autonomous sensor systems. Historical examples of interoperability as an underlying principle in loosely-coupled systems is compared and contrasted with corresponding tightly-coupled, integrated systems. Examples of ad hoc information sharing solutions based on Web 2.0 social networks, mashups, blogs, wikis, and data tags are presented and discussed. The underlying technologies of these solutions are isolated and defined, and Sensorpedia is presented as a formalized application for implementing sensor information sharing across large-scale enterprises with incompatible autonomous sensor systems.

  13. Autonomic Regulation Therapy in Heart Failure.

    PubMed

    Buckley, Una; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2015-08-01

    Autonomic regulation therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART. PMID:26054327

  14. Evolutionary strategy for achieving autonomous navigation

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.

    1999-01-01

    An approach is presented for the evolutionary development of supervised autonomous navigation capabilities for small 'backpackable' ground robots, in the context of a DARPA- sponsored program to provide robotic support to small units of dismounted warfighters. This development approach relies on the implementation of a baseline visual serving navigation capability, including tools to support operator oversight and override, which is then enhanced with semantically referenced commands and a mission scripting structure. As current and future machine perception techniques are able to automatically designate visual serving goal points, this approach should provide a natural evolutionary pathway to higher levels of autonomous operation and reduced requirements for operator intervention.

  15. NEURON: Enabling Autonomicity in Wireless Sensor Networks

    PubMed Central

    Zafeiropoulos, Anastasios; Gouvas, Panagiotis; Liakopoulos, Athanassios; Mentzas, Gregoris; Mitrou, Nikolas

    2010-01-01

    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. PMID:22399931

  16. Tool samples subsurface soil free of surface contaminants

    NASA Technical Reports Server (NTRS)

    Kemmerer, W. W.; Wooley, B. C.

    1967-01-01

    Sampling device obtains pure subsurface soil that is free of any foreign substance that may exist on the surface. It is introduced through a contaminated surface area in a closed condition, opened, and a subsurface sample collected, sealed while in the subsurface position, and then withdrawn.

  17. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  18. Genetics Home Reference: Hereditary sensory and autonomic neuropathy type II

    MedlinePLUS

    ... Genetic disorder catalog Conditions > Hereditary sensory and autonomic neuropathy type II (often shortened to HSAN2 ) On this ... 2011 What is HSAN2? Hereditary sensory and autonomic neuropathy type II (HSAN2) is a condition that primarily ...

  19. Genetics Home Reference: Hereditary sensory and autonomic neuropathy type V

    MedlinePLUS

    ... Genetic disorder catalog Conditions > Hereditary sensory and autonomic neuropathy type V (often shortened to HSAN5 ) On this ... 2011 What is HSAN5? Hereditary sensory and autonomic neuropathy type V (HSAN5) is a condition that primarily ...

  20. Why Computer-Based Systems Should be Autonomic

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    The objective of this paper is to discuss why computer-based systems should be autonomic, where autonomicity implies self-managing, often conceptualized in terms of being self-configuring, self-healing, self-optimizing, self-protecting and self-aware. We look at motivations for autonomicity, examine how more and more systems are exhibiting autonomic behavior, and finally look at future directions.

  1. Generalized synchronization of chaos in autonomous systems.

    PubMed

    Alvarez-Llamoza, O; Cosenza, M G

    2008-10-01

    We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system can be synchronized to each other, but not to a coupling function defined from them. The form of the coupling function is not crucial; it may not depend on all the state variables. Nor does it need to be active for all times for achieving generalized synchronization. The procedure is based on an analogy between a response map subject to an external drive acting with a probability p and an autonomous system of coupled maps where a global interaction between the maps takes place with this same probability. It is shown that, under some circumstances, the conditions for stability of generalized synchronized states are equivalent in both types of systems. Our results reveal the existence of similar minimal conditions for the emergence of generalized synchronization of chaos in driven and in autonomous spatiotemporal systems. PMID:18999517

  2. Fully autonomous mobile mini-robot

    NASA Astrophysics Data System (ADS)

    Buechi, Roland; Rohrer, Daniel; Schmid, Christian; Siegwart, Roland Y.

    1995-12-01

    In recent years, many new designs of micro robots have been developed. Miniaturization is a challenge and most mechanisms designed up to now are not autonomous, i.e. they don't have their intelligence and/or power supply on board. A new fully autonomous miniature mobile robot has been designed in our lab in a final year project. It has been programmed to follow a black line printed on the ground. An autonomous mechatronic system consists at least of a sensor, an actuator, a microprocessor to provide intelligence and a power supply. In our case, the robot's intelligence is based on a PIC16C71 microcontroller that controls its movement. To follow a black line, an infrared emitter and two receivers are placed at the front of the robot. As actuators, two watch motors are used. The gears of the watch's second hand are directly used as wheels to move the system. Two small batteries supply the energy to the motors and the microprocessor as well. The technical details of the mini mobile robot are as follows: dimensions: 20 mm * 8 mm * 15 mm; velocity: 40 mm/s; power consumption: 6 mW. This low power consumption allows the system to move autonomous for about 8 - 10 hours.

  3. Autonomous biomorphic robots as platforms for sensors

    SciTech Connect

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  4. AUTONOMOUS BURIED PIPE DETECTION USING NEURAL NETWORKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An autonomous pipe detection algorithm using two independent Artificial Neural Networks (ANN) in two dimensional GPR data has been developed. And a pipe orientation estimation method has been discussed. The first neural network, called step-l ANN, was trained with a waveform reflected from a pipe in...

  5. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  6. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  7. Directed Autonomic Flow: Functional Motility Fluidics.

    PubMed

    Kühn, Philipp T; de Miranda, Barbara Santos; van Rijn, Patrick

    2015-12-01

    Unidirectional coherent motion of a self-moving droplet is achieved and combined in a functional motility fluidic chip for chemical reactions via a novel and straightforward approach. The droplet shows both increased movement speeds and displacement distances without any input of energy. Nanoparticle synthesis is performed using the autonomous movement in a fluidic chip that induces transport, mixing, and collection. PMID:26467031

  8. An Algorithm for Autonomous Formation Obstacle Avoidance

    NASA Astrophysics Data System (ADS)

    Cruz, Yunior I.

    The level of human interaction with Unmanned Aerial Systems varies greatly from remotely piloted aircraft to fully autonomous systems. In the latter end of the spectrum, the challenge lies in designing effective algorithms to dictate the behavior of the autonomous agents. A swarm of autonomous Unmanned Aerial Vehicles requires collision avoidance and formation flight algorithms to negotiate environmental challenges it may encounter during the execution of its mission, which may include obstacles and chokepoints. In this work, a simple algorithm is developed to allow a formation of autonomous vehicles to perform point to point navigation while avoiding obstacles and navigating through chokepoints. Emphasis is placed on maintaining formation structures. Rather than breaking formation and individually navigating around the obstacle or through the chokepoint, vehicles are required to assemble into appropriately sized/shaped sub-formations, bifurcate around the obstacle or negotiate the chokepoint, and reassemble into the original formation at the far side of the obstruction. The algorithm receives vehicle and environmental properties as inputs and outputs trajectories for each vehicle from start to the desired ending location. Simulation results show that the algorithm safely routes all vehicles past the obstruction while adhering to the aforementioned requirements. The formation adapts and successfully negotiates the obstacles and chokepoints in its path while maintaining proper vehicle separation.

  9. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel. PMID:26227680

  10. Autonomous Learning from a Social Cognitive Perspective

    ERIC Educational Resources Information Center

    Ponton, Michael K.; Rhea, Nancy E.

    2006-01-01

    The current perspective of autonomous learning defines it as the agentive exhibition of resourcefulness, initiative, and persistence in self-directed learning. As a form of human agency, it has been argued in the literature that this perspective should be consistent with Bandura's (1986) Social Cognitive Theory (SCT). The purpose of this article…

  11. Autonomic failure with postprandial hypotension: case report.

    PubMed

    Turnbull, C J; Palmer, K T; Taylor, B B

    1981-07-01

    A case of severe symptomatic postprandial hypotension associated with idiopathic autonomic neuropathy and endogenous hyperinsulinaemia is described. The possible mechanisms of the blood pressure changes are discussed. Attempts at treatment included dietary change; the use of vasodilators with salt and fludrocortisone; elastic stockings, antigravity suit; diazoxide and bromocriptine. PMID:6943464

  12. Control algorithms for autonomous robot navigation

    SciTech Connect

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  13. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  14. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves. PMID:20444653

  15. Love alters autonomic reactivity to emotions.

    PubMed

    Schneiderman, Inna; Zilberstein-Kra, Yael; Leckman, James F; Feldman, Ruth

    2011-12-01

    Periods of bond formation are accompanied by physiological and emotional changes, yet, little is known about the effects of falling in love on the individual's physiological response to emotions. We examined autonomic reactivity to the presentation of negative and positive films in 112 young adults, including 57 singles and 55 new lovers who began a romantic relationship 2.5 months prior to the experiment Autonomic reactivity was measured by Respiratory Sinus Arrhythmia (RSA) to two baseline emotionally neutral films, two negative films, and two positive films. Results demonstrated that RSA in singles decreased during the presentation of negative emotions, indicating physiological stress response. However, no such decrease was found among new lovers, pointing to more optimal vagal regulation during the period of falling in love. Autonomic reactivity, indexed by RSA decrease from the positive to the negative films, was greater among singles as compared to lovers, suggesting that love buffers against autonomic stress and facilitates emotion regulation. Findings suggest that vagal regulation may be one mechanism through which love and attachment reduce stress and promote well-being and health. PMID:22142209

  16. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.

  17. Lunar subsurface exploration with coherent radar.

    NASA Technical Reports Server (NTRS)

    Brown, W. E., Jr.

    1972-01-01

    The Apollo Lunar Sounder Experiment that is scheduled to orbit the moon on Apollo 17 consists of a three frequency coherent radar system and an optical recorder. The coherent radar can be used to measure both phase and amplitude characteristics of the radar echo. Measurement methods that are related to the phase and amplitude will be used to determine the surface profile, locate subsurface features and ascertain near surface electrical properties of the lunar surface. The key to the coherent radar measurement is a highly stable oscillator that preserves an accurate phase reference (2 or 3 electrical degrees) over a long period of time. This reference provides a means for reducing surface clutter so that subsurface features are more easily detected and also provides a means of measuring range to the surface to within a fraction of a wavelength.

  18. Advancements in subsurface barrier wall technology

    SciTech Connect

    Mutch, R.D. Jr.; Ash, R.E. IV; Cavalli, N.J.

    1994-12-31

    Subsurface barrier walls are enjoying a resurgence in popularity as components of site remediation systems largely for two reasons. First, treatment technologies have shown themselves to be incapable of fully managing a large proportion of waste disposal sites, especially large landfills, DNAPL sites, and large industrial plant sites, thus underscoring the importance of site-wide containment technologies such as subsurface barrier walls. The second factor is a parallel advancement in the technologies of barrier wall construction. Advancements, include a variety of geomembrane-based barrier walls, jet grouting techniques, deep soil mixing, and the ability to construct deep barrier walls (greater than 150 feet deep) using interlocking plastic concrete panels. These advancements have led to barrier walls which are not only more impervious, more resistant to chemical attack, and capable of achieving greater depths, but in many cases are less costly than earlier technologies.

  19. Microbial nanowires: Is the subsurface "hardwired"?

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, Dimitrios; Atekwana, Estella A.; Hill, Eric A.; Gorby, Yuri

    2007-09-01

    The Earth's shallow subsurface results from integrated biological, geochemical, and physical processes. Methods are sought to remotely assess these interactive processes, especially those catalysed by micro-organisms. Using saturated sand columns and the metal reducing bacterium Shewanella oneidensis MR-1, we show that electrically conductive appendages called bacterial nanowires are directly associated with electrical potentials. No significant electrical potentials were detectable in columns inoculated with mutant strains that produced non-conductive appendages. Scanning electron microscopy imaging revealed a network of nanowires linking cells-cells and cells to mineral surfaces, "hardwiring" the entire length of the column. We hypothesize that the nanowires serve as conduits for transfer of electrons from bacteria in the anaerobic part of the column to bacteria at the surface that have access to oxygen, akin to a biogeobattery. These results advance understanding of the mechanisms of electron transport in subsurface environments and of how microorganisms cycle geologic material and share energy.

  20. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kosteinik, Kevin M.; Sloan, Paul A.

    2004-07-06

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  1. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2006-10-17

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  2. Metalliferous Biosignatures for Deep Subsurface Microbial Activity

    NASA Astrophysics Data System (ADS)

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2015-09-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian `red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity.

  3. Metalliferous Biosignatures for Deep Subsurface Microbial Activity

    NASA Astrophysics Data System (ADS)

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian `red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity.

  4. Radionuclide Sensors for Subsurface Water Monitoring

    SciTech Connect

    Timothy DeVol

    2006-06-30

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

  5. Surface Signature of Subsurface-Intensified Vortices

    NASA Astrophysics Data System (ADS)

    Ciani, D.; Carton, X. J.; Chapron, B.; Bashmachnikov, I.

    2014-12-01

    The ocean at mesoscale (20-200 km) and submesoscale (0.5-20km) is highly populated by vortices. These recirculating structures are more energetic than the mean flow, they trap water masses from their origin areas and advect them across the ocean, with consequent impact on the 3D distribution of heat and tracers. Mesoscale and submesoscale structures characterize the ocean dynamics both at the sea surface and at intrathermocline depths (0-1500m), and are presently investigated by means of model outputs, in-situ and satellite (surface) data, the latest being the only way to get high resolution and synoptic observations at planetary scale (e.g., thermal-band observations, future altimetric observations given by the SWOT satellite mission). The scientific question arising from this context is related to the role of the ocean surface for inferring informations on mesoscale and submesoscale vortices at depth. This study has also been motivated by the recent detection of subsurface eddies east of the Arabian Peninsula (PHYSINDIEN experiment - 2011).Using analytical models in the frame of the QG theory, we could describe the theoretical altimetric signature of non-drifting and of drifting subsurface eddies. Numerical experiments, using both coupled QG-SQG and primitive equations models, allowed us to investigate the surface expression of intrathermocline eddies interacting with baroclinic currents or evolving under planetary beta-effect. The eddy characteristics (radius, depth, thickness, velocity) were varied, to represent various oceanic examples (Meddies, Swoddies, Reddies, Peddies, Leddies). Idealized simulations with the ROMS model, confirming theoretical estimates, showed that drifting subsurface-intensified vortices can induce dipolar sea level anomalies, up to 3 cm. This result, compatibly with future SWOT measurement accuracies (about 2 cm), is a first step towards systematic and synoptic detection of subsurface vortices.

  6. Metalliferous Biosignatures for Deep Subsurface Microbial Activity.

    PubMed

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian 'red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity. PMID:26376912

  7. The Conductor of the Autonomic Orchestra

    PubMed Central

    Vinik, Aaron I.

    2012-01-01

    Bad bedfellows – autonomic dysfunction, inflammation, and diabetes! Are they related? How? Evidence suggests the activation of inflammatory cytokines like IL-6 and TNFα in newly diagnosed type 2 diabetes and that the inflammatory change correlates with abnormalities in sympathovagal balance. Dysfunction of the autonomic system predicts cardiovascular risk and sudden death in patients with type 2 diabetes. It occurs in prediabetes, providing opportunities for early intervention. The importance of recognizing autonomic dysfunction as a predictor of morbidity and mortality with intensification of treatment suggests that all patients with type 2 diabetes at onset, and those with type 1 diabetes after 5 years should be screened for autonomic imbalance. These tests can be performed at the bedside with real time output of information – within the scope of the practicing physician – facilitates diagnosis and allows the application of sound strategies for management. The window of opportunity for aggressive control of all the traditional risk factors for cardiovascular events or sudden death with intensification of therapy is with short duration diabetes, the absence of cardiovascular disease, and a history of severe hypoglycemic events. To this list we can now add autonomic dysfunction and neuropathy, which have become the most powerful predictors of risk for mortality. It seems prudent that practitioners should be encouraged to become familiar with this information and apply risk stratification in clinical practice. After all, how difficult is it to ask patients “do you have numb feet?” and to determine their heart rate variability – it could be lifesaving. Ultimately methods to reset the hypothalamus and the inflammatory cascade are needed if we are to impact the care of patients with this compendium of conditions. PMID:22737143

  8. Autonomic Nervous System and Immune System Interactions

    PubMed Central

    Kenney, MJ; Ganta, CK

    2015-01-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease development and immune-associated changes in autonomic nervous system function. PMID:24944034

  9. Monitoring subsurface barrier integrity using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Gard, A.; Senum, G.

    1998-06-01

    Subsurface barriers are an extremely promising remediation option to many waste-management problems. It is recognized that monitoring of the barrier is necessary to provide confidence in the ability of the barrier to contain the pollutants. However, the large size and deep placement of subsurface barriers make detection of leaks a challenging task. Therefore, typical geophysical methods are not suitable for the monitoring of an emplaced barrier`s integrity. Perfluorocarbon tracers (PFTs) have been tested as a means of barrier verification at the Hanford geotechnical test facility, where a soil/cement barrier was emplaced around a buried drum. PFTs were injected beneath the drum for three days in the center of the barrier 3 m below grade. The concentration of PFTs in seven external and two internal monitoring wells has been measured as a function of time over a 17-day period. The data have been analyzed through numerical modeling to determine barrier integrity and PFT diffusion rates through the barrier. This paper discusses the experimental design, test results, data analysis, and modeling of PFT transport in the subsurface system.

  10. Subsurface barrier integrity verification using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Milian, L.; Senum, G.

    1996-12-01

    Subsurface barriers are an extremely promising remediation option to many waste management problems. Gas phase tracers include perfluorocarbon tracers (PFT`s) and chlorofluorocarbon tracers (CFC`s). Both have been applied for leak detection in subsurface systems. The focus of this report is to describe the barrier verification tests conducted using PFT`s and analysis of the data from the tests. PFT verification tests have been performed on a simulated waste pit at the Hanford Geotechnical facility and on an actual waste pit at Brookhaven National Laboratory (BNL). The objective of these tests were to demonstrate the proof-of-concept that PFT technology can be used to determine if small breaches form in the barrier and for estimating the effectiveness of the barrier in preventing migration of the gas tracer to the monitoring wells. The subsurface barrier systems created at Hanford and BNL are described. The experimental results and the analysis of the data follow. Based on the findings of this study, conclusions are offered and suggestions for future work are presented.

  11. Subsurface urban heat islands in German cities.

    PubMed

    Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp

    2013-01-01

    Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface. PMID:23178772

  12. Hydrogen Utilization Potential in Subsurface Sediments.

    PubMed

    Adhikari, Rishi R; Glombitza, Clemens; Nickel, Julia C; Anderson, Chloe H; Dunlea, Ann G; Spivack, Arthur J; Murray, Richard W; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  13. Resonant seismic emission of subsurface objects

    SciTech Connect

    Korneev, Valeri A.

    2009-04-15

    Numerical modeling results and field data indicate that some contrasting subsurface objects (such as tunnels, caves, pipes, filled pits, and fluid-filled fractures) are capable of generating durable resonant oscillations after trapping seismic energy. These oscillations consist of surface types of circumferential waves that repeatedly propagate around the object. The resonant emission of such trapped energy occurs primarily in the form of shear body waves that can be detected by remotely placed receivers. Resonant emission reveals itself in the form of sharp resonant peaks for the late parts of the records, when all strong direct and primary reflected waves are gone. These peaks were observed in field data for a buried barrel filled with water, in 2D finite-difference modeling results, and in the exact canonical solution for a fluid-filled sphere. A computed animation for the diffraction of a plane wave upon a low-velocity elastic sphere confirms the generation of resonances by durable surface waves. Resonant emission has characteristic quasi-hyperbolic traveltime patterns on shot gathers. The inversion of these patterns can be performed in the frequency domain after muting the strong direct and primary scattered waves. Subsurface objects can be detected and imaged at a single resonance frequency without an accurate knowledge of source trigger time. The imaging of subsurface objects requires information about the shear velocity distribution in an embedding medium, which can be done interactively during inversion.

  14. Hydrogen Utilization Potential in Subsurface Sediments

    PubMed Central

    Adhikari, Rishi R.; Glombitza, Clemens; Nickel, Julia C.; Anderson, Chloe H.; Dunlea, Ann G.; Spivack, Arthur J.; Murray, Richard W.; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  15. Monitoring Subsurface Objects Using Resonant Seismic Emission

    NASA Astrophysics Data System (ADS)

    Konstantinov, V.; Korneev, V.

    2008-12-01

    The numerical modeling results and field data indicate that some contrast subsurface objects (such as tunnels, caves, pipes, filled pits, and fluid-filled fractures) are capable to trap seismic energy and generate durable resonant oscillations. These oscillations are comprised of surface types of circumferential waves which multiply rotate around the object. Resonant emission of such trapped energy occurs primarily in form of shear body waves that can be detected by remotely placed receivers. Resonant emission reveals itself in form of sharp resonant peaks for the late parts of the records, when all strong direct and primary reflected waves are gone. These peaks are observed in the field data for a buried barrel filled with water, in 2D finite- difference modeling results and in exact canonical solution for a fluid-filled sphere. Computed movie for diffraction of a plane wave upon low-velocity elastic sphere confirms generation of resonances by durable surface waves. We show that resonant emission has characteristic quasi-hyperbolic travel-time patterns on shot-gathers. Inversion of these patterns can be performed in frequency domain after muting strong direct and primary scattered waves. Subsurface objects can be detected and imaged at a single resonance frequency without an accurate knowledge about source trigger time. Imaging of subsurface objects requires information about shear velocity distribution in an embedding medium, which can be done interactively during inversion. Resonant emission data processing is done using KinetiK Professional visualization and processing software.

  16. Chemical inversion in the subsurface hydrosphere

    SciTech Connect

    Yezhov, Yu.A.

    1980-09-01

    A quite common nature of chemical inversion in subsurface hydrosphere is shown in examples of several oil- and gas-bearing regions of the USSR. In particular, when the data of sampling from deep wells of the Volgo-Urals, Mangyshlak, and Western Turkmenian regions were compared, it became obvious that the composite chemical profile of subsurface hydrosphere consists of a vertical alternation of three zones: of increasing (I-II-IIIa genetic types of subsurface waters), maximum (IIIb), and decreasing water mineralization (III'a-II'-I'). The depth of occurrence of the lower inversion branch of zonality depends on the geotectonic activity at depth. It is closer to the Earth's surface in regions of Alpine tectogenesis, whereas in regions of ancient folding it lies at great depths which have not yet been reached by most deep wells. The formation of the inversion zone in the Earth's crust is connected with penetration from below ascending demineralized fluids of sodium bicarbonate type (I'). The latter is due to the presence at great depths of large quantities of free carbonic acid which is involved in hydrolytic processes of decomposition of sodium-containing minerals and produces sodium-type waters.

  17. Real time explosive hazard information sensing, processing, and communication for autonomous operation

    DOEpatents

    Versteeg, Roelof J; Few, Douglas A; Kinoshita, Robert A; Johnson, Doug; Linda, Ondrej

    2015-02-24

    Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

  18. Real time explosive hazard information sensing, processing, and communication for autonomous operation

    DOEpatents

    Versteeg, Roelof J.; Few, Douglas A.; Kinoshita, Robert A.; Johnson, Douglas; Linda, Ondrej

    2015-12-15

    Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

  19. Reactive transport benchmarks for subsurface environmental simulation

    SciTech Connect

    Steefel, Carl I.; Yabusaki, Steven B.; Mayer, K. U.

    2015-06-01

    Over the last 20 years, we have seen firsthand the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface applications it is being used to address. There is a growing reliance on reactive transport modeling (RTM) to address some of the most compelling issues facing our planet: climate change, nuclear waste management, contaminant remediation, and pollution prevention. While these issues are motivating the development of new and improved capabilities for subsurface environmental modeling using RTM (e.g., biogeochemistry from cell-scale physiology to continental-scale terrestrial ecosystems, nonisothermal multiphase conditions, coupled geomechanics), there remain longstanding challenges in characterizing the natural variability of hydrological, biological, and geochemical properties in subsurface environments and limited success in transferring models between sites and across scales. An equally important trend over the last 20 years is the evolution of modeling from a service sought out after data has been collected to a multifaceted research approach that provides (1) an organizing principle for characterization and monitoring activities; (2) a systematic framework for identifying knowledge gaps, developing and integrating new knowledge; and (3) a mechanistic understanding that represents the collective wisdom of the participating scientists and engineers. There are now large multidisciplinary projects where the research approach is model-driven, and the principal product is a holistic predictive simulation capability that can be used as a test bed for alternative conceptualizations of processes, properties, and conditions. Much of the future growth and expanded role for RTM will depend on its continued ability to exploit technological advancements in the earth and environmental sciences. Advances in measurement technology, particularly in molecular biology (genomics), isotope fractionation, and high-resolution X-ray spectroscopy, have created new lines of research that can be used to inform the conceptualization of reactions and rate laws and validate mechanistic models. For example, spectroscopy has identified the oxidation states of key components and elemental distributions at increasingly smaller scales and lower concentrations; molecular biology has progressed from identifying the presence of microbes to characterization of which microbial communities are active and what they are doing (i.e., microbial function), which has led in turn to the identification of active processes under conditions beyond what analytical chemistry can discern; isotope ratios in pore water and solid phases that can be used to distinguish between biotic from abiotic processes, sorption from precipitation, and origin and age of groundwater. The other noteworthy development that is expanding the role of RTM in subsurface environmental modeling is he advance in computational technology that is enabling the simulation of more coupled processes with increasing mechanistic detail. In some cases, this involves the inclusion of more reactive species and/or microbial populations in the simulations; in other cases, the impact is through the ability to achieve high resolution of property distributions over longer simulated times. To achieve these ambitious objectives for subsurface reactive transport simulation, the subsurface science and engineering community is being driven to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. This expansion was enabled, in part, by advances in measurement technology, computing technology, and numerical techniques.

  20. Apoptosis and Self-Destruct: A Contribution to Autonomic Agents?

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2004-01-01

    Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward in designing reliable systems. Agent technologies have been identified as a key enabler for engineering autonomicity in systems, both in terms of retrofitting autonomicity into legacy systems and designing new systems. The AC initiative provides an opportunity to consider other biological systems and principles in seeking new design strategies. This paper reports on one such investigation; utilizing the apoptosis metaphor of biological systems to provide a dynamic health indicator signal between autonomic agents.

  1. Iberian Pyrite Belt Subsurface Life (IPBSL): searching for life in the Rio Tinto subsurface

    NASA Astrophysics Data System (ADS)

    Amils, R.; Gómez, F.; Prieto-Ballesteros, O.; Fernández-Remolar, D.; Parro, V.; Rodríguez-Manfredi, J. A.; Tornos-Arroyo, F.; Timmis, K.; Oggerin, M.; Sánchez-Román, M.; López, F. J.; Fernández, J. P.; Omoregie, E.; Puente-Sánchez, F.; García, M.; Rodríguez, N.

    2013-09-01

    The geomicrobiologica l characterization of Río Tinto (Iberian Pyrite Belt), has proven the importance of the iron and sulfur cycles in generating the extreme conditions of acidity and high concentration of heavy metals of the habitat. It has been hypothesized that the extreme conditions found in the Tinto basin are the product of the subsurface chemolithotrophic metabolism of microorganisms thriving on the high concentrat ion of metal sulfides of the IPB. To test this hypothesis, a drilling project (IPBSL) is currently under development to provide evidence of subsurface microbial activities and the potential resources to support them.

  2. The autonomic nervous system and renal physiology

    PubMed Central

    D’Elia, John A; Weinrauch, Larry A

    2013-01-01

    Research in resistant hypertension has again focused on autonomic nervous system denervation – 50 years after it had been stopped due to postural hypotension and availability of newer drugs. These (ganglionic blockers) drugs have all been similarly stopped, due to postural hypotension and yet newer antihypertensive agents. Recent demonstration of the feasibility of limited regional transcatheter sympathetic denervation has excited clinicians due to potential therapeutic implications. Standard use of ambulatory blood pressure recording equipment may alter our understanding of the diagnosis, potential treatment strategies, and health care outcomes – when faced with patients whose office blood pressure remains in the hypertensive range – while under treatment with three antihypertensive drugs at the highest tolerable doses, plus a diuretic. We review herein clinical relationships between autonomic function, resistant hypertension, current treatment strategies, and reflect upon the possibility of changes in our approach to resistant hypertension. PMID:24039445

  3. Autonomous microfluidic system for phosphate detection.

    PubMed

    McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot

    2007-02-28

    Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L. PMID:19071430

  4. Auditory stimulation and cardiac autonomic regulation

    PubMed Central

    Valenti, Vitor E.; Guida, Heraldo L.; Frizzo, Ana C. F.; Cardoso, Ana C. V.; Vanderlei, Luiz Carlos M.; de Abreu, Luiz Carlos

    2012-01-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: “auditory stimulation”, “autonomic nervous system”, “music” and “heart rate variability”. The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders. PMID:22948465

  5. Unmanned air vehicle: autonomous takeoff and landing

    NASA Astrophysics Data System (ADS)

    Lim, K. L.; Gitano-Briggs, Horizon Walker

    2009-12-01

    UAVs are increasing in popularity and sophistication due to the demonstrated performance which cannot be attained by manned aircraft1. These developments have been made possible by development of sensors, instrumentation, telemetry and controls during the last few decades. UAVs are now common in areas such as aerial observation and as communication relays3. Most UAVs, however, are still flown by a human pilot via remote control from a ground station. Even the existing autonomous UAVs often require a human pilot to handle the most difficult tasks of take off and landing2 (TOL). This is mainly because the navigation of the airplane requires observation, constant situational assessment and hours of experience from the pilot himself4. Therefore, an autonomous takeoff and landing system (TLS) for UAVs using a few practical design rules with various sensors, instrumentation, etc has been developed. This paper details the design and modeling of the UAV TLS. The model indicates that the UAV's TLS shows promising stability.

  6. Unmanned air vehicle: autonomous takeoff and landing

    NASA Astrophysics Data System (ADS)

    Lim, K. L.; Gitano-Briggs, Horizon Walker

    2010-03-01

    UAVs are increasing in popularity and sophistication due to the demonstrated performance which cannot be attained by manned aircraft1. These developments have been made possible by development of sensors, instrumentation, telemetry and controls during the last few decades. UAVs are now common in areas such as aerial observation and as communication relays3. Most UAVs, however, are still flown by a human pilot via remote control from a ground station. Even the existing autonomous UAVs often require a human pilot to handle the most difficult tasks of take off and landing2 (TOL). This is mainly because the navigation of the airplane requires observation, constant situational assessment and hours of experience from the pilot himself4. Therefore, an autonomous takeoff and landing system (TLS) for UAVs using a few practical design rules with various sensors, instrumentation, etc has been developed. This paper details the design and modeling of the UAV TLS. The model indicates that the UAV's TLS shows promising stability.

  7. Efforts toward an autonomous wheelchair - biomed 2011.

    PubMed

    Barrett, Steven; Streeter, Robert

    2011-01-01

    An autonomous wheelchair is in development to provide mobility to those with significant physical challenges. The overall goal of the project is to develop a wheelchair that is fully autonomous with the ability to navigate about an environment and negotiate obstacles. As a starting point for the project, we have reversed engineered the joystick control system of an off-the-shelf commercially available wheelchair. The joystick control has been replaced with a microcontroller based system. The microcontroller has the capability to interface with a number of subsystems currently under development including wheel odometers, obstacle avoidance sensors, and ultrasonic-based wall sensors. This paper will discuss the microcontroller based system and provide a detailed system description. Results of this study may be adapted to commercial or military robot control. PMID:21525611

  8. Autonomous Rovers for Polar Science Campaigns

    NASA Astrophysics Data System (ADS)

    Lever, J. H.; Ray, L. E.; Williams, R. M.; Morlock, A. M.; Burzynski, A. M.

    2012-12-01

    We have developed and deployed two over-snow autonomous rovers able to conduct remote science campaigns on Polar ice sheets. Yeti is an 80-kg, four-wheel-drive (4WD) battery-powered robot with 3 - 4 hr endurance, and Cool Robot is a 60-kg 4WD solar-powered robot with unlimited endurance during Polar summers. Both robots navigate using GPS waypoint-following to execute pre-planned courses autonomously, and they can each carry or tow 20 - 160 kg instrument payloads over typically firm Polar snowfields. In 2008 - 12, we deployed Yeti to conduct autonomous ground-penetrating radar (GPR) surveys to detect hidden crevasses to help establish safe routes for overland resupply of research stations at South Pole, Antarctica, and Summit, Greenland. We also deployed Yeti with GPR at South Pole in 2011 to identify the locations of potentially hazardous buried buildings from the original 1950's-era station. Autonomous surveys remove personnel from safety risks posed during manual GPR surveys by undetected crevasses or buried buildings. Furthermore, autonomous surveys can yield higher quality and more comprehensive data than manual ones: Yeti's low ground pressure (20 kPa) allows it to cross thinly bridged crevasses or other voids without interrupting a survey, and well-defined survey grids allow repeated detection of buried voids to improve detection reliability and map their extent. To improve survey efficiency, we have automated the mapping of detected hazards, currently identified via post-survey manual review of the GPR data. Additionally, we are developing machine-learning algorithms to detect crevasses autonomously in real time, with reliability potentially higher than manual real-time detection. These algorithms will enable the rover to relay crevasse locations to a base station for near real-time mapping and decision-making. We deployed Cool Robot at Summit Station in 2005 to verify its mobility and power budget over Polar snowfields. Using solar power, this zero-emissions rover could travel more than 500 km per week during Polar summers and provide 100 - 200 W to power instrument payloads to help investigate the atmosphere, magnetosphere, glaciology and sub-glacial geology in Antarctica and Greenland. We are currently upgrading Cool Robot's navigation and solar-power systems and will deploy it during 2013 to map the emissions footprint around Summit Station to demonstrate its potential to execute long-endurance Polar science campaigns. These rovers could assist science traverses to chart safe routes into the interior of Antarctica and Greenland or conduct autonomous, remote science campaigns to extend spatial and temporal coverage for data collection. Our goals include 1,000 - 2,000-km summertime traverses of Antarctica and Greenland, safe navigation through 0.5-m amplitude sastrugi fields, survival in blizzards, and rover-network adaptation to research events of opportunity. We are seeking Polar scientists interested in autonomous, mobile data collection and can adapt the rovers to meet their requirements.

  9. Autonomous RPRV Navigation, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Johnston, Donald E.; Myers, Thomas T.; Zellner, John W.

    1983-01-01

    Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described.

  10. Video guidance sensor for autonomous capture

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Book, Michael L.

    1991-01-01

    A video-based sensor has been developed specifically for the close-range maneuvering required in the last phase of autonomous rendezvous and capture. The system is a combination of target and sensor, with the target being a modified version of the standard target used by the astronauts with the Remote Manipulator System (RMS). The system, as currently configured, works well for autonomous docking maneuvers from approximately forty feet in to soft-docking and capture. The sensor was developed specifically to track and calculate its position and attitude relative to a target consisting of three retro-reflective spots, equally spaced, with the center spot being on a pole. This target configuration was chosen for its sensitivity to small amounts of relative pitch and yaw and because it could be used with a small modification to the standard RMS target already in use by NASA.

  11. Development of autonomous grasping and navigating robot

    NASA Astrophysics Data System (ADS)

    Kudoh, Hiroyuki; Fujimoto, Keisuke; Nakayama, Yasuichi

    2015-01-01

    The ability to find and grasp target items in an unknown environment is important for working robots. We developed an autonomous navigating and grasping robot. The operations are locating a requested item, moving to where the item is placed, finding the item on a shelf or table, and picking the item up from the shelf or the table. To achieve these operations, we designed the robot with three functions: an autonomous navigating function that generates a map and a route in an unknown environment, an item position recognizing function, and a grasping function. We tested this robot in an unknown environment. It achieved a series of operations: moving to a destination, recognizing the positions of items on a shelf, picking up an item, placing it on a cart with its hand, and returning to the starting location. The results of this experiment show the applicability of reducing the workforce with robots.

  12. Multiple Autonomous Discrete Event Controllers for Constellations

    NASA Technical Reports Server (NTRS)

    Esposito, Timothy C.

    2003-01-01

    The Multiple Autonomous Discrete Event Controllers for Constellations (MADECC) project is an effort within the National Aeronautics and Space Administration Goddard Space Flight Center's (NASA/GSFC) Information Systems Division to develop autonomous positioning and attitude control for constellation satellites. It will be accomplished using traditional control theory and advanced coordination algorithms developed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). This capability will be demonstrated in the discrete event control test-bed located at JHU/APL. This project will be modeled for the Leonardo constellation mission, but is intended to be adaptable to any constellation mission. To develop a common software architecture. the controllers will only model very high-level responses. For instance, after determining that a maneuver must be made. the MADECC system will output B (Delta)V (velocity change) value. Lower level systems must then decide which thrusters to fire and for how long to achieve that (Delta)V.

  13. Fuzzy logic in autonomous orbital operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.

  14. Autonomous Flight Safety System Road Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.

    2005-01-01

    On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.

  15. Autonomous land navigation: A demonstration of retrotraverse

    SciTech Connect

    Klarer, P.R.

    1989-01-01

    This paper describes a hardware and software system developed to perform autonomous navigation of a land vehicle in a structured environment. The vehicle used for development and testing of the system was the Jeep Cherokee Mobile Robotics Testbed Vehicle developed at Sandia National Laboratories in Albuquerque. Since obstacle detection/avoidance has not yet been incorporated into the system, a structured environment is postulated that presumes the paths to be traversed are obstacle-free. The system performs path planning and execution (following) based on maps constructed using the vehicle's navigation system and onboard map-maker. The system configuration allows a map to be generated and stored during teleoperation of the vehicle, which may then be inverted and autonomously followed to perform ''retrotraverse'' back to the path start point. The system software, hardware, and performance data are discussed. 9 refs.

  16. Demonstration of autonomous air monitoring through robotics

    SciTech Connect

    Rancatore, R.

    1989-11-01

    The project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. The robot was also modified to carry a HNU PI-101 Photoionization Detector air monitoring device. A sonar range finder, which already was an integral part of the Surveyor, was repositioned to the front of the robot chassis to detect large obstacles in the path of the robot. In addition, the software of the onboard computer was also extensively modified to provide: navigation control, dynamic steering to smoothly follow the wire-course without hesitation, obstacle avoidance, autonomous shut down and remote reporting of toxic substance detection.

  17. Performance Simulation of Autonomous Solar Navigation

    NASA Technical Reports Server (NTRS)

    Guo, Yanping; Strikwerda, Thomas E.

    1999-01-01

    The performance of a new type of autonomous solar navigation system is analyzed in this paper. Such efficient autonomous navigation systems will reduce operation costs and alleviate the Deep Space Network workload in future space missions. The method is demonstrated by applying it to the STEREO mission. Orbit determination is simulated through the use of the mission-defined trajectory profile and solar angular data acquired by the on-board science instruments currently being considered. The study shows that the orbit solution derived by this new type of solar navigation system can satisfy the mission's navigation requirements; the position uncertainties obtained in the simulations are well below the mission allowable values, and are comparable to the results obtained with the conventional Doppler tracking system in some cases.

  18. Auditory stimulation and cardiac autonomic regulation.

    PubMed

    Valenti, Vitor E; Guida, Heraldo L; Frizzo, Ana C F; Cardoso, Ana C V; Vanderlei, Luiz Carlos M; Abreu, Luiz Carlos de

    2012-08-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders. PMID:22948465

  19. Autonomous Exploration for Gathering Increased Science

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.; Judd, Michele A.

    2010-01-01

    The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.

  20. Autonomous reinforcement learning with experience replay.

    PubMed

    Wawrzyński, Paweł; Tanwani, Ajay Kumar

    2013-05-01

    This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the use of previously collected samples, and autonomously estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor-critic with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an autonomous way within reasonably short time. PMID:23237972

  1. Simulating autonomous agents wtih augmented reality

    NASA Astrophysics Data System (ADS)

    Gelenbe, Erol; Hussain, Khaled F.; Kaptan, Varol

    2002-07-01

    In many critical applications such as airport operations (for capacity planning), military simulations (for tactical training and planning), and medical simulations (for the planning of medical treatment and surgical operations), it is very useful to conduct simulations within physically accurate and visually realistic settings that are represented by real video imaging sequences. Furthermore, it is important that the simulated entities conduct autonomous actions which are realistic and which follow plans of action or intelligent behavior in reaction to current situations. We describe the research we have conducted to incorporate synthetic objects in a visually realistic manner in video sequences representing a real scene. We also discuss how the synthetic objects can be designed to conduct intelligent behavior within an augmented reality setting. The paper discusses both the computer vision aspects that we have addressed and solved, and the issues related to the insertion of intelligent autonomous objects within an augmented reality simulation.

  2. Forced synchronization of autonomous dynamical Boolean networks.

    PubMed

    Rivera-Durón, R R; Campos-Cantón, E; Campos-Cantón, I; Gauthier, Daniel J

    2015-08-01

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics. PMID:26328564

  3. An Autonomous Marine Optical System (AMOS) for monitoring the optical properties of port and harbor waters

    NASA Astrophysics Data System (ADS)

    Carder, Kendall L.; English, David C.; Du, Chunzi

    2006-05-01

    The Autonomous Marine Optical System (AMOS) measures remote sensing reflectance (R rs) above the water surface and subsurface optical properties (irradiance at depth, beam attenuation, chlorophyll fluorescence, and light backscattering) at predetermined times throughout the day. Data are transmitted back by radio to a networked archival and processing station. AMOS was created to routinely monitor the optical properties of near-surface waters, and make those measurements available to researchers over an Ethernet connection with minimal delay. The Rrs measurements can be used not only to validate satellite and airborne remote sensing imagery, but also to be combined with the in situ measurements so that other water column properties can be estimated. The performance of visible and machine-aided hull inspection is strongly affected by the optical properties of the water. AMOS estimates of these optical properties can be used by optical models to predict both subsurface visibility and the amount of ambient light beneath ships at port inspection sites. An example of the application of an inverse hyperspectral Rrs model to AMOS data from the Port of St. Petersburg (FL) is shown to accurately estimate light absorption due to phytoplankton and colored dissolved organic matter (CDOM), and backscattering due to particles.

  4. An autonomous vehicle approach for quantifying bioluminescence in ports and harbors

    NASA Astrophysics Data System (ADS)

    Moline, Mark; Bissett, Paul; Blackwell, Shelley; Mueller, James; Sevadjian, Jeff; Trees, Charles; Zaneveld, Ron

    2005-05-01

    Bioluminescence emitted from marine organisms upon mechanical stimulation is an obvious military interest, as it provides a low-tech method of identifying surface and subsurface vehicles and swimmer tracks. Clearly, the development of a passive method of identifying hostile ships, submarines, and swimmers, as well as the development of strategies to reduce the risk of detection by hostile forces is relevant to Naval operations and homeland security. The measurement of bioluminescence in coastal waters has only recently received attention as the platforms and sensors were not scaled for the inherent small-scale nature of nearshore environments. In addition to marine forcing, many ports and harbors are influenced by freshwater inputs, differential density layering and higher turbidity. The spatial and temporal fluctuations of these optical water types overlaid on changes in the bioluminescence potential make these areas uniquely complex. The development of an autonomous underwater vehicle with a bioluminescence capability allows measurements on sub-centimeter horizontal and vertical scales in shallow waters and provides the means to map the potential for detection of moving surface or subsurface objects. A deployment in San Diego Bay shows the influence of tides on the distribution of optical water types and the distribution of bioluminescent organisms. Here, these data are combined to comment on the potential for threat reduction in ports and harbors.

  5. Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006

    NASA Astrophysics Data System (ADS)

    Todd, Robert E.; Rudnick, Daniel L.; Davis, Russ E.

    2009-06-01

    Glider surveys of the greater San Pedro Bay region in the Southern California Bight during the fall of 2006 demonstrated the utility of autonomous underwater gliders in a coastal region with complex flow and significant anthropogenic inputs. Three Spray gliders repeatedly surveyed between Santa Catalina Island and the coast of Southern California collecting profiles of temperature, salinity, and chlorophyll fluorescence and estimates of vertically averaged currents. These observations provided context for shelf transport studies during the Huntington Beach 2006 experiment and showed the transition from summer to winter conditions. Vertically averaged currents were predominantly poleward following topography with horizontal scales of approximately 20 km. The gliders surveyed a small cyclonic eddy near Santa Catalina Island and provided a unique view of the structure of the eddy. Nitrate concentration within the euphotic zone was estimated to be 19% greater within the eddy and led to significantly elevated chlorophyll concentrations at the subsurface maximum. Glider observations of salinity reliably detected the distinctly fresh signature of the effluent plume from an ocean outfall near Huntington Beach, California. The salinity anomaly caused by the plume was used to track the spread of the plume as it was advected poleward and away from the coast while remaining subsurface.

  6. ALHAT: Autonomous Landing and Hazard Avoidance Technology

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Carson, John M., III

    2015-01-01

    The ALHAT project was chartered by NASA HQ in 2006 to develop and mature to TRL 6 an autonomous lunar landing GN&C and sensing system for crewed, cargo, and robotic planetary landing vehicles. The multi-center ALHAT team was tasked with providing a system capable of identifying and avoiding surface hazards in real time to enable safe precision landing to within tens of meters of a designated planetary landing site under any lighting conditions.

  7. Automatic learning by an autonomous mobile robot

    SciTech Connect

    de Saussure, G.; Spelt, P.F.; Killough, S.M.; Pin, F.G.; Weisbin, C.R.

    1989-01-01

    This paper describes recent research in automatic learning by the autonomous mobile robot HERMIES-IIB at the Center for Engineering Systems Advanced Research (CESAR). By acting on the environment and observing the consequences during a set of training examples, the robot learns a sequence of successful manipulations on a simulated control panel. The robot learns to classify panel configurations in order to deal with new configurations that are not part of the original training set. 5 refs., 2 figs.

  8. Flocking algorithm for autonomous flying robots.

    PubMed

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks. PMID:24852272

  9. Autonomous Rendezvous and Docking Conference, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document consists of the presentation submitted at the Autonomous Rendezvous and Docking (ARD) Conference. It contains three volumes: ARD hardware technology; ARD software technology; and ARD operations. The purpose of this conference is to identify the technologies required for an on orbit demonstration of the ARD, assess the maturity of these technologies, and provide the necessary insight for a quality assessment of the programmatic management, technical, schedule, and cost risks.

  10. Autonomous Spacecraft Communication Interface for Load Planning

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  11. System for autonomous monitoring of bioagents

    SciTech Connect

    Langlois, Richard G.; Milanovich, Fred P.; Colston, Jr, Billy W.; Brown, Steve B.; Masquelier, Don A.; Mariella, Jr., Raymond P.; Venkateswaran, Kodomudi

    2015-06-09

    An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.

  12. An architecture for an autonomous learning robot

    NASA Technical Reports Server (NTRS)

    Tillotson, Brian

    1988-01-01

    An autonomous learning device must solve the example bounding problem, i.e., it must divide the continuous universe into discrete examples from which to learn. We describe an architecture which incorporates an example bounder for learning. The architecture is implemented in the GPAL program. An example run with a real mobile robot shows that the program learns and uses new causal, qualitative, and quantitative relationships.

  13. Autonomous satellite navigation by stellar refraction

    NASA Technical Reports Server (NTRS)

    Gounley, R.; White, R.; Gai, E.

    1983-01-01

    This paper describes an error analysis of an autonomous navigator using refraction measurements of starlight passing through the upper atmosphere. The analysis is based on a discrete linear Kalman filter. The filter generated steady-state values of navigator performance for a variety of test cases. Results of these simulations show that in low-earth orbit position-error standard deviations of less than 0.100 km may be obtained using only 40 star sightings per orbit.

  14. Precise laser gyroscope for autonomous inertial navigation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. G.; Molchanov, A. V.; Chirkin, M. V.; Izmailov, E. A.

    2015-01-01

    Requirements to gyroscopes of strapdown inertial navigation systems for aircraft application are formulated. The construction of a ring helium - neon laser designed for autonomous navigation is described. The processes that determine the laser service life and the relation between the random error of the angular velocity measurement and the surface relief features of the cavity mirrors are analysed. The results of modelling one of the promising approaches to processing the laser gyroscope signals are presented.

  15. Autonomously motile catalytic nanomotors by bubble propulsion

    NASA Astrophysics Data System (ADS)

    Gibbs, J. G.; Zhao, Y.-P.

    2009-04-01

    A bubble propulsion model based on catalyzed hydrogen peroxide decomposition and momentum change via O2 bubbles detaching from the catalytic surface is proposed to explain the autonomous motion of catalytic nanomotors. The propelling force closely depends upon the surface tension of the liquid as well as the bulk concentration of hydrogen peroxide, and the model predictions are supported by the experimental data of Pt-coated spherical silica microbead motors.

  16. Precise laser gyroscope for autonomous inertial navigation

    SciTech Connect

    Kuznetsov, A G; Molchanov, A V; Izmailov, E A; Chirkin, M V

    2015-01-31

    Requirements to gyroscopes of strapdown inertial navigation systems for aircraft application are formulated. The construction of a ring helium – neon laser designed for autonomous navigation is described. The processes that determine the laser service life and the relation between the random error of the angular velocity measurement and the surface relief features of the cavity mirrors are analysed. The results of modelling one of the promising approaches to processing the laser gyroscope signals are presented. (laser gyroscopes)

  17. Subsurface Tectonics and Pingos of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Skirvin, S.; Casavant, R.; Burr, D.

    2008-12-01

    We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary analysis shows that more than half the pingos occur within 150 m of the vertical projections of subsurface fault plane traces. In a previous, unpublished geostatistical study, comparison of pingo and random locations indicated a non-random NE-trending alignment of pingos. This trend in particular matches the dominant orientation of fault sets that are linked to the most recent tectonic deformation of the region. A concurrent Phase 2 of the study examines the potential role of near-surface stratigraphic units in regard to both pingos and faults. Both surface and subsurface coarse-grained deposits across the region are often controlled by fault structures; this study is the first to assess any relationship between reservoir rocks and pingo locations. Cross-sections were constructed from well log data to depths of 100 meters. Subsurface elements were compared with surface features. Although some studies have linked fine-grained surface sediments with pingo occurrence, our analysis hints that coarse-grained sediments underlie pingos and may be related to near-surface fluid transmissivity, as suggested by other researchers. We also investigated pingo occurrence in relationship to upthrown or downthrown fault blocks that vary in the degree of deformation and fluid transmission. Results will guide a proposed pingo drilling project to test linkages between pingos, subsurface geology, hydrology, and petroleum systems. Findings from this study could aid research and planning for field exploration of similar settings on Earth and Mars.

  18. Mission Operations with an Autonomous Agent

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.

    1998-01-01

    The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.

  19. Applying neural networks in autonomous systems

    NASA Astrophysics Data System (ADS)

    Thornbrugh, Allison L.; Layne, J. D.; Wilson, James M., III

    1992-03-01

    Autonomous and teleautonomous operations have been defined in a variety of ways by different groups involved with remote robotic operations. For example, Conway describes architectures for producing intelligent actions in teleautonomous systems. Applying neural nets in such systems is similar to applying them in general. However, for autonomy, learning or learned behavior may become a significant system driver. Thus, artificial neural networks are being evaluated as components in fully autonomous and teleautonomous systems. Feed- forward networks may be trained to perform adaptive signal processing, pattern recognition, data fusion, and function approximation -- as in control subsystems. Certain components of particular autonomous systems become more amenable to implementation using a neural net due to a match between the net's attributes and desired attributes of the system component. Criteria have been developed for distinguishing such applications and then implementing them. The success of hardware implementation is a crucial part of this application evaluation process. Three basic applications of neural nets -- autoassociation, classification, and function approximation -- are used to exemplify this process and to highlight procedures that are followed during the requirements, design, and implementation phases. This paper assumes some familiarity with basic neural network terminology and concentrates upon the use of different neural network types while citing references that cover the underlying mathematics and related research.

  20. Autonomic correlates of physical and moral disgust.

    PubMed

    Ottaviani, Cristina; Mancini, Francesco; Petrocchi, Nicola; Medea, Barbara; Couyoumdjian, Alessandro

    2013-07-01

    Given that the hypothesis of a common origin of physical and moral disgust has received sparse empirical support, this study aimed to shed light on the subjective and autonomic signatures of these two facets of the same emotional response. Participants (20 men, 20 women) were randomly assigned to physical or moral disgust induction by the use of audio scripts while their electrocardiogram was continuously recorded. Affect ratings were obtained before and after the induction. Time and frequency domain heart rate variability (HRV) measures were obtained. After controlling for disgust sensitivity (DS-R) and obsessive-compulsive (OCI-R) tendencies, both scripts elicited disgust but whereas the physical script elicited a feeling of dirtiness, the moral script evoked more indignation and contempt. The disgust-induced subjective responses were associated with opposite patterns of autonomic reactivity: enhanced activity of the parasympathetic nervous system without concurrent changes in heart rate (HR) for physical disgust and decreased vagal tone and increased HR and autonomic imbalance for moral disgust. Results suggest that immorality relies on the same biological root of physical disgust only in subjects with obsessive compulsive tendencies. Disgust appears to be a heterogeneous response that varies based on the individuals' contamination-based appraisal. PMID:23684734

  1. Infant autonomic functioning and neonatal abstinence syndrome

    PubMed Central

    Jansson, Lauren M.; DiPietro, Janet A.; Elko, Andrea; Velez, Martha

    2010-01-01

    Background Neonatal abstinence syndrome (NAS) expression is widely variable among affected infants and the reasons for this variability are largely unknown; mechanisms that predispose infants to NAS expression are not understood. It has been postulated that the regulatory problems of prenatally drug exposed infants are manifested in dysfunctional vagal regulation of autonomic processes. The current study examines whether cardiac vagal tone, an indicator of parasympathetic neuroregulation, provides a marker for autonomic dysregulation subsequently expressed as NAS in prenatally opioid-exposed newborns. Methods Heart period (HP) and cardiac vagal tone (V) were derived from electrocardiogram data collected from 64 methadone-exposed infants on postnatal days 1 and 3. The postpartum NAS course was assessed serially. Results Infants with lower V on day 1 had significantly higher NAS symptomatology on day 3. Boys had more severe NAS symptoms than girls through the first 4 days of life and, among infants receiving pharmacologic treatment for NAS, boys required longer treatment course and hospitalizations. Greater poly-drug exposure, detected through toxicology screening throughout pregnancy, and cocaine use in particular, were associated with lower V and shorter HP (faster heart rate) in newborns. Multiple regression models accounted for 25 to 35% of the variance in NAS symptoms and duration of hospitalization in methadone-exposed infants. Significant predictors included infant sex, SSRI/SNRI use, and cigarette smoking. Conclusions Results support the hypothesis of a biologic vulnerability of autonomic regulatory functioning in methadone-exposed infants and greater male infant vulnerability to maternal methadone use. PMID:20189732

  2. Incorporating Manual and Autonomous Code Generation

    NASA Technical Reports Server (NTRS)

    McComas, David

    1998-01-01

    Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.

  3. A concept for a supervised autonomous robot

    NASA Astrophysics Data System (ADS)

    Kalaycioglu, S.

    The paper describes work in progress at Thomson-CSF Systems Canada Inc. on the Mobile Servicing System (MSS) Autonomous Robotics Program. The main objective of this program is to define and plan the development of technologies required to provide a supervised autonomous operation capability for the Special Purpose Dexterous Manipulator (SPDM) on the Mobile Servicing System (MSS). In this paper, a telerobotics system concept is introduced and a summary of the system requirements is given. The development methodology as well as the concept for a supervised autonomous robot (telerobotics) are briefly explained. The functional and physical architectures of the telerobotics system are also provided. This system will be responsible for carrying out operations such as assembly and maintenance of the Space Station Freedom; loading / unloading from the shuttle; and retrieval and deployment of the shuttle, etc. The paper also investigates an operational scenario for maintenance of the Space Station Freedom and briefly describes the operational scenario for changing an orbital replacement unit (ORU) on the Mobile Servicing System. The functional responsibilities of the system components in order to implement the ORU change are outlined.

  4. Diagnosing faults in autonomous robot plan execution

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Doshi, Rajkumar S.; Atkinson, David J.; Lawson, Denise M.

    1989-01-01

    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment.

  5. Diagnosing faults in autonomous robot plan execution

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Doshi, Rajkumar S.; Atkinson, David J.; Lawson, Denise M.

    1988-01-01

    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment.

  6. Autonomous environment modeling by a mobile robot

    NASA Astrophysics Data System (ADS)

    Moutarlier, Philippe

    1991-02-01

    Internal geometric representation of the environment is considered. The autonomy of a mobile robot partly relies on its ability to build a reliable representation of its environment. On the other hand, an autonomous environment building process requires that model be adapted to plan motions and perception actions. Therefore, the modeling process must be a reversible interface between perception motion devices and the model itself. Several kinds of models are necessary in order to achieve an autonomous process. Sensors give stochastic information on the surface, navigation needs free-space representation, and perception planning requires aspect graphs. The functions of stochastic surface modeling, free space representation, and topological graph computing are presented through the integrated geometric model builder called 'Yaka.' Since all environment data uncertainties are correlated together through the robot location inaccuracy, classical filtering methods are inadequate. A method of computing a linear variance estimator, that is adapted to the problem, is proposed. This general formalism is validated by a large number of experimentation wherein the robot incrementally builds a surfacic representation of its environment. Free space cannot be deduced directly, at each step, from the surfacic data provided by the sensors. Innacuracies on object surfaces and uncertainties on the visibility of objects by the sensor as well as the possible motion of objects must all be taken into account for building the free space incrementally. Then, motion and perception planning for autonomous environment modeling are achieved using this free space model and topological location and aspect graphs.

  7. SOLON: An autonomous vehicle mission planner

    NASA Technical Reports Server (NTRS)

    Dudziak, M. J.

    1987-01-01

    The State-Operator Logic Machine (SOLON) Planner provides an architecture for effective real-time planning and replanning for an autonomous vehicle. The highlights of the system, which distinguish it from other AI-based planners that have been designed previously, are its hybrid application of state-driven control architecture and the use of both schematic representations and logic programming for the management of its knowledge base. SOLON is designed to provide multiple levels of planning for a single autonomous vehicle which is supplied with a skeletal, partially-specified mission plan at the outset of the vehicle's operations. This mission plan consists of a set of objectives, each of which will be decomposable by the planner into tasks. These tasks are themselves comparatively complex sets of actions which are executable by a conventional real-time control system which does not perform planning but which is capable of making adjustments or modifications to the provided tasks according to constraints and tolerances provided by the Planner. The current implementation of the SOLON is in the form of a real-time simulation of the Planner module of an Intelligent Vehicle Controller (IVC) on-board an autonomous underwater vehicle (AUV). The simulation is embedded within a larger simulator environment known as ICDS (Intelligent Controller Development System) operating on a Symbolics 3645/75 computer.

  8. Autonomous navigation for structured exterior environments

    SciTech Connect

    Pletta, J B

    1993-12-01

    The Telemanaged Mobile Security Station (TMSS) was developed at Sandia National Laboratories to investigate the role of mobile robotics in exterior perimeter security systems. A major feature of the system is its capability to perform autonomous patrols of the security site`s network of roads. Perimeter security sites are well known, structured environments; the locations of the roads, buildings, and fences are relatively static. A security robot has the advantage of being able to learn its new environment prior to autonomous travel. The TMSS robot combines information from a microwave beacon system and on-board dead reckoning sensors to determine its location within the site. The operator is required to teleoperate the robot in a teach mode over all desired paths before autonomous operations can commence. During this teach phase, TMSS stores points from its position location system at two meter intervals. This map data base is used for planning paths and for reference during path following. Details of the position location and path following systems will be described along with system performance and recommendations for future enhancements.

  9. Autonomous system for cross-country navigation

    NASA Astrophysics Data System (ADS)

    Stentz, Anthony; Brumitt, Barry L.; Coulter, R. C.; Kelly, Alonzo

    1993-05-01

    Autonomous cross-country navigation is essential for outdoor robots moving about in unstructured environments. Most existing systems use range sensors to determine the shape of the terrain, plan a trajectory that avoids obstacles, and then drive the trajectory. Performance has been limited by the range and accuracy of sensors, insufficient vehicle-terrain interaction models, and the availability of high-speed computers. As these elements improve, higher- speed navigation on rougher terrain becomes possible. We have developed a software system for autonomous navigation that provides for greater capability. The perception system supports a large braking distance by fusing multiple range images to build a map of the terrain in front of the vehicle. The system identifies range shadows and interpolates undersamples regions to account for rough terrain effects. The motion planner reduces computational complexity by investigating a minimum number of trajectories. Speeds along the trajectory are set to provide for dynamic stability. The entire system was tested in simulation, and a subset of the capability was demonstrated on a real vehicle. Results to date include a continuous 5.1 kilometer run across moderate terrain with obstacles. This paper begins with the applications, prior work, limitations, and current paradigms for autonomous cross-country navigation, and then describes our contribution to the area.

  10. Navigation and steering for autonomous virtual humans.

    PubMed

    Kapadia, Mubbasir; Badler, Norman I

    2013-05-01

    The ever-increasing applicability of interactive virtual worlds in industry and academia has given rise to the need for robust, versatile autonomous virtual humans to inject life into these environments. There are two fundamental problems that must be addressed to produce functional, purposeful autonomous populaces: (1)Navigation: finding a collision-free global path from an agent's start position to its target in large complex environments, and (2) Steering: moving an agent along the path while avoiding static and dynamic threats such as other agents. In this review, we survey the large body of contributions in steering and navigation for autonomous agents in dynamic virtual worlds. We describe the benefits and limitations of different proposed solutions and identify potential future research directions to meet the needs for the next generation of interactive virtual world applications. WIREs Cogn Sci 2013, 4:263-272. doi: 10.1002/wcs.1223 For further resources related to this article, please visit the WIREs website. PMID:26304204

  11. Grid administration: towards an autonomic approach

    NASA Astrophysics Data System (ADS)

    Ubeda Garcia, M.; Stagni, F.; Tsaregorodtsev, A.; Charpentier, P.; Bernardoff, V.

    2012-12-01

    Within the DIRAC framework in the LHCb collaboration, we deployed an autonomous policy system acting as a central status information point for grid elements. Experts working as grid administrators have a broad and very deep knowledge about the underlying system which makes them very precious. We have attempted to formalize this knowledge in an autonomous system able to aggregate information, draw conclusions, validate them, and take actions accordingly. The DIRAC Resource Status System (RSS) is a monitoring and generic policy system that enforces managerial and operational actions automatically. As an example, the status of a grid entity can be evaluated using a number of policies, each making assessments relative to specific monitoring information. Individual results of these policies can be combined to evaluate and propose a global status for the resource. This evaluation goes through a validation step driven by a state machine and an external validation system. Once validated, actions can be triggered accordingly. External monitoring and testing systems such as Nagios or Hammercloud are used by policies for site commission and certification. This shows the flexibility of our system, and of what an autonomous policy system can achieve.

  12. Tree Distributions, Subsurface Characteristics and Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    Brunner, L.; Wallace, M. C.; Brush, G.

    2014-12-01

    This study examines the connection between vegetation and geologic, soil and hydrologic subsurface characteristics of a natural deciduous forest in Oregon Ridge Park, located in the Piedmont physiographic province in Maryland, USA. A preliminary study showed the relationship between nitrogen cycling and four different species occurring on a coarse grained schist and a fine grained schist. Mineralization values for Liriodendon tulipifera were positive on the coarser grained substrate and negative on the fine grained substrate. Nitrification values were positive on both substrates. Mineralization and nitrification values were both positive for Quercus prinus on both the coarse and fine substrates. Mineralization values for Acer rubrum were negative on the coarse substrate and positive on the finer substrate, while mineralization for Quercus rubra was negative on the coarse substrate and positive on the fine schist. Nitrification was positive for Q. rubra on the coarse schist and both positive and negative on the fine schist. Resistivity analyses were performed in collaboration with the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) along two perpendicular transects at the study site. This analysis provides indirect information on subsurface conductivity, with low resistivity being interpreted as subsurface water or clay. One transect crossed a valley with a first-order stream in the center, while the second transect was taken along the break and slope of the hillslope. All trees were identified and diameter at breast height (DBH) measured in sixty-three randomly located plots along both transects. A principle components analysis of all tree data showed four associations of species. The plots were labelled as to association. The position of the associations along the transects show a relationship between wet, dry and mesic associations with differences in transect resistivity.

  13. Single cell genomics of subsurface microorganisms

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.; Onstott, T. C.; Lau, C.; Kieft, T. L.; Woyke, T.; Rinke, C.; Sczyrba, A.; van Heerden, E.

    2012-12-01

    Recent studies have revealed unexpected abundance and diversity of microorganisms in terrestrial and marine subsurface, providing new perspectives over their biogeochemical significance, evolution, and the limits of life. The now commonly used research tools, such as metagenomics and PCR-based gene surveys enabled cultivation-unbiased analysis of genes encoded by natural microbial communities. However, these methods seldom provide direct evidence for how the discovered genes are organized inside genomes and from which organisms do they come from. Here we evaluated the feasibility of an alternative, single cell genomics approach, in the analysis of subsurface microbial community composition, metabolic potential and microevolution at the Sanford Underground Research Facility (SURF), South Dakota, and the Witwaterstrand Basin, South Africa. We successfully recovered genomic DNA from individual microbial cells from multiple locations, including ultra-deep (down to 3,500 m) and low-biomass (down to 10^3 cells mL^-1) fracture water. The obtained single amplified genomes (SAGs) from SURF contained multiple representatives of the candidate divisions OP3, OP11, OD1 and uncharacterized archaea. By sequencing eight of these SAGs, we obtained the first genome content information for these phylum-level lineages that do not contain a single cultured representative. The Witwaterstrand samples were collected from deep fractures, biogeochemical dating of which suggests isolation from tens of thousands to tens of millions of years. Thus, these fractures may be viewed as "underground Galapagos", a natural, long-term experiment of microbial evolution within well-defined temporal and spatial boundaries. We are analyzing multiple SAGs from these environments, which will provide detailed information about adaptations to life in deep subsurface, mutation rates, selective pressures and gene flux within and across microbial populations.

  14. Subsurface Flow in Gravel River Bars

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Dunne, T.

    2014-12-01

    The geomorphic and hydraulic characteristics of gravel bars control the direction, magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. Bed undulation, water-surface gradient, alluvial depth, and the spatial variation of hydraulic conductivity (both deterministic trends and stochastic variability) affect the hydrologically-driven groundwater-surface water exchange. In this paper, we use a set of field measurements of morphological and hydrological characteristics along two reaches of the San Joaquin River, California to motivate a systematic analysis of the factors that affect paths and residence times of flow through gravel bars under an observed range of streamflow values. In the field investigation, it is shown that asymmetry of bar morphology is a first-order control on the extent and magnitude of infiltration, which is often represented to produce approximately equal areas of infiltration and seepage under the assumption of sinusoidal bedforms. Infiltration over the length of a bar is shown to be greater at low flow than at high flow because of the effect of water-surface gradient. Hydraulic conductivity (ksat) varies by orders of magnitude and systematic downstream coarsening arises related to the process of bar evolution. The lowest values of ksat were observed where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where the infiltration would be greatest into a uniform bar of homogeneous gravel. Morphology and fine sediment accumulation in recharge zones exert an important control over the mechanisms driving subsurface fluid exchange. Simulations from a numerical groundwater flow model that isolate the signatures of morphology and streambed sediment patterns on subsurface flow corroborate our interpretation that the infiltration patterns and rates are primarily controlled by bed morphology, with ksat playing a secondary role.

  15. Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2004-01-01

    NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.

  16. Subsurface plankton layers in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Churnside, James H.; Marchbanks, Richard D.

    2015-06-01

    The first synoptic measurements of subsurface plankton layers were made in the western Arctic Ocean in July 2014 using airborne lidar. Layers were detected in open water and in pack ice where up to 90% of the surface was covered by ice. Layers under the ice were less prevalent, weaker, and shallower than those in open water. Layers were more prevalent in the Chukchi Sea than in the Beaufort Sea. Three quarters of the layers observed were thinner than 5 m. The presence of these layers, which are not adequately captured in satellite data, will influence primary productivity, secondary productivity, fisheries recruitment, and carbon export to the benthos.

  17. Parallel heater system for subsurface formations

    DOEpatents

    Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  18. Subsurface damage distribution in the lapping process.

    PubMed

    Wang, Zhuo; Wu, Yulie; Dai, Yifan; Li, Shengyi

    2008-04-01

    To systematically investigate the influence of lapping parameters on subsurface damage (SSD) depth and characterize the damage feature comprehensively, maximum depth and distribution of SSD generated in the optical lapping process were measured with the magnetorheological finishing wedge technique. Then, an interaction of adjacent indentations was applied to interpret the generation of maximum depth of SSD. Eventually, the lapping procedure based on the influence of lapping parameters on the material removal rate and SSD depth was proposed to improve the lapping efficiency. PMID:18382566

  19. Spaceborne radar subsurface imaging in hyperarid regions

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Roth, L. E.; Schaber, G. G.

    1984-01-01

    Imaging data acquired with the Shuttle Imaging Radar (SIR-A) over the hyperarid region of Egypt/Sudan clearly show surface penetration through the sand cover. Even though absorption does occur in the sand layer, surface refraction leads to a steeper incidence angle at the sand/bedrock interface resulting in a stronger backscatter. A simple backscatter model shows that for a low-loss thin sand layer the presence of the covering layer enhances the capability to image the subsurface interface, particularly at large incidence angles and HH polarization.

  20. Widefield subsurface microscopy of integrated circuits.

    PubMed

    Köklü, Fatih Hakan; Quesnel, Justin I; Vamivakas, Anthony N; Ippolito, Stephen B; Goldberg, Bennett B; Unlü, M Selim

    2008-06-23

    We apply the numerical aperture increasing lens technique to widefield subsurface imaging of silicon integrated circuits. We demonstrate lateral and longitudinal resolutions well beyond the limits of conventional backside imaging. With a simple infrared widefield microscope (lambda(0) = 1.2 microm), we demonstrate a lateral spatial resolution of 0.26 microm (0.22 lambda(0)) and a longitudinal resolution of 1.24 microm (1.03 lambda(0)) for backside imaging through the silicon substrate of an integrated circuit. We present a spatial resolution comparison between widefield and confocal microscopy, which are essential in integrated circuit analysis for emission and excitation microscopy, respectively. PMID:18575515

  1. Instrumented Moles for Planetary Subsurface Regolith Studies

    NASA Astrophysics Data System (ADS)

    Richter, L. O.; Coste, P. A.; Grzesik, A.; Knollenberg, J.; Magnani, P.; Nadalini, R.; Re, E.; Romstedt, J.; Sohl, F.; Spohn, T.

    2006-12-01

    Soil-like materials, or regolith, on solar system objects provide a record of physical and/or chemical weathering processes on the object in question and as such possess significant scientific relevance for study by landed planetary missions. In the case of Mars, a complex interplay has been at work between impact gardening, aeolian as well as possibly fluvial processes. This resulted in regolith that is texturally as well as compositionally layered as hinted at by results from the Mars Exploration Rover (MER) missions which are capable of accessing shallow subsurface soils by wheel trenching. Significant subsurface soil access on Mars, i.e. to depths of a meter or more, remains to be accomplished on future missions. This has been one of the objectives of the unsuccessful Beagle 2 landed element of the ESA Mars Express mission having been equipped with the Planetary Underground Tool (PLUTO) subsurface soil sampling Mole system capable of self-penetration into regolith due to an internal electro-mechanical hammering mechanism. This lightweight device of less than 900 g mass was designed to repeatedly obtain and deliver to the lander regolith samples from depths down to 2 m which would have been analysed for organic matter and, specifically, organic carbon from potential extinct microbial activity. With funding from the ESA technology programme, an evolved Mole system - the Instrumented Mole System (IMS) - has now been developed to a readiness level of TRL 6. The IMS is to serve as a carrier for in situ instruments for measurements in planetary subsurface soils. This could complement or even eliminate the need to recover samples to the surface. The Engineering Model hardware having been developed within this effort is designed for accommodating a geophysical instrument package (Heat Flow and Physical Properties Package, HP3) that would be capable of measuring regolith physical properties and planetary heat flow. The chosen design encompasses a two-body Mole consisting of a 'tractor' element containing the hammering mechanism jointed to a trailed compartment housing the instruments as well as some front-end electronics, tethered to surface controls and instruments. This presentation will highlight the design of the IMS and will describe results of comprehensive functional and environmental tests that included soil penetration to depths beyond 2 m, thermal vacuum functional tests, as well as vibration testing of the stowed system. Mission scenarios that are being considered for the IMS are discussed (including the ExoMars mission of ESA), and an update is given on parallel tests of the HP3 instrument package that is being developed in a dedicated, ESA-funded effort.

  2. Physiologically anaerobic microorganisms of the deep subsurface

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  3. Nonisothermal multiphase subsurface transport on parallel computers

    SciTech Connect

    Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.

    1997-10-01

    We present a numerical method for nonisothermal, multiphase subsurface transport in heterogeneous porous media. The mathematical model considers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-passing and domain decomposition techniques are used for implementing a scalable algorithm for distributed memory parallel computers. An illustrative application is shown to demonstrate capabilities and performance.

  4. Detection of microbes in the subsurface

    NASA Technical Reports Server (NTRS)

    White, David C.; Tunlid, Anders

    1989-01-01

    The search for evidence of microbial life in the deep subsurface of Earth has implications for the Mars Rover Sampling Return Missions program. If suitably protected environments can be found on Mars then the instrumentation to detect biomarkers could be used to examine the molecular details. Finding a lipid in Martian soil would represent possibly the simplest test for extant or extinct life. A device that could do a rapid extraction possibly using the supercritical fluid technology under development now with a detection of the carbon content would clearly indicate a sample to be returned.

  5. Microbiological Transformations of Radionuclides in the Subsurface

    SciTech Connect

    Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.

    2010-01-04

    Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore, environmental behavior.

  6. GEOSSAV: a simulation tool for subsurface applications

    NASA Astrophysics Data System (ADS)

    Regli, Christian; Rosenthaler, Lukas; Huggenberger, Peter

    2004-04-01

    Geostatistical Environment fOr Subsurface Simulation And Visualization (GEOSSAV) is a tool for the integration of hard and soft data into stochastic simulation and visualization of distributions of geological structures and hydrogeological properties in the subsurface. GEOSSAV, as an interface to selected geostatistical modules (bicalib, gamv, vargplt, and sisim) from the Geostatistical Software LIBrary, GSLIB (GSLIB: Geostatistical Software Library and User's Guide, 2nd Edition, Oxford University Press, Oxford, 1998, 369pp), can be used for data analysis, variogram computation of regularly or irregularly spaced data, and sequential indicator simulation of subsurface heterogeneities. Sequential indicator simulation, based on various kriging techniques (simple, ordinary, and Bayesian), is suitable for the simulation of continuous variables such as hydraulic conductivity of an aquifer or chemical concentrations at a contaminated site, and categorical variables which indicate the presence or absence of a particular lithofacies. The software integration platform and development environment of GEOSSAV is Tool command language (Tcl) with its graphical user interface, Toolkit (Tk), and a number of Tcl/Tk extensions. The standard Open Graphics Library application programming interface is used for rendering three-dimensional (3D) data distributions and for slicing perpendicular to the main coordinate axis. Export options for finite-difference groundwater models allow either files that characterize single model layers (which are saved in ASCII matrix format) or files that characterize the complete 3D flow model setup for MODFLOW-based groundwater simulation systems (which are saved in block-centered flow package files (User's documentation for MODFLOW-96, an update to the US Geological Survey modular finite-difference ground-water flow model, Geological Survey Open-File Report 96-485, Reston, VA, 1996, 56pp)). GEOSSAV can be used whenever stochastic solutions are preferred to solve site-specific heterogeneity problems, e.g., in the field of hydrology, groundwater, groundwater and/or soil contamination, site remediation, air pollution, and ecology. An example from the Rhine/Wiese aquifer near Basel demonstrates the application of GEOSSAV on geostatistical data analysis and subsurface visualization. GEOSSAV has been successfully tested on Microsoft Windows NT 4.0/2000/XP and on SuSE Linux 7.3. The current version is available at http://www.unibas.ch/earth/pract.

  7. Low temperature monitoring system for subsurface barriers

    SciTech Connect

    Vinegar, Harold J.; McKinzie, II. Billy John

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  8. Airborne Electromagnetic Mapping of Subsurface Permafrost

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Minsley, B. J.; Cannia, J. C.; Smith, B. D.; Walvoord, M. A.; Voss, C. I.; Jorgenson, T. T.; Wylie, B. K.; Anderson, L.

    2011-12-01

    Concerns over the impacts of climate change have recently energized research on the potential impacts thawing permafrost may have on groundwater flow, infrastructure, forest health, ecosystems, energy production, CO2 release, and contaminant transport. There is typically little knowledge about subsurface permafrost distributions, such as thickness and where groundwater-surface-water connections may occur through taliks. In June of 2010, the U.S. Geological Survey undertook an airborne electromagnetic (AEM) survey in the area of Fort Yukon, Alaska in order to map the 3-D distribution of permafrost and provide information for the development of groundwater models within the Yukon River Basin. Prior to the development of these models, information on areas of groundwater-surface water interaction was extremely limited. Lithology determined from a borehole drilled in Fort Yukon in 1994 agrees well with the resistivity depth sections inferred from the airborne survey. In addition to lithology, there a thermal imprint appears on the subsurface resistivity values. In the upper 20-50 m, the sections show continuous areas of high electrical resistivity, consistent with alluvial gravel deposits that are likely frozen. At depth, unfrozen gravel deposits have intermediate-to-high resistivity; frozen silts have intermediate resistivity; and unfrozen silts have low resistivity. Under the Yukon River and lakes where the subsurface is not frozen, zones of moderate resistivity intermix with areas of low resistivity. The areas of loess hills on the margins of the Yukon Flats have very-high electrical resistivity, indicating higher ice content, and are associated with the some of the greatest thickness of permafrost in the survey area. This work provides the first look into the 3-D distribution of permafrost in the areas around Fort Yukon and is a demonstration of the application of AEM to permafrost mapping. The AEM survey provides unprecedented 3-D images of subsurface electrical properties that reveal changes in lithology and the presence or absence of permafrost. These geophysical data fill an important gap between sparsely sampled boreholes, regional hydrogeologic measurements, and remote sensing data. Interpretations of the AEM data are being integrated with other remotely sensed data to supply critical hydrogeological information needed for developing an improved understanding of groundwater-surface-water interactions in permafrost terrains. More specifically, the interpretations of the AEM data help to refine groundwater flow models in the Yukon Flats Basin. Because of the success of this study we now know that there are many other uses for this data. For example, airborne surveys can provide baseline data for estimating the 3-D distribution of permafrost that can be compared to future surveys in order to estimate volumetric changes over time.

  9. Autonomous Image Analysis for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Bandari, E.; Roush, T. L.

    1999-01-01

    To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to preferentially transmit "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high-resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. We are currently investigating the possibility of reconstructing a 3D surface from a sequence of images acquired by a robotic arm camera. This would then allow the return of a single completely in focus image constructed only from those portions of individual images that lie within the camera's depth of field. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these algorithms and their performance during a recent rover field test.

  10. Method and apparatus for subsurface exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2002-01-01

    A subsurface explorer (SSX) for exploring beneath the terrestrial surface of planetary bodies such as the Earth, Mars, or comets. This exploration activity utilizes appropriate sensors and instrument to evaluate the composition, structure, mineralogy and possibly biology of the subsurface medium, as well as perhaps the ability to return samples of that medium back to the surface. The vehicle comprises an elongated skin or body having a front end and a rear end, with a nose piece at the front end for imparting force to composition material of the planetary body. Force is provided by a hammer mechanism to the back side of a nose piece from within the body of the vehicle. In the preferred embodiment, a motor spins an intermediate shaft having two non-uniform threads along with a hammer which engages these threads with two conical rollers. A brake assembly halts the rotation of the intermediate shaft, causing the conical roller to spin down the non-uniform thread to rapidly and efficiently convert the rotational kinetic energy of the hammer into translational energy.

  11. Atmospheric energy for subsurface life on Mars?

    NASA Technical Reports Server (NTRS)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  12. Human utilization of subsurface extraterrestrial environments.

    PubMed

    Boston, P J; Frederick, R D; Welch, S M; Werker, J; Meyer, T R; Sprungman, B; Hildreth-Werker, V; Thompson, S L; Murphy, D L

    2003-06-01

    Caves have been used in the ancient past as shelter or habitat by many organisms (including humans). Since antiquity, humans have explored caves for the minerals they contain and sometimes for ceremonial purposes. Over the past century, caves have become the target of increasing exploration, scientific research, and recreation. The use of caves on extraterrestrial bodies for human habitation has been suggested by several investigators. Lunar lava tube bases received early attention because lava tubes were clearly visible in lunar images from the Apollo Era. More recently, Mars Observer Camera data has shown us clear evidence of large tubes visible in a number of volcanic regions on Mars. The budding field of cave geomicrobiology has direct application to questions about subsurface life on other planets. Caves contain many unusual organisms making their living from unlikely materials like manganese, iron, and sulfur. This makes caves and other subsurface habitats prime targets for astrobiological missions to Mars and possibly other bodies. We present the results of a completed Phase I and on-going Phase II NASA Institute for Advanced Concepts (NIAC) study that intensively examines the possibilities of using extraterrestrial caves as both a resource for human explorers and as a highly promising scientific target for both robotic and future human missions to Mars and beyond. PMID:12959139

  13. Land uplift due to subsurface fluid injection

    NASA Astrophysics Data System (ADS)

    Teatini, Pietro; Gambolati, Giuseppe; Ferronato, Massimiliano; Settari, A. (Tony); Walters, Dale

    2011-01-01

    The subsurface injection of fluid (water, gas, vapour) occurs worldwide for a variety of purposes, e.g. to enhance oil production (EOR), store gas in depleted gas/oil fields, recharge overdrafted aquifer systems (ASR), and mitigate anthropogenic land subsidence. Irrespective of the injection target, some areas have experienced an observed land uplift ranging from a few millimetres to tens of centimetres over a time period of a few months to several years depending on the quantity and spatial distribution of the fluid used, pore pressure increase, geological setting (depth, thickness, and area extent), and hydro-geomechanical properties of the injected formation. The present paper reviews the fundamental geomechanical processes that govern land upheaval due to fluid injection in the subsurface and presents a survey of some interesting examples of anthropogenic uplift measured in the past by the traditional levelling technique and in recent times with the aid of satellite technology. The examples addressed include Long Beach, Santa Clara Valley, and Santa Ana basin, California; Las Vegas Valley, Nevada; Cold Lake and other similar sites, Canada; Tokyo and Osaka, Japan; Taipei, Taiwan; Krechba, Algeria; Upper Palatinate, Germany; Chioggia and Ravenna, Italy.

  14. Phylogenetic relationships among subsurface microorganisms. Progress report

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-12-31

    This project involves the development of group specific 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface organisms (e.g., groups of microbes that share certain physiological traits). Major accomplishments for the period of 6/91 to 12/1/91 are described. Nine new probes have been synthesized on the basis of published 16S rRNA sequence data from the Ribosomal Database Project. We have initiated rapid screening of many of the subsurface microbial isolates obtained from the P24 borehole at the Savannah River Site. To date, we have screened approximately 50% of the isolates from P24. We have optimized our {und in situ} hybridization technique, and have developed a cell blot hybridization technique to screen 96 samples on a single blot. This is much faster than reading 96 individual slides. Preliminary experiments have been carried out which indicate specific nutrients can be used to amplify rRNA only in those organisms capable of metabolizing those nutrients. 1 tab., 2 figs.

  15. Atmospheric energy for subsurface life on Mars?

    PubMed Central

    Weiss, Benjamin P.; Yung, Yuk L.; Nealson, Kenneth H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H2 and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H2 and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H2O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life. PMID:10660689

  16. Subsurface damage on ground fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Jiafeng; Xu, Xueke; Gao, Wenlan; Wei, Chaoyang; Yang, Minghong; Shao, Jianda

    2014-08-01

    The low surface laser damage threshold of fused silica components in high power laser systems such as NIF restricts the improvement of the output fluence of those systems. Once damage is initiated and grows under subsequent laser shots, the components will go unusable. Subsurface damage (SSD) introduced during manufacturing has been identified as a main damage initiator. A good knowledge of SSD and how manufacturing influences it is essential to optimize manufacturing processes for damage free optics. Using the magneto-rheological finishing (MRF) wedge technique of better accuracy attributed to a tip, we have characterized the subsurface damage on fused silica optical surfaces ground with loose Al2O3 abrasives of different sizes. Larger abrasives generates longer cracks and the number density of cracks decreases sharply with the depth for each size. Rogue particles account for the occurrence of trailing indent scratches. Addition of rogue abrasives into relatively small base abrasive extends SSD more deeply than that induced by rogue abrasives alone. The linear model, with the proportional coefficient 3.511, fits the relationship between SSD depth and surface roughness (SR) better than the quadratic polynomial one. We believe SSD depth relates to SR more statistically than following some specified physical law. The linear relationship between SSD depth and the abrasive size was also established. The abrasive size turned out not to be as a good indictor of SSD depth as SR.

  17. Computer stereograms of Oklahoma subsurface geology

    SciTech Connect

    Todd, H.W.

    1987-08-01

    Three-dimensional stereoscopic illustrations have not been a standard part of the subsurface geologist's tool kit. Now, the immense complexity of stereograms can be resolved by inexpensive software on a personal computer, with which the subsurface geologist can gain an entirely new viewpoint. These new illustrations yield new patterns, new relationships, and prospective anomalies. The illustrations are particularly helpful in areas of complex structural geology. This study presents a regional sampling of this new mode of geologic illustration; Oklahoma was chosen because of its wide variety of structural styles, the prolific reserves associated with those structures, and the abundance of geologic data. A statewide data base of 2806 structural elevations on the base of the Pennsylvanian System was digitized from scout-ticket tops. In addition, three detailed data bases of local structures were digitized, using all the available structural control plus interpreted points to aid the programming. Contour maps and block diagrams were constructed with readily available, inexpensive software, using kriging algorithms. Stereo pairs were created by rotating the blocks 4/sup 0/ within the computer program. The pairs were positioned 2.5 in. apart to match an average viewer's interpupillary distance. The three-dimensional blocks may be viewed with a stereoscope or with naked eyes focused on a distant point.

  18. Atmospheric energy for subsurface life on Mars?

    PubMed

    Weiss, B P; Yung, Y L; Nealson, K H

    2000-02-15

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life. PMID:10660689

  19. Benchmark problems for subsurface flow uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Chang, Haibin; Liao, Qinzhuo; Zhang, Dongxiao

    2015-12-01

    In this work, we design a series of benchmark problems for subsurface flow uncertainty quantification. Three basic subsurface flow problems with increasing complexity are selected, which are steady state groundwater flow, groundwater contamination, and multi-phase flow. For the steady state groundwater flow, hydraulic conductivity is assumed to be uncertain, and the uncertain model parameter is assumed to be Gaussian random constant, Gaussian random field, and facies field, respectively. For the other two flow problems, the uncertain model parameter is assumed to be Gaussian random field and facies field, respectively. The statistical property of the uncertain model parameter is specified for each problem. The Monte Carlo (MC) method is used to obtain the benchmark results. The results include the first two statistical moments and the probability density function of the quantities of interest. To verify the MC results, we test the convergence of the results and the reliability of the sampling algorithm. For any existing and newly developed uncertainty quantification methods, which are not (fully) verified, the designed benchmark problems in this work can facilitate the verification process of those methods. For illustration, in this work, we provide a verification of the probabilistic collocation method using the benchmark results.

  20. The subsurface of Pluto from submillimetre observations

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Whitelaw, A. C. M.; Bendo, G. J.

    2015-04-01

    Surface areas on Pluto change in brightness and colour, at optical to infrared wavelengths, over time-scales as short as years. The subsurface contains a reservoir of frozen volatiles, but little is known about it because Pluto is out of reach for cm-radar. Here we present a 0.85 mm wavelength light curve of the Pluto system, from archival data taken in 1997 August with the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope (JCMT). This wavelength probes for the first time to just below the skin depth of thermal changes over Pluto's day. The light curve differs significantly from counterparts in the mid- to far-infrared, in a longitude range that is optically dark on Pluto's surface. An estimate from Herschel of the 0.5 mm flux in 2012 is comparable to the mean 0.45 mm flux from SCUBA in 1997, suggesting that layers centimetres below the surface have not undergone any gross temperature change. The longitudes that are relatively submillimetre-faint could have a different emissivity, perhaps with a subsurface layer richer in nitrogen or methane ices than at the surface. The Radio Science Experiment (REX) instrument on New Horizons may be able to constrain physical properties deeper down, as it looks back on Pluto's nightside after the 2015 July flyby.

  1. Modeling subsurface stormflow initiation in low-relief landscapes

    NASA Astrophysics Data System (ADS)

    Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.

    2015-04-01

    Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition, we also ran a longer-term simulation, using daily climate data for a nine year period to include more variable climate conditions in the threshold analysis. The model captured the observed subsurface flow instances very well. The threshold analysis indicated that the occurrence of subsurface stormflow uncommon, with a large proportion of the water perching above the clay layer percolating vertically into the clay layer. Event sizes of approximately 70-80 mm were required for initiating subsurface stormflow. The hourly data from 2009-2010 was subsequently used to test if the actual spatial distribution of depth to clay is a major control for the occurrence and magnitude of lateral subsurface flow. Results suggest that in this low-relief landscape also a spatially uniform mean depth to clay reproduces well the hydrologic behavior.

  2. Surface and subsurface nitrate flow pathways on a watershed scale.

    PubMed

    Daughtry, C S; Gish, T J; Dulaney, W P; Walthall, C L; Kung, K J; McCarty, G W; Angier, J T; Buss, P

    2001-11-30

    Determining the interaction and impact of surface runoff and subsurface flow processes on the environment has been hindered by our inability to characterize subsurface soil structures on a watershed scale. Ground penetrating radar (GPR) data were collected and evaluated in determining subsurface hydrology at four small watersheds in Beltsville, MD. The watersheds have similar textures, organic matter contents, and yield distributions. Although the surface slope was greater on one of the watersheds, slope alone could not explain why it also had a nitrate runoff flux that was 18 times greater than the other three watersheds. Only with knowledge of the subsurface hydrology could the surface runoff differences be explained. The subsurface hydrology was developed by combining GPR and surface topography in a geographic information system. Discrete subsurface flow pathways were identified and confirmed with color infrared imagery, real-time soil moisture monitoring, and yield monitoring. The discrete subsurface flow patterns were also useful in understanding observed nitrate levels entering the riparian wetland and first order stream. This study demonstrated the impact that subsurface stratigraphy can have on water and nitrate (NO3-N) fluxes exiting agricultural lands, even when soil properties, yield distributions, and climate are similar. Reliable protocols for measuring subsurface fluxes of water and chemicals need to be developed. PMID:12805788

  3. In situ analysis of subsurface materials

    NASA Astrophysics Data System (ADS)

    Coradini, A.; de Sanctis, M. C.; Piccioni, G.; Amici, S.; Bianchi, R.; Capaccioni, F.; Capria, M. T.; di Lellis, A. M.; Espinasse, S.; Federico, C.

    2003-04-01

    From radio and radar observations, providing information on the upper 0.1 to 10 m of the Martian crust, we know that subsurface properties seem to be slightly different from those at the surface, suggesting subsurface layering in many places. This idea has been strongly strengthened by the recent observation in sedimentary areas of the Martian surface, made by MGS and Odyssey Spacecrafts. Moreover indications on the presence of shallow water has been also suggested. Unfortunately many doubts exist on the nature, timing and duration of alteration and sedimentation processes on Mars. This study will permit to infer the history of erosion, transport and deposition of loose material. This material can reach a thickness ranging from a few centimeters to meters. Up to present, the Viking and Pathfinder investigations have studied only the upper layers of the soil. The Martian soil analyzed by the two Viking landers showed a surprising similarity, despite the great distance between the two landing sites: it will be extremely important to verify if this similarity is also present in different areas and, particularly, in the subsurface layers. The study of the Mars subsurface can give us an indication of how deeply the weathering has modified the Martian surface. The ASI driller will be able to penetrate different kinds of materials, both loose and hard. The drill will be able to cut both hard rock and loose soil as well as mixtures of them. Thanks to the ASI drill it will be possible to investigate at least the first half-meter of this complex structure. We describe here a miniaturized imaging spectrometer that can be included in the drill tip in order to infer the mineralogical characteristics of subsurface layers. The data are acquired through a flat optical window on the drill wall: through this window the inner surface of the hole is illuminated by means of different lamps. The image is acquired by an array of optical fibers simulating a slit. An optical system situated inside the drill will permit to observe details from few tenths of microns to hundreds of microns and to perform low resolution spectroscopy in the range 0.8-2.8 microns. The linear array of optical fibers mimics the slit. The focal plane is a two-dimensional matrix of HgCdTe or PbS of 32-64 pixels in the spatial direction by 25-256 pixels in the spectral direction. The spectral reflectance in the visible and near infrared can provide information on the mineralogy and petrology of surface materials, and therefore on crust composition and Fe mineralogy. Analysis of VIS and NIR reflectance spectra of low albedo areas is a primary source of evidence for basaltic crust on Mars, with the identification of abundant clinopyroxenes and other mafic minerals. The instrument prototype has already been tested in laboratory and we will show some of the obtained results.

  4. Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin.

    PubMed

    Demaria, Marco; Desprez, Pierre Yves; Campisi, Judith; Velarde, Michael C

    2015-07-01

    Human and mouse skin accumulate senescent cells in both the epidermis and dermis during aging. When chronically present, senescent cells are thought to enhance the age-dependent deterioration of the skin during extrinsic and intrinsic aging. However, when transiently present, senescent cells promote optimal wound healing. Here, we review recent studies on how senescent cells and the senescence-associated secretory phenotype contribute to different physiological and pathophysiological conditions in the skin with a focus on some of the cell autonomous and non-autonomous functions of senescent cells in the context of skin aging and wound healing. PMID:25855157

  5. Microbial communities in the deep subsurface

    NASA Astrophysics Data System (ADS)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface geochemical processes and to develop new approaches to subsurface remediation. Résumé La diversité des populations et des communautés microbiennes dans le sol et le sous-sol est présentée dans cet article. Les chercheurs s'interrogent fréquemment sur la diversité microbienne du sous-sol, sur les interactions entre organismes et sur les mécanismes qui permettent le maintien des communautés microbiennes souterraines. Il existe des communautés microbiennes anérobies hétérotrophes dans des grès ou dans des sédiments sableux relativement perméables, à proximité de dépôts riches en matières organiques. Ces micro-organismes semblent se maintenir grâce à la consommation de composés organiques provenant des dépôts organiques voisins. Les sources de matériel organique jouant le rôle de donneur d'électrons sont constituées par des sédiments éocènes riches en lignite situés sous la plaine littorale du Texas, les schistes riches en matières organiques du Crétacé du sud-ouest des États-Unis, ainsi que les argiles contenant des matériaux organiques et des bactéries de fermentation de la plaine littorale atlantique. En outre, il existe des communautés fortement diversifiées dans des régions où aucune source de matière organique n'existe, mais où sont présentes des roches ignées. Le sous-sol riche en basalte de la vallée de la Columbia au Canada et les régions granitiques de Suède en sont des exemples. Ces communautés microbiennes souterraines semblent se maintenir par l'action de bactéries lithotrophes se développant grâce à l'hydrogène qui est produit par réactions chimiques dans le sous-sol. Il existe d'autres communautés microbiennes de profondeur dans les sédiments profonds des océans. Ces systèmes sont souvent associés à un métabolisme anérobie et à une réduction des sulfates. La colonisation microbienne s'étend jusqu'à des profondeurs où les températures élevées limitent leur capacité de survie. Les sources d'énergie pour ces organismes vivant dans les fonds des océans peuvent être les dépôts sédimentaires océaniques. Dans cette revue, chacune des communautés microbiennes est discutée en détail en se référant spécifiquement à leurs sources d'énergie, au schéma observé de leur développement et à leur composition diversifiée. Cette information est donnée de façon critique dans le but d'améliorer la compréhension des processus géochimiques intervenant dans le sous-sol et de développer de nouvelles approches pour la dépollution souterraine. Resumen En este artículo se resume la diversidad de las poblaciones y comunidades microbianas en el subsuelo. A partir de exploraciones realizadas en el subsuelo, los científicos se están cuestionando en la actualidad aspectos relativos a la diversidad microbiana, las interacciones entre los distintos microorganismos y los mecanismos para el mantenimiento de las comunidades de microbios. Se ha comprobado la presencia de comunidades microbianas anaerobias y heterótrofas en areniscas relativamente permeables y en sedimentos arenosos ubicados cerca de depósitos ricos en materia orgánica, de la cual se alimentan. Algunas fuentes de material orgánico, que actúan como donantes de electrones, son: sedimentos del Eoceno ricos en lignito, bajo la planicie costera de Texas; pizarras del Cretácico ricas en materia orgánica, al sudoeste del país y arcillas cretácicas con materia orgánica y bacterias fermentativas, en la llanura Atlántica. También existen comunidades microbianas de gran diversidad en rocas ígneas, aunque la fuente de materia orgánica no es tan evidente. Algunos ejemplos son la subsuperficie del valle del Río Columbia, rico en basaltos, y las regiones graníticas de Suecia y Canadá. Estas comunidades microbianas subsuperficiales se mantienen por la acción de bacterias litotrópicas, que crecen en ambiente de H2, generado en la subsuperficie. También existen comunidades microbianas a gran profundidad, como por ejemplo en los sedimentos oceánicos. Estos sistemas subsisten con un metabolismo anaerobio en un ambiente sulfato-reductor. La colonización microbiana se extiende hasta profundidades tales que las altas temperaturas limitan su supervivencia. Las fuentes de energía para estos organismos pueden ser los depósitos sedimentarios oceánicos. En este artículo se discute cada una de estas comunidades en detalle, en particular sus fuentes de energía, su esquema de crecimiento y la diversidad de su composición. Esta información es de gran interés para permitir un mayor entendimiento de los procesos geoquímicos en profundidad y para desarrollar nuevos métodos de rehabilitación.

  6. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.

    2010-01-01

    DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.

  7. The nature of the autonomic dysfunction in multiple system atrophy

    NASA Technical Reports Server (NTRS)

    Parikh, Samir M.; Diedrich, Andre; Biaggioni, Italo; Robertson, David

    2002-01-01

    The concept that multiple system atrophy (MSA, Shy-Drager syndrome) is a disorder of the autonomic nervous system is several decades old. While there has been renewed interest in the movement disorder associated with MSA, two recent consensus statements confirm the centrality of the autonomic disorder to the diagnosis. Here, we reexamine the autonomic pathophysiology in MSA. Whereas MSA is often thought of as "autonomic failure", new evidence indicates substantial persistence of functioning sympathetic and parasympathetic nerves even in clinically advanced disease. These findings help explain some of the previously poorly understood features of MSA. Recognition that MSA entails persistent, constitutive autonomic tone requires a significant revision of our concepts of its diagnosis and therapy. We will review recent evidence bearing on autonomic tone in MSA and discuss their therapeutic implications, particularly in terms of the possible development of a bionic baroreflex for better control of blood pressure.

  8. Autonomic imbalance: prophet of doom or scope for hope?

    PubMed Central

    Vinik, A I; Maser, R E; Ziegler, D

    2011-01-01

    It has long been recognized that cardiac autonomic neuropathy increases morbidity and mortality in diabetes and may have greater predictive power than traditional risk factors for cardiovascular events. Significant morbidity and mortality can now be attributable to autonomic imbalance between the sympathetic and parasympathetic nervous system regulation of cardiovascular function. New and emerging syndromes include orthostatic tachycardia, orthostatic bradycardia and an inability to use heart rate as a guide to exercise intensity because of the resting tachycardia. Recent studies have shown that autonomic imbalance may be a predictor of risk of sudden death with intensification of glycaemic control. This review examines an association of autonomic dysregulation and the role of inflammatory cytokines and adipocytokines that promote cardiovascular risk. In addition, conditions of autonomic imbalance associated with cardiovascular risk are discussed. Potential treatment for restoration of autonomic balance is outlined. PMID:21569084

  9. Autonomic imbalance: prophet of doom or scope for hope?

    PubMed

    Vinik, A I; Maser, R E; Ziegler, D

    2011-06-01

    It has long been recognized that cardiac autonomic neuropathy increases morbidity and mortality in diabetes and may have greater predictive power than traditional risk factors for cardiovascular events. Significant morbidity and mortality can now be attributable to autonomic imbalance between the sympathetic and parasympathetic nervous system regulation of cardiovascular function. New and emerging syndromes include orthostatic tachycardia, orthostatic bradycardia and an inability to use heart rate as a guide to exercise intensity because of the resting tachycardia. Recent studies have shown that autonomic imbalance may be a predictor of risk of sudden death with intensification of glycaemic control. This review examines an association of autonomic dysregulation and the role of inflammatory cytokines and adipocytokines that promote cardiovascular risk. In addition, conditions of autonomic imbalance associated with cardiovascular risk are discussed. Potential treatment for restoration of autonomic balance is outlined. PMID:21569084

  10. Methods of determining complete sensor requirements for autonomous mobility

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2012-01-01

    A method of determining complete sensor requirements for autonomous mobility of an autonomous system includes computing a time variation of each behavior of a set of behaviors of the autonomous system, determining mobility sensitivity to each behavior of the autonomous system, and computing a change in mobility based upon the mobility sensitivity to each behavior and the time variation of each behavior. The method further includes determining the complete sensor requirements of the autonomous system through analysis of the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior, wherein the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior are characteristic of the stability of the autonomous system.

  11. Multi-organ autonomic dysfunction in Parkinson disease

    PubMed Central

    2010-01-01

    Both pathologic and clinical studies of autonomic pathways have expanded the concept of Parkinson disease (PD) from a movement disorder to a multi-level widespread neurodegenerative process with non-motor features spanning several organ systems. This review integrates neuropathologic findings and autonomic physiology in PD as it relates to end organ autonomic function. Symptoms, pathology and physiology of the cardiovascular, skin/sweat gland, urinary, gastrointestinal, pupillary and neuroendocrine systems can be probed by autopsy, biopsy and non-invasive electrophysiological techniques in vivo which assess autonomic anatomy and function. There is mounting evidence that PD affects a chain of neurons in autonomic pathways. Consequently, autonomic physiology may serve as a window into non-motor PD progression and allow the development of mechanistically based treatment strategies for several non-motor features of PD. End-organ physiologic markers may be used to inform a model of PD pathophysiology and non-motor progression. PMID:20851033

  12. ASSESSMENT OF THE SUBSURFACE FATE OF MONOETHANOLAMINE

    SciTech Connect

    James A. Sorensen; John R. Gallagher; Lori G. Kays

    2000-05-01

    Burial of amine reclaimer unit sludges and system filters has resulted in contamination of soil at the CanOxy Okotoks decommissioned sour gas-processing plant with amines, amine byproducts, and salts. A three-phase research program was devised to investigate the natural attenuation process that controls the subsurface transport and fate of these contaminants and to apply the results toward the development of a strategy for the remediation of this type of contamination in soils. Phase I experimental activities examined interactions between monoethanolamine (MEA) and sediment, the biodegradability of MEA in soils at various concentrations and temperatures, and the biodegradability of MEA sludge contamination in a soil slurry bioreactor. The transport and fate of MEA in the subsurface was found to be highly dependant on the nature of the release, particularly MEA concentration and conditions of the subsurface environment, i.e., pH, temperature, and oxygen availability. Pure compound biodegradation experiments in soil demonstrated rapid biodegradation of MEA under aerobic conditions and moderate temperatures (>6 C). Phase II landfarming activities confirmed that these contaminants are readily biodegradable in soil under ideal laboratory conditions, yet considerable toxicity was observed in the remaining material. Examination of water extracts from the treated soil suggested that the toxicity is water-soluble. Phase II activities led to the conclusion that landfarming is not the most desirable bioremediation technique; however, an engineered biopile with a leachate collection system could remove the remaining toxic fraction from the soil. Phase III was initiated to conduct field-based experimental activities to examine the optimized remediation technology. A pilot-scale engineered biopile was constructed at a decommissioned gas-sweetening facility in Okotoks, Alberta, Canada. On the basis of a review of the analytical and performance data generated from soil and leachate samples, the biopile operation has successfully removed all identified amines and removed significant amounts of organic nitrogen and organic carbon. Salts initially present in the soil and salts generated during the biodegradation of contaminants remain to be flushed from the soil. Laboratory data show that these salts are readily removable with a simple soil leach.

  13. Detection of microbial Life in the Subsurface

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Fendrihan, S.; Dornmayr-Pfaffenhuemer, M.; Legat, A.; Gruber, C.; Weidler, G.; Gerbl, F.

    2007-08-01

    In recent years microbial communities were detected, which dwell in rocks, soil and caves deep below the surface of the Earth. This has led to a new view of the diversity of the terrestrial biosphere and of the physico-chemical boundaries for life. Two types of subterranean environments are Permo-Triassic salt sediments and thermal radioactive springs from igneous rocks in the Alps. Viable extremely halophilic archaea were isolated from ancient salt sediments which are estimated to be about 250 million years old (1). Chemotaxonomic and molecular characterization showed that they represent novel species, e. g. Halococcus salifodinae, Hcc. dombrowskiiand Halobacterium noricense. Simulation experiments with artificial halite suggested that these microorganisms probably survived while embedded in fluid inclusions. In the thermal springs, evidence for numerous novel microorganisms was found by 16S rDNA sequencing and probing for some metabolic genes; in addition, scanning electron microscopy of biofilms on the rock surfaces revealed great diversity of morphotypes (2). These communities appear to be active and growing, although their energy and carbon sources are entirely unknown. The characterization of subsurface inhabitants is of astrobiological relevance since extraterrestrial halite has been detected (3) and since microbial life on Mars, if existent, may have retreated into the subsurface. As a long-term goal, a thorough census of terrestrial microorganisms should be taken and their survival potential be determined in view of future missions for the search for extraterrestrial life, including planning precautions against possible forward contamination by space probes. (1) Fendrihan, S., Legat, A., Gruber, C., Pfaffenhuemer, M., Weidler, G., Gerbl, F., Stan-Lotter, H. (2006) Extremely halophilic archaea and the issue of long term microbial survival. Reviews in Environmental Science and Bio/technology 5, 1569-1605. (2) Weidler, G.W., Dornmayr-Pfaffenhuemer, M., Gerbl, F.W., Heinen, W., Stan- Lotter, H. (2007) Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps and evidence for ammonia oxidizing Crenarchaeota. Appl. Environ. Microbiol. 73, 259-270. (3) Stan-Lotter, H., Radax, C., McGenity, T.J., Legat, A., Pfaffenhuemer, M.,Wieland, H., Gruber, C., Denner, E.B.M. (2004) From Intraterrestrials to Extraterrestrials - Viable haloarchaea in ancient salt deposits. In: Halophilic Microorganisms. Ventosa A. (Ed.), Springer Verlag, Berlin, Heidelberg, New York, pp. 89-102.

  14. Autonomic Imbalance and Borderline States of Thyrotoxicosis

    PubMed Central

    Martin, Laurence

    1939-01-01

    Primary thyrotoxicosis may be regarded as having two main components—thyroid overactivity or dysfunction, and instability of the autonomic nervous system. Clinical observation suggests that the proportion of each component varies in individual cases. Results of treatment show that the larger the thyroid element the greater is the benefit of thyroidectomy or X-ray therapy, and the fewer the subsequent residual signs. When nervous instability predominates less relief is obtained by surgery or X-rays, and symptoms may be little changed or even made worse by the addition of hypothyroidism. Cases in which nervous instability predominates, with minimal thyroid dysfunction, have been termed “autonomic imbalance”, “neurocirculatory asthenia”, or “Basedow's disease with no thyrotoxicosis”. Thirteen such cases are described, all of which were females, with average age of 32 years. 9 had enlarged thyroids, 11 complained of palpitations, and 8 of excessive sweating. The basal metabolic rate, estimated in 8 cases, did not exceed +10%. There was some loss of weight in 6 cases, but in none was the appetite increased. The average diurnal pulse-rate did not exceed 95 and sleeping pulse was significantly lower. X-rays of heart, taken in 6 cases, were normal. Psychological troubles in 6 cases. Three cases treated by X-ray therapy and I surgically with no benefit. Remaining 10 cases treated medically with improvement. The group is ill-defined and requires further investigation of cause and treatment. The recognition of autonomic imbalance is important in order to avoid useless thyroidectomy or X-ray therapy, and encourage more extended use of psychotherapy. Investigation of its cause may yield information of value in the ætiological problem of thyrotoxicosis. PMID:19992127

  15. Autonomously stabilized entanglement between two superconducting qubits

    NASA Astrophysics Data System (ADS)

    Shankar, Shyam

    2014-03-01

    Quantum error-correction codes are designed to protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for the development of large-scale quantum computers. A first step is to stabilize a non-equilibrium state of a simple quantum system such as a qubit or a cavity mode, in the presence of decoherence. Several groups have recently accomplished this goal using measurement-based feedback schemes. A next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved by an autonomous feedback scheme which combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative bath. Similar bath engineering techniques have recently been used for qubit reset, single qubit state stabilization, as well as for the creation and stabilization of states of multipartite quantum systems. Unlike conventional, measurement-based schemes, an autonomous approach which uses engineered dissipation to counteract decoherence, obviates the need for a complicated external feedback loop to correct errors. Instead the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building-block for quantum information processing. Such autonomous schemes, which are broadly applicable to a variety of physical systems, will be an essential tool for the implementation of quantum-error correction. Work supported by: IARPA, ARO, and NSF.

  16. The Relationship between Vascular Function and the Autonomic Nervous System

    PubMed Central

    2014-01-01

    Endothelial dysfunction and autonomic nervous system dysfunction are both risk factors for atherosclerosis. There is evidence demonstrating that there is a close interrelationship between these two systems. In hypertension, endothelial dysfunction affects the pathologic process through autonomic nervous pathways, and the pathophysiological process of autonomic neuropathy in diabetes mellitus is closely related with vascular function. However, detailed mechanisms of this interrelationship have not been clearly explained. In this review, we summarize findings concerning the interrelationship between vascular function and the autonomic nervous system from both experimental and clinical studies. The clarification of this interrelationship may provide more comprehensive risk stratification and a new effective therapeutic strategy against atherosclerosis. PMID:24995054

  17. Autonomous Attitude Determination System (AADS). Volume 1: System description

    NASA Technical Reports Server (NTRS)

    Saralkar, K.; Frenkel, Y.; Klitsch, G.; Liu, K. S.; Lefferts, E.; Tasaki, K.; Snow, F.; Garrahan, J.

    1982-01-01

    Information necessary to understand the Autonomous Attitude Determination System (AADS) is presented. Topics include AADS requirements, program structure, algorithms, and system generation and execution.

  18. Autonomic care platform for optimizing query performance

    PubMed Central

    2013-01-01

    Background As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients’ data on the bedside screens. Results The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions We found that by controlled reduction of queries’ executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse. PMID:24160892

  19. Pipeline inspection using an autonomous underwater vehicle

    SciTech Connect

    Egeskov, P.; Bech, M.; Bowley, R.; Aage, C.

    1995-12-31

    Pipeline inspection can be carried out by means of small Autonomous Underwater Vehicles (AUVs), operating either with a control link to a surface vessel, or totally independently. The AUV offers an attractive alternative to conventional inspection methods where Remotely Operated Vehicles (ROVs) or paravanes are used. A flatfish type AUV ``MARTIN`` (Marine Tool for Inspection) has been developed for this purpose. The paper describes the proposed types of inspection jobs to be carried out by ``MARTIN``. The design and construction of the vessel, its hydrodynamic properties, its propulsion and control systems are discussed. The pipeline tracking and survey systems, as well as the launch and recovery systems are described.

  20. A Diversified Investment Strategy Using Autonomous Agents

    NASA Astrophysics Data System (ADS)

    Barbosa, Rui Pedro; Belo, Orlando

    In a previously published article, we presented an architecture for implementing agents with the ability to trade autonomously in the Forex market. At the core of this architecture is an ensemble of classification and regression models that is used to predict the direction of the price of a currency pair. In this paper, we will describe a diversified investment strategy consisting of five agents which were implemented using that architecture. By simulating trades with 18 months of out-of-sample data, we will demonstrate that data mining models can produce profitable predictions, and that the trading risk can be diminished through investment diversification.